BugReporter.cpp revision 288943
1// BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines BugReporter, a utility class for generating
11//  PathDiagnostics.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/Expr.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/AST/ParentMap.h"
21#include "clang/AST/StmtCXX.h"
22#include "clang/AST/StmtObjC.h"
23#include "clang/Analysis/CFG.h"
24#include "clang/Analysis/ProgramPoint.h"
25#include "clang/Basic/SourceManager.h"
26#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
27#include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h"
28#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/IntrusiveRefCntPtr.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/ADT/SmallString.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/Support/raw_ostream.h"
35#include <memory>
36#include <queue>
37
38using namespace clang;
39using namespace ento;
40
41#define DEBUG_TYPE "BugReporter"
42
43STATISTIC(MaxBugClassSize,
44          "The maximum number of bug reports in the same equivalence class");
45STATISTIC(MaxValidBugClassSize,
46          "The maximum number of bug reports in the same equivalence class "
47          "where at least one report is valid (not suppressed)");
48
49BugReporterVisitor::~BugReporterVisitor() {}
50
51void BugReporterContext::anchor() {}
52
53//===----------------------------------------------------------------------===//
54// Helper routines for walking the ExplodedGraph and fetching statements.
55//===----------------------------------------------------------------------===//
56
57static const Stmt *GetPreviousStmt(const ExplodedNode *N) {
58  for (N = N->getFirstPred(); N; N = N->getFirstPred())
59    if (const Stmt *S = PathDiagnosticLocation::getStmt(N))
60      return S;
61
62  return nullptr;
63}
64
65static inline const Stmt*
66GetCurrentOrPreviousStmt(const ExplodedNode *N) {
67  if (const Stmt *S = PathDiagnosticLocation::getStmt(N))
68    return S;
69
70  return GetPreviousStmt(N);
71}
72
73//===----------------------------------------------------------------------===//
74// Diagnostic cleanup.
75//===----------------------------------------------------------------------===//
76
77static PathDiagnosticEventPiece *
78eventsDescribeSameCondition(PathDiagnosticEventPiece *X,
79                            PathDiagnosticEventPiece *Y) {
80  // Prefer diagnostics that come from ConditionBRVisitor over
81  // those that came from TrackConstraintBRVisitor.
82  const void *tagPreferred = ConditionBRVisitor::getTag();
83  const void *tagLesser = TrackConstraintBRVisitor::getTag();
84
85  if (X->getLocation() != Y->getLocation())
86    return nullptr;
87
88  if (X->getTag() == tagPreferred && Y->getTag() == tagLesser)
89    return X;
90
91  if (Y->getTag() == tagPreferred && X->getTag() == tagLesser)
92    return Y;
93
94  return nullptr;
95}
96
97/// An optimization pass over PathPieces that removes redundant diagnostics
98/// generated by both ConditionBRVisitor and TrackConstraintBRVisitor.  Both
99/// BugReporterVisitors use different methods to generate diagnostics, with
100/// one capable of emitting diagnostics in some cases but not in others.  This
101/// can lead to redundant diagnostic pieces at the same point in a path.
102static void removeRedundantMsgs(PathPieces &path) {
103  unsigned N = path.size();
104  if (N < 2)
105    return;
106  // NOTE: this loop intentionally is not using an iterator.  Instead, we
107  // are streaming the path and modifying it in place.  This is done by
108  // grabbing the front, processing it, and if we decide to keep it append
109  // it to the end of the path.  The entire path is processed in this way.
110  for (unsigned i = 0; i < N; ++i) {
111    IntrusiveRefCntPtr<PathDiagnosticPiece> piece(path.front());
112    path.pop_front();
113
114    switch (piece->getKind()) {
115      case clang::ento::PathDiagnosticPiece::Call:
116        removeRedundantMsgs(cast<PathDiagnosticCallPiece>(piece)->path);
117        break;
118      case clang::ento::PathDiagnosticPiece::Macro:
119        removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(piece)->subPieces);
120        break;
121      case clang::ento::PathDiagnosticPiece::ControlFlow:
122        break;
123      case clang::ento::PathDiagnosticPiece::Event: {
124        if (i == N-1)
125          break;
126
127        if (PathDiagnosticEventPiece *nextEvent =
128            dyn_cast<PathDiagnosticEventPiece>(path.front().get())) {
129          PathDiagnosticEventPiece *event =
130            cast<PathDiagnosticEventPiece>(piece);
131          // Check to see if we should keep one of the two pieces.  If we
132          // come up with a preference, record which piece to keep, and consume
133          // another piece from the path.
134          if (PathDiagnosticEventPiece *pieceToKeep =
135              eventsDescribeSameCondition(event, nextEvent)) {
136            piece = pieceToKeep;
137            path.pop_front();
138            ++i;
139          }
140        }
141        break;
142      }
143    }
144    path.push_back(piece);
145  }
146}
147
148/// A map from PathDiagnosticPiece to the LocationContext of the inlined
149/// function call it represents.
150typedef llvm::DenseMap<const PathPieces *, const LocationContext *>
151        LocationContextMap;
152
153/// Recursively scan through a path and prune out calls and macros pieces
154/// that aren't needed.  Return true if afterwards the path contains
155/// "interesting stuff" which means it shouldn't be pruned from the parent path.
156static bool removeUnneededCalls(PathPieces &pieces, BugReport *R,
157                                LocationContextMap &LCM) {
158  bool containsSomethingInteresting = false;
159  const unsigned N = pieces.size();
160
161  for (unsigned i = 0 ; i < N ; ++i) {
162    // Remove the front piece from the path.  If it is still something we
163    // want to keep once we are done, we will push it back on the end.
164    IntrusiveRefCntPtr<PathDiagnosticPiece> piece(pieces.front());
165    pieces.pop_front();
166
167    switch (piece->getKind()) {
168      case PathDiagnosticPiece::Call: {
169        PathDiagnosticCallPiece *call = cast<PathDiagnosticCallPiece>(piece);
170        // Check if the location context is interesting.
171        assert(LCM.count(&call->path));
172        if (R->isInteresting(LCM[&call->path])) {
173          containsSomethingInteresting = true;
174          break;
175        }
176
177        if (!removeUnneededCalls(call->path, R, LCM))
178          continue;
179
180        containsSomethingInteresting = true;
181        break;
182      }
183      case PathDiagnosticPiece::Macro: {
184        PathDiagnosticMacroPiece *macro = cast<PathDiagnosticMacroPiece>(piece);
185        if (!removeUnneededCalls(macro->subPieces, R, LCM))
186          continue;
187        containsSomethingInteresting = true;
188        break;
189      }
190      case PathDiagnosticPiece::Event: {
191        PathDiagnosticEventPiece *event = cast<PathDiagnosticEventPiece>(piece);
192
193        // We never throw away an event, but we do throw it away wholesale
194        // as part of a path if we throw the entire path away.
195        containsSomethingInteresting |= !event->isPrunable();
196        break;
197      }
198      case PathDiagnosticPiece::ControlFlow:
199        break;
200    }
201
202    pieces.push_back(piece);
203  }
204
205  return containsSomethingInteresting;
206}
207
208/// Returns true if the given decl has been implicitly given a body, either by
209/// the analyzer or by the compiler proper.
210static bool hasImplicitBody(const Decl *D) {
211  assert(D);
212  return D->isImplicit() || !D->hasBody();
213}
214
215/// Recursively scan through a path and make sure that all call pieces have
216/// valid locations.
217static void
218adjustCallLocations(PathPieces &Pieces,
219                    PathDiagnosticLocation *LastCallLocation = nullptr) {
220  for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E; ++I) {
221    PathDiagnosticCallPiece *Call = dyn_cast<PathDiagnosticCallPiece>(*I);
222
223    if (!Call) {
224      assert((*I)->getLocation().asLocation().isValid());
225      continue;
226    }
227
228    if (LastCallLocation) {
229      bool CallerIsImplicit = hasImplicitBody(Call->getCaller());
230      if (CallerIsImplicit || !Call->callEnter.asLocation().isValid())
231        Call->callEnter = *LastCallLocation;
232      if (CallerIsImplicit || !Call->callReturn.asLocation().isValid())
233        Call->callReturn = *LastCallLocation;
234    }
235
236    // Recursively clean out the subclass.  Keep this call around if
237    // it contains any informative diagnostics.
238    PathDiagnosticLocation *ThisCallLocation;
239    if (Call->callEnterWithin.asLocation().isValid() &&
240        !hasImplicitBody(Call->getCallee()))
241      ThisCallLocation = &Call->callEnterWithin;
242    else
243      ThisCallLocation = &Call->callEnter;
244
245    assert(ThisCallLocation && "Outermost call has an invalid location");
246    adjustCallLocations(Call->path, ThisCallLocation);
247  }
248}
249
250/// Remove edges in and out of C++ default initializer expressions. These are
251/// for fields that have in-class initializers, as opposed to being initialized
252/// explicitly in a constructor or braced list.
253static void removeEdgesToDefaultInitializers(PathPieces &Pieces) {
254  for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
255    if (PathDiagnosticCallPiece *C = dyn_cast<PathDiagnosticCallPiece>(*I))
256      removeEdgesToDefaultInitializers(C->path);
257
258    if (PathDiagnosticMacroPiece *M = dyn_cast<PathDiagnosticMacroPiece>(*I))
259      removeEdgesToDefaultInitializers(M->subPieces);
260
261    if (PathDiagnosticControlFlowPiece *CF =
262          dyn_cast<PathDiagnosticControlFlowPiece>(*I)) {
263      const Stmt *Start = CF->getStartLocation().asStmt();
264      const Stmt *End = CF->getEndLocation().asStmt();
265      if (Start && isa<CXXDefaultInitExpr>(Start)) {
266        I = Pieces.erase(I);
267        continue;
268      } else if (End && isa<CXXDefaultInitExpr>(End)) {
269        PathPieces::iterator Next = std::next(I);
270        if (Next != E) {
271          if (PathDiagnosticControlFlowPiece *NextCF =
272                dyn_cast<PathDiagnosticControlFlowPiece>(*Next)) {
273            NextCF->setStartLocation(CF->getStartLocation());
274          }
275        }
276        I = Pieces.erase(I);
277        continue;
278      }
279    }
280
281    I++;
282  }
283}
284
285/// Remove all pieces with invalid locations as these cannot be serialized.
286/// We might have pieces with invalid locations as a result of inlining Body
287/// Farm generated functions.
288static void removePiecesWithInvalidLocations(PathPieces &Pieces) {
289  for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
290    if (PathDiagnosticCallPiece *C = dyn_cast<PathDiagnosticCallPiece>(*I))
291      removePiecesWithInvalidLocations(C->path);
292
293    if (PathDiagnosticMacroPiece *M = dyn_cast<PathDiagnosticMacroPiece>(*I))
294      removePiecesWithInvalidLocations(M->subPieces);
295
296    if (!(*I)->getLocation().isValid() ||
297        !(*I)->getLocation().asLocation().isValid()) {
298      I = Pieces.erase(I);
299      continue;
300    }
301    I++;
302  }
303}
304
305//===----------------------------------------------------------------------===//
306// PathDiagnosticBuilder and its associated routines and helper objects.
307//===----------------------------------------------------------------------===//
308
309namespace {
310class NodeMapClosure : public BugReport::NodeResolver {
311  InterExplodedGraphMap &M;
312public:
313  NodeMapClosure(InterExplodedGraphMap &m) : M(m) {}
314
315  const ExplodedNode *getOriginalNode(const ExplodedNode *N) override {
316    return M.lookup(N);
317  }
318};
319
320class PathDiagnosticBuilder : public BugReporterContext {
321  BugReport *R;
322  PathDiagnosticConsumer *PDC;
323  NodeMapClosure NMC;
324public:
325  const LocationContext *LC;
326
327  PathDiagnosticBuilder(GRBugReporter &br,
328                        BugReport *r, InterExplodedGraphMap &Backmap,
329                        PathDiagnosticConsumer *pdc)
330    : BugReporterContext(br),
331      R(r), PDC(pdc), NMC(Backmap), LC(r->getErrorNode()->getLocationContext())
332  {}
333
334  PathDiagnosticLocation ExecutionContinues(const ExplodedNode *N);
335
336  PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream &os,
337                                            const ExplodedNode *N);
338
339  BugReport *getBugReport() { return R; }
340
341  Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); }
342
343  ParentMap& getParentMap() { return LC->getParentMap(); }
344
345  const Stmt *getParent(const Stmt *S) {
346    return getParentMap().getParent(S);
347  }
348
349  NodeMapClosure& getNodeResolver() override { return NMC; }
350
351  PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S);
352
353  PathDiagnosticConsumer::PathGenerationScheme getGenerationScheme() const {
354    return PDC ? PDC->getGenerationScheme() : PathDiagnosticConsumer::Extensive;
355  }
356
357  bool supportsLogicalOpControlFlow() const {
358    return PDC ? PDC->supportsLogicalOpControlFlow() : true;
359  }
360};
361} // end anonymous namespace
362
363PathDiagnosticLocation
364PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode *N) {
365  if (const Stmt *S = PathDiagnosticLocation::getNextStmt(N))
366    return PathDiagnosticLocation(S, getSourceManager(), LC);
367
368  return PathDiagnosticLocation::createDeclEnd(N->getLocationContext(),
369                                               getSourceManager());
370}
371
372PathDiagnosticLocation
373PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream &os,
374                                          const ExplodedNode *N) {
375
376  // Slow, but probably doesn't matter.
377  if (os.str().empty())
378    os << ' ';
379
380  const PathDiagnosticLocation &Loc = ExecutionContinues(N);
381
382  if (Loc.asStmt())
383    os << "Execution continues on line "
384       << getSourceManager().getExpansionLineNumber(Loc.asLocation())
385       << '.';
386  else {
387    os << "Execution jumps to the end of the ";
388    const Decl *D = N->getLocationContext()->getDecl();
389    if (isa<ObjCMethodDecl>(D))
390      os << "method";
391    else if (isa<FunctionDecl>(D))
392      os << "function";
393    else {
394      assert(isa<BlockDecl>(D));
395      os << "anonymous block";
396    }
397    os << '.';
398  }
399
400  return Loc;
401}
402
403static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) {
404  if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
405    return PM.getParentIgnoreParens(S);
406
407  const Stmt *Parent = PM.getParentIgnoreParens(S);
408  if (!Parent)
409    return nullptr;
410
411  switch (Parent->getStmtClass()) {
412  case Stmt::ForStmtClass:
413  case Stmt::DoStmtClass:
414  case Stmt::WhileStmtClass:
415  case Stmt::ObjCForCollectionStmtClass:
416  case Stmt::CXXForRangeStmtClass:
417    return Parent;
418  default:
419    break;
420  }
421
422  return nullptr;
423}
424
425static PathDiagnosticLocation
426getEnclosingStmtLocation(const Stmt *S, SourceManager &SMgr, const ParentMap &P,
427                         const LocationContext *LC, bool allowNestedContexts) {
428  if (!S)
429    return PathDiagnosticLocation();
430
431  while (const Stmt *Parent = getEnclosingParent(S, P)) {
432    switch (Parent->getStmtClass()) {
433      case Stmt::BinaryOperatorClass: {
434        const BinaryOperator *B = cast<BinaryOperator>(Parent);
435        if (B->isLogicalOp())
436          return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC);
437        break;
438      }
439      case Stmt::CompoundStmtClass:
440      case Stmt::StmtExprClass:
441        return PathDiagnosticLocation(S, SMgr, LC);
442      case Stmt::ChooseExprClass:
443        // Similar to '?' if we are referring to condition, just have the edge
444        // point to the entire choose expression.
445        if (allowNestedContexts || cast<ChooseExpr>(Parent)->getCond() == S)
446          return PathDiagnosticLocation(Parent, SMgr, LC);
447        else
448          return PathDiagnosticLocation(S, SMgr, LC);
449      case Stmt::BinaryConditionalOperatorClass:
450      case Stmt::ConditionalOperatorClass:
451        // For '?', if we are referring to condition, just have the edge point
452        // to the entire '?' expression.
