ExprEngineC.cpp revision 249423
1//=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines ExprEngine's support for C expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ExprCXX.h"
15#include "clang/StaticAnalyzer/Core/CheckerManager.h"
16#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
17
18using namespace clang;
19using namespace ento;
20using llvm::APSInt;
21
22void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
23                                     ExplodedNode *Pred,
24                                     ExplodedNodeSet &Dst) {
25
26  Expr *LHS = B->getLHS()->IgnoreParens();
27  Expr *RHS = B->getRHS()->IgnoreParens();
28
29  // FIXME: Prechecks eventually go in ::Visit().
30  ExplodedNodeSet CheckedSet;
31  ExplodedNodeSet Tmp2;
32  getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
33
34  // With both the LHS and RHS evaluated, process the operation itself.
35  for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
36         it != ei; ++it) {
37
38    ProgramStateRef state = (*it)->getState();
39    const LocationContext *LCtx = (*it)->getLocationContext();
40    SVal LeftV = state->getSVal(LHS, LCtx);
41    SVal RightV = state->getSVal(RHS, LCtx);
42
43    BinaryOperator::Opcode Op = B->getOpcode();
44
45    if (Op == BO_Assign) {
46      // EXPERIMENTAL: "Conjured" symbols.
47      // FIXME: Handle structs.
48      if (RightV.isUnknown()) {
49        unsigned Count = currBldrCtx->blockCount();
50        RightV = svalBuilder.conjureSymbolVal(0, B->getRHS(), LCtx, Count);
51      }
52      // Simulate the effects of a "store":  bind the value of the RHS
53      // to the L-Value represented by the LHS.
54      SVal ExprVal = B->isGLValue() ? LeftV : RightV;
55      evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
56                LeftV, RightV);
57      continue;
58    }
59
60    if (!B->isAssignmentOp()) {
61      StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);
62
63      if (B->isAdditiveOp()) {
64        // If one of the operands is a location, conjure a symbol for the other
65        // one (offset) if it's unknown so that memory arithmetic always
66        // results in an ElementRegion.
67        // TODO: This can be removed after we enable history tracking with
68        // SymSymExpr.
69        unsigned Count = currBldrCtx->blockCount();
70        if (LeftV.getAs<Loc>() &&
71            RHS->getType()->isIntegerType() && RightV.isUnknown()) {
72          RightV = svalBuilder.conjureSymbolVal(RHS, LCtx, RHS->getType(),
73                                                Count);
74        }
75        if (RightV.getAs<Loc>() &&
76            LHS->getType()->isIntegerType() && LeftV.isUnknown()) {
77          LeftV = svalBuilder.conjureSymbolVal(LHS, LCtx, LHS->getType(),
78                                               Count);
79        }
80      }
81
82      // Process non-assignments except commas or short-circuited
83      // logical expressions (LAnd and LOr).
84      SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
85      if (Result.isUnknown()) {
86        Bldr.generateNode(B, *it, state);
87        continue;
88      }
89
90      state = state->BindExpr(B, LCtx, Result);
91      Bldr.generateNode(B, *it, state);
92      continue;
93    }
94
95    assert (B->isCompoundAssignmentOp());
96
97    switch (Op) {
98      default:
99        llvm_unreachable("Invalid opcode for compound assignment.");
100      case BO_MulAssign: Op = BO_Mul; break;
101      case BO_DivAssign: Op = BO_Div; break;
102      case BO_RemAssign: Op = BO_Rem; break;
103      case BO_AddAssign: Op = BO_Add; break;
104      case BO_SubAssign: Op = BO_Sub; break;
105      case BO_ShlAssign: Op = BO_Shl; break;
106      case BO_ShrAssign: Op = BO_Shr; break;
107      case BO_AndAssign: Op = BO_And; break;
108      case BO_XorAssign: Op = BO_Xor; break;
109      case BO_OrAssign:  Op = BO_Or;  break;
110    }
111
112    // Perform a load (the LHS).  This performs the checks for
113    // null dereferences, and so on.
