SemaDeclObjC.cpp revision 239462
1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for Objective C declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/Sema/ExternalSemaSource.h"
17#include "clang/Sema/Scope.h"
18#include "clang/Sema/ScopeInfo.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/ASTMutationListener.h"
25#include "clang/Basic/SourceManager.h"
26#include "clang/Sema/DeclSpec.h"
27#include "clang/Lex/Preprocessor.h"
28#include "llvm/ADT/DenseSet.h"
29
30using namespace clang;
31
32/// Check whether the given method, which must be in the 'init'
33/// family, is a valid member of that family.
34///
35/// \param receiverTypeIfCall - if null, check this as if declaring it;
36///   if non-null, check this as if making a call to it with the given
37///   receiver type
38///
39/// \return true to indicate that there was an error and appropriate
40///   actions were taken
41bool Sema::checkInitMethod(ObjCMethodDecl *method,
42                           QualType receiverTypeIfCall) {
43  if (method->isInvalidDecl()) return true;
44
45  // This castAs is safe: methods that don't return an object
46  // pointer won't be inferred as inits and will reject an explicit
47  // objc_method_family(init).
48
49  // We ignore protocols here.  Should we?  What about Class?
50
51  const ObjCObjectType *result = method->getResultType()
52    ->castAs<ObjCObjectPointerType>()->getObjectType();
53
54  if (result->isObjCId()) {
55    return false;
56  } else if (result->isObjCClass()) {
57    // fall through: always an error
58  } else {
59    ObjCInterfaceDecl *resultClass = result->getInterface();
60    assert(resultClass && "unexpected object type!");
61
62    // It's okay for the result type to still be a forward declaration
63    // if we're checking an interface declaration.
64    if (!resultClass->hasDefinition()) {
65      if (receiverTypeIfCall.isNull() &&
66          !isa<ObjCImplementationDecl>(method->getDeclContext()))
67        return false;
68
69    // Otherwise, we try to compare class types.
70    } else {
71      // If this method was declared in a protocol, we can't check
72      // anything unless we have a receiver type that's an interface.
73      const ObjCInterfaceDecl *receiverClass = 0;
74      if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
75        if (receiverTypeIfCall.isNull())
76          return false;
77
78        receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
79          ->getInterfaceDecl();
80
81        // This can be null for calls to e.g. id<Foo>.
82        if (!receiverClass) return false;
83      } else {
84        receiverClass = method->getClassInterface();
85        assert(receiverClass && "method not associated with a class!");
86      }
87
88      // If either class is a subclass of the other, it's fine.
89      if (receiverClass->isSuperClassOf(resultClass) ||
90          resultClass->isSuperClassOf(receiverClass))
91        return false;
92    }
93  }
94
95  SourceLocation loc = method->getLocation();
96
97  // If we're in a system header, and this is not a call, just make
98  // the method unusable.
99  if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
100    method->addAttr(new (Context) UnavailableAttr(loc, Context,
101                "init method returns a type unrelated to its receiver type"));
102    return true;
103  }
104
105  // Otherwise, it's an error.
106  Diag(loc, diag::err_arc_init_method_unrelated_result_type);
107  method->setInvalidDecl();
108  return true;
109}
110
111void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
112                                   const ObjCMethodDecl *Overridden,
113                                   bool IsImplementation) {
114  if (Overridden->hasRelatedResultType() &&
115      !NewMethod->hasRelatedResultType()) {
116    // This can only happen when the method follows a naming convention that
117    // implies a related result type, and the original (overridden) method has
118    // a suitable return type, but the new (overriding) method does not have
119    // a suitable return type.
120    QualType ResultType = NewMethod->getResultType();
121    SourceRange ResultTypeRange;
122    if (const TypeSourceInfo *ResultTypeInfo
123                                        = NewMethod->getResultTypeSourceInfo())
124      ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
125
126    // Figure out which class this method is part of, if any.
127    ObjCInterfaceDecl *CurrentClass
128      = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
129    if (!CurrentClass) {
130      DeclContext *DC = NewMethod->getDeclContext();
131      if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
132        CurrentClass = Cat->getClassInterface();
133      else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
134        CurrentClass = Impl->getClassInterface();
135      else if (ObjCCategoryImplDecl *CatImpl
136               = dyn_cast<ObjCCategoryImplDecl>(DC))
137        CurrentClass = CatImpl->getClassInterface();
138    }
139
140    if (CurrentClass) {
141      Diag(NewMethod->getLocation(),
142           diag::warn_related_result_type_compatibility_class)
143        << Context.getObjCInterfaceType(CurrentClass)
144        << ResultType
145        << ResultTypeRange;
146    } else {
147      Diag(NewMethod->getLocation(),
148           diag::warn_related_result_type_compatibility_protocol)
149        << ResultType
150        << ResultTypeRange;
151    }
152
153    if (ObjCMethodFamily Family = Overridden->getMethodFamily())
154      Diag(Overridden->getLocation(),
155           diag::note_related_result_type_overridden_family)
156        << Family;
157    else
158      Diag(Overridden->getLocation(),
159           diag::note_related_result_type_overridden);
160  }
161  if (getLangOpts().ObjCAutoRefCount) {
162    if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
163         Overridden->hasAttr<NSReturnsRetainedAttr>())) {
164        Diag(NewMethod->getLocation(),
165             diag::err_nsreturns_retained_attribute_mismatch) << 1;
166        Diag(Overridden->getLocation(), diag::note_previous_decl)
167        << "method";
168    }
169    if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
170              Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
171        Diag(NewMethod->getLocation(),
172             diag::err_nsreturns_retained_attribute_mismatch) << 0;
173        Diag(Overridden->getLocation(), diag::note_previous_decl)
174        << "method";
175    }
176    ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
177                                         oe = Overridden->param_end();
178    for (ObjCMethodDecl::param_iterator
179           ni = NewMethod->param_begin(), ne = NewMethod->param_end();
180         ni != ne && oi != oe; ++ni, ++oi) {
181      const ParmVarDecl *oldDecl = (*oi);
182      ParmVarDecl *newDecl = (*ni);
183      if (newDecl->hasAttr<NSConsumedAttr>() !=
184          oldDecl->hasAttr<NSConsumedAttr>()) {
185        Diag(newDecl->getLocation(),
186             diag::err_nsconsumed_attribute_mismatch);
187        Diag(oldDecl->getLocation(), diag::note_previous_decl)
188          << "parameter";
189      }
190    }
191  }
192}
193
194/// \brief Check a method declaration for compatibility with the Objective-C
195/// ARC conventions.