453        if (allowNestedContexts ||
454            cast<AbstractConditionalOperator>(Parent)->getCond() == S)
455          return PathDiagnosticLocation(Parent, SMgr, LC);
456        else
457          return PathDiagnosticLocation(S, SMgr, LC);
458      case Stmt::CXXForRangeStmtClass:
459        if (cast<CXXForRangeStmt>(Parent)->getBody() == S)
460          return PathDiagnosticLocation(S, SMgr, LC);
461        break;
462      case Stmt::DoStmtClass:
463          return PathDiagnosticLocation(S, SMgr, LC);
464      case Stmt::ForStmtClass:
465        if (cast<ForStmt>(Parent)->getBody() == S)
466          return PathDiagnosticLocation(S, SMgr, LC);
467        break;
468      case Stmt::IfStmtClass:
469        if (cast<IfStmt>(Parent)->getCond() != S)
470          return PathDiagnosticLocation(S, SMgr, LC);
471        break;
472      case Stmt::ObjCForCollectionStmtClass:
473        if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
474          return PathDiagnosticLocation(S, SMgr, LC);
475        break;
476      case Stmt::WhileStmtClass:
477        if (cast<WhileStmt>(Parent)->getCond() != S)
478          return PathDiagnosticLocation(S, SMgr, LC);
479        break;
480      default:
481        break;
482    }
483
484    S = Parent;
485  }
486
487  assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
488
489  return PathDiagnosticLocation(S, SMgr, LC);
490}
491
492PathDiagnosticLocation
493PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) {
494  assert(S && "Null Stmt passed to getEnclosingStmtLocation");
495  return ::getEnclosingStmtLocation(S, getSourceManager(), getParentMap(), LC,
496                                    /*allowNestedContexts=*/false);
497}
498
499//===----------------------------------------------------------------------===//
500// "Visitors only" path diagnostic generation algorithm.
501//===----------------------------------------------------------------------===//
502static bool GenerateVisitorsOnlyPathDiagnostic(
503    PathDiagnostic &PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N,
504    ArrayRef<std::unique_ptr<BugReporterVisitor>> visitors) {
505  // All path generation skips the very first node (the error node).
506  // This is because there is special handling for the end-of-path note.
507  N = N->getFirstPred();
508  if (!N)
509    return true;
510
511  BugReport *R = PDB.getBugReport();
512  while (const ExplodedNode *Pred = N->getFirstPred()) {
513    for (auto &V : visitors) {
514      // Visit all the node pairs, but throw the path pieces away.
515      PathDiagnosticPiece *Piece = V->VisitNode(N, Pred, PDB, *R);
516      delete Piece;
517    }
518
519    N = Pred;
520  }
521
522  return R->isValid();
523}
524
525//===----------------------------------------------------------------------===//
526// "Minimal" path diagnostic generation algorithm.
527//===----------------------------------------------------------------------===//
528typedef std::pair<PathDiagnosticCallPiece*, const ExplodedNode*> StackDiagPair;
529typedef SmallVector<StackDiagPair, 6> StackDiagVector;
530
531static void updateStackPiecesWithMessage(PathDiagnosticPiece *P,
532                                         StackDiagVector &CallStack) {
533  // If the piece contains a special message, add it to all the call
534  // pieces on the active stack.
535  if (PathDiagnosticEventPiece *ep =
536        dyn_cast<PathDiagnosticEventPiece>(P)) {
537
538    if (ep->hasCallStackHint())
539      for (StackDiagVector::iterator I = CallStack.begin(),
540                                     E = CallStack.end(); I != E; ++I) {
541        PathDiagnosticCallPiece *CP = I->first;
542        const ExplodedNode *N = I->second;
543        std::string stackMsg = ep->getCallStackMessage(N);
544
545        // The last message on the path to final bug is the most important
546        // one. Since we traverse the path backwards, do not add the message
547        // if one has been previously added.
548        if  (!CP->hasCallStackMessage())
549          CP->setCallStackMessage(stackMsg);
550      }
551  }
552}
553
554static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM);
555
556static bool GenerateMinimalPathDiagnostic(
557    PathDiagnostic &PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N,
558    LocationContextMap &LCM,
559    ArrayRef<std::unique_ptr<BugReporterVisitor>> visitors) {
560
561  SourceManager& SMgr = PDB.getSourceManager();
562  const LocationContext *LC = PDB.LC;
563  const ExplodedNode *NextNode = N->pred_empty()
564                                        ? nullptr : *(N->pred_begin());
565
566  StackDiagVector CallStack;
567
568  while (NextNode) {
569    N = NextNode;
570    PDB.LC = N->getLocationContext();
571    NextNode = N->getFirstPred();
572
573    ProgramPoint P = N->getLocation();
574
575    do {
576      if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
577        PathDiagnosticCallPiece *C =
578            PathDiagnosticCallPiece::construct(N, *CE, SMgr);
579        // Record the mapping from call piece to LocationContext.
580        LCM[&C->path] = CE->getCalleeContext();
581        PD.getActivePath().push_front(C);
582        PD.pushActivePath(&C->path);
583        CallStack.push_back(StackDiagPair(C, N));
584        break;
585      }
586
587      if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
588        // Flush all locations, and pop the active path.
589        bool VisitedEntireCall = PD.isWithinCall();
590        PD.popActivePath();
591
592        // Either we just added a bunch of stuff to the top-level path, or
593        // we have a previous CallExitEnd.  If the former, it means that the
594        // path terminated within a function call.  We must then take the
595        // current contents of the active path and place it within
596        // a new PathDiagnosticCallPiece.
597        PathDiagnosticCallPiece *C;
598        if (VisitedEntireCall) {
599          C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
600        } else {
601          const Decl *Caller = CE->getLocationContext()->getDecl();
602          C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
603          // Record the mapping from call piece to LocationContext.
604          LCM[&C->path] = CE->getCalleeContext();
605        }
606
607        C->setCallee(*CE, SMgr);
608        if (!CallStack.empty()) {
609          assert(CallStack.back().first == C);
610          CallStack.pop_back();
611        }
612        break;
613      }
614
615      if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
616        const CFGBlock *Src = BE->getSrc();
617        const CFGBlock *Dst = BE->getDst();
618        const Stmt *T = Src->getTerminator();
619
620        if (!T)
621          break;
622
623        PathDiagnosticLocation Start =
624            PathDiagnosticLocation::createBegin(T, SMgr,
625                N->getLocationContext());
626
627        switch (T->getStmtClass()) {
628        default:
629          break;
630
631        case Stmt::GotoStmtClass:
632        case Stmt::IndirectGotoStmtClass: {
633          const Stmt *S = PathDiagnosticLocation::getNextStmt(N);
634
635          if (!S)
636            break;
637
638          std::string sbuf;
639          llvm::raw_string_ostream os(sbuf);
640          const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S);
641
642          os << "Control jumps to line "
643              << End.asLocation().getExpansionLineNumber();
644          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
645              Start, End, os.str()));
646          break;
647        }
648
649        case Stmt::SwitchStmtClass: {
650          // Figure out what case arm we took.
651          std::string sbuf;
652          llvm::raw_string_ostream os(sbuf);
653
654          if (const Stmt *S = Dst->getLabel()) {
655            PathDiagnosticLocation End(S, SMgr, LC);
656
657            switch (S->getStmtClass()) {
658            default:
659              os << "No cases match in the switch statement. "
660              "Control jumps to line "
661              << End.asLocation().getExpansionLineNumber();
662              break;
663            case Stmt::DefaultStmtClass:
664              os << "Control jumps to the 'default' case at line "
665              << End.asLocation().getExpansionLineNumber();
666              break;
667
668            case Stmt::CaseStmtClass: {
669              os << "Control jumps to 'case ";
670              const CaseStmt *Case = cast<CaseStmt>(S);
671              const Expr *LHS = Case->getLHS()->IgnoreParenCasts();
672
673              // Determine if it is an enum.
674              bool GetRawInt = true;
675
676              if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(LHS)) {
677                // FIXME: Maybe this should be an assertion.  Are there cases
678                // were it is not an EnumConstantDecl?
679                const EnumConstantDecl *D =
680                    dyn_cast<EnumConstantDecl>(DR->getDecl());
681
682                if (D) {
683                  GetRawInt = false;
684                  os << *D;
685                }
686              }
687
688              if (GetRawInt)
689                os << LHS->EvaluateKnownConstInt(PDB.getASTContext());
690
691              os << ":'  at line "
692                  << End.asLocation().getExpansionLineNumber();
693              break;
694            }
695            }
696            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
697                Start, End, os.str()));
698          }
699          else {
700            os << "'Default' branch taken. ";
701            const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N);
702            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
703                Start, End, os.str()));
704          }
705
706          break;
707        }
708
709        case Stmt::BreakStmtClass:
710        case Stmt::ContinueStmtClass: {
711          std::string sbuf;
712          llvm::raw_string_ostream os(sbuf);
713          PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
714          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
715              Start, End, os.str()));
716          break;
717        }
718
719        // Determine control-flow for ternary '?'.
720        case Stmt::BinaryConditionalOperatorClass:
721        case Stmt::ConditionalOperatorClass: {
722          std::string sbuf;
723          llvm::raw_string_ostream os(sbuf);
724          os << "'?' condition is ";
725
726          if (*(Src->succ_begin()+1) == Dst)
727            os << "false";
728          else
729            os << "true";
730
731          PathDiagnosticLocation End = PDB.ExecutionContinues(N);
732
733          if (const Stmt *S = End.asStmt())
734            End = PDB.getEnclosingStmtLocation(S);
735
736          PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
737              Start, End, os.str()));
738          break;
739        }
740
741        // Determine control-flow for short-circuited '&&' and '||'.
742        case Stmt::BinaryOperatorClass: {
743          if (!PDB.supportsLogicalOpControlFlow())
744            break;
745
746          const BinaryOperator *B = cast<BinaryOperator>(T);
747          std::string sbuf;
748          llvm::raw_string_ostream os(sbuf);
749          os << "Left side of '";
750
751          if (B->getOpcode() == BO_LAnd) {
752            os << "&&" << "' is ";
753
754            if (*(Src->succ_begin()+1) == Dst) {
755              os << "false";
756              PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
757              PathDiagnosticLocation Start =
758                  PathDiagnosticLocation::createOperatorLoc(B, SMgr);
759              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
760                  Start, End, os.str()));
761            }
762            else {
763              os << "true";
764              PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
765              PathDiagnosticLocation End = PDB.ExecutionContinues(N);
766              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
767                  Start, End, os.str()));
768            }
769          }
770          else {
771            assert(B->getOpcode() == BO_LOr);
772            os << "||" << "' is ";
773
774            if (*(Src->succ_begin()+1) == Dst) {
775              os << "false";
776              PathDiagnosticLocation Start(B->getLHS(), SMgr, LC);
777              PathDiagnosticLocation End = PDB.ExecutionContinues(N);
778              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
779                  Start, End, os.str()));
780            }
781            else {
782              os << "true";
783              PathDiagnosticLocation End(B->getLHS(), SMgr, LC);
784              PathDiagnosticLocation Start =
785                  PathDiagnosticLocation::createOperatorLoc(B, SMgr);
786              PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
787                  Start, End, os.str()));
788            }
789          }
790
791          break;
792        }
793
794        case Stmt::DoStmtClass:  {
795          if (*(Src->succ_begin()) == Dst) {
796            std::string sbuf;
797            llvm::raw_string_ostream os(sbuf);
798
799            os << "Loop condition is true. ";
800            PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
801
802            if (const Stmt *S = End.asStmt())
803              End = PDB.getEnclosingStmtLocation(S);
804
805            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
806                Start, End, os.str()));
807          }
808          else {
809            PathDiagnosticLocation End = PDB.ExecutionContinues(N);
810
811            if (const Stmt *S = End.asStmt())
812              End = PDB.getEnclosingStmtLocation(S);
813
814            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
815                Start, End, "Loop condition is false.  Exiting loop"));
816          }
817
818          break;
819        }
820
821        case Stmt::WhileStmtClass:
822        case Stmt::ForStmtClass: {
823          if (*(Src->succ_begin()+1) == Dst) {
824            std::string sbuf;
825            llvm::raw_string_ostream os(sbuf);
826
827            os << "Loop condition is false. ";
828            PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
829            if (const Stmt *S = End.asStmt())
830              End = PDB.getEnclosingStmtLocation(S);
831
832            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
833                Start, End, os.str()));
834          }
835          else {
836            PathDiagnosticLocation End = PDB.ExecutionContinues(N);
837            if (const Stmt *S = End.asStmt())
838              End = PDB.getEnclosingStmtLocation(S);
839
840            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
841                Start, End, "Loop condition is true.  Entering loop body"));
842          }
843
844          break;
845        }
846
847        case Stmt::IfStmtClass: {
848          PathDiagnosticLocation End = PDB.ExecutionContinues(N);
849
850          if (const Stmt *S = End.asStmt())
851            End = PDB.getEnclosingStmtLocation(S);
852
853          if (*(Src->succ_begin()+1) == Dst)
854            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
855                Start, End, "Taking false branch"));
856          else
857            PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(
858                Start, End, "Taking true branch"));
859
860          break;
861        }
862        }
863      }
864    } while(0);
865
866    if (NextNode) {
867      // Add diagnostic pieces from custom visitors.
868      BugReport *R = PDB.getBugReport();
869      for (auto &V : visitors) {
870        if (PathDiagnosticPiece *p = V->VisitNode(N, NextNode, PDB, *R)) {
871          PD.getActivePath().push_front(p);
872          updateStackPiecesWithMessage(p, CallStack);
873        }
874      }
875    }
876  }
877
878  if (!PDB.getBugReport()->isValid())
879    return false;
880
881  // After constructing the full PathDiagnostic, do a pass over it to compact
882  // PathDiagnosticPieces that occur within a macro.
883  CompactPathDiagnostic(PD.getMutablePieces(), PDB.getSourceManager());
884  return true;
885}
886
887//===----------------------------------------------------------------------===//
888// "Extensive" PathDiagnostic generation.
889//===----------------------------------------------------------------------===//
890
891static bool IsControlFlowExpr(const Stmt *S) {
892  const Expr *E = dyn_cast<Expr>(S);
893
894  if (!E)
895    return false;
896
897  E = E->IgnoreParenCasts();
898
899  if (isa<AbstractConditionalOperator>(E))
900    return true;
901
902  if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E))
903    if (B->isLogicalOp())
904      return true;
905
906  return false;
907}
908
909namespace {
910class ContextLocation : public PathDiagnosticLocation {
911  bool IsDead;
912public:
913  ContextLocation(const PathDiagnosticLocation &L, bool isdead = false)
914    : PathDiagnosticLocation(L), IsDead(isdead) {}
915
916  void markDead() { IsDead = true; }
917  bool isDead() const { return IsDead; }
918};
919
920static PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L,
921                                              const LocationContext *LC,
922                                              bool firstCharOnly = false) {
923  if (const Stmt *S = L.asStmt()) {
924    const Stmt *Original = S;
925    while (1) {
926      // Adjust the location for some expressions that are best referenced
927      // by one of their subexpressions.
928      switch (S->getStmtClass()) {
929        default:
930          break;
931        case Stmt::ParenExprClass:
932        case Stmt::GenericSelectionExprClass:
933          S = cast<Expr>(S)->IgnoreParens();
934          firstCharOnly = true;
935          continue;
936        case Stmt::BinaryConditionalOperatorClass:
937        case Stmt::ConditionalOperatorClass:
938          S = cast<AbstractConditionalOperator>(S)->getCond();
939          firstCharOnly = true;
940          continue;
941        case Stmt::ChooseExprClass:
942          S = cast<ChooseExpr>(S)->getCond();
943          firstCharOnly = true;
944          continue;
945        case Stmt::BinaryOperatorClass:
946          S = cast<BinaryOperator>(S)->getLHS();
947          firstCharOnly = true;
948          continue;
949      }
950
951      break;
952    }
953
954    if (S != Original)
955      L = PathDiagnosticLocation(S, L.getManager(), LC);
956  }
957
958  if (firstCharOnly)
959    L  = PathDiagnosticLocation::createSingleLocation(L);
960
961  return L;
962}
963
964class EdgeBuilder {
965  std::vector<ContextLocation> CLocs;
966  typedef std::vector<ContextLocation>::iterator iterator;
967  PathDiagnostic &PD;
968  PathDiagnosticBuilder &PDB;
969  PathDiagnosticLocation PrevLoc;
970
971  bool IsConsumedExpr(const PathDiagnosticLocation &L);
972
973  bool containsLocation(const PathDiagnosticLocation &Container,
974                        const PathDiagnosticLocation &Containee);
975
976  PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L);
977
978
979
980  void popLocation() {
981    if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) {
982      // For contexts, we only one the first character as the range.