114    ExplodedNodeSet Tmp;
115    SVal location = LeftV;
116    evalLoad(Tmp, B, LHS, *it, state, location);
117
118    for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
119         ++I) {
120
121      state = (*I)->getState();
122      const LocationContext *LCtx = (*I)->getLocationContext();
123      SVal V = state->getSVal(LHS, LCtx);
124
125      // Get the computation type.
126      QualType CTy =
127        cast<CompoundAssignOperator>(B)->getComputationResultType();
128      CTy = getContext().getCanonicalType(CTy);
129
130      QualType CLHSTy =
131        cast<CompoundAssignOperator>(B)->getComputationLHSType();
132      CLHSTy = getContext().getCanonicalType(CLHSTy);
133
134      QualType LTy = getContext().getCanonicalType(LHS->getType());
135
136      // Promote LHS.
137      V = svalBuilder.evalCast(V, CLHSTy, LTy);
138
139      // Compute the result of the operation.
140      SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
141                                         B->getType(), CTy);
142
143      // EXPERIMENTAL: "Conjured" symbols.
144      // FIXME: Handle structs.
145
146      SVal LHSVal;
147
148      if (Result.isUnknown()) {
149        // The symbolic value is actually for the type of the left-hand side
150        // expression, not the computation type, as this is the value the
151        // LValue on the LHS will bind to.
152        LHSVal = svalBuilder.conjureSymbolVal(0, B->getRHS(), LCtx, LTy,
153                                              currBldrCtx->blockCount());
154        // However, we need to convert the symbol to the computation type.
155        Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
156      }
157      else {
158        // The left-hand side may bind to a different value then the
159        // computation type.
160        LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
161      }
162
163      // In C++, assignment and compound assignment operators return an
164      // lvalue.
165      if (B->isGLValue())
166        state = state->BindExpr(B, LCtx, location);
167      else
168        state = state->BindExpr(B, LCtx, Result);
169
170      evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
171    }
172  }
173
174  // FIXME: postvisits eventually go in ::Visit()
175  getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
176}
177
178void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
179                                ExplodedNodeSet &Dst) {
180
181  CanQualType T = getContext().getCanonicalType(BE->getType());
182
183  // Get the value of the block itself.
184  SVal V = svalBuilder.getBlockPointer(BE->getBlockDecl(), T,
185                                       Pred->getLocationContext());
186
187  ProgramStateRef State = Pred->getState();
188
189  // If we created a new MemRegion for the block, we should explicitly bind
190  // the captured variables.
191  if (const BlockDataRegion *BDR =
192      dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
193
194    BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
195                                              E = BDR->referenced_vars_end();
196
197    for (; I != E; ++I) {
198      const MemRegion *capturedR = I.getCapturedRegion();
199      const MemRegion *originalR = I.getOriginalRegion();
200      if (capturedR != originalR) {
201        SVal originalV = State->getSVal(loc::MemRegionVal(originalR));
202        State = State->bindLoc(loc::MemRegionVal(capturedR), originalV);
203      }
204    }
205  }
206
207  ExplodedNodeSet Tmp;
208  StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
209  Bldr.generateNode(BE, Pred,
210                    State->BindExpr(BE, Pred->getLocationContext(), V),
211                    0, ProgramPoint::PostLValueKind);
212
213  // FIXME: Move all post/pre visits to ::Visit().
214  getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
215}
216
217void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
218                           ExplodedNode *Pred, ExplodedNodeSet &Dst) {
219
220  ExplodedNodeSet dstPreStmt;
221  getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
222
223  if (CastE->getCastKind() == CK_LValueToRValue) {
224    for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
225         I!=E; ++I) {
226      ExplodedNode *subExprNode = *I;
227      ProgramStateRef state = subExprNode->getState();
228      const LocationContext *LCtx = subExprNode->getLocationContext();
229      evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
230    }
231    return;
232  }
233
234  // All other casts.
235  QualType T = CastE->getType();
236  QualType ExTy = Ex->getType();
237
238  if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
239    T = ExCast->getTypeAsWritten();
240
241  StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
242  for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
243       I != E; ++I) {
244
245    Pred = *I;
246    ProgramStateRef state = Pred->getState();
247    const LocationContext *LCtx = Pred->getLocationContext();
248
249    switch (CastE->getCastKind()) {
250      case CK_LValueToRValue:
251        llvm_unreachable("LValueToRValue casts handled earlier.");
252      case CK_ToVoid:
253        continue;
254        // The analyzer doesn't do anything special with these casts,
255        // since it understands retain/release semantics already.
