SemaDeclObjC.cpp revision 341825
1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for Objective C declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "TypeLocBuilder.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/AST/RecursiveASTVisitor.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Sema/DeclSpec.h"
24#include "clang/Sema/Lookup.h"
25#include "clang/Sema/Scope.h"
26#include "clang/Sema/ScopeInfo.h"
27#include "clang/Sema/SemaInternal.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/DenseSet.h"
30
31using namespace clang;
32
33/// Check whether the given method, which must be in the 'init'
34/// family, is a valid member of that family.
35///
36/// \param receiverTypeIfCall - if null, check this as if declaring it;
37///   if non-null, check this as if making a call to it with the given
38///   receiver type
39///
40/// \return true to indicate that there was an error and appropriate
41///   actions were taken
42bool Sema::checkInitMethod(ObjCMethodDecl *method,
43                           QualType receiverTypeIfCall) {
44  if (method->isInvalidDecl()) return true;
45
46  // This castAs is safe: methods that don't return an object
47  // pointer won't be inferred as inits and will reject an explicit
48  // objc_method_family(init).
49
50  // We ignore protocols here.  Should we?  What about Class?
51
52  const ObjCObjectType *result =
53      method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
54
55  if (result->isObjCId()) {
56    return false;
57  } else if (result->isObjCClass()) {
58    // fall through: always an error
59  } else {
60    ObjCInterfaceDecl *resultClass = result->getInterface();
61    assert(resultClass && "unexpected object type!");
62
63    // It's okay for the result type to still be a forward declaration
64    // if we're checking an interface declaration.
65    if (!resultClass->hasDefinition()) {
66      if (receiverTypeIfCall.isNull() &&
67          !isa<ObjCImplementationDecl>(method->getDeclContext()))
68        return false;
69
70    // Otherwise, we try to compare class types.
71    } else {
72      // If this method was declared in a protocol, we can't check
73      // anything unless we have a receiver type that's an interface.
74      const ObjCInterfaceDecl *receiverClass = nullptr;
75      if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
76        if (receiverTypeIfCall.isNull())
77          return false;
78
79        receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
80          ->getInterfaceDecl();
81
82        // This can be null for calls to e.g. id<Foo>.
83        if (!receiverClass) return false;
84      } else {
85        receiverClass = method->getClassInterface();
86        assert(receiverClass && "method not associated with a class!");
87      }
88
89      // If either class is a subclass of the other, it's fine.
90      if (receiverClass->isSuperClassOf(resultClass) ||
91          resultClass->isSuperClassOf(receiverClass))
92        return false;
93    }
94  }
95
96  SourceLocation loc = method->getLocation();
97
98  // If we're in a system header, and this is not a call, just make
99  // the method unusable.
100  if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
101    method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
102                      UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
103    return true;
104  }
105
106  // Otherwise, it's an error.
107  Diag(loc, diag::err_arc_init_method_unrelated_result_type);
108  method->setInvalidDecl();
109  return true;
110}
111
112/// Issue a warning if the parameter of the overridden method is non-escaping
113/// but the parameter of the overriding method is not.
114static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
115                             Sema &S) {
116  if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) {
117    S.Diag(NewD->getLocation(), diag::warn_overriding_method_missing_noescape);
118    S.Diag(OldD->getLocation(), diag::note_overridden_marked_noescape);
119    return false;
120  }
121
122  return true;
123}
124
125/// Produce additional diagnostics if a category conforms to a protocol that
126/// defines a method taking a non-escaping parameter.
127static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
128                             const ObjCCategoryDecl *CD,
129                             const ObjCProtocolDecl *PD, Sema &S) {
130  if (!diagnoseNoescape(NewD, OldD, S))
131    S.Diag(CD->getLocation(), diag::note_cat_conform_to_noescape_prot)
132        << CD->IsClassExtension() << PD
133        << cast<ObjCMethodDecl>(NewD->getDeclContext());
134}
135
136void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
137                                   const ObjCMethodDecl *Overridden) {
138  if (Overridden->hasRelatedResultType() &&
139      !NewMethod->hasRelatedResultType()) {
140    // This can only happen when the method follows a naming convention that
141    // implies a related result type, and the original (overridden) method has
142    // a suitable return type, but the new (overriding) method does not have
143    // a suitable return type.
144    QualType ResultType = NewMethod->getReturnType();
145    SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
146
147    // Figure out which class this method is part of, if any.
148    ObjCInterfaceDecl *CurrentClass
149      = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
150    if (!CurrentClass) {
151      DeclContext *DC = NewMethod->getDeclContext();
152      if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
153        CurrentClass = Cat->getClassInterface();
154      else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
155        CurrentClass = Impl->getClassInterface();
156      else if (ObjCCategoryImplDecl *CatImpl
157               = dyn_cast<ObjCCategoryImplDecl>(DC))
158        CurrentClass = CatImpl->getClassInterface();
159    }
160
161    if (CurrentClass) {
162      Diag(NewMethod->getLocation(),
163           diag::warn_related_result_type_compatibility_class)
164        << Context.getObjCInterfaceType(CurrentClass)
165        << ResultType
166        << ResultTypeRange;
167    } else {
168      Diag(NewMethod->getLocation(),
169           diag::warn_related_result_type_compatibility_protocol)
170        << ResultType
171        << ResultTypeRange;
172    }
173
174    if (ObjCMethodFamily Family = Overridden->getMethodFamily())
175      Diag(Overridden->getLocation(),
176           diag::note_related_result_type_family)
177        << /*overridden method*/ 0
178        << Family;
179    else
180      Diag(Overridden->getLocation(),
181           diag::note_related_result_type_overridden);
182  }
183
184  if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
185       Overridden->hasAttr<NSReturnsRetainedAttr>())) {
186    Diag(NewMethod->getLocation(),
187         getLangOpts().ObjCAutoRefCount
188             ? diag::err_nsreturns_retained_attribute_mismatch
189             : diag::warn_nsreturns_retained_attribute_mismatch)
190        << 1;
191    Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
192  }
193  if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
194       Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
195    Diag(NewMethod->getLocation(),
196         getLangOpts().ObjCAutoRefCount
197             ? diag::err_nsreturns_retained_attribute_mismatch
198             : diag::warn_nsreturns_retained_attribute_mismatch)
199        << 0;
200    Diag(Overridden->getLocation(), diag::note_previous_decl)  << "method";
201  }
202
203  ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
204                                       oe = Overridden->param_end();
205  for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(),
206                                      ne = NewMethod->param_end();
207       ni != ne && oi != oe; ++ni, ++oi) {
208    const ParmVarDecl *oldDecl = (*oi);
209    ParmVarDecl *newDecl = (*ni);
210    if (newDecl->hasAttr<NSConsumedAttr>() !=
211        oldDecl->hasAttr<NSConsumedAttr>()) {
212      Diag(newDecl->getLocation(),
213           getLangOpts().ObjCAutoRefCount
214               ? diag::err_nsconsumed_attribute_mismatch
215               : diag::warn_nsconsumed_attribute_mismatch);
216      Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter";
217    }
218
219    diagnoseNoescape(newDecl, oldDecl, *this);
220  }
221}
222
223/// Check a method declaration for compatibility with the Objective-C
224/// ARC conventions.
225bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
226  ObjCMethodFamily family = method->getMethodFamily();
227  switch (family) {
228  case OMF_None:
229  case OMF_finalize:
230  case OMF_retain:
231  case OMF_release:
232  case OMF_autorelease:
233  case OMF_retainCount:
234  case OMF_self:
235  case OMF_initialize:
236  case OMF_performSelector:
237    return false;
238
239  case OMF_dealloc:
240    if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
241      SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
242      if (ResultTypeRange.isInvalid())
243        Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
244            << method->getReturnType()
245            << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
246      else
247        Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
248            << method->getReturnType()
249            << FixItHint::CreateReplacement(ResultTypeRange, "void");
250      return true;
251    }
252    return false;
253
254  case OMF_init:
255    // If the method doesn't obey the init rules, don't bother annotating it.
256    if (checkInitMethod(method, QualType()))
257      return true;
258
259    method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
260
261    // Don't add a second copy of this attribute, but otherwise don't
262    // let it be suppressed.
263    if (method->hasAttr<NSReturnsRetainedAttr>())
264      return false;
265    break;
266
267  case OMF_alloc:
268  case OMF_copy:
269  case OMF_mutableCopy:
270  case OMF_new:
271    if (method->hasAttr<NSReturnsRetainedAttr>() ||
272        method->hasAttr<NSReturnsNotRetainedAttr>() ||
273        method->hasAttr<NSReturnsAutoreleasedAttr>())
274      return false;
275    break;
276  }
277
278  method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
279  return false;
280}
281
282static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND,
283                                                SourceLocation ImplLoc) {
284  if (!ND)
285    return;
286  bool IsCategory = false;
287  StringRef RealizedPlatform;
288  AvailabilityResult Availability = ND->getAvailability(
289      /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(),
290      &RealizedPlatform);
291  if (Availability != AR_Deprecated) {
292    if (isa<ObjCMethodDecl>(ND)) {
293      if (Availability != AR_Unavailable)
294        return;
295      if (RealizedPlatform.empty())
296        RealizedPlatform = S.Context.getTargetInfo().getPlatformName();
297      // Warn about implementing unavailable methods, unless the unavailable
298      // is for an app extension.
299      if (RealizedPlatform.endswith("_app_extension"))
300        return;
301      S.Diag(ImplLoc, diag::warn_unavailable_def);
302      S.Diag(ND->getLocation(), diag::note_method_declared_at)
303          << ND->getDeclName();
304      return;
305    }
306    if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) {
307      if (!CD->getClassInterface()->isDeprecated())
308        return;
309      ND = CD->getClassInterface();
310      IsCategory = true;
311    } else
312      return;
313  }
314  S.Diag(ImplLoc, diag::warn_deprecated_def)
315      << (isa<ObjCMethodDecl>(ND)
316              ? /*Method*/ 0
317              : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2
318                                                        : /*Class*/ 1);
319  if (isa<ObjCMethodDecl>(ND))
320    S.Diag(ND->getLocation(), diag::note_method_declared_at)
321        << ND->getDeclName();
322  else
323    S.Diag(ND->getLocation(), diag::note_previous_decl)
324        << (isa<ObjCCategoryDecl>(ND) ? "category" : "class");
325}
326
327/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
328/// pool.
329void Sema::AddAnyMethodToGlobalPool(Decl *D) {
330  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
331
332  // If we don't have a valid method decl, simply return.
333  if (!MDecl)
334    return;
335  if (MDecl->isInstanceMethod())
336    AddInstanceMethodToGlobalPool(MDecl, true);
337  else
338    AddFactoryMethodToGlobalPool(MDecl, true);
339}
340
341/// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
342/// has explicit ownership attribute; false otherwise.
343static bool
344HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
345  QualType T = Param->getType();
346
347  if (const PointerType *PT = T->getAs<PointerType>()) {
348    T = PT->getPointeeType();
349  } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
350    T = RT->getPointeeType();
351  } else {
352    return true;
353  }
354
355  // If we have a lifetime qualifier, but it's local, we must have
356  // inferred it. So, it is implicit.
357  return !T.getLocalQualifiers().hasObjCLifetime();
358}
359
360/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
361/// and user declared, in the method definition's AST.
362void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
363  assert((getCurMethodDecl() == nullptr) && "Methodparsing confused");
364  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
365
366  // If we don't have a valid method decl, simply return.
367  if (!MDecl)
368    return;
369
370  QualType ResultType = MDecl->getReturnType();
371  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
372      !MDecl->isInvalidDecl() &&
373      RequireCompleteType(MDecl->getLocation(), ResultType,
374                          diag::err_func_def_incomplete_result))
375    MDecl->setInvalidDecl();
376
377  // Allow all of Sema to see that we are entering a method definition.
378  PushDeclContext(FnBodyScope, MDecl);
379  PushFunctionScope();
380
381  // Create Decl objects for each parameter, entrring them in the scope for
382  // binding to their use.
383
384  // Insert the invisible arguments, self and _cmd!
385  MDecl->createImplicitParams(Context, MDecl->getClassInterface());
386
387  PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
388  PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
389
390  // The ObjC parser requires parameter names so there's no need to check.
391  CheckParmsForFunctionDef(MDecl->parameters(),
392                           /*CheckParameterNames=*/false);
393
394  // Introduce all of the other parameters into this scope.
395  for (auto *Param : MDecl->parameters()) {
396    if (!Param->isInvalidDecl() &&
397        getLangOpts().ObjCAutoRefCount &&
398        !HasExplicitOwnershipAttr(*this, Param))
399      Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
400            Param->getType();
401
402    if (Param->getIdentifier())
403      PushOnScopeChains(Param, FnBodyScope);
404  }
405
406  // In ARC, disallow definition of retain/release/autorelease/retainCount
407  if (getLangOpts().ObjCAutoRefCount) {
408    switch (MDecl->getMethodFamily()) {
409    case OMF_retain:
410    case OMF_retainCount:
411    case OMF_release:
412    case OMF_autorelease:
413      Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
414        << 0 << MDecl->getSelector();
415      break;
416
417    case OMF_None:
418    case OMF_dealloc:
419    case OMF_finalize:
420    case OMF_alloc:
421    case OMF_init:
422    case OMF_mutableCopy:
423    case OMF_copy:
424    case OMF_new:
425    case OMF_self:
426    case OMF_initialize:
427    case OMF_performSelector:
428      break;
429    }
430  }
431
432  // Warn on deprecated methods under -Wdeprecated-implementations,
433  // and prepare for warning on missing super calls.
434  if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
435    ObjCMethodDecl *IMD =
436      IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
437
438    if (IMD) {
439      ObjCImplDecl *ImplDeclOfMethodDef =
440        dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
441      ObjCContainerDecl *ContDeclOfMethodDecl =
442        dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
443      ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
444      if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
445        ImplDeclOfMethodDecl = OID->getImplementation();
446      else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
447        if (CD->IsClassExtension()) {
448          if (ObjCInterfaceDecl *OID = CD->getClassInterface())
449            ImplDeclOfMethodDecl = OID->getImplementation();
450        } else
451            ImplDeclOfMethodDecl = CD->getImplementation();
452      }
453      // No need to issue deprecated warning if deprecated mehod in class/category
454      // is being implemented in its own implementation (no overriding is involved).
455      if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
456        DiagnoseObjCImplementedDeprecations(*this, IMD, MDecl->getLocation());
457    }
458
459    if (MDecl->getMethodFamily() == OMF_init) {
460      if (MDecl->isDesignatedInitializerForTheInterface()) {
461        getCurFunction()->ObjCIsDesignatedInit = true;
462        getCurFunction()->ObjCWarnForNoDesignatedInitChain =
463            IC->getSuperClass() != nullptr;
464      } else if (IC->hasDesignatedInitializers()) {
465        getCurFunction()->ObjCIsSecondaryInit = true;
466        getCurFunction()->ObjCWarnForNoInitDelegation = true;
467      }
468    }
469
470    // If this is "dealloc" or "finalize", set some bit here.
471    // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
472    // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
473    // Only do this if the current class actually has a superclass.
474    if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
475      ObjCMethodFamily Family = MDecl->getMethodFamily();
476      if (Family == OMF_dealloc) {
477        if (!(getLangOpts().ObjCAutoRefCount ||
478              getLangOpts().getGC() == LangOptions::GCOnly))
479          getCurFunction()->ObjCShouldCallSuper = true;
480
481      } else if (Family == OMF_finalize) {
482        if (Context.getLangOpts().getGC() != LangOptions::NonGC)
483          getCurFunction()->ObjCShouldCallSuper = true;
484
485      } else {
486        const ObjCMethodDecl *SuperMethod =
487          SuperClass->lookupMethod(MDecl->getSelector(),
488                                   MDecl->isInstanceMethod());
489        getCurFunction()->ObjCShouldCallSuper =
490          (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
491      }
492    }
493  }
494}
495
496namespace {
497
498// Callback to only accept typo corrections that are Objective-C classes.
499// If an ObjCInterfaceDecl* is given to the constructor, then the validation
500// function will reject corrections to that class.
501class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
502 public:
503  ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
504  explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
505      : CurrentIDecl(IDecl) {}
506
507  bool ValidateCandidate(const TypoCorrection &candidate) override {
508    ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
509    return ID && !declaresSameEntity(ID, CurrentIDecl);
510  }
511
512 private:
513  ObjCInterfaceDecl *CurrentIDecl;
514};
515
516} // end anonymous namespace
517
518static void diagnoseUseOfProtocols(Sema &TheSema,
519                                   ObjCContainerDecl *CD,
520                                   ObjCProtocolDecl *const *ProtoRefs,
521                                   unsigned NumProtoRefs,
522                                   const SourceLocation *ProtoLocs) {
523  assert(ProtoRefs);
524  // Diagnose availability in the context of the ObjC container.
525  Sema::ContextRAII SavedContext(TheSema, CD);
526  for (unsigned i = 0; i < NumProtoRefs; ++i) {
527    (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i],
528                                    /*UnknownObjCClass=*/nullptr,
529                                    /*ObjCPropertyAccess=*/false,
530                                    /*AvoidPartialAvailabilityChecks=*/true);
531  }
532}
533
534void Sema::
535ActOnSuperClassOfClassInterface(Scope *S,
536                                SourceLocation AtInterfaceLoc,
537                                ObjCInterfaceDecl *IDecl,
538                                IdentifierInfo *ClassName,
539                                SourceLocation ClassLoc,
540                                IdentifierInfo *SuperName,
541                                SourceLocation SuperLoc,
542                                ArrayRef<ParsedType> SuperTypeArgs,
543                                SourceRange SuperTypeArgsRange) {
544  // Check if a different kind of symbol declared in this scope.
545  NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
546                                         LookupOrdinaryName);
547
548  if (!PrevDecl) {
549    // Try to correct for a typo in the superclass name without correcting
550    // to the class we're defining.
551    if (TypoCorrection Corrected = CorrectTypo(
552            DeclarationNameInfo(SuperName, SuperLoc),
553            LookupOrdinaryName, TUScope,
554            nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(IDecl),
555            CTK_ErrorRecovery)) {
556      diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
557                   << SuperName << ClassName);
558      PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
559    }
560  }
561
562  if (declaresSameEntity(PrevDecl, IDecl)) {
563    Diag(SuperLoc, diag::err_recursive_superclass)
564      << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
565    IDecl->setEndOfDefinitionLoc(ClassLoc);
566  } else {
567    ObjCInterfaceDecl *SuperClassDecl =
568    dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
569    QualType SuperClassType;
570
571    // Diagnose classes that inherit from deprecated classes.
572    if (SuperClassDecl) {
573      (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
574      SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
575    }
576
577    if (PrevDecl && !SuperClassDecl) {
578      // The previous declaration was not a class decl. Check if we have a
579      // typedef. If we do, get the underlying class type.
580      if (const TypedefNameDecl *TDecl =
581          dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
582        QualType T = TDecl->getUnderlyingType();
583        if (T->isObjCObjectType()) {
584          if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
585            SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
586            SuperClassType = Context.getTypeDeclType(TDecl);
587
588            // This handles the following case:
589            // @interface NewI @end
590            // typedef NewI DeprI __attribute__((deprecated("blah")))
591            // @interface SI : DeprI /* warn here */ @end
592            (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
593          }
594        }
595      }
596
597      // This handles the following case:
598      //
599      // typedef int SuperClass;
600      // @interface MyClass : SuperClass {} @end
601      //
602      if (!SuperClassDecl) {
603        Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
604        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
605      }
606    }
607
608    if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
609      if (!SuperClassDecl)
610        Diag(SuperLoc, diag::err_undef_superclass)
611          << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
612      else if (RequireCompleteType(SuperLoc,
613                                   SuperClassType,
614                                   diag::err_forward_superclass,
615                                   SuperClassDecl->getDeclName(),
616                                   ClassName,
617                                   SourceRange(AtInterfaceLoc, ClassLoc))) {
618        SuperClassDecl = nullptr;
619        SuperClassType = QualType();
620      }
621    }
622
623    if (SuperClassType.isNull()) {
624      assert(!SuperClassDecl && "Failed to set SuperClassType?");
625      return;
626    }
627
628    // Handle type arguments on the superclass.
629    TypeSourceInfo *SuperClassTInfo = nullptr;
630    if (!SuperTypeArgs.empty()) {
631      TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers(
632                                        S,
633                                        SuperLoc,
634                                        CreateParsedType(SuperClassType,
635                                                         nullptr),
636                                        SuperTypeArgsRange.getBegin(),
637                                        SuperTypeArgs,
638                                        SuperTypeArgsRange.getEnd(),
639                                        SourceLocation(),
640                                        { },
641                                        { },
642                                        SourceLocation());
643      if (!fullSuperClassType.isUsable())
644        return;
645
646      SuperClassType = GetTypeFromParser(fullSuperClassType.get(),
647                                         &SuperClassTInfo);
648    }
649
650    if (!SuperClassTInfo) {
651      SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
652                                                         SuperLoc);
653    }
654
655    IDecl->setSuperClass(SuperClassTInfo);
656    IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getLocEnd());
657  }
658}
659
660DeclResult Sema::actOnObjCTypeParam(Scope *S,
661                                    ObjCTypeParamVariance variance,
662                                    SourceLocation varianceLoc,
663                                    unsigned index,
664                                    IdentifierInfo *paramName,
665                                    SourceLocation paramLoc,
666                                    SourceLocation colonLoc,
667                                    ParsedType parsedTypeBound) {
668  // If there was an explicitly-provided type bound, check it.
669  TypeSourceInfo *typeBoundInfo = nullptr;
670  if (parsedTypeBound) {
671    // The type bound can be any Objective-C pointer type.
672    QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
673    if (typeBound->isObjCObjectPointerType()) {
674      // okay
675    } else if (typeBound->isObjCObjectType()) {
676      // The user forgot the * on an Objective-C pointer type, e.g.,
677      // "T : NSView".
