ExprEngineC.cpp revision 243830
1//=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines ExprEngine's support for C expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/StaticAnalyzer/Core/CheckerManager.h"
15#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
16
17using namespace clang;
18using namespace ento;
19using llvm::APSInt;
20
21void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
22                                     ExplodedNode *Pred,
23                                     ExplodedNodeSet &Dst) {
24
25  Expr *LHS = B->getLHS()->IgnoreParens();
26  Expr *RHS = B->getRHS()->IgnoreParens();
27
28  // FIXME: Prechecks eventually go in ::Visit().
29  ExplodedNodeSet CheckedSet;
30  ExplodedNodeSet Tmp2;
31  getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
32
33  // With both the LHS and RHS evaluated, process the operation itself.
34  for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
35         it != ei; ++it) {
36
37    ProgramStateRef state = (*it)->getState();
38    const LocationContext *LCtx = (*it)->getLocationContext();
39    SVal LeftV = state->getSVal(LHS, LCtx);
40    SVal RightV = state->getSVal(RHS, LCtx);
41
42    BinaryOperator::Opcode Op = B->getOpcode();
43
44    if (Op == BO_Assign) {
45      // EXPERIMENTAL: "Conjured" symbols.
46      // FIXME: Handle structs.
47      if (RightV.isUnknown()) {
48        unsigned Count = currBldrCtx->blockCount();
49        RightV = svalBuilder.conjureSymbolVal(0, B->getRHS(), LCtx, Count);
50      }
51      // Simulate the effects of a "store":  bind the value of the RHS
52      // to the L-Value represented by the LHS.
53      SVal ExprVal = B->isGLValue() ? LeftV : RightV;
54      evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
55                LeftV, RightV);
56      continue;
57    }
58
59    if (!B->isAssignmentOp()) {
60      StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);
61
62      if (B->isAdditiveOp()) {
63        // If one of the operands is a location, conjure a symbol for the other
64        // one (offset) if it's unknown so that memory arithmetic always
65        // results in an ElementRegion.
66        // TODO: This can be removed after we enable history tracking with
67        // SymSymExpr.
68        unsigned Count = currBldrCtx->blockCount();
69        if (isa<Loc>(LeftV) &&
70            RHS->getType()->isIntegerType() && RightV.isUnknown()) {
71          RightV = svalBuilder.conjureSymbolVal(RHS, LCtx, RHS->getType(),
72                                                Count);
73        }
74        if (isa<Loc>(RightV) &&
75            LHS->getType()->isIntegerType() && LeftV.isUnknown()) {
76          LeftV = svalBuilder.conjureSymbolVal(LHS, LCtx, LHS->getType(),
77                                               Count);
78        }
79      }
80
81      // Process non-assignments except commas or short-circuited
82      // logical expressions (LAnd and LOr).
83      SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
84      if (Result.isUnknown()) {
85        Bldr.generateNode(B, *it, state);
86        continue;
87      }
88
89      state = state->BindExpr(B, LCtx, Result);
90      Bldr.generateNode(B, *it, state);
91      continue;
92    }
93
94    assert (B->isCompoundAssignmentOp());
95
96    switch (Op) {
97      default:
98        llvm_unreachable("Invalid opcode for compound assignment.");
99      case BO_MulAssign: Op = BO_Mul; break;
100      case BO_DivAssign: Op = BO_Div; break;
101      case BO_RemAssign: Op = BO_Rem; break;
102      case BO_AddAssign: Op = BO_Add; break;
103      case BO_SubAssign: Op = BO_Sub; break;
104      case BO_ShlAssign: Op = BO_Shl; break;
105      case BO_ShrAssign: Op = BO_Shr; break;
106      case BO_AndAssign: Op = BO_And; break;
107      case BO_XorAssign: Op = BO_Xor; break;
108      case BO_OrAssign:  Op = BO_Or;  break;
109    }
110
111    // Perform a load (the LHS).  This performs the checks for
112    // null dereferences, and so on.
113    ExplodedNodeSet Tmp;
114    SVal location = LeftV;
115    evalLoad(Tmp, B, LHS, *it, state, location);
116
117    for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
118         ++I) {
119
120      state = (*I)->getState();
121      const LocationContext *LCtx = (*I)->getLocationContext();
122      SVal V = state->getSVal(LHS, LCtx);
123
124      // Get the computation type.