256      case CK_ARCProduceObject:
257      case CK_ARCConsumeObject:
258      case CK_ARCReclaimReturnedObject:
259      case CK_ARCExtendBlockObject: // Fall-through.
260      case CK_CopyAndAutoreleaseBlockObject:
261        // The analyser can ignore atomic casts for now, although some future
262        // checkers may want to make certain that you're not modifying the same
263        // value through atomic and nonatomic pointers.
264      case CK_AtomicToNonAtomic:
265      case CK_NonAtomicToAtomic:
266        // True no-ops.
267      case CK_NoOp:
268      case CK_ConstructorConversion:
269      case CK_UserDefinedConversion:
270      case CK_FunctionToPointerDecay:
271      case CK_BuiltinFnToFnPtr: {
272        // Copy the SVal of Ex to CastE.
273        ProgramStateRef state = Pred->getState();
274        const LocationContext *LCtx = Pred->getLocationContext();
275        SVal V = state->getSVal(Ex, LCtx);
276        state = state->BindExpr(CastE, LCtx, V);
277        Bldr.generateNode(CastE, Pred, state);
278        continue;
279      }
280      case CK_MemberPointerToBoolean:
281        // FIXME: For now, member pointers are represented by void *.
282        // FALLTHROUGH
283      case CK_Dependent:
284      case CK_ArrayToPointerDecay:
285      case CK_BitCast:
286      case CK_IntegralCast:
287      case CK_NullToPointer:
288      case CK_IntegralToPointer:
289      case CK_PointerToIntegral:
290      case CK_PointerToBoolean:
291      case CK_IntegralToBoolean:
292      case CK_IntegralToFloating:
293      case CK_FloatingToIntegral:
294      case CK_FloatingToBoolean:
295      case CK_FloatingCast:
296      case CK_FloatingRealToComplex:
297      case CK_FloatingComplexToReal:
298      case CK_FloatingComplexToBoolean:
299      case CK_FloatingComplexCast:
300      case CK_FloatingComplexToIntegralComplex:
301      case CK_IntegralRealToComplex:
302      case CK_IntegralComplexToReal:
303      case CK_IntegralComplexToBoolean:
304      case CK_IntegralComplexCast:
305      case CK_IntegralComplexToFloatingComplex:
306      case CK_CPointerToObjCPointerCast:
307      case CK_BlockPointerToObjCPointerCast:
308      case CK_AnyPointerToBlockPointerCast:
309      case CK_ObjCObjectLValueCast:
310      case CK_ZeroToOCLEvent: {
311        // Delegate to SValBuilder to process.
312        SVal V = state->getSVal(Ex, LCtx);
313        V = svalBuilder.evalCast(V, T, ExTy);
314        state = state->BindExpr(CastE, LCtx, V);
315        Bldr.generateNode(CastE, Pred, state);
316        continue;
317      }
318      case CK_DerivedToBase:
319      case CK_UncheckedDerivedToBase: {
320        // For DerivedToBase cast, delegate to the store manager.
321        SVal val = state->getSVal(Ex, LCtx);
322        val = getStoreManager().evalDerivedToBase(val, CastE);
323        state = state->BindExpr(CastE, LCtx, val);
324        Bldr.generateNode(CastE, Pred, state);
325        continue;
326      }
327      // Handle C++ dyn_cast.
328      case CK_Dynamic: {
329        SVal val = state->getSVal(Ex, LCtx);
330
331        // Compute the type of the result.
332        QualType resultType = CastE->getType();
333        if (CastE->isGLValue())
334          resultType = getContext().getPointerType(resultType);
335
336        bool Failed = false;
337
338        // Check if the value being cast evaluates to 0.
339        if (val.isZeroConstant())
340          Failed = true;
341        // Else, evaluate the cast.
342        else
343          val = getStoreManager().evalDynamicCast(val, T, Failed);
344
345        if (Failed) {
346          if (T->isReferenceType()) {
347            // A bad_cast exception is thrown if input value is a reference.
