SemaTemplate.cpp revision 363496
1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//===----------------------------------------------------------------------===//
7//
8//  This file implements semantic analysis for C++ templates.
9//===----------------------------------------------------------------------===//
10
11#include "TreeTransform.h"
12#include "clang/AST/ASTConsumer.h"
13#include "clang/AST/ASTContext.h"
14#include "clang/AST/DeclFriend.h"
15#include "clang/AST/DeclTemplate.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/RecursiveASTVisitor.h"
19#include "clang/AST/TypeVisitor.h"
20#include "clang/Basic/Builtins.h"
21#include "clang/Basic/LangOptions.h"
22#include "clang/Basic/PartialDiagnostic.h"
23#include "clang/Basic/Stack.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Sema/DeclSpec.h"
26#include "clang/Sema/Lookup.h"
27#include "clang/Sema/Overload.h"
28#include "clang/Sema/ParsedTemplate.h"
29#include "clang/Sema/Scope.h"
30#include "clang/Sema/SemaInternal.h"
31#include "clang/Sema/Template.h"
32#include "clang/Sema/TemplateDeduction.h"
33#include "llvm/ADT/SmallBitVector.h"
34#include "llvm/ADT/SmallString.h"
35#include "llvm/ADT/StringExtras.h"
36
37#include <iterator>
38using namespace clang;
39using namespace sema;
40
41// Exported for use by Parser.
42SourceRange
43clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
44                              unsigned N) {
45  if (!N) return SourceRange();
46  return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
47}
48
49unsigned Sema::getTemplateDepth(Scope *S) const {
50  unsigned Depth = 0;
51
52  // Each template parameter scope represents one level of template parameter
53  // depth.
54  for (Scope *TempParamScope = S->getTemplateParamParent();
55       TempParamScope && !Depth;
56       TempParamScope = TempParamScope->getParent()->getTemplateParamParent()) {
57    ++Depth;
58  }
59
60  // Note that there are template parameters with the given depth.
61  auto ParamsAtDepth = [&](unsigned D) { Depth = std::max(Depth, D + 1); };
62
63  // Look for parameters of an enclosing generic lambda. We don't create a
64  // template parameter scope for these.
65  for (FunctionScopeInfo *FSI : getFunctionScopes()) {
66    if (auto *LSI = dyn_cast<LambdaScopeInfo>(FSI)) {
67      if (!LSI->TemplateParams.empty()) {
68        ParamsAtDepth(LSI->AutoTemplateParameterDepth);
69        break;
70      }
71      if (LSI->GLTemplateParameterList) {
72        ParamsAtDepth(LSI->GLTemplateParameterList->getDepth());
73        break;
74      }
75    }
76  }
77
78  // Look for parameters of an enclosing terse function template. We don't
79  // create a template parameter scope for these either.
80  for (const InventedTemplateParameterInfo &Info :
81       getInventedParameterInfos()) {
82    if (!Info.TemplateParams.empty()) {
83      ParamsAtDepth(Info.AutoTemplateParameterDepth);
84      break;
85    }
86  }
87
88  return Depth;
89}
90
91/// \brief Determine whether the declaration found is acceptable as the name
92/// of a template and, if so, return that template declaration. Otherwise,
93/// returns null.
94///
95/// Note that this may return an UnresolvedUsingValueDecl if AllowDependent
96/// is true. In all other cases it will return a TemplateDecl (or null).
97NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D,
98                                       bool AllowFunctionTemplates,
99                                       bool AllowDependent) {
100  D = D->getUnderlyingDecl();
101
102  if (isa<TemplateDecl>(D)) {
103    if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
104      return nullptr;
105
106    return D;
107  }
108
109  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
110    // C++ [temp.local]p1:
111    //   Like normal (non-template) classes, class templates have an
112    //   injected-class-name (Clause 9). The injected-class-name
113    //   can be used with or without a template-argument-list. When
114    //   it is used without a template-argument-list, it is
115    //   equivalent to the injected-class-name followed by the
116    //   template-parameters of the class template enclosed in
117    //   <>. When it is used with a template-argument-list, it
118    //   refers to the specified class template specialization,
119    //   which could be the current specialization or another
120    //   specialization.
121    if (Record->isInjectedClassName()) {
122      Record = cast<CXXRecordDecl>(Record->getDeclContext());
123      if (Record->getDescribedClassTemplate())
124        return Record->getDescribedClassTemplate();
125
126      if (ClassTemplateSpecializationDecl *Spec
127            = dyn_cast<ClassTemplateSpecializationDecl>(Record))
128        return Spec->getSpecializedTemplate();
129    }
130
131    return nullptr;
132  }
133
134  // 'using Dependent::foo;' can resolve to a template name.
135  // 'using typename Dependent::foo;' cannot (not even if 'foo' is an
136  // injected-class-name).
137  if (AllowDependent && isa<UnresolvedUsingValueDecl>(D))
138    return D;
139
140  return nullptr;
141}
142
143void Sema::FilterAcceptableTemplateNames(LookupResult &R,
144                                         bool AllowFunctionTemplates,
145                                         bool AllowDependent) {
146  LookupResult::Filter filter = R.makeFilter();
147  while (filter.hasNext()) {
148    NamedDecl *Orig = filter.next();
149    if (!getAsTemplateNameDecl(Orig, AllowFunctionTemplates, AllowDependent))
150      filter.erase();
151  }
152  filter.done();
153}
154
155bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
156                                         bool AllowFunctionTemplates,
157                                         bool AllowDependent,
158                                         bool AllowNonTemplateFunctions) {
159  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
160    if (getAsTemplateNameDecl(*I, AllowFunctionTemplates, AllowDependent))
161      return true;
162    if (AllowNonTemplateFunctions &&
163        isa<FunctionDecl>((*I)->getUnderlyingDecl()))
164      return true;
165  }
166
167  return false;
168}
169
170TemplateNameKind Sema::isTemplateName(Scope *S,
171                                      CXXScopeSpec &SS,
172                                      bool hasTemplateKeyword,
173                                      const UnqualifiedId &Name,
174                                      ParsedType ObjectTypePtr,
175                                      bool EnteringContext,
176                                      TemplateTy &TemplateResult,
177                                      bool &MemberOfUnknownSpecialization,
178                                      bool Disambiguation) {
179  assert(getLangOpts().CPlusPlus && "No template names in C!");
180
181  DeclarationName TName;
182  MemberOfUnknownSpecialization = false;
183
184  switch (Name.getKind()) {
185  case UnqualifiedIdKind::IK_Identifier:
186    TName = DeclarationName(Name.Identifier);
187    break;
188
189  case UnqualifiedIdKind::IK_OperatorFunctionId:
190    TName = Context.DeclarationNames.getCXXOperatorName(
191                                              Name.OperatorFunctionId.Operator);
192    break;
193
194  case UnqualifiedIdKind::IK_LiteralOperatorId:
195    TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
196    break;
197
198  default:
199    return TNK_Non_template;
200  }
201
202  QualType ObjectType = ObjectTypePtr.get();
203
204  AssumedTemplateKind AssumedTemplate;
205  LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName);
206  if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
207                         MemberOfUnknownSpecialization, SourceLocation(),
208                         &AssumedTemplate, Disambiguation))
209    return TNK_Non_template;
210
211  if (AssumedTemplate != AssumedTemplateKind::None) {
212    TemplateResult = TemplateTy::make(Context.getAssumedTemplateName(TName));
213    // Let the parser know whether we found nothing or found functions; if we
214    // found nothing, we want to more carefully check whether this is actually
215    // a function template name versus some other kind of undeclared identifier.
216    return AssumedTemplate == AssumedTemplateKind::FoundNothing
217               ? TNK_Undeclared_template
218               : TNK_Function_template;
219  }
220
221  if (R.empty())
222    return TNK_Non_template;
223
224  NamedDecl *D = nullptr;
225  if (R.isAmbiguous()) {
226    // If we got an ambiguity involving a non-function template, treat this
227    // as a template name, and pick an arbitrary template for error recovery.
228    bool AnyFunctionTemplates = false;
229    for (NamedDecl *FoundD : R) {
230      if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(FoundD)) {
231        if (isa<FunctionTemplateDecl>(FoundTemplate))
232          AnyFunctionTemplates = true;
233        else {
234          D = FoundTemplate;
235          break;
236        }
237      }
238    }
239
240    // If we didn't find any templates at all, this isn't a template name.
241    // Leave the ambiguity for a later lookup to diagnose.
242    if (!D && !AnyFunctionTemplates) {
243      R.suppressDiagnostics();
244      return TNK_Non_template;
245    }
246
247    // If the only templates were function templates, filter out the rest.
248    // We'll diagnose the ambiguity later.
249    if (!D)
250      FilterAcceptableTemplateNames(R);
251  }
252
253  // At this point, we have either picked a single template name declaration D
254  // or we have a non-empty set of results R containing either one template name
255  // declaration or a set of function templates.
256
257  TemplateName Template;
258  TemplateNameKind TemplateKind;
259
260  unsigned ResultCount = R.end() - R.begin();
261  if (!D && ResultCount > 1) {
262    // We assume that we'll preserve the qualifier from a function
263    // template name in other ways.
264    Template = Context.getOverloadedTemplateName(R.begin(), R.end());
265    TemplateKind = TNK_Function_template;
266
267    // We'll do this lookup again later.
268    R.suppressDiagnostics();
269  } else {
270    if (!D) {
271      D = getAsTemplateNameDecl(*R.begin());
272      assert(D && "unambiguous result is not a template name");
273    }
274
275    if (isa<UnresolvedUsingValueDecl>(D)) {
276      // We don't yet know whether this is a template-name or not.
277      MemberOfUnknownSpecialization = true;
278      return TNK_Non_template;
279    }
280
281    TemplateDecl *TD = cast<TemplateDecl>(D);
282
283    if (SS.isSet() && !SS.isInvalid()) {
284      NestedNameSpecifier *Qualifier = SS.getScopeRep();
285      Template = Context.getQualifiedTemplateName(Qualifier,
286                                                  hasTemplateKeyword, TD);
287    } else {
288      Template = TemplateName(TD);
289    }
290
291    if (isa<FunctionTemplateDecl>(TD)) {
292      TemplateKind = TNK_Function_template;
293
294      // We'll do this lookup again later.
295      R.suppressDiagnostics();
296    } else {
297      assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
298             isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) ||
299             isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD));
300      TemplateKind =
301          isa<VarTemplateDecl>(TD) ? TNK_Var_template :
302          isa<ConceptDecl>(TD) ? TNK_Concept_template :
303          TNK_Type_template;
304    }
305  }
306
307  TemplateResult = TemplateTy::make(Template);
308  return TemplateKind;
309}
310
311bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
312                                SourceLocation NameLoc,
313                                ParsedTemplateTy *Template) {
314  CXXScopeSpec SS;
315  bool MemberOfUnknownSpecialization = false;
316
317  // We could use redeclaration lookup here, but we don't need to: the
318  // syntactic form of a deduction guide is enough to identify it even
319  // if we can't look up the template name at all.
320  LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName);
321  if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(),
322                         /*EnteringContext*/ false,
323                         MemberOfUnknownSpecialization))
324    return false;
325
326  if (R.empty()) return false;
327  if (R.isAmbiguous()) {
328    // FIXME: Diagnose an ambiguity if we find at least one template.
329    R.suppressDiagnostics();
330    return false;
331  }
332
333  // We only treat template-names that name type templates as valid deduction
334  // guide names.
335  TemplateDecl *TD = R.getAsSingle<TemplateDecl>();
336  if (!TD || !getAsTypeTemplateDecl(TD))
337    return false;
338
339  if (Template)
340    *Template = TemplateTy::make(TemplateName(TD));
341  return true;
342}
343
344bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
345                                       SourceLocation IILoc,
346                                       Scope *S,
347                                       const CXXScopeSpec *SS,
348                                       TemplateTy &SuggestedTemplate,
349                                       TemplateNameKind &SuggestedKind) {
350  // We can't recover unless there's a dependent scope specifier preceding the
351  // template name.
352  // FIXME: Typo correction?
353  if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
354      computeDeclContext(*SS))
355    return false;
356
357  // The code is missing a 'template' keyword prior to the dependent template
358  // name.
359  NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
360  Diag(IILoc, diag::err_template_kw_missing)
361    << Qualifier << II.getName()
362    << FixItHint::CreateInsertion(IILoc, "template ");
363  SuggestedTemplate
364    = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
365  SuggestedKind = TNK_Dependent_template_name;
366  return true;
367}
368
369bool Sema::LookupTemplateName(LookupResult &Found,
370                              Scope *S, CXXScopeSpec &SS,
371                              QualType ObjectType,
372                              bool EnteringContext,
373                              bool &MemberOfUnknownSpecialization,
374                              SourceLocation TemplateKWLoc,
375                              AssumedTemplateKind *ATK,
376                              bool Disambiguation) {
377  if (ATK)
378    *ATK = AssumedTemplateKind::None;
379
380  Found.setTemplateNameLookup(true);
381
382  // Determine where to perform name lookup
383  MemberOfUnknownSpecialization = false;
384  DeclContext *LookupCtx = nullptr;
385  bool IsDependent = false;
386  if (!ObjectType.isNull()) {
387    // This nested-name-specifier occurs in a member access expression, e.g.,
388    // x->B::f, and we are looking into the type of the object.
389    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
390    LookupCtx = computeDeclContext(ObjectType);
391    IsDependent = !LookupCtx && ObjectType->isDependentType();
392    assert((IsDependent || !ObjectType->isIncompleteType() ||
393            ObjectType->castAs<TagType>()->isBeingDefined()) &&
394           "Caller should have completed object type");
395
396    // Template names cannot appear inside an Objective-C class or object type
397    // or a vector type.
398    //
399    // FIXME: This is wrong. For example:
400    //
401    //   template<typename T> using Vec = T __attribute__((ext_vector_type(4)));
402    //   Vec<int> vi;
403    //   vi.Vec<int>::~Vec<int>();
404    //
405    // ... should be accepted but we will not treat 'Vec' as a template name
406    // here. The right thing to do would be to check if the name is a valid
407    // vector component name, and look up a template name if not. And similarly
408    // for lookups into Objective-C class and object types, where the same
409    // problem can arise.
410    if (ObjectType->isObjCObjectOrInterfaceType() ||
411        ObjectType->isVectorType()) {
412      Found.clear();
413      return false;
414    }
415  } else if (SS.isSet()) {
416    // This nested-name-specifier occurs after another nested-name-specifier,
417    // so long into the context associated with the prior nested-name-specifier.
418    LookupCtx = computeDeclContext(SS, EnteringContext);
419    IsDependent = !LookupCtx;
420
421    // The declaration context must be complete.
422    if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
423      return true;
424  }
425
426  bool ObjectTypeSearchedInScope = false;
427  bool AllowFunctionTemplatesInLookup = true;
428  if (LookupCtx) {
429    // Perform "qualified" name lookup into the declaration context we
430    // computed, which is either the type of the base of a member access
431    // expression or the declaration context associated with a prior
432    // nested-name-specifier.
433    LookupQualifiedName(Found, LookupCtx);
434
435    // FIXME: The C++ standard does not clearly specify what happens in the
436    // case where the object type is dependent, and implementations vary. In
437    // Clang, we treat a name after a . or -> as a template-name if lookup
438    // finds a non-dependent member or member of the current instantiation that
439    // is a type template, or finds no such members and lookup in the context
440    // of the postfix-expression finds a type template. In the latter case, the
441    // name is nonetheless dependent, and we may resolve it to a member of an
442    // unknown specialization when we come to instantiate the template.
443    IsDependent |= Found.wasNotFoundInCurrentInstantiation();
444  }
445
446  if (!SS.isSet() && (ObjectType.isNull() || Found.empty())) {
447    // C++ [basic.lookup.classref]p1:
448    //   In a class member access expression (5.2.5), if the . or -> token is
449    //   immediately followed by an identifier followed by a <, the
450    //   identifier must be looked up to determine whether the < is the
451    //   beginning of a template argument list (14.2) or a less-than operator.
452    //   The identifier is first looked up in the class of the object
453    //   expression. If the identifier is not found, it is then looked up in
454    //   the context of the entire postfix-expression and shall name a class
455    //   template.
456    if (S)
457      LookupName(Found, S);
458
459    if (!ObjectType.isNull()) {
460      //  FIXME: We should filter out all non-type templates here, particularly
461      //  variable templates and concepts. But the exclusion of alias templates
462      //  and template template parameters is a wording defect.
463      AllowFunctionTemplatesInLookup = false;
464      ObjectTypeSearchedInScope = true;
465    }
466
467    IsDependent |= Found.wasNotFoundInCurrentInstantiation();
468  }
469
470  if (Found.isAmbiguous())
471    return false;
472
473  if (ATK && !SS.isSet() && ObjectType.isNull() && TemplateKWLoc.isInvalid()) {
474    // C++2a [temp.names]p2:
475    //   A name is also considered to refer to a template if it is an
476    //   unqualified-id followed by a < and name lookup finds either one or more
477    //   functions or finds nothing.
478    //
479    // To keep our behavior consistent, we apply the "finds nothing" part in
480    // all language modes, and diagnose the empty lookup in ActOnCallExpr if we
481    // successfully form a call to an undeclared template-id.
482    bool AllFunctions =
483        getLangOpts().CPlusPlus2a &&
484        std::all_of(Found.begin(), Found.end(), [](NamedDecl *ND) {
485          return isa<FunctionDecl>(ND->getUnderlyingDecl());
486        });
487    if (AllFunctions || (Found.empty() && !IsDependent)) {
488      // If lookup found any functions, or if this is a name that can only be
489      // used for a function, then strongly assume this is a function
490      // template-id.
491      *ATK = (Found.empty() && Found.getLookupName().isIdentifier())
492                 ? AssumedTemplateKind::FoundNothing
493                 : AssumedTemplateKind::FoundFunctions;
494      Found.clear();
495      return false;
496    }
497  }
498
499  if (Found.empty() && !IsDependent && !Disambiguation) {
500    // If we did not find any names, and this is not a disambiguation, attempt
501    // to correct any typos.
502    DeclarationName Name = Found.getLookupName();
503    Found.clear();
504    // Simple filter callback that, for keywords, only accepts the C++ *_cast
505    DefaultFilterCCC FilterCCC{};
506    FilterCCC.WantTypeSpecifiers = false;
507    FilterCCC.WantExpressionKeywords = false;
508    FilterCCC.WantRemainingKeywords = false;
509    FilterCCC.WantCXXNamedCasts = true;
510    if (TypoCorrection Corrected =
511            CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S,
512                        &SS, FilterCCC, CTK_ErrorRecovery, LookupCtx)) {
513      if (auto *ND = Corrected.getFoundDecl())
514        Found.addDecl(ND);
515      FilterAcceptableTemplateNames(Found);
516      if (Found.isAmbiguous()) {
517        Found.clear();
518      } else if (!Found.empty()) {
519        Found.setLookupName(Corrected.getCorrection());
520        if (LookupCtx) {
521          std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
522          bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
523                                  Name.getAsString() == CorrectedStr;
524          diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
525                                    << Name << LookupCtx << DroppedSpecifier
526                                    << SS.getRange());
527        } else {
528          diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
529        }
530      }
531    }
532  }
533
534  NamedDecl *ExampleLookupResult =
535      Found.empty() ? nullptr : Found.getRepresentativeDecl();
536  FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
537  if (Found.empty()) {
538    if (IsDependent) {
539      MemberOfUnknownSpecialization = true;
540      return false;
541    }
542
543    // If a 'template' keyword was used, a lookup that finds only non-template
544    // names is an error.
545    if (ExampleLookupResult && TemplateKWLoc.isValid()) {
546      Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template)
547        << Found.getLookupName() << SS.getRange();
548      Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(),
549           diag::note_template_kw_refers_to_non_template)
550          << Found.getLookupName();
551      return true;
552    }
553
554    return false;
555  }
556
557  if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
558      !getLangOpts().CPlusPlus11) {
559    // C++03 [basic.lookup.classref]p1:
560    //   [...] If the lookup in the class of the object expression finds a
561    //   template, the name is also looked up in the context of the entire
562    //   postfix-expression and [...]
563    //
564    // Note: C++11 does not perform this second lookup.
565    LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
566                            LookupOrdinaryName);
567    FoundOuter.setTemplateNameLookup(true);
568    LookupName(FoundOuter, S);
569    // FIXME: We silently accept an ambiguous lookup here, in violation of
570    // [basic.lookup]/1.
571    FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
572
573    NamedDecl *OuterTemplate;
574    if (FoundOuter.empty()) {
575      //   - if the name is not found, the name found in the class of the
576      //     object expression is used, otherwise
577    } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() ||
578               !(OuterTemplate =
579                     getAsTemplateNameDecl(FoundOuter.getFoundDecl()))) {
580      //   - if the name is found in the context of the entire
581      //     postfix-expression and does not name a class template, the name
582      //     found in the class of the object expression is used, otherwise
583      FoundOuter.clear();
584    } else if (!Found.isSuppressingDiagnostics()) {
585      //   - if the name found is a class template, it must refer to the same
586      //     entity as the one found in the class of the object expression,
587      //     otherwise the program is ill-formed.
588      if (!Found.isSingleResult() ||
589          getAsTemplateNameDecl(Found.getFoundDecl())->getCanonicalDecl() !=
590              OuterTemplate->getCanonicalDecl()) {
591        Diag(Found.getNameLoc(),
592             diag::ext_nested_name_member_ref_lookup_ambiguous)
593          << Found.getLookupName()
594          << ObjectType;
595        Diag(Found.getRepresentativeDecl()->getLocation(),
596             diag::note_ambig_member_ref_object_type)
597          << ObjectType;
598        Diag(FoundOuter.getFoundDecl()->getLocation(),
599             diag::note_ambig_member_ref_scope);
600
601        // Recover by taking the template that we found in the object
602        // expression's type.
603      }
604    }
605  }
606
607  return false;
608}
609
610void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
611                                              SourceLocation Less,
612                                              SourceLocation Greater) {
613  if (TemplateName.isInvalid())
614    return;
615
616  DeclarationNameInfo NameInfo;
617  CXXScopeSpec SS;
618  LookupNameKind LookupKind;
619
620  DeclContext *LookupCtx = nullptr;
621  NamedDecl *Found = nullptr;
622  bool MissingTemplateKeyword = false;
623
624  // Figure out what name we looked up.
625  if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) {
626    NameInfo = DRE->getNameInfo();
627    SS.Adopt(DRE->getQualifierLoc());
628    LookupKind = LookupOrdinaryName;
629    Found = DRE->getFoundDecl();
630  } else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) {
631    NameInfo = ME->getMemberNameInfo();
632    SS.Adopt(ME->getQualifierLoc());
633    LookupKind = LookupMemberName;
634    LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl();
635    Found = ME->getMemberDecl();
636  } else if (auto *DSDRE =
637                 dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) {
638    NameInfo = DSDRE->getNameInfo();
639    SS.Adopt(DSDRE->getQualifierLoc());
640    MissingTemplateKeyword = true;
641  } else if (auto *DSME =
642                 dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) {
643    NameInfo = DSME->getMemberNameInfo();
644    SS.Adopt(DSME->getQualifierLoc());
645    MissingTemplateKeyword = true;
646  } else {
647    llvm_unreachable("unexpected kind of potential template name");
648  }
649
650  // If this is a dependent-scope lookup, diagnose that the 'template' keyword
651  // was missing.
652  if (MissingTemplateKeyword) {
653    Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing)
654        << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater);
655    return;
656  }
657
658  // Try to correct the name by looking for templates and C++ named casts.
659  struct TemplateCandidateFilter : CorrectionCandidateCallback {
660    Sema &S;
661    TemplateCandidateFilter(Sema &S) : S(S) {
662      WantTypeSpecifiers = false;
663      WantExpressionKeywords = false;
664      WantRemainingKeywords = false;
665      WantCXXNamedCasts = true;
666    };
667    bool ValidateCandidate(const TypoCorrection &Candidate) override {
668      if (auto *ND = Candidate.getCorrectionDecl())
669        return S.getAsTemplateNameDecl(ND);
670      return Candidate.isKeyword();
671    }
672
673    std::unique_ptr<CorrectionCandidateCallback> clone() override {
674      return std::make_unique<TemplateCandidateFilter>(*this);
675    }
676  };
677
678  DeclarationName Name = NameInfo.getName();
679  TemplateCandidateFilter CCC(*this);
680  if (TypoCorrection Corrected = CorrectTypo(NameInfo, LookupKind, S, &SS, CCC,
681                                             CTK_ErrorRecovery, LookupCtx)) {
682    auto *ND = Corrected.getFoundDecl();
683    if (ND)
684      ND = getAsTemplateNameDecl(ND);
685    if (ND || Corrected.isKeyword()) {
686      if (LookupCtx) {
687        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
688        bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
689                                Name.getAsString() == CorrectedStr;
690        diagnoseTypo(Corrected,
691                     PDiag(diag::err_non_template_in_member_template_id_suggest)
692                         << Name << LookupCtx << DroppedSpecifier
693                         << SS.getRange(), false);
694      } else {
695        diagnoseTypo(Corrected,
696                     PDiag(diag::err_non_template_in_template_id_suggest)
697                         << Name, false);
698      }
699      if (Found)
700        Diag(Found->getLocation(),
701             diag::note_non_template_in_template_id_found);
702      return;
703    }
704  }
705
706  Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id)
707    << Name << SourceRange(Less, Greater);
708  if (Found)
709    Diag(Found->getLocation(), diag::note_non_template_in_template_id_found);
710}
711
712/// ActOnDependentIdExpression - Handle a dependent id-expression that
713/// was just parsed.  This is only possible with an explicit scope
714/// specifier naming a dependent type.
715ExprResult
716Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
717                                 SourceLocation TemplateKWLoc,
718                                 const DeclarationNameInfo &NameInfo,
719                                 bool isAddressOfOperand,
720                           const TemplateArgumentListInfo *TemplateArgs) {
721  DeclContext *DC = getFunctionLevelDeclContext();
722
723  // C++11 [expr.prim.general]p12:
724  //   An id-expression that denotes a non-static data member or non-static
725  //   member function of a class can only be used:
726  //   (...)
727  //   - if that id-expression denotes a non-static data member and it
728  //     appears in an unevaluated operand.
729  //
730  // If this might be the case, form a DependentScopeDeclRefExpr instead of a
731  // CXXDependentScopeMemberExpr. The former can instantiate to either
732  // DeclRefExpr or MemberExpr depending on lookup results, while the latter is
733  // always a MemberExpr.
734  bool MightBeCxx11UnevalField =
735      getLangOpts().CPlusPlus11 && isUnevaluatedContext();
736
737  // Check if the nested name specifier is an enum type.
738  bool IsEnum = false;
739  if (NestedNameSpecifier *NNS = SS.getScopeRep())
740    IsEnum = dyn_cast_or_null<EnumType>(NNS->getAsType());
741
742  if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum &&
743      isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) {
744    QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType();
745
746    // Since the 'this' expression is synthesized, we don't need to
747    // perform the double-lookup check.
748    NamedDecl *FirstQualifierInScope = nullptr;
749
750    return CXXDependentScopeMemberExpr::Create(
751        Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true,
752        /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
753        FirstQualifierInScope, NameInfo, TemplateArgs);
754  }
755
756  return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
757}
758
759ExprResult
760Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
761                                SourceLocation TemplateKWLoc,
762                                const DeclarationNameInfo &NameInfo,
763                                const TemplateArgumentListInfo *TemplateArgs) {
764  // DependentScopeDeclRefExpr::Create requires a valid QualifierLoc
765  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
766  if (!QualifierLoc)
767    return ExprError();
768
769  return DependentScopeDeclRefExpr::Create(
770      Context, QualifierLoc, TemplateKWLoc, NameInfo, TemplateArgs);
771}
772
773
774/// Determine whether we would be unable to instantiate this template (because
775/// it either has no definition, or is in the process of being instantiated).
776bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
777                                          NamedDecl *Instantiation,
778                                          bool InstantiatedFromMember,
779                                          const NamedDecl *Pattern,
780                                          const NamedDecl *PatternDef,
781                                          TemplateSpecializationKind TSK,
782                                          bool Complain /*= true*/) {
783  assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) ||
784         isa<VarDecl>(Instantiation));
785
786  bool IsEntityBeingDefined = false;
787  if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef))
788    IsEntityBeingDefined = TD->isBeingDefined();
789
790  if (PatternDef && !IsEntityBeingDefined) {
791    NamedDecl *SuggestedDef = nullptr;
792    if (!hasVisibleDefinition(const_cast<NamedDecl*>(PatternDef), &SuggestedDef,
793                              /*OnlyNeedComplete*/false)) {
794      // If we're allowed to diagnose this and recover, do so.
795      bool Recover = Complain && !isSFINAEContext();
796      if (Complain)
797        diagnoseMissingImport(PointOfInstantiation, SuggestedDef,
798                              Sema::MissingImportKind::Definition, Recover);
799      return !Recover;
800    }
801    return false;
802  }
803
804  if (!Complain || (PatternDef && PatternDef->isInvalidDecl()))
805    return true;
806
807  llvm::Optional<unsigned> Note;
808  QualType InstantiationTy;
809  if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation))
810    InstantiationTy = Context.getTypeDeclType(TD);
811  if (PatternDef) {
812    Diag(PointOfInstantiation,
813         diag::err_template_instantiate_within_definition)
814      << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation)
815      << InstantiationTy;
816    // Not much point in noting the template declaration here, since
817    // we're lexically inside it.
818    Instantiation->setInvalidDecl();
819  } else if (InstantiatedFromMember) {
820    if (isa<FunctionDecl>(Instantiation)) {
821      Diag(PointOfInstantiation,
822           diag::err_explicit_instantiation_undefined_member)
823        << /*member function*/ 1 << Instantiation->getDeclName()
824        << Instantiation->getDeclContext();
825      Note = diag::note_explicit_instantiation_here;
826    } else {
827      assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!");
828      Diag(PointOfInstantiation,
829           diag::err_implicit_instantiate_member_undefined)
830        << InstantiationTy;
831      Note = diag::note_member_declared_at;
832    }
833  } else {
834    if (isa<FunctionDecl>(Instantiation)) {
835      Diag(PointOfInstantiation,
836           diag::err_explicit_instantiation_undefined_func_template)
837        << Pattern;
838      Note = diag::note_explicit_instantiation_here;
839    } else if (isa<TagDecl>(Instantiation)) {
840      Diag(PointOfInstantiation, diag::err_template_instantiate_undefined)
841        << (TSK != TSK_ImplicitInstantiation)
842        << InstantiationTy;
843      Note = diag::note_template_decl_here;
844    } else {
845      assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!");
846      if (isa<VarTemplateSpecializationDecl>(Instantiation)) {
847        Diag(PointOfInstantiation,
848             diag::err_explicit_instantiation_undefined_var_template)
849          << Instantiation;
850        Instantiation->setInvalidDecl();
851      } else
852        Diag(PointOfInstantiation,
853             diag::err_explicit_instantiation_undefined_member)
854          << /*static data member*/ 2 << Instantiation->getDeclName()
855          << Instantiation->getDeclContext();
856      Note = diag::note_explicit_instantiation_here;
857    }
858  }
859  if (Note) // Diagnostics were emitted.
860    Diag(Pattern->getLocation(), Note.getValue());
861
862  // In general, Instantiation isn't marked invalid to get more than one
863  // error for multiple undefined instantiations. But the code that does
864  // explicit declaration -> explicit definition conversion can't handle
865  // invalid declarations, so mark as invalid in that case.
866  if (TSK == TSK_ExplicitInstantiationDeclaration)
867    Instantiation->setInvalidDecl();
868  return true;
869}
870
871/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
872/// that the template parameter 'PrevDecl' is being shadowed by a new
873/// declaration at location Loc. Returns true to indicate that this is
874/// an error, and false otherwise.
875void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
876  assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
877
878  // C++ [temp.local]p4:
879  //   A template-parameter shall not be redeclared within its
880  //   scope (including nested scopes).
881  //
882  // Make this a warning when MSVC compatibility is requested.
883  unsigned DiagId = getLangOpts().MSVCCompat ? diag::ext_template_param_shadow
884                                             : diag::err_template_param_shadow;
885  Diag(Loc, DiagId) << cast<NamedDecl>(PrevDecl)->getDeclName();
886  Diag(PrevDecl->getLocation(), diag::note_template_param_here);
887}
888
889/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
890/// the parameter D to reference the templated declaration and return a pointer
891/// to the template declaration. Otherwise, do nothing to D and return null.
892TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
893  if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
894    D = Temp->getTemplatedDecl();
895    return Temp;
896  }
897  return nullptr;
898}
899
900ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
901                                             SourceLocation EllipsisLoc) const {
902  assert(Kind == Template &&
903         "Only template template arguments can be pack expansions here");
904  assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
905         "Template template argument pack expansion without packs");
906  ParsedTemplateArgument Result(*this);
907  Result.EllipsisLoc = EllipsisLoc;
908  return Result;
909}
910
911static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
912                                            const ParsedTemplateArgument &Arg) {
913
914  switch (Arg.getKind()) {
915  case ParsedTemplateArgument::Type: {
916    TypeSourceInfo *DI;
917    QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
918    if (!DI)
919      DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
920    return TemplateArgumentLoc(TemplateArgument(T), DI);
921  }
922
923  case ParsedTemplateArgument::NonType: {
924    Expr *E = static_cast<Expr *>(Arg.getAsExpr());
925    return TemplateArgumentLoc(TemplateArgument(E), E);
926  }
927
928  case ParsedTemplateArgument::Template: {
929    TemplateName Template = Arg.getAsTemplate().get();
930    TemplateArgument TArg;
931    if (Arg.getEllipsisLoc().isValid())
932      TArg = TemplateArgument(Template, Optional<unsigned int>());
933    else
934      TArg = Template;
935    return TemplateArgumentLoc(TArg,
936                               Arg.getScopeSpec().getWithLocInContext(
937                                                              SemaRef.Context),
938                               Arg.getLocation(),
939                               Arg.getEllipsisLoc());
940  }
941  }
942
943  llvm_unreachable("Unhandled parsed template argument");
944}
945
946/// Translates template arguments as provided by the parser
947/// into template arguments used by semantic analysis.
948void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
949                                      TemplateArgumentListInfo &TemplateArgs) {
950 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
951   TemplateArgs.addArgument(translateTemplateArgument(*this,
952                                                      TemplateArgsIn[I]));
953}
954
955static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
956                                                 SourceLocation Loc,
957                                                 IdentifierInfo *Name) {
958  NamedDecl *PrevDecl = SemaRef.LookupSingleName(
959      S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
960  if (PrevDecl && PrevDecl->isTemplateParameter())
961    SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
962}
963
964/// Convert a parsed type into a parsed template argument. This is mostly
965/// trivial, except that we may have parsed a C++17 deduced class template
966/// specialization type, in which case we should form a template template
967/// argument instead of a type template argument.
968ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) {
969  TypeSourceInfo *TInfo;
970  QualType T = GetTypeFromParser(ParsedType.get(), &TInfo);
971  if (T.isNull())
972    return ParsedTemplateArgument();
973  assert(TInfo && "template argument with no location");
974
975  // If we might have formed a deduced template specialization type, convert
976  // it to a template template argument.
977  if (getLangOpts().CPlusPlus17) {
978    TypeLoc TL = TInfo->getTypeLoc();
979    SourceLocation EllipsisLoc;
980    if (auto PET = TL.getAs<PackExpansionTypeLoc>()) {
981      EllipsisLoc = PET.getEllipsisLoc();
982      TL = PET.getPatternLoc();
983    }
984
985    CXXScopeSpec SS;
986    if (auto ET = TL.getAs<ElaboratedTypeLoc>()) {
987      SS.Adopt(ET.getQualifierLoc());
988      TL = ET.getNamedTypeLoc();
989    }
990
991    if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) {
992      TemplateName Name = DTST.getTypePtr()->getTemplateName();
993      if (SS.isSet())
994        Name = Context.getQualifiedTemplateName(SS.getScopeRep(),
995                                                /*HasTemplateKeyword*/ false,
996                                                Name.getAsTemplateDecl());
997      ParsedTemplateArgument Result(SS, TemplateTy::make(Name),
998                                    DTST.getTemplateNameLoc());
999      if (EllipsisLoc.isValid())
1000        Result = Result.getTemplatePackExpansion(EllipsisLoc);
1001      return Result;
1002    }
1003  }
1004
1005  // This is a normal type template argument. Note, if the type template
1006  // argument is an injected-class-name for a template, it has a dual nature
1007  // and can be used as either a type or a template. We handle that in
1008  // convertTypeTemplateArgumentToTemplate.
1009  return ParsedTemplateArgument(ParsedTemplateArgument::Type,
1010                                ParsedType.get().getAsOpaquePtr(),
1011                                TInfo->getTypeLoc().getBeginLoc());
1012}
1013
1014/// ActOnTypeParameter - Called when a C++ template type parameter
1015/// (e.g., "typename T") has been parsed. Typename specifies whether
1016/// the keyword "typename" was used to declare the type parameter
1017/// (otherwise, "class" was used), and KeyLoc is the location of the
1018/// "class" or "typename" keyword. ParamName is the name of the
1019/// parameter (NULL indicates an unnamed template parameter) and
1020/// ParamNameLoc is the location of the parameter name (if any).
1021/// If the type parameter has a default argument, it will be added
1022/// later via ActOnTypeParameterDefault.
1023NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
1024                                    SourceLocation EllipsisLoc,
1025                                    SourceLocation KeyLoc,
1026                                    IdentifierInfo *ParamName,
1027                                    SourceLocation ParamNameLoc,
1028                                    unsigned Depth, unsigned Position,
1029                                    SourceLocation EqualLoc,
1030                                    ParsedType DefaultArg,
1031                                    bool HasTypeConstraint) {
1032  assert(S->isTemplateParamScope() &&
1033         "Template type parameter not in template parameter scope!");
1034
1035  bool IsParameterPack = EllipsisLoc.isValid();
1036  TemplateTypeParmDecl *Param
1037    = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1038                                   KeyLoc, ParamNameLoc, Depth, Position,
1039                                   ParamName, Typename, IsParameterPack,
1040                                   HasTypeConstraint);
1041  Param->setAccess(AS_public);
1042
1043  if (Param->isParameterPack())
1044    if (auto *LSI = getEnclosingLambda())
1045      LSI->LocalPacks.push_back(Param);
1046
1047  if (ParamName) {
1048    maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
1049
1050    // Add the template parameter into the current scope.
1051    S->AddDecl(Param);
1052    IdResolver.AddDecl(Param);
1053  }
1054
1055  // C++0x [temp.param]p9:
1056  //   A default template-argument may be specified for any kind of
1057  //   template-parameter that is not a template parameter pack.
1058  if (DefaultArg && IsParameterPack) {
1059    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1060    DefaultArg = nullptr;
1061  }
1062
1063  // Handle the default argument, if provided.
1064  if (DefaultArg) {
1065    TypeSourceInfo *DefaultTInfo;
1066    GetTypeFromParser(DefaultArg, &DefaultTInfo);
1067
1068    assert(DefaultTInfo && "expected source information for type");
1069
1070    // Check for unexpanded parameter packs.
1071    if (DiagnoseUnexpandedParameterPack(ParamNameLoc, DefaultTInfo,
1072                                        UPPC_DefaultArgument))
1073      return Param;
1074
1075    // Check the template argument itself.
1076    if (CheckTemplateArgument(Param, DefaultTInfo)) {
1077      Param->setInvalidDecl();
1078      return Param;
1079    }
1080
1081    Param->setDefaultArgument(DefaultTInfo);
1082  }
1083
1084  return Param;
1085}
1086
1087/// Convert the parser's template argument list representation into our form.
1088static TemplateArgumentListInfo
1089makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
1090  TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
1091                                        TemplateId.RAngleLoc);
1092  ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
1093                                     TemplateId.NumArgs);
1094  S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
1095  return TemplateArgs;
1096}
1097
1098bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS,
1099                               TemplateIdAnnotation *TypeConstr,
1100                               TemplateTypeParmDecl *ConstrainedParameter,
1101                               SourceLocation EllipsisLoc) {
1102  ConceptDecl *CD =
1103      cast<ConceptDecl>(TypeConstr->Template.get().getAsTemplateDecl());
1104
1105  // C++2a [temp.param]p4:
1106  //     [...] The concept designated by a type-constraint shall be a type
1107  //     concept ([temp.concept]).
1108  if (!CD->isTypeConcept()) {
1109    Diag(TypeConstr->TemplateNameLoc,
1110         diag::err_type_constraint_non_type_concept);
1111    return true;
1112  }
1113
1114  bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid();
1115
1116  if (!WereArgsSpecified &&
1117      CD->getTemplateParameters()->getMinRequiredArguments() > 1) {
1118    Diag(TypeConstr->TemplateNameLoc,
1119         diag::err_type_constraint_missing_arguments) << CD;
1120    return true;
1121  }
1122
1123  TemplateArgumentListInfo TemplateArgs;
1124  if (TypeConstr->LAngleLoc.isValid()) {
1125    TemplateArgs =
1126        makeTemplateArgumentListInfo(*this, *TypeConstr);
1127  }
1128  return AttachTypeConstraint(
1129      SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(),
1130      DeclarationNameInfo(DeclarationName(TypeConstr->Name),
1131                          TypeConstr->TemplateNameLoc), CD,
1132      TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr,
1133      ConstrainedParameter, EllipsisLoc);
1134}
1135
1136template<typename ArgumentLocAppender>
1137static ExprResult formImmediatelyDeclaredConstraint(
1138    Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo,
1139    ConceptDecl *NamedConcept, SourceLocation LAngleLoc,
1140    SourceLocation RAngleLoc, QualType ConstrainedType,
1141    SourceLocation ParamNameLoc, ArgumentLocAppender Appender,
1142    SourceLocation EllipsisLoc) {
1143
1144  TemplateArgumentListInfo ConstraintArgs;
1145  ConstraintArgs.addArgument(
1146    S.getTrivialTemplateArgumentLoc(TemplateArgument(ConstrainedType),
1147                                    /*NTTPType=*/QualType(), ParamNameLoc));
1148
1149  ConstraintArgs.setRAngleLoc(RAngleLoc);
1150  ConstraintArgs.setLAngleLoc(LAngleLoc);
1151  Appender(ConstraintArgs);
1152
1153  // C++2a [temp.param]p4:
1154  //     [...] This constraint-expression E is called the immediately-declared
1155  //     constraint of T. [...]
1156  CXXScopeSpec SS;
1157  SS.Adopt(NS);
1158  ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId(
1159      SS, /*TemplateKWLoc=*/SourceLocation(), NameInfo,
1160      /*FoundDecl=*/NamedConcept, NamedConcept, &ConstraintArgs);
1161  if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid())
1162    return ImmediatelyDeclaredConstraint;
1163
1164  // C++2a [temp.param]p4:
1165  //     [...] If T is not a pack, then E is E', otherwise E is (E' && ...).
1166  //
1167  // We have the following case:
1168  //
1169  // template<typename T> concept C1 = true;
1170  // template<C1... T> struct s1;
1171  //
1172  // The constraint: (C1<T> && ...)
1173  return S.BuildCXXFoldExpr(/*LParenLoc=*/SourceLocation(),
1174                            ImmediatelyDeclaredConstraint.get(), BO_LAnd,
1175                            EllipsisLoc, /*RHS=*/nullptr,
1176                            /*RParenLoc=*/SourceLocation(),
1177                            /*NumExpansions=*/None);
1178}
1179
1180/// Attach a type-constraint to a template parameter.
1181/// \returns true if an error occured. This can happen if the
1182/// immediately-declared constraint could not be formed (e.g. incorrect number
1183/// of arguments for the named concept).
1184bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS,
1185                                DeclarationNameInfo NameInfo,
1186                                ConceptDecl *NamedConcept,
1187                                const TemplateArgumentListInfo *TemplateArgs,
1188                                TemplateTypeParmDecl *ConstrainedParameter,
1189                                SourceLocation EllipsisLoc) {
1190  // C++2a [temp.param]p4:
1191  //     [...] If Q is of the form C<A1, ..., An>, then let E' be
1192  //     C<T, A1, ..., An>. Otherwise, let E' be C<T>. [...]
1193  const ASTTemplateArgumentListInfo *ArgsAsWritten =
1194    TemplateArgs ? ASTTemplateArgumentListInfo::Create(Context,
1195                                                       *TemplateArgs) : nullptr;
1196
1197  QualType ParamAsArgument(ConstrainedParameter->getTypeForDecl(), 0);
1198
1199  ExprResult ImmediatelyDeclaredConstraint =
1200      formImmediatelyDeclaredConstraint(
1201          *this, NS, NameInfo, NamedConcept,
1202          TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(),
1203          TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(),
1204          ParamAsArgument, ConstrainedParameter->getLocation(),
1205          [&] (TemplateArgumentListInfo &ConstraintArgs) {
1206            if (TemplateArgs)
1207              for (const auto &ArgLoc : TemplateArgs->arguments())
1208                ConstraintArgs.addArgument(ArgLoc);
1209          }, EllipsisLoc);
1210  if (ImmediatelyDeclaredConstraint.isInvalid())
1211    return true;
1212
1213  ConstrainedParameter->setTypeConstraint(NS, NameInfo,
1214                                          /*FoundDecl=*/NamedConcept,
1215                                          NamedConcept, ArgsAsWritten,
1216                                          ImmediatelyDeclaredConstraint.get());
1217  return false;
1218}
1219
1220bool Sema::AttachTypeConstraint(AutoTypeLoc TL, NonTypeTemplateParmDecl *NTTP,
1221                                SourceLocation EllipsisLoc) {
1222  if (NTTP->getType() != TL.getType() ||
1223      TL.getAutoKeyword() != AutoTypeKeyword::Auto) {
1224    Diag(NTTP->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1225         diag::err_unsupported_placeholder_constraint)
1226       << NTTP->getTypeSourceInfo()->getTypeLoc().getSourceRange();
1227    return true;
1228  }
1229  // FIXME: Concepts: This should be the type of the placeholder, but this is
1230  // unclear in the wording right now.
1231  DeclRefExpr *Ref = BuildDeclRefExpr(NTTP, NTTP->getType(), VK_RValue,
1232                                      NTTP->getLocation());
1233  if (!Ref)
1234    return true;
1235  ExprResult ImmediatelyDeclaredConstraint =
1236      formImmediatelyDeclaredConstraint(
1237          *this, TL.getNestedNameSpecifierLoc(), TL.getConceptNameInfo(),
1238          TL.getNamedConcept(), TL.getLAngleLoc(), TL.getRAngleLoc(),
1239          BuildDecltypeType(Ref, NTTP->getLocation()), NTTP->getLocation(),
1240          [&] (TemplateArgumentListInfo &ConstraintArgs) {
1241            for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I)
1242              ConstraintArgs.addArgument(TL.getArgLoc(I));
1243          }, EllipsisLoc);
1244  if (ImmediatelyDeclaredConstraint.isInvalid() ||
1245     !ImmediatelyDeclaredConstraint.isUsable())
1246    return true;
1247
1248  NTTP->setPlaceholderTypeConstraint(ImmediatelyDeclaredConstraint.get());
1249  return false;
1250}
1251
1252/// Check that the type of a non-type template parameter is
1253/// well-formed.
1254///
1255/// \returns the (possibly-promoted) parameter type if valid;
1256/// otherwise, produces a diagnostic and returns a NULL type.
1257QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
1258                                                 SourceLocation Loc) {
1259  if (TSI->getType()->isUndeducedType()) {
1260    // C++17 [temp.dep.expr]p3:
1261    //   An id-expression is type-dependent if it contains
1262    //    - an identifier associated by name lookup with a non-type
1263    //      template-parameter declared with a type that contains a
1264    //      placeholder type (7.1.7.4),
1265    TSI = SubstAutoTypeSourceInfo(TSI, Context.DependentTy);
1266  }
1267
1268  return CheckNonTypeTemplateParameterType(TSI->getType(), Loc);
1269}
1270
1271QualType Sema::CheckNonTypeTemplateParameterType(QualType T,
1272                                                 SourceLocation Loc) {
1273  // We don't allow variably-modified types as the type of non-type template
1274  // parameters.
1275  if (T->isVariablyModifiedType()) {
1276    Diag(Loc, diag::err_variably_modified_nontype_template_param)
1277      << T;
1278    return QualType();
1279  }
1280
1281  // C++ [temp.param]p4:
1282  //
1283  // A non-type template-parameter shall have one of the following
1284  // (optionally cv-qualified) types:
1285  //
1286  //       -- integral or enumeration type,
1287  if (T->isIntegralOrEnumerationType() ||
1288      //   -- pointer to object or pointer to function,
1289      T->isPointerType() ||
1290      //   -- reference to object or reference to function,
1291      T->isReferenceType() ||
1292      //   -- pointer to member,
1293      T->isMemberPointerType() ||
1294      //   -- std::nullptr_t.
1295      T->isNullPtrType() ||
1296      // Allow use of auto in template parameter declarations.
1297      T->isUndeducedType()) {
1298    // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
1299    // are ignored when determining its type.
1300    return T.getUnqualifiedType();
1301  }
1302
1303  // C++ [temp.param]p8:
1304  //
1305  //   A non-type template-parameter of type "array of T" or
1306  //   "function returning T" is adjusted to be of type "pointer to
1307  //   T" or "pointer to function returning T", respectively.
1308  if (T->isArrayType() || T->isFunctionType())
1309    return Context.getDecayedType(T);
1310
1311  // If T is a dependent type, we can't do the check now, so we
1312  // assume that it is well-formed. Note that stripping off the
1313  // qualifiers here is not really correct if T turns out to be
1314  // an array type, but we'll recompute the type everywhere it's
1315  // used during instantiation, so that should be OK. (Using the
1316  // qualified type is equally wrong.)