196static bool CheckARCMethodDecl(Sema &S, ObjCMethodDecl *method) {
197  ObjCMethodFamily family = method->getMethodFamily();
198  switch (family) {
199  case OMF_None:
200  case OMF_finalize:
201  case OMF_retain:
202  case OMF_release:
203  case OMF_autorelease:
204  case OMF_retainCount:
205  case OMF_self:
206  case OMF_performSelector:
207    return false;
208
209  case OMF_dealloc:
210    if (!S.Context.hasSameType(method->getResultType(), S.Context.VoidTy)) {
211      SourceRange ResultTypeRange;
212      if (const TypeSourceInfo *ResultTypeInfo
213          = method->getResultTypeSourceInfo())
214        ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
215      if (ResultTypeRange.isInvalid())
216        S.Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
217          << method->getResultType()
218          << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
219      else
220        S.Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
221          << method->getResultType()
222          << FixItHint::CreateReplacement(ResultTypeRange, "void");
223      return true;
224    }
225    return false;
226
227  case OMF_init:
228    // If the method doesn't obey the init rules, don't bother annotating it.
229    if (S.checkInitMethod(method, QualType()))
230      return true;
231
232    method->addAttr(new (S.Context) NSConsumesSelfAttr(SourceLocation(),
233                                                       S.Context));
234
235    // Don't add a second copy of this attribute, but otherwise don't
236    // let it be suppressed.
237    if (method->hasAttr<NSReturnsRetainedAttr>())
238      return false;
239    break;
240
241  case OMF_alloc:
242  case OMF_copy:
243  case OMF_mutableCopy:
244  case OMF_new:
245    if (method->hasAttr<NSReturnsRetainedAttr>() ||
246        method->hasAttr<NSReturnsNotRetainedAttr>() ||
247        method->hasAttr<NSReturnsAutoreleasedAttr>())
248      return false;
249    break;
250  }
251
252  method->addAttr(new (S.Context) NSReturnsRetainedAttr(SourceLocation(),
253                                                        S.Context));
254  return false;
255}
256
257static void DiagnoseObjCImplementedDeprecations(Sema &S,
258                                                NamedDecl *ND,
259                                                SourceLocation ImplLoc,
260                                                int select) {
261  if (ND && ND->isDeprecated()) {
262    S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
263    if (select == 0)
264      S.Diag(ND->getLocation(), diag::note_method_declared_at)
265        << ND->getDeclName();
266    else
267      S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
268  }
269}
270
271/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
272/// pool.
273void Sema::AddAnyMethodToGlobalPool(Decl *D) {
274  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
275
276  // If we don't have a valid method decl, simply return.
277  if (!MDecl)
278    return;
279  if (MDecl->isInstanceMethod())
280    AddInstanceMethodToGlobalPool(MDecl, true);
281  else
282    AddFactoryMethodToGlobalPool(MDecl, true);
283}
284
285/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
286/// and user declared, in the method definition's AST.
287void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
288  assert((getCurMethodDecl() == 0) && "Methodparsing confused");
289  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
290
291  // If we don't have a valid method decl, simply return.
292  if (!MDecl)
293    return;
294
295  // Allow all of Sema to see that we are entering a method definition.
296  PushDeclContext(FnBodyScope, MDecl);
297  PushFunctionScope();
298
299  // Create Decl objects for each parameter, entrring them in the scope for
300  // binding to their use.
301
302  // Insert the invisible arguments, self and _cmd!
303  MDecl->createImplicitParams(Context, MDecl->getClassInterface());
304
305  PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
306  PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
307
308  // Introduce all of the other parameters into this scope.
