SemaDeclObjC.cpp revision 249423
1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for Objective C declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/Basic/SourceManager.h"
22#include "clang/Lex/Preprocessor.h"
23#include "clang/Sema/DeclSpec.h"
24#include "clang/Sema/ExternalSemaSource.h"
25#include "clang/Sema/Lookup.h"
26#include "clang/Sema/Scope.h"
27#include "clang/Sema/ScopeInfo.h"
28#include "llvm/ADT/DenseSet.h"
29
30using namespace clang;
31
32/// Check whether the given method, which must be in the 'init'
33/// family, is a valid member of that family.
34///
35/// \param receiverTypeIfCall - if null, check this as if declaring it;
36///   if non-null, check this as if making a call to it with the given
37///   receiver type
38///
39/// \return true to indicate that there was an error and appropriate
40///   actions were taken
41bool Sema::checkInitMethod(ObjCMethodDecl *method,
42                           QualType receiverTypeIfCall) {
43  if (method->isInvalidDecl()) return true;
44
45  // This castAs is safe: methods that don't return an object
46  // pointer won't be inferred as inits and will reject an explicit
47  // objc_method_family(init).
48
49  // We ignore protocols here.  Should we?  What about Class?
50
51  const ObjCObjectType *result = method->getResultType()
52    ->castAs<ObjCObjectPointerType>()->getObjectType();
53
54  if (result->isObjCId()) {
55    return false;
56  } else if (result->isObjCClass()) {
57    // fall through: always an error
58  } else {
59    ObjCInterfaceDecl *resultClass = result->getInterface();
60    assert(resultClass && "unexpected object type!");
61
62    // It's okay for the result type to still be a forward declaration
63    // if we're checking an interface declaration.
64    if (!resultClass->hasDefinition()) {
65      if (receiverTypeIfCall.isNull() &&
66          !isa<ObjCImplementationDecl>(method->getDeclContext()))
67        return false;
68
69    // Otherwise, we try to compare class types.
70    } else {
71      // If this method was declared in a protocol, we can't check
72      // anything unless we have a receiver type that's an interface.
73      const ObjCInterfaceDecl *receiverClass = 0;
74      if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
75        if (receiverTypeIfCall.isNull())
76          return false;
77
78        receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
79          ->getInterfaceDecl();
80
81        // This can be null for calls to e.g. id<Foo>.
82        if (!receiverClass) return false;
83      } else {
84        receiverClass = method->getClassInterface();
85        assert(receiverClass && "method not associated with a class!");
86      }
87
88      // If either class is a subclass of the other, it's fine.
89      if (receiverClass->isSuperClassOf(resultClass) ||
90          resultClass->isSuperClassOf(receiverClass))
91        return false;
92    }
93  }
94
95  SourceLocation loc = method->getLocation();
96
97  // If we're in a system header, and this is not a call, just make
98  // the method unusable.
99  if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
100    method->addAttr(new (Context) UnavailableAttr(loc, Context,
101                "init method returns a type unrelated to its receiver type"));
102    return true;
103  }
104
105  // Otherwise, it's an error.
106  Diag(loc, diag::err_arc_init_method_unrelated_result_type);
107  method->setInvalidDecl();
108  return true;
109}
110
111void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
112                                   const ObjCMethodDecl *Overridden) {
113  if (Overridden->hasRelatedResultType() &&
114      !NewMethod->hasRelatedResultType()) {
115    // This can only happen when the method follows a naming convention that
116    // implies a related result type, and the original (overridden) method has
117    // a suitable return type, but the new (overriding) method does not have
118    // a suitable return type.
119    QualType ResultType = NewMethod->getResultType();
120    SourceRange ResultTypeRange;
121    if (const TypeSourceInfo *ResultTypeInfo
122                                        = NewMethod->getResultTypeSourceInfo())
123      ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
124
125    // Figure out which class this method is part of, if any.
126    ObjCInterfaceDecl *CurrentClass
127      = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
128    if (!CurrentClass) {
129      DeclContext *DC = NewMethod->getDeclContext();
130      if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
131        CurrentClass = Cat->getClassInterface();
132      else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
133        CurrentClass = Impl->getClassInterface();
134      else if (ObjCCategoryImplDecl *CatImpl
135               = dyn_cast<ObjCCategoryImplDecl>(DC))
136        CurrentClass = CatImpl->getClassInterface();
137    }
138
139    if (CurrentClass) {
140      Diag(NewMethod->getLocation(),
141           diag::warn_related_result_type_compatibility_class)
142        << Context.getObjCInterfaceType(CurrentClass)
143        << ResultType
144        << ResultTypeRange;
145    } else {
146      Diag(NewMethod->getLocation(),
147           diag::warn_related_result_type_compatibility_protocol)
148        << ResultType
149        << ResultTypeRange;
150    }
151
152    if (ObjCMethodFamily Family = Overridden->getMethodFamily())
153      Diag(Overridden->getLocation(),
154           diag::note_related_result_type_family)
155        << /*overridden method*/ 0
156        << Family;
157    else
158      Diag(Overridden->getLocation(),
159           diag::note_related_result_type_overridden);
160  }
161  if (getLangOpts().ObjCAutoRefCount) {
162    if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
163         Overridden->hasAttr<NSReturnsRetainedAttr>())) {
164        Diag(NewMethod->getLocation(),
165             diag::err_nsreturns_retained_attribute_mismatch) << 1;
166        Diag(Overridden->getLocation(), diag::note_previous_decl)
167        << "method";
168    }
169    if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
170              Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
171        Diag(NewMethod->getLocation(),
172             diag::err_nsreturns_retained_attribute_mismatch) << 0;
173        Diag(Overridden->getLocation(), diag::note_previous_decl)
174        << "method";
175    }
176    ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
177                                         oe = Overridden->param_end();
178    for (ObjCMethodDecl::param_iterator
179           ni = NewMethod->param_begin(), ne = NewMethod->param_end();
180         ni != ne && oi != oe; ++ni, ++oi) {
181      const ParmVarDecl *oldDecl = (*oi);
182      ParmVarDecl *newDecl = (*ni);
183      if (newDecl->hasAttr<NSConsumedAttr>() !=
184          oldDecl->hasAttr<NSConsumedAttr>()) {
185        Diag(newDecl->getLocation(),
186             diag::err_nsconsumed_attribute_mismatch);
187        Diag(oldDecl->getLocation(), diag::note_previous_decl)
188          << "parameter";
189      }
190    }
191  }
192}
193
194/// \brief Check a method declaration for compatibility with the Objective-C
195/// ARC conventions.
196bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
197  ObjCMethodFamily family = method->getMethodFamily();
198  switch (family) {
199  case OMF_None:
200  case OMF_finalize:
201  case OMF_retain:
202  case OMF_release:
203  case OMF_autorelease:
204  case OMF_retainCount:
205  case OMF_self:
206  case OMF_performSelector:
207    return false;
208
209  case OMF_dealloc:
210    if (!Context.hasSameType(method->getResultType(), Context.VoidTy)) {
211      SourceRange ResultTypeRange;
212      if (const TypeSourceInfo *ResultTypeInfo
213          = method->getResultTypeSourceInfo())
214        ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
215      if (ResultTypeRange.isInvalid())
216        Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
217          << method->getResultType()
218          << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
219      else
220        Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
221          << method->getResultType()
222          << FixItHint::CreateReplacement(ResultTypeRange, "void");
223      return true;
224    }
225    return false;
226
227  case OMF_init:
228    // If the method doesn't obey the init rules, don't bother annotating it.
229    if (checkInitMethod(method, QualType()))
230      return true;
231
232    method->addAttr(new (Context) NSConsumesSelfAttr(SourceLocation(),
233                                                     Context));
234
235    // Don't add a second copy of this attribute, but otherwise don't
236    // let it be suppressed.
237    if (method->hasAttr<NSReturnsRetainedAttr>())
238      return false;
239    break;
240
241  case OMF_alloc:
242  case OMF_copy:
243  case OMF_mutableCopy:
244  case OMF_new:
245    if (method->hasAttr<NSReturnsRetainedAttr>() ||
246        method->hasAttr<NSReturnsNotRetainedAttr>() ||
247        method->hasAttr<NSReturnsAutoreleasedAttr>())
248      return false;
249    break;
250  }
251
252  method->addAttr(new (Context) NSReturnsRetainedAttr(SourceLocation(),
253                                                      Context));
254  return false;
255}
256
257static void DiagnoseObjCImplementedDeprecations(Sema &S,
258                                                NamedDecl *ND,
259                                                SourceLocation ImplLoc,
260                                                int select) {
261  if (ND && ND->isDeprecated()) {
262    S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
263    if (select == 0)
264      S.Diag(ND->getLocation(), diag::note_method_declared_at)
265        << ND->getDeclName();
266    else
267      S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
268  }
269}
270
271/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
272/// pool.
273void Sema::AddAnyMethodToGlobalPool(Decl *D) {
274  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
275
276  // If we don't have a valid method decl, simply return.
277  if (!MDecl)
278    return;
279  if (MDecl->isInstanceMethod())
280    AddInstanceMethodToGlobalPool(MDecl, true);
281  else
282    AddFactoryMethodToGlobalPool(MDecl, true);
283}
284
285/// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
286/// has explicit ownership attribute; false otherwise.
287static bool
288HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
289  QualType T = Param->getType();
290
291  if (const PointerType *PT = T->getAs<PointerType>()) {
292    T = PT->getPointeeType();
293  } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
294    T = RT->getPointeeType();
295  } else {
296    return true;
297  }
298
299  // If we have a lifetime qualifier, but it's local, we must have
300  // inferred it. So, it is implicit.
301  return !T.getLocalQualifiers().hasObjCLifetime();
302}
303
304/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
305/// and user declared, in the method definition's AST.
306void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
307  assert((getCurMethodDecl() == 0) && "Methodparsing confused");
308  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
309
310  // If we don't have a valid method decl, simply return.
311  if (!MDecl)
312    return;
313
314  // Allow all of Sema to see that we are entering a method definition.
315  PushDeclContext(FnBodyScope, MDecl);
316  PushFunctionScope();
317
318  // Create Decl objects for each parameter, entrring them in the scope for
319  // binding to their use.
320
321  // Insert the invisible arguments, self and _cmd!
322  MDecl->createImplicitParams(Context, MDecl->getClassInterface());
323
324  PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
325  PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
326
327  // Introduce all of the other parameters into this scope.
328  for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
329       E = MDecl->param_end(); PI != E; ++PI) {
330    ParmVarDecl *Param = (*PI);
331    if (!Param->isInvalidDecl() &&
332        RequireCompleteType(Param->getLocation(), Param->getType(),
333                            diag::err_typecheck_decl_incomplete_type))
334          Param->setInvalidDecl();
335    if (!Param->isInvalidDecl() &&
336        getLangOpts().ObjCAutoRefCount &&
337        !HasExplicitOwnershipAttr(*this, Param))
338      Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
339            Param->getType();
340
341    if ((*PI)->getIdentifier())
342      PushOnScopeChains(*PI, FnBodyScope);
343  }
344
345  // In ARC, disallow definition of retain/release/autorelease/retainCount
346  if (getLangOpts().ObjCAutoRefCount) {
347    switch (MDecl->getMethodFamily()) {
348    case OMF_retain:
349    case OMF_retainCount:
350    case OMF_release:
351    case OMF_autorelease:
352      Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
353        << MDecl->getSelector();
354      break;
355
356    case OMF_None:
357    case OMF_dealloc:
358    case OMF_finalize:
359    case OMF_alloc:
360    case OMF_init:
361    case OMF_mutableCopy:
362    case OMF_copy:
363    case OMF_new:
364    case OMF_self:
365    case OMF_performSelector:
366      break;
367    }
368  }
369
370  // Warn on deprecated methods under -Wdeprecated-implementations,
371  // and prepare for warning on missing super calls.
372  if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
373    ObjCMethodDecl *IMD =
374      IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
375
376    if (IMD) {
377      ObjCImplDecl *ImplDeclOfMethodDef =
378        dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
379      ObjCContainerDecl *ContDeclOfMethodDecl =
380        dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
381      ObjCImplDecl *ImplDeclOfMethodDecl = 0;
382      if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
383        ImplDeclOfMethodDecl = OID->getImplementation();
384      else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl))
385        ImplDeclOfMethodDecl = CD->getImplementation();
386      // No need to issue deprecated warning if deprecated mehod in class/category
387      // is being implemented in its own implementation (no overriding is involved).
388      if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
389        DiagnoseObjCImplementedDeprecations(*this,
390                                          dyn_cast<NamedDecl>(IMD),
391                                          MDecl->getLocation(), 0);
392    }
393
394    // If this is "dealloc" or "finalize", set some bit here.
395    // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
396    // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
397    // Only do this if the current class actually has a superclass.
398    if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
399      ObjCMethodFamily Family = MDecl->getMethodFamily();
400      if (Family == OMF_dealloc) {
401        if (!(getLangOpts().ObjCAutoRefCount ||
402              getLangOpts().getGC() == LangOptions::GCOnly))
403          getCurFunction()->ObjCShouldCallSuper = true;
404
405      } else if (Family == OMF_finalize) {
406        if (Context.getLangOpts().getGC() != LangOptions::NonGC)
407          getCurFunction()->ObjCShouldCallSuper = true;
408
409      } else {
410        const ObjCMethodDecl *SuperMethod =
411          SuperClass->lookupMethod(MDecl->getSelector(),
412                                   MDecl->isInstanceMethod());
413        getCurFunction()->ObjCShouldCallSuper =
414          (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
415      }
416    }
417  }
418}
419
420namespace {
421
422// Callback to only accept typo corrections that are Objective-C classes.
423// If an ObjCInterfaceDecl* is given to the constructor, then the validation
424// function will reject corrections to that class.
425class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
426 public:
427  ObjCInterfaceValidatorCCC() : CurrentIDecl(0) {}
428  explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
429      : CurrentIDecl(IDecl) {}
430
431  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
432    ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
433    return ID && !declaresSameEntity(ID, CurrentIDecl);
434  }
435
436 private:
437  ObjCInterfaceDecl *CurrentIDecl;
438};
439
440}
441
442Decl *Sema::
443ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
444                         IdentifierInfo *ClassName, SourceLocation ClassLoc,
445                         IdentifierInfo *SuperName, SourceLocation SuperLoc,
446                         Decl * const *ProtoRefs, unsigned NumProtoRefs,
447                         const SourceLocation *ProtoLocs,
448                         SourceLocation EndProtoLoc, AttributeList *AttrList) {
449  assert(ClassName && "Missing class identifier");
450
451  // Check for another declaration kind with the same name.