348            // Currently, we model this, by generating a sink.
349            Bldr.generateSink(CastE, Pred, state);
350            continue;
351          } else {
352            // If the cast fails on a pointer, bind to 0.
353            state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
354          }
355        } else {
356          // If we don't know if the cast succeeded, conjure a new symbol.
357          if (val.isUnknown()) {
358            DefinedOrUnknownSVal NewSym =
359              svalBuilder.conjureSymbolVal(0, CastE, LCtx, resultType,
360                                           currBldrCtx->blockCount());
361            state = state->BindExpr(CastE, LCtx, NewSym);
362          } else
363            // Else, bind to the derived region value.
364            state = state->BindExpr(CastE, LCtx, val);
365        }
366        Bldr.generateNode(CastE, Pred, state);
367        continue;
368      }
369      case CK_NullToMemberPointer: {
370        // FIXME: For now, member pointers are represented by void *.
371        SVal V = svalBuilder.makeIntValWithPtrWidth(0, true);
372        state = state->BindExpr(CastE, LCtx, V);
373        Bldr.generateNode(CastE, Pred, state);
374        continue;
375      }
376      // Various C++ casts that are not handled yet.
377      case CK_ToUnion:
378      case CK_BaseToDerived:
379      case CK_BaseToDerivedMemberPointer:
380      case CK_DerivedToBaseMemberPointer:
381      case CK_ReinterpretMemberPointer:
382      case CK_VectorSplat:
383      case CK_LValueBitCast: {
384        // Recover some path-sensitivty by conjuring a new value.
385        QualType resultType = CastE->getType();
386        if (CastE->isGLValue())
387          resultType = getContext().getPointerType(resultType);
388        SVal result = svalBuilder.conjureSymbolVal(0, CastE, LCtx,
389                                                   resultType,
390                                                   currBldrCtx->blockCount());
391        state = state->BindExpr(CastE, LCtx, result);
392        Bldr.generateNode(CastE, Pred, state);
393        continue;
394      }
395    }
396  }
397}
398
399void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
400                                          ExplodedNode *Pred,
401                                          ExplodedNodeSet &Dst) {
402  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
403
404  const InitListExpr *ILE
405    = cast<InitListExpr>(CL->getInitializer()->IgnoreParens());
406
407  ProgramStateRef state = Pred->getState();
408  SVal ILV = state->getSVal(ILE, Pred->getLocationContext());
409  const LocationContext *LC = Pred->getLocationContext();
410  state = state->bindCompoundLiteral(CL, LC, ILV);
411
412  // Compound literal expressions are a GNU extension in C++.
413  // Unlike in C, where CLs are lvalues, in C++ CLs are prvalues,
414  // and like temporary objects created by the functional notation T()
415  // CLs are destroyed at the end of the containing full-expression.
416  // HOWEVER, an rvalue of array type is not something the analyzer can
417  // reason about, since we expect all regions to be wrapped in Locs.
418  // So we treat array CLs as lvalues as well, knowing that they will decay
419  // to pointers as soon as they are used.
420  if (CL->isGLValue() || CL->getType()->isArrayType())
421    B.generateNode(CL, Pred, state->BindExpr(CL, LC, state->getLValue(CL, LC)));
422  else
423    B.generateNode(CL, Pred, state->BindExpr(CL, LC, ILV));
424}
425
426void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
427                               ExplodedNodeSet &Dst) {
428  // Assumption: The CFG has one DeclStmt per Decl.
429  const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin());
430
431  if (!VD) {
432    //TODO:AZ: remove explicit insertion after refactoring is done.
433    Dst.insert(Pred);
434    return;
435  }
436
437  // FIXME: all pre/post visits should eventually be handled by ::Visit().
438  ExplodedNodeSet dstPreVisit;
439  getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
440
441  StmtNodeBuilder B(dstPreVisit, Dst, *currBldrCtx);
442  for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
443       I!=E; ++I) {
444    ExplodedNode *N = *I;
445    ProgramStateRef state = N->getState();
446    const LocationContext *LC = N->getLocationContext();
447
448    // Decls without InitExpr are not initialized explicitly.