125      QualType CTy =
126        cast<CompoundAssignOperator>(B)->getComputationResultType();
127      CTy = getContext().getCanonicalType(CTy);
128
129      QualType CLHSTy =
130        cast<CompoundAssignOperator>(B)->getComputationLHSType();
131      CLHSTy = getContext().getCanonicalType(CLHSTy);
132
133      QualType LTy = getContext().getCanonicalType(LHS->getType());
134
135      // Promote LHS.
136      V = svalBuilder.evalCast(V, CLHSTy, LTy);
137
138      // Compute the result of the operation.
139      SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
140                                         B->getType(), CTy);
141
142      // EXPERIMENTAL: "Conjured" symbols.
143      // FIXME: Handle structs.
144
145      SVal LHSVal;
146
147      if (Result.isUnknown()) {
148        // The symbolic value is actually for the type of the left-hand side
149        // expression, not the computation type, as this is the value the
150        // LValue on the LHS will bind to.
151        LHSVal = svalBuilder.conjureSymbolVal(0, B->getRHS(), LCtx, LTy,
152                                              currBldrCtx->blockCount());
153        // However, we need to convert the symbol to the computation type.
154        Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
155      }
156      else {
157        // The left-hand side may bind to a different value then the
158        // computation type.
159        LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
160      }
161
162      // In C++, assignment and compound assignment operators return an
163      // lvalue.
164      if (B->isGLValue())
165        state = state->BindExpr(B, LCtx, location);
166      else
167        state = state->BindExpr(B, LCtx, Result);
168
169      evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
170    }
171  }
172
173  // FIXME: postvisits eventually go in ::Visit()
174  getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
175}
176
177void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
178                                ExplodedNodeSet &Dst) {
179
180  CanQualType T = getContext().getCanonicalType(BE->getType());
181
182  // Get the value of the block itself.
183  SVal V = svalBuilder.getBlockPointer(BE->getBlockDecl(), T,
184                                       Pred->getLocationContext());
185
186  ProgramStateRef State = Pred->getState();
187
188  // If we created a new MemRegion for the block, we should explicitly bind
189  // the captured variables.
190  if (const BlockDataRegion *BDR =
191      dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
192
193    BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
194                                              E = BDR->referenced_vars_end();
195
196    for (; I != E; ++I) {
197      const MemRegion *capturedR = I.getCapturedRegion();
198      const MemRegion *originalR = I.getOriginalRegion();
199      if (capturedR != originalR) {
200        SVal originalV = State->getSVal(loc::MemRegionVal(originalR));
201        State = State->bindLoc(loc::MemRegionVal(capturedR), originalV);
202      }
203    }
204  }
205
206  ExplodedNodeSet Tmp;
207  StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
208  Bldr.generateNode(BE, Pred,
209                    State->BindExpr(BE, Pred->getLocationContext(), V),
210                    0, ProgramPoint::PostLValueKind);
211
212  // FIXME: Move all post/pre visits to ::Visit().
213  getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
214}
215
216void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
217                           ExplodedNode *Pred, ExplodedNodeSet &Dst) {
218
219  ExplodedNodeSet dstPreStmt;
220  getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
221
222  if (CastE->getCastKind() == CK_LValueToRValue) {
223    for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
224         I!=E; ++I) {
225      ExplodedNode *subExprNode = *I;
226      ProgramStateRef state = subExprNode->getState();
227      const LocationContext *LCtx = subExprNode->getLocationContext();
228      evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
229    }
230    return;
231  }
232
233  // All other casts.
234  QualType T = CastE->getType();
235  QualType ExTy = Ex->getType();
236
237  if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
238    T = ExCast->getTypeAsWritten();
239
240  StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
241  for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
242       I != E; ++I) {
243
244    Pred = *I;
245    ProgramStateRef state = Pred->getState();
246    const LocationContext *LCtx = Pred->getLocationContext();
247
248    switch (CastE->getCastKind()) {
249      case CK_LValueToRValue:
250        llvm_unreachable("LValueToRValue casts handled earlier.");
251      case CK_ToVoid:
252        continue;
253        // The analyzer doesn't do anything special with these casts,
254        // since it understands retain/release semantics already.