452  NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
453                                         LookupOrdinaryName, ForRedeclaration);
454
455  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
456    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
457    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
458  }
459
460  // Create a declaration to describe this @interface.
461  ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
462  ObjCInterfaceDecl *IDecl
463    = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
464                                PrevIDecl, ClassLoc);
465
466  if (PrevIDecl) {
467    // Class already seen. Was it a definition?
468    if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
469      Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
470        << PrevIDecl->getDeclName();
471      Diag(Def->getLocation(), diag::note_previous_definition);
472      IDecl->setInvalidDecl();
473    }
474  }
475
476  if (AttrList)
477    ProcessDeclAttributeList(TUScope, IDecl, AttrList);
478  PushOnScopeChains(IDecl, TUScope);
479
480  // Start the definition of this class. If we're in a redefinition case, there
481  // may already be a definition, so we'll end up adding to it.
482  if (!IDecl->hasDefinition())
483    IDecl->startDefinition();
484
485  if (SuperName) {
486    // Check if a different kind of symbol declared in this scope.
487    PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
488                                LookupOrdinaryName);
489
490    if (!PrevDecl) {
491      // Try to correct for a typo in the superclass name without correcting
492      // to the class we're defining.
493      ObjCInterfaceValidatorCCC Validator(IDecl);
494      if (TypoCorrection Corrected = CorrectTypo(
495          DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope,
496          NULL, Validator)) {
497        PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
498        Diag(SuperLoc, diag::err_undef_superclass_suggest)
499          << SuperName << ClassName << PrevDecl->getDeclName();
500        Diag(PrevDecl->getLocation(), diag::note_previous_decl)
501          << PrevDecl->getDeclName();
502      }
503    }
504
505    if (declaresSameEntity(PrevDecl, IDecl)) {
506      Diag(SuperLoc, diag::err_recursive_superclass)
507        << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
508      IDecl->setEndOfDefinitionLoc(ClassLoc);
509    } else {
510      ObjCInterfaceDecl *SuperClassDecl =
511                                dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
512
513      // Diagnose classes that inherit from deprecated classes.
514      if (SuperClassDecl)
515        (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
516
517      if (PrevDecl && SuperClassDecl == 0) {
518        // The previous declaration was not a class decl. Check if we have a
519        // typedef. If we do, get the underlying class type.
520        if (const TypedefNameDecl *TDecl =
521              dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
522          QualType T = TDecl->getUnderlyingType();
523          if (T->isObjCObjectType()) {
524            if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
525              SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
526              // This handles the following case:
527              // @interface NewI @end
528              // typedef NewI DeprI __attribute__((deprecated("blah")))
529              // @interface SI : DeprI /* warn here */ @end
530              (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
531            }
532          }
533        }
534
535        // This handles the following case:
536        //
537        // typedef int SuperClass;
538        // @interface MyClass : SuperClass {} @end
539        //
540        if (!SuperClassDecl) {
541          Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
542          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
543        }
544      }
545
546      if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
547        if (!SuperClassDecl)
548          Diag(SuperLoc, diag::err_undef_superclass)
549            << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
550        else if (RequireCompleteType(SuperLoc,
551                                  Context.getObjCInterfaceType(SuperClassDecl),
552                                     diag::err_forward_superclass,
553                                     SuperClassDecl->getDeclName(),
554                                     ClassName,
555                                     SourceRange(AtInterfaceLoc, ClassLoc))) {
556          SuperClassDecl = 0;
557        }
558      }
559      IDecl->setSuperClass(SuperClassDecl);
560      IDecl->setSuperClassLoc(SuperLoc);
561      IDecl->setEndOfDefinitionLoc(SuperLoc);
562    }
563  } else { // we have a root class.
564    IDecl->setEndOfDefinitionLoc(ClassLoc);
565  }
566
567  // Check then save referenced protocols.
568  if (NumProtoRefs) {
569    IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
570                           ProtoLocs, Context);
571    IDecl->setEndOfDefinitionLoc(EndProtoLoc);
572  }
573
574  CheckObjCDeclScope(IDecl);
575  return ActOnObjCContainerStartDefinition(IDecl);
576}
577
578/// ActOnCompatibilityAlias - this action is called after complete parsing of
579/// a \@compatibility_alias declaration. It sets up the alias relationships.
580Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
581                                    IdentifierInfo *AliasName,
582                                    SourceLocation AliasLocation,
583                                    IdentifierInfo *ClassName,
584                                    SourceLocation ClassLocation) {
585  // Look for previous declaration of alias name
586  NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
587                                      LookupOrdinaryName, ForRedeclaration);
588  if (ADecl) {
589    if (isa<ObjCCompatibleAliasDecl>(ADecl))
590      Diag(AliasLocation, diag::warn_previous_alias_decl);
591    else
592      Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
593    Diag(ADecl->getLocation(), diag::note_previous_declaration);
594    return 0;
595  }
596  // Check for class declaration
597  NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
598                                       LookupOrdinaryName, ForRedeclaration);
599  if (const TypedefNameDecl *TDecl =
600        dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
601    QualType T = TDecl->getUnderlyingType();
602    if (T->isObjCObjectType()) {
603      if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
604        ClassName = IDecl->getIdentifier();
605        CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
606                                  LookupOrdinaryName, ForRedeclaration);
607      }
608    }
609  }
610  ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
611  if (CDecl == 0) {
612    Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
613    if (CDeclU)
614      Diag(CDeclU->getLocation(), diag::note_previous_declaration);
615    return 0;
616  }
617
618  // Everything checked out, instantiate a new alias declaration AST.
619  ObjCCompatibleAliasDecl *AliasDecl =
620    ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
621
622  if (!CheckObjCDeclScope(AliasDecl))
623    PushOnScopeChains(AliasDecl, TUScope);
624
625  return AliasDecl;
626}
627
628bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
629  IdentifierInfo *PName,
630  SourceLocation &Ploc, SourceLocation PrevLoc,
631  const ObjCList<ObjCProtocolDecl> &PList) {
632
633  bool res = false;
634  for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
635       E = PList.end(); I != E; ++I) {
636    if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
637                                                 Ploc)) {
638      if (PDecl->getIdentifier() == PName) {
639        Diag(Ploc, diag::err_protocol_has_circular_dependency);
640        Diag(PrevLoc, diag::note_previous_definition);
641        res = true;
642      }
643
644      if (!PDecl->hasDefinition())
645        continue;
646
647      if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
648            PDecl->getLocation(), PDecl->getReferencedProtocols()))
649        res = true;
650    }
651  }
652  return res;
653}
654
655Decl *
656Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
657                                  IdentifierInfo *ProtocolName,
658                                  SourceLocation ProtocolLoc,
659                                  Decl * const *ProtoRefs,
660                                  unsigned NumProtoRefs,
661                                  const SourceLocation *ProtoLocs,
662                                  SourceLocation EndProtoLoc,
663                                  AttributeList *AttrList) {
664  bool err = false;
665  // FIXME: Deal with AttrList.
666  assert(ProtocolName && "Missing protocol identifier");
667  ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
668                                              ForRedeclaration);
669  ObjCProtocolDecl *PDecl = 0;
670  if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : 0) {
671    // If we already have a definition, complain.
672    Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
673    Diag(Def->getLocation(), diag::note_previous_definition);
674
675    // Create a new protocol that is completely distinct from previous
676    // declarations, and do not make this protocol available for name lookup.
677    // That way, we'll end up completely ignoring the duplicate.
678    // FIXME: Can we turn this into an error?
679    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
680                                     ProtocolLoc, AtProtoInterfaceLoc,
681                                     /*PrevDecl=*/0);
682    PDecl->startDefinition();
683  } else {
684    if (PrevDecl) {
685      // Check for circular dependencies among protocol declarations. This can
686      // only happen if this protocol was forward-declared.
687      ObjCList<ObjCProtocolDecl> PList;
688      PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
689      err = CheckForwardProtocolDeclarationForCircularDependency(
690              ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
691    }
692
693    // Create the new declaration.
694    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
695                                     ProtocolLoc, AtProtoInterfaceLoc,
696                                     /*PrevDecl=*/PrevDecl);
697
698    PushOnScopeChains(PDecl, TUScope);
699    PDecl->startDefinition();
700  }
701
702  if (AttrList)
703    ProcessDeclAttributeList(TUScope, PDecl, AttrList);
704
705  // Merge attributes from previous declarations.
706  if (PrevDecl)
707    mergeDeclAttributes(PDecl, PrevDecl);
708
709  if (!err && NumProtoRefs ) {
710    /// Check then save referenced protocols.
711    PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
712                           ProtoLocs, Context);
713  }
714
715  CheckObjCDeclScope(PDecl);
716  return ActOnObjCContainerStartDefinition(PDecl);
717}
718
719/// FindProtocolDeclaration - This routine looks up protocols and
720/// issues an error if they are not declared. It returns list of
721/// protocol declarations in its 'Protocols' argument.
722void
723Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
724                              const IdentifierLocPair *ProtocolId,
725                              unsigned NumProtocols,
726                              SmallVectorImpl<Decl *> &Protocols) {
727  for (unsigned i = 0; i != NumProtocols; ++i) {
728    ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
729                                             ProtocolId[i].second);
730    if (!PDecl) {
731      DeclFilterCCC<ObjCProtocolDecl> Validator;
732      TypoCorrection Corrected = CorrectTypo(
733          DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second),
734          LookupObjCProtocolName, TUScope, NULL, Validator);
735      if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) {
736        Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
737          << ProtocolId[i].first << Corrected.getCorrection();
738        Diag(PDecl->getLocation(), diag::note_previous_decl)
739          << PDecl->getDeclName();
740      }
741    }
742
743    if (!PDecl) {
744      Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
745        << ProtocolId[i].first;
746      continue;
747    }
748
749    (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
750
751    // If this is a forward declaration and we are supposed to warn in this
752    // case, do it.
753    // FIXME: Recover nicely in the hidden case.
754    if (WarnOnDeclarations &&
755        (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()))
756      Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
757        << ProtocolId[i].first;
758    Protocols.push_back(PDecl);
759  }
760}
761
762/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
763/// a class method in its extension.
764///
765void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
766                                            ObjCInterfaceDecl *ID) {
767  if (!ID)
768    return;  // Possibly due to previous error
769
770  llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
771  for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
772       e =  ID->meth_end(); i != e; ++i) {
773    ObjCMethodDecl *MD = *i;
774    MethodMap[MD->getSelector()] = MD;
775  }
776
777  if (MethodMap.empty())
778    return;
779  for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
780       e =  CAT->meth_end(); i != e; ++i) {
781    ObjCMethodDecl *Method = *i;
782    const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
783    if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
784      Diag(Method->getLocation(), diag::err_duplicate_method_decl)
785            << Method->getDeclName();
786      Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
787    }
788  }
789}
790
791/// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
792Sema::DeclGroupPtrTy
793Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
794                                      const IdentifierLocPair *IdentList,
795                                      unsigned NumElts,
796                                      AttributeList *attrList) {
797  SmallVector<Decl *, 8> DeclsInGroup;
798  for (unsigned i = 0; i != NumElts; ++i) {
799    IdentifierInfo *Ident = IdentList[i].first;
800    ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentList[i].second,
801                                                ForRedeclaration);
802    ObjCProtocolDecl *PDecl
803      = ObjCProtocolDecl::Create(Context, CurContext, Ident,
804                                 IdentList[i].second, AtProtocolLoc,
805                                 PrevDecl);
806
807    PushOnScopeChains(PDecl, TUScope);
808    CheckObjCDeclScope(PDecl);
809
810    if (attrList)
811      ProcessDeclAttributeList(TUScope, PDecl, attrList);
812
813    if (PrevDecl)
814      mergeDeclAttributes(PDecl, PrevDecl);
815
816    DeclsInGroup.push_back(PDecl);
817  }
818
819  return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
820}
821
822Decl *Sema::
823ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
824                            IdentifierInfo *ClassName, SourceLocation ClassLoc,
825                            IdentifierInfo *CategoryName,
826                            SourceLocation CategoryLoc,
827                            Decl * const *ProtoRefs,
828                            unsigned NumProtoRefs,
829                            const SourceLocation *ProtoLocs,
830                            SourceLocation EndProtoLoc) {
831  ObjCCategoryDecl *CDecl;
832  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
833
834  /// Check that class of this category is already completely declared.
835
836  if (!IDecl
837      || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
838                             diag::err_category_forward_interface,
839                             CategoryName == 0)) {
840    // Create an invalid ObjCCategoryDecl to serve as context for
841    // the enclosing method declarations.  We mark the decl invalid
842    // to make it clear that this isn't a valid AST.
843    CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
844                                     ClassLoc, CategoryLoc, CategoryName,IDecl);
845    CDecl->setInvalidDecl();
846    CurContext->addDecl(CDecl);
847
848    if (!IDecl)
849      Diag(ClassLoc, diag::err_undef_interface) << ClassName;
850    return ActOnObjCContainerStartDefinition(CDecl);
851  }
852
853  if (!CategoryName && IDecl->getImplementation()) {
854    Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
855    Diag(IDecl->getImplementation()->getLocation(),
856          diag::note_implementation_declared);
857  }
858
859  if (CategoryName) {
860    /// Check for duplicate interface declaration for this category
861    if (ObjCCategoryDecl *Previous
862          = IDecl->FindCategoryDeclaration(CategoryName)) {
863      // Class extensions can be declared multiple times, categories cannot.
864      Diag(CategoryLoc, diag::warn_dup_category_def)
865        << ClassName << CategoryName;
866      Diag(Previous->getLocation(), diag::note_previous_definition);
867    }
868  }
869
870  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
871                                   ClassLoc, CategoryLoc, CategoryName, IDecl);
872  // FIXME: PushOnScopeChains?
873  CurContext->addDecl(CDecl);
874
875  if (NumProtoRefs) {
876    CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
877                           ProtoLocs, Context);
878    // Protocols in the class extension belong to the class.