983      rawAddEdge(cleanUpLocation(CLocs.back(), PDB.LC, true));
984    }
985    CLocs.pop_back();
986  }
987
988public:
989  EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb)
990    : PD(pd), PDB(pdb) {
991
992      // If the PathDiagnostic already has pieces, add the enclosing statement
993      // of the first piece as a context as well.
994      if (!PD.path.empty()) {
995        PrevLoc = (*PD.path.begin())->getLocation();
996
997        if (const Stmt *S = PrevLoc.asStmt())
998          addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
999      }
1000  }
1001
1002  ~EdgeBuilder() {
1003    while (!CLocs.empty()) popLocation();
1004
1005    // Finally, add an initial edge from the start location of the first
1006    // statement (if it doesn't already exist).
1007    PathDiagnosticLocation L = PathDiagnosticLocation::createDeclBegin(
1008                                                       PDB.LC,
1009                                                       PDB.getSourceManager());
1010    if (L.isValid())
1011      rawAddEdge(L);
1012  }
1013
1014  void flushLocations() {
1015    while (!CLocs.empty())
1016      popLocation();
1017    PrevLoc = PathDiagnosticLocation();
1018  }
1019
1020  void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false,
1021               bool IsPostJump = false);
1022
1023  void rawAddEdge(PathDiagnosticLocation NewLoc);
1024
1025  void addContext(const Stmt *S);
1026  void addContext(const PathDiagnosticLocation &L);
1027  void addExtendedContext(const Stmt *S);
1028};
1029} // end anonymous namespace
1030
1031
1032PathDiagnosticLocation
1033EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) {
1034  if (const Stmt *S = L.asStmt()) {
1035    if (IsControlFlowExpr(S))
1036      return L;
1037
1038    return PDB.getEnclosingStmtLocation(S);
1039  }
1040
1041  return L;
1042}
1043
1044bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container,
1045                                   const PathDiagnosticLocation &Containee) {
1046
1047  if (Container == Containee)
1048    return true;
1049
1050  if (Container.asDecl())
1051    return true;
1052
1053  if (const Stmt *S = Containee.asStmt())
1054    if (const Stmt *ContainerS = Container.asStmt()) {
1055      while (S) {
1056        if (S == ContainerS)
1057          return true;
1058        S = PDB.getParent(S);
1059      }
1060      return false;
1061    }
1062
1063  // Less accurate: compare using source ranges.
1064  SourceRange ContainerR = Container.asRange();
1065  SourceRange ContaineeR = Containee.asRange();
1066
1067  SourceManager &SM = PDB.getSourceManager();
1068  SourceLocation ContainerRBeg = SM.getExpansionLoc(ContainerR.getBegin());
1069  SourceLocation ContainerREnd = SM.getExpansionLoc(ContainerR.getEnd());
1070  SourceLocation ContaineeRBeg = SM.getExpansionLoc(ContaineeR.getBegin());
1071  SourceLocation ContaineeREnd = SM.getExpansionLoc(ContaineeR.getEnd());
1072
1073  unsigned ContainerBegLine = SM.getExpansionLineNumber(ContainerRBeg);
1074  unsigned ContainerEndLine = SM.getExpansionLineNumber(ContainerREnd);
1075  unsigned ContaineeBegLine = SM.getExpansionLineNumber(ContaineeRBeg);
1076  unsigned ContaineeEndLine = SM.getExpansionLineNumber(ContaineeREnd);
1077
1078  assert(ContainerBegLine <= ContainerEndLine);
1079  assert(ContaineeBegLine <= ContaineeEndLine);
1080
1081  return (ContainerBegLine <= ContaineeBegLine &&
1082          ContainerEndLine >= ContaineeEndLine &&
1083          (ContainerBegLine != ContaineeBegLine ||
1084           SM.getExpansionColumnNumber(ContainerRBeg) <=
1085           SM.getExpansionColumnNumber(ContaineeRBeg)) &&
1086          (ContainerEndLine != ContaineeEndLine ||
1087           SM.getExpansionColumnNumber(ContainerREnd) >=
1088           SM.getExpansionColumnNumber(ContaineeREnd)));
1089}
1090
1091void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) {
1092  if (!PrevLoc.isValid()) {
1093    PrevLoc = NewLoc;
1094    return;
1095  }
1096
1097  const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc, PDB.LC);
1098  const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc, PDB.LC);
1099
1100  if (PrevLocClean.asLocation().isInvalid()) {
1101    PrevLoc = NewLoc;
1102    return;
1103  }
1104
1105  if (NewLocClean.asLocation() == PrevLocClean.asLocation())
1106    return;
1107
1108  // FIXME: Ignore intra-macro edges for now.
1109  if (NewLocClean.asLocation().getExpansionLoc() ==
1110      PrevLocClean.asLocation().getExpansionLoc())
1111    return;
1112
1113  PD.getActivePath().push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean));
1114  PrevLoc = NewLoc;
1115}
1116
1117void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd,
1118                          bool IsPostJump) {
1119
1120  if (!alwaysAdd && NewLoc.asLocation().isMacroID())
1121    return;
1122
1123  const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc);
1124
1125  while (!CLocs.empty()) {
1126    ContextLocation &TopContextLoc = CLocs.back();
1127
1128    // Is the top location context the same as the one for the new location?
1129    if (TopContextLoc == CLoc) {
1130      if (alwaysAdd) {
1131        if (IsConsumedExpr(TopContextLoc))
1132          TopContextLoc.markDead();
1133
1134        rawAddEdge(NewLoc);
1135      }
1136
1137      if (IsPostJump)
1138        TopContextLoc.markDead();
1139      return;
1140    }
1141
1142    if (containsLocation(TopContextLoc, CLoc)) {
1143      if (alwaysAdd) {
1144        rawAddEdge(NewLoc);
1145
1146        if (IsConsumedExpr(CLoc)) {
1147          CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/true));
1148          return;
1149        }
1150      }
1151
1152      CLocs.push_back(ContextLocation(CLoc, /*IsDead=*/IsPostJump));
1153      return;
1154    }
1155
1156    // Context does not contain the location.  Flush it.
1157    popLocation();
1158  }
1159
1160  // If we reach here, there is no enclosing context.  Just add the edge.
1161  rawAddEdge(NewLoc);
1162}
1163
1164bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) {
1165  if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt()))
1166    return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X);
1167
1168  return false;
1169}
1170
1171void EdgeBuilder::addExtendedContext(const Stmt *S) {
1172  if (!S)
1173    return;
1174
1175  const Stmt *Parent = PDB.getParent(S);
1176  while (Parent) {
1177    if (isa<CompoundStmt>(Parent))
1178      Parent = PDB.getParent(Parent);
1179    else
1180      break;
1181  }
1182
1183  if (Parent) {
1184    switch (Parent->getStmtClass()) {
1185      case Stmt::DoStmtClass:
1186      case Stmt::ObjCAtSynchronizedStmtClass:
1187        addContext(Parent);
1188      default:
1189        break;
1190    }
1191  }
1192
1193  addContext(S);
1194}
1195
1196void EdgeBuilder::addContext(const Stmt *S) {
1197  if (!S)
1198    return;
1199
1200  PathDiagnosticLocation L(S, PDB.getSourceManager(), PDB.LC);
1201  addContext(L);
1202}
1203
1204void EdgeBuilder::addContext(const PathDiagnosticLocation &L) {
1205  while (!CLocs.empty()) {
1206    const PathDiagnosticLocation &TopContextLoc = CLocs.back();
1207
1208    // Is the top location context the same as the one for the new location?
1209    if (TopContextLoc == L)
1210      return;
1211
1212    if (containsLocation(TopContextLoc, L)) {
1213      CLocs.push_back(L);
1214      return;
1215    }
1216
1217    // Context does not contain the location.  Flush it.
1218    popLocation();
1219  }
1220
1221  CLocs.push_back(L);
1222}
1223
1224// Cone-of-influence: support the reverse propagation of "interesting" symbols
1225// and values by tracing interesting calculations backwards through evaluated
1226// expressions along a path.  This is probably overly complicated, but the idea
1227// is that if an expression computed an "interesting" value, the child
1228// expressions are are also likely to be "interesting" as well (which then
1229// propagates to the values they in turn compute).  This reverse propagation
1230// is needed to track interesting correlations across function call boundaries,
1231// where formal arguments bind to actual arguments, etc.  This is also needed
1232// because the constraint solver sometimes simplifies certain symbolic values
1233// into constants when appropriate, and this complicates reasoning about
1234// interesting values.
1235typedef llvm::DenseSet<const Expr *> InterestingExprs;
1236
1237static void reversePropagateIntererstingSymbols(BugReport &R,
1238                                                InterestingExprs &IE,
1239                                                const ProgramState *State,
1240                                                const Expr *Ex,
1241                                                const LocationContext *LCtx) {
1242  SVal V = State->getSVal(Ex, LCtx);
1243  if (!(R.isInteresting(V) || IE.count(Ex)))
1244    return;
1245
1246  switch (Ex->getStmtClass()) {
1247    default:
1248      if (!isa<CastExpr>(Ex))
1249        break;
1250      // Fall through.
1251    case Stmt::BinaryOperatorClass:
1252    case Stmt::UnaryOperatorClass: {
1253      for (const Stmt *SubStmt : Ex->children()) {
1254        if (const Expr *child = dyn_cast_or_null<Expr>(SubStmt)) {
1255          IE.insert(child);
1256          SVal ChildV = State->getSVal(child, LCtx);
1257          R.markInteresting(ChildV);
1258        }
1259      }
1260      break;
1261    }
1262  }
1263
1264  R.markInteresting(V);
1265}
1266
1267static void reversePropagateInterestingSymbols(BugReport &R,
1268                                               InterestingExprs &IE,
1269                                               const ProgramState *State,
1270                                               const LocationContext *CalleeCtx,
1271                                               const LocationContext *CallerCtx)
1272{
1273  // FIXME: Handle non-CallExpr-based CallEvents.
1274  const StackFrameContext *Callee = CalleeCtx->getCurrentStackFrame();
1275  const Stmt *CallSite = Callee->getCallSite();
1276  if (const CallExpr *CE = dyn_cast_or_null<CallExpr>(CallSite)) {
1277    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeCtx->getDecl())) {
1278      FunctionDecl::param_const_iterator PI = FD->param_begin(),
1279                                         PE = FD->param_end();
1280      CallExpr::const_arg_iterator AI = CE->arg_begin(), AE = CE->arg_end();
1281      for (; AI != AE && PI != PE; ++AI, ++PI) {
1282        if (const Expr *ArgE = *AI) {
1283          if (const ParmVarDecl *PD = *PI) {
1284            Loc LV = State->getLValue(PD, CalleeCtx);
1285            if (R.isInteresting(LV) || R.isInteresting(State->getRawSVal(LV)))
1286              IE.insert(ArgE);
1287          }
1288        }
1289      }
1290    }
1291  }
1292}
1293
1294//===----------------------------------------------------------------------===//
1295// Functions for determining if a loop was executed 0 times.
1296//===----------------------------------------------------------------------===//
1297
1298static bool isLoop(const Stmt *Term) {
1299  switch (Term->getStmtClass()) {
1300    case Stmt::ForStmtClass:
1301    case Stmt::WhileStmtClass:
1302    case Stmt::ObjCForCollectionStmtClass:
1303    case Stmt::CXXForRangeStmtClass:
1304      return true;
1305    default:
1306      // Note that we intentionally do not include do..while here.
1307      return false;
1308  }
1309}
1310
1311static bool isJumpToFalseBranch(const BlockEdge *BE) {
1312  const CFGBlock *Src = BE->getSrc();
1313  assert(Src->succ_size() == 2);
1314  return (*(Src->succ_begin()+1) == BE->getDst());
1315}
1316
1317/// Return true if the terminator is a loop and the destination is the
1318/// false branch.
1319static bool isLoopJumpPastBody(const Stmt *Term, const BlockEdge *BE) {
1320  if (!isLoop(Term))
1321    return false;
1322
1323  // Did we take the false branch?
1324  return isJumpToFalseBranch(BE);
1325}
1326
1327static bool isContainedByStmt(ParentMap &PM, const Stmt *S, const Stmt *SubS) {
1328  while (SubS) {
1329    if (SubS == S)
1330      return true;
1331    SubS = PM.getParent(SubS);
1332  }
1333  return false;
1334}
1335
1336static const Stmt *getStmtBeforeCond(ParentMap &PM, const Stmt *Term,
1337                                     const ExplodedNode *N) {
1338  while (N) {
1339    Optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>();
1340    if (SP) {
1341      const Stmt *S = SP->getStmt();
1342      if (!isContainedByStmt(PM, Term, S))
1343        return S;
1344    }
1345    N = N->getFirstPred();
1346  }
1347  return nullptr;
1348}
1349
1350static bool isInLoopBody(ParentMap &PM, const Stmt *S, const Stmt *Term) {
1351  const Stmt *LoopBody = nullptr;
1352  switch (Term->getStmtClass()) {
1353    case Stmt::CXXForRangeStmtClass: {
1354      const CXXForRangeStmt *FR = cast<CXXForRangeStmt>(Term);
1355      if (isContainedByStmt(PM, FR->getInc(), S))
1356        return true;
1357      if (isContainedByStmt(PM, FR->getLoopVarStmt(), S))
1358        return true;
1359      LoopBody = FR->getBody();
1360      break;
1361    }
1362    case Stmt::ForStmtClass: {
1363      const ForStmt *FS = cast<ForStmt>(Term);
1364      if (isContainedByStmt(PM, FS->getInc(), S))
1365        return true;
1366      LoopBody = FS->getBody();
1367      break;
1368    }
1369    case Stmt::ObjCForCollectionStmtClass: {
1370      const ObjCForCollectionStmt *FC = cast<ObjCForCollectionStmt>(Term);
1371      LoopBody = FC->getBody();
1372      break;
1373    }
1374    case Stmt::WhileStmtClass:
1375      LoopBody = cast<WhileStmt>(Term)->getBody();
1376      break;
1377    default:
1378      return false;
1379  }
1380  return isContainedByStmt(PM, LoopBody, S);
1381}
1382
1383//===----------------------------------------------------------------------===//
1384// Top-level logic for generating extensive path diagnostics.
1385//===----------------------------------------------------------------------===//
1386
1387static bool GenerateExtensivePathDiagnostic(
1388    PathDiagnostic &PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N,
1389    LocationContextMap &LCM,
1390    ArrayRef<std::unique_ptr<BugReporterVisitor>> visitors) {
1391  EdgeBuilder EB(PD, PDB);
1392  const SourceManager& SM = PDB.getSourceManager();
1393  StackDiagVector CallStack;
1394  InterestingExprs IE;
1395
1396  const ExplodedNode *NextNode = N->pred_empty() ? nullptr : *(N->pred_begin());
1397  while (NextNode) {
1398    N = NextNode;
1399    NextNode = N->getFirstPred();
1400    ProgramPoint P = N->getLocation();
1401
1402    do {
1403      if (Optional<PostStmt> PS = P.getAs<PostStmt>()) {
1404        if (const Expr *Ex = PS->getStmtAs<Expr>())
1405          reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1406                                              N->getState().get(), Ex,
1407                                              N->getLocationContext());
1408      }
1409
1410      if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
1411        const Stmt *S = CE->getCalleeContext()->getCallSite();
1412        if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
1413            reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1414                                                N->getState().get(), Ex,
1415                                                N->getLocationContext());
1416        }
1417
1418        PathDiagnosticCallPiece *C =
1419          PathDiagnosticCallPiece::construct(N, *CE, SM);
1420        LCM[&C->path] = CE->getCalleeContext();
1421
1422        EB.addEdge(C->callReturn, /*AlwaysAdd=*/true, /*IsPostJump=*/true);
1423        EB.flushLocations();
1424
1425        PD.getActivePath().push_front(C);
1426        PD.pushActivePath(&C->path);
1427        CallStack.push_back(StackDiagPair(C, N));
1428        break;
1429      }
1430
1431      // Pop the call hierarchy if we are done walking the contents
1432      // of a function call.
1433      if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
1434        // Add an edge to the start of the function.