678      SourceLocation starLoc = getLocForEndOfToken(
679                                 typeBoundInfo->getTypeLoc().getEndLoc());
680      Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
681           diag::err_objc_type_param_bound_missing_pointer)
682        << typeBound << paramName
683        << FixItHint::CreateInsertion(starLoc, " *");
684
685      // Create a new type location builder so we can update the type
686      // location information we have.
687      TypeLocBuilder builder;
688      builder.pushFullCopy(typeBoundInfo->getTypeLoc());
689
690      // Create the Objective-C pointer type.
691      typeBound = Context.getObjCObjectPointerType(typeBound);
692      ObjCObjectPointerTypeLoc newT
693        = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
694      newT.setStarLoc(starLoc);
695
696      // Form the new type source information.
697      typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
698    } else {
699      // Not a valid type bound.
700      Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
701           diag::err_objc_type_param_bound_nonobject)
702        << typeBound << paramName;
703
704      // Forget the bound; we'll default to id later.
705      typeBoundInfo = nullptr;
706    }
707
708    // Type bounds cannot have qualifiers (even indirectly) or explicit
709    // nullability.
710    if (typeBoundInfo) {
711      QualType typeBound = typeBoundInfo->getType();
712      TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
713      if (qual || typeBound.hasQualifiers()) {
714        bool diagnosed = false;
715        SourceRange rangeToRemove;
716        if (qual) {
717          if (auto attr = qual.getAs<AttributedTypeLoc>()) {
718            rangeToRemove = attr.getLocalSourceRange();
719            if (attr.getTypePtr()->getImmediateNullability()) {
720              Diag(attr.getLocStart(),
721                   diag::err_objc_type_param_bound_explicit_nullability)
722                << paramName << typeBound
723                << FixItHint::CreateRemoval(rangeToRemove);
724              diagnosed = true;
725            }
726          }
727        }
728
729        if (!diagnosed) {
730          Diag(qual ? qual.getLocStart()
731                    : typeBoundInfo->getTypeLoc().getLocStart(),
732              diag::err_objc_type_param_bound_qualified)
733            << paramName << typeBound << typeBound.getQualifiers().getAsString()
734            << FixItHint::CreateRemoval(rangeToRemove);
735        }
736
737        // If the type bound has qualifiers other than CVR, we need to strip
738        // them or we'll probably assert later when trying to apply new
739        // qualifiers.
740        Qualifiers quals = typeBound.getQualifiers();
741        quals.removeCVRQualifiers();
742        if (!quals.empty()) {
743          typeBoundInfo =
744             Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType());
745        }
746      }
747    }
748  }
749
750  // If there was no explicit type bound (or we removed it due to an error),
751  // use 'id' instead.
752  if (!typeBoundInfo) {
753    colonLoc = SourceLocation();
754    typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType());
755  }
756
757  // Create the type parameter.
758  return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc,
759                                   index, paramLoc, paramName, colonLoc,
760                                   typeBoundInfo);
761}
762
763ObjCTypeParamList *Sema::actOnObjCTypeParamList(Scope *S,
764                                                SourceLocation lAngleLoc,
765                                                ArrayRef<Decl *> typeParamsIn,
766                                                SourceLocation rAngleLoc) {
767  // We know that the array only contains Objective-C type parameters.
768  ArrayRef<ObjCTypeParamDecl *>
769    typeParams(
770      reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
771      typeParamsIn.size());
772
773  // Diagnose redeclarations of type parameters.
774  // We do this now because Objective-C type parameters aren't pushed into
775  // scope until later (after the instance variable block), but we want the
776  // diagnostics to occur right after we parse the type parameter list.
777  llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
778  for (auto typeParam : typeParams) {
779    auto known = knownParams.find(typeParam->getIdentifier());
780    if (known != knownParams.end()) {
781      Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
782        << typeParam->getIdentifier()
783        << SourceRange(known->second->getLocation());
784
785      typeParam->setInvalidDecl();
786    } else {
787      knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
788
789      // Push the type parameter into scope.
790      PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
791    }
792  }
793
794  // Create the parameter list.
795  return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
796}
797
798void Sema::popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList) {
799  for (auto typeParam : *typeParamList) {
800    if (!typeParam->isInvalidDecl()) {
801      S->RemoveDecl(typeParam);
802      IdResolver.RemoveDecl(typeParam);
803    }
804  }
805}
806
807namespace {
808  /// The context in which an Objective-C type parameter list occurs, for use
809  /// in diagnostics.
810  enum class TypeParamListContext {
811    ForwardDeclaration,
812    Definition,
813    Category,
814    Extension
815  };
816} // end anonymous namespace
817
818/// Check consistency between two Objective-C type parameter lists, e.g.,
819/// between a category/extension and an \@interface or between an \@class and an
820/// \@interface.
821static bool checkTypeParamListConsistency(Sema &S,
822                                          ObjCTypeParamList *prevTypeParams,
823                                          ObjCTypeParamList *newTypeParams,
824                                          TypeParamListContext newContext) {
825  // If the sizes don't match, complain about that.
826  if (prevTypeParams->size() != newTypeParams->size()) {
827    SourceLocation diagLoc;
828    if (newTypeParams->size() > prevTypeParams->size()) {
829      diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
830    } else {
831      diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getLocEnd());
832    }
833
834    S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
835      << static_cast<unsigned>(newContext)
836      << (newTypeParams->size() > prevTypeParams->size())
837      << prevTypeParams->size()
838      << newTypeParams->size();
839
840    return true;
841  }
842
843  // Match up the type parameters.
844  for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
845    ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
846    ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
847
848    // Check for consistency of the variance.
849    if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
850      if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
851          newContext != TypeParamListContext::Definition) {
852        // When the new type parameter is invariant and is not part
853        // of the definition, just propagate the variance.
854        newTypeParam->setVariance(prevTypeParam->getVariance());
855      } else if (prevTypeParam->getVariance()
856                   == ObjCTypeParamVariance::Invariant &&
857                 !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
858                   cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
859                     ->getDefinition() == prevTypeParam->getDeclContext())) {
860        // When the old parameter is invariant and was not part of the
861        // definition, just ignore the difference because it doesn't
862        // matter.
863      } else {
864        {
865          // Diagnose the conflict and update the second declaration.
866          SourceLocation diagLoc = newTypeParam->getVarianceLoc();
867          if (diagLoc.isInvalid())
868            diagLoc = newTypeParam->getLocStart();
869
870          auto diag = S.Diag(diagLoc,
871                             diag::err_objc_type_param_variance_conflict)
872                        << static_cast<unsigned>(newTypeParam->getVariance())
873                        << newTypeParam->getDeclName()
874                        << static_cast<unsigned>(prevTypeParam->getVariance())
875                        << prevTypeParam->getDeclName();
876          switch (prevTypeParam->getVariance()) {
877          case ObjCTypeParamVariance::Invariant:
878            diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
879            break;
880
881          case ObjCTypeParamVariance::Covariant:
882          case ObjCTypeParamVariance::Contravariant: {
883            StringRef newVarianceStr
884               = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
885                   ? "__covariant"
886                   : "__contravariant";
887            if (newTypeParam->getVariance()
888                  == ObjCTypeParamVariance::Invariant) {
889              diag << FixItHint::CreateInsertion(newTypeParam->getLocStart(),
890                                                 (newVarianceStr + " ").str());
891            } else {
892              diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
893                                               newVarianceStr);
894            }
895          }
896          }
897        }
898
899        S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
900          << prevTypeParam->getDeclName();
901
902        // Override the variance.
903        newTypeParam->setVariance(prevTypeParam->getVariance());
904      }
905    }
906
907    // If the bound types match, there's nothing to do.
908    if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
909                              newTypeParam->getUnderlyingType()))
910      continue;
911
912    // If the new type parameter's bound was explicit, complain about it being
913    // different from the original.
914    if (newTypeParam->hasExplicitBound()) {
915      SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
916                                    ->getTypeLoc().getSourceRange();
917      S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
918        << newTypeParam->getUnderlyingType()
919        << newTypeParam->getDeclName()
920        << prevTypeParam->hasExplicitBound()
921        << prevTypeParam->getUnderlyingType()
922        << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
923        << prevTypeParam->getDeclName()
924        << FixItHint::CreateReplacement(
925             newBoundRange,
926             prevTypeParam->getUnderlyingType().getAsString(
927               S.Context.getPrintingPolicy()));
928
929      S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
930        << prevTypeParam->getDeclName();
931
932      // Override the new type parameter's bound type with the previous type,
933      // so that it's consistent.
934      newTypeParam->setTypeSourceInfo(
935        S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
936      continue;
937    }
938
939    // The new type parameter got the implicit bound of 'id'. That's okay for
940    // categories and extensions (overwrite it later), but not for forward
941    // declarations and @interfaces, because those must be standalone.
942    if (newContext == TypeParamListContext::ForwardDeclaration ||
943        newContext == TypeParamListContext::Definition) {
944      // Diagnose this problem for forward declarations and definitions.
945      SourceLocation insertionLoc
946        = S.getLocForEndOfToken(newTypeParam->getLocation());
947      std::string newCode
948        = " : " + prevTypeParam->getUnderlyingType().getAsString(
949                    S.Context.getPrintingPolicy());
950      S.Diag(newTypeParam->getLocation(),
951             diag::err_objc_type_param_bound_missing)
952        << prevTypeParam->getUnderlyingType()
953        << newTypeParam->getDeclName()
954        << (newContext == TypeParamListContext::ForwardDeclaration)
955        << FixItHint::CreateInsertion(insertionLoc, newCode);
956
957      S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
958        << prevTypeParam->getDeclName();
959    }
960
961    // Update the new type parameter's bound to match the previous one.
962    newTypeParam->setTypeSourceInfo(
963      S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
964  }
965
966  return false;
967}
968
969Decl *Sema::ActOnStartClassInterface(
970    Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
971    SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
972    IdentifierInfo *SuperName, SourceLocation SuperLoc,
973    ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
974    Decl *const *ProtoRefs, unsigned NumProtoRefs,
975    const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
976    const ParsedAttributesView &AttrList) {
977  assert(ClassName && "Missing class identifier");
978
979  // Check for another declaration kind with the same name.
980  NamedDecl *PrevDecl =
981      LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
982                       forRedeclarationInCurContext());
983
984  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
985    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
986    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
987  }
988
989  // Create a declaration to describe this @interface.
990  ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
991
992  if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
993    // A previous decl with a different name is because of
994    // @compatibility_alias, for example:
995    // \code
996    //   @class NewImage;
997    //   @compatibility_alias OldImage NewImage;
998    // \endcode
999    // A lookup for 'OldImage' will return the 'NewImage' decl.
1000    //
1001    // In such a case use the real declaration name, instead of the alias one,
1002    // otherwise we will break IdentifierResolver and redecls-chain invariants.
1003    // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
1004    // has been aliased.
1005    ClassName = PrevIDecl->getIdentifier();
1006  }
1007
1008  // If there was a forward declaration with type parameters, check
1009  // for consistency.
1010  if (PrevIDecl) {
1011    if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
1012      if (typeParamList) {
1013        // Both have type parameter lists; check for consistency.
1014        if (checkTypeParamListConsistency(*this, prevTypeParamList,
1015                                          typeParamList,
1016                                          TypeParamListContext::Definition)) {
1017          typeParamList = nullptr;
1018        }
1019      } else {
1020        Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
1021          << ClassName;
1022        Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
1023          << ClassName;
1024
1025        // Clone the type parameter list.
1026        SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
1027        for (auto typeParam : *prevTypeParamList) {
1028          clonedTypeParams.push_back(
1029            ObjCTypeParamDecl::Create(
1030              Context,
1031              CurContext,
1032              typeParam->getVariance(),
1033              SourceLocation(),
1034              typeParam->getIndex(),
1035              SourceLocation(),
1036              typeParam->getIdentifier(),
1037              SourceLocation(),
1038              Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType())));
1039        }
1040
1041        typeParamList = ObjCTypeParamList::create(Context,
1042                                                  SourceLocation(),
1043                                                  clonedTypeParams,
1044                                                  SourceLocation());
1045      }
1046    }
1047  }
1048
1049  ObjCInterfaceDecl *IDecl
1050    = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
1051                                typeParamList, PrevIDecl, ClassLoc);
1052  if (PrevIDecl) {
1053    // Class already seen. Was it a definition?
1054    if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
1055      Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
1056        << PrevIDecl->getDeclName();
1057      Diag(Def->getLocation(), diag::note_previous_definition);
1058      IDecl->setInvalidDecl();
1059    }
1060  }
1061
1062  ProcessDeclAttributeList(TUScope, IDecl, AttrList);
1063  AddPragmaAttributes(TUScope, IDecl);
1064  PushOnScopeChains(IDecl, TUScope);
1065
1066  // Start the definition of this class. If we're in a redefinition case, there
1067  // may already be a definition, so we'll end up adding to it.
1068  if (!IDecl->hasDefinition())
1069    IDecl->startDefinition();
1070
1071  if (SuperName) {
1072    // Diagnose availability in the context of the @interface.
1073    ContextRAII SavedContext(*this, IDecl);
1074
1075    ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
1076                                    ClassName, ClassLoc,
1077                                    SuperName, SuperLoc, SuperTypeArgs,
1078                                    SuperTypeArgsRange);
1079  } else { // we have a root class.
1080    IDecl->setEndOfDefinitionLoc(ClassLoc);
1081  }
1082
1083  // Check then save referenced protocols.
1084  if (NumProtoRefs) {
1085    diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1086                           NumProtoRefs, ProtoLocs);
1087    IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1088                           ProtoLocs, Context);
1089    IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1090  }
1091
1092  CheckObjCDeclScope(IDecl);
1093  return ActOnObjCContainerStartDefinition(IDecl);
1094}
1095
1096/// ActOnTypedefedProtocols - this action finds protocol list as part of the
1097/// typedef'ed use for a qualified super class and adds them to the list
1098/// of the protocols.
1099void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
1100                                  SmallVectorImpl<SourceLocation> &ProtocolLocs,
1101                                   IdentifierInfo *SuperName,
1102                                   SourceLocation SuperLoc) {
1103  if (!SuperName)
1104    return;
1105  NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
1106                                      LookupOrdinaryName);
1107  if (!IDecl)
1108    return;
1109
1110  if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
1111    QualType T = TDecl->getUnderlyingType();
1112    if (T->isObjCObjectType())
1113      if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) {
1114        ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
1115        // FIXME: Consider whether this should be an invalid loc since the loc
1116        // is not actually pointing to a protocol name reference but to the
1117        // typedef reference. Note that the base class name loc is also pointing
1118        // at the typedef.
1119        ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc);
1120      }
1121  }
1122}
1123
1124/// ActOnCompatibilityAlias - this action is called after complete parsing of
1125/// a \@compatibility_alias declaration. It sets up the alias relationships.
1126Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
1127                                    IdentifierInfo *AliasName,
1128                                    SourceLocation AliasLocation,
1129                                    IdentifierInfo *ClassName,
1130                                    SourceLocation ClassLocation) {
1131  // Look for previous declaration of alias name
1132  NamedDecl *ADecl =
1133      LookupSingleName(TUScope, AliasName, AliasLocation, LookupOrdinaryName,
1134                       forRedeclarationInCurContext());
1135  if (ADecl) {
1136    Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
1137    Diag(ADecl->getLocation(), diag::note_previous_declaration);
1138    return nullptr;
1139  }
1140  // Check for class declaration
1141  NamedDecl *CDeclU =
1142      LookupSingleName(TUScope, ClassName, ClassLocation, LookupOrdinaryName,
1143                       forRedeclarationInCurContext());
1144  if (const TypedefNameDecl *TDecl =
1145        dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
1146    QualType T = TDecl->getUnderlyingType();
1147    if (T->isObjCObjectType()) {
1148      if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
1149        ClassName = IDecl->getIdentifier();
1150        CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
1151                                  LookupOrdinaryName,
1152                                  forRedeclarationInCurContext());
1153      }
1154    }
1155  }
1156  ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
1157  if (!CDecl) {
1158    Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
1159    if (CDeclU)
1160      Diag(CDeclU->getLocation(), diag::note_previous_declaration);
1161    return nullptr;
1162  }
1163
1164  // Everything checked out, instantiate a new alias declaration AST.
1165  ObjCCompatibleAliasDecl *AliasDecl =
1166    ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
1167
1168  if (!CheckObjCDeclScope(AliasDecl))
1169    PushOnScopeChains(AliasDecl, TUScope);
1170
1171  return AliasDecl;
1172}
1173
1174bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
1175  IdentifierInfo *PName,
1176  SourceLocation &Ploc, SourceLocation PrevLoc,
1177  const ObjCList<ObjCProtocolDecl> &PList) {
1178
1179  bool res = false;
1180  for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
1181       E = PList.end(); I != E; ++I) {
1182    if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
1183                                                 Ploc)) {
1184      if (PDecl->getIdentifier() == PName) {
1185        Diag(Ploc, diag::err_protocol_has_circular_dependency);
1186        Diag(PrevLoc, diag::note_previous_definition);
1187        res = true;
1188      }
1189
1190      if (!PDecl->hasDefinition())
1191        continue;
1192
1193      if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
1194            PDecl->getLocation(), PDecl->getReferencedProtocols()))
1195        res = true;
1196    }
1197  }
1198  return res;
1199}
1200
1201Decl *Sema::ActOnStartProtocolInterface(
1202    SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
1203    SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs,
1204    const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1205    const ParsedAttributesView &AttrList) {
1206  bool err = false;
1207  // FIXME: Deal with AttrList.
1208  assert(ProtocolName && "Missing protocol identifier");
1209  ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
1210                                              forRedeclarationInCurContext());
1211  ObjCProtocolDecl *PDecl = nullptr;
1212  if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1213    // If we already have a definition, complain.
1214    Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
1215    Diag(Def->getLocation(), diag::note_previous_definition);
1216
1217    // Create a new protocol that is completely distinct from previous
1218    // declarations, and do not make this protocol available for name lookup.
1219    // That way, we'll end up completely ignoring the duplicate.
1220    // FIXME: Can we turn this into an error?
1221    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1222                                     ProtocolLoc, AtProtoInterfaceLoc,
1223                                     /*PrevDecl=*/nullptr);
1224
1225    // If we are using modules, add the decl to the context in order to
1226    // serialize something meaningful.
1227    if (getLangOpts().Modules)
1228      PushOnScopeChains(PDecl, TUScope);
1229    PDecl->startDefinition();
1230  } else {
1231    if (PrevDecl) {
1232      // Check for circular dependencies among protocol declarations. This can
1233      // only happen if this protocol was forward-declared.
1234      ObjCList<ObjCProtocolDecl> PList;
1235      PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
1236      err = CheckForwardProtocolDeclarationForCircularDependency(
1237              ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
1238    }
1239
1240    // Create the new declaration.
1241    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1242                                     ProtocolLoc, AtProtoInterfaceLoc,
1243                                     /*PrevDecl=*/PrevDecl);
1244
1245    PushOnScopeChains(PDecl, TUScope);
1246    PDecl->startDefinition();
1247  }
1248
1249  ProcessDeclAttributeList(TUScope, PDecl, AttrList);
1250  AddPragmaAttributes(TUScope, PDecl);
1251
1252  // Merge attributes from previous declarations.
1253  if (PrevDecl)
1254    mergeDeclAttributes(PDecl, PrevDecl);
1255
1256  if (!err && NumProtoRefs ) {
1257    /// Check then save referenced protocols.
1258    diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1259                           NumProtoRefs, ProtoLocs);
1260    PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1261                           ProtoLocs, Context);
1262  }
1263
1264  CheckObjCDeclScope(PDecl);
1265  return ActOnObjCContainerStartDefinition(PDecl);
1266}
1267
1268static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
1269                                          ObjCProtocolDecl *&UndefinedProtocol) {
1270  if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) {
1271    UndefinedProtocol = PDecl;
1272    return true;
1273  }
1274
1275  for (auto *PI : PDecl->protocols())
1276    if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
1277      UndefinedProtocol = PI;
1278      return true;
1279    }
1280  return false;
1281}
1282
1283/// FindProtocolDeclaration - This routine looks up protocols and
1284/// issues an error if they are not declared. It returns list of
1285/// protocol declarations in its 'Protocols' argument.
1286void
1287Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
1288                              ArrayRef<IdentifierLocPair> ProtocolId,
1289                              SmallVectorImpl<Decl *> &Protocols) {
1290  for (const IdentifierLocPair &Pair : ProtocolId) {
1291    ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
1292    if (!PDecl) {
1293      TypoCorrection Corrected = CorrectTypo(
1294          DeclarationNameInfo(Pair.first, Pair.second),
1295          LookupObjCProtocolName, TUScope, nullptr,
1296          llvm::make_unique<DeclFilterCCC<ObjCProtocolDecl>>(),
1297          CTK_ErrorRecovery);
1298      if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1299        diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
1300                                    << Pair.first);
1301    }
1302
1303    if (!PDecl) {
1304      Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
1305      continue;
1306    }
1307    // If this is a forward protocol declaration, get its definition.
1308    if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1309      PDecl = PDecl->getDefinition();
1310
1311    // For an objc container, delay protocol reference checking until after we
1312    // can set the objc decl as the availability context, otherwise check now.
1313    if (!ForObjCContainer) {
1314      (void)DiagnoseUseOfDecl(PDecl, Pair.second);
1315    }
1316
1317    // If this is a forward declaration and we are supposed to warn in this
1318    // case, do it.
1319    // FIXME: Recover nicely in the hidden case.
1320    ObjCProtocolDecl *UndefinedProtocol;
1321
1322    if (WarnOnDeclarations &&
1323        NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1324      Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
1325      Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
1326        << UndefinedProtocol;
1327    }
1328    Protocols.push_back(PDecl);
1329  }
1330}
1331
1332namespace {
1333// Callback to only accept typo corrections that are either
1334// Objective-C protocols or valid Objective-C type arguments.