449    if (const Expr *InitEx = VD->getInit()) {
450
451      // Note in the state that the initialization has occurred.
452      ExplodedNode *UpdatedN = N;
453      SVal InitVal = state->getSVal(InitEx, LC);
454
455      if (isa<CXXConstructExpr>(InitEx->IgnoreImplicit())) {
456        // We constructed the object directly in the variable.
457        // No need to bind anything.
458        B.generateNode(DS, UpdatedN, state);
459      } else {
460        // We bound the temp obj region to the CXXConstructExpr. Now recover
461        // the lazy compound value when the variable is not a reference.
462        if (AMgr.getLangOpts().CPlusPlus && VD->getType()->isRecordType() &&
463            !VD->getType()->isReferenceType()) {
464          if (Optional<loc::MemRegionVal> M =
465                  InitVal.getAs<loc::MemRegionVal>()) {
466            InitVal = state->getSVal(M->getRegion());
467            assert(InitVal.getAs<nonloc::LazyCompoundVal>());
468          }
469        }
470
471        // Recover some path-sensitivity if a scalar value evaluated to
472        // UnknownVal.
473        if (InitVal.isUnknown()) {
474          QualType Ty = InitEx->getType();
475          if (InitEx->isGLValue()) {
476            Ty = getContext().getPointerType(Ty);
477          }
478
479          InitVal = svalBuilder.conjureSymbolVal(0, InitEx, LC, Ty,
480                                                 currBldrCtx->blockCount());
481        }
482
483
484        B.takeNodes(UpdatedN);
485        ExplodedNodeSet Dst2;
486        evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true);
487        B.addNodes(Dst2);
488      }
489    }
490    else {
491      B.generateNode(DS, N, state);
492    }
493  }
494}
495
496void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
497                                  ExplodedNodeSet &Dst) {
498  assert(B->getOpcode() == BO_LAnd ||
499         B->getOpcode() == BO_LOr);
500
501  StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
502  ProgramStateRef state = Pred->getState();
503
504  ExplodedNode *N = Pred;
505  while (!N->getLocation().getAs<BlockEntrance>()) {
506    ProgramPoint P = N->getLocation();
507    assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>());
508    (void) P;
509    assert(N->pred_size() == 1);
510    N = *N->pred_begin();
511  }
512  assert(N->pred_size() == 1);
513  N = *N->pred_begin();
514  BlockEdge BE = N->getLocation().castAs<BlockEdge>();
515  SVal X;
516
517  // Determine the value of the expression by introspecting how we
518  // got this location in the CFG.  This requires looking at the previous
519  // block we were in and what kind of control-flow transfer was involved.
520  const CFGBlock *SrcBlock = BE.getSrc();
521  // The only terminator (if there is one) that makes sense is a logical op.
522  CFGTerminator T = SrcBlock->getTerminator();
523  if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
524    (void) Term;
525    assert(Term->isLogicalOp());
526    assert(SrcBlock->succ_size() == 2);
527    // Did we take the true or false branch?
528    unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
529    X = svalBuilder.makeIntVal(constant, B->getType());
530  }
531  else {
532    // If there is no terminator, by construction the last statement
533    // in SrcBlock is the value of the enclosing expression.
534    // However, we still need to constrain that value to be 0 or 1.
535    assert(!SrcBlock->empty());
536    CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>();
537    const Expr *RHS = cast<Expr>(Elem.getStmt());
538    SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
539
540    if (RHSVal.isUndef()) {
541      X = RHSVal;
542    } else {
543      DefinedOrUnknownSVal DefinedRHS = RHSVal.castAs<DefinedOrUnknownSVal>();
544      ProgramStateRef StTrue, StFalse;
545      llvm::tie(StTrue, StFalse) = N->getState()->assume(DefinedRHS);
546      if (StTrue) {
547        if (StFalse) {
548          // We can't constrain the value to 0 or 1.
549          // The best we can do is a cast.
550          X = getSValBuilder().evalCast(RHSVal, B->getType(), RHS->getType());
551        } else {
552          // The value is known to be true.