1317  if (T->isDependentType())
1318    return T.getUnqualifiedType();
1319
1320  Diag(Loc, diag::err_template_nontype_parm_bad_type)
1321    << T;
1322
1323  return QualType();
1324}
1325
1326NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
1327                                          unsigned Depth,
1328                                          unsigned Position,
1329                                          SourceLocation EqualLoc,
1330                                          Expr *Default) {
1331  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
1332
1333  // Check that we have valid decl-specifiers specified.
1334  auto CheckValidDeclSpecifiers = [this, &D] {
1335    // C++ [temp.param]
1336    // p1
1337    //   template-parameter:
1338    //     ...
1339    //     parameter-declaration
1340    // p2
1341    //   ... A storage class shall not be specified in a template-parameter
1342    //   declaration.
1343    // [dcl.typedef]p1:
1344    //   The typedef specifier [...] shall not be used in the decl-specifier-seq
1345    //   of a parameter-declaration
1346    const DeclSpec &DS = D.getDeclSpec();
1347    auto EmitDiag = [this](SourceLocation Loc) {
1348      Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm)
1349          << FixItHint::CreateRemoval(Loc);
1350    };
1351    if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified)
1352      EmitDiag(DS.getStorageClassSpecLoc());
1353
1354    if (DS.getThreadStorageClassSpec() != TSCS_unspecified)
1355      EmitDiag(DS.getThreadStorageClassSpecLoc());
1356
1357    // [dcl.inline]p1:
1358    //   The inline specifier can be applied only to the declaration or
1359    //   definition of a variable or function.
1360
1361    if (DS.isInlineSpecified())
1362      EmitDiag(DS.getInlineSpecLoc());
1363
1364    // [dcl.constexpr]p1:
1365    //   The constexpr specifier shall be applied only to the definition of a
1366    //   variable or variable template or the declaration of a function or
1367    //   function template.
1368
1369    if (DS.hasConstexprSpecifier())
1370      EmitDiag(DS.getConstexprSpecLoc());
1371
1372    // [dcl.fct.spec]p1:
1373    //   Function-specifiers can be used only in function declarations.
1374
1375    if (DS.isVirtualSpecified())
1376      EmitDiag(DS.getVirtualSpecLoc());
1377
1378    if (DS.hasExplicitSpecifier())
1379      EmitDiag(DS.getExplicitSpecLoc());
1380
1381    if (DS.isNoreturnSpecified())
1382      EmitDiag(DS.getNoreturnSpecLoc());
1383  };
1384
1385  CheckValidDeclSpecifiers();
1386
1387  if (TInfo->getType()->isUndeducedType()) {
1388    Diag(D.getIdentifierLoc(),
1389         diag::warn_cxx14_compat_template_nontype_parm_auto_type)
1390      << QualType(TInfo->getType()->getContainedAutoType(), 0);
1391  }
1392
1393  assert(S->isTemplateParamScope() &&
1394         "Non-type template parameter not in template parameter scope!");
1395  bool Invalid = false;
1396
1397  QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc());
1398  if (T.isNull()) {
1399    T = Context.IntTy; // Recover with an 'int' type.
1400    Invalid = true;
1401  }
1402
1403  CheckFunctionOrTemplateParamDeclarator(S, D);
1404
1405  IdentifierInfo *ParamName = D.getIdentifier();
1406  bool IsParameterPack = D.hasEllipsis();
1407  NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create(
1408      Context, Context.getTranslationUnitDecl(), D.getBeginLoc(),
1409      D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack,
1410      TInfo);
1411  Param->setAccess(AS_public);
1412
1413  if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc())
1414    if (TL.isConstrained())
1415      if (AttachTypeConstraint(TL, Param, D.getEllipsisLoc()))
1416        Invalid = true;
1417
1418  if (Invalid)
1419    Param->setInvalidDecl();
1420
1421  if (Param->isParameterPack())
1422    if (auto *LSI = getEnclosingLambda())
1423      LSI->LocalPacks.push_back(Param);
1424
1425  if (ParamName) {
1426    maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
1427                                         ParamName);
1428
1429    // Add the template parameter into the current scope.
1430    S->AddDecl(Param);
1431    IdResolver.AddDecl(Param);
1432  }
1433
1434  // C++0x [temp.param]p9:
1435  //   A default template-argument may be specified for any kind of
1436  //   template-parameter that is not a template parameter pack.
1437  if (Default && IsParameterPack) {
1438    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1439    Default = nullptr;
1440  }
1441
1442  // Check the well-formedness of the default template argument, if provided.
1443  if (Default) {
1444    // Check for unexpanded parameter packs.
1445    if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
1446      return Param;
1447
1448    TemplateArgument Converted;
1449    ExprResult DefaultRes =
1450        CheckTemplateArgument(Param, Param->getType(), Default, Converted);
1451    if (DefaultRes.isInvalid()) {
1452      Param->setInvalidDecl();
1453      return Param;
1454    }
1455    Default = DefaultRes.get();
1456
1457    Param->setDefaultArgument(Default);
1458  }
1459
1460  return Param;
1461}
1462
1463/// ActOnTemplateTemplateParameter - Called when a C++ template template
1464/// parameter (e.g. T in template <template \<typename> class T> class array)
1465/// has been parsed. S is the current scope.
1466NamedDecl *Sema::ActOnTemplateTemplateParameter(Scope* S,
1467                                           SourceLocation TmpLoc,
1468                                           TemplateParameterList *Params,
1469                                           SourceLocation EllipsisLoc,
1470                                           IdentifierInfo *Name,
1471                                           SourceLocation NameLoc,
1472                                           unsigned Depth,
1473                                           unsigned Position,
1474                                           SourceLocation EqualLoc,
1475                                           ParsedTemplateArgument Default) {
1476  assert(S->isTemplateParamScope() &&
1477         "Template template parameter not in template parameter scope!");
1478
1479  // Construct the parameter object.
1480  bool IsParameterPack = EllipsisLoc.isValid();
1481  TemplateTemplateParmDecl *Param =
1482    TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1483                                     NameLoc.isInvalid()? TmpLoc : NameLoc,
1484                                     Depth, Position, IsParameterPack,
1485                                     Name, Params);
1486  Param->setAccess(AS_public);
1487
1488  if (Param->isParameterPack())
1489    if (auto *LSI = getEnclosingLambda())
1490      LSI->LocalPacks.push_back(Param);
1491
1492  // If the template template parameter has a name, then link the identifier
1493  // into the scope and lookup mechanisms.
1494  if (Name) {
1495    maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
1496
1497    S->AddDecl(Param);
1498    IdResolver.AddDecl(Param);
1499  }
1500
1501  if (Params->size() == 0) {
1502    Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
1503    << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
1504    Param->setInvalidDecl();
1505  }
1506
1507  // C++0x [temp.param]p9:
1508  //   A default template-argument may be specified for any kind of
1509  //   template-parameter that is not a template parameter pack.
1510  if (IsParameterPack && !Default.isInvalid()) {
1511    Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1512    Default = ParsedTemplateArgument();
1513  }
1514
1515  if (!Default.isInvalid()) {
1516    // Check only that we have a template template argument. We don't want to
1517    // try to check well-formedness now, because our template template parameter
1518    // might have dependent types in its template parameters, which we wouldn't
1519    // be able to match now.
1520    //
1521    // If none of the template template parameter's template arguments mention
1522    // other template parameters, we could actually perform more checking here.
1523    // However, it isn't worth doing.
1524    TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
1525    if (DefaultArg.getArgument().getAsTemplate().isNull()) {
1526      Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template)
1527        << DefaultArg.getSourceRange();
1528      return Param;
1529    }
1530
1531    // Check for unexpanded parameter packs.
1532    if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
1533                                        DefaultArg.getArgument().getAsTemplate(),
1534                                        UPPC_DefaultArgument))
1535      return Param;
1536
1537    Param->setDefaultArgument(Context, DefaultArg);
1538  }
1539
1540  return Param;
1541}
1542
1543/// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally
1544/// constrained by RequiresClause, that contains the template parameters in
1545/// Params.
1546TemplateParameterList *
1547Sema::ActOnTemplateParameterList(unsigned Depth,
1548                                 SourceLocation ExportLoc,
1549                                 SourceLocation TemplateLoc,
1550                                 SourceLocation LAngleLoc,
1551                                 ArrayRef<NamedDecl *> Params,
1552                                 SourceLocation RAngleLoc,
1553                                 Expr *RequiresClause) {
1554  if (ExportLoc.isValid())
1555    Diag(ExportLoc, diag::warn_template_export_unsupported);
1556
1557  return TemplateParameterList::Create(
1558      Context, TemplateLoc, LAngleLoc,
1559      llvm::makeArrayRef(Params.data(), Params.size()),
1560      RAngleLoc, RequiresClause);
1561}
1562
1563static void SetNestedNameSpecifier(Sema &S, TagDecl *T,
1564                                   const CXXScopeSpec &SS) {
1565  if (SS.isSet())
1566    T->setQualifierInfo(SS.getWithLocInContext(S.Context));
1567}
1568
1569DeclResult Sema::CheckClassTemplate(
1570    Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
1571    CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
1572    const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams,
1573    AccessSpecifier AS, SourceLocation ModulePrivateLoc,
1574    SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists,
1575    TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) {
1576  assert(TemplateParams && TemplateParams->size() > 0 &&
1577         "No template parameters");
1578  assert(TUK != TUK_Reference && "Can only declare or define class templates");
1579  bool Invalid = false;
1580
1581  // Check that we can declare a template here.
1582  if (CheckTemplateDeclScope(S, TemplateParams))
1583    return true;
1584
1585  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
1586  assert(Kind != TTK_Enum && "can't build template of enumerated type");
1587
1588  // There is no such thing as an unnamed class template.
1589  if (!Name) {
1590    Diag(KWLoc, diag::err_template_unnamed_class);
1591    return true;
1592  }
1593
1594  // Find any previous declaration with this name. For a friend with no
1595  // scope explicitly specified, we only look for tag declarations (per
1596  // C++11 [basic.lookup.elab]p2).
1597  DeclContext *SemanticContext;
1598  LookupResult Previous(*this, Name, NameLoc,
1599                        (SS.isEmpty() && TUK == TUK_Friend)
1600                          ? LookupTagName : LookupOrdinaryName,
1601                        forRedeclarationInCurContext());
1602  if (SS.isNotEmpty() && !SS.isInvalid()) {
1603    SemanticContext = computeDeclContext(SS, true);
1604    if (!SemanticContext) {
1605      // FIXME: Horrible, horrible hack! We can't currently represent this
1606      // in the AST, and historically we have just ignored such friend
1607      // class templates, so don't complain here.
1608      Diag(NameLoc, TUK == TUK_Friend
1609                        ? diag::warn_template_qualified_friend_ignored
1610                        : diag::err_template_qualified_declarator_no_match)
1611          << SS.getScopeRep() << SS.getRange();
1612      return TUK != TUK_Friend;
1613    }
1614
1615    if (RequireCompleteDeclContext(SS, SemanticContext))
1616      return true;
1617
1618    // If we're adding a template to a dependent context, we may need to
1619    // rebuilding some of the types used within the template parameter list,
1620    // now that we know what the current instantiation is.
1621    if (SemanticContext->isDependentContext()) {
1622      ContextRAII SavedContext(*this, SemanticContext);
1623      if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
1624        Invalid = true;
1625    } else if (TUK != TUK_Friend && TUK != TUK_Reference)
1626      diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, false);
1627
1628    LookupQualifiedName(Previous, SemanticContext);
1629  } else {
1630    SemanticContext = CurContext;
1631
1632    // C++14 [class.mem]p14:
1633    //   If T is the name of a class, then each of the following shall have a
1634    //   name different from T:
1635    //    -- every member template of class T
1636    if (TUK != TUK_Friend &&
1637        DiagnoseClassNameShadow(SemanticContext,
1638                                DeclarationNameInfo(Name, NameLoc)))
1639      return true;
1640
1641    LookupName(Previous, S);
1642  }
1643
1644  if (Previous.isAmbiguous())
1645    return true;
1646
1647  NamedDecl *PrevDecl = nullptr;
1648  if (Previous.begin() != Previous.end())
1649    PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1650
1651  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1652    // Maybe we will complain about the shadowed template parameter.
1653    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1654    // Just pretend that we didn't see the previous declaration.
1655    PrevDecl = nullptr;
1656  }
1657
1658  // If there is a previous declaration with the same name, check
1659  // whether this is a valid redeclaration.
1660  ClassTemplateDecl *PrevClassTemplate =
1661      dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
1662
1663  // We may have found the injected-class-name of a class template,
1664  // class template partial specialization, or class template specialization.
1665  // In these cases, grab the template that is being defined or specialized.
1666  if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
1667      cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
1668    PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
1669    PrevClassTemplate
1670      = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
1671    if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
1672      PrevClassTemplate
1673        = cast<ClassTemplateSpecializationDecl>(PrevDecl)
1674            ->getSpecializedTemplate();
1675    }
1676  }
1677
1678  if (TUK == TUK_Friend) {
1679    // C++ [namespace.memdef]p3:
1680    //   [...] When looking for a prior declaration of a class or a function
1681    //   declared as a friend, and when the name of the friend class or
1682    //   function is neither a qualified name nor a template-id, scopes outside
1683    //   the innermost enclosing namespace scope are not considered.
1684    if (!SS.isSet()) {
1685      DeclContext *OutermostContext = CurContext;
1686      while (!OutermostContext->isFileContext())
1687        OutermostContext = OutermostContext->getLookupParent();
1688
1689      if (PrevDecl &&
1690          (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
1691           OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
1692        SemanticContext = PrevDecl->getDeclContext();
1693      } else {
1694        // Declarations in outer scopes don't matter. However, the outermost
1695        // context we computed is the semantic context for our new
1696        // declaration.
1697        PrevDecl = PrevClassTemplate = nullptr;
1698        SemanticContext = OutermostContext;
1699
1700        // Check that the chosen semantic context doesn't already contain a
1701        // declaration of this name as a non-tag type.
1702        Previous.clear(LookupOrdinaryName);
1703        DeclContext *LookupContext = SemanticContext;
1704        while (LookupContext->isTransparentContext())
1705          LookupContext = LookupContext->getLookupParent();
1706        LookupQualifiedName(Previous, LookupContext);
1707
1708        if (Previous.isAmbiguous())
1709          return true;
1710
1711        if (Previous.begin() != Previous.end())
1712          PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1713      }
1714    }
1715  } else if (PrevDecl &&
1716             !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext,
1717                            S, SS.isValid()))
1718    PrevDecl = PrevClassTemplate = nullptr;
1719
1720  if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>(
1721          PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) {
1722    if (SS.isEmpty() &&
1723        !(PrevClassTemplate &&
1724          PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals(
1725              SemanticContext->getRedeclContext()))) {
1726      Diag(KWLoc, diag::err_using_decl_conflict_reverse);
1727      Diag(Shadow->getTargetDecl()->getLocation(),
1728           diag::note_using_decl_target);
1729      Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
1730      // Recover by ignoring the old declaration.
1731      PrevDecl = PrevClassTemplate = nullptr;
1732    }
1733  }
1734
1735  if (PrevClassTemplate) {
1736    // Ensure that the template parameter lists are compatible. Skip this check
1737    // for a friend in a dependent context: the template parameter list itself
1738    // could be dependent.
1739    if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1740        !TemplateParameterListsAreEqual(TemplateParams,
1741                                   PrevClassTemplate->getTemplateParameters(),
1742                                        /*Complain=*/true,
1743                                        TPL_TemplateMatch))
1744      return true;
1745
1746    // C++ [temp.class]p4:
1747    //   In a redeclaration, partial specialization, explicit
1748    //   specialization or explicit instantiation of a class template,
1749    //   the class-key shall agree in kind with the original class
1750    //   template declaration (7.1.5.3).
1751    RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
1752    if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
1753                                      TUK == TUK_Definition,  KWLoc, Name)) {
1754      Diag(KWLoc, diag::err_use_with_wrong_tag)
1755        << Name
1756        << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
1757      Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
1758      Kind = PrevRecordDecl->getTagKind();
1759    }
1760
1761    // Check for redefinition of this class template.
1762    if (TUK == TUK_Definition) {
1763      if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
1764        // If we have a prior definition that is not visible, treat this as
1765        // simply making that previous definition visible.
1766        NamedDecl *Hidden = nullptr;
1767        if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
1768          SkipBody->ShouldSkip = true;
1769          SkipBody->Previous = Def;
1770          auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
1771          assert(Tmpl && "original definition of a class template is not a "
1772                         "class template?");
1773          makeMergedDefinitionVisible(Hidden);
1774          makeMergedDefinitionVisible(Tmpl);
1775        } else {
1776          Diag(NameLoc, diag::err_redefinition) << Name;
1777          Diag(Def->getLocation(), diag::note_previous_definition);
1778          // FIXME: Would it make sense to try to "forget" the previous
1779          // definition, as part of error recovery?
1780          return true;
1781        }
1782      }
1783    }
1784  } else if (PrevDecl) {
1785    // C++ [temp]p5:
1786    //   A class template shall not have the same name as any other
1787    //   template, class, function, object, enumeration, enumerator,
1788    //   namespace, or type in the same scope (3.3), except as specified
1789    //   in (14.5.4).
1790    Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1791    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1792    return true;
1793  }
1794
1795  // Check the template parameter list of this declaration, possibly
1796  // merging in the template parameter list from the previous class
1797  // template declaration. Skip this check for a friend in a dependent
1798  // context, because the template parameter list might be dependent.
1799  if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1800      CheckTemplateParameterList(
1801          TemplateParams,
1802          PrevClassTemplate
1803              ? PrevClassTemplate->getMostRecentDecl()->getTemplateParameters()
1804              : nullptr,
1805          (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
1806           SemanticContext->isDependentContext())
1807              ? TPC_ClassTemplateMember
1808              : TUK == TUK_Friend ? TPC_FriendClassTemplate : TPC_ClassTemplate,
1809          SkipBody))
1810    Invalid = true;
1811
1812  if (SS.isSet()) {
1813    // If the name of the template was qualified, we must be defining the
1814    // template out-of-line.
1815    if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1816      Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1817                                      : diag::err_member_decl_does_not_match)
1818        << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
1819      Invalid = true;
1820    }
1821  }
1822
1823  // If this is a templated friend in a dependent context we should not put it
1824  // on the redecl chain. In some cases, the templated friend can be the most
1825  // recent declaration tricking the template instantiator to make substitutions
1826  // there.
1827  // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious
1828  bool ShouldAddRedecl
1829    = !(TUK == TUK_Friend && CurContext->isDependentContext());
1830
1831  CXXRecordDecl *NewClass =
1832    CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1833                          PrevClassTemplate && ShouldAddRedecl ?
1834                            PrevClassTemplate->getTemplatedDecl() : nullptr,
1835                          /*DelayTypeCreation=*/true);
1836  SetNestedNameSpecifier(*this, NewClass, SS);
1837  if (NumOuterTemplateParamLists > 0)
1838    NewClass->setTemplateParameterListsInfo(
1839        Context, llvm::makeArrayRef(OuterTemplateParamLists,
1840                                    NumOuterTemplateParamLists));
1841
1842  // Add alignment attributes if necessary; these attributes are checked when
1843  // the ASTContext lays out the structure.
1844  if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
1845    AddAlignmentAttributesForRecord(NewClass);
1846    AddMsStructLayoutForRecord(NewClass);
1847  }
1848
1849  ClassTemplateDecl *NewTemplate
1850    = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1851                                DeclarationName(Name), TemplateParams,
1852                                NewClass);
1853
1854  if (ShouldAddRedecl)
1855    NewTemplate->setPreviousDecl(PrevClassTemplate);
1856
1857  NewClass->setDescribedClassTemplate(NewTemplate);
1858
1859  if (ModulePrivateLoc.isValid())
1860    NewTemplate->setModulePrivate();
1861
1862  // Build the type for the class template declaration now.
1863  QualType T = NewTemplate->getInjectedClassNameSpecialization();
1864  T = Context.getInjectedClassNameType(NewClass, T);
1865  assert(T->isDependentType() && "Class template type is not dependent?");
1866  (void)T;
1867
1868  // If we are providing an explicit specialization of a member that is a
1869  // class template, make a note of that.
1870  if (PrevClassTemplate &&
1871      PrevClassTemplate->getInstantiatedFromMemberTemplate())
1872    PrevClassTemplate->setMemberSpecialization();
1873
1874  // Set the access specifier.
1875  if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1876    SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1877
1878  // Set the lexical context of these templates
1879  NewClass->setLexicalDeclContext(CurContext);
1880  NewTemplate->setLexicalDeclContext(CurContext);
1881
1882  if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
1883    NewClass->startDefinition();
1884
1885  ProcessDeclAttributeList(S, NewClass, Attr);
1886
1887  if (PrevClassTemplate)
1888    mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
1889
1890  AddPushedVisibilityAttribute(NewClass);
1891  inferGslOwnerPointerAttribute(NewClass);
1892
1893  if (TUK != TUK_Friend) {
1894    // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
1895    Scope *Outer = S;
1896    while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
1897      Outer = Outer->getParent();
1898    PushOnScopeChains(NewTemplate, Outer);
1899  } else {
1900    if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1901      NewTemplate->setAccess(PrevClassTemplate->getAccess());
1902      NewClass->setAccess(PrevClassTemplate->getAccess());
1903    }
1904
1905    NewTemplate->setObjectOfFriendDecl();
1906
1907    // Friend templates are visible in fairly strange ways.
1908    if (!CurContext->isDependentContext()) {
1909      DeclContext *DC = SemanticContext->getRedeclContext();
1910      DC->makeDeclVisibleInContext(NewTemplate);
1911      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1912        PushOnScopeChains(NewTemplate, EnclosingScope,
1913                          /* AddToContext = */ false);
1914    }
1915
1916    FriendDecl *Friend = FriendDecl::Create(
1917        Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
1918    Friend->setAccess(AS_public);
1919    CurContext->addDecl(Friend);
1920  }
1921
1922  if (PrevClassTemplate)
1923    CheckRedeclarationModuleOwnership(NewTemplate, PrevClassTemplate);
1924
1925  if (Invalid) {
1926    NewTemplate->setInvalidDecl();
1927    NewClass->setInvalidDecl();
1928  }
1929
1930  ActOnDocumentableDecl(NewTemplate);
1931
1932  if (SkipBody && SkipBody->ShouldSkip)
1933    return SkipBody->Previous;
1934
1935  return NewTemplate;
1936}
1937
1938namespace {
1939/// Tree transform to "extract" a transformed type from a class template's
1940/// constructor to a deduction guide.
1941class ExtractTypeForDeductionGuide
1942  : public TreeTransform<ExtractTypeForDeductionGuide> {
1943public:
1944  typedef TreeTransform<ExtractTypeForDeductionGuide> Base;
1945  ExtractTypeForDeductionGuide(Sema &SemaRef) : Base(SemaRef) {}
1946
1947  TypeSourceInfo *transform(TypeSourceInfo *TSI) { return TransformType(TSI); }
1948
1949  QualType TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) {
1950    return TransformType(
1951        TLB,
1952        TL.getTypedefNameDecl()->getTypeSourceInfo()->getTypeLoc());
1953  }
1954};
1955
1956/// Transform to convert portions of a constructor declaration into the
1957/// corresponding deduction guide, per C++1z [over.match.class.deduct]p1.
1958struct ConvertConstructorToDeductionGuideTransform {
1959  ConvertConstructorToDeductionGuideTransform(Sema &S,
1960                                              ClassTemplateDecl *Template)
1961      : SemaRef(S), Template(Template) {}
1962
1963  Sema &SemaRef;
1964  ClassTemplateDecl *Template;
1965
1966  DeclContext *DC = Template->getDeclContext();
1967  CXXRecordDecl *Primary = Template->getTemplatedDecl();
1968  DeclarationName DeductionGuideName =
1969      SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template);
1970
1971  QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary);
1972
1973  // Index adjustment to apply to convert depth-1 template parameters into
1974  // depth-0 template parameters.
1975  unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size();
1976
1977  /// Transform a constructor declaration into a deduction guide.
1978  NamedDecl *transformConstructor(FunctionTemplateDecl *FTD,
1979                                  CXXConstructorDecl *CD) {
1980    SmallVector<TemplateArgument, 16> SubstArgs;
1981
1982    LocalInstantiationScope Scope(SemaRef);
1983
1984    // C++ [over.match.class.deduct]p1:
1985    // -- For each constructor of the class template designated by the
1986    //    template-name, a function template with the following properties:
1987
1988    //    -- The template parameters are the template parameters of the class
1989    //       template followed by the template parameters (including default
1990    //       template arguments) of the constructor, if any.
1991    TemplateParameterList *TemplateParams = Template->getTemplateParameters();
1992    if (FTD) {
1993      TemplateParameterList *InnerParams = FTD->getTemplateParameters();
1994      SmallVector<NamedDecl *, 16> AllParams;
1995      AllParams.reserve(TemplateParams->size() + InnerParams->size());
1996      AllParams.insert(AllParams.begin(),
1997                       TemplateParams->begin(), TemplateParams->end());
1998      SubstArgs.reserve(InnerParams->size());
1999
2000      // Later template parameters could refer to earlier ones, so build up
2001      // a list of substituted template arguments as we go.
2002      for (NamedDecl *Param : *InnerParams) {
2003        MultiLevelTemplateArgumentList Args;
2004        Args.addOuterTemplateArguments(SubstArgs);
2005        Args.addOuterRetainedLevel();
2006        NamedDecl *NewParam = transformTemplateParameter(Param, Args);
2007        if (!NewParam)
2008          return nullptr;
2009        AllParams.push_back(NewParam);
2010        SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument(
2011            SemaRef.Context.getInjectedTemplateArg(NewParam)));
2012      }
2013      TemplateParams = TemplateParameterList::Create(
2014          SemaRef.Context, InnerParams->getTemplateLoc(),
2015          InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(),
2016          /*FIXME: RequiresClause*/ nullptr);
2017    }
2018
2019    // If we built a new template-parameter-list, track that we need to
2020    // substitute references to the old parameters into references to the
2021    // new ones.
2022    MultiLevelTemplateArgumentList Args;
2023    if (FTD) {
2024      Args.addOuterTemplateArguments(SubstArgs);
2025      Args.addOuterRetainedLevel();
2026    }
2027
2028    FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc()
2029                                   .getAsAdjusted<FunctionProtoTypeLoc>();
2030    assert(FPTL && "no prototype for constructor declaration");
2031
2032    // Transform the type of the function, adjusting the return type and
2033    // replacing references to the old parameters with references to the
2034    // new ones.
2035    TypeLocBuilder TLB;
2036    SmallVector<ParmVarDecl*, 8> Params;
2037    QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args);
2038    if (NewType.isNull())
2039      return nullptr;
2040    TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType);
2041
2042    return buildDeductionGuide(TemplateParams, CD->getExplicitSpecifier(),
2043                               NewTInfo, CD->getBeginLoc(), CD->getLocation(),
2044                               CD->getEndLoc());
2045  }
2046
2047  /// Build a deduction guide with the specified parameter types.
2048  NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) {
2049    SourceLocation Loc = Template->getLocation();
2050
2051    // Build the requested type.
2052    FunctionProtoType::ExtProtoInfo EPI;
2053    EPI.HasTrailingReturn = true;
2054    QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc,
2055                                                DeductionGuideName, EPI);
2056    TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc);
2057
2058    FunctionProtoTypeLoc FPTL =
2059        TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>();
2060
2061    // Build the parameters, needed during deduction / substitution.
2062    SmallVector<ParmVarDecl*, 4> Params;
2063    for (auto T : ParamTypes) {
2064      ParmVarDecl *NewParam = ParmVarDecl::Create(
2065          SemaRef.Context, DC, Loc, Loc, nullptr, T,
2066          SemaRef.Context.getTrivialTypeSourceInfo(T, Loc), SC_None, nullptr);
2067      NewParam->setScopeInfo(0, Params.size());
2068      FPTL.setParam(Params.size(), NewParam);
2069      Params.push_back(NewParam);
2070    }
2071
2072    return buildDeductionGuide(Template->getTemplateParameters(),
2073                               ExplicitSpecifier(), TSI, Loc, Loc, Loc);
2074  }
2075
2076private:
2077  /// Transform a constructor template parameter into a deduction guide template
2078  /// parameter, rebuilding any internal references to earlier parameters and
2079  /// renumbering as we go.
2080  NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam,
2081                                        MultiLevelTemplateArgumentList &Args) {
2082    if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) {
2083      // TemplateTypeParmDecl's index cannot be changed after creation, so
2084      // substitute it directly.
2085      auto *NewTTP = TemplateTypeParmDecl::Create(
2086          SemaRef.Context, DC, TTP->getBeginLoc(), TTP->getLocation(),
2087          /*Depth*/ 0, Depth1IndexAdjustment + TTP->getIndex(),
2088          TTP->getIdentifier(), TTP->wasDeclaredWithTypename(),
2089          TTP->isParameterPack(), TTP->hasTypeConstraint(),
2090          TTP->isExpandedParameterPack() ?
2091          llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None);
2092      if (const auto *TC = TTP->getTypeConstraint()) {
2093        TemplateArgumentListInfo TransformedArgs;
2094        const auto *ArgsAsWritten = TC->getTemplateArgsAsWritten();
2095        if (!ArgsAsWritten ||
2096            SemaRef.Subst(ArgsAsWritten->getTemplateArgs(),
2097                          ArgsAsWritten->NumTemplateArgs, TransformedArgs,
2098                          Args))
2099          SemaRef.AttachTypeConstraint(
2100              TC->getNestedNameSpecifierLoc(), TC->getConceptNameInfo(),
2101              TC->getNamedConcept(), ArgsAsWritten ? &TransformedArgs : nullptr,
2102              NewTTP,
2103              NewTTP->isParameterPack()
2104                 ? cast<CXXFoldExpr>(TC->getImmediatelyDeclaredConstraint())
2105                     ->getEllipsisLoc()
2106                 : SourceLocation());
2107      }
2108      if (TTP->hasDefaultArgument()) {
2109        TypeSourceInfo *InstantiatedDefaultArg =
2110            SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args,
2111                              TTP->getDefaultArgumentLoc(), TTP->getDeclName());
2112        if (InstantiatedDefaultArg)
2113          NewTTP->setDefaultArgument(InstantiatedDefaultArg);
2114      }
2115      SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam,
2116                                                           NewTTP);
2117      return NewTTP;
2118    }
2119
2120    if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam))
2121      return transformTemplateParameterImpl(TTP, Args);
2122
2123    return transformTemplateParameterImpl(
2124        cast<NonTypeTemplateParmDecl>(TemplateParam), Args);
2125  }
2126  template<typename TemplateParmDecl>
2127  TemplateParmDecl *
2128  transformTemplateParameterImpl(TemplateParmDecl *OldParam,
2129                                 MultiLevelTemplateArgumentList &Args) {
2130    // Ask the template instantiator to do the heavy lifting for us, then adjust
2131    // the index of the parameter once it's done.
2132    auto *NewParam =
2133        cast<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args));
2134    assert(NewParam->getDepth() == 0 && "unexpected template param depth");
2135    NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment);
2136    return NewParam;
2137  }
2138
2139  QualType transformFunctionProtoType(TypeLocBuilder &TLB,
2140                                      FunctionProtoTypeLoc TL,
2141                                      SmallVectorImpl<ParmVarDecl*> &Params,
2142                                      MultiLevelTemplateArgumentList &Args) {
2143    SmallVector<QualType, 4> ParamTypes;
2144    const FunctionProtoType *T = TL.getTypePtr();
2145
2146    //    -- The types of the function parameters are those of the constructor.
2147    for (auto *OldParam : TL.getParams()) {
2148      ParmVarDecl *NewParam = transformFunctionTypeParam(OldParam, Args);
2149      if (!NewParam)
2150        return QualType();
2151      ParamTypes.push_back(NewParam->getType());
2152      Params.push_back(NewParam);
2153    }
2154
2155    //    -- The return type is the class template specialization designated by
2156    //       the template-name and template arguments corresponding to the
2157    //       template parameters obtained from the class template.
2158    //
2159    // We use the injected-class-name type of the primary template instead.
2160    // This has the convenient property that it is different from any type that
2161    // the user can write in a deduction-guide (because they cannot enter the
2162    // context of the template), so implicit deduction guides can never collide
2163    // with explicit ones.
2164    QualType ReturnType = DeducedType;
2165    TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation());
2166
2167    // Resolving a wording defect, we also inherit the variadicness of the
2168    // constructor.
2169    FunctionProtoType::ExtProtoInfo EPI;
2170    EPI.Variadic = T->isVariadic();
2171    EPI.HasTrailingReturn = true;
2172
2173    QualType Result = SemaRef.BuildFunctionType(
2174        ReturnType, ParamTypes, TL.getBeginLoc(), DeductionGuideName, EPI);
2175    if (Result.isNull())
2176      return QualType();
2177
2178    FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
2179    NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
2180    NewTL.setLParenLoc(TL.getLParenLoc());
2181    NewTL.setRParenLoc(TL.getRParenLoc());
2182    NewTL.setExceptionSpecRange(SourceRange());
2183    NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
2184    for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I)
2185      NewTL.setParam(I, Params[I]);
2186
2187    return Result;
2188  }
2189
2190  ParmVarDecl *
2191  transformFunctionTypeParam(ParmVarDecl *OldParam,
2192                             MultiLevelTemplateArgumentList &Args) {
2193    TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo();
2194    TypeSourceInfo *NewDI;
2195    if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) {
2196      // Expand out the one and only element in each inner pack.
2197      Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0);
2198      NewDI =
2199          SemaRef.SubstType(PackTL.getPatternLoc(), Args,
2200                            OldParam->getLocation(), OldParam->getDeclName());
2201      if (!NewDI) return nullptr;
2202      NewDI =
2203          SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(),
2204                                     PackTL.getTypePtr()->getNumExpansions());
2205    } else
2206      NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(),
2207                                OldParam->getDeclName());
2208    if (!NewDI)
2209      return nullptr;
2210
2211    // Extract the type. This (for instance) replaces references to typedef
2212    // members of the current instantiations with the definitions of those
2213    // typedefs, avoiding triggering instantiation of the deduced type during
2214    // deduction.
2215    NewDI = ExtractTypeForDeductionGuide(SemaRef).transform(NewDI);
2216
2217    // Resolving a wording defect, we also inherit default arguments from the
2218    // constructor.
2219    ExprResult NewDefArg;
2220    if (OldParam->hasDefaultArg()) {
2221      // We don't care what the value is (we won't use it); just create a
2222      // placeholder to indicate there is a default argument.
2223      QualType ParamTy = NewDI->getType();
2224      NewDefArg = new (SemaRef.Context)
2225          OpaqueValueExpr(OldParam->getDefaultArg()->getBeginLoc(),
2226                          ParamTy.getNonLValueExprType(SemaRef.Context),
2227                          ParamTy->isLValueReferenceType() ? VK_LValue :
2228                          ParamTy->isRValueReferenceType() ? VK_XValue :
2229                          VK_RValue);
2230    }
2231
2232    ParmVarDecl *NewParam = ParmVarDecl::Create(SemaRef.Context, DC,
2233                                                OldParam->getInnerLocStart(),
2234                                                OldParam->getLocation(),
2235                                                OldParam->getIdentifier(),
2236                                                NewDI->getType(),
2237                                                NewDI,
2238                                                OldParam->getStorageClass(),
2239                                                NewDefArg.get());
2240    NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(),
2241                           OldParam->getFunctionScopeIndex());
2242    SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldParam, NewParam);
2243    return NewParam;
2244  }
2245
2246  NamedDecl *buildDeductionGuide(TemplateParameterList *TemplateParams,
2247                                 ExplicitSpecifier ES, TypeSourceInfo *TInfo,
2248                                 SourceLocation LocStart, SourceLocation Loc,
2249                                 SourceLocation LocEnd) {
2250    DeclarationNameInfo Name(DeductionGuideName, Loc);
2251    ArrayRef<ParmVarDecl *> Params =
2252        TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams();
2253
2254    // Build the implicit deduction guide template.
2255    auto *Guide =
2256        CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, ES, Name,
2257                                      TInfo->getType(), TInfo, LocEnd);
2258    Guide->setImplicit();
2259    Guide->setParams(Params);
2260
2261    for (auto *Param : Params)
2262      Param->setDeclContext(Guide);
2263
2264    auto *GuideTemplate = FunctionTemplateDecl::Create(
2265        SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide);
2266    GuideTemplate->setImplicit();
2267    Guide->setDescribedFunctionTemplate(GuideTemplate);
2268
2269    if (isa<CXXRecordDecl>(DC)) {
2270      Guide->setAccess(AS_public);
2271      GuideTemplate->setAccess(AS_public);
2272    }
2273
2274    DC->addDecl(GuideTemplate);
2275    return GuideTemplate;
2276  }
2277};
2278}
2279
2280void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template,
2281                                          SourceLocation Loc) {
2282  if (CXXRecordDecl *DefRecord =
2283          cast<CXXRecordDecl>(Template->getTemplatedDecl())->getDefinition()) {
2284    TemplateDecl *DescribedTemplate = DefRecord->getDescribedClassTemplate();
2285    Template = DescribedTemplate ? DescribedTemplate : Template;
2286  }
2287
2288  DeclContext *DC = Template->getDeclContext();
2289  if (DC->isDependentContext())
2290    return;
2291
2292  ConvertConstructorToDeductionGuideTransform Transform(
2293      *this, cast<ClassTemplateDecl>(Template));
2294  if (!isCompleteType(Loc, Transform.DeducedType))
2295    return;
2296
2297  // Check whether we've already declared deduction guides for this template.
2298  // FIXME: Consider storing a flag on the template to indicate this.
2299  auto Existing = DC->lookup(Transform.DeductionGuideName);
2300  for (auto *D : Existing)
2301    if (D->isImplicit())
2302      return;
2303
2304  // In case we were expanding a pack when we attempted to declare deduction
2305  // guides, turn off pack expansion for everything we're about to do.
2306  ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1);
2307  // Create a template instantiation record to track the "instantiation" of
2308  // constructors into deduction guides.
2309  // FIXME: Add a kind for this to give more meaningful diagnostics. But can
2310  // this substitution process actually fail?
2311  InstantiatingTemplate BuildingDeductionGuides(*this, Loc, Template);
2312  if (BuildingDeductionGuides.isInvalid())
2313    return;
2314
2315  // Convert declared constructors into deduction guide templates.
2316  // FIXME: Skip constructors for which deduction must necessarily fail (those
2317  // for which some class template parameter without a default argument never
2318  // appears in a deduced context).
2319  bool AddedAny = false;
2320  for (NamedDecl *D : LookupConstructors(Transform.Primary)) {
2321    D = D->getUnderlyingDecl();
2322    if (D->isInvalidDecl() || D->isImplicit())
2323      continue;
2324    D = cast<NamedDecl>(D->getCanonicalDecl());
2325
2326    auto *FTD = dyn_cast<FunctionTemplateDecl>(D);
2327    auto *CD =
2328        dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D);
2329    // Class-scope explicit specializations (MS extension) do not result in
2330    // deduction guides.
2331    if (!CD || (!FTD && CD->isFunctionTemplateSpecialization()))
2332      continue;
2333
2334    Transform.transformConstructor(FTD, CD);
2335    AddedAny = true;
2336  }
2337
2338  // C++17 [over.match.class.deduct]
2339  //    --  If C is not defined or does not declare any constructors, an
2340  //    additional function template derived as above from a hypothetical
2341  //    constructor C().
2342  if (!AddedAny)
2343    Transform.buildSimpleDeductionGuide(None);
2344
2345  //    -- An additional function template derived as above from a hypothetical
2346  //    constructor C(C), called the copy deduction candidate.
2347  cast<CXXDeductionGuideDecl>(
2348      cast<FunctionTemplateDecl>(
2349          Transform.buildSimpleDeductionGuide(Transform.DeducedType))
2350          ->getTemplatedDecl())
2351      ->setIsCopyDeductionCandidate();
2352}
2353
2354/// Diagnose the presence of a default template argument on a
2355/// template parameter, which is ill-formed in certain contexts.
2356///
2357/// \returns true if the default template argument should be dropped.
2358static bool DiagnoseDefaultTemplateArgument(Sema &S,
2359                                            Sema::TemplateParamListContext TPC,
2360                                            SourceLocation ParamLoc,
2361                                            SourceRange DefArgRange) {
2362  switch (TPC) {
2363  case Sema::TPC_ClassTemplate:
2364  case Sema::TPC_VarTemplate:
2365  case Sema::TPC_TypeAliasTemplate:
2366    return false;
2367
2368  case Sema::TPC_FunctionTemplate:
2369  case Sema::TPC_FriendFunctionTemplateDefinition:
2370    // C++ [temp.param]p9:
2371    //   A default template-argument shall not be specified in a
2372    //   function template declaration or a function template
2373    //   definition [...]
2374    //   If a friend function template declaration specifies a default
2375    //   template-argument, that declaration shall be a definition and shall be
2376    //   the only declaration of the function template in the translation unit.
2377    // (C++98/03 doesn't have this wording; see DR226).
2378    S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
2379         diag::warn_cxx98_compat_template_parameter_default_in_function_template
2380           : diag::ext_template_parameter_default_in_function_template)
2381      << DefArgRange;
2382    return false;
2383
2384  case Sema::TPC_ClassTemplateMember:
2385    // C++0x [temp.param]p9:
2386    //   A default template-argument shall not be specified in the
2387    //   template-parameter-lists of the definition of a member of a
2388    //   class template that appears outside of the member's class.
2389    S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
2390      << DefArgRange;
2391    return true;
2392
2393  case Sema::TPC_FriendClassTemplate:
2394  case Sema::TPC_FriendFunctionTemplate:
2395    // C++ [temp.param]p9:
2396    //   A default template-argument shall not be specified in a
2397    //   friend template declaration.
2398    S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
2399      << DefArgRange;
2400    return true;
2401
2402    // FIXME: C++0x [temp.param]p9 allows default template-arguments
2403    // for friend function templates if there is only a single
2404    // declaration (and it is a definition). Strange!
2405  }
2406
2407  llvm_unreachable("Invalid TemplateParamListContext!");
2408}
2409
2410/// Check for unexpanded parameter packs within the template parameters
2411/// of a template template parameter, recursively.
2412static bool DiagnoseUnexpandedParameterPacks(Sema &S,
2413                                             TemplateTemplateParmDecl *TTP) {
2414  // A template template parameter which is a parameter pack is also a pack
2415  // expansion.
2416  if (TTP->isParameterPack())
2417    return false;
2418
2419  TemplateParameterList *Params = TTP->getTemplateParameters();
2420  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
2421    NamedDecl *P = Params->getParam(I);
2422    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(P)) {
2423      if (!TTP->isParameterPack())
2424        if (const TypeConstraint *TC = TTP->getTypeConstraint())
2425          if (TC->hasExplicitTemplateArgs())
2426            for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments())
2427              if (S.DiagnoseUnexpandedParameterPack(ArgLoc,
2428                                                    Sema::UPPC_TypeConstraint))
2429                return true;
2430      continue;
2431    }
2432
2433    if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
2434      if (!NTTP->isParameterPack() &&
2435          S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
2436                                            NTTP->getTypeSourceInfo(),
2437                                      Sema::UPPC_NonTypeTemplateParameterType))
2438        return true;
2439
2440      continue;
2441    }
2442
2443    if (TemplateTemplateParmDecl *InnerTTP
2444                                        = dyn_cast<TemplateTemplateParmDecl>(P))
2445      if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
2446        return true;
2447  }
2448
2449  return false;
2450}
2451
2452/// Checks the validity of a template parameter list, possibly
2453/// considering the template parameter list from a previous
2454/// declaration.
2455///
2456/// If an "old" template parameter list is provided, it must be
2457/// equivalent (per TemplateParameterListsAreEqual) to the "new"
2458/// template parameter list.
2459///
2460/// \param NewParams Template parameter list for a new template
2461/// declaration. This template parameter list will be updated with any
2462/// default arguments that are carried through from the previous
2463/// template parameter list.
2464///
2465/// \param OldParams If provided, template parameter list from a
2466/// previous declaration of the same template. Default template
2467/// arguments will be merged from the old template parameter list to
2468/// the new template parameter list.
2469///
2470/// \param TPC Describes the context in which we are checking the given
2471/// template parameter list.
2472///
2473/// \param SkipBody If we might have already made a prior merged definition
2474/// of this template visible, the corresponding body-skipping information.
2475/// Default argument redefinition is not an error when skipping such a body,
2476/// because (under the ODR) we can assume the default arguments are the same
2477/// as the prior merged definition.
2478///
2479/// \returns true if an error occurred, false otherwise.
2480bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
2481                                      TemplateParameterList *OldParams,
2482                                      TemplateParamListContext TPC,
2483                                      SkipBodyInfo *SkipBody) {
2484  bool Invalid = false;
2485
2486  // C++ [temp.param]p10:
2487  //   The set of default template-arguments available for use with a
2488  //   template declaration or definition is obtained by merging the
2489  //   default arguments from the definition (if in scope) and all
2490  //   declarations in scope in the same way default function
2491  //   arguments are (8.3.6).
2492  bool SawDefaultArgument = false;
2493  SourceLocation PreviousDefaultArgLoc;
2494
2495  // Dummy initialization to avoid warnings.
2496  TemplateParameterList::iterator OldParam = NewParams->end();
2497  if (OldParams)
2498    OldParam = OldParams->begin();
2499
2500  bool RemoveDefaultArguments = false;
2501  for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2502                                    NewParamEnd = NewParams->end();
2503       NewParam != NewParamEnd; ++NewParam) {
2504    // Variables used to diagnose redundant default arguments
2505    bool RedundantDefaultArg = false;
2506    SourceLocation OldDefaultLoc;
2507    SourceLocation NewDefaultLoc;
2508
2509    // Variable used to diagnose missing default arguments
2510    bool MissingDefaultArg = false;
2511
2512    // Variable used to diagnose non-final parameter packs
2513    bool SawParameterPack = false;
2514
2515    if (TemplateTypeParmDecl *NewTypeParm
2516          = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
2517      // Check the presence of a default argument here.
2518      if (NewTypeParm->hasDefaultArgument() &&
2519          DiagnoseDefaultTemplateArgument(*this, TPC,
2520                                          NewTypeParm->getLocation(),
2521               NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
2522                                                       .getSourceRange()))
2523        NewTypeParm->removeDefaultArgument();
2524
2525      // Merge default arguments for template type parameters.
2526      TemplateTypeParmDecl *OldTypeParm
2527          = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
2528      if (NewTypeParm->isParameterPack()) {
2529        assert(!NewTypeParm->hasDefaultArgument() &&
2530               "Parameter packs can't have a default argument!");
2531        SawParameterPack = true;
2532      } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) &&
2533                 NewTypeParm->hasDefaultArgument() &&
2534                 (!SkipBody || !SkipBody->ShouldSkip)) {
2535        OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
2536        NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
2537        SawDefaultArgument = true;
2538        RedundantDefaultArg = true;
2539        PreviousDefaultArgLoc = NewDefaultLoc;
2540      } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
2541        // Merge the default argument from the old declaration to the
2542        // new declaration.
2543        NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm);
2544        PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
2545      } else if (NewTypeParm->hasDefaultArgument()) {
2546        SawDefaultArgument = true;
2547        PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
2548      } else if (SawDefaultArgument)
2549        MissingDefaultArg = true;
2550    } else if (NonTypeTemplateParmDecl *NewNonTypeParm
2551               = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
2552      // Check for unexpanded parameter packs.
2553      if (!NewNonTypeParm->isParameterPack() &&
2554          DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
2555                                          NewNonTypeParm->getTypeSourceInfo(),
2556                                          UPPC_NonTypeTemplateParameterType)) {
2557        Invalid = true;
2558        continue;
2559      }
2560
2561      // Check the presence of a default argument here.
2562      if (NewNonTypeParm->hasDefaultArgument() &&
2563          DiagnoseDefaultTemplateArgument(*this, TPC,
2564                                          NewNonTypeParm->getLocation(),
2565                    NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
2566        NewNonTypeParm->removeDefaultArgument();
2567      }
2568
2569      // Merge default arguments for non-type template parameters
2570      NonTypeTemplateParmDecl *OldNonTypeParm
2571        = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
2572      if (NewNonTypeParm->isParameterPack()) {
2573        assert(!NewNonTypeParm->hasDefaultArgument() &&
2574               "Parameter packs can't have a default argument!");
2575        if (!NewNonTypeParm->isPackExpansion())
2576          SawParameterPack = true;
2577      } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) &&
2578                 NewNonTypeParm->hasDefaultArgument() &&
2579                 (!SkipBody || !SkipBody->ShouldSkip)) {
2580        OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
2581        NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
2582        SawDefaultArgument = true;
2583        RedundantDefaultArg = true;
2584        PreviousDefaultArgLoc = NewDefaultLoc;
2585      } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
2586        // Merge the default argument from the old declaration to the
2587        // new declaration.
2588        NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm);
2589        PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
2590      } else if (NewNonTypeParm->hasDefaultArgument()) {
2591        SawDefaultArgument = true;
2592        PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
2593      } else if (SawDefaultArgument)
2594        MissingDefaultArg = true;
2595    } else {
2596      TemplateTemplateParmDecl *NewTemplateParm
2597        = cast<TemplateTemplateParmDecl>(*NewParam);
2598
2599      // Check for unexpanded parameter packs, recursively.
2600      if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
2601        Invalid = true;
2602        continue;
2603      }
2604
2605      // Check the presence of a default argument here.
2606      if (NewTemplateParm->hasDefaultArgument() &&
2607          DiagnoseDefaultTemplateArgument(*this, TPC,
2608                                          NewTemplateParm->getLocation(),
2609                     NewTemplateParm->getDefaultArgument().getSourceRange()))
2610        NewTemplateParm->removeDefaultArgument();
2611
2612      // Merge default arguments for template template parameters
2613      TemplateTemplateParmDecl *OldTemplateParm
2614        = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
2615      if (NewTemplateParm->isParameterPack()) {
2616        assert(!NewTemplateParm->hasDefaultArgument() &&
2617               "Parameter packs can't have a default argument!");
2618        if (!NewTemplateParm->isPackExpansion())
2619          SawParameterPack = true;
2620      } else if (OldTemplateParm &&
2621                 hasVisibleDefaultArgument(OldTemplateParm) &&
2622                 NewTemplateParm->hasDefaultArgument() &&
2623                 (!SkipBody || !SkipBody->ShouldSkip)) {
2624        OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
2625        NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
2626        SawDefaultArgument = true;
2627        RedundantDefaultArg = true;
2628        PreviousDefaultArgLoc = NewDefaultLoc;
2629      } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
2630        // Merge the default argument from the old declaration to the
2631        // new declaration.