879    if (CDecl->IsClassExtension())
880     IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
881                                            NumProtoRefs, Context);
882  }
883
884  CheckObjCDeclScope(CDecl);
885  return ActOnObjCContainerStartDefinition(CDecl);
886}
887
888/// ActOnStartCategoryImplementation - Perform semantic checks on the
889/// category implementation declaration and build an ObjCCategoryImplDecl
890/// object.
891Decl *Sema::ActOnStartCategoryImplementation(
892                      SourceLocation AtCatImplLoc,
893                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
894                      IdentifierInfo *CatName, SourceLocation CatLoc) {
895  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
896  ObjCCategoryDecl *CatIDecl = 0;
897  if (IDecl && IDecl->hasDefinition()) {
898    CatIDecl = IDecl->FindCategoryDeclaration(CatName);
899    if (!CatIDecl) {
900      // Category @implementation with no corresponding @interface.
901      // Create and install one.
902      CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
903                                          ClassLoc, CatLoc,
904                                          CatName, IDecl);
905      CatIDecl->setImplicit();
906    }
907  }
908
909  ObjCCategoryImplDecl *CDecl =
910    ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
911                                 ClassLoc, AtCatImplLoc, CatLoc);
912  /// Check that class of this category is already completely declared.
913  if (!IDecl) {
914    Diag(ClassLoc, diag::err_undef_interface) << ClassName;
915    CDecl->setInvalidDecl();
916  } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
917                                 diag::err_undef_interface)) {
918    CDecl->setInvalidDecl();
919  }
920
921  // FIXME: PushOnScopeChains?
922  CurContext->addDecl(CDecl);
923
924  // If the interface is deprecated/unavailable, warn/error about it.
925  if (IDecl)
926    DiagnoseUseOfDecl(IDecl, ClassLoc);
927
928  /// Check that CatName, category name, is not used in another implementation.
929  if (CatIDecl) {
930    if (CatIDecl->getImplementation()) {
931      Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
932        << CatName;
933      Diag(CatIDecl->getImplementation()->getLocation(),
934           diag::note_previous_definition);
935    } else {
936      CatIDecl->setImplementation(CDecl);
937      // Warn on implementating category of deprecated class under
938      // -Wdeprecated-implementations flag.
939      DiagnoseObjCImplementedDeprecations(*this,
940                                          dyn_cast<NamedDecl>(IDecl),
941                                          CDecl->getLocation(), 2);
942    }
943  }
944
945  CheckObjCDeclScope(CDecl);
946  return ActOnObjCContainerStartDefinition(CDecl);
947}
948
949Decl *Sema::ActOnStartClassImplementation(
950                      SourceLocation AtClassImplLoc,
951                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
952                      IdentifierInfo *SuperClassname,
953                      SourceLocation SuperClassLoc) {
954  ObjCInterfaceDecl* IDecl = 0;
955  // Check for another declaration kind with the same name.
956  NamedDecl *PrevDecl
957    = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
958                       ForRedeclaration);
959  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
960    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
961    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
962  } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
963    RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
964                        diag::warn_undef_interface);
965  } else {
966    // We did not find anything with the name ClassName; try to correct for
967    // typos in the class name.
968    ObjCInterfaceValidatorCCC Validator;
969    if (TypoCorrection Corrected = CorrectTypo(
970        DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
971        NULL, Validator)) {
972      // Suggest the (potentially) correct interface name. However, put the
973      // fix-it hint itself in a separate note, since changing the name in
974      // the warning would make the fix-it change semantics.However, don't
975      // provide a code-modification hint or use the typo name for recovery,
976      // because this is just a warning. The program may actually be correct.
977      IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
978      DeclarationName CorrectedName = Corrected.getCorrection();
979      Diag(ClassLoc, diag::warn_undef_interface_suggest)
980        << ClassName << CorrectedName;
981      Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName
982        << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString());
983      IDecl = 0;
984    } else {
985      Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
986    }
987  }
988
989  // Check that super class name is valid class name
990  ObjCInterfaceDecl* SDecl = 0;
991  if (SuperClassname) {
992    // Check if a different kind of symbol declared in this scope.
993    PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
994                                LookupOrdinaryName);
995    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
996      Diag(SuperClassLoc, diag::err_redefinition_different_kind)
997        << SuperClassname;
998      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
999    } else {
1000      SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1001      if (SDecl && !SDecl->hasDefinition())
1002        SDecl = 0;
1003      if (!SDecl)
1004        Diag(SuperClassLoc, diag::err_undef_superclass)
1005          << SuperClassname << ClassName;
1006      else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
1007        // This implementation and its interface do not have the same
1008        // super class.
1009        Diag(SuperClassLoc, diag::err_conflicting_super_class)
1010          << SDecl->getDeclName();
1011        Diag(SDecl->getLocation(), diag::note_previous_definition);
1012      }
1013    }
1014  }
1015
1016  if (!IDecl) {
1017    // Legacy case of @implementation with no corresponding @interface.
1018    // Build, chain & install the interface decl into the identifier.
1019
1020    // FIXME: Do we support attributes on the @implementation? If so we should
1021    // copy them over.
1022    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
1023                                      ClassName, /*PrevDecl=*/0, ClassLoc,
1024                                      true);
1025    IDecl->startDefinition();
1026    if (SDecl) {
1027      IDecl->setSuperClass(SDecl);
1028      IDecl->setSuperClassLoc(SuperClassLoc);
1029      IDecl->setEndOfDefinitionLoc(SuperClassLoc);
1030    } else {
1031      IDecl->setEndOfDefinitionLoc(ClassLoc);
1032    }
1033
1034    PushOnScopeChains(IDecl, TUScope);
1035  } else {
1036    // Mark the interface as being completed, even if it was just as
1037    //   @class ....;
1038    // declaration; the user cannot reopen it.
1039    if (!IDecl->hasDefinition())
1040      IDecl->startDefinition();
1041  }
1042
1043  ObjCImplementationDecl* IMPDecl =
1044    ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
1045                                   ClassLoc, AtClassImplLoc);
1046
1047  if (CheckObjCDeclScope(IMPDecl))
1048    return ActOnObjCContainerStartDefinition(IMPDecl);
1049
1050  // Check that there is no duplicate implementation of this class.
1051  if (IDecl->getImplementation()) {
1052    // FIXME: Don't leak everything!
1053    Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
1054    Diag(IDecl->getImplementation()->getLocation(),
1055         diag::note_previous_definition);
1056  } else { // add it to the list.
1057    IDecl->setImplementation(IMPDecl);
1058    PushOnScopeChains(IMPDecl, TUScope);
1059    // Warn on implementating deprecated class under
1060    // -Wdeprecated-implementations flag.
1061    DiagnoseObjCImplementedDeprecations(*this,
1062                                        dyn_cast<NamedDecl>(IDecl),
1063                                        IMPDecl->getLocation(), 1);
1064  }
1065  return ActOnObjCContainerStartDefinition(IMPDecl);
1066}
1067
1068Sema::DeclGroupPtrTy
1069Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
1070  SmallVector<Decl *, 64> DeclsInGroup;
1071  DeclsInGroup.reserve(Decls.size() + 1);
1072
1073  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
1074    Decl *Dcl = Decls[i];
1075    if (!Dcl)
1076      continue;
1077    if (Dcl->getDeclContext()->isFileContext())
1078      Dcl->setTopLevelDeclInObjCContainer();
1079    DeclsInGroup.push_back(Dcl);
1080  }
1081
1082  DeclsInGroup.push_back(ObjCImpDecl);
1083
1084  return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
1085}
1086
1087void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
1088                                    ObjCIvarDecl **ivars, unsigned numIvars,
1089                                    SourceLocation RBrace) {
1090  assert(ImpDecl && "missing implementation decl");
1091  ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
1092  if (!IDecl)
1093    return;
1094  /// Check case of non-existing \@interface decl.
1095  /// (legacy objective-c \@implementation decl without an \@interface decl).
1096  /// Add implementations's ivar to the synthesize class's ivar list.
1097  if (IDecl->isImplicitInterfaceDecl()) {
1098    IDecl->setEndOfDefinitionLoc(RBrace);
1099    // Add ivar's to class's DeclContext.
1100    for (unsigned i = 0, e = numIvars; i != e; ++i) {
1101      ivars[i]->setLexicalDeclContext(ImpDecl);
1102      IDecl->makeDeclVisibleInContext(ivars[i]);
1103      ImpDecl->addDecl(ivars[i]);
1104    }
1105
1106    return;
1107  }
1108  // If implementation has empty ivar list, just return.
1109  if (numIvars == 0)
1110    return;
1111
1112  assert(ivars && "missing @implementation ivars");
1113  if (LangOpts.ObjCRuntime.isNonFragile()) {
1114    if (ImpDecl->getSuperClass())
1115      Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
1116    for (unsigned i = 0; i < numIvars; i++) {
1117      ObjCIvarDecl* ImplIvar = ivars[i];
1118      if (const ObjCIvarDecl *ClsIvar =
1119            IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
1120        Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
1121        Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1122        continue;
1123      }
1124      // Instance ivar to Implementation's DeclContext.
1125      ImplIvar->setLexicalDeclContext(ImpDecl);
1126      IDecl->makeDeclVisibleInContext(ImplIvar);
1127      ImpDecl->addDecl(ImplIvar);
1128    }
1129    return;
1130  }
1131  // Check interface's Ivar list against those in the implementation.
1132  // names and types must match.
1133  //
1134  unsigned j = 0;
1135  ObjCInterfaceDecl::ivar_iterator
1136    IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
1137  for (; numIvars > 0 && IVI != IVE; ++IVI) {
1138    ObjCIvarDecl* ImplIvar = ivars[j++];
1139    ObjCIvarDecl* ClsIvar = *IVI;
1140    assert (ImplIvar && "missing implementation ivar");
1141    assert (ClsIvar && "missing class ivar");
1142
1143    // First, make sure the types match.
1144    if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
1145      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
1146        << ImplIvar->getIdentifier()
1147        << ImplIvar->getType() << ClsIvar->getType();
1148      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1149    } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
1150               ImplIvar->getBitWidthValue(Context) !=
1151               ClsIvar->getBitWidthValue(Context)) {
1152      Diag(ImplIvar->getBitWidth()->getLocStart(),
1153           diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
1154      Diag(ClsIvar->getBitWidth()->getLocStart(),
1155           diag::note_previous_definition);
1156    }
1157    // Make sure the names are identical.
1158    if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
1159      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
1160        << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
1161      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1162    }
1163    --numIvars;
1164  }
1165
1166  if (numIvars > 0)
1167    Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
1168  else if (IVI != IVE)
1169    Diag(IVI->getLocation(), diag::err_inconsistant_ivar_count);
1170}
1171
1172void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
1173                               bool &IncompleteImpl, unsigned DiagID) {
1174  // No point warning no definition of method which is 'unavailable'.
1175  switch (method->getAvailability()) {
1176  case AR_Available:
1177  case AR_Deprecated:
1178    break;
1179
1180      // Don't warn about unavailable or not-yet-introduced methods.
1181  case AR_NotYetIntroduced:
1182  case AR_Unavailable:
1183    return;
1184  }
1185
1186  // FIXME: For now ignore 'IncompleteImpl'.
1187  // Previously we grouped all unimplemented methods under a single
1188  // warning, but some users strongly voiced that they would prefer
1189  // separate warnings.  We will give that approach a try, as that
1190  // matches what we do with protocols.
1191
1192  Diag(ImpLoc, DiagID) << method->getDeclName();
1193
1194  // Issue a note to the original declaration.
1195  SourceLocation MethodLoc = method->getLocStart();
1196  if (MethodLoc.isValid())
1197    Diag(MethodLoc, diag::note_method_declared_at) << method;
1198}
1199
1200/// Determines if type B can be substituted for type A.  Returns true if we can
1201/// guarantee that anything that the user will do to an object of type A can
1202/// also be done to an object of type B.  This is trivially true if the two
1203/// types are the same, or if B is a subclass of A.  It becomes more complex
1204/// in cases where protocols are involved.
1205///
1206/// Object types in Objective-C describe the minimum requirements for an
1207/// object, rather than providing a complete description of a type.  For
1208/// example, if A is a subclass of B, then B* may refer to an instance of A.
1209/// The principle of substitutability means that we may use an instance of A
1210/// anywhere that we may use an instance of B - it will implement all of the
1211/// ivars of B and all of the methods of B.
1212///
1213/// This substitutability is important when type checking methods, because
1214/// the implementation may have stricter type definitions than the interface.
1215/// The interface specifies minimum requirements, but the implementation may
1216/// have more accurate ones.  For example, a method may privately accept
1217/// instances of B, but only publish that it accepts instances of A.  Any
1218/// object passed to it will be type checked against B, and so will implicitly
1219/// by a valid A*.  Similarly, a method may return a subclass of the class that
1220/// it is declared as returning.
1221///
1222/// This is most important when considering subclassing.  A method in a
1223/// subclass must accept any object as an argument that its superclass's
1224/// implementation accepts.  It may, however, accept a more general type
1225/// without breaking substitutability (i.e. you can still use the subclass
1226/// anywhere that you can use the superclass, but not vice versa).  The
1227/// converse requirement applies to return types: the return type for a
1228/// subclass method must be a valid object of the kind that the superclass
1229/// advertises, but it may be specified more accurately.  This avoids the need
1230/// for explicit down-casting by callers.
1231///
1232/// Note: This is a stricter requirement than for assignment.
1233static bool isObjCTypeSubstitutable(ASTContext &Context,
1234                                    const ObjCObjectPointerType *A,
1235                                    const ObjCObjectPointerType *B,
1236                                    bool rejectId) {
1237  // Reject a protocol-unqualified id.
1238  if (rejectId && B->isObjCIdType()) return false;
1239
1240  // If B is a qualified id, then A must also be a qualified id and it must
1241  // implement all of the protocols in B.  It may not be a qualified class.
1242  // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
1243  // stricter definition so it is not substitutable for id<A>.
1244  if (B->isObjCQualifiedIdType()) {
1245    return A->isObjCQualifiedIdType() &&
1246           Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
1247                                                     QualType(B,0),
1248                                                     false);
1249  }
1250
1251  /*
1252  // id is a special type that bypasses type checking completely.  We want a
1253  // warning when it is used in one place but not another.
