ExprEngineC.cpp revision 296417
1//=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines ExprEngine's support for C expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ExprCXX.h"
15#include "clang/StaticAnalyzer/Core/CheckerManager.h"
16#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
17
18using namespace clang;
19using namespace ento;
20using llvm::APSInt;
21
22void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
23                                     ExplodedNode *Pred,
24                                     ExplodedNodeSet &Dst) {
25
26  Expr *LHS = B->getLHS()->IgnoreParens();
27  Expr *RHS = B->getRHS()->IgnoreParens();
28
29  // FIXME: Prechecks eventually go in ::Visit().
30  ExplodedNodeSet CheckedSet;
31  ExplodedNodeSet Tmp2;
32  getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
33
34  // With both the LHS and RHS evaluated, process the operation itself.
35  for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
36         it != ei; ++it) {
37
38    ProgramStateRef state = (*it)->getState();
39    const LocationContext *LCtx = (*it)->getLocationContext();
40    SVal LeftV = state->getSVal(LHS, LCtx);
41    SVal RightV = state->getSVal(RHS, LCtx);
42
43    BinaryOperator::Opcode Op = B->getOpcode();
44
45    if (Op == BO_Assign) {
46      // EXPERIMENTAL: "Conjured" symbols.
47      // FIXME: Handle structs.
48      if (RightV.isUnknown()) {
49        unsigned Count = currBldrCtx->blockCount();
50        RightV = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx,
51                                              Count);
52      }
53      // Simulate the effects of a "store":  bind the value of the RHS
54      // to the L-Value represented by the LHS.
55      SVal ExprVal = B->isGLValue() ? LeftV : RightV;
56      evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
57                LeftV, RightV);
58      continue;
59    }
60
61    if (!B->isAssignmentOp()) {
62      StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);
63
64      if (B->isAdditiveOp()) {
65        // If one of the operands is a location, conjure a symbol for the other
66        // one (offset) if it's unknown so that memory arithmetic always
67        // results in an ElementRegion.
68        // TODO: This can be removed after we enable history tracking with
69        // SymSymExpr.
70        unsigned Count = currBldrCtx->blockCount();
71        if (LeftV.getAs<Loc>() &&
72            RHS->getType()->isIntegralOrEnumerationType() &&
73            RightV.isUnknown()) {
74          RightV = svalBuilder.conjureSymbolVal(RHS, LCtx, RHS->getType(),
75                                                Count);
76        }
77        if (RightV.getAs<Loc>() &&
78            LHS->getType()->isIntegralOrEnumerationType() &&
79            LeftV.isUnknown()) {
80          LeftV = svalBuilder.conjureSymbolVal(LHS, LCtx, LHS->getType(),
81                                               Count);
82        }
83      }
84
85      // Although we don't yet model pointers-to-members, we do need to make
86      // sure that the members of temporaries have a valid 'this' pointer for
87      // other checks.
88      if (B->getOpcode() == BO_PtrMemD)
89        state = createTemporaryRegionIfNeeded(state, LCtx, LHS);
90
91      // Process non-assignments except commas or short-circuited
92      // logical expressions (LAnd and LOr).
93      SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
94      if (Result.isUnknown()) {
95        Bldr.generateNode(B, *it, state);
96        continue;
97      }
98
99      state = state->BindExpr(B, LCtx, Result);
100      Bldr.generateNode(B, *it, state);
101      continue;
102    }
103
104    assert (B->isCompoundAssignmentOp());
105
106    switch (Op) {
107      default:
108        llvm_unreachable("Invalid opcode for compound assignment.");
109      case BO_MulAssign: Op = BO_Mul; break;
110      case BO_DivAssign: Op = BO_Div; break;
111      case BO_RemAssign: Op = BO_Rem; break;
112      case BO_AddAssign: Op = BO_Add; break;
113      case BO_SubAssign: Op = BO_Sub; break;
114      case BO_ShlAssign: Op = BO_Shl; break;
115      case BO_ShrAssign: Op = BO_Shr; break;
116      case BO_AndAssign: Op = BO_And; break;
117      case BO_XorAssign: Op = BO_Xor; break;
118      case BO_OrAssign:  Op = BO_Or;  break;
119    }
120
121    // Perform a load (the LHS).  This performs the checks for
122    // null dereferences, and so on.
123    ExplodedNodeSet Tmp;
124    SVal location = LeftV;
125    evalLoad(Tmp, B, LHS, *it, state, location);
126
127    for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
128         ++I) {
129
130      state = (*I)->getState();
131      const LocationContext *LCtx = (*I)->getLocationContext();
132      SVal V = state->getSVal(LHS, LCtx);
133
134      // Get the computation type.