255      case CK_ARCProduceObject:
256      case CK_ARCConsumeObject:
257      case CK_ARCReclaimReturnedObject:
258      case CK_ARCExtendBlockObject: // Fall-through.
259      case CK_CopyAndAutoreleaseBlockObject:
260        // The analyser can ignore atomic casts for now, although some future
261        // checkers may want to make certain that you're not modifying the same
262        // value through atomic and nonatomic pointers.
263      case CK_AtomicToNonAtomic:
264      case CK_NonAtomicToAtomic:
265        // True no-ops.
266      case CK_NoOp:
267      case CK_ConstructorConversion:
268      case CK_UserDefinedConversion:
269      case CK_FunctionToPointerDecay:
270      case CK_BuiltinFnToFnPtr: {
271        // Copy the SVal of Ex to CastE.
272        ProgramStateRef state = Pred->getState();
273        const LocationContext *LCtx = Pred->getLocationContext();
274        SVal V = state->getSVal(Ex, LCtx);
275        state = state->BindExpr(CastE, LCtx, V);
276        Bldr.generateNode(CastE, Pred, state);
277        continue;
278      }
279      case CK_MemberPointerToBoolean:
280        // FIXME: For now, member pointers are represented by void *.
281        // FALLTHROUGH
282      case CK_Dependent:
283      case CK_ArrayToPointerDecay:
284      case CK_BitCast:
285      case CK_IntegralCast:
286      case CK_NullToPointer:
287      case CK_IntegralToPointer:
288      case CK_PointerToIntegral:
289      case CK_PointerToBoolean:
290      case CK_IntegralToBoolean:
291      case CK_IntegralToFloating:
292      case CK_FloatingToIntegral:
293      case CK_FloatingToBoolean:
294      case CK_FloatingCast:
295      case CK_FloatingRealToComplex:
296      case CK_FloatingComplexToReal:
297      case CK_FloatingComplexToBoolean:
298      case CK_FloatingComplexCast:
299      case CK_FloatingComplexToIntegralComplex:
300      case CK_IntegralRealToComplex:
301      case CK_IntegralComplexToReal:
302      case CK_IntegralComplexToBoolean:
303      case CK_IntegralComplexCast:
304      case CK_IntegralComplexToFloatingComplex:
305      case CK_CPointerToObjCPointerCast:
306      case CK_BlockPointerToObjCPointerCast:
307      case CK_AnyPointerToBlockPointerCast:
308      case CK_ObjCObjectLValueCast: {
309        // Delegate to SValBuilder to process.
310        SVal V = state->getSVal(Ex, LCtx);
311        V = svalBuilder.evalCast(V, T, ExTy);
312        state = state->BindExpr(CastE, LCtx, V);
313        Bldr.generateNode(CastE, Pred, state);
314        continue;
315      }
316      case CK_DerivedToBase:
317      case CK_UncheckedDerivedToBase: {
318        // For DerivedToBase cast, delegate to the store manager.
319        SVal val = state->getSVal(Ex, LCtx);
320        val = getStoreManager().evalDerivedToBase(val, CastE);
321        state = state->BindExpr(CastE, LCtx, val);
322        Bldr.generateNode(CastE, Pred, state);
323        continue;
324      }
325      // Handle C++ dyn_cast.
326      case CK_Dynamic: {
327        SVal val = state->getSVal(Ex, LCtx);
328
329        // Compute the type of the result.
330        QualType resultType = CastE->getType();
331        if (CastE->isGLValue())
332          resultType = getContext().getPointerType(resultType);
333
334        bool Failed = false;
335
336        // Check if the value being cast evaluates to 0.
337        if (val.isZeroConstant())
338          Failed = true;
339        // Else, evaluate the cast.
340        else
341          val = getStoreManager().evalDynamicCast(val, T, Failed);
342
343        if (Failed) {
344          if (T->isReferenceType()) {
345            // A bad_cast exception is thrown if input value is a reference.
346            // Currently, we model this, by generating a sink.
347            Bldr.generateSink(CastE, Pred, state);
348            continue;
349          } else {
350            // If the cast fails on a pointer, bind to 0.