1335class ObjCTypeArgOrProtocolValidatorCCC : public CorrectionCandidateCallback {
1336  ASTContext &Context;
1337  Sema::LookupNameKind LookupKind;
1338 public:
1339  ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1340                                    Sema::LookupNameKind lookupKind)
1341    : Context(context), LookupKind(lookupKind) { }
1342
1343  bool ValidateCandidate(const TypoCorrection &candidate) override {
1344    // If we're allowed to find protocols and we have a protocol, accept it.
1345    if (LookupKind != Sema::LookupOrdinaryName) {
1346      if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1347        return true;
1348    }
1349
1350    // If we're allowed to find type names and we have one, accept it.
1351    if (LookupKind != Sema::LookupObjCProtocolName) {
1352      // If we have a type declaration, we might accept this result.
1353      if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1354        // If we found a tag declaration outside of C++, skip it. This
1355        // can happy because we look for any name when there is no
1356        // bias to protocol or type names.
1357        if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
1358          return false;
1359
1360        // Make sure the type is something we would accept as a type
1361        // argument.
1362        auto type = Context.getTypeDeclType(typeDecl);
1363        if (type->isObjCObjectPointerType() ||
1364            type->isBlockPointerType() ||
1365            type->isDependentType() ||
1366            type->isObjCObjectType())
1367          return true;
1368
1369        return false;
1370      }
1371
1372      // If we have an Objective-C class type, accept it; there will
1373      // be another fix to add the '*'.
1374      if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1375        return true;
1376
1377      return false;
1378    }
1379
1380    return false;
1381  }
1382};
1383} // end anonymous namespace
1384
1385void Sema::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
1386                                        SourceLocation ProtocolLoc,
1387                                        IdentifierInfo *TypeArgId,
1388                                        SourceLocation TypeArgLoc,
1389                                        bool SelectProtocolFirst) {
1390  Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
1391      << SelectProtocolFirst << TypeArgId << ProtocolId
1392      << SourceRange(ProtocolLoc);
1393}
1394
1395void Sema::actOnObjCTypeArgsOrProtocolQualifiers(
1396       Scope *S,
1397       ParsedType baseType,
1398       SourceLocation lAngleLoc,
1399       ArrayRef<IdentifierInfo *> identifiers,
1400       ArrayRef<SourceLocation> identifierLocs,
1401       SourceLocation rAngleLoc,
1402       SourceLocation &typeArgsLAngleLoc,
1403       SmallVectorImpl<ParsedType> &typeArgs,
1404       SourceLocation &typeArgsRAngleLoc,
1405       SourceLocation &protocolLAngleLoc,
1406       SmallVectorImpl<Decl *> &protocols,
1407       SourceLocation &protocolRAngleLoc,
1408       bool warnOnIncompleteProtocols) {
1409  // Local function that updates the declaration specifiers with
1410  // protocol information.
1411  unsigned numProtocolsResolved = 0;
1412  auto resolvedAsProtocols = [&] {
1413    assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols");
1414
1415    // Determine whether the base type is a parameterized class, in
1416    // which case we want to warn about typos such as
1417    // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1418    ObjCInterfaceDecl *baseClass = nullptr;
1419    QualType base = GetTypeFromParser(baseType, nullptr);
1420    bool allAreTypeNames = false;
1421    SourceLocation firstClassNameLoc;
1422    if (!base.isNull()) {
1423      if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1424        baseClass = objcObjectType->getInterface();
1425        if (baseClass) {
1426          if (auto typeParams = baseClass->getTypeParamList()) {
1427            if (typeParams->size() == numProtocolsResolved) {
1428              // Note that we should be looking for type names, too.
1429              allAreTypeNames = true;
1430            }
1431          }
1432        }
1433      }
1434    }
1435
1436    for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1437      ObjCProtocolDecl *&proto
1438        = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1439      // For an objc container, delay protocol reference checking until after we
1440      // can set the objc decl as the availability context, otherwise check now.
1441      if (!warnOnIncompleteProtocols) {
1442        (void)DiagnoseUseOfDecl(proto, identifierLocs[i]);
1443      }
1444
1445      // If this is a forward protocol declaration, get its definition.
1446      if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1447        proto = proto->getDefinition();
1448
1449      // If this is a forward declaration and we are supposed to warn in this
1450      // case, do it.
1451      // FIXME: Recover nicely in the hidden case.
1452      ObjCProtocolDecl *forwardDecl = nullptr;
1453      if (warnOnIncompleteProtocols &&
1454          NestedProtocolHasNoDefinition(proto, forwardDecl)) {
1455        Diag(identifierLocs[i], diag::warn_undef_protocolref)
1456          << proto->getDeclName();
1457        Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
1458          << forwardDecl;
1459      }
1460
1461      // If everything this far has been a type name (and we care
1462      // about such things), check whether this name refers to a type
1463      // as well.
1464      if (allAreTypeNames) {
1465        if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1466                                          LookupOrdinaryName)) {
1467          if (isa<ObjCInterfaceDecl>(decl)) {
1468            if (firstClassNameLoc.isInvalid())
1469              firstClassNameLoc = identifierLocs[i];
1470          } else if (!isa<TypeDecl>(decl)) {
1471            // Not a type.
1472            allAreTypeNames = false;
1473          }
1474        } else {
1475          allAreTypeNames = false;
1476        }
1477      }
1478    }
1479
1480    // All of the protocols listed also have type names, and at least
1481    // one is an Objective-C class name. Check whether all of the
1482    // protocol conformances are declared by the base class itself, in
1483    // which case we warn.
1484    if (allAreTypeNames && firstClassNameLoc.isValid()) {
1485      llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
1486      Context.CollectInheritedProtocols(baseClass, knownProtocols);
1487      bool allProtocolsDeclared = true;
1488      for (auto proto : protocols) {
1489        if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1490          allProtocolsDeclared = false;
1491          break;
1492        }
1493      }
1494
1495      if (allProtocolsDeclared) {
1496        Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
1497          << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1498          << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc),
1499                                        " *");
1500      }
1501    }
1502
1503    protocolLAngleLoc = lAngleLoc;
1504    protocolRAngleLoc = rAngleLoc;
1505    assert(protocols.size() == identifierLocs.size());
1506  };
1507
1508  // Attempt to resolve all of the identifiers as protocols.
1509  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1510    ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
1511    protocols.push_back(proto);
1512    if (proto)
1513      ++numProtocolsResolved;
1514  }
1515
1516  // If all of the names were protocols, these were protocol qualifiers.
1517  if (numProtocolsResolved == identifiers.size())
1518    return resolvedAsProtocols();
1519
1520  // Attempt to resolve all of the identifiers as type names or
1521  // Objective-C class names. The latter is technically ill-formed,
1522  // but is probably something like \c NSArray<NSView *> missing the
1523  // \c*.
1524  typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1525  SmallVector<TypeOrClassDecl, 4> typeDecls;
1526  unsigned numTypeDeclsResolved = 0;
1527  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1528    NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1529                                       LookupOrdinaryName);
1530    if (!decl) {
1531      typeDecls.push_back(TypeOrClassDecl());
1532      continue;
1533    }
1534
1535    if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
1536      typeDecls.push_back(typeDecl);
1537      ++numTypeDeclsResolved;
1538      continue;
1539    }
1540
1541    if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
1542      typeDecls.push_back(objcClass);
1543      ++numTypeDeclsResolved;
1544      continue;
1545    }
1546
1547    typeDecls.push_back(TypeOrClassDecl());
1548  }
1549
1550  AttributeFactory attrFactory;
1551
1552  // Local function that forms a reference to the given type or
1553  // Objective-C class declaration.
1554  auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1555                                -> TypeResult {
1556    // Form declaration specifiers. They simply refer to the type.
1557    DeclSpec DS(attrFactory);
1558    const char* prevSpec; // unused
1559    unsigned diagID; // unused
1560    QualType type;
1561    if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
1562      type = Context.getTypeDeclType(actualTypeDecl);
1563    else
1564      type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
1565    TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
1566    ParsedType parsedType = CreateParsedType(type, parsedTSInfo);
1567    DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
1568                       parsedType, Context.getPrintingPolicy());
1569    // Use the identifier location for the type source range.
1570    DS.SetRangeStart(loc);
1571    DS.SetRangeEnd(loc);
1572
1573    // Form the declarator.
1574    Declarator D(DS, DeclaratorContext::TypeNameContext);
1575
1576    // If we have a typedef of an Objective-C class type that is missing a '*',
1577    // add the '*'.
1578    if (type->getAs<ObjCInterfaceType>()) {
1579      SourceLocation starLoc = getLocForEndOfToken(loc);
1580      D.AddTypeInfo(DeclaratorChunk::getPointer(/*typeQuals=*/0, starLoc,
1581                                                SourceLocation(),
1582                                                SourceLocation(),
1583                                                SourceLocation(),
1584                                                SourceLocation(),
1585                                                SourceLocation()),
1586                                                starLoc);
1587
1588      // Diagnose the missing '*'.
1589      Diag(loc, diag::err_objc_type_arg_missing_star)
1590        << type
1591        << FixItHint::CreateInsertion(starLoc, " *");
1592    }
1593
1594    // Convert this to a type.
1595    return ActOnTypeName(S, D);
1596  };
1597
1598  // Local function that updates the declaration specifiers with
1599  // type argument information.
1600  auto resolvedAsTypeDecls = [&] {
1601    // We did not resolve these as protocols.
1602    protocols.clear();
1603
1604    assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl");
1605    // Map type declarations to type arguments.
1606    for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1607      // Map type reference to a type.
1608      TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1609      if (!type.isUsable()) {
1610        typeArgs.clear();
1611        return;
1612      }
1613
1614      typeArgs.push_back(type.get());
1615    }
1616
1617    typeArgsLAngleLoc = lAngleLoc;
1618    typeArgsRAngleLoc = rAngleLoc;
1619  };
1620
1621  // If all of the identifiers can be resolved as type names or
1622  // Objective-C class names, we have type arguments.
1623  if (numTypeDeclsResolved == identifiers.size())
1624    return resolvedAsTypeDecls();
1625
1626  // Error recovery: some names weren't found, or we have a mix of
1627  // type and protocol names. Go resolve all of the unresolved names
1628  // and complain if we can't find a consistent answer.
1629  LookupNameKind lookupKind = LookupAnyName;
1630  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1631    // If we already have a protocol or type. Check whether it is the
1632    // right thing.
1633    if (protocols[i] || typeDecls[i]) {
1634      // If we haven't figured out whether we want types or protocols
1635      // yet, try to figure it out from this name.
1636      if (lookupKind == LookupAnyName) {
1637        // If this name refers to both a protocol and a type (e.g., \c
1638        // NSObject), don't conclude anything yet.
1639        if (protocols[i] && typeDecls[i])
1640          continue;
1641
1642        // Otherwise, let this name decide whether we'll be correcting
1643        // toward types or protocols.
1644        lookupKind = protocols[i] ? LookupObjCProtocolName
1645                                  : LookupOrdinaryName;
1646        continue;
1647      }
1648
1649      // If we want protocols and we have a protocol, there's nothing
1650      // more to do.
1651      if (lookupKind == LookupObjCProtocolName && protocols[i])
1652        continue;
1653
1654      // If we want types and we have a type declaration, there's
1655      // nothing more to do.
1656      if (lookupKind == LookupOrdinaryName && typeDecls[i])
1657        continue;
1658
1659      // We have a conflict: some names refer to protocols and others
1660      // refer to types.
1661      DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0],
1662                                   identifiers[i], identifierLocs[i],
1663                                   protocols[i] != nullptr);
1664
1665      protocols.clear();
1666      typeArgs.clear();
1667      return;
1668    }
1669
1670    // Perform typo correction on the name.
1671    TypoCorrection corrected = CorrectTypo(
1672        DeclarationNameInfo(identifiers[i], identifierLocs[i]), lookupKind, S,
1673        nullptr,
1674        llvm::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(Context,
1675                                                             lookupKind),
1676        CTK_ErrorRecovery);
1677    if (corrected) {
1678      // Did we find a protocol?
1679      if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1680        diagnoseTypo(corrected,
1681                     PDiag(diag::err_undeclared_protocol_suggest)
1682                       << identifiers[i]);
1683        lookupKind = LookupObjCProtocolName;
1684        protocols[i] = proto;
1685        ++numProtocolsResolved;
1686        continue;
1687      }
1688
1689      // Did we find a type?
1690      if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1691        diagnoseTypo(corrected,
1692                     PDiag(diag::err_unknown_typename_suggest)
1693                       << identifiers[i]);
1694        lookupKind = LookupOrdinaryName;
1695        typeDecls[i] = typeDecl;
1696        ++numTypeDeclsResolved;
1697        continue;
1698      }
1699
1700      // Did we find an Objective-C class?
1701      if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1702        diagnoseTypo(corrected,
1703                     PDiag(diag::err_unknown_type_or_class_name_suggest)
1704                       << identifiers[i] << true);
1705        lookupKind = LookupOrdinaryName;
1706        typeDecls[i] = objcClass;
1707        ++numTypeDeclsResolved;
1708        continue;
1709      }
1710    }
1711
1712    // We couldn't find anything.
1713    Diag(identifierLocs[i],
1714         (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing
1715          : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol
1716          : diag::err_unknown_typename))
1717      << identifiers[i];
1718    protocols.clear();
1719    typeArgs.clear();
1720    return;
1721  }
1722
1723  // If all of the names were (corrected to) protocols, these were
1724  // protocol qualifiers.
1725  if (numProtocolsResolved == identifiers.size())
1726    return resolvedAsProtocols();
1727
1728  // Otherwise, all of the names were (corrected to) types.
1729  assert(numTypeDeclsResolved == identifiers.size() && "Not all types?");
1730  return resolvedAsTypeDecls();
1731}
1732
1733/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1734/// a class method in its extension.
1735///
1736void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
1737                                            ObjCInterfaceDecl *ID) {
1738  if (!ID)
1739    return;  // Possibly due to previous error
1740
1741  llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1742  for (auto *MD : ID->methods())
1743    MethodMap[MD->getSelector()] = MD;
1744
1745  if (MethodMap.empty())
1746    return;
1747  for (const auto *Method : CAT->methods()) {
1748    const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1749    if (PrevMethod &&
1750        (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1751        !MatchTwoMethodDeclarations(Method, PrevMethod)) {
1752      Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1753            << Method->getDeclName();
1754      Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1755    }
1756  }
1757}
1758
1759/// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1760Sema::DeclGroupPtrTy
1761Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
1762                                      ArrayRef<IdentifierLocPair> IdentList,
1763                                      const ParsedAttributesView &attrList) {
1764  SmallVector<Decl *, 8> DeclsInGroup;
1765  for (const IdentifierLocPair &IdentPair : IdentList) {
1766    IdentifierInfo *Ident = IdentPair.first;
1767    ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second,
1768                                                forRedeclarationInCurContext());
1769    ObjCProtocolDecl *PDecl
1770      = ObjCProtocolDecl::Create(Context, CurContext, Ident,
1771                                 IdentPair.second, AtProtocolLoc,
1772                                 PrevDecl);
1773
1774    PushOnScopeChains(PDecl, TUScope);
1775    CheckObjCDeclScope(PDecl);
1776
1777    ProcessDeclAttributeList(TUScope, PDecl, attrList);
1778    AddPragmaAttributes(TUScope, PDecl);
1779
1780    if (PrevDecl)
1781      mergeDeclAttributes(PDecl, PrevDecl);
1782
1783    DeclsInGroup.push_back(PDecl);
1784  }
1785
1786  return BuildDeclaratorGroup(DeclsInGroup);
1787}
1788
1789Decl *Sema::ActOnStartCategoryInterface(
1790    SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
1791    SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
1792    IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
1793    Decl *const *ProtoRefs, unsigned NumProtoRefs,
1794    const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1795    const ParsedAttributesView &AttrList) {
1796  ObjCCategoryDecl *CDecl;
1797  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1798
1799  /// Check that class of this category is already completely declared.
1800
1801  if (!IDecl
1802      || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1803                             diag::err_category_forward_interface,
1804                             CategoryName == nullptr)) {
1805    // Create an invalid ObjCCategoryDecl to serve as context for
1806    // the enclosing method declarations.  We mark the decl invalid
1807    // to make it clear that this isn't a valid AST.
1808    CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1809                                     ClassLoc, CategoryLoc, CategoryName,
1810                                     IDecl, typeParamList);
1811    CDecl->setInvalidDecl();
1812    CurContext->addDecl(CDecl);
1813
1814    if (!IDecl)
1815      Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1816    return ActOnObjCContainerStartDefinition(CDecl);
1817  }
1818
1819  if (!CategoryName && IDecl->getImplementation()) {
1820    Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
1821    Diag(IDecl->getImplementation()->getLocation(),
1822          diag::note_implementation_declared);
1823  }
1824
1825  if (CategoryName) {
1826    /// Check for duplicate interface declaration for this category
1827    if (ObjCCategoryDecl *Previous
1828          = IDecl->FindCategoryDeclaration(CategoryName)) {
1829      // Class extensions can be declared multiple times, categories cannot.
1830      Diag(CategoryLoc, diag::warn_dup_category_def)
1831        << ClassName << CategoryName;
1832      Diag(Previous->getLocation(), diag::note_previous_definition);
1833    }
1834  }
1835
1836  // If we have a type parameter list, check it.
1837  if (typeParamList) {
1838    if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1839      if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList,
1840                                        CategoryName
1841                                          ? TypeParamListContext::Category
1842                                          : TypeParamListContext::Extension))
1843        typeParamList = nullptr;
1844    } else {
1845      Diag(typeParamList->getLAngleLoc(),
1846           diag::err_objc_parameterized_category_nonclass)
1847        << (CategoryName != nullptr)
1848        << ClassName
1849        << typeParamList->getSourceRange();
1850
1851      typeParamList = nullptr;
1852    }
1853  }
1854
1855  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1856                                   ClassLoc, CategoryLoc, CategoryName, IDecl,
1857                                   typeParamList);
1858  // FIXME: PushOnScopeChains?
1859  CurContext->addDecl(CDecl);
1860
1861  // Process the attributes before looking at protocols to ensure that the
1862  // availability attribute is attached to the category to provide availability
1863  // checking for protocol uses.
1864  ProcessDeclAttributeList(TUScope, CDecl, AttrList);
1865  AddPragmaAttributes(TUScope, CDecl);
1866
1867  if (NumProtoRefs) {
1868    diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1869                           NumProtoRefs, ProtoLocs);
1870    CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1871                           ProtoLocs, Context);
1872    // Protocols in the class extension belong to the class.
1873    if (CDecl->IsClassExtension())
1874     IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
1875                                            NumProtoRefs, Context);
1876  }
1877
1878  CheckObjCDeclScope(CDecl);
1879  return ActOnObjCContainerStartDefinition(CDecl);
1880}
1881
1882/// ActOnStartCategoryImplementation - Perform semantic checks on the
1883/// category implementation declaration and build an ObjCCategoryImplDecl
1884/// object.
1885Decl *Sema::ActOnStartCategoryImplementation(
1886                      SourceLocation AtCatImplLoc,
1887                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
1888                      IdentifierInfo *CatName, SourceLocation CatLoc) {
1889  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1890  ObjCCategoryDecl *CatIDecl = nullptr;
1891  if (IDecl && IDecl->hasDefinition()) {
1892    CatIDecl = IDecl->FindCategoryDeclaration(CatName);
1893    if (!CatIDecl) {
1894      // Category @implementation with no corresponding @interface.
1895      // Create and install one.
1896      CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
1897                                          ClassLoc, CatLoc,
1898                                          CatName, IDecl,
1899                                          /*typeParamList=*/nullptr);
1900      CatIDecl->setImplicit();
1901    }
1902  }
1903
1904  ObjCCategoryImplDecl *CDecl =
1905    ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
1906                                 ClassLoc, AtCatImplLoc, CatLoc);
1907  /// Check that class of this category is already completely declared.
1908  if (!IDecl) {
1909    Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1910    CDecl->setInvalidDecl();
1911  } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1912                                 diag::err_undef_interface)) {
1913    CDecl->setInvalidDecl();
1914  }
1915
1916  // FIXME: PushOnScopeChains?
1917  CurContext->addDecl(CDecl);
1918
1919  // If the interface has the objc_runtime_visible attribute, we
1920  // cannot implement a category for it.
1921  if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
1922    Diag(ClassLoc, diag::err_objc_runtime_visible_category)
1923      << IDecl->getDeclName();
1924  }
1925
1926  /// Check that CatName, category name, is not used in another implementation.
1927  if (CatIDecl) {
1928    if (CatIDecl->getImplementation()) {
1929      Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
1930        << CatName;
1931      Diag(CatIDecl->getImplementation()->getLocation(),
1932           diag::note_previous_definition);
1933      CDecl->setInvalidDecl();
1934    } else {
1935      CatIDecl->setImplementation(CDecl);
1936      // Warn on implementating category of deprecated class under
1937      // -Wdeprecated-implementations flag.
1938      DiagnoseObjCImplementedDeprecations(*this, CatIDecl,
1939                                          CDecl->getLocation());
1940    }
1941  }
1942
1943  CheckObjCDeclScope(CDecl);
1944  return ActOnObjCContainerStartDefinition(CDecl);
1945}
1946
1947Decl *Sema::ActOnStartClassImplementation(
1948                      SourceLocation AtClassImplLoc,
1949                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
1950                      IdentifierInfo *SuperClassname,
1951                      SourceLocation SuperClassLoc) {
1952  ObjCInterfaceDecl *IDecl = nullptr;
1953  // Check for another declaration kind with the same name.
1954  NamedDecl *PrevDecl
1955    = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
1956                       forRedeclarationInCurContext());
1957  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1958    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1959    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1960  } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1961    // FIXME: This will produce an error if the definition of the interface has
1962    // been imported from a module but is not visible.