1254  if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
1255
1256
1257  // If B is a qualified id, then A must also be a qualified id (which it isn't
1258  // if we've got this far)
1259  if (B->isObjCQualifiedIdType()) return false;
1260  */
1261
1262  // Now we know that A and B are (potentially-qualified) class types.  The
1263  // normal rules for assignment apply.
1264  return Context.canAssignObjCInterfaces(A, B);
1265}
1266
1267static SourceRange getTypeRange(TypeSourceInfo *TSI) {
1268  return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
1269}
1270
1271static bool CheckMethodOverrideReturn(Sema &S,
1272                                      ObjCMethodDecl *MethodImpl,
1273                                      ObjCMethodDecl *MethodDecl,
1274                                      bool IsProtocolMethodDecl,
1275                                      bool IsOverridingMode,
1276                                      bool Warn) {
1277  if (IsProtocolMethodDecl &&
1278      (MethodDecl->getObjCDeclQualifier() !=
1279       MethodImpl->getObjCDeclQualifier())) {
1280    if (Warn) {
1281        S.Diag(MethodImpl->getLocation(),
1282               (IsOverridingMode ?
1283                 diag::warn_conflicting_overriding_ret_type_modifiers
1284                 : diag::warn_conflicting_ret_type_modifiers))
1285          << MethodImpl->getDeclName()
1286          << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1287        S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
1288          << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1289    }
1290    else
1291      return false;
1292  }
1293
1294  if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(),
1295                                       MethodDecl->getResultType()))
1296    return true;
1297  if (!Warn)
1298    return false;
1299
1300  unsigned DiagID =
1301    IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
1302                     : diag::warn_conflicting_ret_types;
1303
1304  // Mismatches between ObjC pointers go into a different warning
1305  // category, and sometimes they're even completely whitelisted.
1306  if (const ObjCObjectPointerType *ImplPtrTy =
1307        MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) {
1308    if (const ObjCObjectPointerType *IfacePtrTy =
1309          MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) {
1310      // Allow non-matching return types as long as they don't violate
1311      // the principle of substitutability.  Specifically, we permit
1312      // return types that are subclasses of the declared return type,
1313      // or that are more-qualified versions of the declared type.
1314      if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
1315        return false;
1316
1317      DiagID =
1318        IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
1319                          : diag::warn_non_covariant_ret_types;
1320    }
1321  }
1322
1323  S.Diag(MethodImpl->getLocation(), DiagID)
1324    << MethodImpl->getDeclName()
1325    << MethodDecl->getResultType()
1326    << MethodImpl->getResultType()
1327    << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1328  S.Diag(MethodDecl->getLocation(),
1329         IsOverridingMode ? diag::note_previous_declaration
1330                          : diag::note_previous_definition)
1331    << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1332  return false;
1333}
1334
1335static bool CheckMethodOverrideParam(Sema &S,
1336                                     ObjCMethodDecl *MethodImpl,
1337                                     ObjCMethodDecl *MethodDecl,
1338                                     ParmVarDecl *ImplVar,
1339                                     ParmVarDecl *IfaceVar,
1340                                     bool IsProtocolMethodDecl,
1341                                     bool IsOverridingMode,
1342                                     bool Warn) {
1343  if (IsProtocolMethodDecl &&
1344      (ImplVar->getObjCDeclQualifier() !=
1345       IfaceVar->getObjCDeclQualifier())) {
1346    if (Warn) {
1347      if (IsOverridingMode)
1348        S.Diag(ImplVar->getLocation(),
1349               diag::warn_conflicting_overriding_param_modifiers)
1350            << getTypeRange(ImplVar->getTypeSourceInfo())
1351            << MethodImpl->getDeclName();
1352      else S.Diag(ImplVar->getLocation(),
1353             diag::warn_conflicting_param_modifiers)
1354          << getTypeRange(ImplVar->getTypeSourceInfo())
1355          << MethodImpl->getDeclName();
1356      S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
1357          << getTypeRange(IfaceVar->getTypeSourceInfo());
1358    }
1359    else
1360      return false;
1361  }
1362
1363  QualType ImplTy = ImplVar->getType();
1364  QualType IfaceTy = IfaceVar->getType();
1365
1366  if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
1367    return true;
1368
1369  if (!Warn)
1370    return false;
1371  unsigned DiagID =
1372    IsOverridingMode ? diag::warn_conflicting_overriding_param_types
1373                     : diag::warn_conflicting_param_types;
1374
1375  // Mismatches between ObjC pointers go into a different warning
1376  // category, and sometimes they're even completely whitelisted.
1377  if (const ObjCObjectPointerType *ImplPtrTy =
1378        ImplTy->getAs<ObjCObjectPointerType>()) {
1379    if (const ObjCObjectPointerType *IfacePtrTy =
1380          IfaceTy->getAs<ObjCObjectPointerType>()) {
1381      // Allow non-matching argument types as long as they don't
1382      // violate the principle of substitutability.  Specifically, the
1383      // implementation must accept any objects that the superclass
1384      // accepts, however it may also accept others.
1385      if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
1386        return false;
1387
1388      DiagID =
1389      IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
1390                       :  diag::warn_non_contravariant_param_types;
1391    }
1392  }
1393
1394  S.Diag(ImplVar->getLocation(), DiagID)
1395    << getTypeRange(ImplVar->getTypeSourceInfo())
1396    << MethodImpl->getDeclName() << IfaceTy << ImplTy;
1397  S.Diag(IfaceVar->getLocation(),
1398         (IsOverridingMode ? diag::note_previous_declaration
1399                        : diag::note_previous_definition))
1400    << getTypeRange(IfaceVar->getTypeSourceInfo());
1401  return false;
1402}
1403
1404/// In ARC, check whether the conventional meanings of the two methods
1405/// match.  If they don't, it's a hard error.
1406static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
1407                                      ObjCMethodDecl *decl) {
1408  ObjCMethodFamily implFamily = impl->getMethodFamily();
1409  ObjCMethodFamily declFamily = decl->getMethodFamily();
1410  if (implFamily == declFamily) return false;
1411
1412  // Since conventions are sorted by selector, the only possibility is
1413  // that the types differ enough to cause one selector or the other
1414  // to fall out of the family.
1415  assert(implFamily == OMF_None || declFamily == OMF_None);
1416
1417  // No further diagnostics required on invalid declarations.
1418  if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
1419
1420  const ObjCMethodDecl *unmatched = impl;
1421  ObjCMethodFamily family = declFamily;
1422  unsigned errorID = diag::err_arc_lost_method_convention;
1423  unsigned noteID = diag::note_arc_lost_method_convention;
1424  if (declFamily == OMF_None) {
1425    unmatched = decl;
1426    family = implFamily;
1427    errorID = diag::err_arc_gained_method_convention;
1428    noteID = diag::note_arc_gained_method_convention;
1429  }
1430
1431  // Indexes into a %select clause in the diagnostic.
1432  enum FamilySelector {
1433    F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
1434  };
1435  FamilySelector familySelector = FamilySelector();
1436
1437  switch (family) {
1438  case OMF_None: llvm_unreachable("logic error, no method convention");
1439  case OMF_retain:
1440  case OMF_release:
1441  case OMF_autorelease:
1442  case OMF_dealloc:
1443  case OMF_finalize:
1444  case OMF_retainCount:
1445  case OMF_self:
1446  case OMF_performSelector:
1447    // Mismatches for these methods don't change ownership
1448    // conventions, so we don't care.
1449    return false;
1450
1451  case OMF_init: familySelector = F_init; break;
1452  case OMF_alloc: familySelector = F_alloc; break;
1453  case OMF_copy: familySelector = F_copy; break;
1454  case OMF_mutableCopy: familySelector = F_mutableCopy; break;
1455  case OMF_new: familySelector = F_new; break;
1456  }
1457
1458  enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
1459  ReasonSelector reasonSelector;
1460
1461  // The only reason these methods don't fall within their families is
1462  // due to unusual result types.
1463  if (unmatched->getResultType()->isObjCObjectPointerType()) {
1464    reasonSelector = R_UnrelatedReturn;
1465  } else {
1466    reasonSelector = R_NonObjectReturn;
1467  }
1468
1469  S.Diag(impl->getLocation(), errorID) << familySelector << reasonSelector;
1470  S.Diag(decl->getLocation(), noteID) << familySelector << reasonSelector;
1471
1472  return true;
1473}
1474
1475void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1476                                       ObjCMethodDecl *MethodDecl,
1477                                       bool IsProtocolMethodDecl) {
1478  if (getLangOpts().ObjCAutoRefCount &&
1479      checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
1480    return;
1481
1482  CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1483                            IsProtocolMethodDecl, false,
1484                            true);
1485
1486  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1487       IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
1488       EF = MethodDecl->param_end();
1489       IM != EM && IF != EF; ++IM, ++IF) {
1490    CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
1491                             IsProtocolMethodDecl, false, true);
1492  }
1493
1494  if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
1495    Diag(ImpMethodDecl->getLocation(),
1496         diag::warn_conflicting_variadic);
1497    Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
1498  }
1499}
1500
1501void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
1502                                       ObjCMethodDecl *Overridden,
1503                                       bool IsProtocolMethodDecl) {
1504
1505  CheckMethodOverrideReturn(*this, Method, Overridden,
1506                            IsProtocolMethodDecl, true,
1507                            true);
1508
1509  for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
1510       IF = Overridden->param_begin(), EM = Method->param_end(),
1511       EF = Overridden->param_end();
1512       IM != EM && IF != EF; ++IM, ++IF) {
1513    CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
1514                             IsProtocolMethodDecl, true, true);
1515  }
1516
1517  if (Method->isVariadic() != Overridden->isVariadic()) {
1518    Diag(Method->getLocation(),
1519         diag::warn_conflicting_overriding_variadic);
1520    Diag(Overridden->getLocation(), diag::note_previous_declaration);
1521  }
1522}
1523
1524/// WarnExactTypedMethods - This routine issues a warning if method
1525/// implementation declaration matches exactly that of its declaration.
1526void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1527                                 ObjCMethodDecl *MethodDecl,
1528                                 bool IsProtocolMethodDecl) {
1529  // don't issue warning when protocol method is optional because primary
1530  // class is not required to implement it and it is safe for protocol
1531  // to implement it.
1532  if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
1533    return;
1534  // don't issue warning when primary class's method is
1535  // depecated/unavailable.
1536  if (MethodDecl->hasAttr<UnavailableAttr>() ||
1537      MethodDecl->hasAttr<DeprecatedAttr>())
1538    return;
1539
1540  bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1541                                      IsProtocolMethodDecl, false, false);
1542  if (match)
1543    for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1544         IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
1545         EF = MethodDecl->param_end();
1546         IM != EM && IF != EF; ++IM, ++IF) {
1547      match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
1548                                       *IM, *IF,
1549                                       IsProtocolMethodDecl, false, false);
1550      if (!match)
1551        break;
1552    }
1553  if (match)
1554    match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
1555  if (match)
1556    match = !(MethodDecl->isClassMethod() &&
1557              MethodDecl->getSelector() == GetNullarySelector("load", Context));
1558
1559  if (match) {
1560    Diag(ImpMethodDecl->getLocation(),
1561         diag::warn_category_method_impl_match);
1562    Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
1563      << MethodDecl->getDeclName();
1564  }
1565}
1566
1567/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
1568/// improve the efficiency of selector lookups and type checking by associating
1569/// with each protocol / interface / category the flattened instance tables. If
1570/// we used an immutable set to keep the table then it wouldn't add significant
1571/// memory cost and it would be handy for lookups.
1572
1573/// CheckProtocolMethodDefs - This routine checks unimplemented methods
1574/// Declared in protocol, and those referenced by it.
1575void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
1576                                   ObjCProtocolDecl *PDecl,
1577                                   bool& IncompleteImpl,
1578                                   const SelectorSet &InsMap,
1579                                   const SelectorSet &ClsMap,
1580                                   ObjCContainerDecl *CDecl) {
1581  ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
1582  ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
1583                               : dyn_cast<ObjCInterfaceDecl>(CDecl);
1584  assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
1585
1586  ObjCInterfaceDecl *Super = IDecl->getSuperClass();
1587  ObjCInterfaceDecl *NSIDecl = 0;
1588  if (getLangOpts().ObjCRuntime.isNeXTFamily()) {
1589    // check to see if class implements forwardInvocation method and objects
1590    // of this class are derived from 'NSProxy' so that to forward requests
1591    // from one object to another.
1592    // Under such conditions, which means that every method possible is
1593    // implemented in the class, we should not issue "Method definition not
1594    // found" warnings.
1595    // FIXME: Use a general GetUnarySelector method for this.
1596    IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
1597    Selector fISelector = Context.Selectors.getSelector(1, &II);
1598    if (InsMap.count(fISelector))
1599      // Is IDecl derived from 'NSProxy'? If so, no instance methods
1600      // need be implemented in the implementation.
1601      NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
1602  }
1603
1604  // If this is a forward protocol declaration, get its definition.
1605  if (!PDecl->isThisDeclarationADefinition() &&
1606      PDecl->getDefinition())
1607    PDecl = PDecl->getDefinition();
1608
1609  // If a method lookup fails locally we still need to look and see if
1610  // the method was implemented by a base class or an inherited
1611  // protocol. This lookup is slow, but occurs rarely in correct code
1612  // and otherwise would terminate in a warning.
1613
1614  // check unimplemented instance methods.
1615  if (!NSIDecl)
1616    for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
1617         E = PDecl->instmeth_end(); I != E; ++I) {
1618      ObjCMethodDecl *method = *I;
1619      if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1620          !method->isPropertyAccessor() &&
1621          !InsMap.count(method->getSelector()) &&
1622          (!Super || !Super->lookupInstanceMethod(method->getSelector()))) {
1623            // If a method is not implemented in the category implementation but
1624            // has been declared in its primary class, superclass,
1625            // or in one of their protocols, no need to issue the warning.
1626            // This is because method will be implemented in the primary class
1627            // or one of its super class implementation.
1628
1629            // Ugly, but necessary. Method declared in protcol might have
1630            // have been synthesized due to a property declared in the class which
1631            // uses the protocol.