135      QualType CTy =
136        cast<CompoundAssignOperator>(B)->getComputationResultType();
137      CTy = getContext().getCanonicalType(CTy);
138
139      QualType CLHSTy =
140        cast<CompoundAssignOperator>(B)->getComputationLHSType();
141      CLHSTy = getContext().getCanonicalType(CLHSTy);
142
143      QualType LTy = getContext().getCanonicalType(LHS->getType());
144
145      // Promote LHS.
146      V = svalBuilder.evalCast(V, CLHSTy, LTy);
147
148      // Compute the result of the operation.
149      SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
150                                         B->getType(), CTy);
151
152      // EXPERIMENTAL: "Conjured" symbols.
153      // FIXME: Handle structs.
154
155      SVal LHSVal;
156
157      if (Result.isUnknown()) {
158        // The symbolic value is actually for the type of the left-hand side
159        // expression, not the computation type, as this is the value the
160        // LValue on the LHS will bind to.
161        LHSVal = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, LTy,
162                                              currBldrCtx->blockCount());
163        // However, we need to convert the symbol to the computation type.
164        Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
165      }
166      else {
167        // The left-hand side may bind to a different value then the
168        // computation type.
169        LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
170      }
171
172      // In C++, assignment and compound assignment operators return an
173      // lvalue.
174      if (B->isGLValue())
175        state = state->BindExpr(B, LCtx, location);
176      else
177        state = state->BindExpr(B, LCtx, Result);
178
179      evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
180    }
181  }
182
183  // FIXME: postvisits eventually go in ::Visit()
184  getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
185}
186
187void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
188                                ExplodedNodeSet &Dst) {
189
190  CanQualType T = getContext().getCanonicalType(BE->getType());
191
192  const BlockDecl *BD = BE->getBlockDecl();
193  // Get the value of the block itself.
194  SVal V = svalBuilder.getBlockPointer(BD, T,
195                                       Pred->getLocationContext(),
196                                       currBldrCtx->blockCount());
197
198  ProgramStateRef State = Pred->getState();
199
200  // If we created a new MemRegion for the block, we should explicitly bind
201  // the captured variables.
202  if (const BlockDataRegion *BDR =
203      dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
204
205    BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
206                                              E = BDR->referenced_vars_end();
207
208    auto CI = BD->capture_begin();
209    auto CE = BD->capture_end();
210    for (; I != E; ++I) {
211      const VarRegion *capturedR = I.getCapturedRegion();
212      const VarRegion *originalR = I.getOriginalRegion();
213
214      // If the capture had a copy expression, use the result of evaluating
215      // that expression, otherwise use the original value.
216      // We rely on the invariant that the block declaration's capture variables
217      // are a prefix of the BlockDataRegion's referenced vars (which may include
218      // referenced globals, etc.) to enable fast lookup of the capture for a
219      // given referenced var.
220      const Expr *copyExpr = nullptr;
221      if (CI != CE) {
222        assert(CI->getVariable() == capturedR->getDecl());
223        copyExpr = CI->getCopyExpr();
224        CI++;
225      }
226
227      if (capturedR != originalR) {
228        SVal originalV;
229        if (copyExpr) {
230          originalV = State->getSVal(copyExpr, Pred->getLocationContext());
231        } else {
232          originalV = State->getSVal(loc::MemRegionVal(originalR));
233        }
234        State = State->bindLoc(loc::MemRegionVal(capturedR), originalV);
235      }
236    }
237  }
238
239  ExplodedNodeSet Tmp;
240  StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
241  Bldr.generateNode(BE, Pred,
242                    State->BindExpr(BE, Pred->getLocationContext(), V),
243                    nullptr, ProgramPoint::PostLValueKind);
244
245  // FIXME: Move all post/pre visits to ::Visit().
246  getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
247}
248
249void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
250                           ExplodedNode *Pred, ExplodedNodeSet &Dst) {
251
252  ExplodedNodeSet dstPreStmt;
253  getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
254
255  if (CastE->getCastKind() == CK_LValueToRValue) {
256    for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
257         I!=E; ++I) {
258      ExplodedNode *subExprNode = *I;
259      ProgramStateRef state = subExprNode->getState();
260      const LocationContext *LCtx = subExprNode->getLocationContext();
261      evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
262    }
263    return;
264  }
265
266  // All other casts.