2632        NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm);
2633        PreviousDefaultArgLoc
2634          = OldTemplateParm->getDefaultArgument().getLocation();
2635      } else if (NewTemplateParm->hasDefaultArgument()) {
2636        SawDefaultArgument = true;
2637        PreviousDefaultArgLoc
2638          = NewTemplateParm->getDefaultArgument().getLocation();
2639      } else if (SawDefaultArgument)
2640        MissingDefaultArg = true;
2641    }
2642
2643    // C++11 [temp.param]p11:
2644    //   If a template parameter of a primary class template or alias template
2645    //   is a template parameter pack, it shall be the last template parameter.
2646    if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
2647        (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
2648         TPC == TPC_TypeAliasTemplate)) {
2649      Diag((*NewParam)->getLocation(),
2650           diag::err_template_param_pack_must_be_last_template_parameter);
2651      Invalid = true;
2652    }
2653
2654    if (RedundantDefaultArg) {
2655      // C++ [temp.param]p12:
2656      //   A template-parameter shall not be given default arguments
2657      //   by two different declarations in the same scope.
2658      Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
2659      Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
2660      Invalid = true;
2661    } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
2662      // C++ [temp.param]p11:
2663      //   If a template-parameter of a class template has a default
2664      //   template-argument, each subsequent template-parameter shall either
2665      //   have a default template-argument supplied or be a template parameter
2666      //   pack.
2667      Diag((*NewParam)->getLocation(),
2668           diag::err_template_param_default_arg_missing);
2669      Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
2670      Invalid = true;
2671      RemoveDefaultArguments = true;
2672    }
2673
2674    // If we have an old template parameter list that we're merging
2675    // in, move on to the next parameter.
2676    if (OldParams)
2677      ++OldParam;
2678  }
2679
2680  // We were missing some default arguments at the end of the list, so remove
2681  // all of the default arguments.
2682  if (RemoveDefaultArguments) {
2683    for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2684                                      NewParamEnd = NewParams->end();
2685         NewParam != NewParamEnd; ++NewParam) {
2686      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
2687        TTP->removeDefaultArgument();
2688      else if (NonTypeTemplateParmDecl *NTTP
2689                                = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
2690        NTTP->removeDefaultArgument();
2691      else
2692        cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
2693    }
2694  }
2695
2696  return Invalid;
2697}
2698
2699namespace {
2700
2701/// A class which looks for a use of a certain level of template
2702/// parameter.
2703struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
2704  typedef RecursiveASTVisitor<DependencyChecker> super;
2705
2706  unsigned Depth;
2707
2708  // Whether we're looking for a use of a template parameter that makes the
2709  // overall construct type-dependent / a dependent type. This is strictly
2710  // best-effort for now; we may fail to match at all for a dependent type
2711  // in some cases if this is set.
2712  bool IgnoreNonTypeDependent;
2713
2714  bool Match;
2715  SourceLocation MatchLoc;
2716
2717  DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent)
2718      : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent),
2719        Match(false) {}
2720
2721  DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent)
2722      : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) {
2723    NamedDecl *ND = Params->getParam(0);
2724    if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
2725      Depth = PD->getDepth();
2726    } else if (NonTypeTemplateParmDecl *PD =
2727                 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
2728      Depth = PD->getDepth();
2729    } else {
2730      Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
2731    }
2732  }
2733
2734  bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
2735    if (ParmDepth >= Depth) {
2736      Match = true;
2737      MatchLoc = Loc;
2738      return true;
2739    }
2740    return false;
2741  }
2742
2743  bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) {
2744    // Prune out non-type-dependent expressions if requested. This can
2745    // sometimes result in us failing to find a template parameter reference
2746    // (if a value-dependent expression creates a dependent type), but this
2747    // mode is best-effort only.
2748    if (auto *E = dyn_cast_or_null<Expr>(S))
2749      if (IgnoreNonTypeDependent && !E->isTypeDependent())
2750        return true;
2751    return super::TraverseStmt(S, Q);
2752  }
2753
2754  bool TraverseTypeLoc(TypeLoc TL) {
2755    if (IgnoreNonTypeDependent && !TL.isNull() &&
2756        !TL.getType()->isDependentType())
2757      return true;
2758    return super::TraverseTypeLoc(TL);
2759  }
2760
2761  bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
2762    return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
2763  }
2764
2765  bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
2766    // For a best-effort search, keep looking until we find a location.
2767    return IgnoreNonTypeDependent || !Matches(T->getDepth());
2768  }
2769
2770  bool TraverseTemplateName(TemplateName N) {
2771    if (TemplateTemplateParmDecl *PD =
2772          dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
2773      if (Matches(PD->getDepth()))
2774        return false;
2775    return super::TraverseTemplateName(N);
2776  }
2777
2778  bool VisitDeclRefExpr(DeclRefExpr *E) {
2779    if (NonTypeTemplateParmDecl *PD =
2780          dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
2781      if (Matches(PD->getDepth(), E->getExprLoc()))
2782        return false;
2783    return super::VisitDeclRefExpr(E);
2784  }
2785
2786  bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
2787    return TraverseType(T->getReplacementType());
2788  }
2789
2790  bool
2791  VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
2792    return TraverseTemplateArgument(T->getArgumentPack());
2793  }
2794
2795  bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
2796    return TraverseType(T->getInjectedSpecializationType());
2797  }
2798};
2799} // end anonymous namespace
2800
2801/// Determines whether a given type depends on the given parameter
2802/// list.
2803static bool
2804DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
2805  if (!Params->size())
2806    return false;
2807
2808  DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false);
2809  Checker.TraverseType(T);
2810  return Checker.Match;
2811}
2812
2813// Find the source range corresponding to the named type in the given
2814// nested-name-specifier, if any.
2815static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
2816                                                       QualType T,
2817                                                       const CXXScopeSpec &SS) {
2818  NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
2819  while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
2820    if (const Type *CurType = NNS->getAsType()) {
2821      if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
2822        return NNSLoc.getTypeLoc().getSourceRange();
2823    } else
2824      break;
2825
2826    NNSLoc = NNSLoc.getPrefix();
2827  }
2828
2829  return SourceRange();
2830}
2831
2832/// Match the given template parameter lists to the given scope
2833/// specifier, returning the template parameter list that applies to the
2834/// name.
2835///
2836/// \param DeclStartLoc the start of the declaration that has a scope
2837/// specifier or a template parameter list.
2838///
2839/// \param DeclLoc The location of the declaration itself.
2840///
2841/// \param SS the scope specifier that will be matched to the given template
2842/// parameter lists. This scope specifier precedes a qualified name that is
2843/// being declared.
2844///
2845/// \param TemplateId The template-id following the scope specifier, if there
2846/// is one. Used to check for a missing 'template<>'.
2847///
2848/// \param ParamLists the template parameter lists, from the outermost to the
2849/// innermost template parameter lists.
2850///
2851/// \param IsFriend Whether to apply the slightly different rules for
2852/// matching template parameters to scope specifiers in friend
2853/// declarations.
2854///
2855/// \param IsMemberSpecialization will be set true if the scope specifier
2856/// denotes a fully-specialized type, and therefore this is a declaration of
2857/// a member specialization.
2858///
2859/// \returns the template parameter list, if any, that corresponds to the
2860/// name that is preceded by the scope specifier @p SS. This template
2861/// parameter list may have template parameters (if we're declaring a
2862/// template) or may have no template parameters (if we're declaring a
2863/// template specialization), or may be NULL (if what we're declaring isn't
2864/// itself a template).
2865TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
2866    SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
2867    TemplateIdAnnotation *TemplateId,
2868    ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
2869    bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic) {
2870  IsMemberSpecialization = false;
2871  Invalid = false;
2872
2873  // The sequence of nested types to which we will match up the template
2874  // parameter lists. We first build this list by starting with the type named
2875  // by the nested-name-specifier and walking out until we run out of types.
2876  SmallVector<QualType, 4> NestedTypes;
2877  QualType T;
2878  if (SS.getScopeRep()) {
2879    if (CXXRecordDecl *Record
2880              = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
2881      T = Context.getTypeDeclType(Record);
2882    else
2883      T = QualType(SS.getScopeRep()->getAsType(), 0);
2884  }
2885
2886  // If we found an explicit specialization that prevents us from needing
2887  // 'template<>' headers, this will be set to the location of that
2888  // explicit specialization.
2889  SourceLocation ExplicitSpecLoc;
2890
2891  while (!T.isNull()) {
2892    NestedTypes.push_back(T);
2893
2894    // Retrieve the parent of a record type.
2895    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
2896      // If this type is an explicit specialization, we're done.
2897      if (ClassTemplateSpecializationDecl *Spec
2898          = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
2899        if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
2900            Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
2901          ExplicitSpecLoc = Spec->getLocation();
2902          break;
2903        }
2904      } else if (Record->getTemplateSpecializationKind()
2905                                                == TSK_ExplicitSpecialization) {
2906        ExplicitSpecLoc = Record->getLocation();
2907        break;
2908      }
2909
2910      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
2911        T = Context.getTypeDeclType(Parent);
2912      else
2913        T = QualType();
2914      continue;
2915    }
2916
2917    if (const TemplateSpecializationType *TST
2918                                     = T->getAs<TemplateSpecializationType>()) {
2919      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
2920        if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
2921          T = Context.getTypeDeclType(Parent);
2922        else
2923          T = QualType();
2924        continue;
2925      }
2926    }
2927
2928    // Look one step prior in a dependent template specialization type.
2929    if (const DependentTemplateSpecializationType *DependentTST
2930                          = T->getAs<DependentTemplateSpecializationType>()) {
2931      if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
2932        T = QualType(NNS->getAsType(), 0);
2933      else
2934        T = QualType();
2935      continue;
2936    }
2937
2938    // Look one step prior in a dependent name type.
2939    if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
2940      if (NestedNameSpecifier *NNS = DependentName->getQualifier())
2941        T = QualType(NNS->getAsType(), 0);
2942      else
2943        T = QualType();
2944      continue;
2945    }
2946
2947    // Retrieve the parent of an enumeration type.
2948    if (const EnumType *EnumT = T->getAs<EnumType>()) {
2949      // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
2950      // check here.
2951      EnumDecl *Enum = EnumT->getDecl();
2952
2953      // Get to the parent type.
2954      if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
2955        T = Context.getTypeDeclType(Parent);
2956      else
2957        T = QualType();
2958      continue;
2959    }
2960
2961    T = QualType();
2962  }
2963  // Reverse the nested types list, since we want to traverse from the outermost
2964  // to the innermost while checking template-parameter-lists.
2965  std::reverse(NestedTypes.begin(), NestedTypes.end());
2966
2967  // C++0x [temp.expl.spec]p17:
2968  //   A member or a member template may be nested within many
2969  //   enclosing class templates. In an explicit specialization for
2970  //   such a member, the member declaration shall be preceded by a
2971  //   template<> for each enclosing class template that is
2972  //   explicitly specialized.
2973  bool SawNonEmptyTemplateParameterList = false;
2974
2975  auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
2976    if (SawNonEmptyTemplateParameterList) {
2977      if (!SuppressDiagnostic)
2978        Diag(DeclLoc, diag::err_specialize_member_of_template)
2979          << !Recovery << Range;
2980      Invalid = true;
2981      IsMemberSpecialization = false;
2982      return true;
2983    }
2984
2985    return false;
2986  };
2987
2988  auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
2989    // Check that we can have an explicit specialization here.
2990    if (CheckExplicitSpecialization(Range, true))
2991      return true;
2992
2993    // We don't have a template header, but we should.
2994    SourceLocation ExpectedTemplateLoc;
2995    if (!ParamLists.empty())
2996      ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
2997    else
2998      ExpectedTemplateLoc = DeclStartLoc;
2999
3000    if (!SuppressDiagnostic)
3001      Diag(DeclLoc, diag::err_template_spec_needs_header)
3002        << Range
3003        << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
3004    return false;
3005  };
3006
3007  unsigned ParamIdx = 0;
3008  for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
3009       ++TypeIdx) {
3010    T = NestedTypes[TypeIdx];
3011
3012    // Whether we expect a 'template<>' header.
3013    bool NeedEmptyTemplateHeader = false;
3014
3015    // Whether we expect a template header with parameters.
3016    bool NeedNonemptyTemplateHeader = false;
3017
3018    // For a dependent type, the set of template parameters that we
3019    // expect to see.
3020    TemplateParameterList *ExpectedTemplateParams = nullptr;
3021
3022    // C++0x [temp.expl.spec]p15:
3023    //   A member or a member template may be nested within many enclosing
3024    //   class templates. In an explicit specialization for such a member, the
3025    //   member declaration shall be preceded by a template<> for each
3026    //   enclosing class template that is explicitly specialized.
3027    if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
3028      if (ClassTemplatePartialSpecializationDecl *Partial
3029            = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
3030        ExpectedTemplateParams = Partial->getTemplateParameters();
3031        NeedNonemptyTemplateHeader = true;
3032      } else if (Record->isDependentType()) {
3033        if (Record->getDescribedClassTemplate()) {
3034          ExpectedTemplateParams = Record->getDescribedClassTemplate()
3035                                                      ->getTemplateParameters();
3036          NeedNonemptyTemplateHeader = true;
3037        }
3038      } else if (ClassTemplateSpecializationDecl *Spec
3039                     = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
3040        // C++0x [temp.expl.spec]p4:
3041        //   Members of an explicitly specialized class template are defined
3042        //   in the same manner as members of normal classes, and not using
3043        //   the template<> syntax.
3044        if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
3045          NeedEmptyTemplateHeader = true;
3046        else
3047          continue;
3048      } else if (Record->getTemplateSpecializationKind()) {
3049        if (Record->getTemplateSpecializationKind()
3050                                                != TSK_ExplicitSpecialization &&
3051            TypeIdx == NumTypes - 1)
3052          IsMemberSpecialization = true;
3053
3054        continue;
3055      }
3056    } else if (const TemplateSpecializationType *TST
3057                                     = T->getAs<TemplateSpecializationType>()) {
3058      if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
3059        ExpectedTemplateParams = Template->getTemplateParameters();
3060        NeedNonemptyTemplateHeader = true;
3061      }
3062    } else if (T->getAs<DependentTemplateSpecializationType>()) {
3063      // FIXME:  We actually could/should check the template arguments here
3064      // against the corresponding template parameter list.
3065      NeedNonemptyTemplateHeader = false;
3066    }
3067
3068    // C++ [temp.expl.spec]p16:
3069    //   In an explicit specialization declaration for a member of a class
3070    //   template or a member template that ap- pears in namespace scope, the
3071    //   member template and some of its enclosing class templates may remain
3072    //   unspecialized, except that the declaration shall not explicitly
3073    //   specialize a class member template if its en- closing class templates
3074    //   are not explicitly specialized as well.
3075    if (ParamIdx < ParamLists.size()) {
3076      if (ParamLists[ParamIdx]->size() == 0) {
3077        if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
3078                                        false))
3079          return nullptr;
3080      } else
3081        SawNonEmptyTemplateParameterList = true;
3082    }
3083
3084    if (NeedEmptyTemplateHeader) {
3085      // If we're on the last of the types, and we need a 'template<>' header
3086      // here, then it's a member specialization.
3087      if (TypeIdx == NumTypes - 1)
3088        IsMemberSpecialization = true;
3089
3090      if (ParamIdx < ParamLists.size()) {
3091        if (ParamLists[ParamIdx]->size() > 0) {
3092          // The header has template parameters when it shouldn't. Complain.
3093          if (!SuppressDiagnostic)
3094            Diag(ParamLists[ParamIdx]->getTemplateLoc(),
3095                 diag::err_template_param_list_matches_nontemplate)
3096              << T
3097              << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
3098                             ParamLists[ParamIdx]->getRAngleLoc())
3099              << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
3100          Invalid = true;
3101          return nullptr;
3102        }
3103
3104        // Consume this template header.
3105        ++ParamIdx;
3106        continue;
3107      }
3108
3109      if (!IsFriend)
3110        if (DiagnoseMissingExplicitSpecialization(
3111                getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
3112          return nullptr;
3113
3114      continue;
3115    }
3116
3117    if (NeedNonemptyTemplateHeader) {
3118      // In friend declarations we can have template-ids which don't
3119      // depend on the corresponding template parameter lists.  But
3120      // assume that empty parameter lists are supposed to match this
3121      // template-id.
3122      if (IsFriend && T->isDependentType()) {
3123        if (ParamIdx < ParamLists.size() &&
3124            DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
3125          ExpectedTemplateParams = nullptr;
3126        else
3127          continue;
3128      }
3129
3130      if (ParamIdx < ParamLists.size()) {
3131        // Check the template parameter list, if we can.
3132        if (ExpectedTemplateParams &&
3133            !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
3134                                            ExpectedTemplateParams,
3135                                            !SuppressDiagnostic, TPL_TemplateMatch))
3136          Invalid = true;
3137
3138        if (!Invalid &&
3139            CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
3140                                       TPC_ClassTemplateMember))
3141          Invalid = true;
3142
3143        ++ParamIdx;
3144        continue;
3145      }
3146
3147      if (!SuppressDiagnostic)
3148        Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
3149          << T
3150          << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
3151      Invalid = true;
3152      continue;
3153    }
3154  }
3155
3156  // If there were at least as many template-ids as there were template
3157  // parameter lists, then there are no template parameter lists remaining for
3158  // the declaration itself.
3159  if (ParamIdx >= ParamLists.size()) {
3160    if (TemplateId && !IsFriend) {
3161      // We don't have a template header for the declaration itself, but we
3162      // should.
3163      DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
3164                                                        TemplateId->RAngleLoc));
3165
3166      // Fabricate an empty template parameter list for the invented header.
3167      return TemplateParameterList::Create(Context, SourceLocation(),
3168                                           SourceLocation(), None,
3169                                           SourceLocation(), nullptr);
3170    }
3171
3172    return nullptr;
3173  }
3174
3175  // If there were too many template parameter lists, complain about that now.
3176  if (ParamIdx < ParamLists.size() - 1) {
3177    bool HasAnyExplicitSpecHeader = false;
3178    bool AllExplicitSpecHeaders = true;
3179    for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
3180      if (ParamLists[I]->size() == 0)
3181        HasAnyExplicitSpecHeader = true;
3182      else
3183        AllExplicitSpecHeaders = false;
3184    }
3185
3186    if (!SuppressDiagnostic)
3187      Diag(ParamLists[ParamIdx]->getTemplateLoc(),
3188           AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
3189                                  : diag::err_template_spec_extra_headers)
3190          << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
3191                         ParamLists[ParamLists.size() - 2]->getRAngleLoc());
3192
3193    // If there was a specialization somewhere, such that 'template<>' is
3194    // not required, and there were any 'template<>' headers, note where the
3195    // specialization occurred.
3196    if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader &&
3197        !SuppressDiagnostic)
3198      Diag(ExplicitSpecLoc,
3199           diag::note_explicit_template_spec_does_not_need_header)
3200        << NestedTypes.back();
3201
3202    // We have a template parameter list with no corresponding scope, which
3203    // means that the resulting template declaration can't be instantiated
3204    // properly (we'll end up with dependent nodes when we shouldn't).
3205    if (!AllExplicitSpecHeaders)
3206      Invalid = true;
3207  }
3208
3209  // C++ [temp.expl.spec]p16:
3210  //   In an explicit specialization declaration for a member of a class
3211  //   template or a member template that ap- pears in namespace scope, the
3212  //   member template and some of its enclosing class templates may remain
3213  //   unspecialized, except that the declaration shall not explicitly
3214  //   specialize a class member template if its en- closing class templates
3215  //   are not explicitly specialized as well.
3216  if (ParamLists.back()->size() == 0 &&
3217      CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
3218                                  false))
3219    return nullptr;
3220
3221  // Return the last template parameter list, which corresponds to the
3222  // entity being declared.
3223  return ParamLists.back();
3224}
3225
3226void Sema::NoteAllFoundTemplates(TemplateName Name) {
3227  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
3228    Diag(Template->getLocation(), diag::note_template_declared_here)
3229        << (isa<FunctionTemplateDecl>(Template)
3230                ? 0
3231                : isa<ClassTemplateDecl>(Template)
3232                      ? 1
3233                      : isa<VarTemplateDecl>(Template)
3234                            ? 2
3235                            : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
3236        << Template->getDeclName();
3237    return;
3238  }
3239
3240  if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
3241    for (OverloadedTemplateStorage::iterator I = OST->begin(),
3242                                          IEnd = OST->end();
3243         I != IEnd; ++I)
3244      Diag((*I)->getLocation(), diag::note_template_declared_here)
3245        << 0 << (*I)->getDeclName();
3246
3247    return;
3248  }
3249}
3250
3251static QualType
3252checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD,
3253                           const SmallVectorImpl<TemplateArgument> &Converted,
3254                           SourceLocation TemplateLoc,
3255                           TemplateArgumentListInfo &TemplateArgs) {
3256  ASTContext &Context = SemaRef.getASTContext();
3257  switch (BTD->getBuiltinTemplateKind()) {
3258  case BTK__make_integer_seq: {
3259    // Specializations of __make_integer_seq<S, T, N> are treated like
3260    // S<T, 0, ..., N-1>.
3261
3262    // C++14 [inteseq.intseq]p1:
3263    //   T shall be an integer type.
3264    if (!Converted[1].getAsType()->isIntegralType(Context)) {
3265      SemaRef.Diag(TemplateArgs[1].getLocation(),
3266                   diag::err_integer_sequence_integral_element_type);
3267      return QualType();
3268    }
3269
3270    // C++14 [inteseq.make]p1:
3271    //   If N is negative the program is ill-formed.
3272    TemplateArgument NumArgsArg = Converted[2];
3273    llvm::APSInt NumArgs = NumArgsArg.getAsIntegral();
3274    if (NumArgs < 0) {
3275      SemaRef.Diag(TemplateArgs[2].getLocation(),
3276                   diag::err_integer_sequence_negative_length);
3277      return QualType();
3278    }
3279
3280    QualType ArgTy = NumArgsArg.getIntegralType();
3281    TemplateArgumentListInfo SyntheticTemplateArgs;
3282    // The type argument gets reused as the first template argument in the
3283    // synthetic template argument list.
3284    SyntheticTemplateArgs.addArgument(TemplateArgs[1]);
3285    // Expand N into 0 ... N-1.
3286    for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned());
3287         I < NumArgs; ++I) {
3288      TemplateArgument TA(Context, I, ArgTy);
3289      SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc(
3290          TA, ArgTy, TemplateArgs[2].getLocation()));
3291    }
3292    // The first template argument will be reused as the template decl that
3293    // our synthetic template arguments will be applied to.
3294    return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(),
3295                                       TemplateLoc, SyntheticTemplateArgs);
3296  }
3297
3298  case BTK__type_pack_element:
3299    // Specializations of
3300    //    __type_pack_element<Index, T_1, ..., T_N>
3301    // are treated like T_Index.
3302    assert(Converted.size() == 2 &&
3303      "__type_pack_element should be given an index and a parameter pack");
3304
3305    // If the Index is out of bounds, the program is ill-formed.
3306    TemplateArgument IndexArg = Converted[0], Ts = Converted[1];
3307    llvm::APSInt Index = IndexArg.getAsIntegral();
3308    assert(Index >= 0 && "the index used with __type_pack_element should be of "
3309                         "type std::size_t, and hence be non-negative");
3310    if (Index >= Ts.pack_size()) {
3311      SemaRef.Diag(TemplateArgs[0].getLocation(),
3312                   diag::err_type_pack_element_out_of_bounds);
3313      return QualType();
3314    }
3315
3316    // We simply return the type at index `Index`.
3317    auto Nth = std::next(Ts.pack_begin(), Index.getExtValue());
3318    return Nth->getAsType();
3319  }
3320  llvm_unreachable("unexpected BuiltinTemplateDecl!");
3321}
3322
3323/// Determine whether this alias template is "enable_if_t".
3324static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) {
3325  return AliasTemplate->getName().equals("enable_if_t");
3326}
3327
3328/// Collect all of the separable terms in the given condition, which
3329/// might be a conjunction.
3330///
3331/// FIXME: The right answer is to convert the logical expression into
3332/// disjunctive normal form, so we can find the first failed term
3333/// within each possible clause.
3334static void collectConjunctionTerms(Expr *Clause,
3335                                    SmallVectorImpl<Expr *> &Terms) {
3336  if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) {
3337    if (BinOp->getOpcode() == BO_LAnd) {
3338      collectConjunctionTerms(BinOp->getLHS(), Terms);
3339      collectConjunctionTerms(BinOp->getRHS(), Terms);
3340    }
3341
3342    return;
3343  }
3344
3345  Terms.push_back(Clause);
3346}
3347
3348// The ranges-v3 library uses an odd pattern of a top-level "||" with
3349// a left-hand side that is value-dependent but never true. Identify
3350// the idiom and ignore that term.
3351static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) {
3352  // Top-level '||'.
3353  auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts());
3354  if (!BinOp) return Cond;
3355
3356  if (BinOp->getOpcode() != BO_LOr) return Cond;
3357
3358  // With an inner '==' that has a literal on the right-hand side.
3359  Expr *LHS = BinOp->getLHS();
3360  auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts());
3361  if (!InnerBinOp) return Cond;
3362
3363  if (InnerBinOp->getOpcode() != BO_EQ ||
3364      !isa<IntegerLiteral>(InnerBinOp->getRHS()))
3365    return Cond;
3366
3367  // If the inner binary operation came from a macro expansion named
3368  // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side
3369  // of the '||', which is the real, user-provided condition.
3370  SourceLocation Loc = InnerBinOp->getExprLoc();
3371  if (!Loc.isMacroID()) return Cond;
3372
3373  StringRef MacroName = PP.getImmediateMacroName(Loc);
3374  if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_")
3375    return BinOp->getRHS();
3376
3377  return Cond;
3378}
3379
3380namespace {
3381
3382// A PrinterHelper that prints more helpful diagnostics for some sub-expressions
3383// within failing boolean expression, such as substituting template parameters
3384// for actual types.
3385class FailedBooleanConditionPrinterHelper : public PrinterHelper {
3386public:
3387  explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P)
3388      : Policy(P) {}
3389
3390  bool handledStmt(Stmt *E, raw_ostream &OS) override {
3391    const auto *DR = dyn_cast<DeclRefExpr>(E);
3392    if (DR && DR->getQualifier()) {
3393      // If this is a qualified name, expand the template arguments in nested
3394      // qualifiers.
3395      DR->getQualifier()->print(OS, Policy, true);
3396      // Then print the decl itself.
3397      const ValueDecl *VD = DR->getDecl();
3398      OS << VD->getName();
3399      if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
3400        // This is a template variable, print the expanded template arguments.
3401        printTemplateArgumentList(OS, IV->getTemplateArgs().asArray(), Policy);
3402      }
3403      return true;
3404    }
3405    return false;
3406  }
3407
3408private:
3409  const PrintingPolicy Policy;
3410};
3411
3412} // end anonymous namespace
3413
3414std::pair<Expr *, std::string>
3415Sema::findFailedBooleanCondition(Expr *Cond) {
3416  Cond = lookThroughRangesV3Condition(PP, Cond);
3417
3418  // Separate out all of the terms in a conjunction.
3419  SmallVector<Expr *, 4> Terms;
3420  collectConjunctionTerms(Cond, Terms);
3421
3422  // Determine which term failed.
3423  Expr *FailedCond = nullptr;
3424  for (Expr *Term : Terms) {
3425    Expr *TermAsWritten = Term->IgnoreParenImpCasts();
3426
3427    // Literals are uninteresting.
3428    if (isa<CXXBoolLiteralExpr>(TermAsWritten) ||
3429        isa<IntegerLiteral>(TermAsWritten))
3430      continue;
3431
3432    // The initialization of the parameter from the argument is
3433    // a constant-evaluated context.
3434    EnterExpressionEvaluationContext ConstantEvaluated(
3435      *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
3436
3437    bool Succeeded;
3438    if (Term->EvaluateAsBooleanCondition(Succeeded, Context) &&
3439        !Succeeded) {
3440      FailedCond = TermAsWritten;
3441      break;
3442    }
3443  }
3444  if (!FailedCond)
3445    FailedCond = Cond->IgnoreParenImpCasts();
3446
3447  std::string Description;
3448  {
3449    llvm::raw_string_ostream Out(Description);
3450    PrintingPolicy Policy = getPrintingPolicy();
3451    Policy.PrintCanonicalTypes = true;
3452    FailedBooleanConditionPrinterHelper Helper(Policy);
3453    FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr);
3454  }
3455  return { FailedCond, Description };
3456}
3457
3458QualType Sema::CheckTemplateIdType(TemplateName Name,
3459                                   SourceLocation TemplateLoc,
3460                                   TemplateArgumentListInfo &TemplateArgs) {
3461  DependentTemplateName *DTN
3462    = Name.getUnderlying().getAsDependentTemplateName();
3463  if (DTN && DTN->isIdentifier())
3464    // When building a template-id where the template-name is dependent,
3465    // assume the template is a type template. Either our assumption is
3466    // correct, or the code is ill-formed and will be diagnosed when the
3467    // dependent name is substituted.
3468    return Context.getDependentTemplateSpecializationType(ETK_None,
3469                                                          DTN->getQualifier(),
3470                                                          DTN->getIdentifier(),
3471                                                          TemplateArgs);
3472
3473  TemplateDecl *Template = Name.getAsTemplateDecl();
3474  if (!Template || isa<FunctionTemplateDecl>(Template) ||
3475      isa<VarTemplateDecl>(Template) || isa<ConceptDecl>(Template)) {
3476    // We might have a substituted template template parameter pack. If so,
3477    // build a template specialization type for it.
3478    if (Name.getAsSubstTemplateTemplateParmPack())
3479      return Context.getTemplateSpecializationType(Name, TemplateArgs);
3480
3481    Diag(TemplateLoc, diag::err_template_id_not_a_type)
3482      << Name;
3483    NoteAllFoundTemplates(Name);
3484    return QualType();
3485  }
3486
3487  // Check that the template argument list is well-formed for this
3488  // template.
3489  SmallVector<TemplateArgument, 4> Converted;
3490  if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
3491                                false, Converted,
3492                                /*UpdateArgsWithConversion=*/true))
3493    return QualType();
3494
3495  QualType CanonType;
3496
3497  bool InstantiationDependent = false;
3498  if (TypeAliasTemplateDecl *AliasTemplate =
3499          dyn_cast<TypeAliasTemplateDecl>(Template)) {
3500
3501    // Find the canonical type for this type alias template specialization.
3502    TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
3503    if (Pattern->isInvalidDecl())
3504      return QualType();
3505
3506    TemplateArgumentList StackTemplateArgs(TemplateArgumentList::OnStack,
3507                                           Converted);
3508
3509    // Only substitute for the innermost template argument list.
3510    MultiLevelTemplateArgumentList TemplateArgLists;
3511    TemplateArgLists.addOuterTemplateArguments(&StackTemplateArgs);
3512    unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
3513    for (unsigned I = 0; I < Depth; ++I)
3514      TemplateArgLists.addOuterTemplateArguments(None);
3515
3516    LocalInstantiationScope Scope(*this);
3517    InstantiatingTemplate Inst(*this, TemplateLoc, Template);
3518    if (Inst.isInvalid())
3519      return QualType();
3520
3521    CanonType = SubstType(Pattern->getUnderlyingType(),
3522                          TemplateArgLists, AliasTemplate->getLocation(),
3523                          AliasTemplate->getDeclName());
3524    if (CanonType.isNull()) {
3525      // If this was enable_if and we failed to find the nested type
3526      // within enable_if in a SFINAE context, dig out the specific
3527      // enable_if condition that failed and present that instead.
3528      if (isEnableIfAliasTemplate(AliasTemplate)) {
3529        if (auto DeductionInfo = isSFINAEContext()) {
3530          if (*DeductionInfo &&
3531              (*DeductionInfo)->hasSFINAEDiagnostic() &&
3532              (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() ==
3533                diag::err_typename_nested_not_found_enable_if &&
3534              TemplateArgs[0].getArgument().getKind()
3535                == TemplateArgument::Expression) {
3536            Expr *FailedCond;
3537            std::string FailedDescription;
3538            std::tie(FailedCond, FailedDescription) =
3539              findFailedBooleanCondition(TemplateArgs[0].getSourceExpression());
3540
3541            // Remove the old SFINAE diagnostic.
3542            PartialDiagnosticAt OldDiag =
3543              {SourceLocation(), PartialDiagnostic::NullDiagnostic()};
3544            (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag);
3545
3546            // Add a new SFINAE diagnostic specifying which condition
3547            // failed.
3548            (*DeductionInfo)->addSFINAEDiagnostic(
3549              OldDiag.first,
3550              PDiag(diag::err_typename_nested_not_found_requirement)
3551                << FailedDescription
3552                << FailedCond->getSourceRange());
3553          }
3554        }
3555      }
3556
3557      return QualType();
3558    }
3559  } else if (Name.isDependent() ||
3560             TemplateSpecializationType::anyDependentTemplateArguments(
3561               TemplateArgs, InstantiationDependent)) {
3562    // This class template specialization is a dependent
3563    // type. Therefore, its canonical type is another class template
3564    // specialization type that contains all of the converted
3565    // arguments in canonical form. This ensures that, e.g., A<T> and
3566    // A<T, T> have identical types when A is declared as:
3567    //
3568    //   template<typename T, typename U = T> struct A;
3569    CanonType = Context.getCanonicalTemplateSpecializationType(Name, Converted);
3570
3571    // This might work out to be a current instantiation, in which
3572    // case the canonical type needs to be the InjectedClassNameType.
3573    //
3574    // TODO: in theory this could be a simple hashtable lookup; most
3575    // changes to CurContext don't change the set of current
3576    // instantiations.
3577    if (isa<ClassTemplateDecl>(Template)) {
3578      for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
3579        // If we get out to a namespace, we're done.
3580        if (Ctx->isFileContext()) break;
3581
3582        // If this isn't a record, keep looking.
3583        CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
3584        if (!Record) continue;
3585
3586        // Look for one of the two cases with InjectedClassNameTypes
3587        // and check whether it's the same template.
3588        if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
3589            !Record->getDescribedClassTemplate())
3590          continue;
3591
3592        // Fetch the injected class name type and check whether its
3593        // injected type is equal to the type we just built.
3594        QualType ICNT = Context.getTypeDeclType(Record);
3595        QualType Injected = cast<InjectedClassNameType>(ICNT)
3596          ->getInjectedSpecializationType();
3597
3598        if (CanonType != Injected->getCanonicalTypeInternal())
3599          continue;
3600
3601        // If so, the canonical type of this TST is the injected
3602        // class name type of the record we just found.
3603        assert(ICNT.isCanonical());
3604        CanonType = ICNT;
3605        break;
3606      }
3607    }
3608  } else if (ClassTemplateDecl *ClassTemplate
3609               = dyn_cast<ClassTemplateDecl>(Template)) {
3610    // Find the class template specialization declaration that
3611    // corresponds to these arguments.
3612    void *InsertPos = nullptr;
3613    ClassTemplateSpecializationDecl *Decl
3614      = ClassTemplate->findSpecialization(Converted, InsertPos);
3615    if (!Decl) {
3616      // This is the first time we have referenced this class template
3617      // specialization. Create the canonical declaration and add it to
3618      // the set of specializations.
3619      Decl = ClassTemplateSpecializationDecl::Create(
3620          Context, ClassTemplate->getTemplatedDecl()->getTagKind(),
3621          ClassTemplate->getDeclContext(),
3622          ClassTemplate->getTemplatedDecl()->getBeginLoc(),
3623          ClassTemplate->getLocation(), ClassTemplate, Converted, nullptr);
3624      ClassTemplate->AddSpecialization(Decl, InsertPos);
3625      if (ClassTemplate->isOutOfLine())
3626        Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
3627    }
3628
3629    if (Decl->getSpecializationKind() == TSK_Undeclared) {
3630      MultiLevelTemplateArgumentList TemplateArgLists;
3631      TemplateArgLists.addOuterTemplateArguments(Converted);
3632      InstantiateAttrsForDecl(TemplateArgLists, ClassTemplate->getTemplatedDecl(),
3633                              Decl);
3634    }
3635
3636    // Diagnose uses of this specialization.
3637    (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
3638
3639    CanonType = Context.getTypeDeclType(Decl);
3640    assert(isa<RecordType>(CanonType) &&
3641           "type of non-dependent specialization is not a RecordType");
3642  } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) {
3643    CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc,
3644                                           TemplateArgs);
3645  }
3646
3647  // Build the fully-sugared type for this class template
3648  // specialization, which refers back to the class template
3649  // specialization we created or found.
3650  return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
3651}
3652
3653void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName,
3654                                           TemplateNameKind &TNK,
3655                                           SourceLocation NameLoc,
3656                                           IdentifierInfo *&II) {
3657  assert(TNK == TNK_Undeclared_template && "not an undeclared template name");
3658
3659  TemplateName Name = ParsedName.get();
3660  auto *ATN = Name.getAsAssumedTemplateName();
3661  assert(ATN && "not an assumed template name");
3662  II = ATN->getDeclName().getAsIdentifierInfo();
3663
3664  if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) {
3665    // Resolved to a type template name.
3666    ParsedName = TemplateTy::make(Name);
3667    TNK = TNK_Type_template;
3668  }
3669}
3670
3671bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name,
3672                                            SourceLocation NameLoc,
3673                                            bool Diagnose) {
3674  // We assumed this undeclared identifier to be an (ADL-only) function
3675  // template name, but it was used in a context where a type was required.
3676  // Try to typo-correct it now.
3677  AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName();
3678  assert(ATN && "not an assumed template name");
3679
3680  LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName);
3681  struct CandidateCallback : CorrectionCandidateCallback {
3682    bool ValidateCandidate(const TypoCorrection &TC) override {
3683      return TC.getCorrectionDecl() &&
3684             getAsTypeTemplateDecl(TC.getCorrectionDecl());
3685    }
3686    std::unique_ptr<CorrectionCandidateCallback> clone() override {
3687      return std::make_unique<CandidateCallback>(*this);
3688    }
3689  } FilterCCC;
3690
3691  TypoCorrection Corrected =
3692      CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr,
3693                  FilterCCC, CTK_ErrorRecovery);
3694  if (Corrected && Corrected.getFoundDecl()) {
3695    diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest)
3696                                << ATN->getDeclName());
3697    Name = TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>());
3698    return false;
3699  }
3700
3701  if (Diagnose)
3702    Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName();
3703  return true;
3704}
3705
3706TypeResult Sema::ActOnTemplateIdType(
3707    Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
3708    TemplateTy TemplateD, IdentifierInfo *TemplateII,
3709    SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
3710    ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc,
3711    bool IsCtorOrDtorName, bool IsClassName) {
3712  if (SS.isInvalid())
3713    return true;
3714
3715  if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) {
3716    DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false);
3717
3718    // C++ [temp.res]p3:
3719    //   A qualified-id that refers to a type and in which the
3720    //   nested-name-specifier depends on a template-parameter (14.6.2)
3721    //   shall be prefixed by the keyword typename to indicate that the
3722    //   qualified-id denotes a type, forming an
3723    //   elaborated-type-specifier (7.1.5.3).
3724    if (!LookupCtx && isDependentScopeSpecifier(SS)) {
3725      Diag(SS.getBeginLoc(), diag::err_typename_missing_template)
3726        << SS.getScopeRep() << TemplateII->getName();
3727      // Recover as if 'typename' were specified.
3728      // FIXME: This is not quite correct recovery as we don't transform SS
3729      // into the corresponding dependent form (and we don't diagnose missing
3730      // 'template' keywords within SS as a result).
3731      return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc,
3732                               TemplateD, TemplateII, TemplateIILoc, LAngleLoc,
3733                               TemplateArgsIn, RAngleLoc);
3734    }
3735
3736    // Per C++ [class.qual]p2, if the template-id was an injected-class-name,
3737    // it's not actually allowed to be used as a type in most cases. Because
3738    // we annotate it before we know whether it's valid, we have to check for
3739    // this case here.
3740    auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
3741    if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
3742      Diag(TemplateIILoc,
3743           TemplateKWLoc.isInvalid()
3744               ? diag::err_out_of_line_qualified_id_type_names_constructor
3745               : diag::ext_out_of_line_qualified_id_type_names_constructor)
3746        << TemplateII << 0 /*injected-class-name used as template name*/
3747        << 1 /*if any keyword was present, it was 'template'*/;
3748    }
3749  }
3750
3751  TemplateName Template = TemplateD.get();
3752  if (Template.getAsAssumedTemplateName() &&
3753      resolveAssumedTemplateNameAsType(S, Template, TemplateIILoc))
3754    return true;
3755
3756  // Translate the parser's template argument list in our AST format.
3757  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
3758  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3759
3760  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
3761    QualType T
3762      = Context.getDependentTemplateSpecializationType(ETK_None,
3763                                                       DTN->getQualifier(),
3764                                                       DTN->getIdentifier(),
3765                                                       TemplateArgs);
3766    // Build type-source information.
3767    TypeLocBuilder TLB;
3768    DependentTemplateSpecializationTypeLoc SpecTL
3769      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
3770    SpecTL.setElaboratedKeywordLoc(SourceLocation());
3771    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
3772    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3773    SpecTL.setTemplateNameLoc(TemplateIILoc);
3774    SpecTL.setLAngleLoc(LAngleLoc);
3775    SpecTL.setRAngleLoc(RAngleLoc);
3776    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
3777      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
3778    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
3779  }
3780
3781  QualType Result = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
3782  if (Result.isNull())
3783    return true;
3784
3785  // Build type-source information.
3786  TypeLocBuilder TLB;
3787  TemplateSpecializationTypeLoc SpecTL
3788    = TLB.push<TemplateSpecializationTypeLoc>(Result);
3789  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3790  SpecTL.setTemplateNameLoc(TemplateIILoc);
3791  SpecTL.setLAngleLoc(LAngleLoc);
3792  SpecTL.setRAngleLoc(RAngleLoc);
3793  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
3794    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
3795
3796  // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
3797  // constructor or destructor name (in such a case, the scope specifier
3798  // will be attached to the enclosing Decl or Expr node).
3799  if (SS.isNotEmpty() && !IsCtorOrDtorName) {
3800    // Create an elaborated-type-specifier containing the nested-name-specifier.
3801    Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
3802    ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
3803    ElabTL.setElaboratedKeywordLoc(SourceLocation());
3804    ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
3805  }
3806
3807  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
3808}
3809
3810TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
3811                                        TypeSpecifierType TagSpec,
3812                                        SourceLocation TagLoc,
3813                                        CXXScopeSpec &SS,
3814                                        SourceLocation TemplateKWLoc,
3815                                        TemplateTy TemplateD,
3816                                        SourceLocation TemplateLoc,
3817                                        SourceLocation LAngleLoc,
3818                                        ASTTemplateArgsPtr TemplateArgsIn,
3819                                        SourceLocation RAngleLoc) {
3820  if (SS.isInvalid())
3821    return TypeResult(true);
3822
3823  TemplateName Template = TemplateD.get();
3824
3825  // Translate the parser's template argument list in our AST format.
3826  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
3827  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
3828
3829  // Determine the tag kind
3830  TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
3831  ElaboratedTypeKeyword Keyword
3832    = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
3833
3834  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
3835    QualType T = Context.getDependentTemplateSpecializationType(Keyword,
3836                                                          DTN->getQualifier(),
3837                                                          DTN->getIdentifier(),
3838                                                                TemplateArgs);
3839
3840    // Build type-source information.
3841    TypeLocBuilder TLB;
3842    DependentTemplateSpecializationTypeLoc SpecTL
3843      = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
3844    SpecTL.setElaboratedKeywordLoc(TagLoc);
3845    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
3846    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3847    SpecTL.setTemplateNameLoc(TemplateLoc);
3848    SpecTL.setLAngleLoc(LAngleLoc);
3849    SpecTL.setRAngleLoc(RAngleLoc);
3850    for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
3851      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
3852    return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
3853  }
3854
3855  if (TypeAliasTemplateDecl *TAT =
3856        dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
3857    // C++0x [dcl.type.elab]p2:
3858    //   If the identifier resolves to a typedef-name or the simple-template-id
3859    //   resolves to an alias template specialization, the
3860    //   elaborated-type-specifier is ill-formed.
3861    Diag(TemplateLoc, diag::err_tag_reference_non_tag)
3862        << TAT << NTK_TypeAliasTemplate << TagKind;
3863    Diag(TAT->getLocation(), diag::note_declared_at);
3864  }
3865
3866  QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
3867  if (Result.isNull())
3868    return TypeResult(true);
3869
3870  // Check the tag kind
3871  if (const RecordType *RT = Result->getAs<RecordType>()) {
3872    RecordDecl *D = RT->getDecl();
3873
3874    IdentifierInfo *Id = D->getIdentifier();
3875    assert(Id && "templated class must have an identifier");
3876
3877    if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
3878                                      TagLoc, Id)) {
3879      Diag(TagLoc, diag::err_use_with_wrong_tag)
3880        << Result
3881        << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
3882      Diag(D->getLocation(), diag::note_previous_use);
3883    }
3884  }
3885
3886  // Provide source-location information for the template specialization.
3887  TypeLocBuilder TLB;
3888  TemplateSpecializationTypeLoc SpecTL
3889    = TLB.push<TemplateSpecializationTypeLoc>(Result);
3890  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
3891  SpecTL.setTemplateNameLoc(TemplateLoc);
3892  SpecTL.setLAngleLoc(LAngleLoc);
3893  SpecTL.setRAngleLoc(RAngleLoc);
3894  for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
3895    SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
3896
3897  // Construct an elaborated type containing the nested-name-specifier (if any)
3898  // and tag keyword.
3899  Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
3900  ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
3901  ElabTL.setElaboratedKeywordLoc(TagLoc);
3902  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
3903  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
3904}
3905
3906static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
3907                                             NamedDecl *PrevDecl,
3908                                             SourceLocation Loc,
3909                                             bool IsPartialSpecialization);
3910
3911static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
3912
3913static bool isTemplateArgumentTemplateParameter(
3914    const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
3915  switch (Arg.getKind()) {
3916  case TemplateArgument::Null:
3917  case TemplateArgument::NullPtr:
3918  case TemplateArgument::Integral:
3919  case TemplateArgument::Declaration:
3920  case TemplateArgument::Pack:
3921  case TemplateArgument::TemplateExpansion:
3922    return false;
3923
3924  case TemplateArgument::Type: {
3925    QualType Type = Arg.getAsType();
3926    const TemplateTypeParmType *TPT =
3927        Arg.getAsType()->getAs<TemplateTypeParmType>();
3928    return TPT && !Type.hasQualifiers() &&
3929           TPT->getDepth() == Depth && TPT->getIndex() == Index;
3930  }
3931
3932  case TemplateArgument::Expression: {
3933    DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
3934    if (!DRE || !DRE->getDecl())
3935      return false;
3936    const NonTypeTemplateParmDecl *NTTP =
3937        dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
3938    return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
3939  }
3940
3941  case TemplateArgument::Template:
3942    const TemplateTemplateParmDecl *TTP =
3943        dyn_cast_or_null<TemplateTemplateParmDecl>(
3944            Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
3945    return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
3946  }
3947  llvm_unreachable("unexpected kind of template argument");
3948}
3949
3950static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
3951                                    ArrayRef<TemplateArgument> Args) {
3952  if (Params->size() != Args.size())
3953    return false;
3954
3955  unsigned Depth = Params->getDepth();
3956
3957  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3958    TemplateArgument Arg = Args[I];
3959
3960    // If the parameter is a pack expansion, the argument must be a pack
3961    // whose only element is a pack expansion.
3962    if (Params->getParam(I)->isParameterPack()) {
3963      if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
3964          !Arg.pack_begin()->isPackExpansion())
3965        return false;
3966      Arg = Arg.pack_begin()->getPackExpansionPattern();
3967    }
3968
3969    if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
3970      return false;
3971  }
3972
3973  return true;
3974}
3975
3976template<typename PartialSpecDecl>
3977static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) {
3978  if (Partial->getDeclContext()->isDependentContext())
3979    return;
3980
3981  // FIXME: Get the TDK from deduction in order to provide better diagnostics
3982  // for non-substitution-failure issues?
3983  TemplateDeductionInfo Info(Partial->getLocation());
3984  if (S.isMoreSpecializedThanPrimary(Partial, Info))
3985    return;
3986
3987  auto *Template = Partial->getSpecializedTemplate();
3988  S.Diag(Partial->getLocation(),
3989         diag::ext_partial_spec_not_more_specialized_than_primary)
3990      << isa<VarTemplateDecl>(Template);
3991
3992  if (Info.hasSFINAEDiagnostic()) {
3993    PartialDiagnosticAt Diag = {SourceLocation(),
3994                                PartialDiagnostic::NullDiagnostic()};
3995    Info.takeSFINAEDiagnostic(Diag);
3996    SmallString<128> SFINAEArgString;
3997    Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString);
3998    S.Diag(Diag.first,
3999           diag::note_partial_spec_not_more_specialized_than_primary)
4000      << SFINAEArgString;
4001  }
4002
4003  S.Diag(Template->getLocation(), diag::note_template_decl_here);
4004  SmallVector<const Expr *, 3> PartialAC, TemplateAC;
4005  Template->getAssociatedConstraints(TemplateAC);
4006  Partial->getAssociatedConstraints(PartialAC);
4007  S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Partial, PartialAC, Template,
4008                                                  TemplateAC);
4009}
4010
4011static void
4012noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams,
4013                           const llvm::SmallBitVector &DeducibleParams) {
4014  for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4015    if (!DeducibleParams[I]) {
4016      NamedDecl *Param = TemplateParams->getParam(I);
4017      if (Param->getDeclName())
4018        S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
4019            << Param->getDeclName();
4020      else
4021        S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
4022            << "(anonymous)";
4023    }
4024  }
4025}
4026
4027
4028template<typename PartialSpecDecl>
4029static void checkTemplatePartialSpecialization(Sema &S,
4030                                               PartialSpecDecl *Partial) {
4031  // C++1z [temp.class.spec]p8: (DR1495)
4032  //   - The specialization shall be more specialized than the primary
4033  //     template (14.5.5.2).