1632            if (ObjCMethodDecl *MethodInClass =
1633                  IDecl->lookupInstanceMethod(method->getSelector(),
1634                                              true /*shallowCategoryLookup*/))
1635              if (C || MethodInClass->isPropertyAccessor())
1636                continue;
1637            unsigned DIAG = diag::warn_unimplemented_protocol_method;
1638            if (Diags.getDiagnosticLevel(DIAG, ImpLoc)
1639                != DiagnosticsEngine::Ignored) {
1640              WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1641              Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
1642                << PDecl->getDeclName();
1643            }
1644          }
1645    }
1646  // check unimplemented class methods
1647  for (ObjCProtocolDecl::classmeth_iterator
1648         I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
1649       I != E; ++I) {
1650    ObjCMethodDecl *method = *I;
1651    if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1652        !ClsMap.count(method->getSelector()) &&
1653        (!Super || !Super->lookupClassMethod(method->getSelector()))) {
1654      // See above comment for instance method lookups.
1655      if (C && IDecl->lookupClassMethod(method->getSelector(),
1656                                        true /*shallowCategoryLookup*/))
1657        continue;
1658      unsigned DIAG = diag::warn_unimplemented_protocol_method;
1659      if (Diags.getDiagnosticLevel(DIAG, ImpLoc) !=
1660            DiagnosticsEngine::Ignored) {
1661        WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1662        Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
1663          PDecl->getDeclName();
1664      }
1665    }
1666  }
1667  // Check on this protocols's referenced protocols, recursively.
1668  for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
1669       E = PDecl->protocol_end(); PI != E; ++PI)
1670    CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, CDecl);
1671}
1672
1673/// MatchAllMethodDeclarations - Check methods declared in interface
1674/// or protocol against those declared in their implementations.
1675///
1676void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
1677                                      const SelectorSet &ClsMap,
1678                                      SelectorSet &InsMapSeen,
1679                                      SelectorSet &ClsMapSeen,
1680                                      ObjCImplDecl* IMPDecl,
1681                                      ObjCContainerDecl* CDecl,
1682                                      bool &IncompleteImpl,
1683                                      bool ImmediateClass,
1684                                      bool WarnCategoryMethodImpl) {
1685  // Check and see if instance methods in class interface have been
1686  // implemented in the implementation class. If so, their types match.
1687  for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
1688       E = CDecl->instmeth_end(); I != E; ++I) {
1689    if (InsMapSeen.count((*I)->getSelector()))
1690        continue;
1691    InsMapSeen.insert((*I)->getSelector());
1692    if (!(*I)->isPropertyAccessor() &&
1693        !InsMap.count((*I)->getSelector())) {
1694      if (ImmediateClass)
1695        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1696                            diag::warn_undef_method_impl);
1697      continue;
1698    } else {
1699      ObjCMethodDecl *ImpMethodDecl =
1700        IMPDecl->getInstanceMethod((*I)->getSelector());
1701      assert(CDecl->getInstanceMethod((*I)->getSelector()) &&
1702             "Expected to find the method through lookup as well");
1703      ObjCMethodDecl *MethodDecl = *I;
1704      // ImpMethodDecl may be null as in a @dynamic property.
1705      if (ImpMethodDecl) {
1706        if (!WarnCategoryMethodImpl)
1707          WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1708                                      isa<ObjCProtocolDecl>(CDecl));
1709        else if (!MethodDecl->isPropertyAccessor())
1710          WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
1711                                isa<ObjCProtocolDecl>(CDecl));
1712      }
1713    }
1714  }
1715
1716  // Check and see if class methods in class interface have been
1717  // implemented in the implementation class. If so, their types match.
1718   for (ObjCInterfaceDecl::classmeth_iterator
1719       I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
1720     if (ClsMapSeen.count((*I)->getSelector()))
1721       continue;
1722     ClsMapSeen.insert((*I)->getSelector());
1723    if (!ClsMap.count((*I)->getSelector())) {
1724      if (ImmediateClass)
1725        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1726                            diag::warn_undef_method_impl);
1727    } else {
1728      ObjCMethodDecl *ImpMethodDecl =
1729        IMPDecl->getClassMethod((*I)->getSelector());
1730      assert(CDecl->getClassMethod((*I)->getSelector()) &&
1731             "Expected to find the method through lookup as well");
1732      ObjCMethodDecl *MethodDecl = *I;
1733      if (!WarnCategoryMethodImpl)
1734        WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1735                                    isa<ObjCProtocolDecl>(CDecl));
1736      else
1737        WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
1738                              isa<ObjCProtocolDecl>(CDecl));
1739    }
1740  }
1741
1742  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1743    // when checking that methods in implementation match their declaration,
1744    // i.e. when WarnCategoryMethodImpl is false, check declarations in class
1745    // extension; as well as those in categories.
1746    if (!WarnCategoryMethodImpl) {
1747      for (ObjCInterfaceDecl::visible_categories_iterator
1748             Cat = I->visible_categories_begin(),
1749           CatEnd = I->visible_categories_end();
1750           Cat != CatEnd; ++Cat) {
1751        MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1752                                   IMPDecl, *Cat, IncompleteImpl, false,
1753                                   WarnCategoryMethodImpl);
1754      }
1755    } else {
1756      // Also methods in class extensions need be looked at next.
1757      for (ObjCInterfaceDecl::visible_extensions_iterator
1758             Ext = I->visible_extensions_begin(),
1759             ExtEnd = I->visible_extensions_end();
1760           Ext != ExtEnd; ++Ext) {
1761        MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1762                                   IMPDecl, *Ext, IncompleteImpl, false,
1763                                   WarnCategoryMethodImpl);
1764      }
1765    }
1766
1767    // Check for any implementation of a methods declared in protocol.
1768    for (ObjCInterfaceDecl::all_protocol_iterator
1769          PI = I->all_referenced_protocol_begin(),
1770          E = I->all_referenced_protocol_end(); PI != E; ++PI)
1771      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1772                                 IMPDecl,
1773                                 (*PI), IncompleteImpl, false,
1774                                 WarnCategoryMethodImpl);
1775
1776    // FIXME. For now, we are not checking for extact match of methods
1777    // in category implementation and its primary class's super class.
1778    if (!WarnCategoryMethodImpl && I->getSuperClass())
1779      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1780                                 IMPDecl,
1781                                 I->getSuperClass(), IncompleteImpl, false);
1782  }
1783}
1784
1785/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
1786/// category matches with those implemented in its primary class and
1787/// warns each time an exact match is found.
1788void Sema::CheckCategoryVsClassMethodMatches(
1789                                  ObjCCategoryImplDecl *CatIMPDecl) {
1790  SelectorSet InsMap, ClsMap;
1791
1792  for (ObjCImplementationDecl::instmeth_iterator
1793       I = CatIMPDecl->instmeth_begin(),
1794       E = CatIMPDecl->instmeth_end(); I!=E; ++I)
1795    InsMap.insert((*I)->getSelector());
1796
1797  for (ObjCImplementationDecl::classmeth_iterator
1798       I = CatIMPDecl->classmeth_begin(),
1799       E = CatIMPDecl->classmeth_end(); I != E; ++I)
1800    ClsMap.insert((*I)->getSelector());
1801  if (InsMap.empty() && ClsMap.empty())
1802    return;
1803
1804  // Get category's primary class.
1805  ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
1806  if (!CatDecl)
1807    return;
1808  ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
1809  if (!IDecl)
1810    return;
1811  SelectorSet InsMapSeen, ClsMapSeen;
1812  bool IncompleteImpl = false;
1813  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1814                             CatIMPDecl, IDecl,
1815                             IncompleteImpl, false,
1816                             true /*WarnCategoryMethodImpl*/);
1817}
1818
1819void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
1820                                     ObjCContainerDecl* CDecl,
1821                                     bool IncompleteImpl) {
1822  SelectorSet InsMap;
1823  // Check and see if instance methods in class interface have been
1824  // implemented in the implementation class.
1825  for (ObjCImplementationDecl::instmeth_iterator
1826         I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
1827    InsMap.insert((*I)->getSelector());
1828
1829  // Check and see if properties declared in the interface have either 1)
1830  // an implementation or 2) there is a @synthesize/@dynamic implementation
1831  // of the property in the @implementation.
1832  if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl))
1833    if  (!(LangOpts.ObjCDefaultSynthProperties &&
1834           LangOpts.ObjCRuntime.isNonFragile()) ||
1835         IDecl->isObjCRequiresPropertyDefs())
1836      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
1837
1838  SelectorSet ClsMap;
1839  for (ObjCImplementationDecl::classmeth_iterator
1840       I = IMPDecl->classmeth_begin(),
1841       E = IMPDecl->classmeth_end(); I != E; ++I)
1842    ClsMap.insert((*I)->getSelector());
1843
1844  // Check for type conflict of methods declared in a class/protocol and
1845  // its implementation; if any.
1846  SelectorSet InsMapSeen, ClsMapSeen;
1847  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1848                             IMPDecl, CDecl,
1849                             IncompleteImpl, true);
1850
1851  // check all methods implemented in category against those declared
1852  // in its primary class.
1853  if (ObjCCategoryImplDecl *CatDecl =
1854        dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
1855    CheckCategoryVsClassMethodMatches(CatDecl);
1856
1857  // Check the protocol list for unimplemented methods in the @implementation
1858  // class.
1859  // Check and see if class methods in class interface have been
1860  // implemented in the implementation class.
1861
1862  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1863    for (ObjCInterfaceDecl::all_protocol_iterator
1864          PI = I->all_referenced_protocol_begin(),
1865          E = I->all_referenced_protocol_end(); PI != E; ++PI)
1866      CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1867                              InsMap, ClsMap, I);
1868    // Check class extensions (unnamed categories)
1869    for (ObjCInterfaceDecl::visible_extensions_iterator
1870           Ext = I->visible_extensions_begin(),
1871           ExtEnd = I->visible_extensions_end();
1872         Ext != ExtEnd; ++Ext) {
1873      ImplMethodsVsClassMethods(S, IMPDecl, *Ext, IncompleteImpl);
1874    }
1875  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1876    // For extended class, unimplemented methods in its protocols will
1877    // be reported in the primary class.
1878    if (!C->IsClassExtension()) {
1879      for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
1880           E = C->protocol_end(); PI != E; ++PI)
1881        CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1882                                InsMap, ClsMap, CDecl);
1883      // Report unimplemented properties in the category as well.
1884      // When reporting on missing setter/getters, do not report when
1885      // setter/getter is implemented in category's primary class
1886      // implementation.
1887      if (ObjCInterfaceDecl *ID = C->getClassInterface())
1888        if (ObjCImplDecl *IMP = ID->getImplementation()) {
1889          for (ObjCImplementationDecl::instmeth_iterator
1890               I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I)
1891            InsMap.insert((*I)->getSelector());
1892        }
1893      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
1894    }
1895  } else
1896    llvm_unreachable("invalid ObjCContainerDecl type.");
1897}
1898
1899/// ActOnForwardClassDeclaration -
1900Sema::DeclGroupPtrTy
1901Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
1902                                   IdentifierInfo **IdentList,
1903                                   SourceLocation *IdentLocs,
1904                                   unsigned NumElts) {
1905  SmallVector<Decl *, 8> DeclsInGroup;
1906  for (unsigned i = 0; i != NumElts; ++i) {
1907    // Check for another declaration kind with the same name.
1908    NamedDecl *PrevDecl
1909      = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
1910                         LookupOrdinaryName, ForRedeclaration);
1911    if (PrevDecl && PrevDecl->isTemplateParameter()) {
1912      // Maybe we will complain about the shadowed template parameter.
1913      DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl);
1914      // Just pretend that we didn't see the previous declaration.
1915      PrevDecl = 0;
1916    }
1917
1918    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1919      // GCC apparently allows the following idiom:
1920      //
1921      // typedef NSObject < XCElementTogglerP > XCElementToggler;
1922      // @class XCElementToggler;
1923      //
1924      // Here we have chosen to ignore the forward class declaration
1925      // with a warning. Since this is the implied behavior.
1926      TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
1927      if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
1928        Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
1929        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1930      } else {
1931        // a forward class declaration matching a typedef name of a class refers
1932        // to the underlying class. Just ignore the forward class with a warning
1933        // as this will force the intended behavior which is to lookup the typedef
1934        // name.
1935        if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
1936          Diag(AtClassLoc, diag::warn_forward_class_redefinition) << IdentList[i];
1937          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1938          continue;
1939        }
1940      }
1941    }
1942
1943    // Create a declaration to describe this forward declaration.
1944    ObjCInterfaceDecl *PrevIDecl
1945      = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1946    ObjCInterfaceDecl *IDecl
1947      = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
1948                                  IdentList[i], PrevIDecl, IdentLocs[i]);
1949    IDecl->setAtEndRange(IdentLocs[i]);
1950
1951    PushOnScopeChains(IDecl, TUScope);
1952    CheckObjCDeclScope(IDecl);
1953    DeclsInGroup.push_back(IDecl);
1954  }
1955
1956  return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
1957}
1958
1959static bool tryMatchRecordTypes(ASTContext &Context,
1960                                Sema::MethodMatchStrategy strategy,
1961                                const Type *left, const Type *right);
1962
1963static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
1964                       QualType leftQT, QualType rightQT) {
1965  const Type *left =
1966    Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
1967  const Type *right =
1968    Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
1969
1970  if (left == right) return true;
1971
1972  // If we're doing a strict match, the types have to match exactly.
1973  if (strategy == Sema::MMS_strict) return false;
1974
1975  if (left->isIncompleteType() || right->isIncompleteType()) return false;
1976
1977  // Otherwise, use this absurdly complicated algorithm to try to
1978  // validate the basic, low-level compatibility of the two types.
1979
1980  // As a minimum, require the sizes and alignments to match.
1981  if (Context.getTypeInfo(left) != Context.getTypeInfo(right))
1982    return false;
1983
1984  // Consider all the kinds of non-dependent canonical types:
1985  // - functions and arrays aren't possible as return and parameter types
1986
1987  // - vector types of equal size can be arbitrarily mixed
1988  if (isa<VectorType>(left)) return isa<VectorType>(right);
1989  if (isa<VectorType>(right)) return false;
1990
1991  // - references should only match references of identical type
1992  // - structs, unions, and Objective-C objects must match more-or-less
1993  //   exactly
1994  // - everything else should be a scalar
1995  if (!left->isScalarType() || !right->isScalarType())
1996    return tryMatchRecordTypes(Context, strategy, left, right);
1997
1998  // Make scalars agree in kind, except count bools as chars, and group
1999  // all non-member pointers together.