267  QualType T = CastE->getType();
268  QualType ExTy = Ex->getType();
269
270  if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
271    T = ExCast->getTypeAsWritten();
272
273  StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
274  for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
275       I != E; ++I) {
276
277    Pred = *I;
278    ProgramStateRef state = Pred->getState();
279    const LocationContext *LCtx = Pred->getLocationContext();
280
281    switch (CastE->getCastKind()) {
282      case CK_LValueToRValue:
283        llvm_unreachable("LValueToRValue casts handled earlier.");
284      case CK_ToVoid:
285        continue;
286        // The analyzer doesn't do anything special with these casts,
287        // since it understands retain/release semantics already.
288      case CK_ARCProduceObject:
289      case CK_ARCConsumeObject:
290      case CK_ARCReclaimReturnedObject:
291      case CK_ARCExtendBlockObject: // Fall-through.
292      case CK_CopyAndAutoreleaseBlockObject:
293        // The analyser can ignore atomic casts for now, although some future
294        // checkers may want to make certain that you're not modifying the same
295        // value through atomic and nonatomic pointers.
296      case CK_AtomicToNonAtomic:
297      case CK_NonAtomicToAtomic:
298        // True no-ops.
299      case CK_NoOp:
300      case CK_ConstructorConversion:
301      case CK_UserDefinedConversion:
302      case CK_FunctionToPointerDecay:
303      case CK_BuiltinFnToFnPtr: {
304        // Copy the SVal of Ex to CastE.
305        ProgramStateRef state = Pred->getState();
306        const LocationContext *LCtx = Pred->getLocationContext();
307        SVal V = state->getSVal(Ex, LCtx);
308        state = state->BindExpr(CastE, LCtx, V);
309        Bldr.generateNode(CastE, Pred, state);
310        continue;
311      }
312      case CK_MemberPointerToBoolean:
313        // FIXME: For now, member pointers are represented by void *.
314        // FALLTHROUGH
315      case CK_Dependent:
316      case CK_ArrayToPointerDecay:
317      case CK_BitCast:
318      case CK_AddressSpaceConversion:
319      case CK_BooleanToSignedIntegral:
320      case CK_NullToPointer:
321      case CK_IntegralToPointer:
322      case CK_PointerToIntegral:
323      case CK_PointerToBoolean:
324      case CK_IntegralToBoolean:
325      case CK_IntegralToFloating:
326      case CK_FloatingToIntegral:
327      case CK_FloatingToBoolean:
328      case CK_FloatingCast:
329      case CK_FloatingRealToComplex:
330      case CK_FloatingComplexToReal:
331      case CK_FloatingComplexToBoolean:
332      case CK_FloatingComplexCast:
333      case CK_FloatingComplexToIntegralComplex:
334      case CK_IntegralRealToComplex:
335      case CK_IntegralComplexToReal:
336      case CK_IntegralComplexToBoolean:
337      case CK_IntegralComplexCast:
338      case CK_IntegralComplexToFloatingComplex:
339      case CK_CPointerToObjCPointerCast:
340      case CK_BlockPointerToObjCPointerCast:
341      case CK_AnyPointerToBlockPointerCast:
342      case CK_ObjCObjectLValueCast:
343      case CK_ZeroToOCLEvent:
344      case CK_LValueBitCast: {
345        // Delegate to SValBuilder to process.
346        SVal V = state->getSVal(Ex, LCtx);
347        V = svalBuilder.evalCast(V, T, ExTy);
348        // Negate the result if we're treating the boolean as a signed i1
349        if (CastE->getCastKind() == CK_BooleanToSignedIntegral)
350          V = evalMinus(V);
351        state = state->BindExpr(CastE, LCtx, V);
352        Bldr.generateNode(CastE, Pred, state);
353        continue;
354      }
355      case CK_IntegralCast: {
356        // Delegate to SValBuilder to process.
357        SVal V = state->getSVal(Ex, LCtx);
358        V = svalBuilder.evalIntegralCast(state, V, T, ExTy);
359        state = state->BindExpr(CastE, LCtx, V);
360        Bldr.generateNode(CastE, Pred, state);
361        continue;
362      }
363      case CK_DerivedToBase:
364      case CK_UncheckedDerivedToBase: {
365        // For DerivedToBase cast, delegate to the store manager.
366        SVal val = state->getSVal(Ex, LCtx);
367        val = getStoreManager().evalDerivedToBase(val, CastE);
368        state = state->BindExpr(CastE, LCtx, val);
369        Bldr.generateNode(CastE, Pred, state);
370        continue;
371      }
372      // Handle C++ dyn_cast.