1963    RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1964                        diag::warn_undef_interface);
1965  } else {
1966    // We did not find anything with the name ClassName; try to correct for
1967    // typos in the class name.
1968    TypoCorrection Corrected = CorrectTypo(
1969        DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
1970        nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(), CTK_NonError);
1971    if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1972      // Suggest the (potentially) correct interface name. Don't provide a
1973      // code-modification hint or use the typo name for recovery, because
1974      // this is just a warning. The program may actually be correct.
1975      diagnoseTypo(Corrected,
1976                   PDiag(diag::warn_undef_interface_suggest) << ClassName,
1977                   /*ErrorRecovery*/false);
1978    } else {
1979      Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
1980    }
1981  }
1982
1983  // Check that super class name is valid class name
1984  ObjCInterfaceDecl *SDecl = nullptr;
1985  if (SuperClassname) {
1986    // Check if a different kind of symbol declared in this scope.
1987    PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
1988                                LookupOrdinaryName);
1989    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1990      Diag(SuperClassLoc, diag::err_redefinition_different_kind)
1991        << SuperClassname;
1992      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1993    } else {
1994      SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1995      if (SDecl && !SDecl->hasDefinition())
1996        SDecl = nullptr;
1997      if (!SDecl)
1998        Diag(SuperClassLoc, diag::err_undef_superclass)
1999          << SuperClassname << ClassName;
2000      else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
2001        // This implementation and its interface do not have the same
2002        // super class.
2003        Diag(SuperClassLoc, diag::err_conflicting_super_class)
2004          << SDecl->getDeclName();
2005        Diag(SDecl->getLocation(), diag::note_previous_definition);
2006      }
2007    }
2008  }
2009
2010  if (!IDecl) {
2011    // Legacy case of @implementation with no corresponding @interface.
2012    // Build, chain & install the interface decl into the identifier.
2013
2014    // FIXME: Do we support attributes on the @implementation? If so we should
2015    // copy them over.
2016    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
2017                                      ClassName, /*typeParamList=*/nullptr,
2018                                      /*PrevDecl=*/nullptr, ClassLoc,
2019                                      true);
2020    AddPragmaAttributes(TUScope, IDecl);
2021    IDecl->startDefinition();
2022    if (SDecl) {
2023      IDecl->setSuperClass(Context.getTrivialTypeSourceInfo(
2024                             Context.getObjCInterfaceType(SDecl),
2025                             SuperClassLoc));
2026      IDecl->setEndOfDefinitionLoc(SuperClassLoc);
2027    } else {
2028      IDecl->setEndOfDefinitionLoc(ClassLoc);
2029    }
2030
2031    PushOnScopeChains(IDecl, TUScope);
2032  } else {
2033    // Mark the interface as being completed, even if it was just as
2034    //   @class ....;
2035    // declaration; the user cannot reopen it.
2036    if (!IDecl->hasDefinition())
2037      IDecl->startDefinition();
2038  }
2039
2040  ObjCImplementationDecl* IMPDecl =
2041    ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
2042                                   ClassLoc, AtClassImplLoc, SuperClassLoc);
2043
2044  if (CheckObjCDeclScope(IMPDecl))
2045    return ActOnObjCContainerStartDefinition(IMPDecl);
2046
2047  // Check that there is no duplicate implementation of this class.
2048  if (IDecl->getImplementation()) {
2049    // FIXME: Don't leak everything!
2050    Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
2051    Diag(IDecl->getImplementation()->getLocation(),
2052         diag::note_previous_definition);
2053    IMPDecl->setInvalidDecl();
2054  } else { // add it to the list.
2055    IDecl->setImplementation(IMPDecl);
2056    PushOnScopeChains(IMPDecl, TUScope);
2057    // Warn on implementating deprecated class under
2058    // -Wdeprecated-implementations flag.
2059    DiagnoseObjCImplementedDeprecations(*this, IDecl, IMPDecl->getLocation());
2060  }
2061
2062  // If the superclass has the objc_runtime_visible attribute, we
2063  // cannot implement a subclass of it.
2064  if (IDecl->getSuperClass() &&
2065      IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
2066    Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
2067      << IDecl->getDeclName()
2068      << IDecl->getSuperClass()->getDeclName();
2069  }
2070
2071  return ActOnObjCContainerStartDefinition(IMPDecl);
2072}
2073
2074Sema::DeclGroupPtrTy
2075Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
2076  SmallVector<Decl *, 64> DeclsInGroup;
2077  DeclsInGroup.reserve(Decls.size() + 1);
2078
2079  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2080    Decl *Dcl = Decls[i];
2081    if (!Dcl)
2082      continue;
2083    if (Dcl->getDeclContext()->isFileContext())
2084      Dcl->setTopLevelDeclInObjCContainer();
2085    DeclsInGroup.push_back(Dcl);
2086  }
2087
2088  DeclsInGroup.push_back(ObjCImpDecl);
2089
2090  return BuildDeclaratorGroup(DeclsInGroup);
2091}
2092
2093void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
2094                                    ObjCIvarDecl **ivars, unsigned numIvars,
2095                                    SourceLocation RBrace) {
2096  assert(ImpDecl && "missing implementation decl");
2097  ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
2098  if (!IDecl)
2099    return;
2100  /// Check case of non-existing \@interface decl.
2101  /// (legacy objective-c \@implementation decl without an \@interface decl).
2102  /// Add implementations's ivar to the synthesize class's ivar list.
2103  if (IDecl->isImplicitInterfaceDecl()) {
2104    IDecl->setEndOfDefinitionLoc(RBrace);
2105    // Add ivar's to class's DeclContext.
2106    for (unsigned i = 0, e = numIvars; i != e; ++i) {
2107      ivars[i]->setLexicalDeclContext(ImpDecl);
2108      IDecl->makeDeclVisibleInContext(ivars[i]);
2109      ImpDecl->addDecl(ivars[i]);
2110    }
2111
2112    return;
2113  }
2114  // If implementation has empty ivar list, just return.
2115  if (numIvars == 0)
2116    return;
2117
2118  assert(ivars && "missing @implementation ivars");
2119  if (LangOpts.ObjCRuntime.isNonFragile()) {
2120    if (ImpDecl->getSuperClass())
2121      Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
2122    for (unsigned i = 0; i < numIvars; i++) {
2123      ObjCIvarDecl* ImplIvar = ivars[i];
2124      if (const ObjCIvarDecl *ClsIvar =
2125            IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2126        Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2127        Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2128        continue;
2129      }
2130      // Check class extensions (unnamed categories) for duplicate ivars.
2131      for (const auto *CDecl : IDecl->visible_extensions()) {
2132        if (const ObjCIvarDecl *ClsExtIvar =
2133            CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2134          Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2135          Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
2136          continue;
2137        }
2138      }
2139      // Instance ivar to Implementation's DeclContext.
2140      ImplIvar->setLexicalDeclContext(ImpDecl);
2141      IDecl->makeDeclVisibleInContext(ImplIvar);
2142      ImpDecl->addDecl(ImplIvar);
2143    }
2144    return;
2145  }
2146  // Check interface's Ivar list against those in the implementation.
2147  // names and types must match.
2148  //
2149  unsigned j = 0;
2150  ObjCInterfaceDecl::ivar_iterator
2151    IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2152  for (; numIvars > 0 && IVI != IVE; ++IVI) {
2153    ObjCIvarDecl* ImplIvar = ivars[j++];
2154    ObjCIvarDecl* ClsIvar = *IVI;
2155    assert (ImplIvar && "missing implementation ivar");
2156    assert (ClsIvar && "missing class ivar");
2157
2158    // First, make sure the types match.
2159    if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
2160      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
2161        << ImplIvar->getIdentifier()
2162        << ImplIvar->getType() << ClsIvar->getType();
2163      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2164    } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2165               ImplIvar->getBitWidthValue(Context) !=
2166               ClsIvar->getBitWidthValue(Context)) {
2167      Diag(ImplIvar->getBitWidth()->getLocStart(),
2168           diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
2169      Diag(ClsIvar->getBitWidth()->getLocStart(),
2170           diag::note_previous_definition);
2171    }
2172    // Make sure the names are identical.
2173    if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2174      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
2175        << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2176      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2177    }
2178    --numIvars;
2179  }
2180
2181  if (numIvars > 0)
2182    Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
2183  else if (IVI != IVE)
2184    Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
2185}
2186
2187static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc,
2188                                ObjCMethodDecl *method,
2189                                bool &IncompleteImpl,
2190                                unsigned DiagID,
2191                                NamedDecl *NeededFor = nullptr) {
2192  // No point warning no definition of method which is 'unavailable'.
2193  if (method->getAvailability() == AR_Unavailable)
2194    return;
2195
2196  // FIXME: For now ignore 'IncompleteImpl'.
2197  // Previously we grouped all unimplemented methods under a single
2198  // warning, but some users strongly voiced that they would prefer
2199  // separate warnings.  We will give that approach a try, as that
2200  // matches what we do with protocols.
2201  {
2202    const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID);
2203    B << method;
2204    if (NeededFor)
2205      B << NeededFor;
2206  }
2207
2208  // Issue a note to the original declaration.
2209  SourceLocation MethodLoc = method->getLocStart();
2210  if (MethodLoc.isValid())
2211    S.Diag(MethodLoc, diag::note_method_declared_at) << method;
2212}
2213
2214/// Determines if type B can be substituted for type A.  Returns true if we can
2215/// guarantee that anything that the user will do to an object of type A can
2216/// also be done to an object of type B.  This is trivially true if the two
2217/// types are the same, or if B is a subclass of A.  It becomes more complex
2218/// in cases where protocols are involved.
2219///
2220/// Object types in Objective-C describe the minimum requirements for an
2221/// object, rather than providing a complete description of a type.  For
2222/// example, if A is a subclass of B, then B* may refer to an instance of A.
2223/// The principle of substitutability means that we may use an instance of A
2224/// anywhere that we may use an instance of B - it will implement all of the
2225/// ivars of B and all of the methods of B.
2226///
2227/// This substitutability is important when type checking methods, because
2228/// the implementation may have stricter type definitions than the interface.
2229/// The interface specifies minimum requirements, but the implementation may
2230/// have more accurate ones.  For example, a method may privately accept
2231/// instances of B, but only publish that it accepts instances of A.  Any
2232/// object passed to it will be type checked against B, and so will implicitly
2233/// by a valid A*.  Similarly, a method may return a subclass of the class that
2234/// it is declared as returning.
2235///
2236/// This is most important when considering subclassing.  A method in a
2237/// subclass must accept any object as an argument that its superclass's
2238/// implementation accepts.  It may, however, accept a more general type
2239/// without breaking substitutability (i.e. you can still use the subclass
2240/// anywhere that you can use the superclass, but not vice versa).  The
2241/// converse requirement applies to return types: the return type for a
2242/// subclass method must be a valid object of the kind that the superclass
2243/// advertises, but it may be specified more accurately.  This avoids the need
2244/// for explicit down-casting by callers.
2245///
2246/// Note: This is a stricter requirement than for assignment.
2247static bool isObjCTypeSubstitutable(ASTContext &Context,
2248                                    const ObjCObjectPointerType *A,
2249                                    const ObjCObjectPointerType *B,
2250                                    bool rejectId) {
2251  // Reject a protocol-unqualified id.
2252  if (rejectId && B->isObjCIdType()) return false;
2253
2254  // If B is a qualified id, then A must also be a qualified id and it must
2255  // implement all of the protocols in B.  It may not be a qualified class.
2256  // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2257  // stricter definition so it is not substitutable for id<A>.
2258  if (B->isObjCQualifiedIdType()) {
2259    return A->isObjCQualifiedIdType() &&
2260           Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
2261                                                     QualType(B,0),
2262                                                     false);
2263  }
2264
2265  /*
2266  // id is a special type that bypasses type checking completely.  We want a
2267  // warning when it is used in one place but not another.
2268  if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2269
2270
2271  // If B is a qualified id, then A must also be a qualified id (which it isn't
2272  // if we've got this far)
2273  if (B->isObjCQualifiedIdType()) return false;
2274  */
2275
2276  // Now we know that A and B are (potentially-qualified) class types.  The
2277  // normal rules for assignment apply.
2278  return Context.canAssignObjCInterfaces(A, B);
2279}
2280
2281static SourceRange getTypeRange(TypeSourceInfo *TSI) {
2282  return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2283}
2284
2285/// Determine whether two set of Objective-C declaration qualifiers conflict.
2286static bool objcModifiersConflict(Decl::ObjCDeclQualifier x,
2287                                  Decl::ObjCDeclQualifier y) {
2288  return (x & ~Decl::OBJC_TQ_CSNullability) !=
2289         (y & ~Decl::OBJC_TQ_CSNullability);
2290}
2291
2292static bool CheckMethodOverrideReturn(Sema &S,
2293                                      ObjCMethodDecl *MethodImpl,
2294                                      ObjCMethodDecl *MethodDecl,
2295                                      bool IsProtocolMethodDecl,
2296                                      bool IsOverridingMode,
2297                                      bool Warn) {
2298  if (IsProtocolMethodDecl &&
2299      objcModifiersConflict(MethodDecl->getObjCDeclQualifier(),
2300                            MethodImpl->getObjCDeclQualifier())) {
2301    if (Warn) {
2302      S.Diag(MethodImpl->getLocation(),
2303             (IsOverridingMode
2304                  ? diag::warn_conflicting_overriding_ret_type_modifiers
2305                  : diag::warn_conflicting_ret_type_modifiers))
2306          << MethodImpl->getDeclName()
2307          << MethodImpl->getReturnTypeSourceRange();
2308      S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
2309          << MethodDecl->getReturnTypeSourceRange();
2310    }
2311    else
2312      return false;
2313  }
2314  if (Warn && IsOverridingMode &&
2315      !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2316      !S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(),
2317                                                 MethodDecl->getReturnType(),
2318                                                 false)) {
2319    auto nullabilityMethodImpl =
2320      *MethodImpl->getReturnType()->getNullability(S.Context);
2321    auto nullabilityMethodDecl =
2322      *MethodDecl->getReturnType()->getNullability(S.Context);
2323      S.Diag(MethodImpl->getLocation(),
2324             diag::warn_conflicting_nullability_attr_overriding_ret_types)
2325        << DiagNullabilityKind(
2326             nullabilityMethodImpl,
2327             ((MethodImpl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2328              != 0))
2329        << DiagNullabilityKind(
2330             nullabilityMethodDecl,
2331             ((MethodDecl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2332                != 0));
2333      S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2334  }
2335
2336  if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
2337                                       MethodDecl->getReturnType()))
2338    return true;
2339  if (!Warn)
2340    return false;
2341
2342  unsigned DiagID =
2343    IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2344                     : diag::warn_conflicting_ret_types;
2345
2346  // Mismatches between ObjC pointers go into a different warning
2347  // category, and sometimes they're even completely whitelisted.
2348  if (const ObjCObjectPointerType *ImplPtrTy =
2349          MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2350    if (const ObjCObjectPointerType *IfacePtrTy =
2351            MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2352      // Allow non-matching return types as long as they don't violate
2353      // the principle of substitutability.  Specifically, we permit
2354      // return types that are subclasses of the declared return type,
2355      // or that are more-qualified versions of the declared type.
2356      if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
2357        return false;
2358
2359      DiagID =
2360        IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2361                         : diag::warn_non_covariant_ret_types;
2362    }
2363  }
2364
2365  S.Diag(MethodImpl->getLocation(), DiagID)
2366      << MethodImpl->getDeclName() << MethodDecl->getReturnType()
2367      << MethodImpl->getReturnType()
2368      << MethodImpl->getReturnTypeSourceRange();
2369  S.Diag(MethodDecl->getLocation(), IsOverridingMode
2370                                        ? diag::note_previous_declaration
2371                                        : diag::note_previous_definition)
2372      << MethodDecl->getReturnTypeSourceRange();
2373  return false;
2374}
2375
2376static bool CheckMethodOverrideParam(Sema &S,
2377                                     ObjCMethodDecl *MethodImpl,
2378                                     ObjCMethodDecl *MethodDecl,
2379                                     ParmVarDecl *ImplVar,
2380                                     ParmVarDecl *IfaceVar,
2381                                     bool IsProtocolMethodDecl,
2382                                     bool IsOverridingMode,
2383                                     bool Warn) {
2384  if (IsProtocolMethodDecl &&
2385      objcModifiersConflict(ImplVar->getObjCDeclQualifier(),
2386                            IfaceVar->getObjCDeclQualifier())) {
2387    if (Warn) {
2388      if (IsOverridingMode)
2389        S.Diag(ImplVar->getLocation(),
2390               diag::warn_conflicting_overriding_param_modifiers)
2391            << getTypeRange(ImplVar->getTypeSourceInfo())
2392            << MethodImpl->getDeclName();
2393      else S.Diag(ImplVar->getLocation(),
2394             diag::warn_conflicting_param_modifiers)
2395          << getTypeRange(ImplVar->getTypeSourceInfo())
2396          << MethodImpl->getDeclName();
2397      S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
2398          << getTypeRange(IfaceVar->getTypeSourceInfo());
2399    }
2400    else
2401      return false;
2402  }
2403
2404  QualType ImplTy = ImplVar->getType();
2405  QualType IfaceTy = IfaceVar->getType();
2406  if (Warn && IsOverridingMode &&
2407      !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2408      !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
2409    S.Diag(ImplVar->getLocation(),
2410           diag::warn_conflicting_nullability_attr_overriding_param_types)
2411      << DiagNullabilityKind(
2412           *ImplTy->getNullability(S.Context),
2413           ((ImplVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2414            != 0))
2415      << DiagNullabilityKind(
2416           *IfaceTy->getNullability(S.Context),
2417           ((IfaceVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2418            != 0));
2419    S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
2420  }
2421  if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
2422    return true;
2423
2424  if (!Warn)
2425    return false;
2426  unsigned DiagID =
2427    IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2428                     : diag::warn_conflicting_param_types;
2429
2430  // Mismatches between ObjC pointers go into a different warning
2431  // category, and sometimes they're even completely whitelisted.
2432  if (const ObjCObjectPointerType *ImplPtrTy =
2433        ImplTy->getAs<ObjCObjectPointerType>()) {
2434    if (const ObjCObjectPointerType *IfacePtrTy =
2435          IfaceTy->getAs<ObjCObjectPointerType>()) {
2436      // Allow non-matching argument types as long as they don't
2437      // violate the principle of substitutability.  Specifically, the
2438      // implementation must accept any objects that the superclass
2439      // accepts, however it may also accept others.
2440      if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
2441        return false;
2442
2443      DiagID =
2444      IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2445                       : diag::warn_non_contravariant_param_types;
2446    }
2447  }
2448
2449  S.Diag(ImplVar->getLocation(), DiagID)
2450    << getTypeRange(ImplVar->getTypeSourceInfo())
2451    << MethodImpl->getDeclName() << IfaceTy << ImplTy;
2452  S.Diag(IfaceVar->getLocation(),
2453         (IsOverridingMode ? diag::note_previous_declaration
2454                           : diag::note_previous_definition))
2455    << getTypeRange(IfaceVar->getTypeSourceInfo());
2456  return false;
2457}
2458
2459/// In ARC, check whether the conventional meanings of the two methods
2460/// match.  If they don't, it's a hard error.
2461static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
2462                                      ObjCMethodDecl *decl) {
2463  ObjCMethodFamily implFamily = impl->getMethodFamily();
2464  ObjCMethodFamily declFamily = decl->getMethodFamily();
2465  if (implFamily == declFamily) return false;
2466
2467  // Since conventions are sorted by selector, the only possibility is
2468  // that the types differ enough to cause one selector or the other
2469  // to fall out of the family.
2470  assert(implFamily == OMF_None || declFamily == OMF_None);
2471
2472  // No further diagnostics required on invalid declarations.
2473  if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2474
2475  const ObjCMethodDecl *unmatched = impl;
2476  ObjCMethodFamily family = declFamily;
2477  unsigned errorID = diag::err_arc_lost_method_convention;
2478  unsigned noteID = diag::note_arc_lost_method_convention;
2479  if (declFamily == OMF_None) {
2480    unmatched = decl;
2481    family = implFamily;
2482    errorID = diag::err_arc_gained_method_convention;
2483    noteID = diag::note_arc_gained_method_convention;
2484  }
2485
2486  // Indexes into a %select clause in the diagnostic.
2487  enum FamilySelector {
2488    F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2489  };
2490  FamilySelector familySelector = FamilySelector();
2491
2492  switch (family) {
2493  case OMF_None: llvm_unreachable("logic error, no method convention");
2494  case OMF_retain:
2495  case OMF_release:
2496  case OMF_autorelease:
2497  case OMF_dealloc:
2498  case OMF_finalize:
2499  case OMF_retainCount:
2500  case OMF_self:
2501  case OMF_initialize:
2502  case OMF_performSelector:
2503    // Mismatches for these methods don't change ownership
2504    // conventions, so we don't care.
2505    return false;
2506
2507  case OMF_init: familySelector = F_init; break;
2508  case OMF_alloc: familySelector = F_alloc; break;
2509  case OMF_copy: familySelector = F_copy; break;
2510  case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2511  case OMF_new: familySelector = F_new; break;
2512  }
2513
2514  enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2515  ReasonSelector reasonSelector;
2516
2517  // The only reason these methods don't fall within their families is
2518  // due to unusual result types.