2000  Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
2001  Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
2002  if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
2003  if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
2004  if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
2005    leftSK = Type::STK_ObjCObjectPointer;
2006  if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
2007    rightSK = Type::STK_ObjCObjectPointer;
2008
2009  // Note that data member pointers and function member pointers don't
2010  // intermix because of the size differences.
2011
2012  return (leftSK == rightSK);
2013}
2014
2015static bool tryMatchRecordTypes(ASTContext &Context,
2016                                Sema::MethodMatchStrategy strategy,
2017                                const Type *lt, const Type *rt) {
2018  assert(lt && rt && lt != rt);
2019
2020  if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
2021  RecordDecl *left = cast<RecordType>(lt)->getDecl();
2022  RecordDecl *right = cast<RecordType>(rt)->getDecl();
2023
2024  // Require union-hood to match.
2025  if (left->isUnion() != right->isUnion()) return false;
2026
2027  // Require an exact match if either is non-POD.
2028  if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
2029      (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
2030    return false;
2031
2032  // Require size and alignment to match.
2033  if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false;
2034
2035  // Require fields to match.
2036  RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
2037  RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
2038  for (; li != le && ri != re; ++li, ++ri) {
2039    if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
2040      return false;
2041  }
2042  return (li == le && ri == re);
2043}
2044
2045/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
2046/// returns true, or false, accordingly.
2047/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
2048bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
2049                                      const ObjCMethodDecl *right,
2050                                      MethodMatchStrategy strategy) {
2051  if (!matchTypes(Context, strategy,
2052                  left->getResultType(), right->getResultType()))
2053    return false;
2054
2055  // If either is hidden, it is not considered to match.
2056  if (left->isHidden() || right->isHidden())
2057    return false;
2058
2059  if (getLangOpts().ObjCAutoRefCount &&
2060      (left->hasAttr<NSReturnsRetainedAttr>()
2061         != right->hasAttr<NSReturnsRetainedAttr>() ||
2062       left->hasAttr<NSConsumesSelfAttr>()
2063         != right->hasAttr<NSConsumesSelfAttr>()))
2064    return false;
2065
2066  ObjCMethodDecl::param_const_iterator
2067    li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
2068    re = right->param_end();
2069
2070  for (; li != le && ri != re; ++li, ++ri) {
2071    assert(ri != right->param_end() && "Param mismatch");
2072    const ParmVarDecl *lparm = *li, *rparm = *ri;
2073
2074    if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
2075      return false;
2076
2077    if (getLangOpts().ObjCAutoRefCount &&
2078        lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
2079      return false;
2080  }
2081  return true;
2082}
2083
2084void Sema::addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method) {
2085  // If the list is empty, make it a singleton list.
2086  if (List->Method == 0) {
2087    List->Method = Method;
2088    List->Next = 0;
2089    return;
2090  }
2091
2092  // We've seen a method with this name, see if we have already seen this type
2093  // signature.
2094  ObjCMethodList *Previous = List;
2095  for (; List; Previous = List, List = List->Next) {
2096    if (!MatchTwoMethodDeclarations(Method, List->Method))
2097      continue;
2098
2099    ObjCMethodDecl *PrevObjCMethod = List->Method;
2100
2101    // Propagate the 'defined' bit.
2102    if (Method->isDefined())
2103      PrevObjCMethod->setDefined(true);
2104
2105    // If a method is deprecated, push it in the global pool.
2106    // This is used for better diagnostics.
2107    if (Method->isDeprecated()) {
2108      if (!PrevObjCMethod->isDeprecated())
2109        List->Method = Method;
2110    }
2111    // If new method is unavailable, push it into global pool
2112    // unless previous one is deprecated.
2113    if (Method->isUnavailable()) {
2114      if (PrevObjCMethod->getAvailability() < AR_Deprecated)
2115        List->Method = Method;
2116    }
2117
2118    return;
2119  }
2120
2121  // We have a new signature for an existing method - add it.
2122  // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
2123  ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
2124  Previous->Next = new (Mem) ObjCMethodList(Method, 0);
2125}
2126
2127/// \brief Read the contents of the method pool for a given selector from
2128/// external storage.
2129void Sema::ReadMethodPool(Selector Sel) {
2130  assert(ExternalSource && "We need an external AST source");
2131  ExternalSource->ReadMethodPool(Sel);
2132}
2133
2134void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
2135                                 bool instance) {
2136  // Ignore methods of invalid containers.
2137  if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
2138    return;
2139
2140  if (ExternalSource)
2141    ReadMethodPool(Method->getSelector());
2142
2143  GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
2144  if (Pos == MethodPool.end())
2145    Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
2146                                           GlobalMethods())).first;
2147
2148  Method->setDefined(impl);
2149
2150  ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
2151  addMethodToGlobalList(&Entry, Method);
2152}
2153
2154/// Determines if this is an "acceptable" loose mismatch in the global
2155/// method pool.  This exists mostly as a hack to get around certain
2156/// global mismatches which we can't afford to make warnings / errors.
2157/// Really, what we want is a way to take a method out of the global
2158/// method pool.
2159static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
2160                                       ObjCMethodDecl *other) {
2161  if (!chosen->isInstanceMethod())
2162    return false;
2163
2164  Selector sel = chosen->getSelector();
2165  if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
2166    return false;
2167
2168  // Don't complain about mismatches for -length if the method we
2169  // chose has an integral result type.
2170  return (chosen->getResultType()->isIntegerType());
2171}
2172
2173ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
2174                                               bool receiverIdOrClass,
2175                                               bool warn, bool instance) {
2176  if (ExternalSource)
2177    ReadMethodPool(Sel);
2178
2179  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2180  if (Pos == MethodPool.end())
2181    return 0;
2182
2183  // Gather the non-hidden methods.
2184  ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
2185  llvm::SmallVector<ObjCMethodDecl *, 4> Methods;
2186  for (ObjCMethodList *M = &MethList; M; M = M->Next) {
2187    if (M->Method && !M->Method->isHidden()) {
2188      // If we're not supposed to warn about mismatches, we're done.
2189      if (!warn)
2190        return M->Method;
2191
2192      Methods.push_back(M->Method);
2193    }
2194  }
2195
2196  // If there aren't any visible methods, we're done.
2197  // FIXME: Recover if there are any known-but-hidden methods?
2198  if (Methods.empty())
2199    return 0;
2200
2201  if (Methods.size() == 1)
2202    return Methods[0];
2203
2204  // We found multiple methods, so we may have to complain.
2205  bool issueDiagnostic = false, issueError = false;
2206
2207  // We support a warning which complains about *any* difference in
2208  // method signature.
2209  bool strictSelectorMatch =
2210    (receiverIdOrClass && warn &&
2211     (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl,
2212                               R.getBegin())
2213        != DiagnosticsEngine::Ignored));
2214  if (strictSelectorMatch) {
2215    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
2216      if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
2217        issueDiagnostic = true;
2218        break;
2219      }
2220    }
2221  }
2222
2223  // If we didn't see any strict differences, we won't see any loose
2224  // differences.  In ARC, however, we also need to check for loose
2225  // mismatches, because most of them are errors.
2226  if (!strictSelectorMatch ||
2227      (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
2228    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
2229      // This checks if the methods differ in type mismatch.
2230      if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
2231          !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
2232        issueDiagnostic = true;
2233        if (getLangOpts().ObjCAutoRefCount)
2234          issueError = true;
2235        break;
2236      }
2237    }
2238
2239  if (issueDiagnostic) {
2240    if (issueError)
2241      Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
2242    else if (strictSelectorMatch)
2243      Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
2244    else
2245      Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
2246
2247    Diag(Methods[0]->getLocStart(),
2248         issueError ? diag::note_possibility : diag::note_using)
2249      << Methods[0]->getSourceRange();
2250    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
2251      Diag(Methods[I]->getLocStart(), diag::note_also_found)
2252        << Methods[I]->getSourceRange();
2253  }
2254  }
2255  return Methods[0];
2256}
2257
2258ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
2259  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2260  if (Pos == MethodPool.end())
2261    return 0;
2262
2263  GlobalMethods &Methods = Pos->second;
2264
2265  if (Methods.first.Method && Methods.first.Method->isDefined())
2266    return Methods.first.Method;
2267  if (Methods.second.Method && Methods.second.Method->isDefined())
2268    return Methods.second.Method;
2269  return 0;
2270}
2271
2272/// DiagnoseDuplicateIvars -
2273/// Check for duplicate ivars in the entire class at the start of
2274/// \@implementation. This becomes necesssary because class extension can
2275/// add ivars to a class in random order which will not be known until
2276/// class's \@implementation is seen.
2277void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
2278                                  ObjCInterfaceDecl *SID) {
2279  for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
2280       IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
2281    ObjCIvarDecl* Ivar = *IVI;
2282    if (Ivar->isInvalidDecl())
2283      continue;
2284    if (IdentifierInfo *II = Ivar->getIdentifier()) {
2285      ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
2286      if (prevIvar) {
2287        Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
2288        Diag(prevIvar->getLocation(), diag::note_previous_declaration);
2289        Ivar->setInvalidDecl();
2290      }
2291    }
2292  }
2293}
2294
2295Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
2296  switch (CurContext->getDeclKind()) {
2297    case Decl::ObjCInterface:
2298      return Sema::OCK_Interface;
2299    case Decl::ObjCProtocol:
2300      return Sema::OCK_Protocol;
2301    case Decl::ObjCCategory:
2302      if (dyn_cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
2303        return Sema::OCK_ClassExtension;
2304      else
2305        return Sema::OCK_Category;
2306    case Decl::ObjCImplementation:
2307      return Sema::OCK_Implementation;
2308    case Decl::ObjCCategoryImpl:
2309      return Sema::OCK_CategoryImplementation;
2310
2311    default:
2312      return Sema::OCK_None;
2313  }
2314}
2315
2316// Note: For class/category implemenations, allMethods/allProperties is
2317// always null.
2318Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd,
2319                       Decl **allMethods, unsigned allNum,
2320                       Decl **allProperties, unsigned pNum,
2321                       DeclGroupPtrTy *allTUVars, unsigned tuvNum) {
2322
2323  if (getObjCContainerKind() == Sema::OCK_None)
2324    return 0;
2325
2326  assert(AtEnd.isValid() && "Invalid location for '@end'");
2327
2328  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
2329  Decl *ClassDecl = cast<Decl>(OCD);
2330
2331  bool isInterfaceDeclKind =
2332        isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
2333         || isa<ObjCProtocolDecl>(ClassDecl);
2334  bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
2335
2336  // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
2337  llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
2338  llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
2339
2340  for (unsigned i = 0; i < allNum; i++ ) {
2341    ObjCMethodDecl *Method =
2342      cast_or_null<ObjCMethodDecl>(allMethods[i]);
2343
2344    if (!Method) continue;  // Already issued a diagnostic.
2345    if (Method->isInstanceMethod()) {
2346      /// Check for instance method of the same name with incompatible types
2347      const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
2348      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2349                              : false;
2350      if ((isInterfaceDeclKind && PrevMethod && !match)
2351          || (checkIdenticalMethods && match)) {
2352          Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2353            << Method->getDeclName();
2354          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2355        Method->setInvalidDecl();
2356      } else {
2357        if (PrevMethod) {
2358          Method->setAsRedeclaration(PrevMethod);
2359          if (!Context.getSourceManager().isInSystemHeader(
2360                 Method->getLocation()))
2361            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2362              << Method->getDeclName();
2363          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2364        }
2365        InsMap[Method->getSelector()] = Method;
2366        /// The following allows us to typecheck messages to "id".
2367        AddInstanceMethodToGlobalPool(Method);
2368      }
2369    } else {
2370      /// Check for class method of the same name with incompatible types
2371      const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
2372      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2373                              : false;
2374      if ((isInterfaceDeclKind && PrevMethod && !match)
2375          || (checkIdenticalMethods && match)) {
2376        Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2377          << Method->getDeclName();
2378        Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2379        Method->setInvalidDecl();
2380      } else {
2381        if (PrevMethod) {
2382          Method->setAsRedeclaration(PrevMethod);
2383          if (!Context.getSourceManager().isInSystemHeader(
2384                 Method->getLocation()))
2385            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2386              << Method->getDeclName();
2387          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2388        }
2389        ClsMap[Method->getSelector()] = Method;
2390        AddFactoryMethodToGlobalPool(Method);
2391      }
2392    }
2393  }
2394  if (isa<ObjCInterfaceDecl>(ClassDecl)) {
2395    // Nothing to do here.
2396  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
2397    // Categories are used to extend the class by declaring new methods.
2398    // By the same token, they are also used to add new properties. No
2399    // need to compare the added property to those in the class.
2400
2401    if (C->IsClassExtension()) {
2402      ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
2403      DiagnoseClassExtensionDupMethods(C, CCPrimary);
2404    }
2405  }
2406  if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
2407    if (CDecl->getIdentifier())
2408      // ProcessPropertyDecl is responsible for diagnosing conflicts with any
2409      // user-defined setter/getter. It also synthesizes setter/getter methods
2410      // and adds them to the DeclContext and global method pools.
2411      for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
2412                                            E = CDecl->prop_end();
2413           I != E; ++I)
2414        ProcessPropertyDecl(*I, CDecl);
2415    CDecl->setAtEndRange(AtEnd);
2416  }
2417  if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
2418    IC->setAtEndRange(AtEnd);
2419    if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
2420      // Any property declared in a class extension might have user
2421      // declared setter or getter in current class extension or one
2422      // of the other class extensions. Mark them as synthesized as
2423      // property will be synthesized when property with same name is
2424      // seen in the @implementation.