373      case CK_Dynamic: {
374        SVal val = state->getSVal(Ex, LCtx);
375
376        // Compute the type of the result.
377        QualType resultType = CastE->getType();
378        if (CastE->isGLValue())
379          resultType = getContext().getPointerType(resultType);
380
381        bool Failed = false;
382
383        // Check if the value being cast evaluates to 0.
384        if (val.isZeroConstant())
385          Failed = true;
386        // Else, evaluate the cast.
387        else
388          val = getStoreManager().evalDynamicCast(val, T, Failed);
389
390        if (Failed) {
391          if (T->isReferenceType()) {
392            // A bad_cast exception is thrown if input value is a reference.
393            // Currently, we model this, by generating a sink.
394            Bldr.generateSink(CastE, Pred, state);
395            continue;
396          } else {
397            // If the cast fails on a pointer, bind to 0.
398            state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
399          }
400        } else {
401          // If we don't know if the cast succeeded, conjure a new symbol.
402          if (val.isUnknown()) {
403            DefinedOrUnknownSVal NewSym =
404              svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
405                                           currBldrCtx->blockCount());
406            state = state->BindExpr(CastE, LCtx, NewSym);
407          } else
408            // Else, bind to the derived region value.
409            state = state->BindExpr(CastE, LCtx, val);
410        }
411        Bldr.generateNode(CastE, Pred, state);
412        continue;
413      }
414      case CK_NullToMemberPointer: {
415        // FIXME: For now, member pointers are represented by void *.
416        SVal V = svalBuilder.makeNull();
417        state = state->BindExpr(CastE, LCtx, V);
418        Bldr.generateNode(CastE, Pred, state);
419        continue;
420      }
421      // Various C++ casts that are not handled yet.
422      case CK_ToUnion:
423      case CK_BaseToDerived:
424      case CK_BaseToDerivedMemberPointer:
425      case CK_DerivedToBaseMemberPointer:
426      case CK_ReinterpretMemberPointer:
427      case CK_VectorSplat: {
428        // Recover some path-sensitivty by conjuring a new value.
429        QualType resultType = CastE->getType();
430        if (CastE->isGLValue())
431          resultType = getContext().getPointerType(resultType);
432        SVal result = svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx,
433                                                   resultType,
434                                                   currBldrCtx->blockCount());
435        state = state->BindExpr(CastE, LCtx, result);
436        Bldr.generateNode(CastE, Pred, state);
437        continue;
438      }
439    }
440  }
441}
442
443void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
444                                          ExplodedNode *Pred,
445                                          ExplodedNodeSet &Dst) {
446  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
447
448  ProgramStateRef State = Pred->getState();
449  const LocationContext *LCtx = Pred->getLocationContext();
450
451  const Expr *Init = CL->getInitializer();
452  SVal V = State->getSVal(CL->getInitializer(), LCtx);
453
454  if (isa<CXXConstructExpr>(Init)) {
455    // No work needed. Just pass the value up to this expression.
456  } else {
457    assert(isa<InitListExpr>(Init));
458    Loc CLLoc = State->getLValue(CL, LCtx);
459    State = State->bindLoc(CLLoc, V);
460
461    // Compound literal expressions are a GNU extension in C++.
462    // Unlike in C, where CLs are lvalues, in C++ CLs are prvalues,
463    // and like temporary objects created by the functional notation T()
464    // CLs are destroyed at the end of the containing full-expression.
465    // HOWEVER, an rvalue of array type is not something the analyzer can
466    // reason about, since we expect all regions to be wrapped in Locs.
467    // So we treat array CLs as lvalues as well, knowing that they will decay
468    // to pointers as soon as they are used.
469    if (CL->isGLValue() || CL->getType()->isArrayType())
470      V = CLLoc;
471  }
472
473  B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V));
474}
475
476void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
477                               ExplodedNodeSet &Dst) {
478  // Assumption: The CFG has one DeclStmt per Decl.
479  const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin());
480
481  if (!VD) {
482    //TODO:AZ: remove explicit insertion after refactoring is done.
483    Dst.insert(Pred);
484    return;
485  }
486
487  // FIXME: all pre/post visits should eventually be handled by ::Visit().