309  for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
310       E = MDecl->param_end(); PI != E; ++PI) {
311    ParmVarDecl *Param = (*PI);
312    if (!Param->isInvalidDecl() &&
313        RequireCompleteType(Param->getLocation(), Param->getType(),
314                            diag::err_typecheck_decl_incomplete_type))
315          Param->setInvalidDecl();
316    if ((*PI)->getIdentifier())
317      PushOnScopeChains(*PI, FnBodyScope);
318  }
319
320  // In ARC, disallow definition of retain/release/autorelease/retainCount
321  if (getLangOpts().ObjCAutoRefCount) {
322    switch (MDecl->getMethodFamily()) {
323    case OMF_retain:
324    case OMF_retainCount:
325    case OMF_release:
326    case OMF_autorelease:
327      Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
328        << MDecl->getSelector();
329      break;
330
331    case OMF_None:
332    case OMF_dealloc:
333    case OMF_finalize:
334    case OMF_alloc:
335    case OMF_init:
336    case OMF_mutableCopy:
337    case OMF_copy:
338    case OMF_new:
339    case OMF_self:
340    case OMF_performSelector:
341      break;
342    }
343  }
344
345  // Warn on deprecated methods under -Wdeprecated-implementations,
346  // and prepare for warning on missing super calls.
347  if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
348    if (ObjCMethodDecl *IMD =
349          IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod()))
350      DiagnoseObjCImplementedDeprecations(*this,
351                                          dyn_cast<NamedDecl>(IMD),
352                                          MDecl->getLocation(), 0);
353
354    // If this is "dealloc" or "finalize", set some bit here.
355    // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
356    // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
357    // Only do this if the current class actually has a superclass.
358    if (IC->getSuperClass()) {
359      getCurFunction()->ObjCShouldCallSuperDealloc =
360        !(Context.getLangOpts().ObjCAutoRefCount ||
361          Context.getLangOpts().getGC() == LangOptions::GCOnly) &&
362        MDecl->getMethodFamily() == OMF_dealloc;
363      getCurFunction()->ObjCShouldCallSuperFinalize =
364        Context.getLangOpts().getGC() != LangOptions::NonGC &&
365        MDecl->getMethodFamily() == OMF_finalize;
366    }
367  }
368}
369
370namespace {
371
372// Callback to only accept typo corrections that are Objective-C classes.
373// If an ObjCInterfaceDecl* is given to the constructor, then the validation
374// function will reject corrections to that class.
375class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
376 public:
377  ObjCInterfaceValidatorCCC() : CurrentIDecl(0) {}
378  explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
379      : CurrentIDecl(IDecl) {}
380
381  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
382    ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
383    return ID && !declaresSameEntity(ID, CurrentIDecl);
384  }
385
386 private:
387  ObjCInterfaceDecl *CurrentIDecl;
388};
389
390}
391
392Decl *Sema::
393ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
394                         IdentifierInfo *ClassName, SourceLocation ClassLoc,
395                         IdentifierInfo *SuperName, SourceLocation SuperLoc,
396                         Decl * const *ProtoRefs, unsigned NumProtoRefs,
397                         const SourceLocation *ProtoLocs,
398                         SourceLocation EndProtoLoc, AttributeList *AttrList) {
399  assert(ClassName && "Missing class identifier");
400
401  // Check for another declaration kind with the same name.
402  NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
403                                         LookupOrdinaryName, ForRedeclaration);
404
405  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
406    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
407    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
408  }
409
410  // Create a declaration to describe this @interface.
411  ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
412  ObjCInterfaceDecl *IDecl
413    = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
414                                PrevIDecl, ClassLoc);
415
416  if (PrevIDecl) {
417    // Class already seen. Was it a definition?
418    if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
419      Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
420        << PrevIDecl->getDeclName();
421      Diag(Def->getLocation(), diag::note_previous_definition);
422      IDecl->setInvalidDecl();
423    }
424  }
425
426  if (AttrList)
427    ProcessDeclAttributeList(TUScope, IDecl, AttrList);
428  PushOnScopeChains(IDecl, TUScope);
429
430  // Start the definition of this class. If we're in a redefinition case, there
431  // may already be a definition, so we'll end up adding to it.
432  if (!IDecl->hasDefinition())
433    IDecl->startDefinition();
434
435  if (SuperName) {
436    // Check if a different kind of symbol declared in this scope.
437    PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
438                                LookupOrdinaryName);
439
440    if (!PrevDecl) {
441      // Try to correct for a typo in the superclass name without correcting
442      // to the class we're defining.
443      ObjCInterfaceValidatorCCC Validator(IDecl);
444      if (TypoCorrection Corrected = CorrectTypo(
445          DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope,
446          NULL, Validator)) {
447        PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
448        Diag(SuperLoc, diag::err_undef_superclass_suggest)
449          << SuperName << ClassName << PrevDecl->getDeclName();
450        Diag(PrevDecl->getLocation(), diag::note_previous_decl)
451          << PrevDecl->getDeclName();
452      }
453    }
454
455    if (declaresSameEntity(PrevDecl, IDecl)) {
456      Diag(SuperLoc, diag::err_recursive_superclass)
457        << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
458      IDecl->setEndOfDefinitionLoc(ClassLoc);
459    } else {
460      ObjCInterfaceDecl *SuperClassDecl =
461                                dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
462
463      // Diagnose classes that inherit from deprecated classes.
464      if (SuperClassDecl)
465        (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
466
467      if (PrevDecl && SuperClassDecl == 0) {
468        // The previous declaration was not a class decl. Check if we have a
469        // typedef. If we do, get the underlying class type.