1435        const Decl *D = CE->getCalleeContext()->getDecl();
1436        PathDiagnosticLocation pos =
1437          PathDiagnosticLocation::createBegin(D, SM);
1438        EB.addEdge(pos);
1439
1440        // Flush all locations, and pop the active path.
1441        bool VisitedEntireCall = PD.isWithinCall();
1442        EB.flushLocations();
1443        PD.popActivePath();
1444        PDB.LC = N->getLocationContext();
1445
1446        // Either we just added a bunch of stuff to the top-level path, or
1447        // we have a previous CallExitEnd.  If the former, it means that the
1448        // path terminated within a function call.  We must then take the
1449        // current contents of the active path and place it within
1450        // a new PathDiagnosticCallPiece.
1451        PathDiagnosticCallPiece *C;
1452        if (VisitedEntireCall) {
1453          C = cast<PathDiagnosticCallPiece>(PD.getActivePath().front());
1454        } else {
1455          const Decl *Caller = CE->getLocationContext()->getDecl();
1456          C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
1457          LCM[&C->path] = CE->getCalleeContext();
1458        }
1459
1460        C->setCallee(*CE, SM);
1461        EB.addContext(C->getLocation());
1462
1463        if (!CallStack.empty()) {
1464          assert(CallStack.back().first == C);
1465          CallStack.pop_back();
1466        }
1467        break;
1468      }
1469
1470      // Note that is important that we update the LocationContext
1471      // after looking at CallExits.  CallExit basically adds an
1472      // edge in the *caller*, so we don't want to update the LocationContext
1473      // too soon.
1474      PDB.LC = N->getLocationContext();
1475
1476      // Block edges.
1477      if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
1478        // Does this represent entering a call?  If so, look at propagating
1479        // interesting symbols across call boundaries.
1480        if (NextNode) {
1481          const LocationContext *CallerCtx = NextNode->getLocationContext();
1482          const LocationContext *CalleeCtx = PDB.LC;
1483          if (CallerCtx != CalleeCtx) {
1484            reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
1485                                               N->getState().get(),
1486                                               CalleeCtx, CallerCtx);
1487          }
1488        }
1489
1490        // Are we jumping to the head of a loop?  Add a special diagnostic.
1491        if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1492          PathDiagnosticLocation L(Loop, SM, PDB.LC);
1493          const CompoundStmt *CS = nullptr;
1494
1495          if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
1496            CS = dyn_cast<CompoundStmt>(FS->getBody());
1497          else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
1498            CS = dyn_cast<CompoundStmt>(WS->getBody());
1499
1500          PathDiagnosticEventPiece *p =
1501            new PathDiagnosticEventPiece(L,
1502                                        "Looping back to the head of the loop");
1503          p->setPrunable(true);
1504
1505          EB.addEdge(p->getLocation(), true);
1506          PD.getActivePath().push_front(p);
1507
1508          if (CS) {
1509            PathDiagnosticLocation BL =
1510              PathDiagnosticLocation::createEndBrace(CS, SM);
1511            EB.addEdge(BL);
1512          }
1513        }
1514
1515        const CFGBlock *BSrc = BE->getSrc();
1516        ParentMap &PM = PDB.getParentMap();
1517
1518        if (const Stmt *Term = BSrc->getTerminator()) {
1519          // Are we jumping past the loop body without ever executing the
1520          // loop (because the condition was false)?
1521          if (isLoopJumpPastBody(Term, &*BE) &&
1522              !isInLoopBody(PM,
1523                            getStmtBeforeCond(PM,
1524                                              BSrc->getTerminatorCondition(),
1525                                              N),
1526                            Term)) {
1527            PathDiagnosticLocation L(Term, SM, PDB.LC);
1528            PathDiagnosticEventPiece *PE =
1529                new PathDiagnosticEventPiece(L, "Loop body executed 0 times");
1530            PE->setPrunable(true);
1531
1532            EB.addEdge(PE->getLocation(), true);
1533            PD.getActivePath().push_front(PE);
1534          }
1535
1536          // In any case, add the terminator as the current statement
1537          // context for control edges.
1538          EB.addContext(Term);
1539        }
1540
1541        break;
1542      }
1543
1544      if (Optional<BlockEntrance> BE = P.getAs<BlockEntrance>()) {
1545        Optional<CFGElement> First = BE->getFirstElement();
1546        if (Optional<CFGStmt> S = First ? First->getAs<CFGStmt>() : None) {
1547          const Stmt *stmt = S->getStmt();
1548          if (IsControlFlowExpr(stmt)) {
1549            // Add the proper context for '&&', '||', and '?'.
1550            EB.addContext(stmt);
1551          }
1552          else
1553            EB.addExtendedContext(PDB.getEnclosingStmtLocation(stmt).asStmt());
1554        }
1555
1556        break;
1557      }
1558
1559
1560    } while (0);
1561
1562    if (!NextNode)
1563      continue;
1564
1565    // Add pieces from custom visitors.
1566    BugReport *R = PDB.getBugReport();
1567    for (auto &V : visitors) {
1568      if (PathDiagnosticPiece *p = V->VisitNode(N, NextNode, PDB, *R)) {
1569        const PathDiagnosticLocation &Loc = p->getLocation();
1570        EB.addEdge(Loc, true);
1571        PD.getActivePath().push_front(p);
1572        updateStackPiecesWithMessage(p, CallStack);
1573
1574        if (const Stmt *S = Loc.asStmt())
1575          EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
1576      }
1577    }
1578  }
1579
1580  return PDB.getBugReport()->isValid();
1581}
1582
1583/// \brief Adds a sanitized control-flow diagnostic edge to a path.
1584static void addEdgeToPath(PathPieces &path,
1585                          PathDiagnosticLocation &PrevLoc,
1586                          PathDiagnosticLocation NewLoc,
1587                          const LocationContext *LC) {
1588  if (!NewLoc.isValid())
1589    return;
1590
1591  SourceLocation NewLocL = NewLoc.asLocation();
1592  if (NewLocL.isInvalid())
1593    return;
1594
1595  if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) {
1596    PrevLoc = NewLoc;
1597    return;
1598  }
1599
1600  // Ignore self-edges, which occur when there are multiple nodes at the same
1601  // statement.
1602  if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt())
1603    return;
1604
1605  path.push_front(new PathDiagnosticControlFlowPiece(NewLoc,
1606                                                     PrevLoc));
1607  PrevLoc = NewLoc;
1608}
1609
1610/// A customized wrapper for CFGBlock::getTerminatorCondition()
1611/// which returns the element for ObjCForCollectionStmts.
1612static const Stmt *getTerminatorCondition(const CFGBlock *B) {
1613  const Stmt *S = B->getTerminatorCondition();
1614  if (const ObjCForCollectionStmt *FS =
1615      dyn_cast_or_null<ObjCForCollectionStmt>(S))
1616    return FS->getElement();
1617  return S;
1618}
1619
1620static const char StrEnteringLoop[] = "Entering loop body";
1621static const char StrLoopBodyZero[] = "Loop body executed 0 times";
1622static const char StrLoopRangeEmpty[] =
1623  "Loop body skipped when range is empty";
1624static const char StrLoopCollectionEmpty[] =
1625  "Loop body skipped when collection is empty";
1626
1627static bool GenerateAlternateExtensivePathDiagnostic(
1628    PathDiagnostic &PD, PathDiagnosticBuilder &PDB, const ExplodedNode *N,
1629    LocationContextMap &LCM,
1630    ArrayRef<std::unique_ptr<BugReporterVisitor>> visitors) {
1631
1632  BugReport *report = PDB.getBugReport();
1633  const SourceManager& SM = PDB.getSourceManager();
1634  StackDiagVector CallStack;
1635  InterestingExprs IE;
1636
1637  PathDiagnosticLocation PrevLoc = PD.getLocation();
1638
1639  const ExplodedNode *NextNode = N->getFirstPred();
1640  while (NextNode) {
1641    N = NextNode;
1642    NextNode = N->getFirstPred();
1643    ProgramPoint P = N->getLocation();
1644
1645    do {
1646      // Have we encountered an entrance to a call?  It may be
1647      // the case that we have not encountered a matching
1648      // call exit before this point.  This means that the path
1649      // terminated within the call itself.
1650      if (Optional<CallEnter> CE = P.getAs<CallEnter>()) {
1651        // Add an edge to the start of the function.
1652        const StackFrameContext *CalleeLC = CE->getCalleeContext();
1653        const Decl *D = CalleeLC->getDecl();
1654        addEdgeToPath(PD.getActivePath(), PrevLoc,
1655                      PathDiagnosticLocation::createBegin(D, SM),
1656                      CalleeLC);
1657
1658        // Did we visit an entire call?
1659        bool VisitedEntireCall = PD.isWithinCall();
1660        PD.popActivePath();
1661
1662        PathDiagnosticCallPiece *C;
1663        if (VisitedEntireCall) {
1664          PathDiagnosticPiece *P = PD.getActivePath().front().get();
1665          C = cast<PathDiagnosticCallPiece>(P);
1666        } else {
1667          const Decl *Caller = CE->getLocationContext()->getDecl();
1668          C = PathDiagnosticCallPiece::construct(PD.getActivePath(), Caller);
1669
1670          // Since we just transferred the path over to the call piece,
1671          // reset the mapping from active to location context.
1672          assert(PD.getActivePath().size() == 1 &&
1673                 PD.getActivePath().front() == C);
1674          LCM[&PD.getActivePath()] = nullptr;
1675
1676          // Record the location context mapping for the path within
1677          // the call.
1678          assert(LCM[&C->path] == nullptr ||
1679                 LCM[&C->path] == CE->getCalleeContext());
1680          LCM[&C->path] = CE->getCalleeContext();
1681
1682          // If this is the first item in the active path, record
1683          // the new mapping from active path to location context.
1684          const LocationContext *&NewLC = LCM[&PD.getActivePath()];
1685          if (!NewLC)
1686            NewLC = N->getLocationContext();
1687
1688          PDB.LC = NewLC;
1689        }
1690        C->setCallee(*CE, SM);
1691
1692        // Update the previous location in the active path.
1693        PrevLoc = C->getLocation();
1694
1695        if (!CallStack.empty()) {
1696          assert(CallStack.back().first == C);
1697          CallStack.pop_back();
1698        }
1699        break;
1700      }
1701
1702      // Query the location context here and the previous location
1703      // as processing CallEnter may change the active path.
1704      PDB.LC = N->getLocationContext();
1705
1706      // Record the mapping from the active path to the location
1707      // context.
1708      assert(!LCM[&PD.getActivePath()] ||
1709             LCM[&PD.getActivePath()] == PDB.LC);
1710      LCM[&PD.getActivePath()] = PDB.LC;
1711
1712      // Have we encountered an exit from a function call?
1713      if (Optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
1714        const Stmt *S = CE->getCalleeContext()->getCallSite();
1715        // Propagate the interesting symbols accordingly.
1716        if (const Expr *Ex = dyn_cast_or_null<Expr>(S)) {
1717          reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1718                                              N->getState().get(), Ex,
1719                                              N->getLocationContext());
1720        }
1721
1722        // We are descending into a call (backwards).  Construct
1723        // a new call piece to contain the path pieces for that call.
1724        PathDiagnosticCallPiece *C =
1725          PathDiagnosticCallPiece::construct(N, *CE, SM);
1726
1727        // Record the location context for this call piece.
1728        LCM[&C->path] = CE->getCalleeContext();
1729
1730        // Add the edge to the return site.
1731        addEdgeToPath(PD.getActivePath(), PrevLoc, C->callReturn, PDB.LC);
1732        PD.getActivePath().push_front(C);
1733        PrevLoc.invalidate();
1734
1735        // Make the contents of the call the active path for now.
1736        PD.pushActivePath(&C->path);
1737        CallStack.push_back(StackDiagPair(C, N));
1738        break;
1739      }
1740
1741      if (Optional<PostStmt> PS = P.getAs<PostStmt>()) {
1742        // For expressions, make sure we propagate the
1743        // interesting symbols correctly.
1744        if (const Expr *Ex = PS->getStmtAs<Expr>())
1745          reversePropagateIntererstingSymbols(*PDB.getBugReport(), IE,
1746                                              N->getState().get(), Ex,
1747                                              N->getLocationContext());
1748
1749        // Add an edge.  If this is an ObjCForCollectionStmt do
1750        // not add an edge here as it appears in the CFG both
1751        // as a terminator and as a terminator condition.
1752        if (!isa<ObjCForCollectionStmt>(PS->getStmt())) {
1753          PathDiagnosticLocation L =
1754            PathDiagnosticLocation(PS->getStmt(), SM, PDB.LC);
1755          addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC);
1756        }
1757        break;
1758      }
1759
1760      // Block edges.
1761      if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
1762        // Does this represent entering a call?  If so, look at propagating
1763        // interesting symbols across call boundaries.
1764        if (NextNode) {
1765          const LocationContext *CallerCtx = NextNode->getLocationContext();
1766          const LocationContext *CalleeCtx = PDB.LC;
1767          if (CallerCtx != CalleeCtx) {
1768            reversePropagateInterestingSymbols(*PDB.getBugReport(), IE,
1769                                               N->getState().get(),
1770                                               CalleeCtx, CallerCtx);
1771          }
1772        }
1773
1774        // Are we jumping to the head of a loop?  Add a special diagnostic.
1775        if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1776          PathDiagnosticLocation L(Loop, SM, PDB.LC);
1777          const Stmt *Body = nullptr;
1778
1779          if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
1780            Body = FS->getBody();
1781          else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
1782            Body = WS->getBody();
1783          else if (const ObjCForCollectionStmt *OFS =
1784                     dyn_cast<ObjCForCollectionStmt>(Loop)) {
1785            Body = OFS->getBody();
1786          } else if (const CXXForRangeStmt *FRS =
1787                       dyn_cast<CXXForRangeStmt>(Loop)) {
1788            Body = FRS->getBody();
1789          }
1790          // do-while statements are explicitly excluded here
1791
1792          PathDiagnosticEventPiece *p =
1793            new PathDiagnosticEventPiece(L, "Looping back to the head "
1794                                            "of the loop");
1795          p->setPrunable(true);
1796
1797          addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), PDB.LC);
1798          PD.getActivePath().push_front(p);
1799
1800          if (const CompoundStmt *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
1801            addEdgeToPath(PD.getActivePath(), PrevLoc,
1802                          PathDiagnosticLocation::createEndBrace(CS, SM),
1803                          PDB.LC);
1804          }
1805        }
1806
1807        const CFGBlock *BSrc = BE->getSrc();
1808        ParentMap &PM = PDB.getParentMap();
1809
1810        if (const Stmt *Term = BSrc->getTerminator()) {
1811          // Are we jumping past the loop body without ever executing the
1812          // loop (because the condition was false)?
1813          if (isLoop(Term)) {
1814            const Stmt *TermCond = getTerminatorCondition(BSrc);
1815            bool IsInLoopBody =
1816              isInLoopBody(PM, getStmtBeforeCond(PM, TermCond, N), Term);
1817
1818            const char *str = nullptr;
1819
1820            if (isJumpToFalseBranch(&*BE)) {
1821              if (!IsInLoopBody) {
1822                if (isa<ObjCForCollectionStmt>(Term)) {
1823                  str = StrLoopCollectionEmpty;
1824                } else if (isa<CXXForRangeStmt>(Term)) {
1825                  str = StrLoopRangeEmpty;
1826                } else {
1827                  str = StrLoopBodyZero;
1828                }
1829              }
1830            } else {
1831              str = StrEnteringLoop;
1832            }
1833
1834            if (str) {
1835              PathDiagnosticLocation L(TermCond ? TermCond : Term, SM, PDB.LC);
1836              PathDiagnosticEventPiece *PE =
1837                new PathDiagnosticEventPiece(L, str);
1838              PE->setPrunable(true);
1839              addEdgeToPath(PD.getActivePath(), PrevLoc,
1840                            PE->getLocation(), PDB.LC);
1841              PD.getActivePath().push_front(PE);
1842            }
1843          } else if (isa<BreakStmt>(Term) || isa<ContinueStmt>(Term) ||
1844                     isa<GotoStmt>(Term)) {
1845            PathDiagnosticLocation L(Term, SM, PDB.LC);
1846            addEdgeToPath(PD.getActivePath(), PrevLoc, L, PDB.LC);
1847          }
1848        }
1849        break;
1850      }
1851    } while (0);
1852
1853    if (!NextNode)
1854      continue;
1855
1856    // Add pieces from custom visitors.