4034  checkMoreSpecializedThanPrimary(S, Partial);
4035
4036  // C++ [temp.class.spec]p8: (DR1315)
4037  //   - Each template-parameter shall appear at least once in the
4038  //     template-id outside a non-deduced context.
4039  // C++1z [temp.class.spec.match]p3 (P0127R2)
4040  //   If the template arguments of a partial specialization cannot be
4041  //   deduced because of the structure of its template-parameter-list
4042  //   and the template-id, the program is ill-formed.
4043  auto *TemplateParams = Partial->getTemplateParameters();
4044  llvm::SmallBitVector DeducibleParams(TemplateParams->size());
4045  S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4046                               TemplateParams->getDepth(), DeducibleParams);
4047
4048  if (!DeducibleParams.all()) {
4049    unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
4050    S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible)
4051      << isa<VarTemplatePartialSpecializationDecl>(Partial)
4052      << (NumNonDeducible > 1)
4053      << SourceRange(Partial->getLocation(),
4054                     Partial->getTemplateArgsAsWritten()->RAngleLoc);
4055    noteNonDeducibleParameters(S, TemplateParams, DeducibleParams);
4056  }
4057}
4058
4059void Sema::CheckTemplatePartialSpecialization(
4060    ClassTemplatePartialSpecializationDecl *Partial) {
4061  checkTemplatePartialSpecialization(*this, Partial);
4062}
4063
4064void Sema::CheckTemplatePartialSpecialization(
4065    VarTemplatePartialSpecializationDecl *Partial) {
4066  checkTemplatePartialSpecialization(*this, Partial);
4067}
4068
4069void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) {
4070  // C++1z [temp.param]p11:
4071  //   A template parameter of a deduction guide template that does not have a
4072  //   default-argument shall be deducible from the parameter-type-list of the
4073  //   deduction guide template.
4074  auto *TemplateParams = TD->getTemplateParameters();
4075  llvm::SmallBitVector DeducibleParams(TemplateParams->size());
4076  MarkDeducedTemplateParameters(TD, DeducibleParams);
4077  for (unsigned I = 0; I != TemplateParams->size(); ++I) {
4078    // A parameter pack is deducible (to an empty pack).
4079    auto *Param = TemplateParams->getParam(I);
4080    if (Param->isParameterPack() || hasVisibleDefaultArgument(Param))
4081      DeducibleParams[I] = true;
4082  }
4083
4084  if (!DeducibleParams.all()) {
4085    unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
4086    Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible)
4087      << (NumNonDeducible > 1);
4088    noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams);
4089  }
4090}
4091
4092DeclResult Sema::ActOnVarTemplateSpecialization(
4093    Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
4094    TemplateParameterList *TemplateParams, StorageClass SC,
4095    bool IsPartialSpecialization) {
4096  // D must be variable template id.
4097  assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId &&
4098         "Variable template specialization is declared with a template it.");
4099
4100  TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4101  TemplateArgumentListInfo TemplateArgs =
4102      makeTemplateArgumentListInfo(*this, *TemplateId);
4103  SourceLocation TemplateNameLoc = D.getIdentifierLoc();
4104  SourceLocation LAngleLoc = TemplateId->LAngleLoc;
4105  SourceLocation RAngleLoc = TemplateId->RAngleLoc;
4106
4107  TemplateName Name = TemplateId->Template.get();
4108
4109  // The template-id must name a variable template.
4110  VarTemplateDecl *VarTemplate =
4111      dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
4112  if (!VarTemplate) {
4113    NamedDecl *FnTemplate;
4114    if (auto *OTS = Name.getAsOverloadedTemplate())
4115      FnTemplate = *OTS->begin();
4116    else
4117      FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
4118    if (FnTemplate)
4119      return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
4120               << FnTemplate->getDeclName();
4121    return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
4122             << IsPartialSpecialization;
4123  }
4124
4125  // Check for unexpanded parameter packs in any of the template arguments.
4126  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4127    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
4128                                        UPPC_PartialSpecialization))
4129      return true;
4130
4131  // Check that the template argument list is well-formed for this
4132  // template.
4133  SmallVector<TemplateArgument, 4> Converted;
4134  if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
4135                                false, Converted,
4136                                /*UpdateArgsWithConversion=*/true))
4137    return true;
4138
4139  // Find the variable template (partial) specialization declaration that
4140  // corresponds to these arguments.
4141  if (IsPartialSpecialization) {
4142    if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate,
4143                                               TemplateArgs.size(), Converted))
4144      return true;
4145
4146    // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we
4147    // also do them during instantiation.
4148    bool InstantiationDependent;
4149    if (!Name.isDependent() &&
4150        !TemplateSpecializationType::anyDependentTemplateArguments(
4151            TemplateArgs.arguments(),
4152            InstantiationDependent)) {
4153      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4154          << VarTemplate->getDeclName();
4155      IsPartialSpecialization = false;
4156    }
4157
4158    if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
4159                                Converted) &&
4160        (!Context.getLangOpts().CPlusPlus2a ||
4161         !TemplateParams->hasAssociatedConstraints())) {
4162      // C++ [temp.class.spec]p9b3:
4163      //
4164      //   -- The argument list of the specialization shall not be identical
4165      //      to the implicit argument list of the primary template.
4166      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4167        << /*variable template*/ 1
4168        << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
4169        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4170      // FIXME: Recover from this by treating the declaration as a redeclaration
4171      // of the primary template.
4172      return true;
4173    }
4174  }
4175
4176  void *InsertPos = nullptr;
4177  VarTemplateSpecializationDecl *PrevDecl = nullptr;
4178
4179  if (IsPartialSpecialization)
4180    PrevDecl = VarTemplate->findPartialSpecialization(Converted, TemplateParams,
4181                                                      InsertPos);
4182  else
4183    PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos);
4184
4185  VarTemplateSpecializationDecl *Specialization = nullptr;
4186
4187  // Check whether we can declare a variable template specialization in
4188  // the current scope.
4189  if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
4190                                       TemplateNameLoc,
4191                                       IsPartialSpecialization))
4192    return true;
4193
4194  if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
4195    // Since the only prior variable template specialization with these
4196    // arguments was referenced but not declared,  reuse that
4197    // declaration node as our own, updating its source location and
4198    // the list of outer template parameters to reflect our new declaration.
4199    Specialization = PrevDecl;
4200    Specialization->setLocation(TemplateNameLoc);
4201    PrevDecl = nullptr;
4202  } else if (IsPartialSpecialization) {
4203    // Create a new class template partial specialization declaration node.
4204    VarTemplatePartialSpecializationDecl *PrevPartial =
4205        cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
4206    VarTemplatePartialSpecializationDecl *Partial =
4207        VarTemplatePartialSpecializationDecl::Create(
4208            Context, VarTemplate->getDeclContext(), TemplateKWLoc,
4209            TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
4210            Converted, TemplateArgs);
4211
4212    if (!PrevPartial)
4213      VarTemplate->AddPartialSpecialization(Partial, InsertPos);
4214    Specialization = Partial;
4215
4216    // If we are providing an explicit specialization of a member variable
4217    // template specialization, make a note of that.
4218    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4219      PrevPartial->setMemberSpecialization();
4220
4221    CheckTemplatePartialSpecialization(Partial);
4222  } else {
4223    // Create a new class template specialization declaration node for
4224    // this explicit specialization or friend declaration.
4225    Specialization = VarTemplateSpecializationDecl::Create(
4226        Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
4227        VarTemplate, DI->getType(), DI, SC, Converted);
4228    Specialization->setTemplateArgsInfo(TemplateArgs);
4229
4230    if (!PrevDecl)
4231      VarTemplate->AddSpecialization(Specialization, InsertPos);
4232  }
4233
4234  // C++ [temp.expl.spec]p6:
4235  //   If a template, a member template or the member of a class template is
4236  //   explicitly specialized then that specialization shall be declared
4237  //   before the first use of that specialization that would cause an implicit
4238  //   instantiation to take place, in every translation unit in which such a
4239  //   use occurs; no diagnostic is required.
4240  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4241    bool Okay = false;
4242    for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
4243      // Is there any previous explicit specialization declaration?
4244      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
4245        Okay = true;
4246        break;
4247      }
4248    }
4249
4250    if (!Okay) {
4251      SourceRange Range(TemplateNameLoc, RAngleLoc);
4252      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4253          << Name << Range;
4254
4255      Diag(PrevDecl->getPointOfInstantiation(),
4256           diag::note_instantiation_required_here)
4257          << (PrevDecl->getTemplateSpecializationKind() !=
4258              TSK_ImplicitInstantiation);
4259      return true;
4260    }
4261  }
4262
4263  Specialization->setTemplateKeywordLoc(TemplateKWLoc);
4264  Specialization->setLexicalDeclContext(CurContext);
4265
4266  // Add the specialization into its lexical context, so that it can
4267  // be seen when iterating through the list of declarations in that
4268  // context. However, specializations are not found by name lookup.
4269  CurContext->addDecl(Specialization);
4270
4271  // Note that this is an explicit specialization.
4272  Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4273
4274  if (PrevDecl) {
4275    // Check that this isn't a redefinition of this specialization,
4276    // merging with previous declarations.
4277    LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
4278                          forRedeclarationInCurContext());
4279    PrevSpec.addDecl(PrevDecl);
4280    D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
4281  } else if (Specialization->isStaticDataMember() &&
4282             Specialization->isOutOfLine()) {
4283    Specialization->setAccess(VarTemplate->getAccess());
4284  }
4285
4286  return Specialization;
4287}
4288
4289namespace {
4290/// A partial specialization whose template arguments have matched
4291/// a given template-id.
4292struct PartialSpecMatchResult {
4293  VarTemplatePartialSpecializationDecl *Partial;
4294  TemplateArgumentList *Args;
4295};
4296} // end anonymous namespace
4297
4298DeclResult
4299Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
4300                         SourceLocation TemplateNameLoc,
4301                         const TemplateArgumentListInfo &TemplateArgs) {
4302  assert(Template && "A variable template id without template?");
4303
4304  // Check that the template argument list is well-formed for this template.
4305  SmallVector<TemplateArgument, 4> Converted;
4306  if (CheckTemplateArgumentList(
4307          Template, TemplateNameLoc,
4308          const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
4309          Converted, /*UpdateArgsWithConversion=*/true))
4310    return true;
4311
4312  // Find the variable template specialization declaration that
4313  // corresponds to these arguments.
4314  void *InsertPos = nullptr;
4315  if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
4316          Converted, InsertPos)) {
4317    checkSpecializationVisibility(TemplateNameLoc, Spec);
4318    // If we already have a variable template specialization, return it.
4319    return Spec;
4320  }
4321
4322  // This is the first time we have referenced this variable template
4323  // specialization. Create the canonical declaration and add it to
4324  // the set of specializations, based on the closest partial specialization
4325  // that it represents. That is,
4326  VarDecl *InstantiationPattern = Template->getTemplatedDecl();
4327  TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
4328                                       Converted);
4329  TemplateArgumentList *InstantiationArgs = &TemplateArgList;
4330  bool AmbiguousPartialSpec = false;
4331  typedef PartialSpecMatchResult MatchResult;
4332  SmallVector<MatchResult, 4> Matched;
4333  SourceLocation PointOfInstantiation = TemplateNameLoc;
4334  TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation,
4335                                            /*ForTakingAddress=*/false);
4336
4337  // 1. Attempt to find the closest partial specialization that this
4338  // specializes, if any.
4339  // If any of the template arguments is dependent, then this is probably
4340  // a placeholder for an incomplete declarative context; which must be
4341  // complete by instantiation time. Thus, do not search through the partial
4342  // specializations yet.
4343  // TODO: Unify with InstantiateClassTemplateSpecialization()?
4344  //       Perhaps better after unification of DeduceTemplateArguments() and
4345  //       getMoreSpecializedPartialSpecialization().
4346  bool InstantiationDependent = false;
4347  if (!TemplateSpecializationType::anyDependentTemplateArguments(
4348          TemplateArgs, InstantiationDependent)) {
4349
4350    SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
4351    Template->getPartialSpecializations(PartialSpecs);
4352
4353    for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
4354      VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
4355      TemplateDeductionInfo Info(FailedCandidates.getLocation());
4356
4357      if (TemplateDeductionResult Result =
4358              DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
4359        // Store the failed-deduction information for use in diagnostics, later.
4360        // TODO: Actually use the failed-deduction info?
4361        FailedCandidates.addCandidate().set(
4362            DeclAccessPair::make(Template, AS_public), Partial,
4363            MakeDeductionFailureInfo(Context, Result, Info));
4364        (void)Result;
4365      } else {
4366        Matched.push_back(PartialSpecMatchResult());
4367        Matched.back().Partial = Partial;
4368        Matched.back().Args = Info.take();
4369      }
4370    }
4371
4372    if (Matched.size() >= 1) {
4373      SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
4374      if (Matched.size() == 1) {
4375        //   -- If exactly one matching specialization is found, the
4376        //      instantiation is generated from that specialization.
4377        // We don't need to do anything for this.
4378      } else {
4379        //   -- If more than one matching specialization is found, the
4380        //      partial order rules (14.5.4.2) are used to determine
4381        //      whether one of the specializations is more specialized
4382        //      than the others. If none of the specializations is more
4383        //      specialized than all of the other matching
4384        //      specializations, then the use of the variable template is
4385        //      ambiguous and the program is ill-formed.
4386        for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
4387                                                   PEnd = Matched.end();
4388             P != PEnd; ++P) {
4389          if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
4390                                                      PointOfInstantiation) ==
4391              P->Partial)
4392            Best = P;
4393        }
4394
4395        // Determine if the best partial specialization is more specialized than
4396        // the others.
4397        for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
4398                                                   PEnd = Matched.end();
4399             P != PEnd; ++P) {
4400          if (P != Best && getMoreSpecializedPartialSpecialization(
4401                               P->Partial, Best->Partial,
4402                               PointOfInstantiation) != Best->Partial) {
4403            AmbiguousPartialSpec = true;
4404            break;
4405          }
4406        }
4407      }
4408
4409      // Instantiate using the best variable template partial specialization.
4410      InstantiationPattern = Best->Partial;
4411      InstantiationArgs = Best->Args;
4412    } else {
4413      //   -- If no match is found, the instantiation is generated
4414      //      from the primary template.
4415      // InstantiationPattern = Template->getTemplatedDecl();
4416    }
4417  }
4418
4419  // 2. Create the canonical declaration.
4420  // Note that we do not instantiate a definition until we see an odr-use
4421  // in DoMarkVarDeclReferenced().
4422  // FIXME: LateAttrs et al.?
4423  VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
4424      Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
4425      Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/);
4426  if (!Decl)
4427    return true;
4428
4429  if (AmbiguousPartialSpec) {
4430    // Partial ordering did not produce a clear winner. Complain.
4431    Decl->setInvalidDecl();
4432    Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
4433        << Decl;
4434
4435    // Print the matching partial specializations.
4436    for (MatchResult P : Matched)
4437      Diag(P.Partial->getLocation(), diag::note_partial_spec_match)
4438          << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(),
4439                                             *P.Args);
4440    return true;
4441  }
4442
4443  if (VarTemplatePartialSpecializationDecl *D =
4444          dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
4445    Decl->setInstantiationOf(D, InstantiationArgs);
4446
4447  checkSpecializationVisibility(TemplateNameLoc, Decl);
4448
4449  assert(Decl && "No variable template specialization?");
4450  return Decl;
4451}
4452
4453ExprResult
4454Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
4455                         const DeclarationNameInfo &NameInfo,
4456                         VarTemplateDecl *Template, SourceLocation TemplateLoc,
4457                         const TemplateArgumentListInfo *TemplateArgs) {
4458
4459  DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
4460                                       *TemplateArgs);
4461  if (Decl.isInvalid())
4462    return ExprError();
4463
4464  VarDecl *Var = cast<VarDecl>(Decl.get());
4465  if (!Var->getTemplateSpecializationKind())
4466    Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
4467                                       NameInfo.getLoc());
4468
4469  // Build an ordinary singleton decl ref.
4470  return BuildDeclarationNameExpr(SS, NameInfo, Var,
4471                                  /*FoundD=*/nullptr, TemplateArgs);
4472}
4473
4474void Sema::diagnoseMissingTemplateArguments(TemplateName Name,
4475                                            SourceLocation Loc) {
4476  Diag(Loc, diag::err_template_missing_args)
4477    << (int)getTemplateNameKindForDiagnostics(Name) << Name;
4478  if (TemplateDecl *TD = Name.getAsTemplateDecl()) {
4479    Diag(TD->getLocation(), diag::note_template_decl_here)
4480      << TD->getTemplateParameters()->getSourceRange();
4481  }
4482}
4483
4484ExprResult
4485Sema::CheckConceptTemplateId(const CXXScopeSpec &SS,
4486                             SourceLocation TemplateKWLoc,
4487                             const DeclarationNameInfo &ConceptNameInfo,
4488                             NamedDecl *FoundDecl,
4489                             ConceptDecl *NamedConcept,
4490                             const TemplateArgumentListInfo *TemplateArgs) {
4491  assert(NamedConcept && "A concept template id without a template?");
4492
4493  llvm::SmallVector<TemplateArgument, 4> Converted;
4494  if (CheckTemplateArgumentList(NamedConcept, ConceptNameInfo.getLoc(),
4495                           const_cast<TemplateArgumentListInfo&>(*TemplateArgs),
4496                                /*PartialTemplateArgs=*/false, Converted,
4497                                /*UpdateArgsWithConversion=*/false))
4498    return ExprError();
4499
4500  ConstraintSatisfaction Satisfaction;
4501  bool AreArgsDependent = false;
4502  for (TemplateArgument &Arg : Converted) {
4503    if (Arg.isDependent()) {
4504      AreArgsDependent = true;
4505      break;
4506    }
4507  }
4508  if (!AreArgsDependent &&
4509      CheckConstraintSatisfaction(NamedConcept,
4510                                  {NamedConcept->getConstraintExpr()},
4511                                  Converted,
4512                                  SourceRange(SS.isSet() ? SS.getBeginLoc() :
4513                                                       ConceptNameInfo.getLoc(),
4514                                                TemplateArgs->getRAngleLoc()),
4515                                    Satisfaction))
4516      return ExprError();
4517
4518  return ConceptSpecializationExpr::Create(Context,
4519      SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{},
4520      TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept,
4521      ASTTemplateArgumentListInfo::Create(Context, *TemplateArgs), Converted,
4522      AreArgsDependent ? nullptr : &Satisfaction);
4523}
4524
4525ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
4526                                     SourceLocation TemplateKWLoc,
4527                                     LookupResult &R,
4528                                     bool RequiresADL,
4529                                 const TemplateArgumentListInfo *TemplateArgs) {
4530  // FIXME: Can we do any checking at this point? I guess we could check the
4531  // template arguments that we have against the template name, if the template
4532  // name refers to a single template. That's not a terribly common case,
4533  // though.
4534  // foo<int> could identify a single function unambiguously
4535  // This approach does NOT work, since f<int>(1);
4536  // gets resolved prior to resorting to overload resolution
4537  // i.e., template<class T> void f(double);
4538  //       vs template<class T, class U> void f(U);
4539
4540  // These should be filtered out by our callers.
4541  assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
4542
4543  // Non-function templates require a template argument list.
4544  if (auto *TD = R.getAsSingle<TemplateDecl>()) {
4545    if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) {
4546      diagnoseMissingTemplateArguments(TemplateName(TD), R.getNameLoc());
4547      return ExprError();
4548    }
4549  }
4550
4551  auto AnyDependentArguments = [&]() -> bool {
4552    bool InstantiationDependent;
4553    return TemplateArgs &&
4554           TemplateSpecializationType::anyDependentTemplateArguments(
4555               *TemplateArgs, InstantiationDependent);
4556  };
4557
4558  // In C++1y, check variable template ids.
4559  if (R.getAsSingle<VarTemplateDecl>() && !AnyDependentArguments()) {
4560    return CheckVarTemplateId(SS, R.getLookupNameInfo(),
4561                              R.getAsSingle<VarTemplateDecl>(),
4562                              TemplateKWLoc, TemplateArgs);
4563  }
4564
4565  if (R.getAsSingle<ConceptDecl>()) {
4566    return CheckConceptTemplateId(SS, TemplateKWLoc, R.getLookupNameInfo(),
4567                                  R.getFoundDecl(),
4568                                  R.getAsSingle<ConceptDecl>(), TemplateArgs);
4569  }
4570
4571  // We don't want lookup warnings at this point.
4572  R.suppressDiagnostics();
4573
4574  UnresolvedLookupExpr *ULE
4575    = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
4576                                   SS.getWithLocInContext(Context),
4577                                   TemplateKWLoc,
4578                                   R.getLookupNameInfo(),
4579                                   RequiresADL, TemplateArgs,
4580                                   R.begin(), R.end());
4581
4582  return ULE;
4583}
4584
4585// We actually only call this from template instantiation.
4586ExprResult
4587Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
4588                                   SourceLocation TemplateKWLoc,
4589                                   const DeclarationNameInfo &NameInfo,
4590                             const TemplateArgumentListInfo *TemplateArgs) {
4591
4592  assert(TemplateArgs || TemplateKWLoc.isValid());
4593  DeclContext *DC;
4594  if (!(DC = computeDeclContext(SS, false)) ||
4595      DC->isDependentContext() ||
4596      RequireCompleteDeclContext(SS, DC))
4597    return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
4598
4599  bool MemberOfUnknownSpecialization;
4600  LookupResult R(*this, NameInfo, LookupOrdinaryName);
4601  if (LookupTemplateName(R, (Scope *)nullptr, SS, QualType(),
4602                         /*Entering*/false, MemberOfUnknownSpecialization,
4603                         TemplateKWLoc))
4604    return ExprError();
4605
4606  if (R.isAmbiguous())
4607    return ExprError();
4608
4609  if (R.empty()) {
4610    Diag(NameInfo.getLoc(), diag::err_no_member)
4611      << NameInfo.getName() << DC << SS.getRange();
4612    return ExprError();
4613  }
4614
4615  if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
4616    Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
4617      << SS.getScopeRep()
4618      << NameInfo.getName().getAsString() << SS.getRange();
4619    Diag(Temp->getLocation(), diag::note_referenced_class_template);
4620    return ExprError();
4621  }
4622
4623  return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
4624}
4625
4626/// Form a dependent template name.
4627///
4628/// This action forms a dependent template name given the template
4629/// name and its (presumably dependent) scope specifier. For
4630/// example, given "MetaFun::template apply", the scope specifier \p
4631/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
4632/// of the "template" keyword, and "apply" is the \p Name.
4633TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
4634                                                  CXXScopeSpec &SS,
4635                                                  SourceLocation TemplateKWLoc,
4636                                                  const UnqualifiedId &Name,
4637                                                  ParsedType ObjectType,
4638                                                  bool EnteringContext,
4639                                                  TemplateTy &Result,
4640                                                  bool AllowInjectedClassName) {
4641  if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
4642    Diag(TemplateKWLoc,
4643         getLangOpts().CPlusPlus11 ?
4644           diag::warn_cxx98_compat_template_outside_of_template :
4645           diag::ext_template_outside_of_template)
4646      << FixItHint::CreateRemoval(TemplateKWLoc);
4647
4648  DeclContext *LookupCtx = nullptr;
4649  if (SS.isSet())
4650    LookupCtx = computeDeclContext(SS, EnteringContext);
4651  if (!LookupCtx && ObjectType)
4652    LookupCtx = computeDeclContext(ObjectType.get());
4653  if (LookupCtx) {
4654    // C++0x [temp.names]p5:
4655    //   If a name prefixed by the keyword template is not the name of
4656    //   a template, the program is ill-formed. [Note: the keyword
4657    //   template may not be applied to non-template members of class
4658    //   templates. -end note ] [ Note: as is the case with the
4659    //   typename prefix, the template prefix is allowed in cases
4660    //   where it is not strictly necessary; i.e., when the
4661    //   nested-name-specifier or the expression on the left of the ->
4662    //   or . is not dependent on a template-parameter, or the use
4663    //   does not appear in the scope of a template. -end note]
4664    //
4665    // Note: C++03 was more strict here, because it banned the use of
4666    // the "template" keyword prior to a template-name that was not a
4667    // dependent name. C++ DR468 relaxed this requirement (the
4668    // "template" keyword is now permitted). We follow the C++0x
4669    // rules, even in C++03 mode with a warning, retroactively applying the DR.
4670    bool MemberOfUnknownSpecialization;
4671    TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
4672                                          ObjectType, EnteringContext, Result,
4673                                          MemberOfUnknownSpecialization);
4674    if (TNK == TNK_Non_template && MemberOfUnknownSpecialization) {
4675      // This is a dependent template. Handle it below.
4676    } else if (TNK == TNK_Non_template) {
4677      // Do the lookup again to determine if this is a "nothing found" case or
4678      // a "not a template" case. FIXME: Refactor isTemplateName so we don't
4679      // need to do this.
4680      DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name);
4681      LookupResult R(*this, DNI.getName(), Name.getBeginLoc(),
4682                     LookupOrdinaryName);
4683      bool MOUS;
4684      if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext,
4685                              MOUS, TemplateKWLoc) && !R.isAmbiguous())
4686        Diag(Name.getBeginLoc(), diag::err_no_member)
4687            << DNI.getName() << LookupCtx << SS.getRange();
4688      return TNK_Non_template;
4689    } else {
4690      // We found something; return it.
4691      auto *LookupRD = dyn_cast<CXXRecordDecl>(LookupCtx);
4692      if (!AllowInjectedClassName && SS.isSet() && LookupRD &&
4693          Name.getKind() == UnqualifiedIdKind::IK_Identifier &&
4694          Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) {
4695        // C++14 [class.qual]p2:
4696        //   In a lookup in which function names are not ignored and the
4697        //   nested-name-specifier nominates a class C, if the name specified
4698        //   [...] is the injected-class-name of C, [...] the name is instead
4699        //   considered to name the constructor
4700        //
4701        // We don't get here if naming the constructor would be valid, so we
4702        // just reject immediately and recover by treating the
4703        // injected-class-name as naming the template.
4704        Diag(Name.getBeginLoc(),
4705             diag::ext_out_of_line_qualified_id_type_names_constructor)
4706            << Name.Identifier
4707            << 0 /*injected-class-name used as template name*/
4708            << 1 /*'template' keyword was used*/;
4709      }
4710      return TNK;
4711    }
4712  }
4713
4714  NestedNameSpecifier *Qualifier = SS.getScopeRep();
4715
4716  switch (Name.getKind()) {
4717  case UnqualifiedIdKind::IK_Identifier:
4718    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
4719                                                              Name.Identifier));
4720    return TNK_Dependent_template_name;
4721
4722  case UnqualifiedIdKind::IK_OperatorFunctionId:
4723    Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
4724                                             Name.OperatorFunctionId.Operator));
4725    return TNK_Function_template;
4726
4727  case UnqualifiedIdKind::IK_LiteralOperatorId:
4728    llvm_unreachable("literal operator id cannot have a dependent scope");
4729
4730  default:
4731    break;
4732  }
4733
4734  Diag(Name.getBeginLoc(), diag::err_template_kw_refers_to_non_template)
4735      << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange()
4736      << TemplateKWLoc;
4737  return TNK_Non_template;
4738}
4739
4740bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
4741                                     TemplateArgumentLoc &AL,
4742                          SmallVectorImpl<TemplateArgument> &Converted) {
4743  const TemplateArgument &Arg = AL.getArgument();
4744  QualType ArgType;
4745  TypeSourceInfo *TSI = nullptr;
4746
4747  // Check template type parameter.
4748  switch(Arg.getKind()) {
4749  case TemplateArgument::Type:
4750    // C++ [temp.arg.type]p1:
4751    //   A template-argument for a template-parameter which is a
4752    //   type shall be a type-id.
4753    ArgType = Arg.getAsType();
4754    TSI = AL.getTypeSourceInfo();
4755    break;
4756  case TemplateArgument::Template:
4757  case TemplateArgument::TemplateExpansion: {
4758    // We have a template type parameter but the template argument
4759    // is a template without any arguments.
4760    SourceRange SR = AL.getSourceRange();
4761    TemplateName Name = Arg.getAsTemplateOrTemplatePattern();
4762    diagnoseMissingTemplateArguments(Name, SR.getEnd());
4763    return true;
4764  }
4765  case TemplateArgument::Expression: {
4766    // We have a template type parameter but the template argument is an
4767    // expression; see if maybe it is missing the "typename" keyword.
4768    CXXScopeSpec SS;
4769    DeclarationNameInfo NameInfo;
4770
4771    if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
4772      SS.Adopt(ArgExpr->getQualifierLoc());
4773      NameInfo = ArgExpr->getNameInfo();
4774    } else if (DependentScopeDeclRefExpr *ArgExpr =
4775               dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
4776      SS.Adopt(ArgExpr->getQualifierLoc());
4777      NameInfo = ArgExpr->getNameInfo();
4778    } else if (CXXDependentScopeMemberExpr *ArgExpr =
4779               dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
4780      if (ArgExpr->isImplicitAccess()) {
4781        SS.Adopt(ArgExpr->getQualifierLoc());
4782        NameInfo = ArgExpr->getMemberNameInfo();
4783      }
4784    }
4785
4786    if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
4787      LookupResult Result(*this, NameInfo, LookupOrdinaryName);
4788      LookupParsedName(Result, CurScope, &SS);
4789
4790      if (Result.getAsSingle<TypeDecl>() ||
4791          Result.getResultKind() ==
4792              LookupResult::NotFoundInCurrentInstantiation) {
4793        // Suggest that the user add 'typename' before the NNS.
4794        SourceLocation Loc = AL.getSourceRange().getBegin();
4795        Diag(Loc, getLangOpts().MSVCCompat
4796                      ? diag::ext_ms_template_type_arg_missing_typename
4797                      : diag::err_template_arg_must_be_type_suggest)
4798            << FixItHint::CreateInsertion(Loc, "typename ");
4799        Diag(Param->getLocation(), diag::note_template_param_here);
4800
4801        // Recover by synthesizing a type using the location information that we
4802        // already have.
4803        ArgType =
4804            Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II);
4805        TypeLocBuilder TLB;
4806        DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
4807        TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
4808        TL.setQualifierLoc(SS.getWithLocInContext(Context));
4809        TL.setNameLoc(NameInfo.getLoc());
4810        TSI = TLB.getTypeSourceInfo(Context, ArgType);
4811
4812        // Overwrite our input TemplateArgumentLoc so that we can recover
4813        // properly.
4814        AL = TemplateArgumentLoc(TemplateArgument(ArgType),
4815                                 TemplateArgumentLocInfo(TSI));
4816
4817        break;
4818      }
4819    }
4820    // fallthrough
4821    LLVM_FALLTHROUGH;
4822  }
4823  default: {
4824    // We have a template type parameter but the template argument
4825    // is not a type.
4826    SourceRange SR = AL.getSourceRange();
4827    Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
4828    Diag(Param->getLocation(), diag::note_template_param_here);
4829
4830    return true;
4831  }
4832  }
4833
4834  if (CheckTemplateArgument(Param, TSI))
4835    return true;
4836
4837  // Add the converted template type argument.
4838  ArgType = Context.getCanonicalType(ArgType);
4839
4840  // Objective-C ARC:
4841  //   If an explicitly-specified template argument type is a lifetime type
4842  //   with no lifetime qualifier, the __strong lifetime qualifier is inferred.
4843  if (getLangOpts().ObjCAutoRefCount &&
4844      ArgType->isObjCLifetimeType() &&
4845      !ArgType.getObjCLifetime()) {
4846    Qualifiers Qs;
4847    Qs.setObjCLifetime(Qualifiers::OCL_Strong);
4848    ArgType = Context.getQualifiedType(ArgType, Qs);
4849  }
4850
4851  Converted.push_back(TemplateArgument(ArgType));
4852  return false;
4853}
4854
4855/// Substitute template arguments into the default template argument for
4856/// the given template type parameter.
4857///
4858/// \param SemaRef the semantic analysis object for which we are performing
4859/// the substitution.
4860///
4861/// \param Template the template that we are synthesizing template arguments
4862/// for.
4863///
4864/// \param TemplateLoc the location of the template name that started the
4865/// template-id we are checking.
4866///
4867/// \param RAngleLoc the location of the right angle bracket ('>') that
4868/// terminates the template-id.
4869///
4870/// \param Param the template template parameter whose default we are
4871/// substituting into.
4872///
4873/// \param Converted the list of template arguments provided for template
4874/// parameters that precede \p Param in the template parameter list.
4875/// \returns the substituted template argument, or NULL if an error occurred.
4876static TypeSourceInfo *
4877SubstDefaultTemplateArgument(Sema &SemaRef,
4878                             TemplateDecl *Template,
4879                             SourceLocation TemplateLoc,
4880                             SourceLocation RAngleLoc,
4881                             TemplateTypeParmDecl *Param,
4882                             SmallVectorImpl<TemplateArgument> &Converted) {
4883  TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
4884
4885  // If the argument type is dependent, instantiate it now based
4886  // on the previously-computed template arguments.
4887  if (ArgType->getType()->isInstantiationDependentType()) {
4888    Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
4889                                     Param, Template, Converted,
4890                                     SourceRange(TemplateLoc, RAngleLoc));
4891    if (Inst.isInvalid())
4892      return nullptr;
4893
4894    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
4895
4896    // Only substitute for the innermost template argument list.
4897    MultiLevelTemplateArgumentList TemplateArgLists;
4898    TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
4899    for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
4900      TemplateArgLists.addOuterTemplateArguments(None);
4901
4902    Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
4903    ArgType =
4904        SemaRef.SubstType(ArgType, TemplateArgLists,
4905                          Param->getDefaultArgumentLoc(), Param->getDeclName());
4906  }
4907
4908  return ArgType;
4909}
4910
4911/// Substitute template arguments into the default template argument for
4912/// the given non-type template parameter.
4913///
4914/// \param SemaRef the semantic analysis object for which we are performing
4915/// the substitution.
4916///
4917/// \param Template the template that we are synthesizing template arguments
4918/// for.
4919///
4920/// \param TemplateLoc the location of the template name that started the
4921/// template-id we are checking.
4922///
4923/// \param RAngleLoc the location of the right angle bracket ('>') that
4924/// terminates the template-id.
4925///
4926/// \param Param the non-type template parameter whose default we are
4927/// substituting into.
4928///
4929/// \param Converted the list of template arguments provided for template
4930/// parameters that precede \p Param in the template parameter list.
4931///
4932/// \returns the substituted template argument, or NULL if an error occurred.
4933static ExprResult
4934SubstDefaultTemplateArgument(Sema &SemaRef,
4935                             TemplateDecl *Template,
4936                             SourceLocation TemplateLoc,
4937                             SourceLocation RAngleLoc,
4938                             NonTypeTemplateParmDecl *Param,
4939                        SmallVectorImpl<TemplateArgument> &Converted) {
4940  Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
4941                                   Param, Template, Converted,
4942                                   SourceRange(TemplateLoc, RAngleLoc));
4943  if (Inst.isInvalid())
4944    return ExprError();
4945
4946  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
4947
4948  // Only substitute for the innermost template argument list.
4949  MultiLevelTemplateArgumentList TemplateArgLists;
4950  TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
4951  for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
4952    TemplateArgLists.addOuterTemplateArguments(None);
4953
4954  Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
4955  EnterExpressionEvaluationContext ConstantEvaluated(
4956      SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
4957  return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
4958}
4959
4960/// Substitute template arguments into the default template argument for
4961/// the given template template parameter.
4962///
4963/// \param SemaRef the semantic analysis object for which we are performing
4964/// the substitution.
4965///
4966/// \param Template the template that we are synthesizing template arguments
4967/// for.
4968///
4969/// \param TemplateLoc the location of the template name that started the
4970/// template-id we are checking.
4971///
4972/// \param RAngleLoc the location of the right angle bracket ('>') that
4973/// terminates the template-id.
4974///
4975/// \param Param the template template parameter whose default we are
4976/// substituting into.
4977///
4978/// \param Converted the list of template arguments provided for template
4979/// parameters that precede \p Param in the template parameter list.
4980///
4981/// \param QualifierLoc Will be set to the nested-name-specifier (with
4982/// source-location information) that precedes the template name.
4983///
4984/// \returns the substituted template argument, or NULL if an error occurred.
4985static TemplateName
4986SubstDefaultTemplateArgument(Sema &SemaRef,
4987                             TemplateDecl *Template,
4988                             SourceLocation TemplateLoc,
4989                             SourceLocation RAngleLoc,
4990                             TemplateTemplateParmDecl *Param,
4991                       SmallVectorImpl<TemplateArgument> &Converted,
4992                             NestedNameSpecifierLoc &QualifierLoc) {
4993  Sema::InstantiatingTemplate Inst(
4994      SemaRef, TemplateLoc, TemplateParameter(Param), Template, Converted,
4995      SourceRange(TemplateLoc, RAngleLoc));
4996  if (Inst.isInvalid())
4997    return TemplateName();
4998
4999  TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
5000
5001  // Only substitute for the innermost template argument list.
5002  MultiLevelTemplateArgumentList TemplateArgLists;
5003  TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
5004  for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5005    TemplateArgLists.addOuterTemplateArguments(None);
5006
5007  Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
5008  // Substitute into the nested-name-specifier first,
5009  QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
5010  if (QualifierLoc) {
5011    QualifierLoc =
5012        SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
5013    if (!QualifierLoc)
5014      return TemplateName();
5015  }
5016
5017  return SemaRef.SubstTemplateName(
5018             QualifierLoc,
5019             Param->getDefaultArgument().getArgument().getAsTemplate(),
5020             Param->getDefaultArgument().getTemplateNameLoc(),
5021             TemplateArgLists);
5022}
5023
5024/// If the given template parameter has a default template
5025/// argument, substitute into that default template argument and
5026/// return the corresponding template argument.
5027TemplateArgumentLoc
5028Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
5029                                              SourceLocation TemplateLoc,
5030                                              SourceLocation RAngleLoc,
5031                                              Decl *Param,
5032                                              SmallVectorImpl<TemplateArgument>
5033                                                &Converted,
5034                                              bool &HasDefaultArg) {
5035  HasDefaultArg = false;
5036
5037  if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
5038    if (!hasVisibleDefaultArgument(TypeParm))
5039      return TemplateArgumentLoc();
5040
5041    HasDefaultArg = true;
5042    TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
5043                                                      TemplateLoc,
5044                                                      RAngleLoc,
5045                                                      TypeParm,
5046                                                      Converted);
5047    if (DI)
5048      return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
5049
5050    return TemplateArgumentLoc();
5051  }
5052
5053  if (NonTypeTemplateParmDecl *NonTypeParm
5054        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5055    if (!hasVisibleDefaultArgument(NonTypeParm))
5056      return TemplateArgumentLoc();
5057
5058    HasDefaultArg = true;
5059    ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
5060                                                  TemplateLoc,
5061                                                  RAngleLoc,
5062                                                  NonTypeParm,
5063                                                  Converted);
5064    if (Arg.isInvalid())
5065      return TemplateArgumentLoc();
5066
5067    Expr *ArgE = Arg.getAs<Expr>();
5068    return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
5069  }
5070
5071  TemplateTemplateParmDecl *TempTempParm
5072    = cast<TemplateTemplateParmDecl>(Param);
5073  if (!hasVisibleDefaultArgument(TempTempParm))
5074    return TemplateArgumentLoc();
5075
5076  HasDefaultArg = true;
5077  NestedNameSpecifierLoc QualifierLoc;
5078  TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
5079                                                    TemplateLoc,
5080                                                    RAngleLoc,
5081                                                    TempTempParm,
5082                                                    Converted,
5083                                                    QualifierLoc);
5084  if (TName.isNull())
5085    return TemplateArgumentLoc();
5086
5087  return TemplateArgumentLoc(TemplateArgument(TName),
5088                TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
5089                TempTempParm->getDefaultArgument().getTemplateNameLoc());
5090}
5091
5092/// Convert a template-argument that we parsed as a type into a template, if
5093/// possible. C++ permits injected-class-names to perform dual service as
5094/// template template arguments and as template type arguments.
5095static TemplateArgumentLoc convertTypeTemplateArgumentToTemplate(TypeLoc TLoc) {
5096  // Extract and step over any surrounding nested-name-specifier.
5097  NestedNameSpecifierLoc QualLoc;
5098  if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) {
5099    if (ETLoc.getTypePtr()->getKeyword() != ETK_None)
5100      return TemplateArgumentLoc();
5101
5102    QualLoc = ETLoc.getQualifierLoc();
5103    TLoc = ETLoc.getNamedTypeLoc();
5104  }
5105
5106  // If this type was written as an injected-class-name, it can be used as a
5107  // template template argument.
5108  if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>())
5109    return TemplateArgumentLoc(InjLoc.getTypePtr()->getTemplateName(),
5110                               QualLoc, InjLoc.getNameLoc());
5111
5112  // If this type was written as an injected-class-name, it may have been
5113  // converted to a RecordType during instantiation. If the RecordType is
5114  // *not* wrapped in a TemplateSpecializationType and denotes a class
5115  // template specialization, it must have come from an injected-class-name.
5116  if (auto RecLoc = TLoc.getAs<RecordTypeLoc>())
5117    if (auto *CTSD =
5118            dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl()))
5119      return TemplateArgumentLoc(TemplateName(CTSD->getSpecializedTemplate()),
5120                                 QualLoc, RecLoc.getNameLoc());
5121
5122  return TemplateArgumentLoc();
5123}
5124
5125/// Check that the given template argument corresponds to the given
5126/// template parameter.
5127///
5128/// \param Param The template parameter against which the argument will be
5129/// checked.
5130///
5131/// \param Arg The template argument, which may be updated due to conversions.
5132///
5133/// \param Template The template in which the template argument resides.
5134///
5135/// \param TemplateLoc The location of the template name for the template
5136/// whose argument list we're matching.
5137///
5138/// \param RAngleLoc The location of the right angle bracket ('>') that closes
5139/// the template argument list.
5140///
5141/// \param ArgumentPackIndex The index into the argument pack where this
5142/// argument will be placed. Only valid if the parameter is a parameter pack.
5143///
5144/// \param Converted The checked, converted argument will be added to the
5145/// end of this small vector.
5146///
5147/// \param CTAK Describes how we arrived at this particular template argument:
5148/// explicitly written, deduced, etc.
5149///
5150/// \returns true on error, false otherwise.
5151bool Sema::CheckTemplateArgument(NamedDecl *Param,
5152                                 TemplateArgumentLoc &Arg,
5153                                 NamedDecl *Template,
5154                                 SourceLocation TemplateLoc,
5155                                 SourceLocation RAngleLoc,
5156                                 unsigned ArgumentPackIndex,
5157                            SmallVectorImpl<TemplateArgument> &Converted,
5158                                 CheckTemplateArgumentKind CTAK) {
5159  // Check template type parameters.
5160  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
5161    return CheckTemplateTypeArgument(TTP, Arg, Converted);
5162
5163  // Check non-type template parameters.
5164  if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5165    // Do substitution on the type of the non-type template parameter
5166    // with the template arguments we've seen thus far.  But if the
5167    // template has a dependent context then we cannot substitute yet.
5168    QualType NTTPType = NTTP->getType();
5169    if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
5170      NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
5171
5172    if (NTTPType->isInstantiationDependentType() &&
5173        !isa<TemplateTemplateParmDecl>(Template) &&
5174        !Template->getDeclContext()->isDependentContext()) {
5175      // Do substitution on the type of the non-type template parameter.
5176      InstantiatingTemplate Inst(*this, TemplateLoc, Template,
5177                                 NTTP, Converted,
5178                                 SourceRange(TemplateLoc, RAngleLoc));
5179      if (Inst.isInvalid())
5180        return true;
5181
5182      TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
5183                                        Converted);
5184
5185      // If the parameter is a pack expansion, expand this slice of the pack.
5186      if (auto *PET = NTTPType->getAs<PackExpansionType>()) {
5187        Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this,
5188                                                           ArgumentPackIndex);
5189        NTTPType = SubstType(PET->getPattern(),
5190                             MultiLevelTemplateArgumentList(TemplateArgs),
5191                             NTTP->getLocation(),
5192                             NTTP->getDeclName());
5193      } else {
5194        NTTPType = SubstType(NTTPType,
5195                             MultiLevelTemplateArgumentList(TemplateArgs),
5196                             NTTP->getLocation(),
5197                             NTTP->getDeclName());
5198      }
5199
5200      // If that worked, check the non-type template parameter type
5201      // for validity.
5202      if (!NTTPType.isNull())
5203        NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
5204                                                     NTTP->getLocation());
5205      if (NTTPType.isNull())
5206        return true;
5207    }
5208
5209    switch (Arg.getArgument().getKind()) {
5210    case TemplateArgument::Null:
5211      llvm_unreachable("Should never see a NULL template argument here");
5212
5213    case TemplateArgument::Expression: {
5214      TemplateArgument Result;
5215      unsigned CurSFINAEErrors = NumSFINAEErrors;
5216      ExprResult Res =
5217        CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
5218                              Result, CTAK);
5219      if (Res.isInvalid())
5220        return true;
5221      // If the current template argument causes an error, give up now.
5222      if (CurSFINAEErrors < NumSFINAEErrors)
5223        return true;
5224
5225      // If the resulting expression is new, then use it in place of the
5226      // old expression in the template argument.
5227      if (Res.get() != Arg.getArgument().getAsExpr()) {
5228        TemplateArgument TA(Res.get());
5229        Arg = TemplateArgumentLoc(TA, Res.get());
5230      }
5231
5232      Converted.push_back(Result);
5233      break;
5234    }
5235
5236    case TemplateArgument::Declaration:
5237    case TemplateArgument::Integral:
5238    case TemplateArgument::NullPtr:
5239      // We've already checked this template argument, so just copy
5240      // it to the list of converted arguments.
5241      Converted.push_back(Arg.getArgument());
5242      break;
5243
5244    case TemplateArgument::Template:
5245    case TemplateArgument::TemplateExpansion:
5246      // We were given a template template argument. It may not be ill-formed;
5247      // see below.
5248      if (DependentTemplateName *DTN
5249            = Arg.getArgument().getAsTemplateOrTemplatePattern()
5250                                              .getAsDependentTemplateName()) {
5251        // We have a template argument such as \c T::template X, which we
5252        // parsed as a template template argument. However, since we now
5253        // know that we need a non-type template argument, convert this
5254        // template name into an expression.
5255
5256        DeclarationNameInfo NameInfo(DTN->getIdentifier(),
5257                                     Arg.getTemplateNameLoc());
5258
5259        CXXScopeSpec SS;
5260        SS.Adopt(Arg.getTemplateQualifierLoc());
5261        // FIXME: the template-template arg was a DependentTemplateName,
5262        // so it was provided with a template keyword. However, its source
5263        // location is not stored in the template argument structure.
5264        SourceLocation TemplateKWLoc;
5265        ExprResult E = DependentScopeDeclRefExpr::Create(
5266            Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
5267            nullptr);
5268
5269        // If we parsed the template argument as a pack expansion, create a
5270        // pack expansion expression.
5271        if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
5272          E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
5273          if (E.isInvalid())
5274            return true;
5275        }
5276
5277        TemplateArgument Result;
5278        E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result);
5279        if (E.isInvalid())
5280          return true;
5281
5282        Converted.push_back(Result);
5283        break;
5284      }
5285
5286      // We have a template argument that actually does refer to a class
5287      // template, alias template, or template template parameter, and
5288      // therefore cannot be a non-type template argument.
5289      Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
5290        << Arg.getSourceRange();
5291
5292      Diag(Param->getLocation(), diag::note_template_param_here);
5293      return true;
5294
5295    case TemplateArgument::Type: {
5296      // We have a non-type template parameter but the template
5297      // argument is a type.
5298
5299      // C++ [temp.arg]p2:
5300      //   In a template-argument, an ambiguity between a type-id and
5301      //   an expression is resolved to a type-id, regardless of the
5302      //   form of the corresponding template-parameter.
5303      //
5304      // We warn specifically about this case, since it can be rather
5305      // confusing for users.
5306      QualType T = Arg.getArgument().getAsType();
5307      SourceRange SR = Arg.getSourceRange();
5308      if (T->isFunctionType())
5309        Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
5310      else
5311        Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
5312      Diag(Param->getLocation(), diag::note_template_param_here);
5313      return true;
5314    }
5315
5316    case TemplateArgument::Pack:
5317      llvm_unreachable("Caller must expand template argument packs");
5318    }
5319
5320    return false;
5321  }
5322
5323
5324  // Check template template parameters.
5325  TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
5326
5327  TemplateParameterList *Params = TempParm->getTemplateParameters();
5328  if (TempParm->isExpandedParameterPack())
5329    Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex);
5330
5331  // Substitute into the template parameter list of the template
5332  // template parameter, since previously-supplied template arguments
5333  // may appear within the template template parameter.
5334  //
5335  // FIXME: Skip this if the parameters aren't instantiation-dependent.
5336  {
5337    // Set up a template instantiation context.