351            state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
352          }
353        } else {
354          // If we don't know if the cast succeeded, conjure a new symbol.
355          if (val.isUnknown()) {
356            DefinedOrUnknownSVal NewSym =
357              svalBuilder.conjureSymbolVal(0, CastE, LCtx, resultType,
358                                           currBldrCtx->blockCount());
359            state = state->BindExpr(CastE, LCtx, NewSym);
360          } else
361            // Else, bind to the derived region value.
362            state = state->BindExpr(CastE, LCtx, val);
363        }
364        Bldr.generateNode(CastE, Pred, state);
365        continue;
366      }
367      case CK_NullToMemberPointer: {
368        // FIXME: For now, member pointers are represented by void *.
369        SVal V = svalBuilder.makeIntValWithPtrWidth(0, true);
370        state = state->BindExpr(CastE, LCtx, V);
371        Bldr.generateNode(CastE, Pred, state);
372        continue;
373      }
374      // Various C++ casts that are not handled yet.
375      case CK_ToUnion:
376      case CK_BaseToDerived:
377      case CK_BaseToDerivedMemberPointer:
378      case CK_DerivedToBaseMemberPointer:
379      case CK_ReinterpretMemberPointer:
380      case CK_VectorSplat:
381      case CK_LValueBitCast: {
382        // Recover some path-sensitivty by conjuring a new value.
383        QualType resultType = CastE->getType();
384        if (CastE->isGLValue())
385          resultType = getContext().getPointerType(resultType);
386        SVal result = svalBuilder.conjureSymbolVal(0, CastE, LCtx,
387                                                   resultType,
388                                                   currBldrCtx->blockCount());
389        state = state->BindExpr(CastE, LCtx, result);
390        Bldr.generateNode(CastE, Pred, state);
391        continue;
392      }
393    }
394  }
395}
396
397void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
398                                          ExplodedNode *Pred,
399                                          ExplodedNodeSet &Dst) {
400  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
401
402  const InitListExpr *ILE
403    = cast<InitListExpr>(CL->getInitializer()->IgnoreParens());
404
405  ProgramStateRef state = Pred->getState();
406  SVal ILV = state->getSVal(ILE, Pred->getLocationContext());
407  const LocationContext *LC = Pred->getLocationContext();
408  state = state->bindCompoundLiteral(CL, LC, ILV);
409
410  // Compound literal expressions are a GNU extension in C++.
411  // Unlike in C, where CLs are lvalues, in C++ CLs are prvalues,
412  // and like temporary objects created by the functional notation T()
413  // CLs are destroyed at the end of the containing full-expression.
414  // HOWEVER, an rvalue of array type is not something the analyzer can
415  // reason about, since we expect all regions to be wrapped in Locs.
416  // So we treat array CLs as lvalues as well, knowing that they will decay
417  // to pointers as soon as they are used.
418  if (CL->isGLValue() || CL->getType()->isArrayType())
419    B.generateNode(CL, Pred, state->BindExpr(CL, LC, state->getLValue(CL, LC)));
420  else
421    B.generateNode(CL, Pred, state->BindExpr(CL, LC, ILV));
422}
423
424void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
425                               ExplodedNodeSet &Dst) {
426
427  // FIXME: static variables may have an initializer, but the second
428  //  time a function is called those values may not be current.
429  //  This may need to be reflected in the CFG.
430
431  // Assumption: The CFG has one DeclStmt per Decl.
432  const Decl *D = *DS->decl_begin();
433
434  if (!D || !isa<VarDecl>(D)) {
435    //TODO:AZ: remove explicit insertion after refactoring is done.
436    Dst.insert(Pred);
437    return;
438  }
439
440  // FIXME: all pre/post visits should eventually be handled by ::Visit().
441  ExplodedNodeSet dstPreVisit;
442  getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
443
444  StmtNodeBuilder B(dstPreVisit, Dst, *currBldrCtx);
445  const VarDecl *VD = dyn_cast<VarDecl>(D);
446  for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
447       I!=E; ++I) {
448    ExplodedNode *N = *I;
449    ProgramStateRef state = N->getState();
450
451    // Decls without InitExpr are not initialized explicitly.