2519  if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2520    reasonSelector = R_UnrelatedReturn;
2521  } else {
2522    reasonSelector = R_NonObjectReturn;
2523  }
2524
2525  S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
2526  S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
2527
2528  return true;
2529}
2530
2531void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2532                                       ObjCMethodDecl *MethodDecl,
2533                                       bool IsProtocolMethodDecl) {
2534  if (getLangOpts().ObjCAutoRefCount &&
2535      checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
2536    return;
2537
2538  CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2539                            IsProtocolMethodDecl, false,
2540                            true);
2541
2542  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2543       IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2544       EF = MethodDecl->param_end();
2545       IM != EM && IF != EF; ++IM, ++IF) {
2546    CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
2547                             IsProtocolMethodDecl, false, true);
2548  }
2549
2550  if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2551    Diag(ImpMethodDecl->getLocation(),
2552         diag::warn_conflicting_variadic);
2553    Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2554  }
2555}
2556
2557void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
2558                                       ObjCMethodDecl *Overridden,
2559                                       bool IsProtocolMethodDecl) {
2560
2561  CheckMethodOverrideReturn(*this, Method, Overridden,
2562                            IsProtocolMethodDecl, true,
2563                            true);
2564
2565  for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2566       IF = Overridden->param_begin(), EM = Method->param_end(),
2567       EF = Overridden->param_end();
2568       IM != EM && IF != EF; ++IM, ++IF) {
2569    CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
2570                             IsProtocolMethodDecl, true, true);
2571  }
2572
2573  if (Method->isVariadic() != Overridden->isVariadic()) {
2574    Diag(Method->getLocation(),
2575         diag::warn_conflicting_overriding_variadic);
2576    Diag(Overridden->getLocation(), diag::note_previous_declaration);
2577  }
2578}
2579
2580/// WarnExactTypedMethods - This routine issues a warning if method
2581/// implementation declaration matches exactly that of its declaration.
2582void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2583                                 ObjCMethodDecl *MethodDecl,
2584                                 bool IsProtocolMethodDecl) {
2585  // don't issue warning when protocol method is optional because primary
2586  // class is not required to implement it and it is safe for protocol
2587  // to implement it.
2588  if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
2589    return;
2590  // don't issue warning when primary class's method is
2591  // depecated/unavailable.
2592  if (MethodDecl->hasAttr<UnavailableAttr>() ||
2593      MethodDecl->hasAttr<DeprecatedAttr>())
2594    return;
2595
2596  bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2597                                      IsProtocolMethodDecl, false, false);
2598  if (match)
2599    for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2600         IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2601         EF = MethodDecl->param_end();
2602         IM != EM && IF != EF; ++IM, ++IF) {
2603      match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
2604                                       *IM, *IF,
2605                                       IsProtocolMethodDecl, false, false);
2606      if (!match)
2607        break;
2608    }
2609  if (match)
2610    match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2611  if (match)
2612    match = !(MethodDecl->isClassMethod() &&
2613              MethodDecl->getSelector() == GetNullarySelector("load", Context));
2614
2615  if (match) {
2616    Diag(ImpMethodDecl->getLocation(),
2617         diag::warn_category_method_impl_match);
2618    Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
2619      << MethodDecl->getDeclName();
2620  }
2621}
2622
2623/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2624/// improve the efficiency of selector lookups and type checking by associating
2625/// with each protocol / interface / category the flattened instance tables. If
2626/// we used an immutable set to keep the table then it wouldn't add significant
2627/// memory cost and it would be handy for lookups.
2628
2629typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
2630typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2631
2632static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
2633                                           ProtocolNameSet &PNS) {
2634  if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2635    PNS.insert(PDecl->getIdentifier());
2636  for (const auto *PI : PDecl->protocols())
2637    findProtocolsWithExplicitImpls(PI, PNS);
2638}
2639
2640/// Recursively populates a set with all conformed protocols in a class
2641/// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2642/// attribute.
2643static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
2644                                           ProtocolNameSet &PNS) {
2645  if (!Super)
2646    return;
2647
2648  for (const auto *I : Super->all_referenced_protocols())
2649    findProtocolsWithExplicitImpls(I, PNS);
2650
2651  findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
2652}
2653
2654/// CheckProtocolMethodDefs - This routine checks unimplemented methods
2655/// Declared in protocol, and those referenced by it.
2656static void CheckProtocolMethodDefs(Sema &S,
2657                                    SourceLocation ImpLoc,
2658                                    ObjCProtocolDecl *PDecl,
2659                                    bool& IncompleteImpl,
2660                                    const Sema::SelectorSet &InsMap,
2661                                    const Sema::SelectorSet &ClsMap,
2662                                    ObjCContainerDecl *CDecl,
2663                                    LazyProtocolNameSet &ProtocolsExplictImpl) {
2664  ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
2665  ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2666                               : dyn_cast<ObjCInterfaceDecl>(CDecl);
2667  assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
2668
2669  ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2670  ObjCInterfaceDecl *NSIDecl = nullptr;
2671
2672  // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2673  // then we should check if any class in the super class hierarchy also
2674  // conforms to this protocol, either directly or via protocol inheritance.
2675  // If so, we can skip checking this protocol completely because we
2676  // know that a parent class already satisfies this protocol.
2677  //
2678  // Note: we could generalize this logic for all protocols, and merely
2679  // add the limit on looking at the super class chain for just
2680  // specially marked protocols.  This may be a good optimization.  This
2681  // change is restricted to 'objc_protocol_requires_explicit_implementation'
2682  // protocols for now for controlled evaluation.
2683  if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2684    if (!ProtocolsExplictImpl) {
2685      ProtocolsExplictImpl.reset(new ProtocolNameSet);
2686      findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
2687    }
2688    if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) !=
2689        ProtocolsExplictImpl->end())
2690      return;
2691
2692    // If no super class conforms to the protocol, we should not search
2693    // for methods in the super class to implicitly satisfy the protocol.
2694    Super = nullptr;
2695  }
2696
2697  if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
2698    // check to see if class implements forwardInvocation method and objects
2699    // of this class are derived from 'NSProxy' so that to forward requests
2700    // from one object to another.
2701    // Under such conditions, which means that every method possible is
2702    // implemented in the class, we should not issue "Method definition not
2703    // found" warnings.
2704    // FIXME: Use a general GetUnarySelector method for this.
2705    IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
2706    Selector fISelector = S.Context.Selectors.getSelector(1, &II);
2707    if (InsMap.count(fISelector))
2708      // Is IDecl derived from 'NSProxy'? If so, no instance methods
2709      // need be implemented in the implementation.
2710      NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
2711  }
2712
2713  // If this is a forward protocol declaration, get its definition.
2714  if (!PDecl->isThisDeclarationADefinition() &&
2715      PDecl->getDefinition())
2716    PDecl = PDecl->getDefinition();
2717
2718  // If a method lookup fails locally we still need to look and see if
2719  // the method was implemented by a base class or an inherited
2720  // protocol. This lookup is slow, but occurs rarely in correct code
2721  // and otherwise would terminate in a warning.
2722
2723  // check unimplemented instance methods.
2724  if (!NSIDecl)
2725    for (auto *method : PDecl->instance_methods()) {
2726      if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2727          !method->isPropertyAccessor() &&
2728          !InsMap.count(method->getSelector()) &&
2729          (!Super || !Super->lookupMethod(method->getSelector(),
2730                                          true /* instance */,
2731                                          false /* shallowCategory */,
2732                                          true /* followsSuper */,
2733                                          nullptr /* category */))) {
2734            // If a method is not implemented in the category implementation but
2735            // has been declared in its primary class, superclass,
2736            // or in one of their protocols, no need to issue the warning.
2737            // This is because method will be implemented in the primary class
2738            // or one of its super class implementation.
2739
2740            // Ugly, but necessary. Method declared in protocol might have
2741            // have been synthesized due to a property declared in the class which
2742            // uses the protocol.
2743            if (ObjCMethodDecl *MethodInClass =
2744                  IDecl->lookupMethod(method->getSelector(),
2745                                      true /* instance */,
2746                                      true /* shallowCategoryLookup */,
2747                                      false /* followSuper */))
2748              if (C || MethodInClass->isPropertyAccessor())
2749                continue;
2750            unsigned DIAG = diag::warn_unimplemented_protocol_method;
2751            if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2752              WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG,
2753                                  PDecl);
2754            }
2755          }
2756    }
2757  // check unimplemented class methods
2758  for (auto *method : PDecl->class_methods()) {
2759    if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2760        !ClsMap.count(method->getSelector()) &&
2761        (!Super || !Super->lookupMethod(method->getSelector(),
2762                                        false /* class method */,
2763                                        false /* shallowCategoryLookup */,
2764                                        true  /* followSuper */,
2765                                        nullptr /* category */))) {
2766      // See above comment for instance method lookups.
2767      if (C && IDecl->lookupMethod(method->getSelector(),
2768                                   false /* class */,
2769                                   true /* shallowCategoryLookup */,
2770                                   false /* followSuper */))
2771        continue;
2772
2773      unsigned DIAG = diag::warn_unimplemented_protocol_method;
2774      if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2775        WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl);
2776      }
2777    }
2778  }
2779  // Check on this protocols's referenced protocols, recursively.
2780  for (auto *PI : PDecl->protocols())
2781    CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap,
2782                            CDecl, ProtocolsExplictImpl);
2783}
2784
2785/// MatchAllMethodDeclarations - Check methods declared in interface
2786/// or protocol against those declared in their implementations.
2787///
2788void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
2789                                      const SelectorSet &ClsMap,
2790                                      SelectorSet &InsMapSeen,
2791                                      SelectorSet &ClsMapSeen,
2792                                      ObjCImplDecl* IMPDecl,
2793                                      ObjCContainerDecl* CDecl,
2794                                      bool &IncompleteImpl,
2795                                      bool ImmediateClass,
2796                                      bool WarnCategoryMethodImpl) {
2797  // Check and see if instance methods in class interface have been
2798  // implemented in the implementation class. If so, their types match.
2799  for (auto *I : CDecl->instance_methods()) {
2800    if (!InsMapSeen.insert(I->getSelector()).second)
2801      continue;
2802    if (!I->isPropertyAccessor() &&
2803        !InsMap.count(I->getSelector())) {
2804      if (ImmediateClass)
2805        WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2806                            diag::warn_undef_method_impl);
2807      continue;
2808    } else {
2809      ObjCMethodDecl *ImpMethodDecl =
2810        IMPDecl->getInstanceMethod(I->getSelector());
2811      assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) &&
2812             "Expected to find the method through lookup as well");
2813      // ImpMethodDecl may be null as in a @dynamic property.
2814      if (ImpMethodDecl) {
2815        if (!WarnCategoryMethodImpl)
2816          WarnConflictingTypedMethods(ImpMethodDecl, I,
2817                                      isa<ObjCProtocolDecl>(CDecl));
2818        else if (!I->isPropertyAccessor())
2819          WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2820      }
2821    }
2822  }
2823
2824  // Check and see if class methods in class interface have been
2825  // implemented in the implementation class. If so, their types match.
2826  for (auto *I : CDecl->class_methods()) {
2827    if (!ClsMapSeen.insert(I->getSelector()).second)
2828      continue;
2829    if (!I->isPropertyAccessor() &&
2830        !ClsMap.count(I->getSelector())) {
2831      if (ImmediateClass)
2832        WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2833                            diag::warn_undef_method_impl);
2834    } else {
2835      ObjCMethodDecl *ImpMethodDecl =
2836        IMPDecl->getClassMethod(I->getSelector());
2837      assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) &&
2838             "Expected to find the method through lookup as well");
2839      // ImpMethodDecl may be null as in a @dynamic property.
2840      if (ImpMethodDecl) {
2841        if (!WarnCategoryMethodImpl)
2842          WarnConflictingTypedMethods(ImpMethodDecl, I,
2843                                      isa<ObjCProtocolDecl>(CDecl));
2844        else if (!I->isPropertyAccessor())
2845          WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2846      }
2847    }
2848  }
2849
2850  if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
2851    // Also, check for methods declared in protocols inherited by
2852    // this protocol.
2853    for (auto *PI : PD->protocols())
2854      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2855                                 IMPDecl, PI, IncompleteImpl, false,
2856                                 WarnCategoryMethodImpl);
2857  }
2858
2859  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2860    // when checking that methods in implementation match their declaration,
2861    // i.e. when WarnCategoryMethodImpl is false, check declarations in class
2862    // extension; as well as those in categories.
2863    if (!WarnCategoryMethodImpl) {
2864      for (auto *Cat : I->visible_categories())
2865        MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2866                                   IMPDecl, Cat, IncompleteImpl,
2867                                   ImmediateClass && Cat->IsClassExtension(),
2868                                   WarnCategoryMethodImpl);
2869    } else {
2870      // Also methods in class extensions need be looked at next.
2871      for (auto *Ext : I->visible_extensions())
2872        MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2873                                   IMPDecl, Ext, IncompleteImpl, false,
2874                                   WarnCategoryMethodImpl);
2875    }
2876
2877    // Check for any implementation of a methods declared in protocol.
2878    for (auto *PI : I->all_referenced_protocols())
2879      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2880                                 IMPDecl, PI, IncompleteImpl, false,
2881                                 WarnCategoryMethodImpl);
2882
2883    // FIXME. For now, we are not checking for extact match of methods
2884    // in category implementation and its primary class's super class.
2885    if (!WarnCategoryMethodImpl && I->getSuperClass())
2886      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2887                                 IMPDecl,
2888                                 I->getSuperClass(), IncompleteImpl, false);
2889  }
2890}
2891
2892/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2893/// category matches with those implemented in its primary class and
2894/// warns each time an exact match is found.
2895void Sema::CheckCategoryVsClassMethodMatches(
2896                                  ObjCCategoryImplDecl *CatIMPDecl) {
2897  // Get category's primary class.
2898  ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2899  if (!CatDecl)
2900    return;
2901  ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2902  if (!IDecl)
2903    return;
2904  ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2905  SelectorSet InsMap, ClsMap;
2906
2907  for (const auto *I : CatIMPDecl->instance_methods()) {
2908    Selector Sel = I->getSelector();
2909    // When checking for methods implemented in the category, skip over
2910    // those declared in category class's super class. This is because
2911    // the super class must implement the method.
2912    if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
2913      continue;
2914    InsMap.insert(Sel);
2915  }
2916
2917  for (const auto *I : CatIMPDecl->class_methods()) {
2918    Selector Sel = I->getSelector();
2919    if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
2920      continue;
2921    ClsMap.insert(Sel);
2922  }
2923  if (InsMap.empty() && ClsMap.empty())
2924    return;
2925
2926  SelectorSet InsMapSeen, ClsMapSeen;
2927  bool IncompleteImpl = false;
2928  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2929                             CatIMPDecl, IDecl,
2930                             IncompleteImpl, false,
2931                             true /*WarnCategoryMethodImpl*/);
2932}
2933
2934void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
2935                                     ObjCContainerDecl* CDecl,
2936                                     bool IncompleteImpl) {
2937  SelectorSet InsMap;
2938  // Check and see if instance methods in class interface have been
2939  // implemented in the implementation class.
2940  for (const auto *I : IMPDecl->instance_methods())
2941    InsMap.insert(I->getSelector());
2942
2943  // Add the selectors for getters/setters of @dynamic properties.
2944  for (const auto *PImpl : IMPDecl->property_impls()) {
2945    // We only care about @dynamic implementations.
2946    if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
2947      continue;
2948
2949    const auto *P = PImpl->getPropertyDecl();
2950    if (!P) continue;
2951
2952    InsMap.insert(P->getGetterName());
2953    if (!P->getSetterName().isNull())
2954      InsMap.insert(P->getSetterName());
2955  }
2956
2957  // Check and see if properties declared in the interface have either 1)
2958  // an implementation or 2) there is a @synthesize/@dynamic implementation
2959  // of the property in the @implementation.
2960  if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2961    bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
2962                                LangOpts.ObjCRuntime.isNonFragile() &&
2963                                !IDecl->isObjCRequiresPropertyDefs();
2964    DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
2965  }
2966
2967  // Diagnose null-resettable synthesized setters.
2968  diagnoseNullResettableSynthesizedSetters(IMPDecl);
2969
2970  SelectorSet ClsMap;
2971  for (const auto *I : IMPDecl->class_methods())
2972    ClsMap.insert(I->getSelector());
2973
2974  // Check for type conflict of methods declared in a class/protocol and
2975  // its implementation; if any.
2976  SelectorSet InsMapSeen, ClsMapSeen;
2977  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2978                             IMPDecl, CDecl,
2979                             IncompleteImpl, true);
2980
2981  // check all methods implemented in category against those declared
2982  // in its primary class.
2983  if (ObjCCategoryImplDecl *CatDecl =
2984        dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
2985    CheckCategoryVsClassMethodMatches(CatDecl);
2986
2987  // Check the protocol list for unimplemented methods in the @implementation
2988  // class.
2989  // Check and see if class methods in class interface have been
2990  // implemented in the implementation class.
2991
2992  LazyProtocolNameSet ExplicitImplProtocols;
2993
2994  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2995    for (auto *PI : I->all_referenced_protocols())
2996      CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl,
2997                              InsMap, ClsMap, I, ExplicitImplProtocols);
2998  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2999    // For extended class, unimplemented methods in its protocols will
3000    // be reported in the primary class.
3001    if (!C->IsClassExtension()) {
3002      for (auto *P : C->protocols())
3003        CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P,
3004                                IncompleteImpl, InsMap, ClsMap, CDecl,
3005                                ExplicitImplProtocols);
3006      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
3007                                      /*SynthesizeProperties=*/false);
3008    }
3009  } else
3010    llvm_unreachable("invalid ObjCContainerDecl type.");
3011}
3012
3013Sema::DeclGroupPtrTy
3014Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
3015                                   IdentifierInfo **IdentList,
3016                                   SourceLocation *IdentLocs,
3017                                   ArrayRef<ObjCTypeParamList *> TypeParamLists,
3018                                   unsigned NumElts) {
3019  SmallVector<Decl *, 8> DeclsInGroup;
3020  for (unsigned i = 0; i != NumElts; ++i) {
3021    // Check for another declaration kind with the same name.
3022    NamedDecl *PrevDecl
3023      = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
3024                         LookupOrdinaryName, forRedeclarationInCurContext());
3025    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
3026      // GCC apparently allows the following idiom:
3027      //
3028      // typedef NSObject < XCElementTogglerP > XCElementToggler;
3029      // @class XCElementToggler;
3030      //
3031      // Here we have chosen to ignore the forward class declaration
3032      // with a warning. Since this is the implied behavior.
3033      TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
3034      if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
3035        Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
3036        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3037      } else {
3038        // a forward class declaration matching a typedef name of a class refers
3039        // to the underlying class. Just ignore the forward class with a warning
3040        // as this will force the intended behavior which is to lookup the
3041        // typedef name.
3042        if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
3043          Diag(AtClassLoc, diag::warn_forward_class_redefinition)
3044              << IdentList[i];
3045          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3046          continue;
3047        }
3048      }
3049    }
3050
3051    // Create a declaration to describe this forward declaration.
3052    ObjCInterfaceDecl *PrevIDecl
3053      = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
3054
3055    IdentifierInfo *ClassName = IdentList[i];
3056    if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
3057      // A previous decl with a different name is because of
3058      // @compatibility_alias, for example:
3059      // \code
3060      //   @class NewImage;
3061      //   @compatibility_alias OldImage NewImage;
3062      // \endcode
3063      // A lookup for 'OldImage' will return the 'NewImage' decl.
3064      //
3065      // In such a case use the real declaration name, instead of the alias one,
3066      // otherwise we will break IdentifierResolver and redecls-chain invariants.
3067      // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
3068      // has been aliased.
3069      ClassName = PrevIDecl->getIdentifier();
3070    }
3071
3072    // If this forward declaration has type parameters, compare them with the
3073    // type parameters of the previous declaration.
3074    ObjCTypeParamList *TypeParams = TypeParamLists[i];
3075    if (PrevIDecl && TypeParams) {
3076      if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
3077        // Check for consistency with the previous declaration.
3078        if (checkTypeParamListConsistency(
3079              *this, PrevTypeParams, TypeParams,
3080              TypeParamListContext::ForwardDeclaration)) {
3081          TypeParams = nullptr;
3082        }
3083      } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
3084        // The @interface does not have type parameters. Complain.
3085        Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
3086          << ClassName
3087          << TypeParams->getSourceRange();
3088        Diag(Def->getLocation(), diag::note_defined_here)
3089          << ClassName;
3090
3091        TypeParams = nullptr;
3092      }
3093    }
3094
3095    ObjCInterfaceDecl *IDecl
3096      = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
3097                                  ClassName, TypeParams, PrevIDecl,
3098                                  IdentLocs[i]);
3099    IDecl->setAtEndRange(IdentLocs[i]);
3100
3101    PushOnScopeChains(IDecl, TUScope);
3102    CheckObjCDeclScope(IDecl);
3103    DeclsInGroup.push_back(IDecl);
3104  }
3105
3106  return BuildDeclaratorGroup(DeclsInGroup);
3107}
3108
3109static bool tryMatchRecordTypes(ASTContext &Context,
3110                                Sema::MethodMatchStrategy strategy,
3111                                const Type *left, const Type *right);
3112
3113static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
3114                       QualType leftQT, QualType rightQT) {
3115  const Type *left =
3116    Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
3117  const Type *right =
3118    Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
3119
3120  if (left == right) return true;
3121
3122  // If we're doing a strict match, the types have to match exactly.
3123  if (strategy == Sema::MMS_strict) return false;
3124
3125  if (left->isIncompleteType() || right->isIncompleteType()) return false;
3126
3127  // Otherwise, use this absurdly complicated algorithm to try to
3128  // validate the basic, low-level compatibility of the two types.
3129
3130  // As a minimum, require the sizes and alignments to match.