1857    for (auto &V : visitors) {
1858      if (PathDiagnosticPiece *p = V->VisitNode(N, NextNode, PDB, *report)) {
1859        addEdgeToPath(PD.getActivePath(), PrevLoc, p->getLocation(), PDB.LC);
1860        PD.getActivePath().push_front(p);
1861        updateStackPiecesWithMessage(p, CallStack);
1862      }
1863    }
1864  }
1865
1866  // Add an edge to the start of the function.
1867  // We'll prune it out later, but it helps make diagnostics more uniform.
1868  const StackFrameContext *CalleeLC = PDB.LC->getCurrentStackFrame();
1869  const Decl *D = CalleeLC->getDecl();
1870  addEdgeToPath(PD.getActivePath(), PrevLoc,
1871                PathDiagnosticLocation::createBegin(D, SM),
1872                CalleeLC);
1873
1874  return report->isValid();
1875}
1876
1877static const Stmt *getLocStmt(PathDiagnosticLocation L) {
1878  if (!L.isValid())
1879    return nullptr;
1880  return L.asStmt();
1881}
1882
1883static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) {
1884  if (!S)
1885    return nullptr;
1886
1887  while (true) {
1888    S = PM.getParentIgnoreParens(S);
1889
1890    if (!S)
1891      break;
1892
1893    if (isa<ExprWithCleanups>(S) ||
1894        isa<CXXBindTemporaryExpr>(S) ||
1895        isa<SubstNonTypeTemplateParmExpr>(S))
1896      continue;
1897
1898    break;
1899  }
1900
1901  return S;
1902}
1903
1904static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) {
1905  switch (S->getStmtClass()) {
1906    case Stmt::BinaryOperatorClass: {
1907      const BinaryOperator *BO = cast<BinaryOperator>(S);
1908      if (!BO->isLogicalOp())
1909        return false;
1910      return BO->getLHS() == Cond || BO->getRHS() == Cond;
1911    }
1912    case Stmt::IfStmtClass:
1913      return cast<IfStmt>(S)->getCond() == Cond;
1914    case Stmt::ForStmtClass:
1915      return cast<ForStmt>(S)->getCond() == Cond;
1916    case Stmt::WhileStmtClass:
1917      return cast<WhileStmt>(S)->getCond() == Cond;
1918    case Stmt::DoStmtClass:
1919      return cast<DoStmt>(S)->getCond() == Cond;
1920    case Stmt::ChooseExprClass:
1921      return cast<ChooseExpr>(S)->getCond() == Cond;
1922    case Stmt::IndirectGotoStmtClass:
1923      return cast<IndirectGotoStmt>(S)->getTarget() == Cond;
1924    case Stmt::SwitchStmtClass:
1925      return cast<SwitchStmt>(S)->getCond() == Cond;
1926    case Stmt::BinaryConditionalOperatorClass:
1927      return cast<BinaryConditionalOperator>(S)->getCond() == Cond;
1928    case Stmt::ConditionalOperatorClass: {
1929      const ConditionalOperator *CO = cast<ConditionalOperator>(S);
1930      return CO->getCond() == Cond ||
1931             CO->getLHS() == Cond ||
1932             CO->getRHS() == Cond;
1933    }
1934    case Stmt::ObjCForCollectionStmtClass:
1935      return cast<ObjCForCollectionStmt>(S)->getElement() == Cond;
1936    case Stmt::CXXForRangeStmtClass: {
1937      const CXXForRangeStmt *FRS = cast<CXXForRangeStmt>(S);
1938      return FRS->getCond() == Cond || FRS->getRangeInit() == Cond;
1939    }
1940    default:
1941      return false;
1942  }
1943}
1944
1945static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) {
1946  if (const ForStmt *FS = dyn_cast<ForStmt>(FL))
1947    return FS->getInc() == S || FS->getInit() == S;
1948  if (const CXXForRangeStmt *FRS = dyn_cast<CXXForRangeStmt>(FL))
1949    return FRS->getInc() == S || FRS->getRangeStmt() == S ||
1950           FRS->getLoopVarStmt() || FRS->getRangeInit() == S;
1951  return false;
1952}
1953
1954typedef llvm::DenseSet<const PathDiagnosticCallPiece *>
1955        OptimizedCallsSet;
1956
1957/// Adds synthetic edges from top-level statements to their subexpressions.
1958///
1959/// This avoids a "swoosh" effect, where an edge from a top-level statement A
1960/// points to a sub-expression B.1 that's not at the start of B. In these cases,
1961/// we'd like to see an edge from A to B, then another one from B to B.1.
1962static void addContextEdges(PathPieces &pieces, SourceManager &SM,
1963                            const ParentMap &PM, const LocationContext *LCtx) {
1964  PathPieces::iterator Prev = pieces.end();
1965  for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E;
1966       Prev = I, ++I) {
1967    PathDiagnosticControlFlowPiece *Piece =
1968      dyn_cast<PathDiagnosticControlFlowPiece>(*I);
1969
1970    if (!Piece)
1971      continue;
1972
1973    PathDiagnosticLocation SrcLoc = Piece->getStartLocation();
1974    SmallVector<PathDiagnosticLocation, 4> SrcContexts;
1975
1976    PathDiagnosticLocation NextSrcContext = SrcLoc;
1977    const Stmt *InnerStmt = nullptr;
1978    while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) {
1979      SrcContexts.push_back(NextSrcContext);
1980      InnerStmt = NextSrcContext.asStmt();
1981      NextSrcContext = getEnclosingStmtLocation(InnerStmt, SM, PM, LCtx,
1982                                                /*allowNested=*/true);
1983    }
1984
1985    // Repeatedly split the edge as necessary.
1986    // This is important for nested logical expressions (||, &&, ?:) where we
1987    // want to show all the levels of context.
1988    while (true) {
1989      const Stmt *Dst = getLocStmt(Piece->getEndLocation());
1990
1991      // We are looking at an edge. Is the destination within a larger
1992      // expression?
1993      PathDiagnosticLocation DstContext =
1994        getEnclosingStmtLocation(Dst, SM, PM, LCtx, /*allowNested=*/true);
1995      if (!DstContext.isValid() || DstContext.asStmt() == Dst)
1996        break;
1997
1998      // If the source is in the same context, we're already good.
1999      if (std::find(SrcContexts.begin(), SrcContexts.end(), DstContext) !=
2000          SrcContexts.end())
2001        break;
2002
2003      // Update the subexpression node to point to the context edge.
2004      Piece->setStartLocation(DstContext);
2005
2006      // Try to extend the previous edge if it's at the same level as the source
2007      // context.
2008      if (Prev != E) {
2009        PathDiagnosticControlFlowPiece *PrevPiece =
2010          dyn_cast<PathDiagnosticControlFlowPiece>(*Prev);
2011
2012        if (PrevPiece) {
2013          if (const Stmt *PrevSrc = getLocStmt(PrevPiece->getStartLocation())) {
2014            const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM);
2015            if (PrevSrcParent == getStmtParent(getLocStmt(DstContext), PM)) {
2016              PrevPiece->setEndLocation(DstContext);
2017              break;
2018            }
2019          }
2020        }
2021      }
2022
2023      // Otherwise, split the current edge into a context edge and a
2024      // subexpression edge. Note that the context statement may itself have
2025      // context.
2026      Piece = new PathDiagnosticControlFlowPiece(SrcLoc, DstContext);
2027      I = pieces.insert(I, Piece);
2028    }
2029  }
2030}
2031
2032/// \brief Move edges from a branch condition to a branch target
2033///        when the condition is simple.
2034///
2035/// This restructures some of the work of addContextEdges.  That function
2036/// creates edges this may destroy, but they work together to create a more
2037/// aesthetically set of edges around branches.  After the call to
2038/// addContextEdges, we may have (1) an edge to the branch, (2) an edge from
2039/// the branch to the branch condition, and (3) an edge from the branch
2040/// condition to the branch target.  We keep (1), but may wish to remove (2)
2041/// and move the source of (3) to the branch if the branch condition is simple.
2042///
2043static void simplifySimpleBranches(PathPieces &pieces) {
2044  for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) {
2045
2046    PathDiagnosticControlFlowPiece *PieceI =
2047      dyn_cast<PathDiagnosticControlFlowPiece>(*I);
2048
2049    if (!PieceI)
2050      continue;
2051
2052    const Stmt *s1Start = getLocStmt(PieceI->getStartLocation());
2053    const Stmt *s1End   = getLocStmt(PieceI->getEndLocation());
2054
2055    if (!s1Start || !s1End)
2056      continue;
2057
2058    PathPieces::iterator NextI = I; ++NextI;
2059    if (NextI == E)
2060      break;
2061
2062    PathDiagnosticControlFlowPiece *PieceNextI = nullptr;
2063
2064    while (true) {
2065      if (NextI == E)
2066        break;
2067
2068      PathDiagnosticEventPiece *EV = dyn_cast<PathDiagnosticEventPiece>(*NextI);
2069      if (EV) {
2070        StringRef S = EV->getString();
2071        if (S == StrEnteringLoop || S == StrLoopBodyZero ||
2072            S == StrLoopCollectionEmpty || S == StrLoopRangeEmpty) {
2073          ++NextI;
2074          continue;
2075        }
2076        break;
2077      }
2078
2079      PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(*NextI);
2080      break;
2081    }
2082
2083    if (!PieceNextI)
2084      continue;
2085
2086    const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation());
2087    const Stmt *s2End   = getLocStmt(PieceNextI->getEndLocation());
2088
2089    if (!s2Start || !s2End || s1End != s2Start)
2090      continue;
2091
2092    // We only perform this transformation for specific branch kinds.
2093    // We don't want to do this for do..while, for example.
2094    if (!(isa<ForStmt>(s1Start) || isa<WhileStmt>(s1Start) ||
2095          isa<IfStmt>(s1Start) || isa<ObjCForCollectionStmt>(s1Start) ||
2096          isa<CXXForRangeStmt>(s1Start)))
2097      continue;
2098
2099    // Is s1End the branch condition?
2100    if (!isConditionForTerminator(s1Start, s1End))
2101      continue;
2102
2103    // Perform the hoisting by eliminating (2) and changing the start
2104    // location of (3).
2105    PieceNextI->setStartLocation(PieceI->getStartLocation());
2106    I = pieces.erase(I);
2107  }
2108}
2109
2110/// Returns the number of bytes in the given (character-based) SourceRange.
2111///
2112/// If the locations in the range are not on the same line, returns None.
2113///
2114/// Note that this does not do a precise user-visible character or column count.
2115static Optional<size_t> getLengthOnSingleLine(SourceManager &SM,
2116                                              SourceRange Range) {
2117  SourceRange ExpansionRange(SM.getExpansionLoc(Range.getBegin()),
2118                             SM.getExpansionRange(Range.getEnd()).second);
2119
2120  FileID FID = SM.getFileID(ExpansionRange.getBegin());
2121  if (FID != SM.getFileID(ExpansionRange.getEnd()))
2122    return None;
2123
2124  bool Invalid;
2125  const llvm::MemoryBuffer *Buffer = SM.getBuffer(FID, &Invalid);
2126  if (Invalid)
2127    return None;
2128
2129  unsigned BeginOffset = SM.getFileOffset(ExpansionRange.getBegin());
2130  unsigned EndOffset = SM.getFileOffset(ExpansionRange.getEnd());
2131  StringRef Snippet = Buffer->getBuffer().slice(BeginOffset, EndOffset);
2132
2133  // We're searching the raw bytes of the buffer here, which might include
2134  // escaped newlines and such. That's okay; we're trying to decide whether the
2135  // SourceRange is covering a large or small amount of space in the user's
2136  // editor.
2137  if (Snippet.find_first_of("\r\n") != StringRef::npos)
2138    return None;
2139
2140  // This isn't Unicode-aware, but it doesn't need to be.
2141  return Snippet.size();
2142}
2143
2144/// \sa getLengthOnSingleLine(SourceManager, SourceRange)
2145static Optional<size_t> getLengthOnSingleLine(SourceManager &SM,
2146                                              const Stmt *S) {
2147  return getLengthOnSingleLine(SM, S->getSourceRange());
2148}
2149
2150/// Eliminate two-edge cycles created by addContextEdges().
2151///
2152/// Once all the context edges are in place, there are plenty of cases where
2153/// there's a single edge from a top-level statement to a subexpression,
2154/// followed by a single path note, and then a reverse edge to get back out to
2155/// the top level. If the statement is simple enough, the subexpression edges
2156/// just add noise and make it harder to understand what's going on.
2157///
2158/// This function only removes edges in pairs, because removing only one edge
2159/// might leave other edges dangling.
2160///
2161/// This will not remove edges in more complicated situations:
2162/// - if there is more than one "hop" leading to or from a subexpression.
2163/// - if there is an inlined call between the edges instead of a single event.
2164/// - if the whole statement is large enough that having subexpression arrows
2165///   might be helpful.
2166static void removeContextCycles(PathPieces &Path, SourceManager &SM,
2167                                ParentMap &PM) {
2168  for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) {
2169    // Pattern match the current piece and its successor.
2170    PathDiagnosticControlFlowPiece *PieceI =
2171      dyn_cast<PathDiagnosticControlFlowPiece>(*I);
2172
2173    if (!PieceI) {
2174      ++I;
2175      continue;
2176    }
2177
2178    const Stmt *s1Start = getLocStmt(PieceI->getStartLocation());
2179    const Stmt *s1End   = getLocStmt(PieceI->getEndLocation());
2180
2181    PathPieces::iterator NextI = I; ++NextI;
2182    if (NextI == E)
2183      break;
2184
2185    PathDiagnosticControlFlowPiece *PieceNextI =
2186      dyn_cast<PathDiagnosticControlFlowPiece>(*NextI);
2187
2188    if (!PieceNextI) {
2189      if (isa<PathDiagnosticEventPiece>(*NextI)) {
2190        ++NextI;
2191        if (NextI == E)
2192          break;
2193        PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(*NextI);
2194      }
2195
2196      if (!PieceNextI) {
2197        ++I;
2198        continue;
2199      }
2200    }
2201
2202    const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation());
2203    const Stmt *s2End   = getLocStmt(PieceNextI->getEndLocation());
2204
2205    if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) {
2206      const size_t MAX_SHORT_LINE_LENGTH = 80;
2207      Optional<size_t> s1Length = getLengthOnSingleLine(SM, s1Start);
2208      if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) {
2209        Optional<size_t> s2Length = getLengthOnSingleLine(SM, s2Start);
2210        if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) {
2211          Path.erase(I);
2212          I = Path.erase(NextI);
2213          continue;
2214        }
2215      }
2216    }
2217
2218    ++I;
2219  }
2220}
2221
2222/// \brief Return true if X is contained by Y.
2223static bool lexicalContains(ParentMap &PM,
2224                            const Stmt *X,
2225                            const Stmt *Y) {
2226  while (X) {
2227    if (X == Y)
2228      return true;
2229    X = PM.getParent(X);
2230  }
2231  return false;
2232}
2233
2234// Remove short edges on the same line less than 3 columns in difference.
2235static void removePunyEdges(PathPieces &path,
2236                            SourceManager &SM,
2237                            ParentMap &PM) {
2238
2239  bool erased = false;
2240
2241  for (PathPieces::iterator I = path.begin(), E = path.end(); I != E;
2242       erased ? I : ++I) {
2243
2244    erased = false;
2245
2246    PathDiagnosticControlFlowPiece *PieceI =
2247      dyn_cast<PathDiagnosticControlFlowPiece>(*I);
2248
2249    if (!PieceI)
2250      continue;
2251
2252    const Stmt *start = getLocStmt(PieceI->getStartLocation());
2253    const Stmt *end   = getLocStmt(PieceI->getEndLocation());
2254
2255    if (!start || !end)
2256      continue;
2257
2258    const Stmt *endParent = PM.getParent(end);
2259    if (!endParent)
2260      continue;
2261
2262    if (isConditionForTerminator(end, endParent))
2263      continue;
2264
2265    SourceLocation FirstLoc = start->getLocStart();
2266    SourceLocation SecondLoc = end->getLocStart();
2267
2268    if (!SM.isWrittenInSameFile(FirstLoc, SecondLoc))
2269      continue;
2270    if (SM.isBeforeInTranslationUnit(SecondLoc, FirstLoc))
2271      std::swap(SecondLoc, FirstLoc);
2272
2273    SourceRange EdgeRange(FirstLoc, SecondLoc);
2274    Optional<size_t> ByteWidth = getLengthOnSingleLine(SM, EdgeRange);
2275
2276    // If the statements are on different lines, continue.