5338    LocalInstantiationScope Scope(*this);
5339    InstantiatingTemplate Inst(*this, TemplateLoc, Template,
5340                               TempParm, Converted,
5341                               SourceRange(TemplateLoc, RAngleLoc));
5342    if (Inst.isInvalid())
5343      return true;
5344
5345    TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
5346    Params = SubstTemplateParams(Params, CurContext,
5347                                 MultiLevelTemplateArgumentList(TemplateArgs));
5348    if (!Params)
5349      return true;
5350  }
5351
5352  // C++1z [temp.local]p1: (DR1004)
5353  //   When [the injected-class-name] is used [...] as a template-argument for
5354  //   a template template-parameter [...] it refers to the class template
5355  //   itself.
5356  if (Arg.getArgument().getKind() == TemplateArgument::Type) {
5357    TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate(
5358        Arg.getTypeSourceInfo()->getTypeLoc());
5359    if (!ConvertedArg.getArgument().isNull())
5360      Arg = ConvertedArg;
5361  }
5362
5363  switch (Arg.getArgument().getKind()) {
5364  case TemplateArgument::Null:
5365    llvm_unreachable("Should never see a NULL template argument here");
5366
5367  case TemplateArgument::Template:
5368  case TemplateArgument::TemplateExpansion:
5369    if (CheckTemplateTemplateArgument(TempParm, Params, Arg))
5370      return true;
5371
5372    Converted.push_back(Arg.getArgument());
5373    break;
5374
5375  case TemplateArgument::Expression:
5376  case TemplateArgument::Type:
5377    // We have a template template parameter but the template
5378    // argument does not refer to a template.
5379    Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
5380      << getLangOpts().CPlusPlus11;
5381    return true;
5382
5383  case TemplateArgument::Declaration:
5384    llvm_unreachable("Declaration argument with template template parameter");
5385  case TemplateArgument::Integral:
5386    llvm_unreachable("Integral argument with template template parameter");
5387  case TemplateArgument::NullPtr:
5388    llvm_unreachable("Null pointer argument with template template parameter");
5389
5390  case TemplateArgument::Pack:
5391    llvm_unreachable("Caller must expand template argument packs");
5392  }
5393
5394  return false;
5395}
5396
5397/// Check whether the template parameter is a pack expansion, and if so,
5398/// determine the number of parameters produced by that expansion. For instance:
5399///
5400/// \code
5401/// template<typename ...Ts> struct A {
5402///   template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
5403/// };
5404/// \endcode
5405///
5406/// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
5407/// is not a pack expansion, so returns an empty Optional.
5408static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
5409  if (TemplateTypeParmDecl *TTP
5410        = dyn_cast<TemplateTypeParmDecl>(Param)) {
5411    if (TTP->isExpandedParameterPack())
5412      return TTP->getNumExpansionParameters();
5413  }
5414
5415  if (NonTypeTemplateParmDecl *NTTP
5416        = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5417    if (NTTP->isExpandedParameterPack())
5418      return NTTP->getNumExpansionTypes();
5419  }
5420
5421  if (TemplateTemplateParmDecl *TTP
5422        = dyn_cast<TemplateTemplateParmDecl>(Param)) {
5423    if (TTP->isExpandedParameterPack())
5424      return TTP->getNumExpansionTemplateParameters();
5425  }
5426
5427  return None;
5428}
5429
5430/// Diagnose a missing template argument.
5431template<typename TemplateParmDecl>
5432static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc,
5433                                    TemplateDecl *TD,
5434                                    const TemplateParmDecl *D,
5435                                    TemplateArgumentListInfo &Args) {
5436  // Dig out the most recent declaration of the template parameter; there may be
5437  // declarations of the template that are more recent than TD.
5438  D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl())
5439                                 ->getTemplateParameters()
5440                                 ->getParam(D->getIndex()));
5441
5442  // If there's a default argument that's not visible, diagnose that we're
5443  // missing a module import.
5444  llvm::SmallVector<Module*, 8> Modules;
5445  if (D->hasDefaultArgument() && !S.hasVisibleDefaultArgument(D, &Modules)) {
5446    S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD),
5447                            D->getDefaultArgumentLoc(), Modules,
5448                            Sema::MissingImportKind::DefaultArgument,
5449                            /*Recover*/true);
5450    return true;
5451  }
5452
5453  // FIXME: If there's a more recent default argument that *is* visible,
5454  // diagnose that it was declared too late.
5455
5456  TemplateParameterList *Params = TD->getTemplateParameters();
5457
5458  S.Diag(Loc, diag::err_template_arg_list_different_arity)
5459    << /*not enough args*/0
5460    << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD))
5461    << TD;
5462  S.Diag(TD->getLocation(), diag::note_template_decl_here)
5463    << Params->getSourceRange();
5464  return true;
5465}
5466
5467/// Check that the given template argument list is well-formed
5468/// for specializing the given template.
5469bool Sema::CheckTemplateArgumentList(
5470    TemplateDecl *Template, SourceLocation TemplateLoc,
5471    TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs,
5472    SmallVectorImpl<TemplateArgument> &Converted,
5473    bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied) {
5474
5475  if (ConstraintsNotSatisfied)
5476    *ConstraintsNotSatisfied = false;
5477
5478  // Make a copy of the template arguments for processing.  Only make the
5479  // changes at the end when successful in matching the arguments to the
5480  // template.
5481  TemplateArgumentListInfo NewArgs = TemplateArgs;
5482
5483  // Make sure we get the template parameter list from the most
5484  // recentdeclaration, since that is the only one that has is guaranteed to
5485  // have all the default template argument information.
5486  TemplateParameterList *Params =
5487      cast<TemplateDecl>(Template->getMostRecentDecl())
5488          ->getTemplateParameters();
5489
5490  SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
5491
5492  // C++ [temp.arg]p1:
5493  //   [...] The type and form of each template-argument specified in
5494  //   a template-id shall match the type and form specified for the
5495  //   corresponding parameter declared by the template in its
5496  //   template-parameter-list.
5497  bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
5498  SmallVector<TemplateArgument, 2> ArgumentPack;
5499  unsigned ArgIdx = 0, NumArgs = NewArgs.size();
5500  LocalInstantiationScope InstScope(*this, true);
5501  for (TemplateParameterList::iterator Param = Params->begin(),
5502                                       ParamEnd = Params->end();
5503       Param != ParamEnd; /* increment in loop */) {
5504    // If we have an expanded parameter pack, make sure we don't have too
5505    // many arguments.
5506    if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
5507      if (*Expansions == ArgumentPack.size()) {
5508        // We're done with this parameter pack. Pack up its arguments and add
5509        // them to the list.
5510        Converted.push_back(
5511            TemplateArgument::CreatePackCopy(Context, ArgumentPack));
5512        ArgumentPack.clear();
5513
5514        // This argument is assigned to the next parameter.
5515        ++Param;
5516        continue;
5517      } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
5518        // Not enough arguments for this parameter pack.
5519        Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
5520          << /*not enough args*/0
5521          << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
5522          << Template;
5523        Diag(Template->getLocation(), diag::note_template_decl_here)
5524          << Params->getSourceRange();
5525        return true;
5526      }
5527    }
5528
5529    if (ArgIdx < NumArgs) {
5530      // Check the template argument we were given.
5531      if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template,
5532                                TemplateLoc, RAngleLoc,
5533                                ArgumentPack.size(), Converted))
5534        return true;
5535
5536      bool PackExpansionIntoNonPack =
5537          NewArgs[ArgIdx].getArgument().isPackExpansion() &&
5538          (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
5539      if (PackExpansionIntoNonPack && (isa<TypeAliasTemplateDecl>(Template) ||
5540                                       isa<ConceptDecl>(Template))) {
5541        // Core issue 1430: we have a pack expansion as an argument to an
5542        // alias template, and it's not part of a parameter pack. This
5543        // can't be canonicalized, so reject it now.
5544        // As for concepts - we cannot normalize constraints where this
5545        // situation exists.
5546        Diag(NewArgs[ArgIdx].getLocation(),
5547             diag::err_template_expansion_into_fixed_list)
5548          << (isa<ConceptDecl>(Template) ? 1 : 0)
5549          << NewArgs[ArgIdx].getSourceRange();
5550        Diag((*Param)->getLocation(), diag::note_template_param_here);
5551        return true;
5552      }
5553
5554      // We're now done with this argument.
5555      ++ArgIdx;
5556
5557      if ((*Param)->isTemplateParameterPack()) {
5558        // The template parameter was a template parameter pack, so take the
5559        // deduced argument and place it on the argument pack. Note that we
5560        // stay on the same template parameter so that we can deduce more
5561        // arguments.
5562        ArgumentPack.push_back(Converted.pop_back_val());
5563      } else {
5564        // Move to the next template parameter.
5565        ++Param;
5566      }
5567
5568      // If we just saw a pack expansion into a non-pack, then directly convert
5569      // the remaining arguments, because we don't know what parameters they'll
5570      // match up with.
5571      if (PackExpansionIntoNonPack) {
5572        if (!ArgumentPack.empty()) {
5573          // If we were part way through filling in an expanded parameter pack,
5574          // fall back to just producing individual arguments.
5575          Converted.insert(Converted.end(),
5576                           ArgumentPack.begin(), ArgumentPack.end());
5577          ArgumentPack.clear();
5578        }
5579
5580        while (ArgIdx < NumArgs) {
5581          Converted.push_back(NewArgs[ArgIdx].getArgument());
5582          ++ArgIdx;
5583        }
5584
5585        return false;
5586      }
5587
5588      continue;
5589    }
5590
5591    // If we're checking a partial template argument list, we're done.
5592    if (PartialTemplateArgs) {
5593      if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
5594        Converted.push_back(
5595            TemplateArgument::CreatePackCopy(Context, ArgumentPack));
5596      return false;
5597    }
5598
5599    // If we have a template parameter pack with no more corresponding
5600    // arguments, just break out now and we'll fill in the argument pack below.
5601    if ((*Param)->isTemplateParameterPack()) {
5602      assert(!getExpandedPackSize(*Param) &&
5603             "Should have dealt with this already");
5604
5605      // A non-expanded parameter pack before the end of the parameter list
5606      // only occurs for an ill-formed template parameter list, unless we've
5607      // got a partial argument list for a function template, so just bail out.
5608      if (Param + 1 != ParamEnd)
5609        return true;
5610
5611      Converted.push_back(
5612          TemplateArgument::CreatePackCopy(Context, ArgumentPack));
5613      ArgumentPack.clear();
5614
5615      ++Param;
5616      continue;
5617    }
5618
5619    // Check whether we have a default argument.
5620    TemplateArgumentLoc Arg;
5621
5622    // Retrieve the default template argument from the template
5623    // parameter. For each kind of template parameter, we substitute the
5624    // template arguments provided thus far and any "outer" template arguments
5625    // (when the template parameter was part of a nested template) into
5626    // the default argument.
5627    if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
5628      if (!hasVisibleDefaultArgument(TTP))
5629        return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP,
5630                                       NewArgs);
5631
5632      TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
5633                                                             Template,
5634                                                             TemplateLoc,
5635                                                             RAngleLoc,
5636                                                             TTP,
5637                                                             Converted);
5638      if (!ArgType)
5639        return true;
5640
5641      Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
5642                                ArgType);
5643    } else if (NonTypeTemplateParmDecl *NTTP
5644                 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
5645      if (!hasVisibleDefaultArgument(NTTP))
5646        return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP,
5647                                       NewArgs);
5648
5649      ExprResult E = SubstDefaultTemplateArgument(*this, Template,
5650                                                              TemplateLoc,
5651                                                              RAngleLoc,
5652                                                              NTTP,
5653                                                              Converted);
5654      if (E.isInvalid())
5655        return true;
5656
5657      Expr *Ex = E.getAs<Expr>();
5658      Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
5659    } else {
5660      TemplateTemplateParmDecl *TempParm
5661        = cast<TemplateTemplateParmDecl>(*Param);
5662
5663      if (!hasVisibleDefaultArgument(TempParm))
5664        return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm,
5665                                       NewArgs);
5666
5667      NestedNameSpecifierLoc QualifierLoc;
5668      TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
5669                                                       TemplateLoc,
5670                                                       RAngleLoc,
5671                                                       TempParm,
5672                                                       Converted,
5673                                                       QualifierLoc);
5674      if (Name.isNull())
5675        return true;
5676
5677      Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
5678                           TempParm->getDefaultArgument().getTemplateNameLoc());
5679    }
5680
5681    // Introduce an instantiation record that describes where we are using
5682    // the default template argument. We're not actually instantiating a
5683    // template here, we just create this object to put a note into the
5684    // context stack.
5685    InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted,
5686                               SourceRange(TemplateLoc, RAngleLoc));
5687    if (Inst.isInvalid())
5688      return true;
5689
5690    // Check the default template argument.
5691    if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
5692                              RAngleLoc, 0, Converted))
5693      return true;
5694
5695    // Core issue 150 (assumed resolution): if this is a template template
5696    // parameter, keep track of the default template arguments from the
5697    // template definition.
5698    if (isTemplateTemplateParameter)
5699      NewArgs.addArgument(Arg);
5700
5701    // Move to the next template parameter and argument.
5702    ++Param;
5703    ++ArgIdx;
5704  }
5705
5706  // If we're performing a partial argument substitution, allow any trailing
5707  // pack expansions; they might be empty. This can happen even if
5708  // PartialTemplateArgs is false (the list of arguments is complete but
5709  // still dependent).
5710  if (ArgIdx < NumArgs && CurrentInstantiationScope &&
5711      CurrentInstantiationScope->getPartiallySubstitutedPack()) {
5712    while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion())
5713      Converted.push_back(NewArgs[ArgIdx++].getArgument());
5714  }
5715
5716  // If we have any leftover arguments, then there were too many arguments.
5717  // Complain and fail.
5718  if (ArgIdx < NumArgs) {
5719    Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
5720        << /*too many args*/1
5721        << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
5722        << Template
5723        << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc());
5724    Diag(Template->getLocation(), diag::note_template_decl_here)
5725        << Params->getSourceRange();
5726    return true;
5727  }
5728
5729  // No problems found with the new argument list, propagate changes back
5730  // to caller.
5731  if (UpdateArgsWithConversions)
5732    TemplateArgs = std::move(NewArgs);
5733
5734  if (!PartialTemplateArgs &&
5735      EnsureTemplateArgumentListConstraints(
5736        Template, Converted, SourceRange(TemplateLoc,
5737                                         TemplateArgs.getRAngleLoc()))) {
5738    if (ConstraintsNotSatisfied)
5739      *ConstraintsNotSatisfied = true;
5740    return true;
5741  }
5742
5743  return false;
5744}
5745
5746namespace {
5747  class UnnamedLocalNoLinkageFinder
5748    : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
5749  {
5750    Sema &S;
5751    SourceRange SR;
5752
5753    typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
5754
5755  public:
5756    UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
5757
5758    bool Visit(QualType T) {
5759      return T.isNull() ? false : inherited::Visit(T.getTypePtr());
5760    }
5761
5762#define TYPE(Class, Parent) \
5763    bool Visit##Class##Type(const Class##Type *);
5764#define ABSTRACT_TYPE(Class, Parent) \
5765    bool Visit##Class##Type(const Class##Type *) { return false; }
5766#define NON_CANONICAL_TYPE(Class, Parent) \
5767    bool Visit##Class##Type(const Class##Type *) { return false; }
5768#include "clang/AST/TypeNodes.inc"
5769
5770    bool VisitTagDecl(const TagDecl *Tag);
5771    bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
5772  };
5773} // end anonymous namespace
5774
5775bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
5776  return false;
5777}
5778
5779bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
5780  return Visit(T->getElementType());
5781}
5782
5783bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
5784  return Visit(T->getPointeeType());
5785}
5786
5787bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
5788                                                    const BlockPointerType* T) {
5789  return Visit(T->getPointeeType());
5790}
5791
5792bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
5793                                                const LValueReferenceType* T) {
5794  return Visit(T->getPointeeType());
5795}
5796
5797bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
5798                                                const RValueReferenceType* T) {
5799  return Visit(T->getPointeeType());
5800}
5801
5802bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
5803                                                  const MemberPointerType* T) {
5804  return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
5805}
5806
5807bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
5808                                                  const ConstantArrayType* T) {
5809  return Visit(T->getElementType());
5810}
5811
5812bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
5813                                                 const IncompleteArrayType* T) {
5814  return Visit(T->getElementType());
5815}
5816
5817bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
5818                                                   const VariableArrayType* T) {
5819  return Visit(T->getElementType());
5820}
5821
5822bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
5823                                            const DependentSizedArrayType* T) {
5824  return Visit(T->getElementType());
5825}
5826
5827bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
5828                                         const DependentSizedExtVectorType* T) {
5829  return Visit(T->getElementType());
5830}
5831
5832bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType(
5833    const DependentAddressSpaceType *T) {
5834  return Visit(T->getPointeeType());
5835}
5836
5837bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
5838  return Visit(T->getElementType());
5839}
5840
5841bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType(
5842    const DependentVectorType *T) {
5843  return Visit(T->getElementType());
5844}
5845
5846bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
5847  return Visit(T->getElementType());
5848}
5849
5850bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
5851                                                  const FunctionProtoType* T) {
5852  for (const auto &A : T->param_types()) {
5853    if (Visit(A))
5854      return true;
5855  }
5856
5857  return Visit(T->getReturnType());
5858}
5859
5860bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
5861                                               const FunctionNoProtoType* T) {
5862  return Visit(T->getReturnType());
5863}
5864
5865bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
5866                                                  const UnresolvedUsingType*) {
5867  return false;
5868}
5869
5870bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
5871  return false;
5872}
5873
5874bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
5875  return Visit(T->getUnderlyingType());
5876}
5877
5878bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
5879  return false;
5880}
5881
5882bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
5883                                                    const UnaryTransformType*) {
5884  return false;
5885}
5886
5887bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
5888  return Visit(T->getDeducedType());
5889}
5890
5891bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType(
5892    const DeducedTemplateSpecializationType *T) {
5893  return Visit(T->getDeducedType());
5894}
5895
5896bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
5897  return VisitTagDecl(T->getDecl());
5898}
5899
5900bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
5901  return VisitTagDecl(T->getDecl());
5902}
5903
5904bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
5905                                                 const TemplateTypeParmType*) {
5906  return false;
5907}
5908
5909bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
5910                                        const SubstTemplateTypeParmPackType *) {
5911  return false;
5912}
5913
5914bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
5915                                            const TemplateSpecializationType*) {
5916  return false;
5917}
5918
5919bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
5920                                              const InjectedClassNameType* T) {
5921  return VisitTagDecl(T->getDecl());
5922}
5923
5924bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
5925                                                   const DependentNameType* T) {
5926  return VisitNestedNameSpecifier(T->getQualifier());
5927}
5928
5929bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
5930                                 const DependentTemplateSpecializationType* T) {
5931  if (auto *Q = T->getQualifier())
5932    return VisitNestedNameSpecifier(Q);
5933  return false;
5934}
5935
5936bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
5937                                                   const PackExpansionType* T) {
5938  return Visit(T->getPattern());
5939}
5940
5941bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
5942  return false;
5943}
5944
5945bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
5946                                                   const ObjCInterfaceType *) {
5947  return false;
5948}
5949
5950bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
5951                                                const ObjCObjectPointerType *) {
5952  return false;
5953}
5954
5955bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
5956  return Visit(T->getValueType());
5957}
5958
5959bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) {
5960  return false;
5961}
5962
5963bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
5964  if (Tag->getDeclContext()->isFunctionOrMethod()) {
5965    S.Diag(SR.getBegin(),
5966           S.getLangOpts().CPlusPlus11 ?
5967             diag::warn_cxx98_compat_template_arg_local_type :
5968             diag::ext_template_arg_local_type)
5969      << S.Context.getTypeDeclType(Tag) << SR;
5970    return true;
5971  }
5972
5973  if (!Tag->hasNameForLinkage()) {
5974    S.Diag(SR.getBegin(),
5975           S.getLangOpts().CPlusPlus11 ?
5976             diag::warn_cxx98_compat_template_arg_unnamed_type :
5977             diag::ext_template_arg_unnamed_type) << SR;
5978    S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
5979    return true;
5980  }
5981
5982  return false;
5983}
5984
5985bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
5986                                                    NestedNameSpecifier *NNS) {
5987  assert(NNS);
5988  if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
5989    return true;
5990
5991  switch (NNS->getKind()) {
5992  case NestedNameSpecifier::Identifier:
5993  case NestedNameSpecifier::Namespace:
5994  case NestedNameSpecifier::NamespaceAlias:
5995  case NestedNameSpecifier::Global:
5996  case NestedNameSpecifier::Super:
5997    return false;
5998
5999  case NestedNameSpecifier::TypeSpec:
6000  case NestedNameSpecifier::TypeSpecWithTemplate:
6001    return Visit(QualType(NNS->getAsType(), 0));
6002  }
6003  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
6004}
6005
6006/// Check a template argument against its corresponding
6007/// template type parameter.
6008///
6009/// This routine implements the semantics of C++ [temp.arg.type]. It
6010/// returns true if an error occurred, and false otherwise.
6011bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
6012                                 TypeSourceInfo *ArgInfo) {
6013  assert(ArgInfo && "invalid TypeSourceInfo");
6014  QualType Arg = ArgInfo->getType();
6015  SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
6016
6017  if (Arg->isVariablyModifiedType()) {
6018    return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
6019  } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
6020    return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
6021  }
6022
6023  // C++03 [temp.arg.type]p2:
6024  //   A local type, a type with no linkage, an unnamed type or a type
6025  //   compounded from any of these types shall not be used as a
6026  //   template-argument for a template type-parameter.
6027  //
6028  // C++11 allows these, and even in C++03 we allow them as an extension with
6029  // a warning.
6030  if (LangOpts.CPlusPlus11 || Arg->hasUnnamedOrLocalType()) {
6031    UnnamedLocalNoLinkageFinder Finder(*this, SR);
6032    (void)Finder.Visit(Context.getCanonicalType(Arg));
6033  }
6034
6035  return false;
6036}
6037
6038enum NullPointerValueKind {
6039  NPV_NotNullPointer,
6040  NPV_NullPointer,
6041  NPV_Error
6042};
6043
6044/// Determine whether the given template argument is a null pointer
6045/// value of the appropriate type.
6046static NullPointerValueKind
6047isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
6048                                   QualType ParamType, Expr *Arg,
6049                                   Decl *Entity = nullptr) {
6050  if (Arg->isValueDependent() || Arg->isTypeDependent())
6051    return NPV_NotNullPointer;
6052
6053  // dllimport'd entities aren't constant but are available inside of template
6054  // arguments.
6055  if (Entity && Entity->hasAttr<DLLImportAttr>())
6056    return NPV_NotNullPointer;
6057
6058  if (!S.isCompleteType(Arg->getExprLoc(), ParamType))
6059    llvm_unreachable(
6060        "Incomplete parameter type in isNullPointerValueTemplateArgument!");
6061
6062  if (!S.getLangOpts().CPlusPlus11)
6063    return NPV_NotNullPointer;
6064
6065  // Determine whether we have a constant expression.
6066  ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
6067  if (ArgRV.isInvalid())
6068    return NPV_Error;
6069  Arg = ArgRV.get();
6070
6071  Expr::EvalResult EvalResult;
6072  SmallVector<PartialDiagnosticAt, 8> Notes;
6073  EvalResult.Diag = &Notes;
6074  if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
6075      EvalResult.HasSideEffects) {
6076    SourceLocation DiagLoc = Arg->getExprLoc();
6077
6078    // If our only note is the usual "invalid subexpression" note, just point
6079    // the caret at its location rather than producing an essentially
6080    // redundant note.
6081    if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6082        diag::note_invalid_subexpr_in_const_expr) {
6083      DiagLoc = Notes[0].first;
6084      Notes.clear();
6085    }
6086
6087    S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
6088      << Arg->getType() << Arg->getSourceRange();
6089    for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6090      S.Diag(Notes[I].first, Notes[I].second);
6091
6092    S.Diag(Param->getLocation(), diag::note_template_param_here);
6093    return NPV_Error;
6094  }
6095
6096  // C++11 [temp.arg.nontype]p1:
6097  //   - an address constant expression of type std::nullptr_t
6098  if (Arg->getType()->isNullPtrType())
6099    return NPV_NullPointer;
6100
6101  //   - a constant expression that evaluates to a null pointer value (4.10); or
6102  //   - a constant expression that evaluates to a null member pointer value
6103  //     (4.11); or
6104  if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
6105      (EvalResult.Val.isMemberPointer() &&
6106       !EvalResult.Val.getMemberPointerDecl())) {
6107    // If our expression has an appropriate type, we've succeeded.
6108    bool ObjCLifetimeConversion;
6109    if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
6110        S.IsQualificationConversion(Arg->getType(), ParamType, false,
6111                                     ObjCLifetimeConversion))
6112      return NPV_NullPointer;
6113
6114    // The types didn't match, but we know we got a null pointer; complain,
6115    // then recover as if the types were correct.
6116    S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
6117      << Arg->getType() << ParamType << Arg->getSourceRange();
6118    S.Diag(Param->getLocation(), diag::note_template_param_here);
6119    return NPV_NullPointer;
6120  }
6121
6122  // If we don't have a null pointer value, but we do have a NULL pointer
6123  // constant, suggest a cast to the appropriate type.
6124  if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
6125    std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
6126    S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
6127        << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code)
6128        << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()),
6129                                      ")");
6130    S.Diag(Param->getLocation(), diag::note_template_param_here);
6131    return NPV_NullPointer;
6132  }
6133
6134  // FIXME: If we ever want to support general, address-constant expressions
6135  // as non-type template arguments, we should return the ExprResult here to
6136  // be interpreted by the caller.
6137  return NPV_NotNullPointer;
6138}
6139
6140/// Checks whether the given template argument is compatible with its
6141/// template parameter.
6142static bool CheckTemplateArgumentIsCompatibleWithParameter(
6143    Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
6144    Expr *Arg, QualType ArgType) {
6145  bool ObjCLifetimeConversion;
6146  if (ParamType->isPointerType() &&
6147      !ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() &&
6148      S.IsQualificationConversion(ArgType, ParamType, false,
6149                                  ObjCLifetimeConversion)) {
6150    // For pointer-to-object types, qualification conversions are
6151    // permitted.
6152  } else {
6153    if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
6154      if (!ParamRef->getPointeeType()->isFunctionType()) {
6155        // C++ [temp.arg.nontype]p5b3:
6156        //   For a non-type template-parameter of type reference to
6157        //   object, no conversions apply. The type referred to by the
6158        //   reference may be more cv-qualified than the (otherwise
6159        //   identical) type of the template- argument. The
6160        //   template-parameter is bound directly to the
6161        //   template-argument, which shall be an lvalue.
6162
6163        // FIXME: Other qualifiers?
6164        unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
6165        unsigned ArgQuals = ArgType.getCVRQualifiers();
6166
6167        if ((ParamQuals | ArgQuals) != ParamQuals) {
6168          S.Diag(Arg->getBeginLoc(),
6169                 diag::err_template_arg_ref_bind_ignores_quals)
6170              << ParamType << Arg->getType() << Arg->getSourceRange();
6171          S.Diag(Param->getLocation(), diag::note_template_param_here);
6172          return true;
6173        }
6174      }
6175    }
6176
6177    // At this point, the template argument refers to an object or
6178    // function with external linkage. We now need to check whether the
6179    // argument and parameter types are compatible.
6180    if (!S.Context.hasSameUnqualifiedType(ArgType,
6181                                          ParamType.getNonReferenceType())) {
6182      // We can't perform this conversion or binding.
6183      if (ParamType->isReferenceType())
6184        S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind)
6185            << ParamType << ArgIn->getType() << Arg->getSourceRange();
6186      else
6187        S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
6188            << ArgIn->getType() << ParamType << Arg->getSourceRange();
6189      S.Diag(Param->getLocation(), diag::note_template_param_here);
6190      return true;
6191    }
6192  }
6193
6194  return false;
6195}
6196
6197/// Checks whether the given template argument is the address
6198/// of an object or function according to C++ [temp.arg.nontype]p1.
6199static bool
6200CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
6201                                               NonTypeTemplateParmDecl *Param,
6202                                               QualType ParamType,
6203                                               Expr *ArgIn,
6204                                               TemplateArgument &Converted) {
6205  bool Invalid = false;
6206  Expr *Arg = ArgIn;
6207  QualType ArgType = Arg->getType();
6208
6209  bool AddressTaken = false;
6210  SourceLocation AddrOpLoc;
6211  if (S.getLangOpts().MicrosoftExt) {
6212    // Microsoft Visual C++ strips all casts, allows an arbitrary number of
6213    // dereference and address-of operators.
6214    Arg = Arg->IgnoreParenCasts();
6215
6216    bool ExtWarnMSTemplateArg = false;
6217    UnaryOperatorKind FirstOpKind;
6218    SourceLocation FirstOpLoc;
6219    while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6220      UnaryOperatorKind UnOpKind = UnOp->getOpcode();
6221      if (UnOpKind == UO_Deref)
6222        ExtWarnMSTemplateArg = true;
6223      if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
6224        Arg = UnOp->getSubExpr()->IgnoreParenCasts();
6225        if (!AddrOpLoc.isValid()) {
6226          FirstOpKind = UnOpKind;
6227          FirstOpLoc = UnOp->getOperatorLoc();
6228        }
6229      } else
6230        break;
6231    }
6232    if (FirstOpLoc.isValid()) {
6233      if (ExtWarnMSTemplateArg)
6234        S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument)
6235            << ArgIn->getSourceRange();
6236
6237      if (FirstOpKind == UO_AddrOf)
6238        AddressTaken = true;
6239      else if (Arg->getType()->isPointerType()) {
6240        // We cannot let pointers get dereferenced here, that is obviously not a
6241        // constant expression.
6242        assert(FirstOpKind == UO_Deref);
6243        S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6244            << Arg->getSourceRange();
6245      }
6246    }
6247  } else {
6248    // See through any implicit casts we added to fix the type.
6249    Arg = Arg->IgnoreImpCasts();
6250
6251    // C++ [temp.arg.nontype]p1:
6252    //
6253    //   A template-argument for a non-type, non-template
6254    //   template-parameter shall be one of: [...]
6255    //
6256    //     -- the address of an object or function with external
6257    //        linkage, including function templates and function
6258    //        template-ids but excluding non-static class members,
6259    //        expressed as & id-expression where the & is optional if
6260    //        the name refers to a function or array, or if the
6261    //        corresponding template-parameter is a reference; or
6262
6263    // In C++98/03 mode, give an extension warning on any extra parentheses.
6264    // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
6265    bool ExtraParens = false;
6266    while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
6267      if (!Invalid && !ExtraParens) {
6268        S.Diag(Arg->getBeginLoc(),
6269               S.getLangOpts().CPlusPlus11
6270                   ? diag::warn_cxx98_compat_template_arg_extra_parens
6271                   : diag::ext_template_arg_extra_parens)
6272            << Arg->getSourceRange();
6273        ExtraParens = true;
6274      }
6275
6276      Arg = Parens->getSubExpr();
6277    }
6278
6279    while (SubstNonTypeTemplateParmExpr *subst =
6280               dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6281      Arg = subst->getReplacement()->IgnoreImpCasts();
6282
6283    if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6284      if (UnOp->getOpcode() == UO_AddrOf) {
6285        Arg = UnOp->getSubExpr();
6286        AddressTaken = true;
6287        AddrOpLoc = UnOp->getOperatorLoc();
6288      }
6289    }
6290
6291    while (SubstNonTypeTemplateParmExpr *subst =
6292               dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6293      Arg = subst->getReplacement()->IgnoreImpCasts();
6294  }
6295
6296  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
6297  ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
6298
6299  // If our parameter has pointer type, check for a null template value.
6300  if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
6301    switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn,
6302                                               Entity)) {
6303    case NPV_NullPointer:
6304      S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6305      Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
6306                                   /*isNullPtr=*/true);
6307      return false;
6308
6309    case NPV_Error:
6310      return true;
6311
6312    case NPV_NotNullPointer:
6313      break;
6314    }
6315  }
6316
6317  // Stop checking the precise nature of the argument if it is value dependent,
6318  // it should be checked when instantiated.
6319  if (Arg->isValueDependent()) {
6320    Converted = TemplateArgument(ArgIn);
6321    return false;
6322  }
6323
6324  if (isa<CXXUuidofExpr>(Arg)) {
6325    if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType,
6326                                                       ArgIn, Arg, ArgType))
6327      return true;
6328
6329    Converted = TemplateArgument(ArgIn);
6330    return false;
6331  }
6332
6333  if (!DRE) {
6334    S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6335        << Arg->getSourceRange();
6336    S.Diag(Param->getLocation(), diag::note_template_param_here);
6337    return true;
6338  }
6339
6340  // Cannot refer to non-static data members
6341  if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
6342    S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field)
6343        << Entity << Arg->getSourceRange();
6344    S.Diag(Param->getLocation(), diag::note_template_param_here);
6345    return true;
6346  }
6347
6348  // Cannot refer to non-static member functions
6349  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
6350    if (!Method->isStatic()) {
6351      S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method)
6352          << Method << Arg->getSourceRange();
6353      S.Diag(Param->getLocation(), diag::note_template_param_here);
6354      return true;
6355    }
6356  }
6357
6358  FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
6359  VarDecl *Var = dyn_cast<VarDecl>(Entity);
6360
6361  // A non-type template argument must refer to an object or function.
6362  if (!Func && !Var) {
6363    // We found something, but we don't know specifically what it is.
6364    S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func)
6365        << Arg->getSourceRange();
6366    S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
6367    return true;
6368  }
6369
6370  // Address / reference template args must have external linkage in C++98.
6371  if (Entity->getFormalLinkage() == InternalLinkage) {
6372    S.Diag(Arg->getBeginLoc(),
6373           S.getLangOpts().CPlusPlus11
6374               ? diag::warn_cxx98_compat_template_arg_object_internal
6375               : diag::ext_template_arg_object_internal)
6376        << !Func << Entity << Arg->getSourceRange();
6377    S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6378      << !Func;
6379  } else if (!Entity->hasLinkage()) {
6380    S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage)
6381        << !Func << Entity << Arg->getSourceRange();
6382    S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6383      << !Func;
6384    return true;
6385  }
6386
6387  if (Func) {
6388    // If the template parameter has pointer type, the function decays.
6389    if (ParamType->isPointerType() && !AddressTaken)
6390      ArgType = S.Context.getPointerType(Func->getType());
6391    else if (AddressTaken && ParamType->isReferenceType()) {
6392      // If we originally had an address-of operator, but the
6393      // parameter has reference type, complain and (if things look
6394      // like they will work) drop the address-of operator.
6395      if (!S.Context.hasSameUnqualifiedType(Func->getType(),
6396                                            ParamType.getNonReferenceType())) {
6397        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6398          << ParamType;
6399        S.Diag(Param->getLocation(), diag::note_template_param_here);
6400        return true;
6401      }
6402
6403      S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6404        << ParamType
6405        << FixItHint::CreateRemoval(AddrOpLoc);
6406      S.Diag(Param->getLocation(), diag::note_template_param_here);
6407
6408      ArgType = Func->getType();
6409    }
6410  } else {
6411    // A value of reference type is not an object.
6412    if (Var->getType()->isReferenceType()) {
6413      S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var)
6414          << Var->getType() << Arg->getSourceRange();
6415      S.Diag(Param->getLocation(), diag::note_template_param_here);
6416      return true;
6417    }
6418
6419    // A template argument must have static storage duration.
6420    if (Var->getTLSKind()) {
6421      S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local)
6422          << Arg->getSourceRange();
6423      S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
6424      return true;
6425    }
6426
6427    // If the template parameter has pointer type, we must have taken
6428    // the address of this object.
6429    if (ParamType->isReferenceType()) {
6430      if (AddressTaken) {
6431        // If we originally had an address-of operator, but the
6432        // parameter has reference type, complain and (if things look
6433        // like they will work) drop the address-of operator.
6434        if (!S.Context.hasSameUnqualifiedType(Var->getType(),
6435                                            ParamType.getNonReferenceType())) {
6436          S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6437            << ParamType;
6438          S.Diag(Param->getLocation(), diag::note_template_param_here);
6439          return true;
6440        }
6441
6442        S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6443          << ParamType
6444          << FixItHint::CreateRemoval(AddrOpLoc);
6445        S.Diag(Param->getLocation(), diag::note_template_param_here);
6446
6447        ArgType = Var->getType();
6448      }
6449    } else if (!AddressTaken && ParamType->isPointerType()) {
6450      if (Var->getType()->isArrayType()) {
6451        // Array-to-pointer decay.
6452        ArgType = S.Context.getArrayDecayedType(Var->getType());
6453      } else {
6454        // If the template parameter has pointer type but the address of
6455        // this object was not taken, complain and (possibly) recover by
6456        // taking the address of the entity.
6457        ArgType = S.Context.getPointerType(Var->getType());
6458        if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
6459          S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
6460              << ParamType;
6461          S.Diag(Param->getLocation(), diag::note_template_param_here);
6462          return true;
6463        }
6464
6465        S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
6466            << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&");
6467
6468        S.Diag(Param->getLocation(), diag::note_template_param_here);
6469      }
6470    }
6471  }
6472
6473  if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
6474                                                     Arg, ArgType))
6475    return true;
6476
6477  // Create the template argument.
6478  Converted =
6479      TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), ParamType);
6480  S.MarkAnyDeclReferenced(Arg->getBeginLoc(), Entity, false);
6481  return false;
6482}
6483
6484/// Checks whether the given template argument is a pointer to
6485/// member constant according to C++ [temp.arg.nontype]p1.
6486static bool CheckTemplateArgumentPointerToMember(Sema &S,
6487                                                 NonTypeTemplateParmDecl *Param,
6488                                                 QualType ParamType,
6489                                                 Expr *&ResultArg,
6490                                                 TemplateArgument &Converted) {
6491  bool Invalid = false;
6492
6493  Expr *Arg = ResultArg;
6494  bool ObjCLifetimeConversion;
6495
6496  // C++ [temp.arg.nontype]p1:
6497  //
6498  //   A template-argument for a non-type, non-template
6499  //   template-parameter shall be one of: [...]
6500  //
6501  //     -- a pointer to member expressed as described in 5.3.1.
6502  DeclRefExpr *DRE = nullptr;
6503
6504  // In C++98/03 mode, give an extension warning on any extra parentheses.
6505  // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
6506  bool ExtraParens = false;
6507  while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
6508    if (!Invalid && !ExtraParens) {
6509      S.Diag(Arg->getBeginLoc(),
6510             S.getLangOpts().CPlusPlus11
6511                 ? diag::warn_cxx98_compat_template_arg_extra_parens
6512                 : diag::ext_template_arg_extra_parens)
6513          << Arg->getSourceRange();
6514      ExtraParens = true;
6515    }
6516
6517    Arg = Parens->getSubExpr();
6518  }
6519
6520  while (SubstNonTypeTemplateParmExpr *subst =
6521           dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
6522    Arg = subst->getReplacement()->IgnoreImpCasts();
6523
6524  // A pointer-to-member constant written &Class::member.
6525  if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
6526    if (UnOp->getOpcode() == UO_AddrOf) {
6527      DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
6528      if (DRE && !DRE->getQualifier())
6529        DRE = nullptr;
6530    }
6531  }
6532  // A constant of pointer-to-member type.
6533  else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
6534    ValueDecl *VD = DRE->getDecl();
6535    if (VD->getType()->isMemberPointerType()) {
6536      if (isa<NonTypeTemplateParmDecl>(VD)) {
6537        if (Arg->isTypeDependent() || Arg->isValueDependent()) {
6538          Converted = TemplateArgument(Arg);
6539        } else {
6540          VD = cast<ValueDecl>(VD->getCanonicalDecl());
6541          Converted = TemplateArgument(VD, ParamType);
6542        }
6543        return Invalid;
6544      }
6545    }
6546
6547    DRE = nullptr;
6548  }
6549
6550  ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
6551
6552  // Check for a null pointer value.
6553  switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg,
6554                                             Entity)) {
6555  case NPV_Error:
6556    return true;
6557  case NPV_NullPointer:
6558    S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6559    Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
6560                                 /*isNullPtr*/true);
6561    return false;
6562  case NPV_NotNullPointer:
6563    break;
6564  }
6565
6566  if (S.IsQualificationConversion(ResultArg->getType(),
6567                                  ParamType.getNonReferenceType(), false,
6568                                  ObjCLifetimeConversion)) {
6569    ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp,
6570                                    ResultArg->getValueKind())
6571                    .get();
6572  } else if (!S.Context.hasSameUnqualifiedType(
6573                 ResultArg->getType(), ParamType.getNonReferenceType())) {
6574    // We can't perform this conversion.
6575    S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible)
6576        << ResultArg->getType() << ParamType << ResultArg->getSourceRange();
6577    S.Diag(Param->getLocation(), diag::note_template_param_here);
6578    return true;
6579  }
6580
6581  if (!DRE)
6582    return S.Diag(Arg->getBeginLoc(),
6583                  diag::err_template_arg_not_pointer_to_member_form)
6584           << Arg->getSourceRange();
6585
6586  if (isa<FieldDecl>(DRE->getDecl()) ||
6587      isa<IndirectFieldDecl>(DRE->getDecl()) ||
6588      isa<CXXMethodDecl>(DRE->getDecl())) {
6589    assert((isa<FieldDecl>(DRE->getDecl()) ||
6590            isa<IndirectFieldDecl>(DRE->getDecl()) ||
6591            !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
6592           "Only non-static member pointers can make it here");
6593
6594    // Okay: this is the address of a non-static member, and therefore
6595    // a member pointer constant.
6596    if (Arg->isTypeDependent() || Arg->isValueDependent()) {
6597      Converted = TemplateArgument(Arg);
6598    } else {
6599      ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
6600      Converted = TemplateArgument(D, ParamType);
6601    }
6602    return Invalid;
6603  }
6604
6605  // We found something else, but we don't know specifically what it is.
6606  S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form)
6607      << Arg->getSourceRange();
6608  S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
6609  return true;
6610}
6611
6612/// Check a template argument against its corresponding
6613/// non-type template parameter.
6614///
6615/// This routine implements the semantics of C++ [temp.arg.nontype].
6616/// If an error occurred, it returns ExprError(); otherwise, it
6617/// returns the converted template argument. \p ParamType is the
6618/// type of the non-type template parameter after it has been instantiated.
6619ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
6620                                       QualType ParamType, Expr *Arg,
6621                                       TemplateArgument &Converted,
6622                                       CheckTemplateArgumentKind CTAK) {
6623  SourceLocation StartLoc = Arg->getBeginLoc();
6624
6625  // If the parameter type somehow involves auto, deduce the type now.
6626  if (getLangOpts().CPlusPlus17 && ParamType->isUndeducedType()) {
6627    // During template argument deduction, we allow 'decltype(auto)' to
6628    // match an arbitrary dependent argument.
6629    // FIXME: The language rules don't say what happens in this case.
6630    // FIXME: We get an opaque dependent type out of decltype(auto) if the
6631    // expression is merely instantiation-dependent; is this enough?
6632    if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) {
6633      auto *AT = dyn_cast<AutoType>(ParamType);
6634      if (AT && AT->isDecltypeAuto()) {
6635        Converted = TemplateArgument(Arg);
6636        return Arg;
6637      }
6638    }
6639
6640    // When checking a deduced template argument, deduce from its type even if
6641    // the type is dependent, in order to check the types of non-type template
6642    // arguments line up properly in partial ordering.
6643    Optional<unsigned> Depth = Param->getDepth() + 1;
6644    Expr *DeductionArg = Arg;
6645    if (auto *PE = dyn_cast<PackExpansionExpr>(DeductionArg))
6646      DeductionArg = PE->getPattern();
6647    if (DeduceAutoType(
6648            Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation()),
6649            DeductionArg, ParamType, Depth,
6650            // We do not check constraints right now because the
6651            // immediately-declared constraint of the auto type is also an
6652            // associated constraint, and will be checked along with the other
6653            // associated constraints after checking the template argument list.
6654            /*IgnoreConstraints=*/true) == DAR_Failed) {
6655      Diag(Arg->getExprLoc(),
6656           diag::err_non_type_template_parm_type_deduction_failure)
6657        << Param->getDeclName() << Param->getType() << Arg->getType()
6658        << Arg->getSourceRange();
6659      Diag(Param->getLocation(), diag::note_template_param_here);
6660      return ExprError();
6661    }
6662    // CheckNonTypeTemplateParameterType will produce a diagnostic if there's
6663    // an error. The error message normally references the parameter
6664    // declaration, but here we'll pass the argument location because that's
6665    // where the parameter type is deduced.
6666    ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc());
6667    if (ParamType.isNull()) {
6668      Diag(Param->getLocation(), diag::note_template_param_here);
6669      return ExprError();
6670    }
6671  }
6672
6673  // We should have already dropped all cv-qualifiers by now.
6674  assert(!ParamType.hasQualifiers() &&
6675         "non-type template parameter type cannot be qualified");
6676
6677  if (CTAK == CTAK_Deduced &&
6678      !Context.hasSameType(ParamType.getNonLValueExprType(Context),
6679                           Arg->getType())) {
6680    // FIXME: If either type is dependent, we skip the check. This isn't
6681    // correct, since during deduction we're supposed to have replaced each
6682    // template parameter with some unique (non-dependent) placeholder.
6683    // FIXME: If the argument type contains 'auto', we carry on and fail the
6684    // type check in order to force specific types to be more specialized than
6685    // 'auto'. It's not clear how partial ordering with 'auto' is supposed to
6686    // work.
6687    if ((ParamType->isDependentType() || Arg->isTypeDependent()) &&
6688        !Arg->getType()->getContainedAutoType()) {
6689      Converted = TemplateArgument(Arg);
6690      return Arg;
6691    }
6692    // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770,
6693    // we should actually be checking the type of the template argument in P,
6694    // not the type of the template argument deduced from A, against the
6695    // template parameter type.
6696    Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
6697      << Arg->getType()
6698      << ParamType.getUnqualifiedType();
6699    Diag(Param->getLocation(), diag::note_template_param_here);
6700    return ExprError();
6701  }
6702
6703  // If either the parameter has a dependent type or the argument is
6704  // type-dependent, there's nothing we can check now. The argument only
6705  // contains an unexpanded pack during partial ordering, and there's
6706  // nothing more we can check in that case.
6707  if (ParamType->isDependentType() || Arg->isTypeDependent() ||
6708      Arg->containsUnexpandedParameterPack()) {
6709    // Force the argument to the type of the parameter to maintain invariants.
6710    auto *PE = dyn_cast<PackExpansionExpr>(Arg);
6711    if (PE)
6712      Arg = PE->getPattern();
6713    ExprResult E = ImpCastExprToType(
6714        Arg, ParamType.getNonLValueExprType(Context), CK_Dependent,
6715        ParamType->isLValueReferenceType() ? VK_LValue :
6716        ParamType->isRValueReferenceType() ? VK_XValue : VK_RValue);
6717    if (E.isInvalid())
6718      return ExprError();
6719    if (PE) {
6720      // Recreate a pack expansion if we unwrapped one.
6721      E = new (Context)
6722          PackExpansionExpr(E.get()->getType(), E.get(), PE->getEllipsisLoc(),
6723                            PE->getNumExpansions());
6724    }
6725    Converted = TemplateArgument(E.get());
6726    return E;
6727  }
6728
6729  // The initialization of the parameter from the argument is
6730  // a constant-evaluated context.
6731  EnterExpressionEvaluationContext ConstantEvaluated(
6732      *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
6733
6734  if (getLangOpts().CPlusPlus17) {
6735    // C++17 [temp.arg.nontype]p1:
6736    //   A template-argument for a non-type template parameter shall be
6737    //   a converted constant expression of the type of the template-parameter.
6738    APValue Value;
6739    ExprResult ArgResult = CheckConvertedConstantExpression(
6740        Arg, ParamType, Value, CCEK_TemplateArg);
6741    if (ArgResult.isInvalid())
6742      return ExprError();
6743
6744    // For a value-dependent argument, CheckConvertedConstantExpression is
6745    // permitted (and expected) to be unable to determine a value.
6746    if (ArgResult.get()->isValueDependent()) {
6747      Converted = TemplateArgument(ArgResult.get());
6748      return ArgResult;
6749    }
6750
6751    QualType CanonParamType = Context.getCanonicalType(ParamType);
6752
6753    // Convert the APValue to a TemplateArgument.
6754    switch (Value.getKind()) {
6755    case APValue::None:
6756      assert(ParamType->isNullPtrType());
6757      Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true);
6758      break;
6759    case APValue::Indeterminate:
6760      llvm_unreachable("result of constant evaluation should be initialized");
6761      break;
6762    case APValue::Int:
6763      assert(ParamType->isIntegralOrEnumerationType());
6764      Converted = TemplateArgument(Context, Value.getInt(), CanonParamType);
6765      break;
6766    case APValue::MemberPointer: {
6767      assert(ParamType->isMemberPointerType());
6768
6769      // FIXME: We need TemplateArgument representation and mangling for these.
6770      if (!Value.getMemberPointerPath().empty()) {
6771        Diag(Arg->getBeginLoc(),
6772             diag::err_template_arg_member_ptr_base_derived_not_supported)
6773            << Value.getMemberPointerDecl() << ParamType
6774            << Arg->getSourceRange();
6775        return ExprError();
6776      }
6777
6778      auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl());
6779      Converted = VD ? TemplateArgument(VD, CanonParamType)
6780                     : TemplateArgument(CanonParamType, /*isNullPtr*/true);
6781      break;
6782    }
6783    case APValue::LValue: {
6784      //   For a non-type template-parameter of pointer or reference type,
6785      //   the value of the constant expression shall not refer to
6786      assert(ParamType->isPointerType() || ParamType->isReferenceType() ||
6787             ParamType->isNullPtrType());
6788      // -- a temporary object
6789      // -- a string literal
6790      // -- the result of a typeid expression, or
6791      // -- a predefined __func__ variable
6792      APValue::LValueBase Base = Value.getLValueBase();
6793      auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>());
6794      if (Base && !VD) {
6795        auto *E = Base.dyn_cast<const Expr *>();
6796        if (E && isa<CXXUuidofExpr>(E)) {
6797          Converted = TemplateArgument(ArgResult.get()->IgnoreImpCasts());
6798          break;
6799        }
6800        Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6801            << Arg->getSourceRange();
6802        return ExprError();
6803      }
6804      // -- a subobject
6805      if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 &&
6806          VD && VD->getType()->isArrayType() &&
6807          Value.getLValuePath()[0].getAsArrayIndex() == 0 &&
6808          !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
6809        // Per defect report (no number yet):
6810        //   ... other than a pointer to the first element of a complete array
6811        //       object.