3131  TypeInfo LeftTI = Context.getTypeInfo(left);
3132  TypeInfo RightTI = Context.getTypeInfo(right);
3133  if (LeftTI.Width != RightTI.Width)
3134    return false;
3135
3136  if (LeftTI.Align != RightTI.Align)
3137    return false;
3138
3139  // Consider all the kinds of non-dependent canonical types:
3140  // - functions and arrays aren't possible as return and parameter types
3141
3142  // - vector types of equal size can be arbitrarily mixed
3143  if (isa<VectorType>(left)) return isa<VectorType>(right);
3144  if (isa<VectorType>(right)) return false;
3145
3146  // - references should only match references of identical type
3147  // - structs, unions, and Objective-C objects must match more-or-less
3148  //   exactly
3149  // - everything else should be a scalar
3150  if (!left->isScalarType() || !right->isScalarType())
3151    return tryMatchRecordTypes(Context, strategy, left, right);
3152
3153  // Make scalars agree in kind, except count bools as chars, and group
3154  // all non-member pointers together.
3155  Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3156  Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3157  if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3158  if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3159  if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3160    leftSK = Type::STK_ObjCObjectPointer;
3161  if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3162    rightSK = Type::STK_ObjCObjectPointer;
3163
3164  // Note that data member pointers and function member pointers don't
3165  // intermix because of the size differences.
3166
3167  return (leftSK == rightSK);
3168}
3169
3170static bool tryMatchRecordTypes(ASTContext &Context,
3171                                Sema::MethodMatchStrategy strategy,
3172                                const Type *lt, const Type *rt) {
3173  assert(lt && rt && lt != rt);
3174
3175  if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
3176  RecordDecl *left = cast<RecordType>(lt)->getDecl();
3177  RecordDecl *right = cast<RecordType>(rt)->getDecl();
3178
3179  // Require union-hood to match.
3180  if (left->isUnion() != right->isUnion()) return false;
3181
3182  // Require an exact match if either is non-POD.
3183  if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
3184      (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
3185    return false;
3186
3187  // Require size and alignment to match.
3188  TypeInfo LeftTI = Context.getTypeInfo(lt);
3189  TypeInfo RightTI = Context.getTypeInfo(rt);
3190  if (LeftTI.Width != RightTI.Width)
3191    return false;
3192
3193  if (LeftTI.Align != RightTI.Align)
3194    return false;
3195
3196  // Require fields to match.
3197  RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3198  RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3199  for (; li != le && ri != re; ++li, ++ri) {
3200    if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
3201      return false;
3202  }
3203  return (li == le && ri == re);
3204}
3205
3206/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3207/// returns true, or false, accordingly.
3208/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
3209bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
3210                                      const ObjCMethodDecl *right,
3211                                      MethodMatchStrategy strategy) {
3212  if (!matchTypes(Context, strategy, left->getReturnType(),
3213                  right->getReturnType()))
3214    return false;
3215
3216  // If either is hidden, it is not considered to match.
3217  if (left->isHidden() || right->isHidden())
3218    return false;
3219
3220  if (getLangOpts().ObjCAutoRefCount &&
3221      (left->hasAttr<NSReturnsRetainedAttr>()
3222         != right->hasAttr<NSReturnsRetainedAttr>() ||
3223       left->hasAttr<NSConsumesSelfAttr>()
3224         != right->hasAttr<NSConsumesSelfAttr>()))
3225    return false;
3226
3227  ObjCMethodDecl::param_const_iterator
3228    li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3229    re = right->param_end();
3230
3231  for (; li != le && ri != re; ++li, ++ri) {
3232    assert(ri != right->param_end() && "Param mismatch");
3233    const ParmVarDecl *lparm = *li, *rparm = *ri;
3234
3235    if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
3236      return false;
3237
3238    if (getLangOpts().ObjCAutoRefCount &&
3239        lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3240      return false;
3241  }
3242  return true;
3243}
3244
3245static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method,
3246                                               ObjCMethodDecl *MethodInList) {
3247  auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3248  auto *MethodInListProtocol =
3249      dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext());
3250  // If this method belongs to a protocol but the method in list does not, or
3251  // vice versa, we say the context is not the same.
3252  if ((MethodProtocol && !MethodInListProtocol) ||
3253      (!MethodProtocol && MethodInListProtocol))
3254    return false;
3255
3256  if (MethodProtocol && MethodInListProtocol)
3257    return true;
3258
3259  ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
3260  ObjCInterfaceDecl *MethodInListInterface =
3261      MethodInList->getClassInterface();
3262  return MethodInterface == MethodInListInterface;
3263}
3264
3265void Sema::addMethodToGlobalList(ObjCMethodList *List,
3266                                 ObjCMethodDecl *Method) {
3267  // Record at the head of the list whether there were 0, 1, or >= 2 methods
3268  // inside categories.
3269  if (ObjCCategoryDecl *CD =
3270          dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
3271    if (!CD->IsClassExtension() && List->getBits() < 2)
3272      List->setBits(List->getBits() + 1);
3273
3274  // If the list is empty, make it a singleton list.
3275  if (List->getMethod() == nullptr) {
3276    List->setMethod(Method);
3277    List->setNext(nullptr);
3278    return;
3279  }
3280
3281  // We've seen a method with this name, see if we have already seen this type
3282  // signature.
3283  ObjCMethodList *Previous = List;
3284  ObjCMethodList *ListWithSameDeclaration = nullptr;
3285  for (; List; Previous = List, List = List->getNext()) {
3286    // If we are building a module, keep all of the methods.
3287    if (getLangOpts().isCompilingModule())
3288      continue;
3289
3290    bool SameDeclaration = MatchTwoMethodDeclarations(Method,
3291                                                      List->getMethod());
3292    // Looking for method with a type bound requires the correct context exists.
3293    // We need to insert a method into the list if the context is different.
3294    // If the method's declaration matches the list
3295    // a> the method belongs to a different context: we need to insert it, in
3296    //    order to emit the availability message, we need to prioritize over
3297    //    availability among the methods with the same declaration.
3298    // b> the method belongs to the same context: there is no need to insert a
3299    //    new entry.
3300    // If the method's declaration does not match the list, we insert it to the
3301    // end.
3302    if (!SameDeclaration ||
3303        !isMethodContextSameForKindofLookup(Method, List->getMethod())) {
3304      // Even if two method types do not match, we would like to say
3305      // there is more than one declaration so unavailability/deprecated
3306      // warning is not too noisy.
3307      if (!Method->isDefined())
3308        List->setHasMoreThanOneDecl(true);
3309
3310      // For methods with the same declaration, the one that is deprecated
3311      // should be put in the front for better diagnostics.
3312      if (Method->isDeprecated() && SameDeclaration &&
3313          !ListWithSameDeclaration && !List->getMethod()->isDeprecated())
3314        ListWithSameDeclaration = List;
3315
3316      if (Method->isUnavailable() && SameDeclaration &&
3317          !ListWithSameDeclaration &&
3318          List->getMethod()->getAvailability() < AR_Deprecated)
3319        ListWithSameDeclaration = List;
3320      continue;
3321    }
3322
3323    ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3324
3325    // Propagate the 'defined' bit.
3326    if (Method->isDefined())
3327      PrevObjCMethod->setDefined(true);
3328    else {
3329      // Objective-C doesn't allow an @interface for a class after its
3330      // @implementation. So if Method is not defined and there already is
3331      // an entry for this type signature, Method has to be for a different
3332      // class than PrevObjCMethod.
3333      List->setHasMoreThanOneDecl(true);
3334    }
3335
3336    // If a method is deprecated, push it in the global pool.
3337    // This is used for better diagnostics.
3338    if (Method->isDeprecated()) {
3339      if (!PrevObjCMethod->isDeprecated())
3340        List->setMethod(Method);
3341    }
3342    // If the new method is unavailable, push it into global pool
3343    // unless previous one is deprecated.
3344    if (Method->isUnavailable()) {
3345      if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3346        List->setMethod(Method);
3347    }
3348
3349    return;
3350  }
3351
3352  // We have a new signature for an existing method - add it.
3353  // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3354  ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
3355
3356  // We insert it right before ListWithSameDeclaration.
3357  if (ListWithSameDeclaration) {
3358    auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
3359    // FIXME: should we clear the other bits in ListWithSameDeclaration?
3360    ListWithSameDeclaration->setMethod(Method);
3361    ListWithSameDeclaration->setNext(List);
3362    return;
3363  }
3364
3365  Previous->setNext(new (Mem) ObjCMethodList(Method));
3366}
3367
3368/// Read the contents of the method pool for a given selector from
3369/// external storage.
3370void Sema::ReadMethodPool(Selector Sel) {
3371  assert(ExternalSource && "We need an external AST source");
3372  ExternalSource->ReadMethodPool(Sel);
3373}
3374
3375void Sema::updateOutOfDateSelector(Selector Sel) {
3376  if (!ExternalSource)
3377    return;
3378  ExternalSource->updateOutOfDateSelector(Sel);
3379}
3380
3381void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3382                                 bool instance) {
3383  // Ignore methods of invalid containers.
3384  if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
3385    return;
3386
3387  if (ExternalSource)
3388    ReadMethodPool(Method->getSelector());
3389
3390  GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
3391  if (Pos == MethodPool.end())
3392    Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
3393                                           GlobalMethods())).first;
3394
3395  Method->setDefined(impl);
3396
3397  ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
3398  addMethodToGlobalList(&Entry, Method);
3399}
3400
3401/// Determines if this is an "acceptable" loose mismatch in the global
3402/// method pool.  This exists mostly as a hack to get around certain
3403/// global mismatches which we can't afford to make warnings / errors.
3404/// Really, what we want is a way to take a method out of the global
3405/// method pool.
3406static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
3407                                       ObjCMethodDecl *other) {
3408  if (!chosen->isInstanceMethod())
3409    return false;
3410
3411  Selector sel = chosen->getSelector();
3412  if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
3413    return false;
3414
3415  // Don't complain about mismatches for -length if the method we
3416  // chose has an integral result type.
3417  return (chosen->getReturnType()->isIntegerType());
3418}
3419
3420/// Return true if the given method is wthin the type bound.
3421static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method,
3422                                     const ObjCObjectType *TypeBound) {
3423  if (!TypeBound)
3424    return true;
3425
3426  if (TypeBound->isObjCId())
3427    // FIXME: should we handle the case of bounding to id<A, B> differently?
3428    return true;
3429
3430  auto *BoundInterface = TypeBound->getInterface();
3431  assert(BoundInterface && "unexpected object type!");
3432
3433  // Check if the Method belongs to a protocol. We should allow any method
3434  // defined in any protocol, because any subclass could adopt the protocol.
3435  auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3436  if (MethodProtocol) {
3437    return true;
3438  }
3439
3440  // If the Method belongs to a class, check if it belongs to the class
3441  // hierarchy of the class bound.
3442  if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
3443    // We allow methods declared within classes that are part of the hierarchy
3444    // of the class bound (superclass of, subclass of, or the same as the class
3445    // bound).
3446    return MethodInterface == BoundInterface ||
3447           MethodInterface->isSuperClassOf(BoundInterface) ||
3448           BoundInterface->isSuperClassOf(MethodInterface);
3449  }
3450  llvm_unreachable("unknown method context");
3451}
3452
3453/// We first select the type of the method: Instance or Factory, then collect
3454/// all methods with that type.
3455bool Sema::CollectMultipleMethodsInGlobalPool(
3456    Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods,
3457    bool InstanceFirst, bool CheckTheOther,
3458    const ObjCObjectType *TypeBound) {
3459  if (ExternalSource)
3460    ReadMethodPool(Sel);
3461
3462  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3463  if (Pos == MethodPool.end())
3464    return false;
3465
3466  // Gather the non-hidden methods.
3467  ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
3468                             Pos->second.second;
3469  for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3470    if (M->getMethod() && !M->getMethod()->isHidden()) {
3471      if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3472        Methods.push_back(M->getMethod());
3473    }
3474
3475  // Return if we find any method with the desired kind.
3476  if (!Methods.empty())
3477    return Methods.size() > 1;
3478
3479  if (!CheckTheOther)
3480    return false;
3481
3482  // Gather the other kind.
3483  ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
3484                              Pos->second.first;
3485  for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
3486    if (M->getMethod() && !M->getMethod()->isHidden()) {
3487      if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3488        Methods.push_back(M->getMethod());
3489    }
3490
3491  return Methods.size() > 1;
3492}
3493
3494bool Sema::AreMultipleMethodsInGlobalPool(
3495    Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
3496    bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
3497  // Diagnose finding more than one method in global pool.
3498  SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
3499  FilteredMethods.push_back(BestMethod);
3500
3501  for (auto *M : Methods)
3502    if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
3503      FilteredMethods.push_back(M);
3504
3505  if (FilteredMethods.size() > 1)
3506    DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R,
3507                                       receiverIdOrClass);
3508
3509  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3510  // Test for no method in the pool which should not trigger any warning by
3511  // caller.
3512  if (Pos == MethodPool.end())
3513    return true;
3514  ObjCMethodList &MethList =
3515    BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3516  return MethList.hasMoreThanOneDecl();
3517}
3518
3519ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3520                                               bool receiverIdOrClass,
3521                                               bool instance) {
3522  if (ExternalSource)
3523    ReadMethodPool(Sel);
3524
3525  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3526  if (Pos == MethodPool.end())
3527    return nullptr;
3528
3529  // Gather the non-hidden methods.
3530  ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3531  SmallVector<ObjCMethodDecl *, 4> Methods;
3532  for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3533    if (M->getMethod() && !M->getMethod()->isHidden())
3534      return M->getMethod();
3535  }
3536  return nullptr;
3537}
3538
3539void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
3540                                              Selector Sel, SourceRange R,
3541                                              bool receiverIdOrClass) {
3542  // We found multiple methods, so we may have to complain.
3543  bool issueDiagnostic = false, issueError = false;
3544
3545  // We support a warning which complains about *any* difference in
3546  // method signature.
3547  bool strictSelectorMatch =
3548  receiverIdOrClass &&
3549  !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
3550  if (strictSelectorMatch) {
3551    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3552      if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
3553        issueDiagnostic = true;
3554        break;
3555      }
3556    }
3557  }
3558
3559  // If we didn't see any strict differences, we won't see any loose
3560  // differences.  In ARC, however, we also need to check for loose
3561  // mismatches, because most of them are errors.
3562  if (!strictSelectorMatch ||
3563      (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3564    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3565      // This checks if the methods differ in type mismatch.
3566      if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
3567          !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
3568        issueDiagnostic = true;
3569        if (getLangOpts().ObjCAutoRefCount)
3570          issueError = true;
3571        break;
3572      }
3573    }
3574
3575  if (issueDiagnostic) {
3576    if (issueError)
3577      Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
3578    else if (strictSelectorMatch)
3579      Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
3580    else
3581      Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
3582
3583    Diag(Methods[0]->getLocStart(),
3584         issueError ? diag::note_possibility : diag::note_using)
3585    << Methods[0]->getSourceRange();
3586    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3587      Diag(Methods[I]->getLocStart(), diag::note_also_found)
3588      << Methods[I]->getSourceRange();
3589    }
3590  }
3591}
3592
3593ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
3594  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3595  if (Pos == MethodPool.end())
3596    return nullptr;
3597
3598  GlobalMethods &Methods = Pos->second;
3599  for (const ObjCMethodList *Method = &Methods.first; Method;
3600       Method = Method->getNext())
3601    if (Method->getMethod() &&
3602        (Method->getMethod()->isDefined() ||
3603         Method->getMethod()->isPropertyAccessor()))
3604      return Method->getMethod();
3605
3606  for (const ObjCMethodList *Method = &Methods.second; Method;
3607       Method = Method->getNext())
3608    if (Method->getMethod() &&
3609        (Method->getMethod()->isDefined() ||
3610         Method->getMethod()->isPropertyAccessor()))
3611      return Method->getMethod();
3612  return nullptr;
3613}
3614
3615static void
3616HelperSelectorsForTypoCorrection(
3617                      SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
3618                      StringRef Typo, const ObjCMethodDecl * Method) {
3619  const unsigned MaxEditDistance = 1;
3620  unsigned BestEditDistance = MaxEditDistance + 1;
3621  std::string MethodName = Method->getSelector().getAsString();
3622
3623  unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
3624  if (MinPossibleEditDistance > 0 &&
3625      Typo.size() / MinPossibleEditDistance < 1)
3626    return;
3627  unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
3628  if (EditDistance > MaxEditDistance)
3629    return;
3630  if (EditDistance == BestEditDistance)
3631    BestMethod.push_back(Method);
3632  else if (EditDistance < BestEditDistance) {
3633    BestMethod.clear();
3634    BestMethod.push_back(Method);
3635  }
3636}
3637
3638static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
3639                                     QualType ObjectType) {
3640  if (ObjectType.isNull())
3641    return true;
3642  if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
3643    return true;
3644  return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
3645         nullptr;
3646}
3647
3648const ObjCMethodDecl *
3649Sema::SelectorsForTypoCorrection(Selector Sel,
3650                                 QualType ObjectType) {
3651  unsigned NumArgs = Sel.getNumArgs();
3652  SmallVector<const ObjCMethodDecl *, 8> Methods;
3653  bool ObjectIsId = true, ObjectIsClass = true;
3654  if (ObjectType.isNull())
3655    ObjectIsId = ObjectIsClass = false;
3656  else if (!ObjectType->isObjCObjectPointerType())
3657    return nullptr;
3658  else if (const ObjCObjectPointerType *ObjCPtr =
3659           ObjectType->getAsObjCInterfacePointerType()) {
3660    ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3661    ObjectIsId = ObjectIsClass = false;
3662  }
3663  else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3664    ObjectIsClass = false;
3665  else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3666    ObjectIsId = false;
3667  else
3668    return nullptr;
3669
3670  for (GlobalMethodPool::iterator b = MethodPool.begin(),
3671       e = MethodPool.end(); b != e; b++) {
3672    // instance methods
3673    for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3674      if (M->getMethod() &&
3675          (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3676          (M->getMethod()->getSelector() != Sel)) {
3677        if (ObjectIsId)
3678          Methods.push_back(M->getMethod());
3679        else if (!ObjectIsClass &&
3680                 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3681                                          ObjectType))
3682          Methods.push_back(M->getMethod());
3683      }
3684    // class methods
3685    for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3686      if (M->getMethod() &&
3687          (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3688          (M->getMethod()->getSelector() != Sel)) {
3689        if (ObjectIsClass)
3690          Methods.push_back(M->getMethod());
3691        else if (!ObjectIsId &&
3692                 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3693                                          ObjectType))
3694          Methods.push_back(M->getMethod());
3695      }
3696  }
3697
3698  SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
3699  for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3700    HelperSelectorsForTypoCorrection(SelectedMethods,
3701                                     Sel.getAsString(), Methods[i]);
3702  }
3703  return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3704}
3705
3706/// DiagnoseDuplicateIvars -
3707/// Check for duplicate ivars in the entire class at the start of
3708/// \@implementation. This becomes necesssary because class extension can
3709/// add ivars to a class in random order which will not be known until
3710/// class's \@implementation is seen.
3711void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
3712                                  ObjCInterfaceDecl *SID) {
3713  for (auto *Ivar : ID->ivars()) {
3714    if (Ivar->isInvalidDecl())
3715      continue;
3716    if (IdentifierInfo *II = Ivar->getIdentifier()) {
3717      ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
3718      if (prevIvar) {
3719        Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3720        Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3721        Ivar->setInvalidDecl();
3722      }
3723    }
3724  }
3725}
3726
3727/// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
3728static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) {
3729  if (S.getLangOpts().ObjCWeak) return;
3730
3731  for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3732         ivar; ivar = ivar->getNextIvar()) {
3733    if (ivar->isInvalidDecl()) continue;
3734    if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3735      if (S.getLangOpts().ObjCWeakRuntime) {
3736        S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
3737      } else {
3738        S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
3739      }
3740    }
3741  }
3742}
3743
3744/// Diagnose attempts to use flexible array member with retainable object type.
3745static void DiagnoseRetainableFlexibleArrayMember(Sema &S,
3746                                                  ObjCInterfaceDecl *ID) {
3747  if (!S.getLangOpts().ObjCAutoRefCount)
3748    return;
3749
3750  for (auto ivar = ID->all_declared_ivar_begin(); ivar;
3751       ivar = ivar->getNextIvar()) {
3752    if (ivar->isInvalidDecl())
3753      continue;
3754    QualType IvarTy = ivar->getType();
3755    if (IvarTy->isIncompleteArrayType() &&
3756        (IvarTy.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) &&
3757        IvarTy->isObjCLifetimeType()) {
3758      S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable);
3759      ivar->setInvalidDecl();
3760    }
3761  }
3762}
3763
3764Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
3765  switch (CurContext->getDeclKind()) {
3766    case Decl::ObjCInterface:
3767      return Sema::OCK_Interface;
3768    case Decl::ObjCProtocol:
3769      return Sema::OCK_Protocol;
3770    case Decl::ObjCCategory:
3771      if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
3772        return Sema::OCK_ClassExtension;
3773      return Sema::OCK_Category;
3774    case Decl::ObjCImplementation:
3775      return Sema::OCK_Implementation;
3776    case Decl::ObjCCategoryImpl:
3777      return Sema::OCK_CategoryImplementation;
3778
3779    default:
3780      return Sema::OCK_None;
3781  }
3782}
3783
3784static bool IsVariableSizedType(QualType T) {
3785  if (T->isIncompleteArrayType())
3786    return true;
3787  const auto *RecordTy = T->getAs<RecordType>();
3788  return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember());
3789}
3790
3791static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD) {
3792  ObjCInterfaceDecl *IntfDecl = nullptr;
3793  ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range(
3794      ObjCInterfaceDecl::ivar_iterator(), ObjCInterfaceDecl::ivar_iterator());
3795  if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(OCD))) {
3796    Ivars = IntfDecl->ivars();
3797  } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(OCD)) {
3798    IntfDecl = ImplDecl->getClassInterface();
3799    Ivars = ImplDecl->ivars();
3800  } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(OCD)) {
3801    if (CategoryDecl->IsClassExtension()) {
3802      IntfDecl = CategoryDecl->getClassInterface();
3803      Ivars = CategoryDecl->ivars();
3804    }
3805  }
3806
3807  // Check if variable sized ivar is in interface and visible to subclasses.