2425      for (ObjCInterfaceDecl::visible_extensions_iterator
2426             Ext = IDecl->visible_extensions_begin(),
2427             ExtEnd = IDecl->visible_extensions_end();
2428           Ext != ExtEnd; ++Ext) {
2429        for (ObjCContainerDecl::prop_iterator I = Ext->prop_begin(),
2430             E = Ext->prop_end(); I != E; ++I) {
2431          ObjCPropertyDecl *Property = *I;
2432          // Skip over properties declared @dynamic
2433          if (const ObjCPropertyImplDecl *PIDecl
2434              = IC->FindPropertyImplDecl(Property->getIdentifier()))
2435            if (PIDecl->getPropertyImplementation()
2436                  == ObjCPropertyImplDecl::Dynamic)
2437              continue;
2438
2439          for (ObjCInterfaceDecl::visible_extensions_iterator
2440                 Ext = IDecl->visible_extensions_begin(),
2441                 ExtEnd = IDecl->visible_extensions_end();
2442               Ext != ExtEnd; ++Ext) {
2443            if (ObjCMethodDecl *GetterMethod
2444                  = Ext->getInstanceMethod(Property->getGetterName()))
2445              GetterMethod->setPropertyAccessor(true);
2446            if (!Property->isReadOnly())
2447              if (ObjCMethodDecl *SetterMethod
2448                    = Ext->getInstanceMethod(Property->getSetterName()))
2449                SetterMethod->setPropertyAccessor(true);
2450          }
2451        }
2452      }
2453      ImplMethodsVsClassMethods(S, IC, IDecl);
2454      AtomicPropertySetterGetterRules(IC, IDecl);
2455      DiagnoseOwningPropertyGetterSynthesis(IC);
2456
2457      bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
2458      if (IDecl->getSuperClass() == NULL) {
2459        // This class has no superclass, so check that it has been marked with
2460        // __attribute((objc_root_class)).
2461        if (!HasRootClassAttr) {
2462          SourceLocation DeclLoc(IDecl->getLocation());
2463          SourceLocation SuperClassLoc(PP.getLocForEndOfToken(DeclLoc));
2464          Diag(DeclLoc, diag::warn_objc_root_class_missing)
2465            << IDecl->getIdentifier();
2466          // See if NSObject is in the current scope, and if it is, suggest
2467          // adding " : NSObject " to the class declaration.
2468          NamedDecl *IF = LookupSingleName(TUScope,
2469                                           NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
2470                                           DeclLoc, LookupOrdinaryName);
2471          ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
2472          if (NSObjectDecl && NSObjectDecl->getDefinition()) {
2473            Diag(SuperClassLoc, diag::note_objc_needs_superclass)
2474              << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
2475          } else {
2476            Diag(SuperClassLoc, diag::note_objc_needs_superclass);
2477          }
2478        }
2479      } else if (HasRootClassAttr) {
2480        // Complain that only root classes may have this attribute.
2481        Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
2482      }
2483
2484      if (LangOpts.ObjCRuntime.isNonFragile()) {
2485        while (IDecl->getSuperClass()) {
2486          DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
2487          IDecl = IDecl->getSuperClass();
2488        }
2489      }
2490    }
2491    SetIvarInitializers(IC);
2492  } else if (ObjCCategoryImplDecl* CatImplClass =
2493                                   dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
2494    CatImplClass->setAtEndRange(AtEnd);
2495
2496    // Find category interface decl and then check that all methods declared
2497    // in this interface are implemented in the category @implementation.
2498    if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
2499      if (ObjCCategoryDecl *Cat
2500            = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
2501        ImplMethodsVsClassMethods(S, CatImplClass, Cat);
2502      }
2503    }
2504  }
2505  if (isInterfaceDeclKind) {
2506    // Reject invalid vardecls.
2507    for (unsigned i = 0; i != tuvNum; i++) {
2508      DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
2509      for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2510        if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
2511          if (!VDecl->hasExternalStorage())
2512            Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
2513        }
2514    }
2515  }
2516  ActOnObjCContainerFinishDefinition();
2517
2518  for (unsigned i = 0; i != tuvNum; i++) {
2519    DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
2520    for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2521      (*I)->setTopLevelDeclInObjCContainer();
2522    Consumer.HandleTopLevelDeclInObjCContainer(DG);
2523  }
2524
2525  ActOnDocumentableDecl(ClassDecl);
2526  return ClassDecl;
2527}
2528
2529
2530/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
2531/// objective-c's type qualifier from the parser version of the same info.
2532static Decl::ObjCDeclQualifier
2533CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
2534  return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
2535}
2536
2537static inline
2538unsigned countAlignAttr(const AttrVec &A) {
2539  unsigned count=0;
2540  for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i)
2541    if ((*i)->getKind() == attr::Aligned)
2542      ++count;
2543  return count;
2544}
2545
2546static inline
2547bool containsInvalidMethodImplAttribute(ObjCMethodDecl *IMD,
2548                                        const AttrVec &A) {
2549  // If method is only declared in implementation (private method),
2550  // No need to issue any diagnostics on method definition with attributes.
2551  if (!IMD)
2552    return false;
2553
2554  // method declared in interface has no attribute.
2555  // But implementation has attributes. This is invalid.
2556  // Except when implementation has 'Align' attribute which is
2557  // immaterial to method declared in interface.
2558  if (!IMD->hasAttrs())
2559    return (A.size() > countAlignAttr(A));
2560
2561  const AttrVec &D = IMD->getAttrs();
2562
2563  unsigned countAlignOnImpl = countAlignAttr(A);
2564  if (!countAlignOnImpl && (A.size() != D.size()))
2565    return true;
2566  else if (countAlignOnImpl) {
2567    unsigned countAlignOnDecl = countAlignAttr(D);
2568    if (countAlignOnDecl && (A.size() != D.size()))
2569      return true;
2570    else if (!countAlignOnDecl &&
2571             ((A.size()-countAlignOnImpl) != D.size()))
2572      return true;
2573  }
2574
2575  // attributes on method declaration and definition must match exactly.
2576  // Note that we have at most a couple of attributes on methods, so this
2577  // n*n search is good enough.
2578  for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i) {
2579    if ((*i)->getKind() == attr::Aligned)
2580      continue;
2581    bool match = false;
2582    for (AttrVec::const_iterator i1 = D.begin(), e1 = D.end(); i1 != e1; ++i1) {
2583      if ((*i)->getKind() == (*i1)->getKind()) {
2584        match = true;
2585        break;
2586      }
2587    }
2588    if (!match)
2589      return true;
2590  }
2591
2592  return false;
2593}
2594
2595/// \brief Check whether the declared result type of the given Objective-C
2596/// method declaration is compatible with the method's class.
2597///
2598static Sema::ResultTypeCompatibilityKind
2599CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
2600                                    ObjCInterfaceDecl *CurrentClass) {
2601  QualType ResultType = Method->getResultType();
2602
2603  // If an Objective-C method inherits its related result type, then its
2604  // declared result type must be compatible with its own class type. The
2605  // declared result type is compatible if:
2606  if (const ObjCObjectPointerType *ResultObjectType
2607                                = ResultType->getAs<ObjCObjectPointerType>()) {
2608    //   - it is id or qualified id, or
2609    if (ResultObjectType->isObjCIdType() ||
2610        ResultObjectType->isObjCQualifiedIdType())
2611      return Sema::RTC_Compatible;
2612
2613    if (CurrentClass) {
2614      if (ObjCInterfaceDecl *ResultClass
2615                                      = ResultObjectType->getInterfaceDecl()) {
2616        //   - it is the same as the method's class type, or
2617        if (declaresSameEntity(CurrentClass, ResultClass))
2618          return Sema::RTC_Compatible;
2619
2620        //   - it is a superclass of the method's class type
2621        if (ResultClass->isSuperClassOf(CurrentClass))
2622          return Sema::RTC_Compatible;
2623      }
2624    } else {
2625      // Any Objective-C pointer type might be acceptable for a protocol
2626      // method; we just don't know.
2627      return Sema::RTC_Unknown;
2628    }
2629  }
2630
2631  return Sema::RTC_Incompatible;
2632}
2633
2634namespace {
2635/// A helper class for searching for methods which a particular method
2636/// overrides.
2637class OverrideSearch {
2638public:
2639  Sema &S;
2640  ObjCMethodDecl *Method;
2641  llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden;
2642  bool Recursive;
2643
2644public:
2645  OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
2646    Selector selector = method->getSelector();
2647
2648    // Bypass this search if we've never seen an instance/class method
2649    // with this selector before.
2650    Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
2651    if (it == S.MethodPool.end()) {
2652      if (!S.getExternalSource()) return;
2653      S.ReadMethodPool(selector);
2654
2655      it = S.MethodPool.find(selector);
2656      if (it == S.MethodPool.end())
2657        return;
2658    }
2659    ObjCMethodList &list =
2660      method->isInstanceMethod() ? it->second.first : it->second.second;
2661    if (!list.Method) return;
2662
2663    ObjCContainerDecl *container
2664      = cast<ObjCContainerDecl>(method->getDeclContext());
2665
2666    // Prevent the search from reaching this container again.  This is
2667    // important with categories, which override methods from the
2668    // interface and each other.
2669    if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
2670      searchFromContainer(container);
2671      if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
2672        searchFromContainer(Interface);
2673    } else {
2674      searchFromContainer(container);
2675    }
2676  }
2677
2678  typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator;
2679  iterator begin() const { return Overridden.begin(); }
2680  iterator end() const { return Overridden.end(); }
2681
2682private:
2683  void searchFromContainer(ObjCContainerDecl *container) {
2684    if (container->isInvalidDecl()) return;
2685
2686    switch (container->getDeclKind()) {
2687#define OBJCCONTAINER(type, base) \
2688    case Decl::type: \
2689      searchFrom(cast<type##Decl>(container)); \
2690      break;
2691#define ABSTRACT_DECL(expansion)
2692#define DECL(type, base) \
2693    case Decl::type:
2694#include "clang/AST/DeclNodes.inc"
2695      llvm_unreachable("not an ObjC container!");
2696    }
2697  }
2698
2699  void searchFrom(ObjCProtocolDecl *protocol) {
2700    if (!protocol->hasDefinition())
2701      return;
2702
2703    // A method in a protocol declaration overrides declarations from
2704    // referenced ("parent") protocols.
2705    search(protocol->getReferencedProtocols());
2706  }
2707
2708  void searchFrom(ObjCCategoryDecl *category) {
2709    // A method in a category declaration overrides declarations from
2710    // the main class and from protocols the category references.
2711    // The main class is handled in the constructor.
2712    search(category->getReferencedProtocols());
2713  }
2714
2715  void searchFrom(ObjCCategoryImplDecl *impl) {
2716    // A method in a category definition that has a category
2717    // declaration overrides declarations from the category
2718    // declaration.
2719    if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
2720      search(category);
2721      if (ObjCInterfaceDecl *Interface = category->getClassInterface())
2722        search(Interface);
2723
2724    // Otherwise it overrides declarations from the class.
2725    } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
2726      search(Interface);
2727    }
2728  }
2729
2730  void searchFrom(ObjCInterfaceDecl *iface) {
2731    // A method in a class declaration overrides declarations from
2732    if (!iface->hasDefinition())
2733      return;
2734
2735    //   - categories,
2736    for (ObjCInterfaceDecl::known_categories_iterator
2737           cat = iface->known_categories_begin(),
2738           catEnd = iface->known_categories_end();
2739         cat != catEnd; ++cat) {
2740      search(*cat);
2741    }
2742
2743    //   - the super class, and
2744    if (ObjCInterfaceDecl *super = iface->getSuperClass())
2745      search(super);
2746
2747    //   - any referenced protocols.
2748    search(iface->getReferencedProtocols());
2749  }
2750
2751  void searchFrom(ObjCImplementationDecl *impl) {
2752    // A method in a class implementation overrides declarations from
2753    // the class interface.
2754    if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
2755      search(Interface);
2756  }
2757
2758
2759  void search(const ObjCProtocolList &protocols) {
2760    for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
2761         i != e; ++i)
2762      search(*i);
2763  }
2764
2765  void search(ObjCContainerDecl *container) {
2766    // Check for a method in this container which matches this selector.
2767    ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
2768                                                Method->isInstanceMethod(),
2769                                                /*AllowHidden=*/true);
2770
2771    // If we find one, record it and bail out.
2772    if (meth) {
2773      Overridden.insert(meth);
2774      return;
2775    }
2776
2777    // Otherwise, search for methods that a hypothetical method here
2778    // would have overridden.
2779
2780    // Note that we're now in a recursive case.
2781    Recursive = true;
2782
2783    searchFromContainer(container);
2784  }
2785};
2786}
2787
2788void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
2789                                    ObjCInterfaceDecl *CurrentClass,
2790                                    ResultTypeCompatibilityKind RTC) {
2791  // Search for overridden methods and merge information down from them.
2792  OverrideSearch overrides(*this, ObjCMethod);
2793  // Keep track if the method overrides any method in the class's base classes,
2794  // its protocols, or its categories' protocols; we will keep that info
2795  // in the ObjCMethodDecl.
2796  // For this info, a method in an implementation is not considered as
2797  // overriding the same method in the interface or its categories.
2798  bool hasOverriddenMethodsInBaseOrProtocol = false;
2799  for (OverrideSearch::iterator
2800         i = overrides.begin(), e = overrides.end(); i != e; ++i) {
2801    ObjCMethodDecl *overridden = *i;
2802
2803    if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
2804        CurrentClass != overridden->getClassInterface() ||
2805        overridden->isOverriding())
2806      hasOverriddenMethodsInBaseOrProtocol = true;
2807
2808    // Propagate down the 'related result type' bit from overridden methods.
2809    if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
2810      ObjCMethod->SetRelatedResultType();
2811
2812    // Then merge the declarations.
2813    mergeObjCMethodDecls(ObjCMethod, overridden);
2814
2815    if (ObjCMethod->isImplicit() && overridden->isImplicit())
2816      continue; // Conflicting properties are detected elsewhere.
2817
2818    // Check for overriding methods
2819    if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
2820        isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
2821      CheckConflictingOverridingMethod(ObjCMethod, overridden,
2822              isa<ObjCProtocolDecl>(overridden->getDeclContext()));
2823
2824    if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
2825        isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
2826        !overridden->isImplicit() /* not meant for properties */) {
2827      ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
2828                                          E = ObjCMethod->param_end();
2829      ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
2830                                     PrevE = overridden->param_end();
2831      for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
2832        assert(PrevI != overridden->param_end() && "Param mismatch");
2833        QualType T1 = Context.getCanonicalType((*ParamI)->getType());
2834        QualType T2 = Context.getCanonicalType((*PrevI)->getType());
2835        // If type of argument of method in this class does not match its
2836        // respective argument type in the super class method, issue warning;
2837        if (!Context.typesAreCompatible(T1, T2)) {
2838          Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
2839            << T1 << T2;
2840          Diag(overridden->getLocation(), diag::note_previous_declaration);
2841          break;
2842        }
2843      }
2844    }
2845  }
2846
2847  ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
2848}
2849
2850Decl *Sema::ActOnMethodDeclaration(
2851    Scope *S,
2852    SourceLocation MethodLoc, SourceLocation EndLoc,
2853    tok::TokenKind MethodType,
2854    ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
2855    ArrayRef<SourceLocation> SelectorLocs,
2856    Selector Sel,
2857    // optional arguments. The number of types/arguments is obtained
2858    // from the Sel.getNumArgs().