470        if (const TypedefNameDecl *TDecl =
471              dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
472          QualType T = TDecl->getUnderlyingType();
473          if (T->isObjCObjectType()) {
474            if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface())
475              SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
476          }
477        }
478
479        // This handles the following case:
480        //
481        // typedef int SuperClass;
482        // @interface MyClass : SuperClass {} @end
483        //
484        if (!SuperClassDecl) {
485          Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
486          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
487        }
488      }
489
490      if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
491        if (!SuperClassDecl)
492          Diag(SuperLoc, diag::err_undef_superclass)
493            << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
494        else if (RequireCompleteType(SuperLoc,
495                                  Context.getObjCInterfaceType(SuperClassDecl),
496                                     diag::err_forward_superclass,
497                                     SuperClassDecl->getDeclName(),
498                                     ClassName,
499                                     SourceRange(AtInterfaceLoc, ClassLoc))) {
500          SuperClassDecl = 0;
501        }
502      }
503      IDecl->setSuperClass(SuperClassDecl);
504      IDecl->setSuperClassLoc(SuperLoc);
505      IDecl->setEndOfDefinitionLoc(SuperLoc);
506    }
507  } else { // we have a root class.
508    IDecl->setEndOfDefinitionLoc(ClassLoc);
509  }
510
511  // Check then save referenced protocols.
512  if (NumProtoRefs) {
513    IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
514                           ProtoLocs, Context);
515    IDecl->setEndOfDefinitionLoc(EndProtoLoc);
516  }
517
518  CheckObjCDeclScope(IDecl);
519  return ActOnObjCContainerStartDefinition(IDecl);
520}
521
522/// ActOnCompatibilityAlias - this action is called after complete parsing of
523/// a \@compatibility_alias declaration. It sets up the alias relationships.
524Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
525                                    IdentifierInfo *AliasName,
526                                    SourceLocation AliasLocation,
527                                    IdentifierInfo *ClassName,
528                                    SourceLocation ClassLocation) {
529  // Look for previous declaration of alias name
530  NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
531                                      LookupOrdinaryName, ForRedeclaration);
532  if (ADecl) {
533    if (isa<ObjCCompatibleAliasDecl>(ADecl))
534      Diag(AliasLocation, diag::warn_previous_alias_decl);
535    else
536      Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
537    Diag(ADecl->getLocation(), diag::note_previous_declaration);
538    return 0;
539  }
540  // Check for class declaration
541  NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
542                                       LookupOrdinaryName, ForRedeclaration);
543  if (const TypedefNameDecl *TDecl =
544        dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
545    QualType T = TDecl->getUnderlyingType();
546    if (T->isObjCObjectType()) {
547      if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
548        ClassName = IDecl->getIdentifier();
549        CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
550                                  LookupOrdinaryName, ForRedeclaration);
551      }
552    }
553  }
554  ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
555  if (CDecl == 0) {
556    Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
557    if (CDeclU)
558      Diag(CDeclU->getLocation(), diag::note_previous_declaration);
559    return 0;
560  }
561
562  // Everything checked out, instantiate a new alias declaration AST.
563  ObjCCompatibleAliasDecl *AliasDecl =
564    ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
565
566  if (!CheckObjCDeclScope(AliasDecl))
567    PushOnScopeChains(AliasDecl, TUScope);
568
569  return AliasDecl;
570}
571
572bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
573  IdentifierInfo *PName,
574  SourceLocation &Ploc, SourceLocation PrevLoc,
575  const ObjCList<ObjCProtocolDecl> &PList) {
576
577  bool res = false;
578  for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
579       E = PList.end(); I != E; ++I) {
580    if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
581                                                 Ploc)) {
582      if (PDecl->getIdentifier() == PName) {
583        Diag(Ploc, diag::err_protocol_has_circular_dependency);
584        Diag(PrevLoc, diag::note_previous_definition);
585        res = true;
586      }
587
588      if (!PDecl->hasDefinition())
589        continue;
590
591      if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
592            PDecl->getLocation(), PDecl->getReferencedProtocols()))
593        res = true;
594    }
595  }
596  return res;
597}
598
599Decl *
600Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
601                                  IdentifierInfo *ProtocolName,
602                                  SourceLocation ProtocolLoc,
603                                  Decl * const *ProtoRefs,
604                                  unsigned NumProtoRefs,
605                                  const SourceLocation *ProtoLocs,
606                                  SourceLocation EndProtoLoc,
607                                  AttributeList *AttrList) {
608  bool err = false;
609  // FIXME: Deal with AttrList.
610  assert(ProtocolName && "Missing protocol identifier");
611  ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
612                                              ForRedeclaration);
613  ObjCProtocolDecl *PDecl = 0;
614  if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : 0) {
615    // If we already have a definition, complain.
616    Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
617    Diag(Def->getLocation(), diag::note_previous_definition);
618
619    // Create a new protocol that is completely distinct from previous
620    // declarations, and do not make this protocol available for name lookup.
621    // That way, we'll end up completely ignoring the duplicate.
622    // FIXME: Can we turn this into an error?
623    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
624                                     ProtocolLoc, AtProtoInterfaceLoc,
625                                     /*PrevDecl=*/0);
626    PDecl->startDefinition();
627  } else {
628    if (PrevDecl) {
629      // Check for circular dependencies among protocol declarations. This can
630      // only happen if this protocol was forward-declared.