2277    if (!ByteWidth)
2278      continue;
2279
2280    const size_t MAX_PUNY_EDGE_LENGTH = 2;
2281    if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) {
2282      // FIXME: There are enough /bytes/ between the endpoints of the edge, but
2283      // there might not be enough /columns/. A proper user-visible column count
2284      // is probably too expensive, though.
2285      I = path.erase(I);
2286      erased = true;
2287      continue;
2288    }
2289  }
2290}
2291
2292static void removeIdenticalEvents(PathPieces &path) {
2293  for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) {
2294    PathDiagnosticEventPiece *PieceI =
2295      dyn_cast<PathDiagnosticEventPiece>(*I);
2296
2297    if (!PieceI)
2298      continue;
2299
2300    PathPieces::iterator NextI = I; ++NextI;
2301    if (NextI == E)
2302      return;
2303
2304    PathDiagnosticEventPiece *PieceNextI =
2305      dyn_cast<PathDiagnosticEventPiece>(*NextI);
2306
2307    if (!PieceNextI)
2308      continue;
2309
2310    // Erase the second piece if it has the same exact message text.
2311    if (PieceI->getString() == PieceNextI->getString()) {
2312      path.erase(NextI);
2313    }
2314  }
2315}
2316
2317static bool optimizeEdges(PathPieces &path, SourceManager &SM,
2318                          OptimizedCallsSet &OCS,
2319                          LocationContextMap &LCM) {
2320  bool hasChanges = false;
2321  const LocationContext *LC = LCM[&path];
2322  assert(LC);
2323  ParentMap &PM = LC->getParentMap();
2324
2325  for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) {
2326    // Optimize subpaths.
2327    if (PathDiagnosticCallPiece *CallI = dyn_cast<PathDiagnosticCallPiece>(*I)){
2328      // Record the fact that a call has been optimized so we only do the
2329      // effort once.
2330      if (!OCS.count(CallI)) {
2331        while (optimizeEdges(CallI->path, SM, OCS, LCM)) {}
2332        OCS.insert(CallI);
2333      }
2334      ++I;
2335      continue;
2336    }
2337
2338    // Pattern match the current piece and its successor.
2339    PathDiagnosticControlFlowPiece *PieceI =
2340      dyn_cast<PathDiagnosticControlFlowPiece>(*I);
2341
2342    if (!PieceI) {
2343      ++I;
2344      continue;
2345    }
2346
2347    const Stmt *s1Start = getLocStmt(PieceI->getStartLocation());
2348    const Stmt *s1End   = getLocStmt(PieceI->getEndLocation());
2349    const Stmt *level1 = getStmtParent(s1Start, PM);
2350    const Stmt *level2 = getStmtParent(s1End, PM);
2351
2352    PathPieces::iterator NextI = I; ++NextI;
2353    if (NextI == E)
2354      break;
2355
2356    PathDiagnosticControlFlowPiece *PieceNextI =
2357      dyn_cast<PathDiagnosticControlFlowPiece>(*NextI);
2358
2359    if (!PieceNextI) {
2360      ++I;
2361      continue;
2362    }
2363
2364    const Stmt *s2Start = getLocStmt(PieceNextI->getStartLocation());
2365    const Stmt *s2End   = getLocStmt(PieceNextI->getEndLocation());
2366    const Stmt *level3 = getStmtParent(s2Start, PM);
2367    const Stmt *level4 = getStmtParent(s2End, PM);
2368
2369    // Rule I.
2370    //
2371    // If we have two consecutive control edges whose end/begin locations
2372    // are at the same level (e.g. statements or top-level expressions within
2373    // a compound statement, or siblings share a single ancestor expression),
2374    // then merge them if they have no interesting intermediate event.
2375    //
2376    // For example:
2377    //
2378    // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common
2379    // parent is '1'.  Here 'x.y.z' represents the hierarchy of statements.
2380    //
2381    // NOTE: this will be limited later in cases where we add barriers
2382    // to prevent this optimization.
2383    //
2384    if (level1 && level1 == level2 && level1 == level3 && level1 == level4) {
2385      PieceI->setEndLocation(PieceNextI->getEndLocation());
2386      path.erase(NextI);
2387      hasChanges = true;
2388      continue;
2389    }
2390
2391    // Rule II.
2392    //
2393    // Eliminate edges between subexpressions and parent expressions
2394    // when the subexpression is consumed.
2395    //
2396    // NOTE: this will be limited later in cases where we add barriers
2397    // to prevent this optimization.
2398    //
2399    if (s1End && s1End == s2Start && level2) {
2400      bool removeEdge = false;
2401      // Remove edges into the increment or initialization of a
2402      // loop that have no interleaving event.  This means that
2403      // they aren't interesting.
2404      if (isIncrementOrInitInForLoop(s1End, level2))
2405        removeEdge = true;
2406      // Next only consider edges that are not anchored on
2407      // the condition of a terminator.  This are intermediate edges
2408      // that we might want to trim.
2409      else if (!isConditionForTerminator(level2, s1End)) {
2410        // Trim edges on expressions that are consumed by
2411        // the parent expression.
2412        if (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End))) {
2413          removeEdge = true;
2414        }
2415        // Trim edges where a lexical containment doesn't exist.
2416        // For example:
2417        //
2418        //  X -> Y -> Z
2419        //
2420        // If 'Z' lexically contains Y (it is an ancestor) and
2421        // 'X' does not lexically contain Y (it is a descendant OR
2422        // it has no lexical relationship at all) then trim.
2423        //
2424        // This can eliminate edges where we dive into a subexpression
2425        // and then pop back out, etc.
2426        else if (s1Start && s2End &&
2427                 lexicalContains(PM, s2Start, s2End) &&
2428                 !lexicalContains(PM, s1End, s1Start)) {
2429          removeEdge = true;
2430        }
2431        // Trim edges from a subexpression back to the top level if the
2432        // subexpression is on a different line.
2433        //
2434        // A.1 -> A -> B
2435        // becomes
2436        // A.1 -> B
2437        //
2438        // These edges just look ugly and don't usually add anything.
2439        else if (s1Start && s2End &&
2440                 lexicalContains(PM, s1Start, s1End)) {
2441          SourceRange EdgeRange(PieceI->getEndLocation().asLocation(),
2442                                PieceI->getStartLocation().asLocation());
2443          if (!getLengthOnSingleLine(SM, EdgeRange).hasValue())
2444            removeEdge = true;
2445        }
2446      }
2447
2448      if (removeEdge) {
2449        PieceI->setEndLocation(PieceNextI->getEndLocation());
2450        path.erase(NextI);
2451        hasChanges = true;
2452        continue;
2453      }
2454    }
2455
2456    // Optimize edges for ObjC fast-enumeration loops.
2457    //
2458    // (X -> collection) -> (collection -> element)
2459    //
2460    // becomes:
2461    //
2462    // (X -> element)
2463    if (s1End == s2Start) {
2464      const ObjCForCollectionStmt *FS =
2465        dyn_cast_or_null<ObjCForCollectionStmt>(level3);
2466      if (FS && FS->getCollection()->IgnoreParens() == s2Start &&
2467          s2End == FS->getElement()) {
2468        PieceI->setEndLocation(PieceNextI->getEndLocation());
2469        path.erase(NextI);
2470        hasChanges = true;
2471        continue;
2472      }
2473    }
2474
2475    // No changes at this index?  Move to the next one.
2476    ++I;
2477  }
2478
2479  if (!hasChanges) {
2480    // Adjust edges into subexpressions to make them more uniform
2481    // and aesthetically pleasing.
2482    addContextEdges(path, SM, PM, LC);
2483    // Remove "cyclical" edges that include one or more context edges.
2484    removeContextCycles(path, SM, PM);
2485    // Hoist edges originating from branch conditions to branches
2486    // for simple branches.
2487    simplifySimpleBranches(path);
2488    // Remove any puny edges left over after primary optimization pass.
2489    removePunyEdges(path, SM, PM);
2490    // Remove identical events.
2491    removeIdenticalEvents(path);
2492  }
2493
2494  return hasChanges;
2495}
2496
2497/// Drop the very first edge in a path, which should be a function entry edge.
2498///
2499/// If the first edge is not a function entry edge (say, because the first
2500/// statement had an invalid source location), this function does nothing.
2501// FIXME: We should just generate invalid edges anyway and have the optimizer
2502// deal with them.
2503static void dropFunctionEntryEdge(PathPieces &Path,
2504                                  LocationContextMap &LCM,
2505                                  SourceManager &SM) {
2506  const PathDiagnosticControlFlowPiece *FirstEdge =
2507    dyn_cast<PathDiagnosticControlFlowPiece>(Path.front());
2508  if (!FirstEdge)
2509    return;
2510
2511  const Decl *D = LCM[&Path]->getDecl();
2512  PathDiagnosticLocation EntryLoc = PathDiagnosticLocation::createBegin(D, SM);
2513  if (FirstEdge->getStartLocation() != EntryLoc)
2514    return;
2515
2516  Path.pop_front();
2517}
2518
2519
2520//===----------------------------------------------------------------------===//
2521// Methods for BugType and subclasses.
2522//===----------------------------------------------------------------------===//
2523void BugType::anchor() { }
2524
2525void BugType::FlushReports(BugReporter &BR) {}
2526
2527void BuiltinBug::anchor() {}
2528
2529//===----------------------------------------------------------------------===//
2530// Methods for BugReport and subclasses.
2531//===----------------------------------------------------------------------===//
2532
2533void BugReport::NodeResolver::anchor() {}
2534
2535void BugReport::addVisitor(std::unique_ptr<BugReporterVisitor> visitor) {
2536  if (!visitor)
2537    return;
2538
2539  llvm::FoldingSetNodeID ID;
2540  visitor->Profile(ID);
2541  void *InsertPos;
2542
2543  if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos))
2544    return;
2545
2546  CallbacksSet.InsertNode(visitor.get(), InsertPos);
2547  Callbacks.push_back(std::move(visitor));
2548  ++ConfigurationChangeToken;
2549}
2550
2551BugReport::~BugReport() {
2552  while (!interestingSymbols.empty()) {
2553    popInterestingSymbolsAndRegions();
2554  }
2555}
2556
2557const Decl *BugReport::getDeclWithIssue() const {
2558  if (DeclWithIssue)
2559    return DeclWithIssue;
2560
2561  const ExplodedNode *N = getErrorNode();
2562  if (!N)
2563    return nullptr;
2564
2565  const LocationContext *LC = N->getLocationContext();
2566  return LC->getCurrentStackFrame()->getDecl();
2567}
2568
2569void BugReport::Profile(llvm::FoldingSetNodeID& hash) const {
2570  hash.AddPointer(&BT);
2571  hash.AddString(Description);
2572  PathDiagnosticLocation UL = getUniqueingLocation();
2573  if (UL.isValid()) {
2574    UL.Profile(hash);
2575  } else if (Location.isValid()) {
2576    Location.Profile(hash);
2577  } else {
2578    assert(ErrorNode);
2579    hash.AddPointer(GetCurrentOrPreviousStmt(ErrorNode));
2580  }
2581
2582  for (SmallVectorImpl<SourceRange>::const_iterator I =
2583      Ranges.begin(), E = Ranges.end(); I != E; ++I) {
2584    const SourceRange range = *I;
2585    if (!range.isValid())
2586      continue;
2587    hash.AddInteger(range.getBegin().getRawEncoding());
2588    hash.AddInteger(range.getEnd().getRawEncoding());
2589  }
2590}
2591
2592void BugReport::markInteresting(SymbolRef sym) {
2593  if (!sym)
2594    return;
2595
2596  // If the symbol wasn't already in our set, note a configuration change.
2597  if (getInterestingSymbols().insert(sym).second)
2598    ++ConfigurationChangeToken;
2599
2600  if (const SymbolMetadata *meta = dyn_cast<SymbolMetadata>(sym))
2601    getInterestingRegions().insert(meta->getRegion());
2602}
2603
2604void BugReport::markInteresting(const MemRegion *R) {
2605  if (!R)
2606    return;
2607
2608  // If the base region wasn't already in our set, note a configuration change.
2609  R = R->getBaseRegion();
2610  if (getInterestingRegions().insert(R).second)
2611    ++ConfigurationChangeToken;
2612
2613  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
2614    getInterestingSymbols().insert(SR->getSymbol());
2615}
2616
2617void BugReport::markInteresting(SVal V) {
2618  markInteresting(V.getAsRegion());
2619  markInteresting(V.getAsSymbol());
2620}
2621
2622void BugReport::markInteresting(const LocationContext *LC) {
2623  if (!LC)
2624    return;
2625  InterestingLocationContexts.insert(LC);
2626}
2627
2628bool BugReport::isInteresting(SVal V) {
2629  return isInteresting(V.getAsRegion()) || isInteresting(V.getAsSymbol());
2630}
2631
2632bool BugReport::isInteresting(SymbolRef sym) {
2633  if (!sym)
2634    return false;
2635  // We don't currently consider metadata symbols to be interesting
2636  // even if we know their region is interesting. Is that correct behavior?
2637  return getInterestingSymbols().count(sym);
2638}
2639
2640bool BugReport::isInteresting(const MemRegion *R) {
2641  if (!R)
2642    return false;
2643  R = R->getBaseRegion();
2644  bool b = getInterestingRegions().count(R);
2645  if (b)
2646    return true;
2647  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
2648    return getInterestingSymbols().count(SR->getSymbol());
2649  return false;
2650}
2651
2652bool BugReport::isInteresting(const LocationContext *LC) {
2653  if (!LC)
2654    return false;
2655  return InterestingLocationContexts.count(LC);
2656}
2657
2658void BugReport::lazyInitializeInterestingSets() {
2659  if (interestingSymbols.empty()) {
2660    interestingSymbols.push_back(new Symbols());
2661    interestingRegions.push_back(new Regions());
2662  }
2663}
2664
2665BugReport::Symbols &BugReport::getInterestingSymbols() {
2666  lazyInitializeInterestingSets();
2667  return *interestingSymbols.back();
2668}
2669
2670BugReport::Regions &BugReport::getInterestingRegions() {
2671  lazyInitializeInterestingSets();
2672  return *interestingRegions.back();
2673}
2674
2675void BugReport::pushInterestingSymbolsAndRegions() {
2676  interestingSymbols.push_back(new Symbols(getInterestingSymbols()));
2677  interestingRegions.push_back(new Regions(getInterestingRegions()));
2678}
2679
2680void BugReport::popInterestingSymbolsAndRegions() {
2681  delete interestingSymbols.pop_back_val();
2682  delete interestingRegions.pop_back_val();
2683}
2684
2685const Stmt *BugReport::getStmt() const {
2686  if (!ErrorNode)
2687    return nullptr;
2688
2689  ProgramPoint ProgP = ErrorNode->getLocation();
2690  const Stmt *S = nullptr;
2691
2692  if (Optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) {
2693    CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
2694    if (BE->getBlock() == &Exit)
2695      S = GetPreviousStmt(ErrorNode);
2696  }
2697  if (!S)
2698    S = PathDiagnosticLocation::getStmt(ErrorNode);
2699
2700  return S;
2701}
2702
2703llvm::iterator_range<BugReport::ranges_iterator> BugReport::getRanges() {
2704  // If no custom ranges, add the range of the statement corresponding to
2705  // the error node.
2706  if (Ranges.empty()) {
2707    if (const Expr *E = dyn_cast_or_null<Expr>(getStmt()))
2708      addRange(E->getSourceRange());
2709    else
2710      return llvm::make_range(ranges_iterator(), ranges_iterator());
2711  }
2712
2713  // User-specified absence of range info.