6812      } else if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
6813                 Value.isLValueOnePastTheEnd()) {
6814        Diag(StartLoc, diag::err_non_type_template_arg_subobject)
6815          << Value.getAsString(Context, ParamType);
6816        return ExprError();
6817      }
6818      assert((VD || !ParamType->isReferenceType()) &&
6819             "null reference should not be a constant expression");
6820      assert((!VD || !ParamType->isNullPtrType()) &&
6821             "non-null value of type nullptr_t?");
6822      Converted = VD ? TemplateArgument(VD, CanonParamType)
6823                     : TemplateArgument(CanonParamType, /*isNullPtr*/true);
6824      break;
6825    }
6826    case APValue::AddrLabelDiff:
6827      return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
6828    case APValue::FixedPoint:
6829    case APValue::Float:
6830    case APValue::ComplexInt:
6831    case APValue::ComplexFloat:
6832    case APValue::Vector:
6833    case APValue::Array:
6834    case APValue::Struct:
6835    case APValue::Union:
6836      llvm_unreachable("invalid kind for template argument");
6837    }
6838
6839    return ArgResult.get();
6840  }
6841
6842  // C++ [temp.arg.nontype]p5:
6843  //   The following conversions are performed on each expression used
6844  //   as a non-type template-argument. If a non-type
6845  //   template-argument cannot be converted to the type of the
6846  //   corresponding template-parameter then the program is
6847  //   ill-formed.
6848  if (ParamType->isIntegralOrEnumerationType()) {
6849    // C++11:
6850    //   -- for a non-type template-parameter of integral or
6851    //      enumeration type, conversions permitted in a converted
6852    //      constant expression are applied.
6853    //
6854    // C++98:
6855    //   -- for a non-type template-parameter of integral or
6856    //      enumeration type, integral promotions (4.5) and integral
6857    //      conversions (4.7) are applied.
6858
6859    if (getLangOpts().CPlusPlus11) {
6860      // C++ [temp.arg.nontype]p1:
6861      //   A template-argument for a non-type, non-template template-parameter
6862      //   shall be one of:
6863      //
6864      //     -- for a non-type template-parameter of integral or enumeration
6865      //        type, a converted constant expression of the type of the
6866      //        template-parameter; or
6867      llvm::APSInt Value;
6868      ExprResult ArgResult =
6869        CheckConvertedConstantExpression(Arg, ParamType, Value,
6870                                         CCEK_TemplateArg);
6871      if (ArgResult.isInvalid())
6872        return ExprError();
6873
6874      // We can't check arbitrary value-dependent arguments.
6875      if (ArgResult.get()->isValueDependent()) {
6876        Converted = TemplateArgument(ArgResult.get());
6877        return ArgResult;
6878      }
6879
6880      // Widen the argument value to sizeof(parameter type). This is almost
6881      // always a no-op, except when the parameter type is bool. In
6882      // that case, this may extend the argument from 1 bit to 8 bits.
6883      QualType IntegerType = ParamType;
6884      if (const EnumType *Enum = IntegerType->getAs<EnumType>())
6885        IntegerType = Enum->getDecl()->getIntegerType();
6886      Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
6887
6888      Converted = TemplateArgument(Context, Value,
6889                                   Context.getCanonicalType(ParamType));
6890      return ArgResult;
6891    }
6892
6893    ExprResult ArgResult = DefaultLvalueConversion(Arg);
6894    if (ArgResult.isInvalid())
6895      return ExprError();
6896    Arg = ArgResult.get();
6897
6898    QualType ArgType = Arg->getType();
6899
6900    // C++ [temp.arg.nontype]p1:
6901    //   A template-argument for a non-type, non-template
6902    //   template-parameter shall be one of:
6903    //
6904    //     -- an integral constant-expression of integral or enumeration
6905    //        type; or
6906    //     -- the name of a non-type template-parameter; or
6907    llvm::APSInt Value;
6908    if (!ArgType->isIntegralOrEnumerationType()) {
6909      Diag(Arg->getBeginLoc(), diag::err_template_arg_not_integral_or_enumeral)
6910          << ArgType << Arg->getSourceRange();
6911      Diag(Param->getLocation(), diag::note_template_param_here);
6912      return ExprError();
6913    } else if (!Arg->isValueDependent()) {
6914      class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
6915        QualType T;
6916
6917      public:
6918        TmplArgICEDiagnoser(QualType T) : T(T) { }
6919
6920        void diagnoseNotICE(Sema &S, SourceLocation Loc,
6921                            SourceRange SR) override {
6922          S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
6923        }
6924      } Diagnoser(ArgType);
6925
6926      Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
6927                                            false).get();
6928      if (!Arg)
6929        return ExprError();
6930    }
6931
6932    // From here on out, all we care about is the unqualified form
6933    // of the argument type.
6934    ArgType = ArgType.getUnqualifiedType();
6935
6936    // Try to convert the argument to the parameter's type.
6937    if (Context.hasSameType(ParamType, ArgType)) {
6938      // Okay: no conversion necessary
6939    } else if (ParamType->isBooleanType()) {
6940      // This is an integral-to-boolean conversion.
6941      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
6942    } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
6943               !ParamType->isEnumeralType()) {
6944      // This is an integral promotion or conversion.
6945      Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
6946    } else {
6947      // We can't perform this conversion.
6948      Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
6949          << Arg->getType() << ParamType << Arg->getSourceRange();
6950      Diag(Param->getLocation(), diag::note_template_param_here);
6951      return ExprError();
6952    }
6953
6954    // Add the value of this argument to the list of converted
6955    // arguments. We use the bitwidth and signedness of the template
6956    // parameter.
6957    if (Arg->isValueDependent()) {
6958      // The argument is value-dependent. Create a new
6959      // TemplateArgument with the converted expression.
6960      Converted = TemplateArgument(Arg);
6961      return Arg;
6962    }
6963
6964    QualType IntegerType = Context.getCanonicalType(ParamType);
6965    if (const EnumType *Enum = IntegerType->getAs<EnumType>())
6966      IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
6967
6968    if (ParamType->isBooleanType()) {
6969      // Value must be zero or one.
6970      Value = Value != 0;
6971      unsigned AllowedBits = Context.getTypeSize(IntegerType);
6972      if (Value.getBitWidth() != AllowedBits)
6973        Value = Value.extOrTrunc(AllowedBits);
6974      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
6975    } else {
6976      llvm::APSInt OldValue = Value;
6977
6978      // Coerce the template argument's value to the value it will have
6979      // based on the template parameter's type.
6980      unsigned AllowedBits = Context.getTypeSize(IntegerType);
6981      if (Value.getBitWidth() != AllowedBits)
6982        Value = Value.extOrTrunc(AllowedBits);
6983      Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
6984
6985      // Complain if an unsigned parameter received a negative value.
6986      if (IntegerType->isUnsignedIntegerOrEnumerationType()
6987               && (OldValue.isSigned() && OldValue.isNegative())) {
6988        Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative)
6989            << OldValue.toString(10) << Value.toString(10) << Param->getType()
6990            << Arg->getSourceRange();
6991        Diag(Param->getLocation(), diag::note_template_param_here);
6992      }
6993
6994      // Complain if we overflowed the template parameter's type.
6995      unsigned RequiredBits;
6996      if (IntegerType->isUnsignedIntegerOrEnumerationType())
6997        RequiredBits = OldValue.getActiveBits();
6998      else if (OldValue.isUnsigned())
6999        RequiredBits = OldValue.getActiveBits() + 1;
7000      else
7001        RequiredBits = OldValue.getMinSignedBits();
7002      if (RequiredBits > AllowedBits) {
7003        Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large)
7004            << OldValue.toString(10) << Value.toString(10) << Param->getType()
7005            << Arg->getSourceRange();
7006        Diag(Param->getLocation(), diag::note_template_param_here);
7007      }
7008    }
7009
7010    Converted = TemplateArgument(Context, Value,
7011                                 ParamType->isEnumeralType()
7012                                   ? Context.getCanonicalType(ParamType)
7013                                   : IntegerType);
7014    return Arg;
7015  }
7016
7017  QualType ArgType = Arg->getType();
7018  DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
7019
7020  // Handle pointer-to-function, reference-to-function, and
7021  // pointer-to-member-function all in (roughly) the same way.
7022  if (// -- For a non-type template-parameter of type pointer to
7023      //    function, only the function-to-pointer conversion (4.3) is
7024      //    applied. If the template-argument represents a set of
7025      //    overloaded functions (or a pointer to such), the matching
7026      //    function is selected from the set (13.4).
7027      (ParamType->isPointerType() &&
7028       ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) ||
7029      // -- For a non-type template-parameter of type reference to
7030      //    function, no conversions apply. If the template-argument
7031      //    represents a set of overloaded functions, the matching
7032      //    function is selected from the set (13.4).
7033      (ParamType->isReferenceType() &&
7034       ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
7035      // -- For a non-type template-parameter of type pointer to
7036      //    member function, no conversions apply. If the
7037      //    template-argument represents a set of overloaded member
7038      //    functions, the matching member function is selected from
7039      //    the set (13.4).
7040      (ParamType->isMemberPointerType() &&
7041       ParamType->castAs<MemberPointerType>()->getPointeeType()
7042         ->isFunctionType())) {
7043
7044    if (Arg->getType() == Context.OverloadTy) {
7045      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
7046                                                                true,
7047                                                                FoundResult)) {
7048        if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
7049          return ExprError();
7050
7051        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
7052        ArgType = Arg->getType();
7053      } else
7054        return ExprError();
7055    }
7056
7057    if (!ParamType->isMemberPointerType()) {
7058      if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
7059                                                         ParamType,
7060                                                         Arg, Converted))
7061        return ExprError();
7062      return Arg;
7063    }
7064
7065    if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
7066                                             Converted))
7067      return ExprError();
7068    return Arg;
7069  }
7070
7071  if (ParamType->isPointerType()) {
7072    //   -- for a non-type template-parameter of type pointer to
7073    //      object, qualification conversions (4.4) and the
7074    //      array-to-pointer conversion (4.2) are applied.
7075    // C++0x also allows a value of std::nullptr_t.
7076    assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
7077           "Only object pointers allowed here");
7078
7079    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
7080                                                       ParamType,
7081                                                       Arg, Converted))
7082      return ExprError();
7083    return Arg;
7084  }
7085
7086  if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
7087    //   -- For a non-type template-parameter of type reference to
7088    //      object, no conversions apply. The type referred to by the
7089    //      reference may be more cv-qualified than the (otherwise
7090    //      identical) type of the template-argument. The
7091    //      template-parameter is bound directly to the
7092    //      template-argument, which must be an lvalue.
7093    assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
7094           "Only object references allowed here");
7095
7096    if (Arg->getType() == Context.OverloadTy) {
7097      if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
7098                                                 ParamRefType->getPointeeType(),
7099                                                                true,
7100                                                                FoundResult)) {
7101        if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
7102          return ExprError();
7103
7104        Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
7105        ArgType = Arg->getType();
7106      } else
7107        return ExprError();
7108    }
7109
7110    if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
7111                                                       ParamType,
7112                                                       Arg, Converted))
7113      return ExprError();
7114    return Arg;
7115  }
7116
7117  // Deal with parameters of type std::nullptr_t.
7118  if (ParamType->isNullPtrType()) {
7119    if (Arg->isTypeDependent() || Arg->isValueDependent()) {
7120      Converted = TemplateArgument(Arg);
7121      return Arg;
7122    }
7123
7124    switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
7125    case NPV_NotNullPointer:
7126      Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
7127        << Arg->getType() << ParamType;
7128      Diag(Param->getLocation(), diag::note_template_param_here);
7129      return ExprError();
7130
7131    case NPV_Error:
7132      return ExprError();
7133
7134    case NPV_NullPointer:
7135      Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
7136      Converted = TemplateArgument(Context.getCanonicalType(ParamType),
7137                                   /*isNullPtr*/true);
7138      return Arg;
7139    }
7140  }
7141
7142  //     -- For a non-type template-parameter of type pointer to data
7143  //        member, qualification conversions (4.4) are applied.
7144  assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
7145
7146  if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
7147                                           Converted))
7148    return ExprError();
7149  return Arg;
7150}
7151
7152static void DiagnoseTemplateParameterListArityMismatch(
7153    Sema &S, TemplateParameterList *New, TemplateParameterList *Old,
7154    Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc);
7155
7156/// Check a template argument against its corresponding
7157/// template template parameter.
7158///
7159/// This routine implements the semantics of C++ [temp.arg.template].
7160/// It returns true if an error occurred, and false otherwise.
7161bool Sema::CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param,
7162                                         TemplateParameterList *Params,
7163                                         TemplateArgumentLoc &Arg) {
7164  TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
7165  TemplateDecl *Template = Name.getAsTemplateDecl();
7166  if (!Template) {
7167    // Any dependent template name is fine.
7168    assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
7169    return false;
7170  }
7171
7172  if (Template->isInvalidDecl())
7173    return true;
7174
7175  // C++0x [temp.arg.template]p1:
7176  //   A template-argument for a template template-parameter shall be
7177  //   the name of a class template or an alias template, expressed as an
7178  //   id-expression. When the template-argument names a class template, only
7179  //   primary class templates are considered when matching the
7180  //   template template argument with the corresponding parameter;
7181  //   partial specializations are not considered even if their
7182  //   parameter lists match that of the template template parameter.
7183  //
7184  // Note that we also allow template template parameters here, which
7185  // will happen when we are dealing with, e.g., class template
7186  // partial specializations.
7187  if (!isa<ClassTemplateDecl>(Template) &&
7188      !isa<TemplateTemplateParmDecl>(Template) &&
7189      !isa<TypeAliasTemplateDecl>(Template) &&
7190      !isa<BuiltinTemplateDecl>(Template)) {
7191    assert(isa<FunctionTemplateDecl>(Template) &&
7192           "Only function templates are possible here");
7193    Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template);
7194    Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
7195      << Template;
7196  }
7197
7198  // C++1z [temp.arg.template]p3: (DR 150)
7199  //   A template-argument matches a template template-parameter P when P
7200  //   is at least as specialized as the template-argument A.
7201  // FIXME: We should enable RelaxedTemplateTemplateArgs by default as it is a
7202  //  defect report resolution from C++17 and shouldn't be introduced by
7203  //  concepts.
7204  if (getLangOpts().RelaxedTemplateTemplateArgs) {
7205    // Quick check for the common case:
7206    //   If P contains a parameter pack, then A [...] matches P if each of A's
7207    //   template parameters matches the corresponding template parameter in
7208    //   the template-parameter-list of P.
7209    if (TemplateParameterListsAreEqual(
7210            Template->getTemplateParameters(), Params, false,
7211            TPL_TemplateTemplateArgumentMatch, Arg.getLocation()) &&
7212        // If the argument has no associated constraints, then the parameter is
7213        // definitely at least as specialized as the argument.
7214        // Otherwise - we need a more thorough check.
7215        !Template->hasAssociatedConstraints())
7216      return false;
7217
7218    if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template,
7219                                                          Arg.getLocation())) {
7220      // C++2a[temp.func.order]p2
7221      //   [...] If both deductions succeed, the partial ordering selects the
7222      //   more constrained template as described by the rules in
7223      //   [temp.constr.order].
7224      SmallVector<const Expr *, 3> ParamsAC, TemplateAC;
7225      Params->getAssociatedConstraints(ParamsAC);
7226      // C++2a[temp.arg.template]p3
7227      //   [...] In this comparison, if P is unconstrained, the constraints on A
7228      //   are not considered.
7229      if (ParamsAC.empty())
7230        return false;
7231      Template->getAssociatedConstraints(TemplateAC);
7232      bool IsParamAtLeastAsConstrained;
7233      if (IsAtLeastAsConstrained(Param, ParamsAC, Template, TemplateAC,
7234                                 IsParamAtLeastAsConstrained))
7235        return true;
7236      if (!IsParamAtLeastAsConstrained) {
7237        Diag(Arg.getLocation(),
7238             diag::err_template_template_parameter_not_at_least_as_constrained)
7239            << Template << Param << Arg.getSourceRange();
7240        Diag(Param->getLocation(), diag::note_entity_declared_at) << Param;
7241        Diag(Template->getLocation(), diag::note_entity_declared_at)
7242            << Template;
7243        MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Param, ParamsAC, Template,
7244                                                      TemplateAC);
7245        return true;
7246      }
7247      return false;
7248    }
7249    // FIXME: Produce better diagnostics for deduction failures.
7250  }
7251
7252  return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
7253                                         Params,
7254                                         true,
7255                                         TPL_TemplateTemplateArgumentMatch,
7256                                         Arg.getLocation());
7257}
7258
7259/// Given a non-type template argument that refers to a
7260/// declaration and the type of its corresponding non-type template
7261/// parameter, produce an expression that properly refers to that
7262/// declaration.
7263ExprResult
7264Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
7265                                              QualType ParamType,
7266                                              SourceLocation Loc) {
7267  // C++ [temp.param]p8:
7268  //
7269  //   A non-type template-parameter of type "array of T" or
7270  //   "function returning T" is adjusted to be of type "pointer to
7271  //   T" or "pointer to function returning T", respectively.
7272  if (ParamType->isArrayType())
7273    ParamType = Context.getArrayDecayedType(ParamType);
7274  else if (ParamType->isFunctionType())
7275    ParamType = Context.getPointerType(ParamType);
7276
7277  // For a NULL non-type template argument, return nullptr casted to the
7278  // parameter's type.
7279  if (Arg.getKind() == TemplateArgument::NullPtr) {
7280    return ImpCastExprToType(
7281             new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
7282                             ParamType,
7283                             ParamType->getAs<MemberPointerType>()
7284                               ? CK_NullToMemberPointer
7285                               : CK_NullToPointer);
7286  }
7287  assert(Arg.getKind() == TemplateArgument::Declaration &&
7288         "Only declaration template arguments permitted here");
7289
7290  ValueDecl *VD = Arg.getAsDecl();
7291
7292  CXXScopeSpec SS;
7293  if (ParamType->isMemberPointerType()) {
7294    // If this is a pointer to member, we need to use a qualified name to
7295    // form a suitable pointer-to-member constant.
7296    assert(VD->getDeclContext()->isRecord() &&
7297           (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
7298            isa<IndirectFieldDecl>(VD)));
7299    QualType ClassType
7300      = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
7301    NestedNameSpecifier *Qualifier
7302      = NestedNameSpecifier::Create(Context, nullptr, false,
7303                                    ClassType.getTypePtr());
7304    SS.MakeTrivial(Context, Qualifier, Loc);
7305  }
7306
7307  ExprResult RefExpr = BuildDeclarationNameExpr(
7308      SS, DeclarationNameInfo(VD->getDeclName(), Loc), VD);
7309  if (RefExpr.isInvalid())
7310    return ExprError();
7311
7312  // For a pointer, the argument declaration is the pointee. Take its address.
7313  QualType ElemT(RefExpr.get()->getType()->getArrayElementTypeNoTypeQual(), 0);
7314  if (ParamType->isPointerType() && !ElemT.isNull() &&
7315      Context.hasSimilarType(ElemT, ParamType->getPointeeType())) {
7316    // Decay an array argument if we want a pointer to its first element.
7317    RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
7318    if (RefExpr.isInvalid())
7319      return ExprError();
7320  } else if (ParamType->isPointerType() || ParamType->isMemberPointerType()) {
7321    // For any other pointer, take the address (or form a pointer-to-member).
7322    RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
7323    if (RefExpr.isInvalid())
7324      return ExprError();
7325  } else {
7326    assert(ParamType->isReferenceType() &&
7327           "unexpected type for decl template argument");
7328  }
7329
7330  // At this point we should have the right value category.
7331  assert(ParamType->isReferenceType() == RefExpr.get()->isLValue() &&
7332         "value kind mismatch for non-type template argument");
7333
7334  // The type of the template parameter can differ from the type of the
7335  // argument in various ways; convert it now if necessary.
7336  QualType DestExprType = ParamType.getNonLValueExprType(Context);
7337  if (!Context.hasSameType(RefExpr.get()->getType(), DestExprType)) {
7338    CastKind CK;
7339    QualType Ignored;
7340    if (Context.hasSimilarType(RefExpr.get()->getType(), DestExprType) ||
7341        IsFunctionConversion(RefExpr.get()->getType(), DestExprType, Ignored)) {
7342      CK = CK_NoOp;
7343    } else if (ParamType->isVoidPointerType() &&
7344               RefExpr.get()->getType()->isPointerType()) {
7345      CK = CK_BitCast;
7346    } else {
7347      // FIXME: Pointers to members can need conversion derived-to-base or
7348      // base-to-derived conversions. We currently don't retain enough
7349      // information to convert properly (we need to track a cast path or
7350      // subobject number in the template argument).
7351      llvm_unreachable(
7352          "unexpected conversion required for non-type template argument");
7353    }
7354    RefExpr = ImpCastExprToType(RefExpr.get(), DestExprType, CK,
7355                                RefExpr.get()->getValueKind());
7356  }
7357
7358  return RefExpr;
7359}
7360
7361/// Construct a new expression that refers to the given
7362/// integral template argument with the given source-location
7363/// information.
7364///
7365/// This routine takes care of the mapping from an integral template
7366/// argument (which may have any integral type) to the appropriate
7367/// literal value.
7368ExprResult
7369Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
7370                                                  SourceLocation Loc) {
7371  assert(Arg.getKind() == TemplateArgument::Integral &&
7372         "Operation is only valid for integral template arguments");
7373  QualType OrigT = Arg.getIntegralType();
7374
7375  // If this is an enum type that we're instantiating, we need to use an integer
7376  // type the same size as the enumerator.  We don't want to build an
7377  // IntegerLiteral with enum type.  The integer type of an enum type can be of
7378  // any integral type with C++11 enum classes, make sure we create the right
7379  // type of literal for it.
7380  QualType T = OrigT;
7381  if (const EnumType *ET = OrigT->getAs<EnumType>())
7382    T = ET->getDecl()->getIntegerType();
7383
7384  Expr *E;
7385  if (T->isAnyCharacterType()) {
7386    CharacterLiteral::CharacterKind Kind;
7387    if (T->isWideCharType())
7388      Kind = CharacterLiteral::Wide;
7389    else if (T->isChar8Type() && getLangOpts().Char8)
7390      Kind = CharacterLiteral::UTF8;
7391    else if (T->isChar16Type())
7392      Kind = CharacterLiteral::UTF16;
7393    else if (T->isChar32Type())
7394      Kind = CharacterLiteral::UTF32;
7395    else
7396      Kind = CharacterLiteral::Ascii;
7397
7398    E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
7399                                       Kind, T, Loc);
7400  } else if (T->isBooleanType()) {
7401    E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
7402                                         T, Loc);
7403  } else if (T->isNullPtrType()) {
7404    E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
7405  } else {
7406    E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
7407  }
7408
7409  if (OrigT->isEnumeralType()) {
7410    // FIXME: This is a hack. We need a better way to handle substituted
7411    // non-type template parameters.
7412    E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E,
7413                               nullptr,
7414                               Context.getTrivialTypeSourceInfo(OrigT, Loc),
7415                               Loc, Loc);
7416  }
7417
7418  return E;
7419}
7420
7421/// Match two template parameters within template parameter lists.
7422static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
7423                                       bool Complain,
7424                                     Sema::TemplateParameterListEqualKind Kind,
7425                                       SourceLocation TemplateArgLoc) {
7426  // Check the actual kind (type, non-type, template).
7427  if (Old->getKind() != New->getKind()) {
7428    if (Complain) {
7429      unsigned NextDiag = diag::err_template_param_different_kind;
7430      if (TemplateArgLoc.isValid()) {
7431        S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
7432        NextDiag = diag::note_template_param_different_kind;
7433      }
7434      S.Diag(New->getLocation(), NextDiag)
7435        << (Kind != Sema::TPL_TemplateMatch);
7436      S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
7437        << (Kind != Sema::TPL_TemplateMatch);
7438    }
7439
7440    return false;
7441  }
7442
7443  // Check that both are parameter packs or neither are parameter packs.
7444  // However, if we are matching a template template argument to a
7445  // template template parameter, the template template parameter can have
7446  // a parameter pack where the template template argument does not.
7447  if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
7448      !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
7449        Old->isTemplateParameterPack())) {
7450    if (Complain) {
7451      unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
7452      if (TemplateArgLoc.isValid()) {
7453        S.Diag(TemplateArgLoc,
7454             diag::err_template_arg_template_params_mismatch);
7455        NextDiag = diag::note_template_parameter_pack_non_pack;
7456      }
7457
7458      unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
7459                      : isa<NonTypeTemplateParmDecl>(New)? 1
7460                      : 2;
7461      S.Diag(New->getLocation(), NextDiag)
7462        << ParamKind << New->isParameterPack();
7463      S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
7464        << ParamKind << Old->isParameterPack();
7465    }
7466
7467    return false;
7468  }
7469
7470  // For non-type template parameters, check the type of the parameter.
7471  if (NonTypeTemplateParmDecl *OldNTTP
7472                                    = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
7473    NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
7474
7475    // If we are matching a template template argument to a template
7476    // template parameter and one of the non-type template parameter types
7477    // is dependent, then we must wait until template instantiation time
7478    // to actually compare the arguments.
7479    if (Kind != Sema::TPL_TemplateTemplateArgumentMatch ||
7480        (!OldNTTP->getType()->isDependentType() &&
7481         !NewNTTP->getType()->isDependentType()))
7482      if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
7483        if (Complain) {
7484          unsigned NextDiag = diag::err_template_nontype_parm_different_type;
7485          if (TemplateArgLoc.isValid()) {
7486            S.Diag(TemplateArgLoc,
7487                   diag::err_template_arg_template_params_mismatch);
7488            NextDiag = diag::note_template_nontype_parm_different_type;
7489          }
7490          S.Diag(NewNTTP->getLocation(), NextDiag)
7491            << NewNTTP->getType()
7492            << (Kind != Sema::TPL_TemplateMatch);
7493          S.Diag(OldNTTP->getLocation(),
7494                 diag::note_template_nontype_parm_prev_declaration)
7495            << OldNTTP->getType();
7496        }
7497
7498        return false;
7499      }
7500  }
7501  // For template template parameters, check the template parameter types.
7502  // The template parameter lists of template template
7503  // parameters must agree.
7504  else if (TemplateTemplateParmDecl *OldTTP
7505                                    = dyn_cast<TemplateTemplateParmDecl>(Old)) {
7506    TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
7507    if (!S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
7508                                          OldTTP->getTemplateParameters(),
7509                                          Complain,
7510                                        (Kind == Sema::TPL_TemplateMatch
7511                                           ? Sema::TPL_TemplateTemplateParmMatch
7512                                           : Kind),
7513                                          TemplateArgLoc))
7514      return false;
7515  } else if (Kind != Sema::TPL_TemplateTemplateArgumentMatch) {
7516    const Expr *NewC = nullptr, *OldC = nullptr;
7517    if (const auto *TC = cast<TemplateTypeParmDecl>(New)->getTypeConstraint())
7518      NewC = TC->getImmediatelyDeclaredConstraint();
7519    if (const auto *TC = cast<TemplateTypeParmDecl>(Old)->getTypeConstraint())
7520      OldC = TC->getImmediatelyDeclaredConstraint();
7521
7522    auto Diagnose = [&] {
7523      S.Diag(NewC ? NewC->getBeginLoc() : New->getBeginLoc(),
7524           diag::err_template_different_type_constraint);
7525      S.Diag(OldC ? OldC->getBeginLoc() : Old->getBeginLoc(),
7526           diag::note_template_prev_declaration) << /*declaration*/0;
7527    };
7528
7529    if (!NewC != !OldC) {
7530      if (Complain)
7531        Diagnose();
7532      return false;
7533    }
7534
7535    if (NewC) {
7536      llvm::FoldingSetNodeID OldCID, NewCID;
7537      OldC->Profile(OldCID, S.Context, /*Canonical=*/true);
7538      NewC->Profile(NewCID, S.Context, /*Canonical=*/true);
7539      if (OldCID != NewCID) {
7540        if (Complain)
7541          Diagnose();
7542        return false;
7543      }
7544    }
7545  }
7546
7547  return true;
7548}
7549
7550/// Diagnose a known arity mismatch when comparing template argument
7551/// lists.
7552static
7553void DiagnoseTemplateParameterListArityMismatch(Sema &S,
7554                                                TemplateParameterList *New,
7555                                                TemplateParameterList *Old,
7556                                      Sema::TemplateParameterListEqualKind Kind,
7557                                                SourceLocation TemplateArgLoc) {
7558  unsigned NextDiag = diag::err_template_param_list_different_arity;
7559  if (TemplateArgLoc.isValid()) {
7560    S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
7561    NextDiag = diag::note_template_param_list_different_arity;
7562  }
7563  S.Diag(New->getTemplateLoc(), NextDiag)
7564    << (New->size() > Old->size())
7565    << (Kind != Sema::TPL_TemplateMatch)
7566    << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
7567  S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
7568    << (Kind != Sema::TPL_TemplateMatch)
7569    << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
7570}
7571
7572/// Determine whether the given template parameter lists are
7573/// equivalent.
7574///
7575/// \param New  The new template parameter list, typically written in the
7576/// source code as part of a new template declaration.
7577///
7578/// \param Old  The old template parameter list, typically found via
7579/// name lookup of the template declared with this template parameter
7580/// list.
7581///
7582/// \param Complain  If true, this routine will produce a diagnostic if
7583/// the template parameter lists are not equivalent.
7584///
7585/// \param Kind describes how we are to match the template parameter lists.
7586///
7587/// \param TemplateArgLoc If this source location is valid, then we
7588/// are actually checking the template parameter list of a template
7589/// argument (New) against the template parameter list of its
7590/// corresponding template template parameter (Old). We produce
7591/// slightly different diagnostics in this scenario.
7592///
7593/// \returns True if the template parameter lists are equal, false
7594/// otherwise.
7595bool
7596Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
7597                                     TemplateParameterList *Old,
7598                                     bool Complain,
7599                                     TemplateParameterListEqualKind Kind,
7600                                     SourceLocation TemplateArgLoc) {
7601  if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
7602    if (Complain)
7603      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
7604                                                 TemplateArgLoc);
7605
7606    return false;
7607  }
7608
7609  // C++0x [temp.arg.template]p3:
7610  //   A template-argument matches a template template-parameter (call it P)
7611  //   when each of the template parameters in the template-parameter-list of
7612  //   the template-argument's corresponding class template or alias template
7613  //   (call it A) matches the corresponding template parameter in the
7614  //   template-parameter-list of P. [...]
7615  TemplateParameterList::iterator NewParm = New->begin();
7616  TemplateParameterList::iterator NewParmEnd = New->end();
7617  for (TemplateParameterList::iterator OldParm = Old->begin(),
7618                                    OldParmEnd = Old->end();
7619       OldParm != OldParmEnd; ++OldParm) {
7620    if (Kind != TPL_TemplateTemplateArgumentMatch ||
7621        !(*OldParm)->isTemplateParameterPack()) {
7622      if (NewParm == NewParmEnd) {
7623        if (Complain)
7624          DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
7625                                                     TemplateArgLoc);
7626
7627        return false;
7628      }
7629
7630      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
7631                                      Kind, TemplateArgLoc))
7632        return false;
7633
7634      ++NewParm;
7635      continue;
7636    }
7637
7638    // C++0x [temp.arg.template]p3:
7639    //   [...] When P's template- parameter-list contains a template parameter
7640    //   pack (14.5.3), the template parameter pack will match zero or more
7641    //   template parameters or template parameter packs in the
7642    //   template-parameter-list of A with the same type and form as the
7643    //   template parameter pack in P (ignoring whether those template
7644    //   parameters are template parameter packs).
7645    for (; NewParm != NewParmEnd; ++NewParm) {
7646      if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
7647                                      Kind, TemplateArgLoc))
7648        return false;
7649    }
7650  }
7651
7652  // Make sure we exhausted all of the arguments.
7653  if (NewParm != NewParmEnd) {
7654    if (Complain)
7655      DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
7656                                                 TemplateArgLoc);
7657
7658    return false;
7659  }
7660
7661  if (Kind != TPL_TemplateTemplateArgumentMatch) {
7662    const Expr *NewRC = New->getRequiresClause();
7663    const Expr *OldRC = Old->getRequiresClause();
7664
7665    auto Diagnose = [&] {
7666      Diag(NewRC ? NewRC->getBeginLoc() : New->getTemplateLoc(),
7667           diag::err_template_different_requires_clause);
7668      Diag(OldRC ? OldRC->getBeginLoc() : Old->getTemplateLoc(),
7669           diag::note_template_prev_declaration) << /*declaration*/0;
7670    };
7671
7672    if (!NewRC != !OldRC) {
7673      if (Complain)
7674        Diagnose();
7675      return false;
7676    }
7677
7678    if (NewRC) {
7679      llvm::FoldingSetNodeID OldRCID, NewRCID;
7680      OldRC->Profile(OldRCID, Context, /*Canonical=*/true);
7681      NewRC->Profile(NewRCID, Context, /*Canonical=*/true);
7682      if (OldRCID != NewRCID) {
7683        if (Complain)
7684          Diagnose();
7685        return false;
7686      }
7687    }
7688  }
7689
7690  return true;
7691}
7692
7693/// Check whether a template can be declared within this scope.
7694///
7695/// If the template declaration is valid in this scope, returns
7696/// false. Otherwise, issues a diagnostic and returns true.
7697bool
7698Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
7699  if (!S)
7700    return false;
7701
7702  // Find the nearest enclosing declaration scope.
7703  while ((S->getFlags() & Scope::DeclScope) == 0 ||
7704         (S->getFlags() & Scope::TemplateParamScope) != 0)
7705    S = S->getParent();
7706
7707  // C++ [temp]p4:
7708  //   A template [...] shall not have C linkage.
7709  DeclContext *Ctx = S->getEntity();
7710  assert(Ctx && "Unknown context");
7711  if (Ctx->isExternCContext()) {
7712    Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
7713        << TemplateParams->getSourceRange();
7714    if (const LinkageSpecDecl *LSD = Ctx->getExternCContext())
7715      Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
7716    return true;
7717  }
7718  Ctx = Ctx->getRedeclContext();
7719
7720  // C++ [temp]p2:
7721  //   A template-declaration can appear only as a namespace scope or
7722  //   class scope declaration.
7723  if (Ctx) {
7724    if (Ctx->isFileContext())
7725      return false;
7726    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
7727      // C++ [temp.mem]p2:
7728      //   A local class shall not have member templates.
7729      if (RD->isLocalClass())
7730        return Diag(TemplateParams->getTemplateLoc(),
7731                    diag::err_template_inside_local_class)
7732          << TemplateParams->getSourceRange();
7733      else
7734        return false;
7735    }
7736  }
7737
7738  return Diag(TemplateParams->getTemplateLoc(),
7739              diag::err_template_outside_namespace_or_class_scope)
7740    << TemplateParams->getSourceRange();
7741}
7742
7743/// Determine what kind of template specialization the given declaration
7744/// is.
7745static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
7746  if (!D)
7747    return TSK_Undeclared;
7748
7749  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
7750    return Record->getTemplateSpecializationKind();
7751  if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
7752    return Function->getTemplateSpecializationKind();
7753  if (VarDecl *Var = dyn_cast<VarDecl>(D))
7754    return Var->getTemplateSpecializationKind();
7755
7756  return TSK_Undeclared;
7757}
7758
7759/// Check whether a specialization is well-formed in the current
7760/// context.
7761///
7762/// This routine determines whether a template specialization can be declared
7763/// in the current context (C++ [temp.expl.spec]p2).
7764///
7765/// \param S the semantic analysis object for which this check is being
7766/// performed.
7767///
7768/// \param Specialized the entity being specialized or instantiated, which
7769/// may be a kind of template (class template, function template, etc.) or
7770/// a member of a class template (member function, static data member,
7771/// member class).
7772///
7773/// \param PrevDecl the previous declaration of this entity, if any.
7774///
7775/// \param Loc the location of the explicit specialization or instantiation of
7776/// this entity.
7777///
7778/// \param IsPartialSpecialization whether this is a partial specialization of
7779/// a class template.
7780///
7781/// \returns true if there was an error that we cannot recover from, false
7782/// otherwise.
7783static bool CheckTemplateSpecializationScope(Sema &S,
7784                                             NamedDecl *Specialized,
7785                                             NamedDecl *PrevDecl,
7786                                             SourceLocation Loc,
7787                                             bool IsPartialSpecialization) {
7788  // Keep these "kind" numbers in sync with the %select statements in the
7789  // various diagnostics emitted by this routine.
7790  int EntityKind = 0;
7791  if (isa<ClassTemplateDecl>(Specialized))
7792    EntityKind = IsPartialSpecialization? 1 : 0;
7793  else if (isa<VarTemplateDecl>(Specialized))
7794    EntityKind = IsPartialSpecialization ? 3 : 2;
7795  else if (isa<FunctionTemplateDecl>(Specialized))
7796    EntityKind = 4;
7797  else if (isa<CXXMethodDecl>(Specialized))
7798    EntityKind = 5;
7799  else if (isa<VarDecl>(Specialized))
7800    EntityKind = 6;
7801  else if (isa<RecordDecl>(Specialized))
7802    EntityKind = 7;
7803  else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
7804    EntityKind = 8;
7805  else {
7806    S.Diag(Loc, diag::err_template_spec_unknown_kind)
7807      << S.getLangOpts().CPlusPlus11;
7808    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
7809    return true;
7810  }
7811
7812  // C++ [temp.expl.spec]p2:
7813  //   An explicit specialization may be declared in any scope in which
7814  //   the corresponding primary template may be defined.
7815  if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
7816    S.Diag(Loc, diag::err_template_spec_decl_function_scope)
7817      << Specialized;
7818    return true;
7819  }
7820
7821  // C++ [temp.class.spec]p6:
7822  //   A class template partial specialization may be declared in any
7823  //   scope in which the primary template may be defined.
7824  DeclContext *SpecializedContext =
7825      Specialized->getDeclContext()->getRedeclContext();
7826  DeclContext *DC = S.CurContext->getRedeclContext();
7827
7828  // Make sure that this redeclaration (or definition) occurs in the same
7829  // scope or an enclosing namespace.
7830  if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext)
7831                            : DC->Equals(SpecializedContext))) {
7832    if (isa<TranslationUnitDecl>(SpecializedContext))
7833      S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
7834        << EntityKind << Specialized;
7835    else {
7836      auto *ND = cast<NamedDecl>(SpecializedContext);
7837      int Diag = diag::err_template_spec_redecl_out_of_scope;
7838      if (S.getLangOpts().MicrosoftExt && !DC->isRecord())
7839        Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
7840      S.Diag(Loc, Diag) << EntityKind << Specialized
7841                        << ND << isa<CXXRecordDecl>(ND);
7842    }
7843
7844    S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
7845
7846    // Don't allow specializing in the wrong class during error recovery.
7847    // Otherwise, things can go horribly wrong.
7848    if (DC->isRecord())
7849      return true;
7850  }
7851
7852  return false;
7853}
7854
7855static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) {
7856  if (!E->isTypeDependent())
7857    return SourceLocation();
7858  DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
7859  Checker.TraverseStmt(E);
7860  if (Checker.MatchLoc.isInvalid())
7861    return E->getSourceRange();
7862  return Checker.MatchLoc;
7863}
7864
7865static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
7866  if (!TL.getType()->isDependentType())
7867    return SourceLocation();
7868  DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
7869  Checker.TraverseTypeLoc(TL);
7870  if (Checker.MatchLoc.isInvalid())
7871    return TL.getSourceRange();
7872  return Checker.MatchLoc;
7873}
7874
7875/// Subroutine of Sema::CheckTemplatePartialSpecializationArgs
7876/// that checks non-type template partial specialization arguments.
7877static bool CheckNonTypeTemplatePartialSpecializationArgs(
7878    Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
7879    const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
7880  for (unsigned I = 0; I != NumArgs; ++I) {
7881    if (Args[I].getKind() == TemplateArgument::Pack) {
7882      if (CheckNonTypeTemplatePartialSpecializationArgs(
7883              S, TemplateNameLoc, Param, Args[I].pack_begin(),
7884              Args[I].pack_size(), IsDefaultArgument))
7885        return true;
7886
7887      continue;
7888    }
7889
7890    if (Args[I].getKind() != TemplateArgument::Expression)
7891      continue;
7892
7893    Expr *ArgExpr = Args[I].getAsExpr();
7894
7895    // We can have a pack expansion of any of the bullets below.
7896    if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
7897      ArgExpr = Expansion->getPattern();
7898
7899    // Strip off any implicit casts we added as part of type checking.
7900    while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
7901      ArgExpr = ICE->getSubExpr();
7902
7903    // C++ [temp.class.spec]p8:
7904    //   A non-type argument is non-specialized if it is the name of a
7905    //   non-type parameter. All other non-type arguments are
7906    //   specialized.
7907    //
7908    // Below, we check the two conditions that only apply to
7909    // specialized non-type arguments, so skip any non-specialized
7910    // arguments.
7911    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
7912      if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
7913        continue;
7914
7915    // C++ [temp.class.spec]p9:
7916    //   Within the argument list of a class template partial
7917    //   specialization, the following restrictions apply:
7918    //     -- A partially specialized non-type argument expression
7919    //        shall not involve a template parameter of the partial
7920    //        specialization except when the argument expression is a
7921    //        simple identifier.
7922    //     -- The type of a template parameter corresponding to a
7923    //        specialized non-type argument shall not be dependent on a
7924    //        parameter of the specialization.
7925    // DR1315 removes the first bullet, leaving an incoherent set of rules.
7926    // We implement a compromise between the original rules and DR1315:
7927    //     --  A specialized non-type template argument shall not be
7928    //         type-dependent and the corresponding template parameter
7929    //         shall have a non-dependent type.
7930    SourceRange ParamUseRange =
7931        findTemplateParameterInType(Param->getDepth(), ArgExpr);
7932    if (ParamUseRange.isValid()) {
7933      if (IsDefaultArgument) {
7934        S.Diag(TemplateNameLoc,
7935               diag::err_dependent_non_type_arg_in_partial_spec);
7936        S.Diag(ParamUseRange.getBegin(),
7937               diag::note_dependent_non_type_default_arg_in_partial_spec)
7938          << ParamUseRange;
7939      } else {
7940        S.Diag(ParamUseRange.getBegin(),
7941               diag::err_dependent_non_type_arg_in_partial_spec)
7942          << ParamUseRange;
7943      }
7944      return true;
7945    }
7946
7947    ParamUseRange = findTemplateParameter(
7948        Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
7949    if (ParamUseRange.isValid()) {
7950      S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(),
7951             diag::err_dependent_typed_non_type_arg_in_partial_spec)
7952          << Param->getType();
7953      S.Diag(Param->getLocation(), diag::note_template_param_here)
7954        << (IsDefaultArgument ? ParamUseRange : SourceRange())
7955        << ParamUseRange;
7956      return true;
7957    }
7958  }
7959
7960  return false;
7961}
7962
7963/// Check the non-type template arguments of a class template
7964/// partial specialization according to C++ [temp.class.spec]p9.
7965///
7966/// \param TemplateNameLoc the location of the template name.
7967/// \param PrimaryTemplate the template parameters of the primary class
7968///        template.
7969/// \param NumExplicit the number of explicitly-specified template arguments.
7970/// \param TemplateArgs the template arguments of the class template
7971///        partial specialization.
7972///
7973/// \returns \c true if there was an error, \c false otherwise.
7974bool Sema::CheckTemplatePartialSpecializationArgs(
7975    SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate,
7976    unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) {
7977  // We have to be conservative when checking a template in a dependent
7978  // context.
7979  if (PrimaryTemplate->getDeclContext()->isDependentContext())
7980    return false;
7981
7982  TemplateParameterList *TemplateParams =
7983      PrimaryTemplate->getTemplateParameters();
7984  for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
7985    NonTypeTemplateParmDecl *Param
7986      = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
7987    if (!Param)
7988      continue;
7989
7990    if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc,
7991                                                      Param, &TemplateArgs[I],
7992                                                      1, I >= NumExplicit))
7993      return true;
7994  }
7995
7996  return false;
7997}
7998
7999DeclResult Sema::ActOnClassTemplateSpecialization(
8000    Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
8001    SourceLocation ModulePrivateLoc, CXXScopeSpec &SS,
8002    TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr,
8003    MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) {
8004  assert(TUK != TUK_Reference && "References are not specializations");
8005
8006  // NOTE: KWLoc is the location of the tag keyword. This will instead
8007  // store the location of the outermost template keyword in the declaration.
8008  SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
8009    ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
8010  SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
8011  SourceLocation LAngleLoc = TemplateId.LAngleLoc;
8012  SourceLocation RAngleLoc = TemplateId.RAngleLoc;
8013
8014  // Find the class template we're specializing
8015  TemplateName Name = TemplateId.Template.get();
8016  ClassTemplateDecl *ClassTemplate
8017    = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
8018
8019  if (!ClassTemplate) {
8020    Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
8021      << (Name.getAsTemplateDecl() &&
8022          isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
8023    return true;
8024  }
8025
8026  bool isMemberSpecialization = false;
8027  bool isPartialSpecialization = false;
8028
8029  // Check the validity of the template headers that introduce this
8030  // template.
8031  // FIXME: We probably shouldn't complain about these headers for
8032  // friend declarations.
8033  bool Invalid = false;
8034  TemplateParameterList *TemplateParams =
8035      MatchTemplateParametersToScopeSpecifier(
8036          KWLoc, TemplateNameLoc, SS, &TemplateId,
8037          TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization,
8038          Invalid);
8039  if (Invalid)
8040    return true;
8041
8042  if (TemplateParams && TemplateParams->size() > 0) {
8043    isPartialSpecialization = true;
8044
8045    if (TUK == TUK_Friend) {
8046      Diag(KWLoc, diag::err_partial_specialization_friend)
8047        << SourceRange(LAngleLoc, RAngleLoc);
8048      return true;
8049    }
8050
8051    // C++ [temp.class.spec]p10:
8052    //   The template parameter list of a specialization shall not
8053    //   contain default template argument values.
8054    for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
8055      Decl *Param = TemplateParams->getParam(I);
8056      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
8057        if (TTP->hasDefaultArgument()) {
8058          Diag(TTP->getDefaultArgumentLoc(),
8059               diag::err_default_arg_in_partial_spec);
8060          TTP->removeDefaultArgument();
8061        }
8062      } else if (NonTypeTemplateParmDecl *NTTP
8063                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
8064        if (Expr *DefArg = NTTP->getDefaultArgument()) {
8065          Diag(NTTP->getDefaultArgumentLoc(),
8066               diag::err_default_arg_in_partial_spec)
8067            << DefArg->getSourceRange();
8068          NTTP->removeDefaultArgument();
8069        }
8070      } else {
8071        TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
8072        if (TTP->hasDefaultArgument()) {
8073          Diag(TTP->getDefaultArgument().getLocation(),
8074               diag::err_default_arg_in_partial_spec)
8075            << TTP->getDefaultArgument().getSourceRange();
8076          TTP->removeDefaultArgument();
8077        }
8078      }
8079    }
8080  } else if (TemplateParams) {
8081    if (TUK == TUK_Friend)
8082      Diag(KWLoc, diag::err_template_spec_friend)
8083        << FixItHint::CreateRemoval(
8084                                SourceRange(TemplateParams->getTemplateLoc(),
8085                                            TemplateParams->getRAngleLoc()))
8086        << SourceRange(LAngleLoc, RAngleLoc);
8087  } else {
8088    assert(TUK == TUK_Friend && "should have a 'template<>' for this decl");
8089  }
8090
8091  // Check that the specialization uses the same tag kind as the
8092  // original template.
8093  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8094  assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
8095  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
8096                                    Kind, TUK == TUK_Definition, KWLoc,
8097                                    ClassTemplate->getIdentifier())) {
8098    Diag(KWLoc, diag::err_use_with_wrong_tag)
8099      << ClassTemplate
8100      << FixItHint::CreateReplacement(KWLoc,
8101                            ClassTemplate->getTemplatedDecl()->getKindName());
8102    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
8103         diag::note_previous_use);
8104    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
8105  }
8106
8107  // Translate the parser's template argument list in our AST format.
8108  TemplateArgumentListInfo TemplateArgs =
8109      makeTemplateArgumentListInfo(*this, TemplateId);
8110
8111  // Check for unexpanded parameter packs in any of the template arguments.
8112  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
8113    if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
8114                                        UPPC_PartialSpecialization))
8115      return true;
8116
8117  // Check that the template argument list is well-formed for this
8118  // template.
8119  SmallVector<TemplateArgument, 4> Converted;
8120  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
8121                                TemplateArgs, false, Converted,
8122                                /*UpdateArgsWithConversion=*/true))
8123    return true;
8124
8125  // Find the class template (partial) specialization declaration that
8126  // corresponds to these arguments.
8127  if (isPartialSpecialization) {
8128    if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate,
8129                                               TemplateArgs.size(), Converted))
8130      return true;
8131
8132    // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we
8133    // also do it during instantiation.
8134    bool InstantiationDependent;
8135    if (!Name.isDependent() &&
8136        !TemplateSpecializationType::anyDependentTemplateArguments(
8137            TemplateArgs.arguments(), InstantiationDependent)) {
8138      Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
8139        << ClassTemplate->getDeclName();
8140      isPartialSpecialization = false;
8141    }
8142  }
8143
8144  void *InsertPos = nullptr;
8145  ClassTemplateSpecializationDecl *PrevDecl = nullptr;
8146
8147  if (isPartialSpecialization)
8148    PrevDecl = ClassTemplate->findPartialSpecialization(Converted,
8149                                                        TemplateParams,
8150                                                        InsertPos);
8151  else
8152    PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos);
8153
8154  ClassTemplateSpecializationDecl *Specialization = nullptr;
8155
8156  // Check whether we can declare a class template specialization in
8157  // the current scope.