488  ExplodedNodeSet dstPreVisit;
489  getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
490
491  ExplodedNodeSet dstEvaluated;
492  StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx);
493  for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
494       I!=E; ++I) {
495    ExplodedNode *N = *I;
496    ProgramStateRef state = N->getState();
497    const LocationContext *LC = N->getLocationContext();
498
499    // Decls without InitExpr are not initialized explicitly.
500    if (const Expr *InitEx = VD->getInit()) {
501
502      // Note in the state that the initialization has occurred.
503      ExplodedNode *UpdatedN = N;
504      SVal InitVal = state->getSVal(InitEx, LC);
505
506      assert(DS->isSingleDecl());
507      if (auto *CtorExpr = findDirectConstructorForCurrentCFGElement()) {
508        assert(InitEx->IgnoreImplicit() == CtorExpr);
509        (void)CtorExpr;
510        // We constructed the object directly in the variable.
511        // No need to bind anything.
512        B.generateNode(DS, UpdatedN, state);
513      } else {
514        // We bound the temp obj region to the CXXConstructExpr. Now recover
515        // the lazy compound value when the variable is not a reference.
516        if (AMgr.getLangOpts().CPlusPlus && VD->getType()->isRecordType() &&
517            !VD->getType()->isReferenceType()) {
518          if (Optional<loc::MemRegionVal> M =
519                  InitVal.getAs<loc::MemRegionVal>()) {
520            InitVal = state->getSVal(M->getRegion());
521            assert(InitVal.getAs<nonloc::LazyCompoundVal>());
522          }
523        }
524
525        // Recover some path-sensitivity if a scalar value evaluated to
526        // UnknownVal.
527        if (InitVal.isUnknown()) {
528          QualType Ty = InitEx->getType();
529          if (InitEx->isGLValue()) {
530            Ty = getContext().getPointerType(Ty);
531          }
532
533          InitVal = svalBuilder.conjureSymbolVal(nullptr, InitEx, LC, Ty,
534                                                 currBldrCtx->blockCount());
535        }
536
537
538        B.takeNodes(UpdatedN);
539        ExplodedNodeSet Dst2;
540        evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true);
541        B.addNodes(Dst2);
542      }
543    }
544    else {
545      B.generateNode(DS, N, state);
546    }
547  }
548
549  getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this);
550}
551
552void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
553                                  ExplodedNodeSet &Dst) {
554  assert(B->getOpcode() == BO_LAnd ||
555         B->getOpcode() == BO_LOr);
556
557  StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
558  ProgramStateRef state = Pred->getState();
559
560  ExplodedNode *N = Pred;
561  while (!N->getLocation().getAs<BlockEntrance>()) {
562    ProgramPoint P = N->getLocation();
563    assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>());
564    (void) P;
565    assert(N->pred_size() == 1);
566    N = *N->pred_begin();
567  }
568  assert(N->pred_size() == 1);
569  N = *N->pred_begin();
570  BlockEdge BE = N->getLocation().castAs<BlockEdge>();
571  SVal X;
572
573  // Determine the value of the expression by introspecting how we
574  // got this location in the CFG.  This requires looking at the previous
575  // block we were in and what kind of control-flow transfer was involved.
576  const CFGBlock *SrcBlock = BE.getSrc();
577  // The only terminator (if there is one) that makes sense is a logical op.
578  CFGTerminator T = SrcBlock->getTerminator();
579  if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
580    (void) Term;
581    assert(Term->isLogicalOp());
582    assert(SrcBlock->succ_size() == 2);
583    // Did we take the true or false branch?
584    unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
585    X = svalBuilder.makeIntVal(constant, B->getType());
586  }
587  else {
588    // If there is no terminator, by construction the last statement
589    // in SrcBlock is the value of the enclosing expression.
590    // However, we still need to constrain that value to be 0 or 1.
591    assert(!SrcBlock->empty());
592    CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>();
593    const Expr *RHS = cast<Expr>(Elem.getStmt());
594    SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
595
596    if (RHSVal.isUndef()) {
597      X = RHSVal;
598    } else {
599      DefinedOrUnknownSVal DefinedRHS = RHSVal.castAs<DefinedOrUnknownSVal>();
600      ProgramStateRef StTrue, StFalse;
601      std::tie(StTrue, StFalse) = N->getState()->assume(DefinedRHS);
602      if (StTrue) {
603        if (StFalse) {
604          // We can't constrain the value to 0 or 1.
605          // The best we can do is a cast.
606          X = getSValBuilder().evalCast(RHSVal, B->getType(), RHS->getType());
607        } else {
608          // The value is known to be true.
609          X = getSValBuilder().makeIntVal(1, B->getType());
610        }
611      } else {
612        // The value is known to be false.