553          X = getSValBuilder().makeIntVal(1, B->getType());
554        }
555      } else {
556        // The value is known to be false.
557        assert(StFalse && "Infeasible path!");
558        X = getSValBuilder().makeIntVal(0, B->getType());
559      }
560    }
561  }
562  Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
563}
564
565void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
566                                   ExplodedNode *Pred,
567                                   ExplodedNodeSet &Dst) {
568  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
569
570  ProgramStateRef state = Pred->getState();
571  const LocationContext *LCtx = Pred->getLocationContext();
572  QualType T = getContext().getCanonicalType(IE->getType());
573  unsigned NumInitElements = IE->getNumInits();
574
575  if (T->isArrayType() || T->isRecordType() || T->isVectorType() ||
576      T->isAnyComplexType()) {
577    llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
578
579    // Handle base case where the initializer has no elements.
580    // e.g: static int* myArray[] = {};
581    if (NumInitElements == 0) {
582      SVal V = svalBuilder.makeCompoundVal(T, vals);
583      B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
584      return;
585    }
586
587    for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
588         ei = IE->rend(); it != ei; ++it) {
589      SVal V = state->getSVal(cast<Expr>(*it), LCtx);
590      if (dyn_cast_or_null<CXXTempObjectRegion>(V.getAsRegion()))
591        V = UnknownVal();
592      vals = getBasicVals().consVals(V, vals);
593    }
594
595    B.generateNode(IE, Pred,
596                   state->BindExpr(IE, LCtx,
597                                   svalBuilder.makeCompoundVal(T, vals)));
598    return;
599  }
600
601  // Handle scalars: int{5} and int{}.
602  assert(NumInitElements <= 1);
603
604  SVal V;
605  if (NumInitElements == 0)
606    V = getSValBuilder().makeZeroVal(T);
607  else
608    V = state->getSVal(IE->getInit(0), LCtx);
609
610  B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
611}
612
613void ExprEngine::VisitGuardedExpr(const Expr *Ex,
614                                  const Expr *L,
615                                  const Expr *R,
616                                  ExplodedNode *Pred,
617                                  ExplodedNodeSet &Dst) {
618  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
619  ProgramStateRef state = Pred->getState();
620  const LocationContext *LCtx = Pred->getLocationContext();
621  const CFGBlock *SrcBlock = 0;
622
623  for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
624    ProgramPoint PP = N->getLocation();
625    if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) {
626      assert(N->pred_size() == 1);
627      continue;
628    }
629    SrcBlock = PP.castAs<BlockEdge>().getSrc();
630    break;
631  }
632
633  assert(SrcBlock && "missing function entry");
634
635  // Find the last expression in the predecessor block.  That is the
636  // expression that is used for the value of the ternary expression.
637  bool hasValue = false;
638  SVal V;
639
640  for (CFGBlock::const_reverse_iterator I = SrcBlock->rbegin(),
641                                        E = SrcBlock->rend(); I != E; ++I) {
642    CFGElement CE = *I;
643    if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
644      const Expr *ValEx = cast<Expr>(CS->getStmt());
645      hasValue = true;
646      V = state->getSVal(ValEx, LCtx);
647      break;
648    }
649  }
650
651  assert(hasValue);
652  (void) hasValue;
653
654  // Generate a new node with the binding from the appropriate path.
655  B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
656}
657
658void ExprEngine::
659VisitOffsetOfExpr(const OffsetOfExpr *OOE,
660                  ExplodedNode *Pred, ExplodedNodeSet &Dst) {
661  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
662  APSInt IV;
663  if (OOE->EvaluateAsInt(IV, getContext())) {
664    assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
665    assert(OOE->getType()->isIntegerType());
666    assert(IV.isSigned() == OOE->getType()->isSignedIntegerOrEnumerationType());
667    SVal X = svalBuilder.makeIntVal(IV);
668    B.generateNode(OOE, Pred,
669                   Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
670                                              X));
671  }
672  // FIXME: Handle the case where __builtin_offsetof is not a constant.