8158  if (TUK != TUK_Friend &&
8159      CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
8160                                       TemplateNameLoc,
8161                                       isPartialSpecialization))
8162    return true;
8163
8164  // The canonical type
8165  QualType CanonType;
8166  if (isPartialSpecialization) {
8167    // Build the canonical type that describes the converted template
8168    // arguments of the class template partial specialization.
8169    TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
8170    CanonType = Context.getTemplateSpecializationType(CanonTemplate,
8171                                                      Converted);
8172
8173    if (Context.hasSameType(CanonType,
8174                        ClassTemplate->getInjectedClassNameSpecialization()) &&
8175        (!Context.getLangOpts().CPlusPlus2a ||
8176         !TemplateParams->hasAssociatedConstraints())) {
8177      // C++ [temp.class.spec]p9b3:
8178      //
8179      //   -- The argument list of the specialization shall not be identical
8180      //      to the implicit argument list of the primary template.
8181      //
8182      // This rule has since been removed, because it's redundant given DR1495,
8183      // but we keep it because it produces better diagnostics and recovery.
8184      Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
8185        << /*class template*/0 << (TUK == TUK_Definition)
8186        << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
8187      return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
8188                                ClassTemplate->getIdentifier(),
8189                                TemplateNameLoc,
8190                                Attr,
8191                                TemplateParams,
8192                                AS_none, /*ModulePrivateLoc=*/SourceLocation(),
8193                                /*FriendLoc*/SourceLocation(),
8194                                TemplateParameterLists.size() - 1,
8195                                TemplateParameterLists.data());
8196    }
8197
8198    // Create a new class template partial specialization declaration node.
8199    ClassTemplatePartialSpecializationDecl *PrevPartial
8200      = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
8201    ClassTemplatePartialSpecializationDecl *Partial
8202      = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
8203                                             ClassTemplate->getDeclContext(),
8204                                                       KWLoc, TemplateNameLoc,
8205                                                       TemplateParams,
8206                                                       ClassTemplate,
8207                                                       Converted,
8208                                                       TemplateArgs,
8209                                                       CanonType,
8210                                                       PrevPartial);
8211    SetNestedNameSpecifier(*this, Partial, SS);
8212    if (TemplateParameterLists.size() > 1 && SS.isSet()) {
8213      Partial->setTemplateParameterListsInfo(
8214          Context, TemplateParameterLists.drop_back(1));
8215    }
8216
8217    if (!PrevPartial)
8218      ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
8219    Specialization = Partial;
8220
8221    // If we are providing an explicit specialization of a member class
8222    // template specialization, make a note of that.
8223    if (PrevPartial && PrevPartial->getInstantiatedFromMember())
8224      PrevPartial->setMemberSpecialization();
8225
8226    CheckTemplatePartialSpecialization(Partial);
8227  } else {
8228    // Create a new class template specialization declaration node for
8229    // this explicit specialization or friend declaration.
8230    Specialization
8231      = ClassTemplateSpecializationDecl::Create(Context, Kind,
8232                                             ClassTemplate->getDeclContext(),
8233                                                KWLoc, TemplateNameLoc,
8234                                                ClassTemplate,
8235                                                Converted,
8236                                                PrevDecl);
8237    SetNestedNameSpecifier(*this, Specialization, SS);
8238    if (TemplateParameterLists.size() > 0) {
8239      Specialization->setTemplateParameterListsInfo(Context,
8240                                                    TemplateParameterLists);
8241    }
8242
8243    if (!PrevDecl)
8244      ClassTemplate->AddSpecialization(Specialization, InsertPos);
8245
8246    if (CurContext->isDependentContext()) {
8247      TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
8248      CanonType = Context.getTemplateSpecializationType(
8249          CanonTemplate, Converted);
8250    } else {
8251      CanonType = Context.getTypeDeclType(Specialization);
8252    }
8253  }
8254
8255  // C++ [temp.expl.spec]p6:
8256  //   If a template, a member template or the member of a class template is
8257  //   explicitly specialized then that specialization shall be declared
8258  //   before the first use of that specialization that would cause an implicit
8259  //   instantiation to take place, in every translation unit in which such a
8260  //   use occurs; no diagnostic is required.
8261  if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
8262    bool Okay = false;
8263    for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
8264      // Is there any previous explicit specialization declaration?
8265      if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
8266        Okay = true;
8267        break;
8268      }
8269    }
8270
8271    if (!Okay) {
8272      SourceRange Range(TemplateNameLoc, RAngleLoc);
8273      Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
8274        << Context.getTypeDeclType(Specialization) << Range;
8275
8276      Diag(PrevDecl->getPointOfInstantiation(),
8277           diag::note_instantiation_required_here)
8278        << (PrevDecl->getTemplateSpecializationKind()
8279                                                != TSK_ImplicitInstantiation);
8280      return true;
8281    }
8282  }
8283
8284  // If this is not a friend, note that this is an explicit specialization.
8285  if (TUK != TUK_Friend)
8286    Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
8287
8288  // Check that this isn't a redefinition of this specialization.
8289  if (TUK == TUK_Definition) {
8290    RecordDecl *Def = Specialization->getDefinition();
8291    NamedDecl *Hidden = nullptr;
8292    if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
8293      SkipBody->ShouldSkip = true;
8294      SkipBody->Previous = Def;
8295      makeMergedDefinitionVisible(Hidden);
8296    } else if (Def) {
8297      SourceRange Range(TemplateNameLoc, RAngleLoc);
8298      Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range;
8299      Diag(Def->getLocation(), diag::note_previous_definition);
8300      Specialization->setInvalidDecl();
8301      return true;
8302    }
8303  }
8304
8305  ProcessDeclAttributeList(S, Specialization, Attr);
8306
8307  // Add alignment attributes if necessary; these attributes are checked when
8308  // the ASTContext lays out the structure.
8309  if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
8310    AddAlignmentAttributesForRecord(Specialization);
8311    AddMsStructLayoutForRecord(Specialization);
8312  }
8313
8314  if (ModulePrivateLoc.isValid())
8315    Diag(Specialization->getLocation(), diag::err_module_private_specialization)
8316      << (isPartialSpecialization? 1 : 0)
8317      << FixItHint::CreateRemoval(ModulePrivateLoc);
8318
8319  // Build the fully-sugared type for this class template
8320  // specialization as the user wrote in the specialization
8321  // itself. This means that we'll pretty-print the type retrieved
8322  // from the specialization's declaration the way that the user
8323  // actually wrote the specialization, rather than formatting the
8324  // name based on the "canonical" representation used to store the
8325  // template arguments in the specialization.
8326  TypeSourceInfo *WrittenTy
8327    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
8328                                                TemplateArgs, CanonType);
8329  if (TUK != TUK_Friend) {
8330    Specialization->setTypeAsWritten(WrittenTy);
8331    Specialization->setTemplateKeywordLoc(TemplateKWLoc);
8332  }
8333
8334  // C++ [temp.expl.spec]p9:
8335  //   A template explicit specialization is in the scope of the
8336  //   namespace in which the template was defined.
8337  //
8338  // We actually implement this paragraph where we set the semantic
8339  // context (in the creation of the ClassTemplateSpecializationDecl),
8340  // but we also maintain the lexical context where the actual
8341  // definition occurs.
8342  Specialization->setLexicalDeclContext(CurContext);
8343
8344  // We may be starting the definition of this specialization.
8345  if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
8346    Specialization->startDefinition();
8347
8348  if (TUK == TUK_Friend) {
8349    FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
8350                                            TemplateNameLoc,
8351                                            WrittenTy,
8352                                            /*FIXME:*/KWLoc);
8353    Friend->setAccess(AS_public);
8354    CurContext->addDecl(Friend);
8355  } else {
8356    // Add the specialization into its lexical context, so that it can
8357    // be seen when iterating through the list of declarations in that
8358    // context. However, specializations are not found by name lookup.
8359    CurContext->addDecl(Specialization);
8360  }
8361
8362  if (SkipBody && SkipBody->ShouldSkip)
8363    return SkipBody->Previous;
8364
8365  return Specialization;
8366}
8367
8368Decl *Sema::ActOnTemplateDeclarator(Scope *S,
8369                              MultiTemplateParamsArg TemplateParameterLists,
8370                                    Declarator &D) {
8371  Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
8372  ActOnDocumentableDecl(NewDecl);
8373  return NewDecl;
8374}
8375
8376Decl *Sema::ActOnConceptDefinition(Scope *S,
8377                              MultiTemplateParamsArg TemplateParameterLists,
8378                                   IdentifierInfo *Name, SourceLocation NameLoc,
8379                                   Expr *ConstraintExpr) {
8380  DeclContext *DC = CurContext;
8381
8382  if (!DC->getRedeclContext()->isFileContext()) {
8383    Diag(NameLoc,
8384      diag::err_concept_decls_may_only_appear_in_global_namespace_scope);
8385    return nullptr;
8386  }
8387
8388  if (TemplateParameterLists.size() > 1) {
8389    Diag(NameLoc, diag::err_concept_extra_headers);
8390    return nullptr;
8391  }
8392
8393  if (TemplateParameterLists.front()->size() == 0) {
8394    Diag(NameLoc, diag::err_concept_no_parameters);
8395    return nullptr;
8396  }
8397
8398  ConceptDecl *NewDecl = ConceptDecl::Create(Context, DC, NameLoc, Name,
8399                                             TemplateParameterLists.front(),
8400                                             ConstraintExpr);
8401
8402  if (NewDecl->hasAssociatedConstraints()) {
8403    // C++2a [temp.concept]p4:
8404    // A concept shall not have associated constraints.
8405    Diag(NameLoc, diag::err_concept_no_associated_constraints);
8406    NewDecl->setInvalidDecl();
8407  }
8408
8409  // Check for conflicting previous declaration.
8410  DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NameLoc);
8411  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
8412                        ForVisibleRedeclaration);
8413  LookupName(Previous, S);
8414
8415  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage=*/false,
8416                       /*AllowInlineNamespace*/false);
8417  if (!Previous.empty()) {
8418    auto *Old = Previous.getRepresentativeDecl();
8419    Diag(NameLoc, isa<ConceptDecl>(Old) ? diag::err_redefinition :
8420         diag::err_redefinition_different_kind) << NewDecl->getDeclName();
8421    Diag(Old->getLocation(), diag::note_previous_definition);
8422  }
8423
8424  ActOnDocumentableDecl(NewDecl);
8425  PushOnScopeChains(NewDecl, S);
8426  return NewDecl;
8427}
8428
8429/// \brief Strips various properties off an implicit instantiation
8430/// that has just been explicitly specialized.
8431static void StripImplicitInstantiation(NamedDecl *D) {
8432  D->dropAttr<DLLImportAttr>();
8433  D->dropAttr<DLLExportAttr>();
8434
8435  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
8436    FD->setInlineSpecified(false);
8437}
8438
8439/// Compute the diagnostic location for an explicit instantiation
8440//  declaration or definition.
8441static SourceLocation DiagLocForExplicitInstantiation(
8442    NamedDecl* D, SourceLocation PointOfInstantiation) {
8443  // Explicit instantiations following a specialization have no effect and
8444  // hence no PointOfInstantiation. In that case, walk decl backwards
8445  // until a valid name loc is found.
8446  SourceLocation PrevDiagLoc = PointOfInstantiation;
8447  for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
8448       Prev = Prev->getPreviousDecl()) {
8449    PrevDiagLoc = Prev->getLocation();
8450  }
8451  assert(PrevDiagLoc.isValid() &&
8452         "Explicit instantiation without point of instantiation?");
8453  return PrevDiagLoc;
8454}
8455
8456/// Diagnose cases where we have an explicit template specialization
8457/// before/after an explicit template instantiation, producing diagnostics
8458/// for those cases where they are required and determining whether the
8459/// new specialization/instantiation will have any effect.
8460///
8461/// \param NewLoc the location of the new explicit specialization or
8462/// instantiation.
8463///
8464/// \param NewTSK the kind of the new explicit specialization or instantiation.
8465///
8466/// \param PrevDecl the previous declaration of the entity.
8467///
8468/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
8469///
8470/// \param PrevPointOfInstantiation if valid, indicates where the previus
8471/// declaration was instantiated (either implicitly or explicitly).
8472///
8473/// \param HasNoEffect will be set to true to indicate that the new
8474/// specialization or instantiation has no effect and should be ignored.
8475///
8476/// \returns true if there was an error that should prevent the introduction of
8477/// the new declaration into the AST, false otherwise.
8478bool
8479Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
8480                                             TemplateSpecializationKind NewTSK,
8481                                             NamedDecl *PrevDecl,
8482                                             TemplateSpecializationKind PrevTSK,
8483                                        SourceLocation PrevPointOfInstantiation,
8484                                             bool &HasNoEffect) {
8485  HasNoEffect = false;
8486
8487  switch (NewTSK) {
8488  case TSK_Undeclared:
8489  case TSK_ImplicitInstantiation:
8490    assert(
8491        (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&
8492        "previous declaration must be implicit!");
8493    return false;
8494
8495  case TSK_ExplicitSpecialization:
8496    switch (PrevTSK) {
8497    case TSK_Undeclared:
8498    case TSK_ExplicitSpecialization:
8499      // Okay, we're just specializing something that is either already
8500      // explicitly specialized or has merely been mentioned without any
8501      // instantiation.
8502      return false;
8503
8504    case TSK_ImplicitInstantiation:
8505      if (PrevPointOfInstantiation.isInvalid()) {
8506        // The declaration itself has not actually been instantiated, so it is
8507        // still okay to specialize it.
8508        StripImplicitInstantiation(PrevDecl);
8509        return false;
8510      }
8511      // Fall through
8512      LLVM_FALLTHROUGH;
8513
8514    case TSK_ExplicitInstantiationDeclaration:
8515    case TSK_ExplicitInstantiationDefinition:
8516      assert((PrevTSK == TSK_ImplicitInstantiation ||
8517              PrevPointOfInstantiation.isValid()) &&
8518             "Explicit instantiation without point of instantiation?");
8519
8520      // C++ [temp.expl.spec]p6:
8521      //   If a template, a member template or the member of a class template
8522      //   is explicitly specialized then that specialization shall be declared
8523      //   before the first use of that specialization that would cause an
8524      //   implicit instantiation to take place, in every translation unit in
8525      //   which such a use occurs; no diagnostic is required.
8526      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
8527        // Is there any previous explicit specialization declaration?
8528        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
8529          return false;
8530      }
8531
8532      Diag(NewLoc, diag::err_specialization_after_instantiation)
8533        << PrevDecl;
8534      Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
8535        << (PrevTSK != TSK_ImplicitInstantiation);
8536
8537      return true;
8538    }
8539    llvm_unreachable("The switch over PrevTSK must be exhaustive.");
8540
8541  case TSK_ExplicitInstantiationDeclaration:
8542    switch (PrevTSK) {
8543    case TSK_ExplicitInstantiationDeclaration:
8544      // This explicit instantiation declaration is redundant (that's okay).
8545      HasNoEffect = true;
8546      return false;
8547
8548    case TSK_Undeclared:
8549    case TSK_ImplicitInstantiation:
8550      // We're explicitly instantiating something that may have already been
8551      // implicitly instantiated; that's fine.
8552      return false;
8553
8554    case TSK_ExplicitSpecialization:
8555      // C++0x [temp.explicit]p4:
8556      //   For a given set of template parameters, if an explicit instantiation
8557      //   of a template appears after a declaration of an explicit
8558      //   specialization for that template, the explicit instantiation has no
8559      //   effect.
8560      HasNoEffect = true;
8561      return false;
8562
8563    case TSK_ExplicitInstantiationDefinition:
8564      // C++0x [temp.explicit]p10:
8565      //   If an entity is the subject of both an explicit instantiation
8566      //   declaration and an explicit instantiation definition in the same
8567      //   translation unit, the definition shall follow the declaration.
8568      Diag(NewLoc,
8569           diag::err_explicit_instantiation_declaration_after_definition);
8570
8571      // Explicit instantiations following a specialization have no effect and
8572      // hence no PrevPointOfInstantiation. In that case, walk decl backwards
8573      // until a valid name loc is found.
8574      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
8575           diag::note_explicit_instantiation_definition_here);
8576      HasNoEffect = true;
8577      return false;
8578    }
8579    llvm_unreachable("Unexpected TemplateSpecializationKind!");
8580
8581  case TSK_ExplicitInstantiationDefinition:
8582    switch (PrevTSK) {
8583    case TSK_Undeclared:
8584    case TSK_ImplicitInstantiation:
8585      // We're explicitly instantiating something that may have already been
8586      // implicitly instantiated; that's fine.
8587      return false;
8588
8589    case TSK_ExplicitSpecialization:
8590      // C++ DR 259, C++0x [temp.explicit]p4:
8591      //   For a given set of template parameters, if an explicit
8592      //   instantiation of a template appears after a declaration of
8593      //   an explicit specialization for that template, the explicit
8594      //   instantiation has no effect.
8595      Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization)
8596        << PrevDecl;
8597      Diag(PrevDecl->getLocation(),
8598           diag::note_previous_template_specialization);
8599      HasNoEffect = true;
8600      return false;
8601
8602    case TSK_ExplicitInstantiationDeclaration:
8603      // We're explicitly instantiating a definition for something for which we
8604      // were previously asked to suppress instantiations. That's fine.
8605
8606      // C++0x [temp.explicit]p4:
8607      //   For a given set of template parameters, if an explicit instantiation
8608      //   of a template appears after a declaration of an explicit
8609      //   specialization for that template, the explicit instantiation has no
8610      //   effect.
8611      for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
8612        // Is there any previous explicit specialization declaration?
8613        if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
8614          HasNoEffect = true;
8615          break;
8616        }
8617      }
8618
8619      return false;
8620
8621    case TSK_ExplicitInstantiationDefinition:
8622      // C++0x [temp.spec]p5:
8623      //   For a given template and a given set of template-arguments,
8624      //     - an explicit instantiation definition shall appear at most once
8625      //       in a program,
8626
8627      // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
8628      Diag(NewLoc, (getLangOpts().MSVCCompat)
8629                       ? diag::ext_explicit_instantiation_duplicate
8630                       : diag::err_explicit_instantiation_duplicate)
8631          << PrevDecl;
8632      Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
8633           diag::note_previous_explicit_instantiation);
8634      HasNoEffect = true;
8635      return false;
8636    }
8637  }
8638
8639  llvm_unreachable("Missing specialization/instantiation case?");
8640}
8641
8642/// Perform semantic analysis for the given dependent function
8643/// template specialization.
8644///
8645/// The only possible way to get a dependent function template specialization
8646/// is with a friend declaration, like so:
8647///
8648/// \code
8649///   template \<class T> void foo(T);
8650///   template \<class T> class A {
8651///     friend void foo<>(T);
8652///   };
8653/// \endcode
8654///
8655/// There really isn't any useful analysis we can do here, so we
8656/// just store the information.
8657bool
8658Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
8659                   const TemplateArgumentListInfo &ExplicitTemplateArgs,
8660                                                   LookupResult &Previous) {
8661  // Remove anything from Previous that isn't a function template in
8662  // the correct context.
8663  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
8664  LookupResult::Filter F = Previous.makeFilter();
8665  enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing };
8666  SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates;
8667  while (F.hasNext()) {
8668    NamedDecl *D = F.next()->getUnderlyingDecl();
8669    if (!isa<FunctionTemplateDecl>(D)) {
8670      F.erase();
8671      DiscardedCandidates.push_back(std::make_pair(NotAFunctionTemplate, D));
8672      continue;
8673    }
8674
8675    if (!FDLookupContext->InEnclosingNamespaceSetOf(
8676            D->getDeclContext()->getRedeclContext())) {
8677      F.erase();
8678      DiscardedCandidates.push_back(std::make_pair(NotAMemberOfEnclosing, D));
8679      continue;
8680    }
8681  }
8682  F.done();
8683
8684  if (Previous.empty()) {
8685    Diag(FD->getLocation(),
8686         diag::err_dependent_function_template_spec_no_match);
8687    for (auto &P : DiscardedCandidates)
8688      Diag(P.second->getLocation(),
8689           diag::note_dependent_function_template_spec_discard_reason)
8690          << P.first;
8691    return true;
8692  }
8693
8694  FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
8695                                         ExplicitTemplateArgs);
8696  return false;
8697}
8698
8699/// Perform semantic analysis for the given function template
8700/// specialization.
8701///
8702/// This routine performs all of the semantic analysis required for an
8703/// explicit function template specialization. On successful completion,
8704/// the function declaration \p FD will become a function template
8705/// specialization.
8706///
8707/// \param FD the function declaration, which will be updated to become a
8708/// function template specialization.
8709///
8710/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
8711/// if any. Note that this may be valid info even when 0 arguments are
8712/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
8713/// as it anyway contains info on the angle brackets locations.
8714///
8715/// \param Previous the set of declarations that may be specialized by
8716/// this function specialization.
8717///
8718/// \param QualifiedFriend whether this is a lookup for a qualified friend
8719/// declaration with no explicit template argument list that might be
8720/// befriending a function template specialization.
8721bool Sema::CheckFunctionTemplateSpecialization(
8722    FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
8723    LookupResult &Previous, bool QualifiedFriend) {
8724  // The set of function template specializations that could match this
8725  // explicit function template specialization.
8726  UnresolvedSet<8> Candidates;
8727  TemplateSpecCandidateSet FailedCandidates(FD->getLocation(),
8728                                            /*ForTakingAddress=*/false);
8729
8730  llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8>
8731      ConvertedTemplateArgs;
8732
8733  DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
8734  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8735         I != E; ++I) {
8736    NamedDecl *Ovl = (*I)->getUnderlyingDecl();
8737    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
8738      // Only consider templates found within the same semantic lookup scope as
8739      // FD.
8740      if (!FDLookupContext->InEnclosingNamespaceSetOf(
8741                                Ovl->getDeclContext()->getRedeclContext()))
8742        continue;
8743
8744      // When matching a constexpr member function template specialization
8745      // against the primary template, we don't yet know whether the
8746      // specialization has an implicit 'const' (because we don't know whether
8747      // it will be a static member function until we know which template it
8748      // specializes), so adjust it now assuming it specializes this template.
8749      QualType FT = FD->getType();
8750      if (FD->isConstexpr()) {
8751        CXXMethodDecl *OldMD =
8752          dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
8753        if (OldMD && OldMD->isConst()) {
8754          const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
8755          FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8756          EPI.TypeQuals.addConst();
8757          FT = Context.getFunctionType(FPT->getReturnType(),
8758                                       FPT->getParamTypes(), EPI);
8759        }
8760      }
8761
8762      TemplateArgumentListInfo Args;
8763      if (ExplicitTemplateArgs)
8764        Args = *ExplicitTemplateArgs;
8765
8766      // C++ [temp.expl.spec]p11:
8767      //   A trailing template-argument can be left unspecified in the
8768      //   template-id naming an explicit function template specialization
8769      //   provided it can be deduced from the function argument type.
8770      // Perform template argument deduction to determine whether we may be
8771      // specializing this template.
8772      // FIXME: It is somewhat wasteful to build
8773      TemplateDeductionInfo Info(FailedCandidates.getLocation());
8774      FunctionDecl *Specialization = nullptr;
8775      if (TemplateDeductionResult TDK = DeduceTemplateArguments(
8776              cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
8777              ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization,
8778              Info)) {
8779        // Template argument deduction failed; record why it failed, so
8780        // that we can provide nifty diagnostics.
8781        FailedCandidates.addCandidate().set(
8782            I.getPair(), FunTmpl->getTemplatedDecl(),
8783            MakeDeductionFailureInfo(Context, TDK, Info));
8784        (void)TDK;
8785        continue;
8786      }
8787
8788      // Target attributes are part of the cuda function signature, so
8789      // the deduced template's cuda target must match that of the
8790      // specialization.  Given that C++ template deduction does not
8791      // take target attributes into account, we reject candidates
8792      // here that have a different target.
8793      if (LangOpts.CUDA &&
8794          IdentifyCUDATarget(Specialization,
8795                             /* IgnoreImplicitHDAttr = */ true) !=
8796              IdentifyCUDATarget(FD, /* IgnoreImplicitHDAttr = */ true)) {
8797        FailedCandidates.addCandidate().set(
8798            I.getPair(), FunTmpl->getTemplatedDecl(),
8799            MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
8800        continue;
8801      }
8802
8803      // Record this candidate.
8804      if (ExplicitTemplateArgs)
8805        ConvertedTemplateArgs[Specialization] = std::move(Args);
8806      Candidates.addDecl(Specialization, I.getAccess());
8807    }
8808  }
8809
8810  // For a qualified friend declaration (with no explicit marker to indicate
8811  // that a template specialization was intended), note all (template and
8812  // non-template) candidates.
8813  if (QualifiedFriend && Candidates.empty()) {
8814    Diag(FD->getLocation(), diag::err_qualified_friend_no_match)
8815        << FD->getDeclName() << FDLookupContext;
8816    // FIXME: We should form a single candidate list and diagnose all
8817    // candidates at once, to get proper sorting and limiting.
8818    for (auto *OldND : Previous) {
8819      if (auto *OldFD = dyn_cast<FunctionDecl>(OldND->getUnderlyingDecl()))
8820        NoteOverloadCandidate(OldND, OldFD, CRK_None, FD->getType(), false);
8821    }
8822    FailedCandidates.NoteCandidates(*this, FD->getLocation());
8823    return true;
8824  }
8825
8826  // Find the most specialized function template.
8827  UnresolvedSetIterator Result = getMostSpecialized(
8828      Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(),
8829      PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
8830      PDiag(diag::err_function_template_spec_ambiguous)
8831          << FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
8832      PDiag(diag::note_function_template_spec_matched));
8833
8834  if (Result == Candidates.end())
8835    return true;
8836
8837  // Ignore access information;  it doesn't figure into redeclaration checking.
8838  FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
8839
8840  FunctionTemplateSpecializationInfo *SpecInfo
8841    = Specialization->getTemplateSpecializationInfo();
8842  assert(SpecInfo && "Function template specialization info missing?");
8843
8844  // Note: do not overwrite location info if previous template
8845  // specialization kind was explicit.
8846  TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
8847  if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
8848    Specialization->setLocation(FD->getLocation());
8849    Specialization->setLexicalDeclContext(FD->getLexicalDeclContext());
8850    // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
8851    // function can differ from the template declaration with respect to
8852    // the constexpr specifier.
8853    // FIXME: We need an update record for this AST mutation.
8854    // FIXME: What if there are multiple such prior declarations (for instance,
8855    // from different modules)?
8856    Specialization->setConstexprKind(FD->getConstexprKind());
8857  }
8858
8859  // FIXME: Check if the prior specialization has a point of instantiation.
8860  // If so, we have run afoul of .
8861
8862  // If this is a friend declaration, then we're not really declaring
8863  // an explicit specialization.
8864  bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
8865
8866  // Check the scope of this explicit specialization.
8867  if (!isFriend &&
8868      CheckTemplateSpecializationScope(*this,
8869                                       Specialization->getPrimaryTemplate(),
8870                                       Specialization, FD->getLocation(),
8871                                       false))
8872    return true;
8873
8874  // C++ [temp.expl.spec]p6:
8875  //   If a template, a member template or the member of a class template is
8876  //   explicitly specialized then that specialization shall be declared
8877  //   before the first use of that specialization that would cause an implicit
8878  //   instantiation to take place, in every translation unit in which such a
8879  //   use occurs; no diagnostic is required.
8880  bool HasNoEffect = false;
8881  if (!isFriend &&
8882      CheckSpecializationInstantiationRedecl(FD->getLocation(),
8883                                             TSK_ExplicitSpecialization,
8884                                             Specialization,
8885                                   SpecInfo->getTemplateSpecializationKind(),
8886                                         SpecInfo->getPointOfInstantiation(),
8887                                             HasNoEffect))
8888    return true;
8889
8890  // Mark the prior declaration as an explicit specialization, so that later
8891  // clients know that this is an explicit specialization.
8892  if (!isFriend) {
8893    // Since explicit specializations do not inherit '=delete' from their
8894    // primary function template - check if the 'specialization' that was
8895    // implicitly generated (during template argument deduction for partial
8896    // ordering) from the most specialized of all the function templates that
8897    // 'FD' could have been specializing, has a 'deleted' definition.  If so,
8898    // first check that it was implicitly generated during template argument
8899    // deduction by making sure it wasn't referenced, and then reset the deleted
8900    // flag to not-deleted, so that we can inherit that information from 'FD'.
8901    if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() &&
8902        !Specialization->getCanonicalDecl()->isReferenced()) {
8903      // FIXME: This assert will not hold in the presence of modules.
8904      assert(
8905          Specialization->getCanonicalDecl() == Specialization &&
8906          "This must be the only existing declaration of this specialization");
8907      // FIXME: We need an update record for this AST mutation.
8908      Specialization->setDeletedAsWritten(false);
8909    }
8910    // FIXME: We need an update record for this AST mutation.
8911    SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
8912    MarkUnusedFileScopedDecl(Specialization);
8913  }
8914
8915  // Turn the given function declaration into a function template
8916  // specialization, with the template arguments from the previous
8917  // specialization.
8918  // Take copies of (semantic and syntactic) template argument lists.
8919  const TemplateArgumentList* TemplArgs = new (Context)
8920    TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
8921  FD->setFunctionTemplateSpecialization(
8922      Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr,
8923      SpecInfo->getTemplateSpecializationKind(),
8924      ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr);
8925
8926  // A function template specialization inherits the target attributes
8927  // of its template.  (We require the attributes explicitly in the
8928  // code to match, but a template may have implicit attributes by
8929  // virtue e.g. of being constexpr, and it passes these implicit
8930  // attributes on to its specializations.)
8931  if (LangOpts.CUDA)
8932    inheritCUDATargetAttrs(FD, *Specialization->getPrimaryTemplate());
8933
8934  // The "previous declaration" for this function template specialization is
8935  // the prior function template specialization.
8936  Previous.clear();
8937  Previous.addDecl(Specialization);
8938  return false;
8939}
8940
8941/// Perform semantic analysis for the given non-template member
8942/// specialization.
8943///
8944/// This routine performs all of the semantic analysis required for an
8945/// explicit member function specialization. On successful completion,
8946/// the function declaration \p FD will become a member function
8947/// specialization.
8948///
8949/// \param Member the member declaration, which will be updated to become a
8950/// specialization.
8951///
8952/// \param Previous the set of declarations, one of which may be specialized
8953/// by this function specialization;  the set will be modified to contain the
8954/// redeclared member.
8955bool
8956Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
8957  assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
8958
8959  // Try to find the member we are instantiating.
8960  NamedDecl *FoundInstantiation = nullptr;
8961  NamedDecl *Instantiation = nullptr;
8962  NamedDecl *InstantiatedFrom = nullptr;
8963  MemberSpecializationInfo *MSInfo = nullptr;
8964
8965  if (Previous.empty()) {
8966    // Nowhere to look anyway.
8967  } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
8968    for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8969           I != E; ++I) {
8970      NamedDecl *D = (*I)->getUnderlyingDecl();
8971      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
8972        QualType Adjusted = Function->getType();
8973        if (!hasExplicitCallingConv(Adjusted))
8974          Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
8975        // This doesn't handle deduced return types, but both function
8976        // declarations should be undeduced at this point.
8977        if (Context.hasSameType(Adjusted, Method->getType())) {
8978          FoundInstantiation = *I;
8979          Instantiation = Method;
8980          InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
8981          MSInfo = Method->getMemberSpecializationInfo();
8982          break;
8983        }
8984      }
8985    }
8986  } else if (isa<VarDecl>(Member)) {
8987    VarDecl *PrevVar;
8988    if (Previous.isSingleResult() &&
8989        (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
8990      if (PrevVar->isStaticDataMember()) {
8991        FoundInstantiation = Previous.getRepresentativeDecl();
8992        Instantiation = PrevVar;
8993        InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
8994        MSInfo = PrevVar->getMemberSpecializationInfo();
8995      }
8996  } else if (isa<RecordDecl>(Member)) {
8997    CXXRecordDecl *PrevRecord;
8998    if (Previous.isSingleResult() &&
8999        (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
9000      FoundInstantiation = Previous.getRepresentativeDecl();
9001      Instantiation = PrevRecord;
9002      InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
9003      MSInfo = PrevRecord->getMemberSpecializationInfo();
9004    }
9005  } else if (isa<EnumDecl>(Member)) {
9006    EnumDecl *PrevEnum;
9007    if (Previous.isSingleResult() &&
9008        (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
9009      FoundInstantiation = Previous.getRepresentativeDecl();
9010      Instantiation = PrevEnum;
9011      InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
9012      MSInfo = PrevEnum->getMemberSpecializationInfo();
9013    }
9014  }
9015
9016  if (!Instantiation) {
9017    // There is no previous declaration that matches. Since member
9018    // specializations are always out-of-line, the caller will complain about
9019    // this mismatch later.
9020    return false;
9021  }
9022
9023  // A member specialization in a friend declaration isn't really declaring
9024  // an explicit specialization, just identifying a specific (possibly implicit)
9025  // specialization. Don't change the template specialization kind.
9026  //
9027  // FIXME: Is this really valid? Other compilers reject.
9028  if (Member->getFriendObjectKind() != Decl::FOK_None) {
9029    // Preserve instantiation information.
9030    if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
9031      cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
9032                                      cast<CXXMethodDecl>(InstantiatedFrom),
9033        cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
9034    } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
9035      cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
9036                                      cast<CXXRecordDecl>(InstantiatedFrom),
9037        cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
9038    }
9039
9040    Previous.clear();
9041    Previous.addDecl(FoundInstantiation);
9042    return false;
9043  }
9044
9045  // Make sure that this is a specialization of a member.
9046  if (!InstantiatedFrom) {
9047    Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
9048      << Member;
9049    Diag(Instantiation->getLocation(), diag::note_specialized_decl);
9050    return true;
9051  }
9052
9053  // C++ [temp.expl.spec]p6:
9054  //   If a template, a member template or the member of a class template is
9055  //   explicitly specialized then that specialization shall be declared
9056  //   before the first use of that specialization that would cause an implicit
9057  //   instantiation to take place, in every translation unit in which such a
9058  //   use occurs; no diagnostic is required.
9059  assert(MSInfo && "Member specialization info missing?");
9060
9061  bool HasNoEffect = false;
9062  if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
9063                                             TSK_ExplicitSpecialization,
9064                                             Instantiation,
9065                                     MSInfo->getTemplateSpecializationKind(),
9066                                           MSInfo->getPointOfInstantiation(),
9067                                             HasNoEffect))
9068    return true;
9069
9070  // Check the scope of this explicit specialization.
9071  if (CheckTemplateSpecializationScope(*this,
9072                                       InstantiatedFrom,
9073                                       Instantiation, Member->getLocation(),
9074                                       false))
9075    return true;
9076
9077  // Note that this member specialization is an "instantiation of" the
9078  // corresponding member of the original template.
9079  if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) {
9080    FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
9081    if (InstantiationFunction->getTemplateSpecializationKind() ==
9082          TSK_ImplicitInstantiation) {
9083      // Explicit specializations of member functions of class templates do not
9084      // inherit '=delete' from the member function they are specializing.
9085      if (InstantiationFunction->isDeleted()) {
9086        // FIXME: This assert will not hold in the presence of modules.
9087        assert(InstantiationFunction->getCanonicalDecl() ==
9088               InstantiationFunction);
9089        // FIXME: We need an update record for this AST mutation.
9090        InstantiationFunction->setDeletedAsWritten(false);
9091      }
9092    }
9093
9094    MemberFunction->setInstantiationOfMemberFunction(
9095        cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9096  } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) {
9097    MemberVar->setInstantiationOfStaticDataMember(
9098        cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9099  } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) {
9100    MemberClass->setInstantiationOfMemberClass(
9101        cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9102  } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) {
9103    MemberEnum->setInstantiationOfMemberEnum(
9104        cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
9105  } else {
9106    llvm_unreachable("unknown member specialization kind");
9107  }
9108
9109  // Save the caller the trouble of having to figure out which declaration
9110  // this specialization matches.
9111  Previous.clear();
9112  Previous.addDecl(FoundInstantiation);
9113  return false;
9114}
9115
9116/// Complete the explicit specialization of a member of a class template by
9117/// updating the instantiated member to be marked as an explicit specialization.
9118///
9119/// \param OrigD The member declaration instantiated from the template.
9120/// \param Loc The location of the explicit specialization of the member.
9121template<typename DeclT>
9122static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD,
9123                                             SourceLocation Loc) {
9124  if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
9125    return;
9126
9127  // FIXME: Inform AST mutation listeners of this AST mutation.
9128  // FIXME: If there are multiple in-class declarations of the member (from
9129  // multiple modules, or a declaration and later definition of a member type),
9130  // should we update all of them?
9131  OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
9132  OrigD->setLocation(Loc);
9133}
9134
9135void Sema::CompleteMemberSpecialization(NamedDecl *Member,
9136                                        LookupResult &Previous) {
9137  NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl());
9138  if (Instantiation == Member)
9139    return;
9140
9141  if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation))
9142    completeMemberSpecializationImpl(*this, Function, Member->getLocation());
9143  else if (auto *Var = dyn_cast<VarDecl>(Instantiation))
9144    completeMemberSpecializationImpl(*this, Var, Member->getLocation());
9145  else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation))
9146    completeMemberSpecializationImpl(*this, Record, Member->getLocation());
9147  else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation))
9148    completeMemberSpecializationImpl(*this, Enum, Member->getLocation());
9149  else
9150    llvm_unreachable("unknown member specialization kind");
9151}
9152
9153/// Check the scope of an explicit instantiation.
9154///
9155/// \returns true if a serious error occurs, false otherwise.
9156static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
9157                                            SourceLocation InstLoc,
9158                                            bool WasQualifiedName) {
9159  DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
9160  DeclContext *CurContext = S.CurContext->getRedeclContext();
9161
9162  if (CurContext->isRecord()) {
9163    S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
9164      << D;
9165    return true;
9166  }
9167
9168  // C++11 [temp.explicit]p3:
9169  //   An explicit instantiation shall appear in an enclosing namespace of its
9170  //   template. If the name declared in the explicit instantiation is an
9171  //   unqualified name, the explicit instantiation shall appear in the
9172  //   namespace where its template is declared or, if that namespace is inline
9173  //   (7.3.1), any namespace from its enclosing namespace set.
9174  //
9175  // This is DR275, which we do not retroactively apply to C++98/03.
9176  if (WasQualifiedName) {
9177    if (CurContext->Encloses(OrigContext))
9178      return false;
9179  } else {
9180    if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
9181      return false;
9182  }
9183
9184  if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
9185    if (WasQualifiedName)
9186      S.Diag(InstLoc,
9187             S.getLangOpts().CPlusPlus11?
9188               diag::err_explicit_instantiation_out_of_scope :
9189               diag::warn_explicit_instantiation_out_of_scope_0x)
9190        << D << NS;
9191    else
9192      S.Diag(InstLoc,
9193             S.getLangOpts().CPlusPlus11?
9194               diag::err_explicit_instantiation_unqualified_wrong_namespace :
9195               diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
9196        << D << NS;
9197  } else
9198    S.Diag(InstLoc,
9199           S.getLangOpts().CPlusPlus11?
9200             diag::err_explicit_instantiation_must_be_global :
9201             diag::warn_explicit_instantiation_must_be_global_0x)
9202      << D;
9203  S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
9204  return false;
9205}
9206
9207/// Common checks for whether an explicit instantiation of \p D is valid.
9208static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D,
9209                                       SourceLocation InstLoc,
9210                                       bool WasQualifiedName,
9211                                       TemplateSpecializationKind TSK) {
9212  // C++ [temp.explicit]p13:
9213  //   An explicit instantiation declaration shall not name a specialization of
9214  //   a template with internal linkage.
9215  if (TSK == TSK_ExplicitInstantiationDeclaration &&
9216      D->getFormalLinkage() == InternalLinkage) {
9217    S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D;
9218    return true;
9219  }
9220
9221  // C++11 [temp.explicit]p3: [DR 275]
9222  //   An explicit instantiation shall appear in an enclosing namespace of its
9223  //   template.
9224  if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName))
9225    return true;
9226
9227  return false;
9228}
9229
9230/// Determine whether the given scope specifier has a template-id in it.
9231static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
9232  if (!SS.isSet())
9233    return false;
9234
9235  // C++11 [temp.explicit]p3:
9236  //   If the explicit instantiation is for a member function, a member class
9237  //   or a static data member of a class template specialization, the name of
9238  //   the class template specialization in the qualified-id for the member
9239  //   name shall be a simple-template-id.
9240  //
9241  // C++98 has the same restriction, just worded differently.
9242  for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
9243       NNS = NNS->getPrefix())
9244    if (const Type *T = NNS->getAsType())
9245      if (isa<TemplateSpecializationType>(T))
9246        return true;
9247
9248  return false;
9249}
9250
9251/// Make a dllexport or dllimport attr on a class template specialization take
9252/// effect.
9253static void dllExportImportClassTemplateSpecialization(
9254    Sema &S, ClassTemplateSpecializationDecl *Def) {
9255  auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def));
9256  assert(A && "dllExportImportClassTemplateSpecialization called "
9257              "on Def without dllexport or dllimport");
9258
9259  // We reject explicit instantiations in class scope, so there should
9260  // never be any delayed exported classes to worry about.
9261  assert(S.DelayedDllExportClasses.empty() &&
9262         "delayed exports present at explicit instantiation");
9263  S.checkClassLevelDLLAttribute(Def);
9264
9265  // Propagate attribute to base class templates.
9266  for (auto &B : Def->bases()) {
9267    if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
9268            B.getType()->getAsCXXRecordDecl()))
9269      S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc());
9270  }
9271
9272  S.referenceDLLExportedClassMethods();
9273}
9274
9275// Explicit instantiation of a class template specialization
9276DeclResult Sema::ActOnExplicitInstantiation(
9277    Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc,
9278    unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS,
9279    TemplateTy TemplateD, SourceLocation TemplateNameLoc,
9280    SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn,
9281    SourceLocation RAngleLoc, const ParsedAttributesView &Attr) {
9282  // Find the class template we're specializing
9283  TemplateName Name = TemplateD.get();
9284  TemplateDecl *TD = Name.getAsTemplateDecl();
9285  // Check that the specialization uses the same tag kind as the
9286  // original template.
9287  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9288  assert(Kind != TTK_Enum &&
9289         "Invalid enum tag in class template explicit instantiation!");
9290
9291  ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD);
9292
9293  if (!ClassTemplate) {
9294    NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind);
9295    Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) << TD << NTK << Kind;
9296    Diag(TD->getLocation(), diag::note_previous_use);
9297    return true;
9298  }
9299
9300  if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
9301                                    Kind, /*isDefinition*/false, KWLoc,
9302                                    ClassTemplate->getIdentifier())) {
9303    Diag(KWLoc, diag::err_use_with_wrong_tag)
9304      << ClassTemplate
9305      << FixItHint::CreateReplacement(KWLoc,
9306                            ClassTemplate->getTemplatedDecl()->getKindName());
9307    Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
9308         diag::note_previous_use);
9309    Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
9310  }
9311
9312  // C++0x [temp.explicit]p2:
9313  //   There are two forms of explicit instantiation: an explicit instantiation
9314  //   definition and an explicit instantiation declaration. An explicit
9315  //   instantiation declaration begins with the extern keyword. [...]
9316  TemplateSpecializationKind TSK = ExternLoc.isInvalid()
9317                                       ? TSK_ExplicitInstantiationDefinition
9318                                       : TSK_ExplicitInstantiationDeclaration;
9319
9320  if (TSK == TSK_ExplicitInstantiationDeclaration &&
9321      !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
9322    // Check for dllexport class template instantiation declarations,
9323    // except for MinGW mode.
9324    for (const ParsedAttr &AL : Attr) {
9325      if (AL.getKind() == ParsedAttr::AT_DLLExport) {
9326        Diag(ExternLoc,
9327             diag::warn_attribute_dllexport_explicit_instantiation_decl);
9328        Diag(AL.getLoc(), diag::note_attribute);
9329        break;
9330      }
9331    }
9332
9333    if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) {
9334      Diag(ExternLoc,
9335           diag::warn_attribute_dllexport_explicit_instantiation_decl);
9336      Diag(A->getLocation(), diag::note_attribute);
9337    }
9338  }
9339
9340  // In MSVC mode, dllimported explicit instantiation definitions are treated as
9341  // instantiation declarations for most purposes.
9342  bool DLLImportExplicitInstantiationDef = false;
9343  if (TSK == TSK_ExplicitInstantiationDefinition &&
9344      Context.getTargetInfo().getCXXABI().isMicrosoft()) {
9345    // Check for dllimport class template instantiation definitions.
9346    bool DLLImport =
9347        ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>();
9348    for (const ParsedAttr &AL : Attr) {
9349      if (AL.getKind() == ParsedAttr::AT_DLLImport)
9350        DLLImport = true;
9351      if (AL.getKind() == ParsedAttr::AT_DLLExport) {
9352        // dllexport trumps dllimport here.
9353        DLLImport = false;
9354        break;
9355      }
9356    }
9357    if (DLLImport) {
9358      TSK = TSK_ExplicitInstantiationDeclaration;
9359      DLLImportExplicitInstantiationDef = true;
9360    }
9361  }
9362
9363  // Translate the parser's template argument list in our AST format.
9364  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
9365  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
9366
9367  // Check that the template argument list is well-formed for this
9368  // template.
9369  SmallVector<TemplateArgument, 4> Converted;
9370  if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
9371                                TemplateArgs, false, Converted,
9372                                /*UpdateArgsWithConversion=*/true))
9373    return true;
9374
9375  // Find the class template specialization declaration that
9376  // corresponds to these arguments.
9377  void *InsertPos = nullptr;
9378  ClassTemplateSpecializationDecl *PrevDecl
9379    = ClassTemplate->findSpecialization(Converted, InsertPos);
9380
9381  TemplateSpecializationKind PrevDecl_TSK
9382    = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
9383
9384  if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr &&
9385      Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
9386    // Check for dllexport class template instantiation definitions in MinGW
9387    // mode, if a previous declaration of the instantiation was seen.
9388    for (const ParsedAttr &AL : Attr) {
9389      if (AL.getKind() == ParsedAttr::AT_DLLExport) {
9390        Diag(AL.getLoc(),
9391             diag::warn_attribute_dllexport_explicit_instantiation_def);
9392        break;
9393      }
9394    }
9395  }
9396
9397  if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc,
9398                                 SS.isSet(), TSK))
9399    return true;
9400
9401  ClassTemplateSpecializationDecl *Specialization = nullptr;
9402
9403  bool HasNoEffect = false;
9404  if (PrevDecl) {
9405    if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
9406                                               PrevDecl, PrevDecl_TSK,
9407                                            PrevDecl->getPointOfInstantiation(),
9408                                               HasNoEffect))
9409      return PrevDecl;
9410
9411    // Even though HasNoEffect == true means that this explicit instantiation
9412    // has no effect on semantics, we go on to put its syntax in the AST.
9413
9414    if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
9415        PrevDecl_TSK == TSK_Undeclared) {
9416      // Since the only prior class template specialization with these
9417      // arguments was referenced but not declared, reuse that
9418      // declaration node as our own, updating the source location
9419      // for the template name to reflect our new declaration.
9420      // (Other source locations will be updated later.)
9421      Specialization = PrevDecl;
9422      Specialization->setLocation(TemplateNameLoc);
9423      PrevDecl = nullptr;
9424    }
9425
9426    if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
9427        DLLImportExplicitInstantiationDef) {
9428      // The new specialization might add a dllimport attribute.
9429      HasNoEffect = false;
9430    }
9431  }
9432
9433  if (!Specialization) {
9434    // Create a new class template specialization declaration node for
9435    // this explicit specialization.
9436    Specialization
9437      = ClassTemplateSpecializationDecl::Create(Context, Kind,
9438                                             ClassTemplate->getDeclContext(),
9439                                                KWLoc, TemplateNameLoc,
9440                                                ClassTemplate,
9441                                                Converted,
9442                                                PrevDecl);
9443    SetNestedNameSpecifier(*this, Specialization, SS);
9444
9445    if (!HasNoEffect && !PrevDecl) {
9446      // Insert the new specialization.
9447      ClassTemplate->AddSpecialization(Specialization, InsertPos);
9448    }
9449  }
9450
9451  // Build the fully-sugared type for this explicit instantiation as
9452  // the user wrote in the explicit instantiation itself. This means
9453  // that we'll pretty-print the type retrieved from the
9454  // specialization's declaration the way that the user actually wrote
9455  // the explicit instantiation, rather than formatting the name based
9456  // on the "canonical" representation used to store the template
9457  // arguments in the specialization.
9458  TypeSourceInfo *WrittenTy
9459    = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
9460                                                TemplateArgs,
9461                                  Context.getTypeDeclType(Specialization));
9462  Specialization->setTypeAsWritten(WrittenTy);
9463
9464  // Set source locations for keywords.
9465  Specialization->setExternLoc(ExternLoc);
9466  Specialization->setTemplateKeywordLoc(TemplateLoc);
9467  Specialization->setBraceRange(SourceRange());
9468
9469  bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>();
9470  ProcessDeclAttributeList(S, Specialization, Attr);
9471
9472  // Add the explicit instantiation into its lexical context. However,
9473  // since explicit instantiations are never found by name lookup, we
9474  // just put it into the declaration context directly.
9475  Specialization->setLexicalDeclContext(CurContext);
9476  CurContext->addDecl(Specialization);
9477
9478  // Syntax is now OK, so return if it has no other effect on semantics.
9479  if (HasNoEffect) {
9480    // Set the template specialization kind.
9481    Specialization->setTemplateSpecializationKind(TSK);
9482    return Specialization;
9483  }
9484
9485  // C++ [temp.explicit]p3:
9486  //   A definition of a class template or class member template
9487  //   shall be in scope at the point of the explicit instantiation of
9488  //   the class template or class member template.