2714  if (Ranges.size() == 1 && !Ranges.begin()->isValid())
2715    return llvm::make_range(ranges_iterator(), ranges_iterator());
2716
2717  return llvm::iterator_range<BugReport::ranges_iterator>(Ranges.begin(),
2718                                                          Ranges.end());
2719}
2720
2721PathDiagnosticLocation BugReport::getLocation(const SourceManager &SM) const {
2722  if (ErrorNode) {
2723    assert(!Location.isValid() &&
2724     "Either Location or ErrorNode should be specified but not both.");
2725    return PathDiagnosticLocation::createEndOfPath(ErrorNode, SM);
2726  }
2727
2728  assert(Location.isValid());
2729  return Location;
2730}
2731
2732//===----------------------------------------------------------------------===//
2733// Methods for BugReporter and subclasses.
2734//===----------------------------------------------------------------------===//
2735
2736BugReportEquivClass::~BugReportEquivClass() { }
2737GRBugReporter::~GRBugReporter() { }
2738BugReporterData::~BugReporterData() {}
2739
2740ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); }
2741
2742ProgramStateManager&
2743GRBugReporter::getStateManager() { return Eng.getStateManager(); }
2744
2745BugReporter::~BugReporter() {
2746  FlushReports();
2747
2748  // Free the bug reports we are tracking.
2749  typedef std::vector<BugReportEquivClass *> ContTy;
2750  for (ContTy::iterator I = EQClassesVector.begin(), E = EQClassesVector.end();
2751       I != E; ++I) {
2752    delete *I;
2753  }
2754}
2755
2756void BugReporter::FlushReports() {
2757  if (BugTypes.isEmpty())
2758    return;
2759
2760  // First flush the warnings for each BugType.  This may end up creating new
2761  // warnings and new BugTypes.
2762  // FIXME: Only NSErrorChecker needs BugType's FlushReports.
2763  // Turn NSErrorChecker into a proper checker and remove this.
2764  SmallVector<const BugType *, 16> bugTypes(BugTypes.begin(), BugTypes.end());
2765  for (SmallVectorImpl<const BugType *>::iterator
2766         I = bugTypes.begin(), E = bugTypes.end(); I != E; ++I)
2767    const_cast<BugType*>(*I)->FlushReports(*this);
2768
2769  // We need to flush reports in deterministic order to ensure the order
2770  // of the reports is consistent between runs.
2771  typedef std::vector<BugReportEquivClass *> ContVecTy;
2772  for (ContVecTy::iterator EI=EQClassesVector.begin(), EE=EQClassesVector.end();
2773       EI != EE; ++EI){
2774    BugReportEquivClass& EQ = **EI;
2775    FlushReport(EQ);
2776  }
2777
2778  // BugReporter owns and deletes only BugTypes created implicitly through
2779  // EmitBasicReport.
2780  // FIXME: There are leaks from checkers that assume that the BugTypes they
2781  // create will be destroyed by the BugReporter.
2782  llvm::DeleteContainerSeconds(StrBugTypes);
2783
2784  // Remove all references to the BugType objects.
2785  BugTypes = F.getEmptySet();
2786}
2787
2788//===----------------------------------------------------------------------===//
2789// PathDiagnostics generation.
2790//===----------------------------------------------------------------------===//
2791
2792namespace {
2793/// A wrapper around a report graph, which contains only a single path, and its
2794/// node maps.
2795class ReportGraph {
2796public:
2797  InterExplodedGraphMap BackMap;
2798  std::unique_ptr<ExplodedGraph> Graph;
2799  const ExplodedNode *ErrorNode;
2800  size_t Index;
2801};
2802
2803/// A wrapper around a trimmed graph and its node maps.
2804class TrimmedGraph {
2805  InterExplodedGraphMap InverseMap;
2806
2807  typedef llvm::DenseMap<const ExplodedNode *, unsigned> PriorityMapTy;
2808  PriorityMapTy PriorityMap;
2809
2810  typedef std::pair<const ExplodedNode *, size_t> NodeIndexPair;
2811  SmallVector<NodeIndexPair, 32> ReportNodes;
2812
2813  std::unique_ptr<ExplodedGraph> G;
2814
2815  /// A helper class for sorting ExplodedNodes by priority.
2816  template <bool Descending>
2817  class PriorityCompare {
2818    const PriorityMapTy &PriorityMap;
2819
2820  public:
2821    PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {}
2822
2823    bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const {
2824      PriorityMapTy::const_iterator LI = PriorityMap.find(LHS);
2825      PriorityMapTy::const_iterator RI = PriorityMap.find(RHS);
2826      PriorityMapTy::const_iterator E = PriorityMap.end();
2827
2828      if (LI == E)
2829        return Descending;
2830      if (RI == E)
2831        return !Descending;
2832
2833      return Descending ? LI->second > RI->second
2834                        : LI->second < RI->second;
2835    }
2836
2837    bool operator()(const NodeIndexPair &LHS, const NodeIndexPair &RHS) const {
2838      return (*this)(LHS.first, RHS.first);
2839    }
2840  };
2841
2842public:
2843  TrimmedGraph(const ExplodedGraph *OriginalGraph,
2844               ArrayRef<const ExplodedNode *> Nodes);
2845
2846  bool popNextReportGraph(ReportGraph &GraphWrapper);
2847};
2848}
2849
2850TrimmedGraph::TrimmedGraph(const ExplodedGraph *OriginalGraph,
2851                           ArrayRef<const ExplodedNode *> Nodes) {
2852  // The trimmed graph is created in the body of the constructor to ensure
2853  // that the DenseMaps have been initialized already.
2854  InterExplodedGraphMap ForwardMap;
2855  G = OriginalGraph->trim(Nodes, &ForwardMap, &InverseMap);
2856
2857  // Find the (first) error node in the trimmed graph.  We just need to consult
2858  // the node map which maps from nodes in the original graph to nodes
2859  // in the new graph.
2860  llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes;
2861
2862  for (unsigned i = 0, count = Nodes.size(); i < count; ++i) {
2863    if (const ExplodedNode *NewNode = ForwardMap.lookup(Nodes[i])) {
2864      ReportNodes.push_back(std::make_pair(NewNode, i));
2865      RemainingNodes.insert(NewNode);
2866    }
2867  }
2868
2869  assert(!RemainingNodes.empty() && "No error node found in the trimmed graph");
2870
2871  // Perform a forward BFS to find all the shortest paths.
2872  std::queue<const ExplodedNode *> WS;
2873
2874  assert(G->num_roots() == 1);
2875  WS.push(*G->roots_begin());
2876  unsigned Priority = 0;
2877
2878  while (!WS.empty()) {
2879    const ExplodedNode *Node = WS.front();
2880    WS.pop();
2881
2882    PriorityMapTy::iterator PriorityEntry;
2883    bool IsNew;
2884    std::tie(PriorityEntry, IsNew) =
2885      PriorityMap.insert(std::make_pair(Node, Priority));
2886    ++Priority;
2887
2888    if (!IsNew) {
2889      assert(PriorityEntry->second <= Priority);
2890      continue;
2891    }
2892
2893    if (RemainingNodes.erase(Node))
2894      if (RemainingNodes.empty())
2895        break;
2896
2897    for (ExplodedNode::const_pred_iterator I = Node->succ_begin(),
2898                                           E = Node->succ_end();
2899         I != E; ++I)
2900      WS.push(*I);
2901  }
2902
2903  // Sort the error paths from longest to shortest.
2904  std::sort(ReportNodes.begin(), ReportNodes.end(),
2905            PriorityCompare<true>(PriorityMap));
2906}
2907
2908bool TrimmedGraph::popNextReportGraph(ReportGraph &GraphWrapper) {
2909  if (ReportNodes.empty())
2910    return false;
2911
2912  const ExplodedNode *OrigN;
2913  std::tie(OrigN, GraphWrapper.Index) = ReportNodes.pop_back_val();
2914  assert(PriorityMap.find(OrigN) != PriorityMap.end() &&
2915         "error node not accessible from root");
2916
2917  // Create a new graph with a single path.  This is the graph
2918  // that will be returned to the caller.
2919  auto GNew = llvm::make_unique<ExplodedGraph>();
2920  GraphWrapper.BackMap.clear();
2921
2922  // Now walk from the error node up the BFS path, always taking the
2923  // predeccessor with the lowest number.
2924  ExplodedNode *Succ = nullptr;
2925  while (true) {
2926    // Create the equivalent node in the new graph with the same state
2927    // and location.
2928    ExplodedNode *NewN = GNew->getNode(OrigN->getLocation(), OrigN->getState(),
2929                                       OrigN->isSink());
2930
2931    // Store the mapping to the original node.
2932    InterExplodedGraphMap::const_iterator IMitr = InverseMap.find(OrigN);
2933    assert(IMitr != InverseMap.end() && "No mapping to original node.");
2934    GraphWrapper.BackMap[NewN] = IMitr->second;
2935
2936    // Link up the new node with the previous node.
2937    if (Succ)
2938      Succ->addPredecessor(NewN, *GNew);
2939    else
2940      GraphWrapper.ErrorNode = NewN;
2941
2942    Succ = NewN;
2943
2944    // Are we at the final node?
2945    if (OrigN->pred_empty()) {
2946      GNew->addRoot(NewN);
2947      break;
2948    }
2949
2950    // Find the next predeccessor node.  We choose the node that is marked
2951    // with the lowest BFS number.
2952    OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(),
2953                          PriorityCompare<false>(PriorityMap));
2954  }
2955
2956  GraphWrapper.Graph = std::move(GNew);
2957
2958  return true;
2959}
2960
2961
2962/// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
2963///  and collapses PathDiagosticPieces that are expanded by macros.
2964static void CompactPathDiagnostic(PathPieces &path, const SourceManager& SM) {
2965  typedef std::vector<std::pair<IntrusiveRefCntPtr<PathDiagnosticMacroPiece>,
2966                                SourceLocation> > MacroStackTy;
2967
2968  typedef std::vector<IntrusiveRefCntPtr<PathDiagnosticPiece> >
2969          PiecesTy;
2970
2971  MacroStackTy MacroStack;
2972  PiecesTy Pieces;
2973
2974  for (PathPieces::const_iterator I = path.begin(), E = path.end();
2975       I!=E; ++I) {
2976
2977    PathDiagnosticPiece *piece = I->get();
2978
2979    // Recursively compact calls.
2980    if (PathDiagnosticCallPiece *call=dyn_cast<PathDiagnosticCallPiece>(piece)){
2981      CompactPathDiagnostic(call->path, SM);
2982    }
2983
2984    // Get the location of the PathDiagnosticPiece.
2985    const FullSourceLoc Loc = piece->getLocation().asLocation();
2986
2987    // Determine the instantiation location, which is the location we group
2988    // related PathDiagnosticPieces.
2989    SourceLocation InstantiationLoc = Loc.isMacroID() ?
2990                                      SM.getExpansionLoc(Loc) :
2991                                      SourceLocation();
2992
2993    if (Loc.isFileID()) {
2994      MacroStack.clear();
2995      Pieces.push_back(piece);
2996      continue;
2997    }
2998
2999    assert(Loc.isMacroID());
3000
3001    // Is the PathDiagnosticPiece within the same macro group?
3002    if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
3003      MacroStack.back().first->subPieces.push_back(piece);
3004      continue;
3005    }
3006
3007    // We aren't in the same group.  Are we descending into a new macro
3008    // or are part of an old one?
3009    IntrusiveRefCntPtr<PathDiagnosticMacroPiece> MacroGroup;
3010
3011    SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
3012                                          SM.getExpansionLoc(Loc) :
3013                                          SourceLocation();
3014
3015    // Walk the entire macro stack.
3016    while (!MacroStack.empty()) {
3017      if (InstantiationLoc == MacroStack.back().second) {
3018        MacroGroup = MacroStack.back().first;
3019        break;
3020      }
3021
3022      if (ParentInstantiationLoc == MacroStack.back().second) {
3023        MacroGroup = MacroStack.back().first;
3024        break;
3025      }
3026
3027      MacroStack.pop_back();
3028    }
3029
3030    if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
3031      // Create a new macro group and add it to the stack.
3032      PathDiagnosticMacroPiece *NewGroup =
3033        new PathDiagnosticMacroPiece(
3034          PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
3035
3036      if (MacroGroup)
3037        MacroGroup->subPieces.push_back(NewGroup);
3038      else {
3039        assert(InstantiationLoc.isFileID());
3040        Pieces.push_back(NewGroup);
3041      }
3042
3043      MacroGroup = NewGroup;
3044      MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
3045    }
3046
3047    // Finally, add the PathDiagnosticPiece to the group.
3048    MacroGroup->subPieces.push_back(piece);
3049  }
3050
3051  // Now take the pieces and construct a new PathDiagnostic.
3052  path.clear();
3053
3054  path.insert(path.end(), Pieces.begin(), Pieces.end());
3055}
3056
3057bool GRBugReporter::generatePathDiagnostic(PathDiagnostic& PD,
3058                                           PathDiagnosticConsumer &PC,
3059                                           ArrayRef<BugReport *> &bugReports) {
3060  assert(!bugReports.empty());
3061
3062  bool HasValid = false;
3063  bool HasInvalid = false;
3064  SmallVector<const ExplodedNode *, 32> errorNodes;
3065  for (ArrayRef<BugReport*>::iterator I = bugReports.begin(),
3066                                      E = bugReports.end(); I != E; ++I) {
3067    if ((*I)->isValid()) {
3068      HasValid = true;
3069      errorNodes.push_back((*I)->getErrorNode());
3070    } else {
3071      // Keep the errorNodes list in sync with the bugReports list.
3072      HasInvalid = true;
3073      errorNodes.push_back(nullptr);
3074    }
3075  }
3076
3077  // If all the reports have been marked invalid by a previous path generation,
3078  // we're done.
3079  if (!HasValid)
3080    return false;
3081
3082  typedef PathDiagnosticConsumer::PathGenerationScheme PathGenerationScheme;
3083  PathGenerationScheme ActiveScheme = PC.getGenerationScheme();
3084
3085  if (ActiveScheme == PathDiagnosticConsumer::Extensive) {
3086    AnalyzerOptions &options = getAnalyzerOptions();
3087    if (options.getBooleanOption("path-diagnostics-alternate", true)) {
3088      ActiveScheme = PathDiagnosticConsumer::AlternateExtensive;
3089    }
3090  }
3091
3092  TrimmedGraph TrimG(&getGraph(), errorNodes);
3093  ReportGraph ErrorGraph;
3094
3095  while (TrimG.popNextReportGraph(ErrorGraph)) {
3096    // Find the BugReport with the original location.
3097    assert(ErrorGraph.Index < bugReports.size());
3098    BugReport *R = bugReports[ErrorGraph.Index];
3099    assert(R && "No original report found for sliced graph.");
3100    assert(R->isValid() && "Report selected by trimmed graph marked invalid.");
3101
3102    // Start building the path diagnostic...
3103    PathDiagnosticBuilder PDB(*this, R, ErrorGraph.BackMap, &PC);
3104    const ExplodedNode *N = ErrorGraph.ErrorNode;
3105
3106    // Register additional node visitors.
3107    R->addVisitor(llvm::make_unique<NilReceiverBRVisitor>());
3108    R->addVisitor(llvm::make_unique<ConditionBRVisitor>());
3109    R->addVisitor(llvm::make_unique<LikelyFalsePositiveSuppressionBRVisitor>());
3110
3111    BugReport::VisitorList visitors;
3112    unsigned origReportConfigToken, finalReportConfigToken;
3113    LocationContextMap LCM;
3114
3115    // While generating diagnostics, it's possible the visitors will decide
3116    // new symbols and regions are interesting, or add other visitors based on
3117    // the information they find. If they do, we need to regenerate the path
3118    // based on our new report configuration.
3119    do {
3120      // Get a clean copy of all the visitors.
3121      for (BugReport::visitor_iterator I = R->visitor_begin(),
3122                                       E = R->visitor_end(); I != E; ++I)
3123        visitors.push_back((*I)->clone());
3124
3125      // Clear out the active path from any previous work.
3126      PD.resetPath();
3127      origReportConfigToken = R->getConfigurationChangeToken();
3128
3129      // Generate the very last diagnostic piece - the piece is visible before
3130      // the trace is expanded.