673}
674
675
676void ExprEngine::
677VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
678                              ExplodedNode *Pred,
679                              ExplodedNodeSet &Dst) {
680  StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
681
682  QualType T = Ex->getTypeOfArgument();
683
684  if (Ex->getKind() == UETT_SizeOf) {
685    if (!T->isIncompleteType() && !T->isConstantSizeType()) {
686      assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
687
688      // FIXME: Add support for VLA type arguments and VLA expressions.
689      // When that happens, we should probably refactor VLASizeChecker's code.
690      return;
691    }
692    else if (T->getAs<ObjCObjectType>()) {
693      // Some code tries to take the sizeof an ObjCObjectType, relying that
694      // the compiler has laid out its representation.  Just report Unknown
695      // for these.
696      return;
697    }
698  }
699
700  APSInt Value = Ex->EvaluateKnownConstInt(getContext());
701  CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
702
703  ProgramStateRef state = Pred->getState();
704  state = state->BindExpr(Ex, Pred->getLocationContext(),
705                          svalBuilder.makeIntVal(amt.getQuantity(),
706                                                     Ex->getType()));
707  Bldr.generateNode(Ex, Pred, state);
708}
709
710void ExprEngine::VisitUnaryOperator(const UnaryOperator* U,
711                                    ExplodedNode *Pred,
712                                    ExplodedNodeSet &Dst) {
713  StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
714  switch (U->getOpcode()) {
715    default: {
716      Bldr.takeNodes(Pred);
717      ExplodedNodeSet Tmp;
718      VisitIncrementDecrementOperator(U, Pred, Tmp);
719      Bldr.addNodes(Tmp);
720    }
721      break;
722    case UO_Real: {
723      const Expr *Ex = U->getSubExpr()->IgnoreParens();
724
725      // FIXME: We don't have complex SValues yet.
726      if (Ex->getType()->isAnyComplexType()) {
727        // Just report "Unknown."
728        break;
729      }
730
731      // For all other types, UO_Real is an identity operation.
732      assert (U->getType() == Ex->getType());
733      ProgramStateRef state = Pred->getState();
734      const LocationContext *LCtx = Pred->getLocationContext();
735      Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
736                                                 state->getSVal(Ex, LCtx)));
737      break;
738    }
739
740    case UO_Imag: {
741      const Expr *Ex = U->getSubExpr()->IgnoreParens();
742      // FIXME: We don't have complex SValues yet.
743      if (Ex->getType()->isAnyComplexType()) {
744        // Just report "Unknown."
745        break;
746      }
747      // For all other types, UO_Imag returns 0.
748      ProgramStateRef state = Pred->getState();
749      const LocationContext *LCtx = Pred->getLocationContext();
750      SVal X = svalBuilder.makeZeroVal(Ex->getType());
751      Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, X));
752      break;
753    }
754
755    case UO_Plus:
756      assert(!U->isGLValue());
757      // FALL-THROUGH.
758    case UO_Deref:
759    case UO_AddrOf:
760    case UO_Extension: {
761      // FIXME: We can probably just have some magic in Environment::getSVal()
762      // that propagates values, instead of creating a new node here.
763      //
764      // Unary "+" is a no-op, similar to a parentheses.  We still have places
765      // where it may be a block-level expression, so we need to
766      // generate an extra node that just propagates the value of the
767      // subexpression.
768      const Expr *Ex = U->getSubExpr()->IgnoreParens();
769      ProgramStateRef state = Pred->getState();
770      const LocationContext *LCtx = Pred->getLocationContext();
771      Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
772                                                 state->getSVal(Ex, LCtx)));
773      break;
774    }
775
776    case UO_LNot:
777    case UO_Minus:
778    case UO_Not: {
779      assert (!U->isGLValue());
780      const Expr *Ex = U->getSubExpr()->IgnoreParens();
781      ProgramStateRef state = Pred->getState();
782      const LocationContext *LCtx = Pred->getLocationContext();
783
784      // Get the value of the subexpression.
785      SVal V = state->getSVal(Ex, LCtx);
786
787      if (V.isUnknownOrUndef()) {
788        Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, V));
789        break;
790      }
791
792      switch (U->getOpcode()) {
793        default:
794          llvm_unreachable("Invalid Opcode.");
795        case UO_Not:
796          // FIXME: Do we need to handle promotions?