9489  //
9490  // This check comes when we actually try to perform the
9491  // instantiation.
9492  ClassTemplateSpecializationDecl *Def
9493    = cast_or_null<ClassTemplateSpecializationDecl>(
9494                                              Specialization->getDefinition());
9495  if (!Def)
9496    InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
9497  else if (TSK == TSK_ExplicitInstantiationDefinition) {
9498    MarkVTableUsed(TemplateNameLoc, Specialization, true);
9499    Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
9500  }
9501
9502  // Instantiate the members of this class template specialization.
9503  Def = cast_or_null<ClassTemplateSpecializationDecl>(
9504                                       Specialization->getDefinition());
9505  if (Def) {
9506    TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
9507    // Fix a TSK_ExplicitInstantiationDeclaration followed by a
9508    // TSK_ExplicitInstantiationDefinition
9509    if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
9510        (TSK == TSK_ExplicitInstantiationDefinition ||
9511         DLLImportExplicitInstantiationDef)) {
9512      // FIXME: Need to notify the ASTMutationListener that we did this.
9513      Def->setTemplateSpecializationKind(TSK);
9514
9515      if (!getDLLAttr(Def) && getDLLAttr(Specialization) &&
9516          (Context.getTargetInfo().getCXXABI().isMicrosoft() ||
9517           Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())) {
9518        // In the MS ABI, an explicit instantiation definition can add a dll
9519        // attribute to a template with a previous instantiation declaration.
9520        // MinGW doesn't allow this.
9521        auto *A = cast<InheritableAttr>(
9522            getDLLAttr(Specialization)->clone(getASTContext()));
9523        A->setInherited(true);
9524        Def->addAttr(A);
9525        dllExportImportClassTemplateSpecialization(*this, Def);
9526      }
9527    }
9528
9529    // Fix a TSK_ImplicitInstantiation followed by a
9530    // TSK_ExplicitInstantiationDefinition
9531    bool NewlyDLLExported =
9532        !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>();
9533    if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported &&
9534        (Context.getTargetInfo().getCXXABI().isMicrosoft() ||
9535         Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())) {
9536      // In the MS ABI, an explicit instantiation definition can add a dll
9537      // attribute to a template with a previous implicit instantiation.
9538      // MinGW doesn't allow this. We limit clang to only adding dllexport, to
9539      // avoid potentially strange codegen behavior.  For example, if we extend
9540      // this conditional to dllimport, and we have a source file calling a
9541      // method on an implicitly instantiated template class instance and then
9542      // declaring a dllimport explicit instantiation definition for the same
9543      // template class, the codegen for the method call will not respect the
9544      // dllimport, while it will with cl. The Def will already have the DLL
9545      // attribute, since the Def and Specialization will be the same in the
9546      // case of Old_TSK == TSK_ImplicitInstantiation, and we already added the
9547      // attribute to the Specialization; we just need to make it take effect.
9548      assert(Def == Specialization &&
9549             "Def and Specialization should match for implicit instantiation");
9550      dllExportImportClassTemplateSpecialization(*this, Def);
9551    }
9552
9553    // In MinGW mode, export the template instantiation if the declaration
9554    // was marked dllexport.
9555    if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
9556        Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() &&
9557        PrevDecl->hasAttr<DLLExportAttr>()) {
9558      dllExportImportClassTemplateSpecialization(*this, Def);
9559    }
9560
9561    // Set the template specialization kind. Make sure it is set before
9562    // instantiating the members which will trigger ASTConsumer callbacks.
9563    Specialization->setTemplateSpecializationKind(TSK);
9564    InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
9565  } else {
9566
9567    // Set the template specialization kind.
9568    Specialization->setTemplateSpecializationKind(TSK);
9569  }
9570
9571  return Specialization;
9572}
9573
9574// Explicit instantiation of a member class of a class template.
9575DeclResult
9576Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
9577                                 SourceLocation TemplateLoc, unsigned TagSpec,
9578                                 SourceLocation KWLoc, CXXScopeSpec &SS,
9579                                 IdentifierInfo *Name, SourceLocation NameLoc,
9580                                 const ParsedAttributesView &Attr) {
9581
9582  bool Owned = false;
9583  bool IsDependent = false;
9584  Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
9585                        KWLoc, SS, Name, NameLoc, Attr, AS_none,
9586                        /*ModulePrivateLoc=*/SourceLocation(),
9587                        MultiTemplateParamsArg(), Owned, IsDependent,
9588                        SourceLocation(), false, TypeResult(),
9589                        /*IsTypeSpecifier*/false,
9590                        /*IsTemplateParamOrArg*/false);
9591  assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
9592
9593  if (!TagD)
9594    return true;
9595
9596  TagDecl *Tag = cast<TagDecl>(TagD);
9597  assert(!Tag->isEnum() && "shouldn't see enumerations here");
9598
9599  if (Tag->isInvalidDecl())
9600    return true;
9601
9602  CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
9603  CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
9604  if (!Pattern) {
9605    Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
9606      << Context.getTypeDeclType(Record);
9607    Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
9608    return true;
9609  }
9610
9611  // C++0x [temp.explicit]p2:
9612  //   If the explicit instantiation is for a class or member class, the
9613  //   elaborated-type-specifier in the declaration shall include a
9614  //   simple-template-id.
9615  //
9616  // C++98 has the same restriction, just worded differently.
9617  if (!ScopeSpecifierHasTemplateId(SS))
9618    Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
9619      << Record << SS.getRange();
9620
9621  // C++0x [temp.explicit]p2:
9622  //   There are two forms of explicit instantiation: an explicit instantiation
9623  //   definition and an explicit instantiation declaration. An explicit
9624  //   instantiation declaration begins with the extern keyword. [...]
9625  TemplateSpecializationKind TSK
9626    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
9627                           : TSK_ExplicitInstantiationDeclaration;
9628
9629  CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK);
9630
9631  // Verify that it is okay to explicitly instantiate here.
9632  CXXRecordDecl *PrevDecl
9633    = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
9634  if (!PrevDecl && Record->getDefinition())
9635    PrevDecl = Record;
9636  if (PrevDecl) {
9637    MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
9638    bool HasNoEffect = false;
9639    assert(MSInfo && "No member specialization information?");
9640    if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
9641                                               PrevDecl,
9642                                        MSInfo->getTemplateSpecializationKind(),
9643                                             MSInfo->getPointOfInstantiation(),
9644                                               HasNoEffect))
9645      return true;
9646    if (HasNoEffect)
9647      return TagD;
9648  }
9649
9650  CXXRecordDecl *RecordDef
9651    = cast_or_null<CXXRecordDecl>(Record->getDefinition());
9652  if (!RecordDef) {
9653    // C++ [temp.explicit]p3:
9654    //   A definition of a member class of a class template shall be in scope
9655    //   at the point of an explicit instantiation of the member class.
9656    CXXRecordDecl *Def
9657      = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
9658    if (!Def) {
9659      Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
9660        << 0 << Record->getDeclName() << Record->getDeclContext();
9661      Diag(Pattern->getLocation(), diag::note_forward_declaration)
9662        << Pattern;
9663      return true;
9664    } else {
9665      if (InstantiateClass(NameLoc, Record, Def,
9666                           getTemplateInstantiationArgs(Record),
9667                           TSK))
9668        return true;
9669
9670      RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
9671      if (!RecordDef)
9672        return true;
9673    }
9674  }
9675
9676  // Instantiate all of the members of the class.
9677  InstantiateClassMembers(NameLoc, RecordDef,
9678                          getTemplateInstantiationArgs(Record), TSK);
9679
9680  if (TSK == TSK_ExplicitInstantiationDefinition)
9681    MarkVTableUsed(NameLoc, RecordDef, true);
9682
9683  // FIXME: We don't have any representation for explicit instantiations of
9684  // member classes. Such a representation is not needed for compilation, but it
9685  // should be available for clients that want to see all of the declarations in
9686  // the source code.
9687  return TagD;
9688}
9689
9690DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
9691                                            SourceLocation ExternLoc,
9692                                            SourceLocation TemplateLoc,
9693                                            Declarator &D) {
9694  // Explicit instantiations always require a name.
9695  // TODO: check if/when DNInfo should replace Name.
9696  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
9697  DeclarationName Name = NameInfo.getName();
9698  if (!Name) {
9699    if (!D.isInvalidType())
9700      Diag(D.getDeclSpec().getBeginLoc(),
9701           diag::err_explicit_instantiation_requires_name)
9702          << D.getDeclSpec().getSourceRange() << D.getSourceRange();
9703
9704    return true;
9705  }
9706
9707  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9708  // we find one that is.
9709  while ((S->getFlags() & Scope::DeclScope) == 0 ||
9710         (S->getFlags() & Scope::TemplateParamScope) != 0)
9711    S = S->getParent();
9712
9713  // Determine the type of the declaration.
9714  TypeSourceInfo *T = GetTypeForDeclarator(D, S);
9715  QualType R = T->getType();
9716  if (R.isNull())
9717    return true;
9718
9719  // C++ [dcl.stc]p1:
9720  //   A storage-class-specifier shall not be specified in [...] an explicit
9721  //   instantiation (14.7.2) directive.
9722  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
9723    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
9724      << Name;
9725    return true;
9726  } else if (D.getDeclSpec().getStorageClassSpec()
9727                                                != DeclSpec::SCS_unspecified) {
9728    // Complain about then remove the storage class specifier.
9729    Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
9730      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
9731
9732    D.getMutableDeclSpec().ClearStorageClassSpecs();
9733  }
9734
9735  // C++0x [temp.explicit]p1:
9736  //   [...] An explicit instantiation of a function template shall not use the
9737  //   inline or constexpr specifiers.
9738  // Presumably, this also applies to member functions of class templates as
9739  // well.
9740  if (D.getDeclSpec().isInlineSpecified())
9741    Diag(D.getDeclSpec().getInlineSpecLoc(),
9742         getLangOpts().CPlusPlus11 ?
9743           diag::err_explicit_instantiation_inline :
9744           diag::warn_explicit_instantiation_inline_0x)
9745      << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
9746  if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType())
9747    // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
9748    // not already specified.
9749    Diag(D.getDeclSpec().getConstexprSpecLoc(),
9750         diag::err_explicit_instantiation_constexpr);
9751
9752  // A deduction guide is not on the list of entities that can be explicitly
9753  // instantiated.
9754  if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
9755    Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized)
9756        << /*explicit instantiation*/ 0;
9757    return true;
9758  }
9759
9760  // C++0x [temp.explicit]p2:
9761  //   There are two forms of explicit instantiation: an explicit instantiation
9762  //   definition and an explicit instantiation declaration. An explicit
9763  //   instantiation declaration begins with the extern keyword. [...]
9764  TemplateSpecializationKind TSK
9765    = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
9766                           : TSK_ExplicitInstantiationDeclaration;
9767
9768  LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
9769  LookupParsedName(Previous, S, &D.getCXXScopeSpec());
9770
9771  if (!R->isFunctionType()) {
9772    // C++ [temp.explicit]p1:
9773    //   A [...] static data member of a class template can be explicitly
9774    //   instantiated from the member definition associated with its class
9775    //   template.
9776    // C++1y [temp.explicit]p1:
9777    //   A [...] variable [...] template specialization can be explicitly
9778    //   instantiated from its template.
9779    if (Previous.isAmbiguous())
9780      return true;
9781
9782    VarDecl *Prev = Previous.getAsSingle<VarDecl>();
9783    VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
9784
9785    if (!PrevTemplate) {
9786      if (!Prev || !Prev->isStaticDataMember()) {
9787        // We expect to see a static data member here.
9788        Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
9789            << Name;
9790        for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
9791             P != PEnd; ++P)
9792          Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
9793        return true;
9794      }
9795
9796      if (!Prev->getInstantiatedFromStaticDataMember()) {
9797        // FIXME: Check for explicit specialization?
9798        Diag(D.getIdentifierLoc(),
9799             diag::err_explicit_instantiation_data_member_not_instantiated)
9800            << Prev;
9801        Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
9802        // FIXME: Can we provide a note showing where this was declared?
9803        return true;
9804      }
9805    } else {
9806      // Explicitly instantiate a variable template.
9807
9808      // C++1y [dcl.spec.auto]p6:
9809      //   ... A program that uses auto or decltype(auto) in a context not
9810      //   explicitly allowed in this section is ill-formed.
9811      //
9812      // This includes auto-typed variable template instantiations.
9813      if (R->isUndeducedType()) {
9814        Diag(T->getTypeLoc().getBeginLoc(),
9815             diag::err_auto_not_allowed_var_inst);
9816        return true;
9817      }
9818
9819      if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
9820        // C++1y [temp.explicit]p3:
9821        //   If the explicit instantiation is for a variable, the unqualified-id
9822        //   in the declaration shall be a template-id.
9823        Diag(D.getIdentifierLoc(),
9824             diag::err_explicit_instantiation_without_template_id)
9825          << PrevTemplate;
9826        Diag(PrevTemplate->getLocation(),
9827             diag::note_explicit_instantiation_here);
9828        return true;
9829      }
9830
9831      // Translate the parser's template argument list into our AST format.
9832      TemplateArgumentListInfo TemplateArgs =
9833          makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
9834
9835      DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
9836                                          D.getIdentifierLoc(), TemplateArgs);
9837      if (Res.isInvalid())
9838        return true;
9839
9840      // Ignore access control bits, we don't need them for redeclaration
9841      // checking.
9842      Prev = cast<VarDecl>(Res.get());
9843    }
9844
9845    // C++0x [temp.explicit]p2:
9846    //   If the explicit instantiation is for a member function, a member class
9847    //   or a static data member of a class template specialization, the name of
9848    //   the class template specialization in the qualified-id for the member
9849    //   name shall be a simple-template-id.
9850    //
9851    // C++98 has the same restriction, just worded differently.
9852    //
9853    // This does not apply to variable template specializations, where the
9854    // template-id is in the unqualified-id instead.
9855    if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
9856      Diag(D.getIdentifierLoc(),
9857           diag::ext_explicit_instantiation_without_qualified_id)
9858        << Prev << D.getCXXScopeSpec().getRange();
9859
9860    CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK);
9861
9862    // Verify that it is okay to explicitly instantiate here.
9863    TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
9864    SourceLocation POI = Prev->getPointOfInstantiation();
9865    bool HasNoEffect = false;
9866    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
9867                                               PrevTSK, POI, HasNoEffect))
9868      return true;
9869
9870    if (!HasNoEffect) {
9871      // Instantiate static data member or variable template.
9872      Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
9873      // Merge attributes.
9874      ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes());
9875      if (TSK == TSK_ExplicitInstantiationDefinition)
9876        InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
9877    }
9878
9879    // Check the new variable specialization against the parsed input.
9880    if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) {
9881      Diag(T->getTypeLoc().getBeginLoc(),
9882           diag::err_invalid_var_template_spec_type)
9883          << 0 << PrevTemplate << R << Prev->getType();
9884      Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
9885          << 2 << PrevTemplate->getDeclName();
9886      return true;
9887    }
9888
9889    // FIXME: Create an ExplicitInstantiation node?
9890    return (Decl*) nullptr;
9891  }
9892
9893  // If the declarator is a template-id, translate the parser's template
9894  // argument list into our AST format.
9895  bool HasExplicitTemplateArgs = false;
9896  TemplateArgumentListInfo TemplateArgs;
9897  if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
9898    TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
9899    HasExplicitTemplateArgs = true;
9900  }
9901
9902  // C++ [temp.explicit]p1:
9903  //   A [...] function [...] can be explicitly instantiated from its template.
9904  //   A member function [...] of a class template can be explicitly
9905  //  instantiated from the member definition associated with its class
9906  //  template.
9907  UnresolvedSet<8> TemplateMatches;
9908  FunctionDecl *NonTemplateMatch = nullptr;
9909  TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
9910  for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
9911       P != PEnd; ++P) {
9912    NamedDecl *Prev = *P;
9913    if (!HasExplicitTemplateArgs) {
9914      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
9915        QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(),
9916                                                /*AdjustExceptionSpec*/true);
9917        if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
9918          if (Method->getPrimaryTemplate()) {
9919            TemplateMatches.addDecl(Method, P.getAccess());
9920          } else {
9921            // FIXME: Can this assert ever happen?  Needs a test.
9922            assert(!NonTemplateMatch && "Multiple NonTemplateMatches");
9923            NonTemplateMatch = Method;
9924          }
9925        }
9926      }
9927    }
9928
9929    FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
9930    if (!FunTmpl)
9931      continue;
9932
9933    TemplateDeductionInfo Info(FailedCandidates.getLocation());
9934    FunctionDecl *Specialization = nullptr;
9935    if (TemplateDeductionResult TDK
9936          = DeduceTemplateArguments(FunTmpl,
9937                               (HasExplicitTemplateArgs ? &TemplateArgs
9938                                                        : nullptr),
9939                                    R, Specialization, Info)) {
9940      // Keep track of almost-matches.
9941      FailedCandidates.addCandidate()
9942          .set(P.getPair(), FunTmpl->getTemplatedDecl(),
9943               MakeDeductionFailureInfo(Context, TDK, Info));
9944      (void)TDK;
9945      continue;
9946    }
9947
9948    // Target attributes are part of the cuda function signature, so
9949    // the cuda target of the instantiated function must match that of its
9950    // template.  Given that C++ template deduction does not take
9951    // target attributes into account, we reject candidates here that
9952    // have a different target.
9953    if (LangOpts.CUDA &&
9954        IdentifyCUDATarget(Specialization,
9955                           /* IgnoreImplicitHDAttr = */ true) !=
9956            IdentifyCUDATarget(D.getDeclSpec().getAttributes())) {
9957      FailedCandidates.addCandidate().set(
9958          P.getPair(), FunTmpl->getTemplatedDecl(),
9959          MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
9960      continue;
9961    }
9962
9963    TemplateMatches.addDecl(Specialization, P.getAccess());
9964  }
9965
9966  FunctionDecl *Specialization = NonTemplateMatch;
9967  if (!Specialization) {
9968    // Find the most specialized function template specialization.
9969    UnresolvedSetIterator Result = getMostSpecialized(
9970        TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates,
9971        D.getIdentifierLoc(),
9972        PDiag(diag::err_explicit_instantiation_not_known) << Name,
9973        PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
9974        PDiag(diag::note_explicit_instantiation_candidate));
9975
9976    if (Result == TemplateMatches.end())
9977      return true;
9978
9979    // Ignore access control bits, we don't need them for redeclaration checking.
9980    Specialization = cast<FunctionDecl>(*Result);
9981  }
9982
9983  // C++11 [except.spec]p4
9984  // In an explicit instantiation an exception-specification may be specified,
9985  // but is not required.
9986  // If an exception-specification is specified in an explicit instantiation
9987  // directive, it shall be compatible with the exception-specifications of
9988  // other declarations of that function.
9989  if (auto *FPT = R->getAs<FunctionProtoType>())
9990    if (FPT->hasExceptionSpec()) {
9991      unsigned DiagID =
9992          diag::err_mismatched_exception_spec_explicit_instantiation;
9993      if (getLangOpts().MicrosoftExt)
9994        DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation;
9995      bool Result = CheckEquivalentExceptionSpec(
9996          PDiag(DiagID) << Specialization->getType(),
9997          PDiag(diag::note_explicit_instantiation_here),
9998          Specialization->getType()->getAs<FunctionProtoType>(),
9999          Specialization->getLocation(), FPT, D.getBeginLoc());
10000      // In Microsoft mode, mismatching exception specifications just cause a
10001      // warning.
10002      if (!getLangOpts().MicrosoftExt && Result)
10003        return true;
10004    }
10005
10006  if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
10007    Diag(D.getIdentifierLoc(),
10008         diag::err_explicit_instantiation_member_function_not_instantiated)
10009      << Specialization
10010      << (Specialization->getTemplateSpecializationKind() ==
10011          TSK_ExplicitSpecialization);
10012    Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
10013    return true;
10014  }
10015
10016  FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
10017  if (!PrevDecl && Specialization->isThisDeclarationADefinition())
10018    PrevDecl = Specialization;
10019
10020  if (PrevDecl) {
10021    bool HasNoEffect = false;
10022    if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
10023                                               PrevDecl,
10024                                     PrevDecl->getTemplateSpecializationKind(),
10025                                          PrevDecl->getPointOfInstantiation(),
10026                                               HasNoEffect))
10027      return true;
10028
10029    // FIXME: We may still want to build some representation of this
10030    // explicit specialization.
10031    if (HasNoEffect)
10032      return (Decl*) nullptr;
10033  }
10034
10035  // HACK: libc++ has a bug where it attempts to explicitly instantiate the
10036  // functions
10037  //     valarray<size_t>::valarray(size_t) and
10038  //     valarray<size_t>::~valarray()
10039  // that it declared to have internal linkage with the internal_linkage
10040  // attribute. Ignore the explicit instantiation declaration in this case.
10041  if (Specialization->hasAttr<InternalLinkageAttr>() &&
10042      TSK == TSK_ExplicitInstantiationDeclaration) {
10043    if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext()))
10044      if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray") &&
10045          RD->isInStdNamespace())
10046        return (Decl*) nullptr;
10047  }
10048
10049  ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes());
10050
10051  // In MSVC mode, dllimported explicit instantiation definitions are treated as
10052  // instantiation declarations.
10053  if (TSK == TSK_ExplicitInstantiationDefinition &&
10054      Specialization->hasAttr<DLLImportAttr>() &&
10055      Context.getTargetInfo().getCXXABI().isMicrosoft())
10056    TSK = TSK_ExplicitInstantiationDeclaration;
10057
10058  Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
10059
10060  if (Specialization->isDefined()) {
10061    // Let the ASTConsumer know that this function has been explicitly
10062    // instantiated now, and its linkage might have changed.
10063    Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
10064  } else if (TSK == TSK_ExplicitInstantiationDefinition)
10065    InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
10066
10067  // C++0x [temp.explicit]p2:
10068  //   If the explicit instantiation is for a member function, a member class
10069  //   or a static data member of a class template specialization, the name of
10070  //   the class template specialization in the qualified-id for the member
10071  //   name shall be a simple-template-id.
10072  //
10073  // C++98 has the same restriction, just worded differently.
10074  FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
10075  if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl &&
10076      D.getCXXScopeSpec().isSet() &&
10077      !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
10078    Diag(D.getIdentifierLoc(),
10079         diag::ext_explicit_instantiation_without_qualified_id)
10080    << Specialization << D.getCXXScopeSpec().getRange();
10081
10082  CheckExplicitInstantiation(
10083      *this,
10084      FunTmpl ? (NamedDecl *)FunTmpl
10085              : Specialization->getInstantiatedFromMemberFunction(),
10086      D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK);
10087
10088  // FIXME: Create some kind of ExplicitInstantiationDecl here.
10089  return (Decl*) nullptr;
10090}
10091
10092TypeResult
10093Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
10094                        const CXXScopeSpec &SS, IdentifierInfo *Name,
10095                        SourceLocation TagLoc, SourceLocation NameLoc) {
10096  // This has to hold, because SS is expected to be defined.
10097  assert(Name && "Expected a name in a dependent tag");
10098
10099  NestedNameSpecifier *NNS = SS.getScopeRep();
10100  if (!NNS)
10101    return true;
10102
10103  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10104
10105  if (TUK == TUK_Declaration || TUK == TUK_Definition) {
10106    Diag(NameLoc, diag::err_dependent_tag_decl)
10107      << (TUK == TUK_Definition) << Kind << SS.getRange();
10108    return true;
10109  }
10110
10111  // Create the resulting type.
10112  ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10113  QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
10114
10115  // Create type-source location information for this type.
10116  TypeLocBuilder TLB;
10117  DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
10118  TL.setElaboratedKeywordLoc(TagLoc);
10119  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10120  TL.setNameLoc(NameLoc);
10121  return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
10122}
10123
10124TypeResult
10125Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
10126                        const CXXScopeSpec &SS, const IdentifierInfo &II,
10127                        SourceLocation IdLoc) {
10128  if (SS.isInvalid())
10129    return true;
10130
10131  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
10132    Diag(TypenameLoc,
10133         getLangOpts().CPlusPlus11 ?
10134           diag::warn_cxx98_compat_typename_outside_of_template :
10135           diag::ext_typename_outside_of_template)
10136      << FixItHint::CreateRemoval(TypenameLoc);
10137
10138  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10139  TypeSourceInfo *TSI = nullptr;
10140  QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
10141                                 TypenameLoc, QualifierLoc, II, IdLoc, &TSI,
10142                                 /*DeducedTSTContext=*/true);
10143  if (T.isNull())
10144    return true;
10145  return CreateParsedType(T, TSI);
10146}
10147
10148TypeResult
10149Sema::ActOnTypenameType(Scope *S,
10150                        SourceLocation TypenameLoc,
10151                        const CXXScopeSpec &SS,
10152                        SourceLocation TemplateKWLoc,
10153                        TemplateTy TemplateIn,
10154                        IdentifierInfo *TemplateII,
10155                        SourceLocation TemplateIILoc,
10156                        SourceLocation LAngleLoc,
10157                        ASTTemplateArgsPtr TemplateArgsIn,
10158                        SourceLocation RAngleLoc) {
10159  if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
10160    Diag(TypenameLoc,
10161         getLangOpts().CPlusPlus11 ?
10162           diag::warn_cxx98_compat_typename_outside_of_template :
10163           diag::ext_typename_outside_of_template)
10164      << FixItHint::CreateRemoval(TypenameLoc);
10165
10166  // Strangely, non-type results are not ignored by this lookup, so the
10167  // program is ill-formed if it finds an injected-class-name.
10168  if (TypenameLoc.isValid()) {
10169    auto *LookupRD =
10170        dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false));
10171    if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
10172      Diag(TemplateIILoc,
10173           diag::ext_out_of_line_qualified_id_type_names_constructor)
10174        << TemplateII << 0 /*injected-class-name used as template name*/
10175        << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/);
10176    }
10177  }
10178
10179  // Translate the parser's template argument list in our AST format.
10180  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
10181  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
10182
10183  TemplateName Template = TemplateIn.get();
10184  if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
10185    // Construct a dependent template specialization type.
10186    assert(DTN && "dependent template has non-dependent name?");
10187    assert(DTN->getQualifier() == SS.getScopeRep());
10188    QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
10189                                                          DTN->getQualifier(),
10190                                                          DTN->getIdentifier(),
10191                                                                TemplateArgs);
10192
10193    // Create source-location information for this type.
10194    TypeLocBuilder Builder;
10195    DependentTemplateSpecializationTypeLoc SpecTL
10196    = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
10197    SpecTL.setElaboratedKeywordLoc(TypenameLoc);
10198    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
10199    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
10200    SpecTL.setTemplateNameLoc(TemplateIILoc);
10201    SpecTL.setLAngleLoc(LAngleLoc);
10202    SpecTL.setRAngleLoc(RAngleLoc);
10203    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
10204      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
10205    return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
10206  }
10207
10208  QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
10209  if (T.isNull())
10210    return true;
10211
10212  // Provide source-location information for the template specialization type.
10213  TypeLocBuilder Builder;
10214  TemplateSpecializationTypeLoc SpecTL
10215    = Builder.push<TemplateSpecializationTypeLoc>(T);
10216  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
10217  SpecTL.setTemplateNameLoc(TemplateIILoc);
10218  SpecTL.setLAngleLoc(LAngleLoc);
10219  SpecTL.setRAngleLoc(RAngleLoc);
10220  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
10221    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
10222
10223  T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
10224  ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
10225  TL.setElaboratedKeywordLoc(TypenameLoc);
10226  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10227
10228  TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
10229  return CreateParsedType(T, TSI);
10230}
10231
10232
10233/// Determine whether this failed name lookup should be treated as being
10234/// disabled by a usage of std::enable_if.
10235static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
10236                       SourceRange &CondRange, Expr *&Cond) {
10237  // We must be looking for a ::type...
10238  if (!II.isStr("type"))
10239    return false;
10240
10241  // ... within an explicitly-written template specialization...
10242  if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
10243    return false;
10244  TypeLoc EnableIfTy = NNS.getTypeLoc();
10245  TemplateSpecializationTypeLoc EnableIfTSTLoc =
10246      EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
10247  if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
10248    return false;
10249  const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr();
10250
10251  // ... which names a complete class template declaration...
10252  const TemplateDecl *EnableIfDecl =
10253    EnableIfTST->getTemplateName().getAsTemplateDecl();
10254  if (!EnableIfDecl || EnableIfTST->isIncompleteType())
10255    return false;
10256
10257  // ... called "enable_if".
10258  const IdentifierInfo *EnableIfII =
10259    EnableIfDecl->getDeclName().getAsIdentifierInfo();
10260  if (!EnableIfII || !EnableIfII->isStr("enable_if"))
10261    return false;
10262
10263  // Assume the first template argument is the condition.
10264  CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
10265
10266  // Dig out the condition.
10267  Cond = nullptr;
10268  if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind()
10269        != TemplateArgument::Expression)
10270    return true;
10271
10272  Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression();
10273
10274  // Ignore Boolean literals; they add no value.
10275  if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts()))
10276    Cond = nullptr;
10277
10278  return true;
10279}
10280
10281QualType
10282Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
10283                        SourceLocation KeywordLoc,
10284                        NestedNameSpecifierLoc QualifierLoc,
10285                        const IdentifierInfo &II,
10286                        SourceLocation IILoc,
10287                        TypeSourceInfo **TSI,
10288                        bool DeducedTSTContext) {
10289  QualType T = CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, II, IILoc,
10290                                 DeducedTSTContext);
10291  if (T.isNull())
10292    return QualType();
10293
10294  *TSI = Context.CreateTypeSourceInfo(T);
10295  if (isa<DependentNameType>(T)) {
10296    DependentNameTypeLoc TL =
10297        (*TSI)->getTypeLoc().castAs<DependentNameTypeLoc>();
10298    TL.setElaboratedKeywordLoc(KeywordLoc);
10299    TL.setQualifierLoc(QualifierLoc);
10300    TL.setNameLoc(IILoc);
10301  } else {
10302    ElaboratedTypeLoc TL = (*TSI)->getTypeLoc().castAs<ElaboratedTypeLoc>();
10303    TL.setElaboratedKeywordLoc(KeywordLoc);
10304    TL.setQualifierLoc(QualifierLoc);
10305    TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IILoc);
10306  }
10307  return T;
10308}
10309
10310/// Build the type that describes a C++ typename specifier,
10311/// e.g., "typename T::type".
10312QualType
10313Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
10314                        SourceLocation KeywordLoc,
10315                        NestedNameSpecifierLoc QualifierLoc,
10316                        const IdentifierInfo &II,
10317                        SourceLocation IILoc, bool DeducedTSTContext) {
10318  CXXScopeSpec SS;
10319  SS.Adopt(QualifierLoc);
10320
10321  DeclContext *Ctx = nullptr;
10322  if (QualifierLoc) {
10323    Ctx = computeDeclContext(SS);
10324    if (!Ctx) {
10325      // If the nested-name-specifier is dependent and couldn't be
10326      // resolved to a type, build a typename type.
10327      assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
10328      return Context.getDependentNameType(Keyword,
10329                                          QualifierLoc.getNestedNameSpecifier(),
10330                                          &II);
10331    }
10332
10333    // If the nested-name-specifier refers to the current instantiation,
10334    // the "typename" keyword itself is superfluous. In C++03, the
10335    // program is actually ill-formed. However, DR 382 (in C++0x CD1)
10336    // allows such extraneous "typename" keywords, and we retroactively
10337    // apply this DR to C++03 code with only a warning. In any case we continue.
10338
10339    if (RequireCompleteDeclContext(SS, Ctx))
10340      return QualType();
10341  }
10342
10343  DeclarationName Name(&II);
10344  LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
10345  if (Ctx)
10346    LookupQualifiedName(Result, Ctx, SS);
10347  else
10348    LookupName(Result, CurScope);
10349  unsigned DiagID = 0;
10350  Decl *Referenced = nullptr;
10351  switch (Result.getResultKind()) {
10352  case LookupResult::NotFound: {
10353    // If we're looking up 'type' within a template named 'enable_if', produce
10354    // a more specific diagnostic.
10355    SourceRange CondRange;
10356    Expr *Cond = nullptr;
10357    if (Ctx && isEnableIf(QualifierLoc, II, CondRange, Cond)) {
10358      // If we have a condition, narrow it down to the specific failed
10359      // condition.
10360      if (Cond) {
10361        Expr *FailedCond;
10362        std::string FailedDescription;
10363        std::tie(FailedCond, FailedDescription) =
10364          findFailedBooleanCondition(Cond);
10365
10366        Diag(FailedCond->getExprLoc(),
10367             diag::err_typename_nested_not_found_requirement)
10368          << FailedDescription
10369          << FailedCond->getSourceRange();
10370        return QualType();
10371      }
10372
10373      Diag(CondRange.getBegin(),
10374           diag::err_typename_nested_not_found_enable_if)
10375          << Ctx << CondRange;
10376      return QualType();
10377    }
10378
10379    DiagID = Ctx ? diag::err_typename_nested_not_found
10380                 : diag::err_unknown_typename;
10381    break;
10382  }
10383
10384  case LookupResult::FoundUnresolvedValue: {
10385    // We found a using declaration that is a value. Most likely, the using
10386    // declaration itself is meant to have the 'typename' keyword.
10387    SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
10388                          IILoc);
10389    Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
10390      << Name << Ctx << FullRange;
10391    if (UnresolvedUsingValueDecl *Using
10392          = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
10393      SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
10394      Diag(Loc, diag::note_using_value_decl_missing_typename)
10395        << FixItHint::CreateInsertion(Loc, "typename ");
10396    }
10397  }
10398  // Fall through to create a dependent typename type, from which we can recover
10399  // better.
10400  LLVM_FALLTHROUGH;
10401
10402  case LookupResult::NotFoundInCurrentInstantiation:
10403    // Okay, it's a member of an unknown instantiation.
10404    return Context.getDependentNameType(Keyword,
10405                                        QualifierLoc.getNestedNameSpecifier(),
10406                                        &II);
10407
10408  case LookupResult::Found:
10409    if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
10410      // C++ [class.qual]p2:
10411      //   In a lookup in which function names are not ignored and the
10412      //   nested-name-specifier nominates a class C, if the name specified
10413      //   after the nested-name-specifier, when looked up in C, is the
10414      //   injected-class-name of C [...] then the name is instead considered
10415      //   to name the constructor of class C.
10416      //
10417      // Unlike in an elaborated-type-specifier, function names are not ignored
10418      // in typename-specifier lookup. However, they are ignored in all the
10419      // contexts where we form a typename type with no keyword (that is, in
10420      // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers).
10421      //
10422      // FIXME: That's not strictly true: mem-initializer-id lookup does not
10423      // ignore functions, but that appears to be an oversight.
10424      auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx);
10425      auto *FoundRD = dyn_cast<CXXRecordDecl>(Type);
10426      if (Keyword == ETK_Typename && LookupRD && FoundRD &&
10427          FoundRD->isInjectedClassName() &&
10428          declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
10429        Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor)
10430            << &II << 1 << 0 /*'typename' keyword used*/;
10431
10432      // We found a type. Build an ElaboratedType, since the
10433      // typename-specifier was just sugar.
10434      MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
10435      return Context.getElaboratedType(Keyword,
10436                                       QualifierLoc.getNestedNameSpecifier(),
10437                                       Context.getTypeDeclType(Type));
10438    }
10439
10440    // C++ [dcl.type.simple]p2:
10441    //   A type-specifier of the form
10442    //     typename[opt] nested-name-specifier[opt] template-name
10443    //   is a placeholder for a deduced class type [...].
10444    if (getLangOpts().CPlusPlus17) {
10445      if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) {
10446        if (!DeducedTSTContext) {
10447          QualType T(QualifierLoc
10448                         ? QualifierLoc.getNestedNameSpecifier()->getAsType()
10449                         : nullptr, 0);
10450          if (!T.isNull())
10451            Diag(IILoc, diag::err_dependent_deduced_tst)
10452              << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << T;
10453          else
10454            Diag(IILoc, diag::err_deduced_tst)
10455              << (int)getTemplateNameKindForDiagnostics(TemplateName(TD));
10456          Diag(TD->getLocation(), diag::note_template_decl_here);
10457          return QualType();
10458        }
10459        return Context.getElaboratedType(
10460            Keyword, QualifierLoc.getNestedNameSpecifier(),
10461            Context.getDeducedTemplateSpecializationType(TemplateName(TD),
10462                                                         QualType(), false));
10463      }
10464    }
10465
10466    DiagID = Ctx ? diag::err_typename_nested_not_type
10467                 : diag::err_typename_not_type;
10468    Referenced = Result.getFoundDecl();
10469    break;
10470
10471  case LookupResult::FoundOverloaded:
10472    DiagID = Ctx ? diag::err_typename_nested_not_type
10473                 : diag::err_typename_not_type;
10474    Referenced = *Result.begin();
10475    break;
10476
10477  case LookupResult::Ambiguous:
10478    return QualType();
10479  }
10480
10481  // If we get here, it's because name lookup did not find a
10482  // type. Emit an appropriate diagnostic and return an error.
10483  SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
10484                        IILoc);
10485  if (Ctx)
10486    Diag(IILoc, DiagID) << FullRange << Name << Ctx;
10487  else
10488    Diag(IILoc, DiagID) << FullRange << Name;
10489  if (Referenced)
10490    Diag(Referenced->getLocation(),
10491         Ctx ? diag::note_typename_member_refers_here
10492             : diag::note_typename_refers_here)
10493      << Name;
10494  return QualType();
10495}
10496
10497namespace {
10498  // See Sema::RebuildTypeInCurrentInstantiation
10499  class CurrentInstantiationRebuilder
10500    : public TreeTransform<CurrentInstantiationRebuilder> {
10501    SourceLocation Loc;
10502    DeclarationName Entity;
10503
10504  public:
10505    typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
10506
10507    CurrentInstantiationRebuilder(Sema &SemaRef,
10508                                  SourceLocation Loc,
10509                                  DeclarationName Entity)
10510    : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
10511      Loc(Loc), Entity(Entity) { }
10512
10513    /// Determine whether the given type \p T has already been
10514    /// transformed.
10515    ///
10516    /// For the purposes of type reconstruction, a type has already been
10517    /// transformed if it is NULL or if it is not dependent.
10518    bool AlreadyTransformed(QualType T) {
10519      return T.isNull() || !T->isDependentType();
10520    }
10521
10522    /// Returns the location of the entity whose type is being
10523    /// rebuilt.
10524    SourceLocation getBaseLocation() { return Loc; }
10525
10526    /// Returns the name of the entity whose type is being rebuilt.
10527    DeclarationName getBaseEntity() { return Entity; }
10528
10529    /// Sets the "base" location and entity when that
10530    /// information is known based on another transformation.
10531    void setBase(SourceLocation Loc, DeclarationName Entity) {
10532      this->Loc = Loc;
10533      this->Entity = Entity;
10534    }
10535
10536    ExprResult TransformLambdaExpr(LambdaExpr *E) {
10537      // Lambdas never need to be transformed.
10538      return E;
10539    }
10540  };
10541} // end anonymous namespace
10542
10543/// Rebuilds a type within the context of the current instantiation.
10544///
10545/// The type \p T is part of the type of an out-of-line member definition of
10546/// a class template (or class template partial specialization) that was parsed
10547/// and constructed before we entered the scope of the class template (or
10548/// partial specialization thereof). This routine will rebuild that type now
10549/// that we have entered the declarator's scope, which may produce different
10550/// canonical types, e.g.,
10551///
10552/// \code
10553/// template<typename T>
10554/// struct X {
10555///   typedef T* pointer;
10556///   pointer data();
10557/// };
10558///
10559/// template<typename T>
10560/// typename X<T>::pointer X<T>::data() { ... }
10561/// \endcode
10562///
10563/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
10564/// since we do not know that we can look into X<T> when we parsed the type.
10565/// This function will rebuild the type, performing the lookup of "pointer"
10566/// in X<T> and returning an ElaboratedType whose canonical type is the same
10567/// as the canonical type of T*, allowing the return types of the out-of-line
10568/// definition and the declaration to match.
10569TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
10570                                                        SourceLocation Loc,
10571                                                        DeclarationName Name) {
10572  if (!T || !T->getType()->isDependentType())
10573    return T;
10574
10575  CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
10576  return Rebuilder.TransformType(T);
10577}
10578
10579ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
10580  CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
10581                                          DeclarationName());
10582  return Rebuilder.TransformExpr(E);
10583}
10584
10585bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
10586  if (SS.isInvalid())
10587    return true;
10588
10589  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10590  CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
10591                                          DeclarationName());
10592  NestedNameSpecifierLoc Rebuilt
10593    = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
10594  if (!Rebuilt)
10595    return true;
10596
10597  SS.Adopt(Rebuilt);
10598  return false;
10599}
10600
10601/// Rebuild the template parameters now that we know we're in a current
10602/// instantiation.
10603bool Sema::RebuildTemplateParamsInCurrentInstantiation(
10604                                               TemplateParameterList *Params) {
10605  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
10606    Decl *Param = Params->getParam(I);
10607
10608    // There is nothing to rebuild in a type parameter.
10609    if (isa<TemplateTypeParmDecl>(Param))
10610      continue;
10611
10612    // Rebuild the template parameter list of a template template parameter.
10613    if (TemplateTemplateParmDecl *TTP
10614        = dyn_cast<TemplateTemplateParmDecl>(Param)) {
10615      if (RebuildTemplateParamsInCurrentInstantiation(
10616            TTP->getTemplateParameters()))
10617        return true;
10618
10619      continue;
10620    }
10621
10622    // Rebuild the type of a non-type template parameter.
10623    NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
10624    TypeSourceInfo *NewTSI
10625      = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
10626                                          NTTP->getLocation(),
10627                                          NTTP->getDeclName());
10628    if (!NewTSI)
10629      return true;
10630
10631    if (NewTSI->getType()->isUndeducedType()) {
10632      // C++17 [temp.dep.expr]p3:
10633      //   An id-expression is type-dependent if it contains
10634      //    - an identifier associated by name lookup with a non-type
10635      //      template-parameter declared with a type that contains a
10636      //      placeholder type (7.1.7.4),
10637      NewTSI = SubstAutoTypeSourceInfo(NewTSI, Context.DependentTy);
10638    }
10639
10640    if (NewTSI != NTTP->getTypeSourceInfo()) {
10641      NTTP->setTypeSourceInfo(NewTSI);
10642      NTTP->setType(NewTSI->getType());
10643    }
10644  }
10645
10646  return false;
10647}
10648
10649/// Produces a formatted string that describes the binding of
10650/// template parameters to template arguments.
10651std::string
10652Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
10653                                      const TemplateArgumentList &Args) {
10654  return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
10655}
10656
10657std::string
10658Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
10659                                      const TemplateArgument *Args,
10660                                      unsigned NumArgs) {
10661  SmallString<128> Str;
10662  llvm::raw_svector_ostream Out(Str);
10663
10664  if (!Params || Params->size() == 0 || NumArgs == 0)
10665    return std::string();
10666
10667  for (unsigned I = 0, N = Params->size(); I != N; ++I) {
10668    if (I >= NumArgs)
10669      break;
10670
10671    if (I == 0)
10672      Out << "[with ";
10673    else
10674      Out << ", ";
10675
10676    if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
10677      Out << Id->getName();
10678    } else {
10679      Out << '$' << I;
10680    }
10681
10682    Out << " = ";
10683    Args[I].print(getPrintingPolicy(), Out);
10684  }
10685
10686  Out << ']';
10687  return Out.str();
10688}
10689
10690void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
10691                                    CachedTokens &Toks) {
10692  if (!FD)
10693    return;
10694
10695  auto LPT = std::make_unique<LateParsedTemplate>();
10696
10697  // Take tokens to avoid allocations
10698  LPT->Toks.swap(Toks);
10699  LPT->D = FnD;
10700  LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT)));
10701
10702  FD->setLateTemplateParsed(true);
10703}
10704
10705void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
10706  if (!FD)
10707    return;
10708  FD->setLateTemplateParsed(false);
10709}
10710
10711bool Sema::IsInsideALocalClassWithinATemplateFunction() {
10712  DeclContext *DC = CurContext;
10713
10714  while (DC) {
10715    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
10716      const FunctionDecl *FD = RD->isLocalClass();
10717      return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
10718    } else if (DC->isTranslationUnit() || DC->isNamespace())
10719      return false;
10720
10721    DC = DC->getParent();
10722  }
10723  return false;
10724}
10725
10726namespace {
10727/// Walk the path from which a declaration was instantiated, and check
10728/// that every explicit specialization along that path is visible. This enforces
10729/// C++ [temp.expl.spec]/6:
10730///
10731///   If a template, a member template or a member of a class template is
10732///   explicitly specialized then that specialization shall be declared before
10733///   the first use of that specialization that would cause an implicit
10734///   instantiation to take place, in every translation unit in which such a
10735///   use occurs; no diagnostic is required.
10736///
10737/// and also C++ [temp.class.spec]/1:
10738///
10739///   A partial specialization shall be declared before the first use of a
10740///   class template specialization that would make use of the partial
10741///   specialization as the result of an implicit or explicit instantiation
10742///   in every translation unit in which such a use occurs; no diagnostic is
10743///   required.
10744class ExplicitSpecializationVisibilityChecker {
10745  Sema &S;
10746  SourceLocation Loc;
10747  llvm::SmallVector<Module *, 8> Modules;
10748
10749public:
10750  ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc)
10751      : S(S), Loc(Loc) {}
10752
10753  void check(NamedDecl *ND) {
10754    if (auto *FD = dyn_cast<FunctionDecl>(ND))
10755      return checkImpl(FD);
10756    if (auto *RD = dyn_cast<CXXRecordDecl>(ND))
10757      return checkImpl(RD);
10758    if (auto *VD = dyn_cast<VarDecl>(ND))
10759      return checkImpl(VD);
10760    if (auto *ED = dyn_cast<EnumDecl>(ND))
10761      return checkImpl(ED);
10762  }
10763
10764private:
10765  void diagnose(NamedDecl *D, bool IsPartialSpec) {
10766    auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization
10767                              : Sema::MissingImportKind::ExplicitSpecialization;
10768    const bool Recover = true;
10769
10770    // If we got a custom set of modules (because only a subset of the
10771    // declarations are interesting), use them, otherwise let
10772    // diagnoseMissingImport intelligently pick some.
10773    if (Modules.empty())
10774      S.diagnoseMissingImport(Loc, D, Kind, Recover);
10775    else
10776      S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover);
10777  }
10778
10779  // Check a specific declaration. There are three problematic cases:
10780  //
10781  //  1) The declaration is an explicit specialization of a template
10782  //     specialization.
10783  //  2) The declaration is an explicit specialization of a member of an
10784  //     templated class.
10785  //  3) The declaration is an instantiation of a template, and that template
10786  //     is an explicit specialization of a member of a templated class.
10787  //
10788  // We don't need to go any deeper than that, as the instantiation of the
10789  // surrounding class / etc is not triggered by whatever triggered this
10790  // instantiation, and thus should be checked elsewhere.
10791  template<typename SpecDecl>
10792  void checkImpl(SpecDecl *Spec) {
10793    bool IsHiddenExplicitSpecialization = false;
10794    if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) {
10795      IsHiddenExplicitSpecialization =
10796          Spec->getMemberSpecializationInfo()
10797              ? !S.hasVisibleMemberSpecialization(Spec, &Modules)
10798              : !S.hasVisibleExplicitSpecialization(Spec, &Modules);
10799    } else {
10800      checkInstantiated(Spec);
10801    }
10802
10803    if (IsHiddenExplicitSpecialization)
10804      diagnose(Spec->getMostRecentDecl(), false);
10805  }
10806
10807  void checkInstantiated(FunctionDecl *FD) {
10808    if (auto *TD = FD->getPrimaryTemplate())
10809      checkTemplate(TD);
10810  }
10811
10812  void checkInstantiated(CXXRecordDecl *RD) {
10813    auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD);
10814    if (!SD)
10815      return;
10816
10817    auto From = SD->getSpecializedTemplateOrPartial();
10818    if (auto *TD = From.dyn_cast<ClassTemplateDecl *>())
10819      checkTemplate(TD);
10820    else if (auto *TD =
10821                 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
10822      if (!S.hasVisibleDeclaration(TD))
10823        diagnose(TD, true);
10824      checkTemplate(TD);
10825    }
10826  }
10827
10828  void checkInstantiated(VarDecl *RD) {
10829    auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD);
10830    if (!SD)
10831      return;
10832
10833    auto From = SD->getSpecializedTemplateOrPartial();
10834    if (auto *TD = From.dyn_cast<VarTemplateDecl *>())
10835      checkTemplate(TD);
10836    else if (auto *TD =
10837                 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
10838      if (!S.hasVisibleDeclaration(TD))
10839        diagnose(TD, true);
10840      checkTemplate(TD);
10841    }
10842  }
10843
10844  void checkInstantiated(EnumDecl *FD) {}
10845
10846  template<typename TemplDecl>
10847  void checkTemplate(TemplDecl *TD) {
10848    if (TD->isMemberSpecialization()) {
10849      if (!S.hasVisibleMemberSpecialization(TD, &Modules))
10850        diagnose(TD->getMostRecentDecl(), false);
10851    }
10852  }
10853};
10854} // end anonymous namespace
10855
10856void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) {
10857  if (!getLangOpts().Modules)
10858    return;
10859
10860  ExplicitSpecializationVisibilityChecker(*this, Loc).check(Spec);
10861}
10862
10863/// Check whether a template partial specialization that we've discovered
10864/// is hidden, and produce suitable diagnostics if so.
10865void Sema::checkPartialSpecializationVisibility(SourceLocation Loc,
10866                                                NamedDecl *Spec) {
10867  llvm::SmallVector<Module *, 8> Modules;
10868  if (!hasVisibleDeclaration(Spec, &Modules))
10869    diagnoseMissingImport(Loc, Spec, Spec->getLocation(), Modules,
10870                          MissingImportKind::PartialSpecialization,
10871                          /*Recover*/true);
10872}
10873