452    const LocationContext *LC = N->getLocationContext();
453
454    if (const Expr *InitEx = VD->getInit()) {
455      SVal InitVal = state->getSVal(InitEx, LC);
456
457      if (InitVal == state->getLValue(VD, LC) ||
458          (VD->getType()->isArrayType() &&
459           isa<CXXConstructExpr>(InitEx->IgnoreImplicit()))) {
460        // We constructed the object directly in the variable.
461        // No need to bind anything.
462        B.generateNode(DS, N, state);
463      } else {
464        // We bound the temp obj region to the CXXConstructExpr. Now recover
465        // the lazy compound value when the variable is not a reference.
466        if (AMgr.getLangOpts().CPlusPlus && VD->getType()->isRecordType() &&
467            !VD->getType()->isReferenceType() && isa<loc::MemRegionVal>(InitVal)){
468          InitVal = state->getSVal(cast<loc::MemRegionVal>(InitVal).getRegion());
469          assert(isa<nonloc::LazyCompoundVal>(InitVal));
470        }
471
472        // Recover some path-sensitivity if a scalar value evaluated to
473        // UnknownVal.
474        if (InitVal.isUnknown()) {
475          QualType Ty = InitEx->getType();
476          if (InitEx->isGLValue()) {
477            Ty = getContext().getPointerType(Ty);
478          }
479
480          InitVal = svalBuilder.conjureSymbolVal(0, InitEx, LC, Ty,
481                                                 currBldrCtx->blockCount());
482        }
483        B.takeNodes(N);
484        ExplodedNodeSet Dst2;
485        evalBind(Dst2, DS, N, state->getLValue(VD, LC), InitVal, true);
486        B.addNodes(Dst2);
487      }
488    }
489    else {
490      B.generateNode(DS, N, state);
491    }
492  }
493}
494
495void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
496                                  ExplodedNodeSet &Dst) {
497  assert(B->getOpcode() == BO_LAnd ||
498         B->getOpcode() == BO_LOr);
499
500  StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
501  ProgramStateRef state = Pred->getState();
502
503  ExplodedNode *N = Pred;
504  while (!isa<BlockEntrance>(N->getLocation())) {
505    ProgramPoint P = N->getLocation();
506    assert(isa<PreStmt>(P)|| isa<PreStmtPurgeDeadSymbols>(P));
507    (void) P;
508    assert(N->pred_size() == 1);
509    N = *N->pred_begin();
510  }
511  assert(N->pred_size() == 1);
512  N = *N->pred_begin();
513  BlockEdge BE = cast<BlockEdge>(N->getLocation());
514  SVal X;
515
516  // Determine the value of the expression by introspecting how we
517  // got this location in the CFG.  This requires looking at the previous
518  // block we were in and what kind of control-flow transfer was involved.
519  const CFGBlock *SrcBlock = BE.getSrc();
520  // The only terminator (if there is one) that makes sense is a logical op.
521  CFGTerminator T = SrcBlock->getTerminator();
522  if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
523    (void) Term;
524    assert(Term->isLogicalOp());
525    assert(SrcBlock->succ_size() == 2);
526    // Did we take the true or false branch?
527    unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
528    X = svalBuilder.makeIntVal(constant, B->getType());
529  }
530  else {
531    // If there is no terminator, by construction the last statement
532    // in SrcBlock is the value of the enclosing expression.
533    // However, we still need to constrain that value to be 0 or 1.
534    assert(!SrcBlock->empty());
535    CFGStmt Elem = cast<CFGStmt>(*SrcBlock->rbegin());
536    const Expr *RHS = cast<Expr>(Elem.getStmt());
537    SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
538
539    DefinedOrUnknownSVal DefinedRHS = cast<DefinedOrUnknownSVal>(RHSVal);
540    ProgramStateRef StTrue, StFalse;
541    llvm::tie(StTrue, StFalse) = N->getState()->assume(DefinedRHS);
542    if (StTrue) {
543      if (StFalse) {
544        // We can't constrain the value to 0 or 1; the best we can do is a cast.
545        X = getSValBuilder().evalCast(RHSVal, B->getType(), RHS->getType());
546      } else {
547        // The value is known to be true.