613        assert(StFalse && "Infeasible path!");
614        X = getSValBuilder().makeIntVal(0, B->getType());
615      }
616    }
617  }
618  Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
619}
620
621void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
622                                   ExplodedNode *Pred,
623                                   ExplodedNodeSet &Dst) {
624  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
625
626  ProgramStateRef state = Pred->getState();
627  const LocationContext *LCtx = Pred->getLocationContext();
628  QualType T = getContext().getCanonicalType(IE->getType());
629  unsigned NumInitElements = IE->getNumInits();
630
631  if (!IE->isGLValue() &&
632      (T->isArrayType() || T->isRecordType() || T->isVectorType() ||
633       T->isAnyComplexType())) {
634    llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
635
636    // Handle base case where the initializer has no elements.
637    // e.g: static int* myArray[] = {};
638    if (NumInitElements == 0) {
639      SVal V = svalBuilder.makeCompoundVal(T, vals);
640      B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
641      return;
642    }
643
644    for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
645         ei = IE->rend(); it != ei; ++it) {
646      SVal V = state->getSVal(cast<Expr>(*it), LCtx);
647      vals = getBasicVals().consVals(V, vals);
648    }
649
650    B.generateNode(IE, Pred,
651                   state->BindExpr(IE, LCtx,
652                                   svalBuilder.makeCompoundVal(T, vals)));
653    return;
654  }
655
656  // Handle scalars: int{5} and int{} and GLvalues.
657  // Note, if the InitListExpr is a GLvalue, it means that there is an address
658  // representing it, so it must have a single init element.
659  assert(NumInitElements <= 1);
660
661  SVal V;
662  if (NumInitElements == 0)
663    V = getSValBuilder().makeZeroVal(T);
664  else
665    V = state->getSVal(IE->getInit(0), LCtx);
666
667  B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
668}
669
670void ExprEngine::VisitGuardedExpr(const Expr *Ex,
671                                  const Expr *L,
672                                  const Expr *R,
673                                  ExplodedNode *Pred,
674                                  ExplodedNodeSet &Dst) {
675  assert(L && R);
676
677  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
678  ProgramStateRef state = Pred->getState();
679  const LocationContext *LCtx = Pred->getLocationContext();
680  const CFGBlock *SrcBlock = nullptr;
681
682  // Find the predecessor block.
683  ProgramStateRef SrcState = state;
684  for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
685    ProgramPoint PP = N->getLocation();
686    if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) {
687      assert(N->pred_size() == 1);
688      continue;
689    }
690    SrcBlock = PP.castAs<BlockEdge>().getSrc();
691    SrcState = N->getState();
692    break;
693  }
694
695  assert(SrcBlock && "missing function entry");
696
697  // Find the last expression in the predecessor block.  That is the
698  // expression that is used for the value of the ternary expression.
699  bool hasValue = false;
700  SVal V;
701
702  for (CFGElement CE : llvm::reverse(*SrcBlock)) {
703    if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
704      const Expr *ValEx = cast<Expr>(CS->getStmt());
705      ValEx = ValEx->IgnoreParens();
706
707      // For GNU extension '?:' operator, the left hand side will be an
708      // OpaqueValueExpr, so get the underlying expression.
709      if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L))
710        L = OpaqueEx->getSourceExpr();
711
712      // If the last expression in the predecessor block matches true or false
713      // subexpression, get its the value.
714      if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) {
715        hasValue = true;
716        V = SrcState->getSVal(ValEx, LCtx);
717      }
718      break;
719    }
720  }
721
722  if (!hasValue)
723    V = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx,
724                                     currBldrCtx->blockCount());
725
726  // Generate a new node with the binding from the appropriate path.
727  B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
728}
729
730void ExprEngine::
731VisitOffsetOfExpr(const OffsetOfExpr *OOE,
732                  ExplodedNode *Pred, ExplodedNodeSet &Dst) {
733  StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
734  APSInt IV;
735  if (OOE->EvaluateAsInt(IV, getContext())) {
736    assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
737    assert(OOE->getType()->isBuiltinType());
738    assert(OOE->getType()->getAs<BuiltinType>()->isInteger());
739    assert(IV.isSigned() == OOE->getType()->isSignedIntegerType());
740    SVal X = svalBuilder.makeIntVal(IV);
741    B.generateNode(OOE, Pred,
742                   Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
743                                              X));
744  }
745  // FIXME: Handle the case where __builtin_offsetof is not a constant.