3808  if (!isa<ObjCInterfaceDecl>(OCD)) {
3809    for (auto ivar : Ivars) {
3810      if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) {
3811        S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility)
3812            << ivar->getDeclName() << ivar->getType();
3813      }
3814    }
3815  }
3816
3817  // Subsequent checks require interface decl.
3818  if (!IntfDecl)
3819    return;
3820
3821  // Check if variable sized ivar is followed by another ivar.
3822  for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar;
3823       ivar = ivar->getNextIvar()) {
3824    if (ivar->isInvalidDecl() || !ivar->getNextIvar())
3825      continue;
3826    QualType IvarTy = ivar->getType();
3827    bool IsInvalidIvar = false;
3828    if (IvarTy->isIncompleteArrayType()) {
3829      S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end)
3830          << ivar->getDeclName() << IvarTy
3831          << TTK_Class; // Use "class" for Obj-C.
3832      IsInvalidIvar = true;
3833    } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) {
3834      if (RecordTy->getDecl()->hasFlexibleArrayMember()) {
3835        S.Diag(ivar->getLocation(),
3836               diag::err_objc_variable_sized_type_not_at_end)
3837            << ivar->getDeclName() << IvarTy;
3838        IsInvalidIvar = true;
3839      }
3840    }
3841    if (IsInvalidIvar) {
3842      S.Diag(ivar->getNextIvar()->getLocation(),
3843             diag::note_next_ivar_declaration)
3844          << ivar->getNextIvar()->getSynthesize();
3845      ivar->setInvalidDecl();
3846    }
3847  }
3848
3849  // Check if ObjC container adds ivars after variable sized ivar in superclass.
3850  // Perform the check only if OCD is the first container to declare ivars to
3851  // avoid multiple warnings for the same ivar.
3852  ObjCIvarDecl *FirstIvar =
3853      (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin();
3854  if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) {
3855    const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass();
3856    while (SuperClass && SuperClass->ivar_empty())
3857      SuperClass = SuperClass->getSuperClass();
3858    if (SuperClass) {
3859      auto IvarIter = SuperClass->ivar_begin();
3860      std::advance(IvarIter, SuperClass->ivar_size() - 1);
3861      const ObjCIvarDecl *LastIvar = *IvarIter;
3862      if (IsVariableSizedType(LastIvar->getType())) {
3863        S.Diag(FirstIvar->getLocation(),
3864               diag::warn_superclass_variable_sized_type_not_at_end)
3865            << FirstIvar->getDeclName() << LastIvar->getDeclName()
3866            << LastIvar->getType() << SuperClass->getDeclName();
3867        S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at)
3868            << LastIvar->getDeclName();
3869      }
3870    }
3871  }
3872}
3873
3874// Note: For class/category implementations, allMethods is always null.
3875Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
3876                       ArrayRef<DeclGroupPtrTy> allTUVars) {
3877  if (getObjCContainerKind() == Sema::OCK_None)
3878    return nullptr;
3879
3880  assert(AtEnd.isValid() && "Invalid location for '@end'");
3881
3882  auto *OCD = cast<ObjCContainerDecl>(CurContext);
3883  Decl *ClassDecl = OCD;
3884
3885  bool isInterfaceDeclKind =
3886        isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
3887         || isa<ObjCProtocolDecl>(ClassDecl);
3888  bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
3889
3890  // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
3891  llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
3892  llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
3893
3894  for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
3895    ObjCMethodDecl *Method =
3896      cast_or_null<ObjCMethodDecl>(allMethods[i]);
3897
3898    if (!Method) continue;  // Already issued a diagnostic.
3899    if (Method->isInstanceMethod()) {
3900      /// Check for instance method of the same name with incompatible types
3901      const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
3902      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3903                              : false;
3904      if ((isInterfaceDeclKind && PrevMethod && !match)
3905          || (checkIdenticalMethods && match)) {
3906          Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3907            << Method->getDeclName();
3908          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3909        Method->setInvalidDecl();
3910      } else {
3911        if (PrevMethod) {
3912          Method->setAsRedeclaration(PrevMethod);
3913          if (!Context.getSourceManager().isInSystemHeader(
3914                 Method->getLocation()))
3915            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3916              << Method->getDeclName();
3917          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3918        }
3919        InsMap[Method->getSelector()] = Method;
3920        /// The following allows us to typecheck messages to "id".
3921        AddInstanceMethodToGlobalPool(Method);
3922      }
3923    } else {
3924      /// Check for class method of the same name with incompatible types
3925      const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
3926      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3927                              : false;
3928      if ((isInterfaceDeclKind && PrevMethod && !match)
3929          || (checkIdenticalMethods && match)) {
3930        Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3931          << Method->getDeclName();
3932        Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3933        Method->setInvalidDecl();
3934      } else {
3935        if (PrevMethod) {
3936          Method->setAsRedeclaration(PrevMethod);
3937          if (!Context.getSourceManager().isInSystemHeader(
3938                 Method->getLocation()))
3939            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3940              << Method->getDeclName();
3941          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3942        }
3943        ClsMap[Method->getSelector()] = Method;
3944        AddFactoryMethodToGlobalPool(Method);
3945      }
3946    }
3947  }
3948  if (isa<ObjCInterfaceDecl>(ClassDecl)) {
3949    // Nothing to do here.
3950  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
3951    // Categories are used to extend the class by declaring new methods.
3952    // By the same token, they are also used to add new properties. No
3953    // need to compare the added property to those in the class.
3954
3955    if (C->IsClassExtension()) {
3956      ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
3957      DiagnoseClassExtensionDupMethods(C, CCPrimary);
3958    }
3959  }
3960  if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
3961    if (CDecl->getIdentifier())
3962      // ProcessPropertyDecl is responsible for diagnosing conflicts with any
3963      // user-defined setter/getter. It also synthesizes setter/getter methods
3964      // and adds them to the DeclContext and global method pools.
3965      for (auto *I : CDecl->properties())
3966        ProcessPropertyDecl(I);
3967    CDecl->setAtEndRange(AtEnd);
3968  }
3969  if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
3970    IC->setAtEndRange(AtEnd);
3971    if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
3972      // Any property declared in a class extension might have user
3973      // declared setter or getter in current class extension or one
3974      // of the other class extensions. Mark them as synthesized as
3975      // property will be synthesized when property with same name is
3976      // seen in the @implementation.
3977      for (const auto *Ext : IDecl->visible_extensions()) {
3978        for (const auto *Property : Ext->instance_properties()) {
3979          // Skip over properties declared @dynamic
3980          if (const ObjCPropertyImplDecl *PIDecl
3981              = IC->FindPropertyImplDecl(Property->getIdentifier(),
3982                                         Property->getQueryKind()))
3983            if (PIDecl->getPropertyImplementation()
3984                  == ObjCPropertyImplDecl::Dynamic)
3985              continue;
3986
3987          for (const auto *Ext : IDecl->visible_extensions()) {
3988            if (ObjCMethodDecl *GetterMethod
3989                  = Ext->getInstanceMethod(Property->getGetterName()))
3990              GetterMethod->setPropertyAccessor(true);
3991            if (!Property->isReadOnly())
3992              if (ObjCMethodDecl *SetterMethod
3993                    = Ext->getInstanceMethod(Property->getSetterName()))
3994                SetterMethod->setPropertyAccessor(true);
3995          }
3996        }
3997      }
3998      ImplMethodsVsClassMethods(S, IC, IDecl);
3999      AtomicPropertySetterGetterRules(IC, IDecl);
4000      DiagnoseOwningPropertyGetterSynthesis(IC);
4001      DiagnoseUnusedBackingIvarInAccessor(S, IC);
4002      if (IDecl->hasDesignatedInitializers())
4003        DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
4004      DiagnoseWeakIvars(*this, IC);
4005      DiagnoseRetainableFlexibleArrayMember(*this, IDecl);
4006
4007      bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
4008      if (IDecl->getSuperClass() == nullptr) {
4009        // This class has no superclass, so check that it has been marked with
4010        // __attribute((objc_root_class)).
4011        if (!HasRootClassAttr) {
4012          SourceLocation DeclLoc(IDecl->getLocation());
4013          SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
4014          Diag(DeclLoc, diag::warn_objc_root_class_missing)
4015            << IDecl->getIdentifier();
4016          // See if NSObject is in the current scope, and if it is, suggest
4017          // adding " : NSObject " to the class declaration.
4018          NamedDecl *IF = LookupSingleName(TUScope,
4019                                           NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
4020                                           DeclLoc, LookupOrdinaryName);
4021          ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
4022          if (NSObjectDecl && NSObjectDecl->getDefinition()) {
4023            Diag(SuperClassLoc, diag::note_objc_needs_superclass)
4024              << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
4025          } else {
4026            Diag(SuperClassLoc, diag::note_objc_needs_superclass);
4027          }
4028        }
4029      } else if (HasRootClassAttr) {
4030        // Complain that only root classes may have this attribute.
4031        Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
4032      }
4033
4034      if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) {
4035        // An interface can subclass another interface with a
4036        // objc_subclassing_restricted attribute when it has that attribute as
4037        // well (because of interfaces imported from Swift). Therefore we have
4038        // to check if we can subclass in the implementation as well.
4039        if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4040            Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4041          Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch);
4042          Diag(Super->getLocation(), diag::note_class_declared);
4043        }
4044      }
4045
4046      if (LangOpts.ObjCRuntime.isNonFragile()) {
4047        while (IDecl->getSuperClass()) {
4048          DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
4049          IDecl = IDecl->getSuperClass();
4050        }
4051      }
4052    }
4053    SetIvarInitializers(IC);
4054  } else if (ObjCCategoryImplDecl* CatImplClass =
4055                                   dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
4056    CatImplClass->setAtEndRange(AtEnd);
4057
4058    // Find category interface decl and then check that all methods declared
4059    // in this interface are implemented in the category @implementation.
4060    if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
4061      if (ObjCCategoryDecl *Cat
4062            = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
4063        ImplMethodsVsClassMethods(S, CatImplClass, Cat);
4064      }
4065    }
4066  } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
4067    if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) {
4068      if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4069          Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4070        Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch);
4071        Diag(Super->getLocation(), diag::note_class_declared);
4072      }
4073    }
4074  }
4075  DiagnoseVariableSizedIvars(*this, OCD);
4076  if (isInterfaceDeclKind) {
4077    // Reject invalid vardecls.
4078    for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4079      DeclGroupRef DG = allTUVars[i].get();
4080      for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4081        if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
4082          if (!VDecl->hasExternalStorage())
4083            Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
4084        }
4085    }
4086  }
4087  ActOnObjCContainerFinishDefinition();
4088
4089  for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4090    DeclGroupRef DG = allTUVars[i].get();
4091    for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4092      (*I)->setTopLevelDeclInObjCContainer();
4093    Consumer.HandleTopLevelDeclInObjCContainer(DG);
4094  }
4095
4096  ActOnDocumentableDecl(ClassDecl);
4097  return ClassDecl;
4098}
4099
4100/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
4101/// objective-c's type qualifier from the parser version of the same info.
4102static Decl::ObjCDeclQualifier
4103CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
4104  return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
4105}
4106
4107/// Check whether the declared result type of the given Objective-C
4108/// method declaration is compatible with the method's class.
4109///
4110static Sema::ResultTypeCompatibilityKind
4111CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
4112                                    ObjCInterfaceDecl *CurrentClass) {
4113  QualType ResultType = Method->getReturnType();
4114
4115  // If an Objective-C method inherits its related result type, then its
4116  // declared result type must be compatible with its own class type. The
4117  // declared result type is compatible if:
4118  if (const ObjCObjectPointerType *ResultObjectType
4119                                = ResultType->getAs<ObjCObjectPointerType>()) {
4120    //   - it is id or qualified id, or
4121    if (ResultObjectType->isObjCIdType() ||
4122        ResultObjectType->isObjCQualifiedIdType())
4123      return Sema::RTC_Compatible;
4124
4125    if (CurrentClass) {
4126      if (ObjCInterfaceDecl *ResultClass
4127                                      = ResultObjectType->getInterfaceDecl()) {
4128        //   - it is the same as the method's class type, or
4129        if (declaresSameEntity(CurrentClass, ResultClass))
4130          return Sema::RTC_Compatible;
4131
4132        //   - it is a superclass of the method's class type
4133        if (ResultClass->isSuperClassOf(CurrentClass))
4134          return Sema::RTC_Compatible;
4135      }
4136    } else {
4137      // Any Objective-C pointer type might be acceptable for a protocol
4138      // method; we just don't know.
4139      return Sema::RTC_Unknown;
4140    }
4141  }
4142
4143  return Sema::RTC_Incompatible;
4144}
4145
4146namespace {
4147/// A helper class for searching for methods which a particular method
4148/// overrides.
4149class OverrideSearch {
4150public:
4151  Sema &S;
4152  ObjCMethodDecl *Method;
4153  llvm::SmallSetVector<ObjCMethodDecl*, 4> Overridden;
4154  bool Recursive;
4155
4156public:
4157  OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
4158    Selector selector = method->getSelector();
4159
4160    // Bypass this search if we've never seen an instance/class method
4161    // with this selector before.
4162    Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
4163    if (it == S.MethodPool.end()) {
4164      if (!S.getExternalSource()) return;
4165      S.ReadMethodPool(selector);
4166
4167      it = S.MethodPool.find(selector);
4168      if (it == S.MethodPool.end())
4169        return;
4170    }
4171    ObjCMethodList &list =
4172      method->isInstanceMethod() ? it->second.first : it->second.second;
4173    if (!list.getMethod()) return;
4174
4175    ObjCContainerDecl *container
4176      = cast<ObjCContainerDecl>(method->getDeclContext());
4177
4178    // Prevent the search from reaching this container again.  This is
4179    // important with categories, which override methods from the
4180    // interface and each other.
4181    if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
4182      searchFromContainer(container);
4183      if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
4184        searchFromContainer(Interface);
4185    } else {
4186      searchFromContainer(container);
4187    }
4188  }
4189
4190  typedef decltype(Overridden)::iterator iterator;
4191  iterator begin() const { return Overridden.begin(); }
4192  iterator end() const { return Overridden.end(); }
4193
4194private:
4195  void searchFromContainer(ObjCContainerDecl *container) {
4196    if (container->isInvalidDecl()) return;
4197
4198    switch (container->getDeclKind()) {
4199#define OBJCCONTAINER(type, base) \
4200    case Decl::type: \
4201      searchFrom(cast<type##Decl>(container)); \
4202      break;
4203#define ABSTRACT_DECL(expansion)
4204#define DECL(type, base) \
4205    case Decl::type:
4206#include "clang/AST/DeclNodes.inc"
4207      llvm_unreachable("not an ObjC container!");
4208    }
4209  }
4210
4211  void searchFrom(ObjCProtocolDecl *protocol) {
4212    if (!protocol->hasDefinition())
4213      return;
4214
4215    // A method in a protocol declaration overrides declarations from
4216    // referenced ("parent") protocols.
4217    search(protocol->getReferencedProtocols());
4218  }
4219
4220  void searchFrom(ObjCCategoryDecl *category) {
4221    // A method in a category declaration overrides declarations from
4222    // the main class and from protocols the category references.
4223    // The main class is handled in the constructor.
4224    search(category->getReferencedProtocols());
4225  }
4226
4227  void searchFrom(ObjCCategoryImplDecl *impl) {
4228    // A method in a category definition that has a category
4229    // declaration overrides declarations from the category
4230    // declaration.
4231    if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
4232      search(category);
4233      if (ObjCInterfaceDecl *Interface = category->getClassInterface())
4234        search(Interface);
4235
4236    // Otherwise it overrides declarations from the class.
4237    } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
4238      search(Interface);
4239    }
4240  }
4241
4242  void searchFrom(ObjCInterfaceDecl *iface) {
4243    // A method in a class declaration overrides declarations from
4244    if (!iface->hasDefinition())
4245      return;
4246
4247    //   - categories,
4248    for (auto *Cat : iface->known_categories())
4249      search(Cat);
4250
4251    //   - the super class, and
4252    if (ObjCInterfaceDecl *super = iface->getSuperClass())
4253      search(super);
4254
4255    //   - any referenced protocols.
4256    search(iface->getReferencedProtocols());
4257  }
4258
4259  void searchFrom(ObjCImplementationDecl *impl) {
4260    // A method in a class implementation overrides declarations from
4261    // the class interface.
4262    if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
4263      search(Interface);
4264  }
4265
4266  void search(const ObjCProtocolList &protocols) {
4267    for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
4268         i != e; ++i)
4269      search(*i);
4270  }
4271
4272  void search(ObjCContainerDecl *container) {
4273    // Check for a method in this container which matches this selector.
4274    ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
4275                                                Method->isInstanceMethod(),
4276                                                /*AllowHidden=*/true);
4277
4278    // If we find one, record it and bail out.
4279    if (meth) {
4280      Overridden.insert(meth);
4281      return;
4282    }
4283
4284    // Otherwise, search for methods that a hypothetical method here
4285    // would have overridden.
4286
4287    // Note that we're now in a recursive case.
4288    Recursive = true;
4289
4290    searchFromContainer(container);
4291  }
4292};
4293} // end anonymous namespace
4294
4295void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
4296                                    ObjCInterfaceDecl *CurrentClass,
4297                                    ResultTypeCompatibilityKind RTC) {
4298  // Search for overridden methods and merge information down from them.
4299  OverrideSearch overrides(*this, ObjCMethod);
4300  // Keep track if the method overrides any method in the class's base classes,
4301  // its protocols, or its categories' protocols; we will keep that info
4302  // in the ObjCMethodDecl.
4303  // For this info, a method in an implementation is not considered as
4304  // overriding the same method in the interface or its categories.
4305  bool hasOverriddenMethodsInBaseOrProtocol = false;
4306  for (OverrideSearch::iterator
4307         i = overrides.begin(), e = overrides.end(); i != e; ++i) {
4308    ObjCMethodDecl *overridden = *i;
4309
4310    if (!hasOverriddenMethodsInBaseOrProtocol) {
4311      if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
4312          CurrentClass != overridden->getClassInterface() ||
4313          overridden->isOverriding()) {
4314        hasOverriddenMethodsInBaseOrProtocol = true;
4315
4316      } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
4317        // OverrideSearch will return as "overridden" the same method in the
4318        // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
4319        // check whether a category of a base class introduced a method with the
4320        // same selector, after the interface method declaration.
4321        // To avoid unnecessary lookups in the majority of cases, we use the
4322        // extra info bits in GlobalMethodPool to check whether there were any
4323        // category methods with this selector.
4324        GlobalMethodPool::iterator It =
4325            MethodPool.find(ObjCMethod->getSelector());
4326        if (It != MethodPool.end()) {
4327          ObjCMethodList &List =
4328            ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
4329          unsigned CategCount = List.getBits();
4330          if (CategCount > 0) {
4331            // If the method is in a category we'll do lookup if there were at
4332            // least 2 category methods recorded, otherwise only one will do.
4333            if (CategCount > 1 ||
4334                !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
4335              OverrideSearch overrides(*this, overridden);
4336              for (OverrideSearch::iterator
4337                     OI= overrides.begin(), OE= overrides.end(); OI!=OE; ++OI) {
4338                ObjCMethodDecl *SuperOverridden = *OI;
4339                if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
4340                    CurrentClass != SuperOverridden->getClassInterface()) {
4341                  hasOverriddenMethodsInBaseOrProtocol = true;
4342                  overridden->setOverriding(true);
4343                  break;
4344                }
4345              }
4346            }
4347          }
4348        }
4349      }
4350    }
4351
4352    // Propagate down the 'related result type' bit from overridden methods.
4353    if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
4354      ObjCMethod->SetRelatedResultType();
4355
4356    // Then merge the declarations.
4357    mergeObjCMethodDecls(ObjCMethod, overridden);
4358
4359    if (ObjCMethod->isImplicit() && overridden->isImplicit())
4360      continue; // Conflicting properties are detected elsewhere.
4361
4362    // Check for overriding methods
4363    if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
4364        isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
4365      CheckConflictingOverridingMethod(ObjCMethod, overridden,
4366              isa<ObjCProtocolDecl>(overridden->getDeclContext()));
4367
4368    if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4369        isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
4370        !overridden->isImplicit() /* not meant for properties */) {
4371      ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4372                                          E = ObjCMethod->param_end();
4373      ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4374                                     PrevE = overridden->param_end();
4375      for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4376        assert(PrevI != overridden->param_end() && "Param mismatch");
4377        QualType T1 = Context.getCanonicalType((*ParamI)->getType());
4378        QualType T2 = Context.getCanonicalType((*PrevI)->getType());
4379        // If type of argument of method in this class does not match its
4380        // respective argument type in the super class method, issue warning;
4381        if (!Context.typesAreCompatible(T1, T2)) {
4382          Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
4383            << T1 << T2;
4384          Diag(overridden->getLocation(), diag::note_previous_declaration);
4385          break;
4386        }
4387      }
4388    }
4389  }
4390
4391  ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4392}
4393
4394/// Merge type nullability from for a redeclaration of the same entity,
4395/// producing the updated type of the redeclared entity.
4396static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc,
4397                                              QualType type,
4398                                              bool usesCSKeyword,
4399                                              SourceLocation prevLoc,
4400                                              QualType prevType,
4401                                              bool prevUsesCSKeyword) {
4402  // Determine the nullability of both types.
4403  auto nullability = type->getNullability(S.Context);
4404  auto prevNullability = prevType->getNullability(S.Context);
4405
4406  // Easy case: both have nullability.
4407  if (nullability.hasValue() == prevNullability.hasValue()) {
4408    // Neither has nullability; continue.
4409    if (!nullability)
4410      return type;
4411
4412    // The nullabilities are equivalent; do nothing.