548        X = getSValBuilder().makeIntVal(1, B->getType());
549      }
550    } else {
551      // The value is known to be false.
552      assert(StFalse && "Infeasible path!");
553      X = getSValBuilder().makeIntVal(0, B->getType());
554    }
555  }
556
557  Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
558}
559
560void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
561                                   ExplodedNode *Pred,
562                                   ExplodedNodeSet &Dst) {
563  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
564
565  ProgramStateRef state = Pred->getState();
566  const LocationContext *LCtx = Pred->getLocationContext();
567  QualType T = getContext().getCanonicalType(IE->getType());
568  unsigned NumInitElements = IE->getNumInits();
569
570  if (T->isArrayType() || T->isRecordType() || T->isVectorType() ||
571      T->isAnyComplexType()) {
572    llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
573
574    // Handle base case where the initializer has no elements.
575    // e.g: static int* myArray[] = {};
576    if (NumInitElements == 0) {
577      SVal V = svalBuilder.makeCompoundVal(T, vals);
578      B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
579      return;
580    }
581
582    for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
583         ei = IE->rend(); it != ei; ++it) {
584      vals = getBasicVals().consVals(state->getSVal(cast<Expr>(*it), LCtx),
585                                     vals);
586    }
587
588    B.generateNode(IE, Pred,
589                   state->BindExpr(IE, LCtx,
590                                   svalBuilder.makeCompoundVal(T, vals)));
591    return;
592  }
593
594  // Handle scalars: int{5} and int{}.
595  assert(NumInitElements <= 1);
596
597  SVal V;
598  if (NumInitElements == 0)
599    V = getSValBuilder().makeZeroVal(T);
600  else
601    V = state->getSVal(IE->getInit(0), LCtx);
602
603  B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
604}
605
606void ExprEngine::VisitGuardedExpr(const Expr *Ex,
607                                  const Expr *L,
608                                  const Expr *R,
609                                  ExplodedNode *Pred,
610                                  ExplodedNodeSet &Dst) {
611  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
612  ProgramStateRef state = Pred->getState();
613  const LocationContext *LCtx = Pred->getLocationContext();
614  const CFGBlock *SrcBlock = 0;
615
616  for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
617    ProgramPoint PP = N->getLocation();
618    if (isa<PreStmtPurgeDeadSymbols>(PP) || isa<BlockEntrance>(PP)) {
619      assert(N->pred_size() == 1);
620      continue;
621    }
622    SrcBlock = cast<BlockEdge>(&PP)->getSrc();
623    break;
624  }
625
626  // Find the last expression in the predecessor block.  That is the
627  // expression that is used for the value of the ternary expression.
628  bool hasValue = false;
629  SVal V;
630
631  for (CFGBlock::const_reverse_iterator I = SrcBlock->rbegin(),
632                                        E = SrcBlock->rend(); I != E; ++I) {
633    CFGElement CE = *I;
634    if (CFGStmt *CS = dyn_cast<CFGStmt>(&CE)) {
635      const Expr *ValEx = cast<Expr>(CS->getStmt());
636      hasValue = true;
637      V = state->getSVal(ValEx, LCtx);
638      break;
639    }
640  }
641
642  assert(hasValue);
643  (void) hasValue;
644
645  // Generate a new node with the binding from the appropriate path.
646  B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
647}
648
649void ExprEngine::
650VisitOffsetOfExpr(const OffsetOfExpr *OOE,
651                  ExplodedNode *Pred, ExplodedNodeSet &Dst) {
652  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
653  APSInt IV;
654  if (OOE->EvaluateAsInt(IV, getContext())) {
655    assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
656    assert(OOE->getType()->isIntegerType());
657    assert(IV.isSigned() == OOE->getType()->isSignedIntegerOrEnumerationType());
658    SVal X = svalBuilder.makeIntVal(IV);
659    B.generateNode(OOE, Pred,
660                   Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
661                                              X));
662  }
663  // FIXME: Handle the case where __builtin_offsetof is not a constant.