797          state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>()));
798          break;
799        case UO_Minus:
800          // FIXME: Do we need to handle promotions?
801          state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>()));
802          break;
803        case UO_LNot:
804          // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
805          //
806          //  Note: technically we do "E == 0", but this is the same in the
807          //    transfer functions as "0 == E".
808          SVal Result;
809          if (Optional<Loc> LV = V.getAs<Loc>()) {
810            Loc X = svalBuilder.makeNull();
811            Result = evalBinOp(state, BO_EQ, *LV, X, U->getType());
812          }
813          else if (Ex->getType()->isFloatingType()) {
814            // FIXME: handle floating point types.
815            Result = UnknownVal();
816          } else {
817            nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
818            Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X,
819                               U->getType());
820          }
821
822          state = state->BindExpr(U, LCtx, Result);
823          break;
824      }
825      Bldr.generateNode(U, Pred, state);
826      break;
827    }
828  }
829
830}
831
832void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
833                                                 ExplodedNode *Pred,
834                                                 ExplodedNodeSet &Dst) {
835  // Handle ++ and -- (both pre- and post-increment).
836  assert (U->isIncrementDecrementOp());
837  const Expr *Ex = U->getSubExpr()->IgnoreParens();
838
839  const LocationContext *LCtx = Pred->getLocationContext();
840  ProgramStateRef state = Pred->getState();
841  SVal loc = state->getSVal(Ex, LCtx);
842
843  // Perform a load.
844  ExplodedNodeSet Tmp;
845  evalLoad(Tmp, U, Ex, Pred, state, loc);
846
847  ExplodedNodeSet Dst2;
848  StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
849  for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
850
851    state = (*I)->getState();
852    assert(LCtx == (*I)->getLocationContext());
853    SVal V2_untested = state->getSVal(Ex, LCtx);
854
855    // Propagate unknown and undefined values.
856    if (V2_untested.isUnknownOrUndef()) {
857      Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V2_untested));
858      continue;
859    }
860    DefinedSVal V2 = V2_untested.castAs<DefinedSVal>();
861
862    // Handle all other values.
863    BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
864
865    // If the UnaryOperator has non-location type, use its type to create the
866    // constant value. If the UnaryOperator has location type, create the
867    // constant with int type and pointer width.
868    SVal RHS;
869
870    if (U->getType()->isAnyPointerType())
871      RHS = svalBuilder.makeArrayIndex(1);
872    else if (U->getType()->isIntegralOrEnumerationType())
873      RHS = svalBuilder.makeIntVal(1, U->getType());
874    else
875      RHS = UnknownVal();
876
877    SVal Result = evalBinOp(state, Op, V2, RHS, U->getType());
878
879    // Conjure a new symbol if necessary to recover precision.
880    if (Result.isUnknown()){
881      DefinedOrUnknownSVal SymVal =
882        svalBuilder.conjureSymbolVal(0, Ex, LCtx, currBldrCtx->blockCount());
883      Result = SymVal;
884
885      // If the value is a location, ++/-- should always preserve
886      // non-nullness.  Check if the original value was non-null, and if so
887      // propagate that constraint.
888      if (Loc::isLocType(U->getType())) {
889        DefinedOrUnknownSVal Constraint =
890        svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
891
892        if (!state->assume(Constraint, true)) {
893          // It isn't feasible for the original value to be null.
894          // Propagate this constraint.
895          Constraint = svalBuilder.evalEQ(state, SymVal,
896                                       svalBuilder.makeZeroVal(U->getType()));
897
898
899          state = state->assume(Constraint, false);
900          assert(state);
901        }
902      }
903    }
904
905    // Since the lvalue-to-rvalue conversion is explicit in the AST,
906    // we bind an l-value if the operator is prefix and an lvalue (in C++).
907    if (U->isGLValue())
908      state = state->BindExpr(U, LCtx, loc);
909    else
910      state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
911
912    // Perform the store.
913    Bldr.takeNodes(*I);
914    ExplodedNodeSet Dst3;
915    evalStore(Dst3, U, U, *I, state, loc, Result);
916    Bldr.addNodes(Dst3);
917  }
918  Dst.insert(Dst2);
919}
920