631      ObjCList<ObjCProtocolDecl> PList;
632      PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
633      err = CheckForwardProtocolDeclarationForCircularDependency(
634              ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
635    }
636
637    // Create the new declaration.
638    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
639                                     ProtocolLoc, AtProtoInterfaceLoc,
640                                     /*PrevDecl=*/PrevDecl);
641
642    PushOnScopeChains(PDecl, TUScope);
643    PDecl->startDefinition();
644  }
645
646  if (AttrList)
647    ProcessDeclAttributeList(TUScope, PDecl, AttrList);
648
649  // Merge attributes from previous declarations.
650  if (PrevDecl)
651    mergeDeclAttributes(PDecl, PrevDecl);
652
653  if (!err && NumProtoRefs ) {
654    /// Check then save referenced protocols.
655    PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
656                           ProtoLocs, Context);
657  }
658
659  CheckObjCDeclScope(PDecl);
660  return ActOnObjCContainerStartDefinition(PDecl);
661}
662
663/// FindProtocolDeclaration - This routine looks up protocols and
664/// issues an error if they are not declared. It returns list of
665/// protocol declarations in its 'Protocols' argument.
666void
667Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
668                              const IdentifierLocPair *ProtocolId,
669                              unsigned NumProtocols,
670                              SmallVectorImpl<Decl *> &Protocols) {
671  for (unsigned i = 0; i != NumProtocols; ++i) {
672    ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
673                                             ProtocolId[i].second);
674    if (!PDecl) {
675      DeclFilterCCC<ObjCProtocolDecl> Validator;
676      TypoCorrection Corrected = CorrectTypo(
677          DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second),
678          LookupObjCProtocolName, TUScope, NULL, Validator);
679      if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) {
680        Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
681          << ProtocolId[i].first << Corrected.getCorrection();
682        Diag(PDecl->getLocation(), diag::note_previous_decl)
683          << PDecl->getDeclName();
684      }
685    }
686
687    if (!PDecl) {
688      Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
689        << ProtocolId[i].first;
690      continue;
691    }
692
693    (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
694
695    // If this is a forward declaration and we are supposed to warn in this
696    // case, do it.
697    if (WarnOnDeclarations && !PDecl->hasDefinition())
698      Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
699        << ProtocolId[i].first;
700    Protocols.push_back(PDecl);
701  }
702}
703
704/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
705/// a class method in its extension.
706///
707void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
708                                            ObjCInterfaceDecl *ID) {
709  if (!ID)
710    return;  // Possibly due to previous error
711
712  llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
713  for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
714       e =  ID->meth_end(); i != e; ++i) {
715    ObjCMethodDecl *MD = *i;
716    MethodMap[MD->getSelector()] = MD;
717  }
718
719  if (MethodMap.empty())
720    return;
721  for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
722       e =  CAT->meth_end(); i != e; ++i) {
723    ObjCMethodDecl *Method = *i;
724    const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
725    if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
726      Diag(Method->getLocation(), diag::err_duplicate_method_decl)
727            << Method->getDeclName();
728      Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
729    }
730  }
731}
732
733/// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
734Sema::DeclGroupPtrTy
735Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
736                                      const IdentifierLocPair *IdentList,
737                                      unsigned NumElts,
738                                      AttributeList *attrList) {
739  SmallVector<Decl *, 8> DeclsInGroup;
740  for (unsigned i = 0; i != NumElts; ++i) {
741    IdentifierInfo *Ident = IdentList[i].first;
742    ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentList[i].second,
743                                                ForRedeclaration);
744    ObjCProtocolDecl *PDecl
745      = ObjCProtocolDecl::Create(Context, CurContext, Ident,
746                                 IdentList[i].second, AtProtocolLoc,
747                                 PrevDecl);
748
749    PushOnScopeChains(PDecl, TUScope);
750    CheckObjCDeclScope(PDecl);
751
752    if (attrList)
753      ProcessDeclAttributeList(TUScope, PDecl, attrList);
754
755    if (PrevDecl)
756      mergeDeclAttributes(PDecl, PrevDecl);
757
758    DeclsInGroup.push_back(PDecl);
759  }
760
761  return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
762}
763
764Decl *Sema::
765ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
766                            IdentifierInfo *ClassName, SourceLocation ClassLoc,
767                            IdentifierInfo *CategoryName,
768                            SourceLocation CategoryLoc,
769                            Decl * const *ProtoRefs,
770                            unsigned NumProtoRefs,
771                            const SourceLocation *ProtoLocs,
772                            SourceLocation EndProtoLoc) {
773  ObjCCategoryDecl *CDecl;
774  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
775
776  /// Check that class of this category is already completely declared.
777
778  if (!IDecl
779      || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
780                             diag::err_category_forward_interface,
781                             CategoryName == 0)) {
782    // Create an invalid ObjCCategoryDecl to serve as context for
783    // the enclosing method declarations.  We mark the decl invalid
784    // to make it clear that this isn't a valid AST.