664}
665
666
667void ExprEngine::
668VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
669                              ExplodedNode *Pred,
670                              ExplodedNodeSet &Dst) {
671  StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
672
673  QualType T = Ex->getTypeOfArgument();
674
675  if (Ex->getKind() == UETT_SizeOf) {
676    if (!T->isIncompleteType() && !T->isConstantSizeType()) {
677      assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
678
679      // FIXME: Add support for VLA type arguments and VLA expressions.
680      // When that happens, we should probably refactor VLASizeChecker's code.
681      return;
682    }
683    else if (T->getAs<ObjCObjectType>()) {
684      // Some code tries to take the sizeof an ObjCObjectType, relying that
685      // the compiler has laid out its representation.  Just report Unknown
686      // for these.
687      return;
688    }
689  }
690
691  APSInt Value = Ex->EvaluateKnownConstInt(getContext());
692  CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
693
694  ProgramStateRef state = Pred->getState();
695  state = state->BindExpr(Ex, Pred->getLocationContext(),
696                          svalBuilder.makeIntVal(amt.getQuantity(),
697                                                     Ex->getType()));
698  Bldr.generateNode(Ex, Pred, state);
699}
700
701void ExprEngine::VisitUnaryOperator(const UnaryOperator* U,
702                                    ExplodedNode *Pred,
703                                    ExplodedNodeSet &Dst) {
704  StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
705  switch (U->getOpcode()) {
706    default: {
707      Bldr.takeNodes(Pred);
708      ExplodedNodeSet Tmp;
709      VisitIncrementDecrementOperator(U, Pred, Tmp);
710      Bldr.addNodes(Tmp);
711    }
712      break;
713    case UO_Real: {
714      const Expr *Ex = U->getSubExpr()->IgnoreParens();
715
716      // FIXME: We don't have complex SValues yet.
717      if (Ex->getType()->isAnyComplexType()) {
718        // Just report "Unknown."
719        break;
720      }
721
722      // For all other types, UO_Real is an identity operation.
723      assert (U->getType() == Ex->getType());
724      ProgramStateRef state = Pred->getState();
725      const LocationContext *LCtx = Pred->getLocationContext();
726      Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
727                                                 state->getSVal(Ex, LCtx)));
728      break;
729    }
730
731    case UO_Imag: {
732      const Expr *Ex = U->getSubExpr()->IgnoreParens();
733      // FIXME: We don't have complex SValues yet.
734      if (Ex->getType()->isAnyComplexType()) {
735        // Just report "Unknown."
736        break;
737      }
738      // For all other types, UO_Imag returns 0.
739      ProgramStateRef state = Pred->getState();
740      const LocationContext *LCtx = Pred->getLocationContext();
741      SVal X = svalBuilder.makeZeroVal(Ex->getType());
742      Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, X));
743      break;
744    }
745
746    case UO_Plus:
747      assert(!U->isGLValue());
748      // FALL-THROUGH.
749    case UO_Deref:
750    case UO_AddrOf:
751    case UO_Extension: {
752      // FIXME: We can probably just have some magic in Environment::getSVal()
753      // that propagates values, instead of creating a new node here.
754      //
755      // Unary "+" is a no-op, similar to a parentheses.  We still have places
756      // where it may be a block-level expression, so we need to
757      // generate an extra node that just propagates the value of the
758      // subexpression.
759      const Expr *Ex = U->getSubExpr()->IgnoreParens();
760      ProgramStateRef state = Pred->getState();
761      const LocationContext *LCtx = Pred->getLocationContext();
762      Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
763                                                 state->getSVal(Ex, LCtx)));
764      break;
765    }
766
767    case UO_LNot:
768    case UO_Minus:
769    case UO_Not: {
770      assert (!U->isGLValue());
771      const Expr *Ex = U->getSubExpr()->IgnoreParens();
772      ProgramStateRef state = Pred->getState();
773      const LocationContext *LCtx = Pred->getLocationContext();
774
775      // Get the value of the subexpression.
776      SVal V = state->getSVal(Ex, LCtx);
777
778      if (V.isUnknownOrUndef()) {
779        Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, V));
780        break;
781      }
782
783      switch (U->getOpcode()) {
784        default:
785          llvm_unreachable("Invalid Opcode.");
786        case UO_Not:
787          // FIXME: Do we need to handle promotions?