3131      std::unique_ptr<PathDiagnosticPiece> LastPiece;
3132      for (BugReport::visitor_iterator I = visitors.begin(), E = visitors.end();
3133          I != E; ++I) {
3134        if (std::unique_ptr<PathDiagnosticPiece> Piece =
3135                (*I)->getEndPath(PDB, N, *R)) {
3136          assert (!LastPiece &&
3137              "There can only be one final piece in a diagnostic.");
3138          LastPiece = std::move(Piece);
3139        }
3140      }
3141
3142      if (ActiveScheme != PathDiagnosticConsumer::None) {
3143        if (!LastPiece)
3144          LastPiece = BugReporterVisitor::getDefaultEndPath(PDB, N, *R);
3145        assert(LastPiece);
3146        PD.setEndOfPath(std::move(LastPiece));
3147      }
3148
3149      // Make sure we get a clean location context map so we don't
3150      // hold onto old mappings.
3151      LCM.clear();
3152
3153      switch (ActiveScheme) {
3154      case PathDiagnosticConsumer::AlternateExtensive:
3155        GenerateAlternateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors);
3156        break;
3157      case PathDiagnosticConsumer::Extensive:
3158        GenerateExtensivePathDiagnostic(PD, PDB, N, LCM, visitors);
3159        break;
3160      case PathDiagnosticConsumer::Minimal:
3161        GenerateMinimalPathDiagnostic(PD, PDB, N, LCM, visitors);
3162        break;
3163      case PathDiagnosticConsumer::None:
3164        GenerateVisitorsOnlyPathDiagnostic(PD, PDB, N, visitors);
3165        break;
3166      }
3167
3168      // Clean up the visitors we used.
3169      visitors.clear();
3170
3171      // Did anything change while generating this path?
3172      finalReportConfigToken = R->getConfigurationChangeToken();
3173    } while (finalReportConfigToken != origReportConfigToken);
3174
3175    if (!R->isValid())
3176      continue;
3177
3178    // Finally, prune the diagnostic path of uninteresting stuff.
3179    if (!PD.path.empty()) {
3180      if (R->shouldPrunePath() && getAnalyzerOptions().shouldPrunePaths()) {
3181        bool stillHasNotes = removeUnneededCalls(PD.getMutablePieces(), R, LCM);
3182        assert(stillHasNotes);
3183        (void)stillHasNotes;
3184      }
3185
3186      // Redirect all call pieces to have valid locations.
3187      adjustCallLocations(PD.getMutablePieces());
3188      removePiecesWithInvalidLocations(PD.getMutablePieces());
3189
3190      if (ActiveScheme == PathDiagnosticConsumer::AlternateExtensive) {
3191        SourceManager &SM = getSourceManager();
3192
3193        // Reduce the number of edges from a very conservative set
3194        // to an aesthetically pleasing subset that conveys the
3195        // necessary information.
3196        OptimizedCallsSet OCS;
3197        while (optimizeEdges(PD.getMutablePieces(), SM, OCS, LCM)) {}
3198
3199        // Drop the very first function-entry edge. It's not really necessary
3200        // for top-level functions.
3201        dropFunctionEntryEdge(PD.getMutablePieces(), LCM, SM);
3202      }
3203
3204      // Remove messages that are basically the same, and edges that may not
3205      // make sense.
3206      // We have to do this after edge optimization in the Extensive mode.
3207      removeRedundantMsgs(PD.getMutablePieces());
3208      removeEdgesToDefaultInitializers(PD.getMutablePieces());
3209    }
3210
3211    // We found a report and didn't suppress it.
3212    return true;
3213  }
3214
3215  // We suppressed all the reports in this equivalence class.
3216  assert(!HasInvalid && "Inconsistent suppression");
3217  (void)HasInvalid;
3218  return false;
3219}
3220
3221void BugReporter::Register(BugType *BT) {
3222  BugTypes = F.add(BugTypes, BT);
3223}
3224
3225void BugReporter::emitReport(std::unique_ptr<BugReport> R) {
3226  if (const ExplodedNode *E = R->getErrorNode()) {
3227    const AnalysisDeclContext *DeclCtx =
3228        E->getLocationContext()->getAnalysisDeclContext();
3229    // The source of autosynthesized body can be handcrafted AST or a model
3230    // file. The locations from handcrafted ASTs have no valid source locations
3231    // and have to be discarded. Locations from model files should be preserved
3232    // for processing and reporting.
3233    if (DeclCtx->isBodyAutosynthesized() &&
3234        !DeclCtx->isBodyAutosynthesizedFromModelFile())
3235      return;
3236  }
3237
3238  bool ValidSourceLoc = R->getLocation(getSourceManager()).isValid();
3239  assert(ValidSourceLoc);
3240  // If we mess up in a release build, we'd still prefer to just drop the bug
3241  // instead of trying to go on.
3242  if (!ValidSourceLoc)
3243    return;
3244
3245  // Compute the bug report's hash to determine its equivalence class.
3246  llvm::FoldingSetNodeID ID;
3247  R->Profile(ID);
3248
3249  // Lookup the equivance class.  If there isn't one, create it.
3250  BugType& BT = R->getBugType();
3251  Register(&BT);
3252  void *InsertPos;
3253  BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
3254
3255  if (!EQ) {
3256    EQ = new BugReportEquivClass(std::move(R));
3257    EQClasses.InsertNode(EQ, InsertPos);
3258    EQClassesVector.push_back(EQ);
3259  } else
3260    EQ->AddReport(std::move(R));
3261}
3262
3263
3264//===----------------------------------------------------------------------===//
3265// Emitting reports in equivalence classes.
3266//===----------------------------------------------------------------------===//
3267
3268namespace {
3269struct FRIEC_WLItem {
3270  const ExplodedNode *N;
3271  ExplodedNode::const_succ_iterator I, E;
3272
3273  FRIEC_WLItem(const ExplodedNode *n)
3274  : N(n), I(N->succ_begin()), E(N->succ_end()) {}
3275};
3276}
3277
3278static BugReport *
3279FindReportInEquivalenceClass(BugReportEquivClass& EQ,
3280                             SmallVectorImpl<BugReport*> &bugReports) {
3281
3282  BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end();
3283  assert(I != E);
3284  BugType& BT = I->getBugType();
3285
3286  // If we don't need to suppress any of the nodes because they are
3287  // post-dominated by a sink, simply add all the nodes in the equivalence class
3288  // to 'Nodes'.  Any of the reports will serve as a "representative" report.
3289  if (!BT.isSuppressOnSink()) {
3290    BugReport *R = I;
3291    for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
3292      const ExplodedNode *N = I->getErrorNode();
3293      if (N) {
3294        R = I;
3295        bugReports.push_back(R);
3296      }
3297    }
3298    return R;
3299  }
3300
3301  // For bug reports that should be suppressed when all paths are post-dominated
3302  // by a sink node, iterate through the reports in the equivalence class
3303  // until we find one that isn't post-dominated (if one exists).  We use a
3304  // DFS traversal of the ExplodedGraph to find a non-sink node.  We could write
3305  // this as a recursive function, but we don't want to risk blowing out the
3306  // stack for very long paths.
3307  BugReport *exampleReport = nullptr;
3308
3309  for (; I != E; ++I) {
3310    const ExplodedNode *errorNode = I->getErrorNode();
3311
3312    if (!errorNode)
3313      continue;
3314    if (errorNode->isSink()) {
3315      llvm_unreachable(
3316           "BugType::isSuppressSink() should not be 'true' for sink end nodes");
3317    }
3318    // No successors?  By definition this nodes isn't post-dominated by a sink.
3319    if (errorNode->succ_empty()) {
3320      bugReports.push_back(I);
3321      if (!exampleReport)
3322        exampleReport = I;
3323      continue;
3324    }
3325
3326    // At this point we know that 'N' is not a sink and it has at least one
3327    // successor.  Use a DFS worklist to find a non-sink end-of-path node.
3328    typedef FRIEC_WLItem WLItem;
3329    typedef SmallVector<WLItem, 10> DFSWorkList;
3330    llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
3331
3332    DFSWorkList WL;
3333    WL.push_back(errorNode);
3334    Visited[errorNode] = 1;
3335
3336    while (!WL.empty()) {
3337      WLItem &WI = WL.back();
3338      assert(!WI.N->succ_empty());
3339
3340      for (; WI.I != WI.E; ++WI.I) {
3341        const ExplodedNode *Succ = *WI.I;
3342        // End-of-path node?
3343        if (Succ->succ_empty()) {
3344          // If we found an end-of-path node that is not a sink.
3345          if (!Succ->isSink()) {
3346            bugReports.push_back(I);
3347            if (!exampleReport)
3348              exampleReport = I;
3349            WL.clear();
3350            break;
3351          }
3352          // Found a sink?  Continue on to the next successor.
3353          continue;
3354        }
3355        // Mark the successor as visited.  If it hasn't been explored,
3356        // enqueue it to the DFS worklist.
3357        unsigned &mark = Visited[Succ];
3358        if (!mark) {
3359          mark = 1;
3360          WL.push_back(Succ);
3361          break;
3362        }
3363      }
3364
3365      // The worklist may have been cleared at this point.  First
3366      // check if it is empty before checking the last item.
3367      if (!WL.empty() && &WL.back() == &WI)
3368        WL.pop_back();
3369    }
3370  }
3371
3372  // ExampleReport will be NULL if all the nodes in the equivalence class
3373  // were post-dominated by sinks.
3374  return exampleReport;
3375}
3376
3377void BugReporter::FlushReport(BugReportEquivClass& EQ) {
3378  SmallVector<BugReport*, 10> bugReports;
3379  BugReport *exampleReport = FindReportInEquivalenceClass(EQ, bugReports);
3380  if (exampleReport) {
3381    for (PathDiagnosticConsumer *PDC : getPathDiagnosticConsumers()) {
3382      FlushReport(exampleReport, *PDC, bugReports);
3383    }
3384  }
3385}
3386
3387void BugReporter::FlushReport(BugReport *exampleReport,
3388                              PathDiagnosticConsumer &PD,
3389                              ArrayRef<BugReport*> bugReports) {
3390
3391  // FIXME: Make sure we use the 'R' for the path that was actually used.
3392  // Probably doesn't make a difference in practice.
3393  BugType& BT = exampleReport->getBugType();
3394
3395  std::unique_ptr<PathDiagnostic> D(new PathDiagnostic(
3396      exampleReport->getBugType().getCheckName(),
3397      exampleReport->getDeclWithIssue(), exampleReport->getBugType().getName(),
3398      exampleReport->getDescription(),
3399      exampleReport->getShortDescription(/*Fallback=*/false), BT.getCategory(),
3400      exampleReport->getUniqueingLocation(),
3401      exampleReport->getUniqueingDecl()));
3402
3403  MaxBugClassSize = std::max(bugReports.size(),
3404                             static_cast<size_t>(MaxBugClassSize));
3405
3406  // Generate the full path diagnostic, using the generation scheme
3407  // specified by the PathDiagnosticConsumer. Note that we have to generate
3408  // path diagnostics even for consumers which do not support paths, because
3409  // the BugReporterVisitors may mark this bug as a false positive.
3410  if (!bugReports.empty())
3411    if (!generatePathDiagnostic(*D.get(), PD, bugReports))
3412      return;
3413
3414  MaxValidBugClassSize = std::max(bugReports.size(),
3415                                  static_cast<size_t>(MaxValidBugClassSize));
3416
3417  // Examine the report and see if the last piece is in a header. Reset the
3418  // report location to the last piece in the main source file.
3419  AnalyzerOptions& Opts = getAnalyzerOptions();
3420  if (Opts.shouldReportIssuesInMainSourceFile() && !Opts.AnalyzeAll)
3421    D->resetDiagnosticLocationToMainFile();
3422
3423  // If the path is empty, generate a single step path with the location
3424  // of the issue.
3425  if (D->path.empty()) {
3426    PathDiagnosticLocation L = exampleReport->getLocation(getSourceManager());
3427    auto piece = llvm::make_unique<PathDiagnosticEventPiece>(
3428        L, exampleReport->getDescription());
3429    for (const SourceRange &Range : exampleReport->getRanges())
3430      piece->addRange(Range);
3431    D->setEndOfPath(std::move(piece));
3432  }
3433
3434  // Get the meta data.
3435  const BugReport::ExtraTextList &Meta = exampleReport->getExtraText();
3436  for (BugReport::ExtraTextList::const_iterator i = Meta.begin(),
3437                                                e = Meta.end(); i != e; ++i) {
3438    D->addMeta(*i);
3439  }
3440
3441  PD.HandlePathDiagnostic(std::move(D));
3442}
3443
3444void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3445                                  const CheckerBase *Checker,
3446                                  StringRef Name, StringRef Category,
3447                                  StringRef Str, PathDiagnosticLocation Loc,
3448                                  ArrayRef<SourceRange> Ranges) {
3449  EmitBasicReport(DeclWithIssue, Checker->getCheckName(), Name, Category, Str,
3450                  Loc, Ranges);
3451}
3452void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3453                                  CheckName CheckName,
3454                                  StringRef name, StringRef category,
3455                                  StringRef str, PathDiagnosticLocation Loc,
3456                                  ArrayRef<SourceRange> Ranges) {
3457
3458  // 'BT' is owned by BugReporter.
3459  BugType *BT = getBugTypeForName(CheckName, name, category);
3460  auto R = llvm::make_unique<BugReport>(*BT, str, Loc);
3461  R->setDeclWithIssue(DeclWithIssue);
3462  for (ArrayRef<SourceRange>::iterator I = Ranges.begin(), E = Ranges.end();
3463       I != E; ++I)
3464    R->addRange(*I);
3465  emitReport(std::move(R));
3466}
3467
3468BugType *BugReporter::getBugTypeForName(CheckName CheckName, StringRef name,
3469                                        StringRef category) {
3470  SmallString<136> fullDesc;
3471  llvm::raw_svector_ostream(fullDesc) << CheckName.getName() << ":" << name
3472                                      << ":" << category;
3473  BugType *&BT = StrBugTypes[fullDesc];
3474  if (!BT)
3475    BT = new BugType(CheckName, name, category);
3476  return BT;
3477}
3478
3479LLVM_DUMP_METHOD void PathPieces::dump() const {
3480  unsigned index = 0;
3481  for (PathPieces::const_iterator I = begin(), E = end(); I != E; ++I) {
3482    llvm::errs() << "[" << index++ << "]  ";
3483    (*I)->dump();
3484    llvm::errs() << "\n";
3485  }
3486}
3487
3488void PathDiagnosticCallPiece::dump() const {
3489  llvm::errs() << "CALL\n--------------\n";
3490
3491  if (const Stmt *SLoc = getLocStmt(getLocation()))
3492    SLoc->dump();
3493  else if (const NamedDecl *ND = dyn_cast<NamedDecl>(getCallee()))
3494    llvm::errs() << *ND << "\n";
3495  else
3496    getLocation().dump();
3497}
3498
3499void PathDiagnosticEventPiece::dump() const {
3500  llvm::errs() << "EVENT\n--------------\n";
3501  llvm::errs() << getString() << "\n";
3502  llvm::errs() << " ---- at ----\n";
3503  getLocation().dump();
3504}
3505
3506void PathDiagnosticControlFlowPiece::dump() const {
3507  llvm::errs() << "CONTROL\n--------------\n";
3508  getStartLocation().dump();
3509  llvm::errs() << " ---- to ----\n";
3510  getEndLocation().dump();
3511}
3512
3513void PathDiagnosticMacroPiece::dump() const {
3514  llvm::errs() << "MACRO\n--------------\n";
3515  // FIXME: Print which macro is being invoked.
3516}
3517
3518void PathDiagnosticLocation::dump() const {
3519  if (!isValid()) {
3520    llvm::errs() << "<INVALID>\n";
3521    return;
3522  }
3523
3524  switch (K) {
3525  case RangeK:
3526    // FIXME: actually print the range.
3527    llvm::errs() << "<range>\n";
3528    break;
3529  case SingleLocK:
3530    asLocation().dump();
3531    llvm::errs() << "\n";
3532    break;
3533  case StmtK:
3534    if (S)
3535      S->dump();
3536    else
3537      llvm::errs() << "<NULL STMT>\n";
3538    break;
3539  case DeclK:
3540    if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(D))
3541      llvm::errs() << *ND << "\n";
3542    else if (isa<BlockDecl>(D))
3543      // FIXME: Make this nicer.
3544      llvm::errs() << "<block>\n";
3545    else if (D)
3546      llvm::errs() << "<unknown decl>\n";
3547    else
3548      llvm::errs() << "<NULL DECL>\n";
3549    break;
3550  }
3551}
3552