785    CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
786                                     ClassLoc, CategoryLoc, CategoryName,IDecl);
787    CDecl->setInvalidDecl();
788    CurContext->addDecl(CDecl);
789
790    if (!IDecl)
791      Diag(ClassLoc, diag::err_undef_interface) << ClassName;
792    return ActOnObjCContainerStartDefinition(CDecl);
793  }
794
795  if (!CategoryName && IDecl->getImplementation()) {
796    Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
797    Diag(IDecl->getImplementation()->getLocation(),
798          diag::note_implementation_declared);
799  }
800
801  if (CategoryName) {
802    /// Check for duplicate interface declaration for this category
803    ObjCCategoryDecl *CDeclChain;
804    for (CDeclChain = IDecl->getCategoryList(); CDeclChain;
805         CDeclChain = CDeclChain->getNextClassCategory()) {
806      if (CDeclChain->getIdentifier() == CategoryName) {
807        // Class extensions can be declared multiple times.
808        Diag(CategoryLoc, diag::warn_dup_category_def)
809          << ClassName << CategoryName;
810        Diag(CDeclChain->getLocation(), diag::note_previous_definition);
811        break;
812      }
813    }
814  }
815
816  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
817                                   ClassLoc, CategoryLoc, CategoryName, IDecl);
818  // FIXME: PushOnScopeChains?
819  CurContext->addDecl(CDecl);
820
821  if (NumProtoRefs) {
822    CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
823                           ProtoLocs, Context);
824    // Protocols in the class extension belong to the class.
825    if (CDecl->IsClassExtension())
826     IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs,
827                                            NumProtoRefs, Context);
828  }
829
830  CheckObjCDeclScope(CDecl);
831  return ActOnObjCContainerStartDefinition(CDecl);
832}
833
834/// ActOnStartCategoryImplementation - Perform semantic checks on the
835/// category implementation declaration and build an ObjCCategoryImplDecl
836/// object.
837Decl *Sema::ActOnStartCategoryImplementation(
838                      SourceLocation AtCatImplLoc,
839                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
840                      IdentifierInfo *CatName, SourceLocation CatLoc) {
841  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
842  ObjCCategoryDecl *CatIDecl = 0;
843  if (IDecl && IDecl->hasDefinition()) {
844    CatIDecl = IDecl->FindCategoryDeclaration(CatName);
845    if (!CatIDecl) {
846      // Category @implementation with no corresponding @interface.
847      // Create and install one.
848      CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
849                                          ClassLoc, CatLoc,
850                                          CatName, IDecl);
851      CatIDecl->setImplicit();
852    }
853  }
854
855  ObjCCategoryImplDecl *CDecl =
856    ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
857                                 ClassLoc, AtCatImplLoc, CatLoc);
858  /// Check that class of this category is already completely declared.
859  if (!IDecl) {
860    Diag(ClassLoc, diag::err_undef_interface) << ClassName;
861    CDecl->setInvalidDecl();
862  } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
863                                 diag::err_undef_interface)) {
864    CDecl->setInvalidDecl();
865  }
866
867  // FIXME: PushOnScopeChains?
868  CurContext->addDecl(CDecl);
869
870  // If the interface is deprecated/unavailable, warn/error about it.
871  if (IDecl)
872    DiagnoseUseOfDecl(IDecl, ClassLoc);
873
874  /// Check that CatName, category name, is not used in another implementation.
875  if (CatIDecl) {
876    if (CatIDecl->getImplementation()) {
877      Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
878        << CatName;
879      Diag(CatIDecl->getImplementation()->getLocation(),
880           diag::note_previous_definition);
881    } else {
882      CatIDecl->setImplementation(CDecl);
883      // Warn on implementating category of deprecated class under
884      // -Wdeprecated-implementations flag.
885      DiagnoseObjCImplementedDeprecations(*this,
886                                          dyn_cast<NamedDecl>(IDecl),
887                                          CDecl->getLocation(), 2);
888    }
889  }
890
891  CheckObjCDeclScope(CDecl);
892  return ActOnObjCContainerStartDefinition(CDecl);
893}
894
895Decl *Sema::ActOnStartClassImplementation(
896                      SourceLocation AtClassImplLoc,
897                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
898                      IdentifierInfo *SuperClassname,
899                      SourceLocation SuperClassLoc) {
900  ObjCInterfaceDecl* IDecl = 0;
901  // Check for another declaration kind with the same name.
902  NamedDecl *PrevDecl
903    = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
904                       ForRedeclaration);
905  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
906    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
907    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
908  } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
909    RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
910                        diag::warn_undef_interface);
911  } else {
912    // We did not find anything with the name ClassName; try to correct for
913    // typos in the class name.
914    ObjCInterfaceValidatorCCC Validator;
915    if (TypoCorrection Corrected = CorrectTypo(
916        DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
917        NULL, Validator)) {
918      // Suggest the (potentially) correct interface name. However, put the
919      // fix-it hint itself in a separate note, since changing the name in
920      // the warning would make the fix-it change semantics.However, don't
921      // provide a code-modification hint or use the typo name for recovery,
922      // because this is just a warning. The program may actually be correct.
923      IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
924      DeclarationName CorrectedName = Corrected.getCorrection();
925      Diag(ClassLoc, diag::warn_undef_interface_suggest)
926        << ClassName << CorrectedName;
927      Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName
928        << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString());
929      IDecl = 0;
930    } else {
931      Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
932    }
933  }
934
935  // Check that super class name is valid class name
936  ObjCInterfaceDecl* SDecl = 0;
937  if (SuperClassname) {
938    // Check if a different kind of symbol declared in this scope.