746}
747
748
749void ExprEngine::
750VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
751                              ExplodedNode *Pred,
752                              ExplodedNodeSet &Dst) {
753  // FIXME: Prechecks eventually go in ::Visit().
754  ExplodedNodeSet CheckedSet;
755  getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this);
756
757  ExplodedNodeSet EvalSet;
758  StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
759
760  QualType T = Ex->getTypeOfArgument();
761
762  for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
763       I != E; ++I) {
764    if (Ex->getKind() == UETT_SizeOf) {
765      if (!T->isIncompleteType() && !T->isConstantSizeType()) {
766        assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
767
768        // FIXME: Add support for VLA type arguments and VLA expressions.
769        // When that happens, we should probably refactor VLASizeChecker's code.
770        continue;
771      } else if (T->getAs<ObjCObjectType>()) {
772        // Some code tries to take the sizeof an ObjCObjectType, relying that
773        // the compiler has laid out its representation.  Just report Unknown
774        // for these.
775        continue;
776      }
777    }
778
779    APSInt Value = Ex->EvaluateKnownConstInt(getContext());
780    CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
781
782    ProgramStateRef state = (*I)->getState();
783    state = state->BindExpr(Ex, (*I)->getLocationContext(),
784                            svalBuilder.makeIntVal(amt.getQuantity(),
785                                                   Ex->getType()));
786    Bldr.generateNode(Ex, *I, state);
787  }
788
789  getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this);
790}
791
792void ExprEngine::VisitUnaryOperator(const UnaryOperator* U,
793                                    ExplodedNode *Pred,
794                                    ExplodedNodeSet &Dst) {
795  // FIXME: Prechecks eventually go in ::Visit().
796  ExplodedNodeSet CheckedSet;
797  getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this);
798
799  ExplodedNodeSet EvalSet;
800  StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
801
802  for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
803       I != E; ++I) {
804    switch (U->getOpcode()) {
805    default: {
806      Bldr.takeNodes(*I);
807      ExplodedNodeSet Tmp;
808      VisitIncrementDecrementOperator(U, *I, Tmp);
809      Bldr.addNodes(Tmp);
810      break;
811    }
812    case UO_Real: {
813      const Expr *Ex = U->getSubExpr()->IgnoreParens();
814
815      // FIXME: We don't have complex SValues yet.
816      if (Ex->getType()->isAnyComplexType()) {
817        // Just report "Unknown."
818        break;
819      }
820
821      // For all other types, UO_Real is an identity operation.
822      assert (U->getType() == Ex->getType());
823      ProgramStateRef state = (*I)->getState();
824      const LocationContext *LCtx = (*I)->getLocationContext();
825      Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
826                                               state->getSVal(Ex, LCtx)));
827      break;
828    }
829
830    case UO_Imag: {
831      const Expr *Ex = U->getSubExpr()->IgnoreParens();
832      // FIXME: We don't have complex SValues yet.
833      if (Ex->getType()->isAnyComplexType()) {
834        // Just report "Unknown."
835        break;
836      }
837      // For all other types, UO_Imag returns 0.
838      ProgramStateRef state = (*I)->getState();
839      const LocationContext *LCtx = (*I)->getLocationContext();
840      SVal X = svalBuilder.makeZeroVal(Ex->getType());
841      Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, X));
842      break;
843    }
844
845    case UO_Plus:
846      assert(!U->isGLValue());
847      // FALL-THROUGH.
848    case UO_Deref:
849    case UO_AddrOf:
850    case UO_Extension: {
851      // FIXME: We can probably just have some magic in Environment::getSVal()
852      // that propagates values, instead of creating a new node here.
853      //
854      // Unary "+" is a no-op, similar to a parentheses.  We still have places
855      // where it may be a block-level expression, so we need to
856      // generate an extra node that just propagates the value of the
857      // subexpression.
858      const Expr *Ex = U->getSubExpr()->IgnoreParens();
859      ProgramStateRef state = (*I)->getState();
860      const LocationContext *LCtx = (*I)->getLocationContext();
861      Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
862                                               state->getSVal(Ex, LCtx)));
863      break;
864    }
865
866    case UO_LNot:
867    case UO_Minus:
868    case UO_Not: {
869      assert (!U->isGLValue());
870      const Expr *Ex = U->getSubExpr()->IgnoreParens();
871      ProgramStateRef state = (*I)->getState();
872      const LocationContext *LCtx = (*I)->getLocationContext();
873
874      // Get the value of the subexpression.