4413    if (*nullability == *prevNullability)
4414      return type;
4415
4416    // Complain about mismatched nullability.
4417    S.Diag(loc, diag::err_nullability_conflicting)
4418      << DiagNullabilityKind(*nullability, usesCSKeyword)
4419      << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4420    return type;
4421  }
4422
4423  // If it's the redeclaration that has nullability, don't change anything.
4424  if (nullability)
4425    return type;
4426
4427  // Otherwise, provide the result with the same nullability.
4428  return S.Context.getAttributedType(
4429           AttributedType::getNullabilityAttrKind(*prevNullability),
4430           type, type);
4431}
4432
4433/// Merge information from the declaration of a method in the \@interface
4434/// (or a category/extension) into the corresponding method in the
4435/// @implementation (for a class or category).
4436static void mergeInterfaceMethodToImpl(Sema &S,
4437                                       ObjCMethodDecl *method,
4438                                       ObjCMethodDecl *prevMethod) {
4439  // Merge the objc_requires_super attribute.
4440  if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
4441      !method->hasAttr<ObjCRequiresSuperAttr>()) {
4442    // merge the attribute into implementation.
4443    method->addAttr(
4444      ObjCRequiresSuperAttr::CreateImplicit(S.Context,
4445                                            method->getLocation()));
4446  }
4447
4448  // Merge nullability of the result type.
4449  QualType newReturnType
4450    = mergeTypeNullabilityForRedecl(
4451        S, method->getReturnTypeSourceRange().getBegin(),
4452        method->getReturnType(),
4453        method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4454        prevMethod->getReturnTypeSourceRange().getBegin(),
4455        prevMethod->getReturnType(),
4456        prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4457  method->setReturnType(newReturnType);
4458
4459  // Handle each of the parameters.
4460  unsigned numParams = method->param_size();
4461  unsigned numPrevParams = prevMethod->param_size();
4462  for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
4463    ParmVarDecl *param = method->param_begin()[i];
4464    ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4465
4466    // Merge nullability.
4467    QualType newParamType
4468      = mergeTypeNullabilityForRedecl(
4469          S, param->getLocation(), param->getType(),
4470          param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4471          prevParam->getLocation(), prevParam->getType(),
4472          prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4473    param->setType(newParamType);
4474  }
4475}
4476
4477/// Verify that the method parameters/return value have types that are supported
4478/// by the x86 target.
4479static void checkObjCMethodX86VectorTypes(Sema &SemaRef,
4480                                          const ObjCMethodDecl *Method) {
4481  assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() ==
4482             llvm::Triple::x86 &&
4483         "x86-specific check invoked for a different target");
4484  SourceLocation Loc;
4485  QualType T;
4486  for (const ParmVarDecl *P : Method->parameters()) {
4487    if (P->getType()->isVectorType()) {
4488      Loc = P->getLocStart();
4489      T = P->getType();
4490      break;
4491    }
4492  }
4493  if (Loc.isInvalid()) {
4494    if (Method->getReturnType()->isVectorType()) {
4495      Loc = Method->getReturnTypeSourceRange().getBegin();
4496      T = Method->getReturnType();
4497    } else
4498      return;
4499  }
4500
4501  // Vector parameters/return values are not supported by objc_msgSend on x86 in
4502  // iOS < 9 and macOS < 10.11.
4503  const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple();
4504  VersionTuple AcceptedInVersion;
4505  if (Triple.getOS() == llvm::Triple::IOS)
4506    AcceptedInVersion = VersionTuple(/*Major=*/9);
4507  else if (Triple.isMacOSX())
4508    AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11);
4509  else
4510    return;
4511  if (SemaRef.getASTContext().getTargetInfo().getPlatformMinVersion() >=
4512      AcceptedInVersion)
4513    return;
4514  SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type)
4515      << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1
4516                                                       : /*parameter*/ 0)
4517      << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9");
4518}
4519
4520Decl *Sema::ActOnMethodDeclaration(
4521    Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc,
4522    tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4523    ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
4524    // optional arguments. The number of types/arguments is obtained
4525    // from the Sel.getNumArgs().
4526    ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
4527    unsigned CNumArgs, // c-style args
4528    const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind,
4529    bool isVariadic, bool MethodDefinition) {
4530  // Make sure we can establish a context for the method.
4531  if (!CurContext->isObjCContainer()) {
4532    Diag(MethodLoc, diag::err_missing_method_context);
4533    return nullptr;
4534  }
4535  Decl *ClassDecl = cast<ObjCContainerDecl>(CurContext);
4536  QualType resultDeclType;
4537
4538  bool HasRelatedResultType = false;
4539  TypeSourceInfo *ReturnTInfo = nullptr;
4540  if (ReturnType) {
4541    resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
4542
4543    if (CheckFunctionReturnType(resultDeclType, MethodLoc))
4544      return nullptr;
4545
4546    QualType bareResultType = resultDeclType;
4547    (void)AttributedType::stripOuterNullability(bareResultType);
4548    HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4549  } else { // get the type for "id".
4550    resultDeclType = Context.getObjCIdType();
4551    Diag(MethodLoc, diag::warn_missing_method_return_type)
4552      << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
4553  }
4554
4555  ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
4556      Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
4557      MethodType == tok::minus, isVariadic,
4558      /*isPropertyAccessor=*/false,
4559      /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4560      MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
4561                                           : ObjCMethodDecl::Required,
4562      HasRelatedResultType);
4563
4564  SmallVector<ParmVarDecl*, 16> Params;
4565
4566  for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
4567    QualType ArgType;
4568    TypeSourceInfo *DI;
4569
4570    if (!ArgInfo[i].Type) {
4571      ArgType = Context.getObjCIdType();
4572      DI = nullptr;
4573    } else {
4574      ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
4575    }
4576
4577    LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
4578                   LookupOrdinaryName, forRedeclarationInCurContext());
4579    LookupName(R, S);
4580    if (R.isSingleResult()) {
4581      NamedDecl *PrevDecl = R.getFoundDecl();
4582      if (S->isDeclScope(PrevDecl)) {
4583        Diag(ArgInfo[i].NameLoc,
4584             (MethodDefinition ? diag::warn_method_param_redefinition
4585                               : diag::warn_method_param_declaration))
4586          << ArgInfo[i].Name;
4587        Diag(PrevDecl->getLocation(),
4588             diag::note_previous_declaration);
4589      }
4590    }
4591
4592    SourceLocation StartLoc = DI
4593      ? DI->getTypeLoc().getBeginLoc()
4594      : ArgInfo[i].NameLoc;
4595
4596    ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
4597                                        ArgInfo[i].NameLoc, ArgInfo[i].Name,
4598                                        ArgType, DI, SC_None);
4599
4600    Param->setObjCMethodScopeInfo(i);
4601
4602    Param->setObjCDeclQualifier(
4603      CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
4604
4605    // Apply the attributes to the parameter.
4606    ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
4607    AddPragmaAttributes(TUScope, Param);
4608
4609    if (Param->hasAttr<BlocksAttr>()) {
4610      Diag(Param->getLocation(), diag::err_block_on_nonlocal);
4611      Param->setInvalidDecl();
4612    }
4613    S->AddDecl(Param);
4614    IdResolver.AddDecl(Param);
4615
4616    Params.push_back(Param);
4617  }
4618
4619  for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
4620    ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
4621    QualType ArgType = Param->getType();
4622    if (ArgType.isNull())
4623      ArgType = Context.getObjCIdType();
4624    else
4625      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4626      ArgType = Context.getAdjustedParameterType(ArgType);
4627
4628    Param->setDeclContext(ObjCMethod);
4629    Params.push_back(Param);
4630  }
4631
4632  ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
4633  ObjCMethod->setObjCDeclQualifier(
4634    CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
4635
4636  ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
4637  AddPragmaAttributes(TUScope, ObjCMethod);
4638
4639  // Add the method now.
4640  const ObjCMethodDecl *PrevMethod = nullptr;
4641  if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
4642    if (MethodType == tok::minus) {
4643      PrevMethod = ImpDecl->getInstanceMethod(Sel);
4644      ImpDecl->addInstanceMethod(ObjCMethod);
4645    } else {
4646      PrevMethod = ImpDecl->getClassMethod(Sel);
4647      ImpDecl->addClassMethod(ObjCMethod);
4648    }
4649
4650    // Merge information from the @interface declaration into the
4651    // @implementation.
4652    if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
4653      if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
4654                                          ObjCMethod->isInstanceMethod())) {
4655        mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD);
4656
4657        // Warn about defining -dealloc in a category.
4658        if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
4659            ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
4660          Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
4661            << ObjCMethod->getDeclName();
4662        }
4663      }
4664
4665      // Warn if a method declared in a protocol to which a category or
4666      // extension conforms is non-escaping and the implementation's method is
4667      // escaping.
4668      for (auto *C : IDecl->visible_categories())
4669        for (auto &P : C->protocols())
4670          if (auto *IMD = P->lookupMethod(ObjCMethod->getSelector(),
4671                                          ObjCMethod->isInstanceMethod())) {
4672            assert(ObjCMethod->parameters().size() ==
4673                       IMD->parameters().size() &&
4674                   "Methods have different number of parameters");
4675            auto OI = IMD->param_begin(), OE = IMD->param_end();
4676            auto NI = ObjCMethod->param_begin();
4677            for (; OI != OE; ++OI, ++NI)
4678              diagnoseNoescape(*NI, *OI, C, P, *this);
4679          }
4680    }
4681  } else {
4682    cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
4683  }
4684
4685  if (PrevMethod) {
4686    // You can never have two method definitions with the same name.
4687    Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
4688      << ObjCMethod->getDeclName();
4689    Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4690    ObjCMethod->setInvalidDecl();
4691    return ObjCMethod;
4692  }
4693
4694  // If this Objective-C method does not have a related result type, but we
4695  // are allowed to infer related result types, try to do so based on the
4696  // method family.
4697  ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
4698  if (!CurrentClass) {
4699    if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
4700      CurrentClass = Cat->getClassInterface();
4701    else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
4702      CurrentClass = Impl->getClassInterface();
4703    else if (ObjCCategoryImplDecl *CatImpl
4704                                   = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
4705      CurrentClass = CatImpl->getClassInterface();
4706  }
4707
4708  ResultTypeCompatibilityKind RTC
4709    = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
4710
4711  CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
4712
4713  bool ARCError = false;
4714  if (getLangOpts().ObjCAutoRefCount)
4715    ARCError = CheckARCMethodDecl(ObjCMethod);
4716
4717  // Infer the related result type when possible.
4718  if (!ARCError && RTC == Sema::RTC_Compatible &&
4719      !ObjCMethod->hasRelatedResultType() &&
4720      LangOpts.ObjCInferRelatedResultType) {
4721    bool InferRelatedResultType = false;
4722    switch (ObjCMethod->getMethodFamily()) {
4723    case OMF_None:
4724    case OMF_copy:
4725    case OMF_dealloc:
4726    case OMF_finalize:
4727    case OMF_mutableCopy:
4728    case OMF_release:
4729    case OMF_retainCount:
4730    case OMF_initialize:
4731    case OMF_performSelector:
4732      break;
4733
4734    case OMF_alloc:
4735    case OMF_new:
4736        InferRelatedResultType = ObjCMethod->isClassMethod();
4737      break;
4738
4739    case OMF_init:
4740    case OMF_autorelease:
4741    case OMF_retain:
4742    case OMF_self:
4743      InferRelatedResultType = ObjCMethod->isInstanceMethod();
4744      break;
4745    }
4746
4747    if (InferRelatedResultType &&
4748        !ObjCMethod->getReturnType()->isObjCIndependentClassType())
4749      ObjCMethod->SetRelatedResultType();
4750  }
4751
4752  if (MethodDefinition &&
4753      Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
4754    checkObjCMethodX86VectorTypes(*this, ObjCMethod);
4755
4756  // + load method cannot have availability attributes. It get called on
4757  // startup, so it has to have the availability of the deployment target.
4758  if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) {
4759    if (ObjCMethod->isClassMethod() &&
4760        ObjCMethod->getSelector().getAsString() == "load") {
4761      Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
4762          << 0;
4763      ObjCMethod->dropAttr<AvailabilityAttr>();
4764    }
4765  }
4766
4767  ActOnDocumentableDecl(ObjCMethod);
4768
4769  return ObjCMethod;
4770}
4771
4772bool Sema::CheckObjCDeclScope(Decl *D) {
4773  // Following is also an error. But it is caused by a missing @end
4774  // and diagnostic is issued elsewhere.
4775  if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
4776    return false;
4777
4778  // If we switched context to translation unit while we are still lexically in
4779  // an objc container, it means the parser missed emitting an error.
4780  if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
4781    return false;
4782
4783  Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
4784  D->setInvalidDecl();
4785
4786  return true;
4787}
4788
4789/// Called whenever \@defs(ClassName) is encountered in the source.  Inserts the
4790/// instance variables of ClassName into Decls.
4791void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
4792                     IdentifierInfo *ClassName,
4793                     SmallVectorImpl<Decl*> &Decls) {
4794  // Check that ClassName is a valid class
4795  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
4796  if (!Class) {
4797    Diag(DeclStart, diag::err_undef_interface) << ClassName;
4798    return;
4799  }
4800  if (LangOpts.ObjCRuntime.isNonFragile()) {
4801    Diag(DeclStart, diag::err_atdef_nonfragile_interface);
4802    return;
4803  }
4804
4805  // Collect the instance variables
4806  SmallVector<const ObjCIvarDecl*, 32> Ivars;
4807  Context.DeepCollectObjCIvars(Class, true, Ivars);
4808  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
4809  for (unsigned i = 0; i < Ivars.size(); i++) {
4810    const FieldDecl* ID = Ivars[i];
4811    RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
4812    Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
4813                                           /*FIXME: StartL=*/ID->getLocation(),
4814                                           ID->getLocation(),
4815                                           ID->getIdentifier(), ID->getType(),
4816                                           ID->getBitWidth());
4817    Decls.push_back(FD);
4818  }
4819
4820  // Introduce all of these fields into the appropriate scope.
4821  for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
4822       D != Decls.end(); ++D) {
4823    FieldDecl *FD = cast<FieldDecl>(*D);
4824    if (getLangOpts().CPlusPlus)
4825      PushOnScopeChains(FD, S);
4826    else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
4827      Record->addDecl(FD);
4828  }
4829}
4830
4831/// Build a type-check a new Objective-C exception variable declaration.
4832VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
4833                                      SourceLocation StartLoc,
4834                                      SourceLocation IdLoc,
4835                                      IdentifierInfo *Id,
4836                                      bool Invalid) {
4837  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4838  // duration shall not be qualified by an address-space qualifier."
4839  // Since all parameters have automatic store duration, they can not have
4840  // an address space.
4841  if (T.getAddressSpace() != LangAS::Default) {
4842    Diag(IdLoc, diag::err_arg_with_address_space);
4843    Invalid = true;
4844  }
4845
4846  // An @catch parameter must be an unqualified object pointer type;
4847  // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
4848  if (Invalid) {
4849    // Don't do any further checking.
4850  } else if (T->isDependentType()) {
4851    // Okay: we don't know what this type will instantiate to.
4852  } else if (T->isObjCQualifiedIdType()) {
4853    Invalid = true;
4854    Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
4855  } else if (T->isObjCIdType()) {
4856    // Okay: we don't know what this type will instantiate to.
4857  } else if (!T->isObjCObjectPointerType()) {
4858    Invalid = true;
4859    Diag(IdLoc, diag::err_catch_param_not_objc_type);
4860  } else if (!T->getAs<ObjCObjectPointerType>()->getInterfaceType()) {
4861    Invalid = true;
4862    Diag(IdLoc, diag::err_catch_param_not_objc_type);
4863  }
4864
4865  VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
4866                                 T, TInfo, SC_None);
4867  New->setExceptionVariable(true);
4868
4869  // In ARC, infer 'retaining' for variables of retainable type.
4870  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
4871    Invalid = true;
4872
4873  if (Invalid)
4874    New->setInvalidDecl();
4875  return New;
4876}
4877
4878Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
4879  const DeclSpec &DS = D.getDeclSpec();
4880
4881  // We allow the "register" storage class on exception variables because
4882  // GCC did, but we drop it completely. Any other storage class is an error.
4883  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4884    Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
4885      << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
4886  } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4887    Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
4888      << DeclSpec::getSpecifierName(SCS);
4889  }
4890  if (DS.isInlineSpecified())
4891    Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4892        << getLangOpts().CPlusPlus17;
4893  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
4894    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
4895         diag::err_invalid_thread)
4896     << DeclSpec::getSpecifierName(TSCS);
4897  D.getMutableDeclSpec().ClearStorageClassSpecs();
4898
4899  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4900
4901  // Check that there are no default arguments inside the type of this
4902  // exception object (C++ only).
4903  if (getLangOpts().CPlusPlus)
4904    CheckExtraCXXDefaultArguments(D);
4905
4906  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4907  QualType ExceptionType = TInfo->getType();
4908
4909  VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
4910                                        D.getSourceRange().getBegin(),
4911                                        D.getIdentifierLoc(),
4912                                        D.getIdentifier(),
4913                                        D.isInvalidType());
4914
4915  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4916  if (D.getCXXScopeSpec().isSet()) {
4917    Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
4918      << D.getCXXScopeSpec().getRange();
4919    New->setInvalidDecl();
4920  }
4921
4922  // Add the parameter declaration into this scope.
4923  S->AddDecl(New);
4924  if (D.getIdentifier())
4925    IdResolver.AddDecl(New);
4926
4927  ProcessDeclAttributes(S, New, D);
4928
4929  if (New->hasAttr<BlocksAttr>())
4930    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4931  return New;
4932}
4933
4934/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
4935/// initialization.
4936void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
4937                                SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
4938  for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
4939       Iv= Iv->getNextIvar()) {
4940    QualType QT = Context.getBaseElementType(Iv->getType());
4941    if (QT->isRecordType())
4942      Ivars.push_back(Iv);
4943  }
4944}
4945
4946void Sema::DiagnoseUseOfUnimplementedSelectors() {
4947  // Load referenced selectors from the external source.
4948  if (ExternalSource) {
4949    SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
4950    ExternalSource->ReadReferencedSelectors(Sels);
4951    for (unsigned I = 0, N = Sels.size(); I != N; ++I)
4952      ReferencedSelectors[Sels[I].first] = Sels[I].second;
4953  }
4954
4955  // Warning will be issued only when selector table is
4956  // generated (which means there is at lease one implementation
4957  // in the TU). This is to match gcc's behavior.
4958  if (ReferencedSelectors.empty() ||
4959      !Context.AnyObjCImplementation())
4960    return;
4961  for (auto &SelectorAndLocation : ReferencedSelectors) {
4962    Selector Sel = SelectorAndLocation.first;
4963    SourceLocation Loc = SelectorAndLocation.second;
4964    if (!LookupImplementedMethodInGlobalPool(Sel))
4965      Diag(Loc, diag::warn_unimplemented_selector) << Sel;
4966  }
4967}
4968
4969ObjCIvarDecl *
4970Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
4971                                     const ObjCPropertyDecl *&PDecl) const {
4972  if (Method->isClassMethod())
4973    return nullptr;
4974  const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
4975  if (!IDecl)
4976    return nullptr;
4977  Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
4978                               /*shallowCategoryLookup=*/false,
4979                               /*followSuper=*/false);
4980  if (!Method || !Method->isPropertyAccessor())
4981    return nullptr;
4982  if ((PDecl = Method->findPropertyDecl()))
4983    if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
4984      // property backing ivar must belong to property's class
4985      // or be a private ivar in class's implementation.
4986      // FIXME. fix the const-ness issue.
4987      IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
4988                                                        IV->getIdentifier());
4989      return IV;
4990    }
4991  return nullptr;
4992}
4993
4994namespace {
4995  /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
4996  /// accessor references the backing ivar.
4997  class UnusedBackingIvarChecker :
4998      public RecursiveASTVisitor<UnusedBackingIvarChecker> {
4999  public:
5000    Sema &S;
5001    const ObjCMethodDecl *Method;
5002    const ObjCIvarDecl *IvarD;
5003    bool AccessedIvar;
5004    bool InvokedSelfMethod;
5005
5006    UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
5007                             const ObjCIvarDecl *IvarD)
5008      : S(S), Method(Method), IvarD(IvarD),
5009        AccessedIvar(false), InvokedSelfMethod(false) {
5010      assert(IvarD);
5011    }
5012
5013    bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
5014      if (E->getDecl() == IvarD) {
5015        AccessedIvar = true;
5016        return false;
5017      }
5018      return true;
5019    }
5020
5021    bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
5022      if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
5023          S.isSelfExpr(E->getInstanceReceiver(), Method)) {
5024        InvokedSelfMethod = true;
5025      }
5026      return true;
5027    }
5028  };
5029} // end anonymous namespace
5030
5031void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S,
5032                                          const ObjCImplementationDecl *ImplD) {
5033  if (S->hasUnrecoverableErrorOccurred())
5034    return;
5035
5036  for (const auto *CurMethod : ImplD->instance_methods()) {
5037    unsigned DIAG = diag::warn_unused_property_backing_ivar;
5038    SourceLocation Loc = CurMethod->getLocation();
5039    if (Diags.isIgnored(DIAG, Loc))
5040      continue;
5041
5042    const ObjCPropertyDecl *PDecl;
5043    const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
5044    if (!IV)
5045      continue;
5046
5047    UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
5048    Checker.TraverseStmt(CurMethod->getBody());
5049    if (Checker.AccessedIvar)
5050      continue;
5051
5052    // Do not issue this warning if backing ivar is used somewhere and accessor
5053    // implementation makes a self call. This is to prevent false positive in
5054    // cases where the ivar is accessed by another method that the accessor
5055    // delegates to.
5056    if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
5057      Diag(Loc, DIAG) << IV;
5058      Diag(PDecl->getLocation(), diag::note_property_declare);
5059    }
5060  }
5061}
5062