939    PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
940                                LookupOrdinaryName);
941    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
942      Diag(SuperClassLoc, diag::err_redefinition_different_kind)
943        << SuperClassname;
944      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
945    } else {
946      SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
947      if (SDecl && !SDecl->hasDefinition())
948        SDecl = 0;
949      if (!SDecl)
950        Diag(SuperClassLoc, diag::err_undef_superclass)
951          << SuperClassname << ClassName;
952      else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
953        // This implementation and its interface do not have the same
954        // super class.
955        Diag(SuperClassLoc, diag::err_conflicting_super_class)
956          << SDecl->getDeclName();
957        Diag(SDecl->getLocation(), diag::note_previous_definition);
958      }
959    }
960  }
961
962  if (!IDecl) {
963    // Legacy case of @implementation with no corresponding @interface.
964    // Build, chain & install the interface decl into the identifier.
965
966    // FIXME: Do we support attributes on the @implementation? If so we should
967    // copy them over.
968    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
969                                      ClassName, /*PrevDecl=*/0, ClassLoc,
970                                      true);
971    IDecl->startDefinition();
972    if (SDecl) {
973      IDecl->setSuperClass(SDecl);
974      IDecl->setSuperClassLoc(SuperClassLoc);
975      IDecl->setEndOfDefinitionLoc(SuperClassLoc);
976    } else {
977      IDecl->setEndOfDefinitionLoc(ClassLoc);
978    }
979
980    PushOnScopeChains(IDecl, TUScope);
981  } else {
982    // Mark the interface as being completed, even if it was just as
983    //   @class ....;
984    // declaration; the user cannot reopen it.
985    if (!IDecl->hasDefinition())
986      IDecl->startDefinition();
987  }
988
989  ObjCImplementationDecl* IMPDecl =
990    ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
991                                   ClassLoc, AtClassImplLoc);
992
993  if (CheckObjCDeclScope(IMPDecl))
994    return ActOnObjCContainerStartDefinition(IMPDecl);
995
996  // Check that there is no duplicate implementation of this class.
997  if (IDecl->getImplementation()) {
998    // FIXME: Don't leak everything!
999    Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
1000    Diag(IDecl->getImplementation()->getLocation(),
1001         diag::note_previous_definition);
1002  } else { // add it to the list.
1003    IDecl->setImplementation(IMPDecl);
1004    PushOnScopeChains(IMPDecl, TUScope);
1005    // Warn on implementating deprecated class under
1006    // -Wdeprecated-implementations flag.
1007    DiagnoseObjCImplementedDeprecations(*this,
1008                                        dyn_cast<NamedDecl>(IDecl),
1009                                        IMPDecl->getLocation(), 1);
1010  }
1011  return ActOnObjCContainerStartDefinition(IMPDecl);
1012}
1013
1014Sema::DeclGroupPtrTy
1015Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
1016  SmallVector<Decl *, 64> DeclsInGroup;
1017  DeclsInGroup.reserve(Decls.size() + 1);
1018
1019  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
1020    Decl *Dcl = Decls[i];
1021    if (!Dcl)
1022      continue;
1023    if (Dcl->getDeclContext()->isFileContext())
1024      Dcl->setTopLevelDeclInObjCContainer();
1025    DeclsInGroup.push_back(Dcl);
1026  }
1027
1028  DeclsInGroup.push_back(ObjCImpDecl);
1029
1030  return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
1031}
1032
1033void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
1034                                    ObjCIvarDecl **ivars, unsigned numIvars,
1035                                    SourceLocation RBrace) {
1036  assert(ImpDecl && "missing implementation decl");
1037  ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
1038  if (!IDecl)
1039    return;
1040  /// Check case of non-existing \@interface decl.
1041  /// (legacy objective-c \@implementation decl without an \@interface decl).
1042  /// Add implementations's ivar to the synthesize class's ivar list.
1043  if (IDecl->isImplicitInterfaceDecl()) {
1044    IDecl->setEndOfDefinitionLoc(RBrace);
1045    // Add ivar's to class's DeclContext.
1046    for (unsigned i = 0, e = numIvars; i != e; ++i) {
1047      ivars[i]->setLexicalDeclContext(ImpDecl);
1048      IDecl->makeDeclVisibleInContext(ivars[i]);
1049      ImpDecl->addDecl(ivars[i]);
1050    }
1051
1052    return;
1053  }
1054  // If implementation has empty ivar list, just return.
1055  if (numIvars == 0)
1056    return;
1057
1058  assert(ivars && "missing @implementation ivars");
1059  if (LangOpts.ObjCRuntime.isNonFragile()) {
1060    if (ImpDecl->getSuperClass())
1061      Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
1062    for (unsigned i = 0; i < numIvars; i++) {
1063      ObjCIvarDecl* ImplIvar = ivars[i];
1064      if (const ObjCIvarDecl *ClsIvar =
1065            IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
1066        Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
1067        Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1068        continue;
1069      }
1070      // Instance ivar to Implementation's DeclContext.
1071      ImplIvar->setLexicalDeclContext(ImpDecl);
1072      IDecl->makeDeclVisibleInContext(ImplIvar);
1073      ImpDecl->addDecl(ImplIvar);
1074    }
1075    return;
1076  }
1077  // Check interface's Ivar list against those in the implementation.
1078  // names and types must match.