2859    ObjCArgInfo *ArgInfo,
2860    DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
2861    AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
2862    bool isVariadic, bool MethodDefinition) {
2863  // Make sure we can establish a context for the method.
2864  if (!CurContext->isObjCContainer()) {
2865    Diag(MethodLoc, diag::error_missing_method_context);
2866    return 0;
2867  }
2868  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
2869  Decl *ClassDecl = cast<Decl>(OCD);
2870  QualType resultDeclType;
2871
2872  bool HasRelatedResultType = false;
2873  TypeSourceInfo *ResultTInfo = 0;
2874  if (ReturnType) {
2875    resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
2876
2877    // Methods cannot return interface types. All ObjC objects are
2878    // passed by reference.
2879    if (resultDeclType->isObjCObjectType()) {
2880      Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value)
2881        << 0 << resultDeclType;
2882      return 0;
2883    }
2884
2885    HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType());
2886  } else { // get the type for "id".
2887    resultDeclType = Context.getObjCIdType();
2888    Diag(MethodLoc, diag::warn_missing_method_return_type)
2889      << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
2890  }
2891
2892  ObjCMethodDecl* ObjCMethod =
2893    ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel,
2894                           resultDeclType,
2895                           ResultTInfo,
2896                           CurContext,
2897                           MethodType == tok::minus, isVariadic,
2898                           /*isPropertyAccessor=*/false,
2899                           /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
2900                           MethodDeclKind == tok::objc_optional
2901                             ? ObjCMethodDecl::Optional
2902                             : ObjCMethodDecl::Required,
2903                           HasRelatedResultType);
2904
2905  SmallVector<ParmVarDecl*, 16> Params;
2906
2907  for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
2908    QualType ArgType;
2909    TypeSourceInfo *DI;
2910
2911    if (ArgInfo[i].Type == 0) {
2912      ArgType = Context.getObjCIdType();
2913      DI = 0;
2914    } else {
2915      ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
2916    }
2917
2918    LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
2919                   LookupOrdinaryName, ForRedeclaration);
2920    LookupName(R, S);
2921    if (R.isSingleResult()) {
2922      NamedDecl *PrevDecl = R.getFoundDecl();
2923      if (S->isDeclScope(PrevDecl)) {
2924        Diag(ArgInfo[i].NameLoc,
2925             (MethodDefinition ? diag::warn_method_param_redefinition
2926                               : diag::warn_method_param_declaration))
2927          << ArgInfo[i].Name;
2928        Diag(PrevDecl->getLocation(),
2929             diag::note_previous_declaration);
2930      }
2931    }
2932
2933    SourceLocation StartLoc = DI
2934      ? DI->getTypeLoc().getBeginLoc()
2935      : ArgInfo[i].NameLoc;
2936
2937    ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
2938                                        ArgInfo[i].NameLoc, ArgInfo[i].Name,
2939                                        ArgType, DI, SC_None);
2940
2941    Param->setObjCMethodScopeInfo(i);
2942
2943    Param->setObjCDeclQualifier(
2944      CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
2945
2946    // Apply the attributes to the parameter.
2947    ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
2948
2949    if (Param->hasAttr<BlocksAttr>()) {
2950      Diag(Param->getLocation(), diag::err_block_on_nonlocal);
2951      Param->setInvalidDecl();
2952    }
2953    S->AddDecl(Param);
2954    IdResolver.AddDecl(Param);
2955
2956    Params.push_back(Param);
2957  }
2958
2959  for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
2960    ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
2961    QualType ArgType = Param->getType();
2962    if (ArgType.isNull())
2963      ArgType = Context.getObjCIdType();
2964    else
2965      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
2966      ArgType = Context.getAdjustedParameterType(ArgType);
2967    if (ArgType->isObjCObjectType()) {
2968      Diag(Param->getLocation(),
2969           diag::err_object_cannot_be_passed_returned_by_value)
2970      << 1 << ArgType;
2971      Param->setInvalidDecl();
2972    }
2973    Param->setDeclContext(ObjCMethod);
2974
2975    Params.push_back(Param);
2976  }
2977
2978  ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
2979  ObjCMethod->setObjCDeclQualifier(
2980    CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
2981
2982  if (AttrList)
2983    ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
2984
2985  // Add the method now.
2986  const ObjCMethodDecl *PrevMethod = 0;
2987  if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
2988    if (MethodType == tok::minus) {
2989      PrevMethod = ImpDecl->getInstanceMethod(Sel);
2990      ImpDecl->addInstanceMethod(ObjCMethod);
2991    } else {
2992      PrevMethod = ImpDecl->getClassMethod(Sel);
2993      ImpDecl->addClassMethod(ObjCMethod);
2994    }
2995
2996    ObjCMethodDecl *IMD = 0;
2997    if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface())
2998      IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
2999                                ObjCMethod->isInstanceMethod());
3000    if (ObjCMethod->hasAttrs() &&
3001        containsInvalidMethodImplAttribute(IMD, ObjCMethod->getAttrs())) {
3002      SourceLocation MethodLoc = IMD->getLocation();
3003      if (!getSourceManager().isInSystemHeader(MethodLoc)) {
3004        Diag(EndLoc, diag::warn_attribute_method_def);
3005        Diag(MethodLoc, diag::note_method_declared_at)
3006          << ObjCMethod->getDeclName();
3007      }
3008    }
3009  } else {
3010    cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
3011  }
3012
3013  if (PrevMethod) {
3014    // You can never have two method definitions with the same name.
3015    Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
3016      << ObjCMethod->getDeclName();
3017    Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3018  }
3019
3020  // If this Objective-C method does not have a related result type, but we
3021  // are allowed to infer related result types, try to do so based on the
3022  // method family.
3023  ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
3024  if (!CurrentClass) {
3025    if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
3026      CurrentClass = Cat->getClassInterface();
3027    else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
3028      CurrentClass = Impl->getClassInterface();
3029    else if (ObjCCategoryImplDecl *CatImpl
3030                                   = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
3031      CurrentClass = CatImpl->getClassInterface();
3032  }
3033
3034  ResultTypeCompatibilityKind RTC
3035    = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
3036
3037  CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
3038
3039  bool ARCError = false;
3040  if (getLangOpts().ObjCAutoRefCount)
3041    ARCError = CheckARCMethodDecl(ObjCMethod);
3042
3043  // Infer the related result type when possible.
3044  if (!ARCError && RTC == Sema::RTC_Compatible &&
3045      !ObjCMethod->hasRelatedResultType() &&
3046      LangOpts.ObjCInferRelatedResultType) {
3047    bool InferRelatedResultType = false;
3048    switch (ObjCMethod->getMethodFamily()) {
3049    case OMF_None:
3050    case OMF_copy:
3051    case OMF_dealloc:
3052    case OMF_finalize:
3053    case OMF_mutableCopy:
3054    case OMF_release:
3055    case OMF_retainCount:
3056    case OMF_performSelector:
3057      break;
3058
3059    case OMF_alloc:
3060    case OMF_new:
3061      InferRelatedResultType = ObjCMethod->isClassMethod();
3062      break;
3063
3064    case OMF_init:
3065    case OMF_autorelease:
3066    case OMF_retain:
3067    case OMF_self:
3068      InferRelatedResultType = ObjCMethod->isInstanceMethod();
3069      break;
3070    }
3071
3072    if (InferRelatedResultType)
3073      ObjCMethod->SetRelatedResultType();
3074  }
3075
3076  ActOnDocumentableDecl(ObjCMethod);
3077
3078  return ObjCMethod;
3079}
3080
3081bool Sema::CheckObjCDeclScope(Decl *D) {
3082  // Following is also an error. But it is caused by a missing @end
3083  // and diagnostic is issued elsewhere.
3084  if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
3085    return false;
3086
3087  // If we switched context to translation unit while we are still lexically in
3088  // an objc container, it means the parser missed emitting an error.
3089  if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
3090    return false;
3091
3092  Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
3093  D->setInvalidDecl();
3094
3095  return true;
3096}
3097
3098/// Called whenever \@defs(ClassName) is encountered in the source.  Inserts the
3099/// instance variables of ClassName into Decls.
3100void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
3101                     IdentifierInfo *ClassName,
3102                     SmallVectorImpl<Decl*> &Decls) {
3103  // Check that ClassName is a valid class
3104  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
3105  if (!Class) {
3106    Diag(DeclStart, diag::err_undef_interface) << ClassName;
3107    return;
3108  }
3109  if (LangOpts.ObjCRuntime.isNonFragile()) {
3110    Diag(DeclStart, diag::err_atdef_nonfragile_interface);
3111    return;
3112  }
3113
3114  // Collect the instance variables
3115  SmallVector<const ObjCIvarDecl*, 32> Ivars;
3116  Context.DeepCollectObjCIvars(Class, true, Ivars);
3117  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
3118  for (unsigned i = 0; i < Ivars.size(); i++) {
3119    const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
3120    RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
3121    Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
3122                                           /*FIXME: StartL=*/ID->getLocation(),
3123                                           ID->getLocation(),
3124                                           ID->getIdentifier(), ID->getType(),
3125                                           ID->getBitWidth());
3126    Decls.push_back(FD);
3127  }
3128
3129  // Introduce all of these fields into the appropriate scope.
3130  for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
3131       D != Decls.end(); ++D) {
3132    FieldDecl *FD = cast<FieldDecl>(*D);
3133    if (getLangOpts().CPlusPlus)
3134      PushOnScopeChains(cast<FieldDecl>(FD), S);
3135    else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
3136      Record->addDecl(FD);
3137  }
3138}
3139
3140/// \brief Build a type-check a new Objective-C exception variable declaration.
3141VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
3142                                      SourceLocation StartLoc,
3143                                      SourceLocation IdLoc,
3144                                      IdentifierInfo *Id,
3145                                      bool Invalid) {
3146  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3147  // duration shall not be qualified by an address-space qualifier."
3148  // Since all parameters have automatic store duration, they can not have
3149  // an address space.
3150  if (T.getAddressSpace() != 0) {
3151    Diag(IdLoc, diag::err_arg_with_address_space);
3152    Invalid = true;
3153  }
3154
3155  // An @catch parameter must be an unqualified object pointer type;
3156  // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
3157  if (Invalid) {
3158    // Don't do any further checking.
3159  } else if (T->isDependentType()) {
3160    // Okay: we don't know what this type will instantiate to.
3161  } else if (!T->isObjCObjectPointerType()) {
3162    Invalid = true;
3163    Diag(IdLoc ,diag::err_catch_param_not_objc_type);
3164  } else if (T->isObjCQualifiedIdType()) {
3165    Invalid = true;
3166    Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
3167  }
3168
3169  VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
3170                                 T, TInfo, SC_None);
3171  New->setExceptionVariable(true);
3172
3173  // In ARC, infer 'retaining' for variables of retainable type.
3174  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
3175    Invalid = true;
3176
3177  if (Invalid)
3178    New->setInvalidDecl();
3179  return New;
3180}
3181
3182Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
3183  const DeclSpec &DS = D.getDeclSpec();
3184
3185  // We allow the "register" storage class on exception variables because
3186  // GCC did, but we drop it completely. Any other storage class is an error.
3187  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3188    Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
3189      << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
3190  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3191    Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
3192      << DS.getStorageClassSpec();
3193  }
3194  if (D.getDeclSpec().isThreadSpecified())
3195    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3196  D.getMutableDeclSpec().ClearStorageClassSpecs();
3197
3198  DiagnoseFunctionSpecifiers(D.getDeclSpec());
3199
3200  // Check that there are no default arguments inside the type of this
3201  // exception object (C++ only).
3202  if (getLangOpts().CPlusPlus)
3203    CheckExtraCXXDefaultArguments(D);
3204
3205  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3206  QualType ExceptionType = TInfo->getType();
3207
3208  VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
3209                                        D.getSourceRange().getBegin(),
3210                                        D.getIdentifierLoc(),
3211                                        D.getIdentifier(),
3212                                        D.isInvalidType());
3213
3214  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3215  if (D.getCXXScopeSpec().isSet()) {
3216    Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
3217      << D.getCXXScopeSpec().getRange();
3218    New->setInvalidDecl();
3219  }
3220
3221  // Add the parameter declaration into this scope.
3222  S->AddDecl(New);
3223  if (D.getIdentifier())
3224    IdResolver.AddDecl(New);
3225
3226  ProcessDeclAttributes(S, New, D);
3227
3228  if (New->hasAttr<BlocksAttr>())
3229    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3230  return New;
3231}
3232
3233/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
3234/// initialization.
3235void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
3236                                SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
3237  for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
3238       Iv= Iv->getNextIvar()) {
3239    QualType QT = Context.getBaseElementType(Iv->getType());
3240    if (QT->isRecordType())
3241      Ivars.push_back(Iv);
3242  }
3243}
3244
3245void Sema::DiagnoseUseOfUnimplementedSelectors() {
3246  // Load referenced selectors from the external source.
3247  if (ExternalSource) {
3248    SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
3249    ExternalSource->ReadReferencedSelectors(Sels);
3250    for (unsigned I = 0, N = Sels.size(); I != N; ++I)
3251      ReferencedSelectors[Sels[I].first] = Sels[I].second;
3252  }
3253
3254  // Warning will be issued only when selector table is
3255  // generated (which means there is at lease one implementation
3256  // in the TU). This is to match gcc's behavior.
3257  if (ReferencedSelectors.empty() ||
3258      !Context.AnyObjCImplementation())
3259    return;
3260  for (llvm::DenseMap<Selector, SourceLocation>::iterator S =
3261        ReferencedSelectors.begin(),
3262       E = ReferencedSelectors.end(); S != E; ++S) {
3263    Selector Sel = (*S).first;
3264    if (!LookupImplementedMethodInGlobalPool(Sel))
3265      Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
3266  }
3267  return;
3268}
3269