875      SVal V = state->getSVal(Ex, LCtx);
876
877      if (V.isUnknownOrUndef()) {
878        Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V));
879        break;
880      }
881
882      switch (U->getOpcode()) {
883        default:
884          llvm_unreachable("Invalid Opcode.");
885        case UO_Not:
886          // FIXME: Do we need to handle promotions?
887          state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>()));
888          break;
889        case UO_Minus:
890          // FIXME: Do we need to handle promotions?
891          state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>()));
892          break;
893        case UO_LNot:
894          // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
895          //
896          //  Note: technically we do "E == 0", but this is the same in the
897          //    transfer functions as "0 == E".
898          SVal Result;
899          if (Optional<Loc> LV = V.getAs<Loc>()) {
900            Loc X = svalBuilder.makeNull();
901            Result = evalBinOp(state, BO_EQ, *LV, X, U->getType());
902          }
903          else if (Ex->getType()->isFloatingType()) {
904            // FIXME: handle floating point types.
905            Result = UnknownVal();
906          } else {
907            nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
908            Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X,
909                               U->getType());
910          }
911
912          state = state->BindExpr(U, LCtx, Result);
913          break;
914      }
915      Bldr.generateNode(U, *I, state);
916      break;
917    }
918    }
919  }
920
921  getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this);
922}
923
924void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
925                                                 ExplodedNode *Pred,
926                                                 ExplodedNodeSet &Dst) {
927  // Handle ++ and -- (both pre- and post-increment).
928  assert (U->isIncrementDecrementOp());
929  const Expr *Ex = U->getSubExpr()->IgnoreParens();
930
931  const LocationContext *LCtx = Pred->getLocationContext();
932  ProgramStateRef state = Pred->getState();
933  SVal loc = state->getSVal(Ex, LCtx);
934
935  // Perform a load.
936  ExplodedNodeSet Tmp;
937  evalLoad(Tmp, U, Ex, Pred, state, loc);
938
939  ExplodedNodeSet Dst2;
940  StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
941  for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
942
943    state = (*I)->getState();
944    assert(LCtx == (*I)->getLocationContext());
945    SVal V2_untested = state->getSVal(Ex, LCtx);
946
947    // Propagate unknown and undefined values.
948    if (V2_untested.isUnknownOrUndef()) {
949      Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V2_untested));
950      continue;
951    }
952    DefinedSVal V2 = V2_untested.castAs<DefinedSVal>();
953
954    // Handle all other values.
955    BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
956
957    // If the UnaryOperator has non-location type, use its type to create the
958    // constant value. If the UnaryOperator has location type, create the
959    // constant with int type and pointer width.
960    SVal RHS;
961
962    if (U->getType()->isAnyPointerType())
963      RHS = svalBuilder.makeArrayIndex(1);
964    else if (U->getType()->isIntegralOrEnumerationType())
965      RHS = svalBuilder.makeIntVal(1, U->getType());
966    else
967      RHS = UnknownVal();
968
969    SVal Result = evalBinOp(state, Op, V2, RHS, U->getType());
970
971    // Conjure a new symbol if necessary to recover precision.
972    if (Result.isUnknown()){
973      DefinedOrUnknownSVal SymVal =
974        svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx,
975                                     currBldrCtx->blockCount());
976      Result = SymVal;
977
978      // If the value is a location, ++/-- should always preserve
979      // non-nullness.  Check if the original value was non-null, and if so
980      // propagate that constraint.
981      if (Loc::isLocType(U->getType())) {
982        DefinedOrUnknownSVal Constraint =
983        svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
984
985        if (!state->assume(Constraint, true)) {
986          // It isn't feasible for the original value to be null.
987          // Propagate this constraint.
988          Constraint = svalBuilder.evalEQ(state, SymVal,
989                                       svalBuilder.makeZeroVal(U->getType()));
990
991
992          state = state->assume(Constraint, false);
993          assert(state);
994        }
995      }
996    }
997
998    // Since the lvalue-to-rvalue conversion is explicit in the AST,
999    // we bind an l-value if the operator is prefix and an lvalue (in C++).
1000    if (U->isGLValue())
1001      state = state->BindExpr(U, LCtx, loc);
1002    else
1003      state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
1004
1005    // Perform the store.
1006    Bldr.takeNodes(*I);
1007    ExplodedNodeSet Dst3;
1008    evalStore(Dst3, U, U, *I, state, loc, Result);
1009    Bldr.addNodes(Dst3);
1010  }
1011  Dst.insert(Dst2);
1012}
1013