788          state = state->BindExpr(U, LCtx, evalComplement(cast<NonLoc>(V)));
789          break;
790        case UO_Minus:
791          // FIXME: Do we need to handle promotions?
792          state = state->BindExpr(U, LCtx, evalMinus(cast<NonLoc>(V)));
793          break;
794        case UO_LNot:
795          // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
796          //
797          //  Note: technically we do "E == 0", but this is the same in the
798          //    transfer functions as "0 == E".
799          SVal Result;
800          if (isa<Loc>(V)) {
801            Loc X = svalBuilder.makeNull();
802            Result = evalBinOp(state, BO_EQ, cast<Loc>(V), X,
803                               U->getType());
804          }
805          else {
806            nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
807            Result = evalBinOp(state, BO_EQ, cast<NonLoc>(V), X,
808                               U->getType());
809          }
810
811          state = state->BindExpr(U, LCtx, Result);
812          break;
813      }
814      Bldr.generateNode(U, Pred, state);
815      break;
816    }
817  }
818
819}
820
821void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
822                                                 ExplodedNode *Pred,
823                                                 ExplodedNodeSet &Dst) {
824  // Handle ++ and -- (both pre- and post-increment).
825  assert (U->isIncrementDecrementOp());
826  const Expr *Ex = U->getSubExpr()->IgnoreParens();
827
828  const LocationContext *LCtx = Pred->getLocationContext();
829  ProgramStateRef state = Pred->getState();
830  SVal loc = state->getSVal(Ex, LCtx);
831
832  // Perform a load.
833  ExplodedNodeSet Tmp;
834  evalLoad(Tmp, U, Ex, Pred, state, loc);
835
836  ExplodedNodeSet Dst2;
837  StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
838  for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
839
840    state = (*I)->getState();
841    assert(LCtx == (*I)->getLocationContext());
842    SVal V2_untested = state->getSVal(Ex, LCtx);
843
844    // Propagate unknown and undefined values.
845    if (V2_untested.isUnknownOrUndef()) {
846      Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V2_untested));
847      continue;
848    }
849    DefinedSVal V2 = cast<DefinedSVal>(V2_untested);
850
851    // Handle all other values.
852    BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
853
854    // If the UnaryOperator has non-location type, use its type to create the
855    // constant value. If the UnaryOperator has location type, create the
856    // constant with int type and pointer width.
857    SVal RHS;
858
859    if (U->getType()->isAnyPointerType())
860      RHS = svalBuilder.makeArrayIndex(1);
861    else if (U->getType()->isIntegralOrEnumerationType())
862      RHS = svalBuilder.makeIntVal(1, U->getType());
863    else
864      RHS = UnknownVal();
865
866    SVal Result = evalBinOp(state, Op, V2, RHS, U->getType());
867
868    // Conjure a new symbol if necessary to recover precision.
869    if (Result.isUnknown()){
870      DefinedOrUnknownSVal SymVal =
871        svalBuilder.conjureSymbolVal(0, Ex, LCtx, currBldrCtx->blockCount());
872      Result = SymVal;
873
874      // If the value is a location, ++/-- should always preserve
875      // non-nullness.  Check if the original value was non-null, and if so
876      // propagate that constraint.
877      if (Loc::isLocType(U->getType())) {
878        DefinedOrUnknownSVal Constraint =
879        svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
880
881        if (!state->assume(Constraint, true)) {
882          // It isn't feasible for the original value to be null.
883          // Propagate this constraint.
884          Constraint = svalBuilder.evalEQ(state, SymVal,
885                                       svalBuilder.makeZeroVal(U->getType()));
886
887
888          state = state->assume(Constraint, false);
889          assert(state);
890        }
891      }
892    }
893
894    // Since the lvalue-to-rvalue conversion is explicit in the AST,
895    // we bind an l-value if the operator is prefix and an lvalue (in C++).
896    if (U->isGLValue())
897      state = state->BindExpr(U, LCtx, loc);
898    else
899      state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
900
901    // Perform the store.
902    Bldr.takeNodes(*I);
903    ExplodedNodeSet Dst3;
904    evalStore(Dst3, U, U, *I, state, loc, Result);
905    Bldr.addNodes(Dst3);
906  }
907  Dst.insert(Dst2);
908}
909