1079  //
1080  unsigned j = 0;
1081  ObjCInterfaceDecl::ivar_iterator
1082    IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
1083  for (; numIvars > 0 && IVI != IVE; ++IVI) {
1084    ObjCIvarDecl* ImplIvar = ivars[j++];
1085    ObjCIvarDecl* ClsIvar = *IVI;
1086    assert (ImplIvar && "missing implementation ivar");
1087    assert (ClsIvar && "missing class ivar");
1088
1089    // First, make sure the types match.
1090    if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
1091      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
1092        << ImplIvar->getIdentifier()
1093        << ImplIvar->getType() << ClsIvar->getType();
1094      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1095    } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
1096               ImplIvar->getBitWidthValue(Context) !=
1097               ClsIvar->getBitWidthValue(Context)) {
1098      Diag(ImplIvar->getBitWidth()->getLocStart(),
1099           diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
1100      Diag(ClsIvar->getBitWidth()->getLocStart(),
1101           diag::note_previous_definition);
1102    }
1103    // Make sure the names are identical.
1104    if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
1105      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
1106        << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
1107      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1108    }
1109    --numIvars;
1110  }
1111
1112  if (numIvars > 0)
1113    Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
1114  else if (IVI != IVE)
1115    Diag(IVI->getLocation(), diag::err_inconsistant_ivar_count);
1116}
1117
1118void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
1119                               bool &IncompleteImpl, unsigned DiagID) {
1120  // No point warning no definition of method which is 'unavailable'.
1121  if (method->hasAttr<UnavailableAttr>())
1122    return;
1123  if (!IncompleteImpl) {
1124    Diag(ImpLoc, diag::warn_incomplete_impl);
1125    IncompleteImpl = true;
1126  }
1127  if (DiagID == diag::warn_unimplemented_protocol_method)
1128    Diag(ImpLoc, DiagID) << method->getDeclName();
1129  else
1130    Diag(method->getLocation(), DiagID) << method->getDeclName();
1131}
1132
1133/// Determines if type B can be substituted for type A.  Returns true if we can
1134/// guarantee that anything that the user will do to an object of type A can
1135/// also be done to an object of type B.  This is trivially true if the two
1136/// types are the same, or if B is a subclass of A.  It becomes more complex
1137/// in cases where protocols are involved.
1138///
1139/// Object types in Objective-C describe the minimum requirements for an
1140/// object, rather than providing a complete description of a type.  For
1141/// example, if A is a subclass of B, then B* may refer to an instance of A.
1142/// The principle of substitutability means that we may use an instance of A
1143/// anywhere that we may use an instance of B - it will implement all of the
1144/// ivars of B and all of the methods of B.
1145///
1146/// This substitutability is important when type checking methods, because
1147/// the implementation may have stricter type definitions than the interface.
1148/// The interface specifies minimum requirements, but the implementation may
1149/// have more accurate ones.  For example, a method may privately accept
1150/// instances of B, but only publish that it accepts instances of A.  Any
1151/// object passed to it will be type checked against B, and so will implicitly
1152/// by a valid A*.  Similarly, a method may return a subclass of the class that
1153/// it is declared as returning.
1154///
1155/// This is most important when considering subclassing.  A method in a
1156/// subclass must accept any object as an argument that its superclass's
1157/// implementation accepts.  It may, however, accept a more general type
1158/// without breaking substitutability (i.e. you can still use the subclass
1159/// anywhere that you can use the superclass, but not vice versa).  The
1160/// converse requirement applies to return types: the return type for a
1161/// subclass method must be a valid object of the kind that the superclass
1162/// advertises, but it may be specified more accurately.  This avoids the need
1163/// for explicit down-casting by callers.
1164///
1165/// Note: This is a stricter requirement than for assignment.
1166static bool isObjCTypeSubstitutable(ASTContext &Context,
1167                                    const ObjCObjectPointerType *A,
1168                                    const ObjCObjectPointerType *B,
1169                                    bool rejectId) {
1170  // Reject a protocol-unqualified id.
1171  if (rejectId && B->isObjCIdType()) return false;
1172
1173  // If B is a qualified id, then A must also be a qualified id and it must
1174  // implement all of the protocols in B.  It may not be a qualified class.
1175  // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
1176  // stricter definition so it is not substitutable for id<A>.
1177  if (B->isObjCQualifiedIdType()) {
1178    return A->isObjCQualifiedIdType() &&
1179           Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
1180                                                     QualType(B,0),
1181                                                     false);
1182  }
1183
1184  /*
1185  // id is a special type that bypasses type checking completely.  We want a
1186  // warning when it is used in one place but not another.
1187  if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
1188
1189
1190  // If B is a qualified id, then A must also be a qualified id (which it isn't
1191  // if we've got this far)
1192  if (B->isObjCQualifiedIdType()) return false;
1193  */
1194
1195  // Now we know that A and B are (potentially-qualified) class types.  The
1196  // normal rules for assignment apply.
1197  return Context.canAssignObjCInterfaces(A, B);
1198}
1199
1200static SourceRange getTypeRange(TypeSourceInfo *TSI) {
1201  return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
1202}
1203
1204static bool CheckMethodOverrideReturn(Sema &S,
1205                                      ObjCMethodDecl *MethodImpl,
1206                                      ObjCMethodDecl *MethodDecl,
1207                                      bool IsProtocolMethodDecl,
1208                                      bool IsOverridingMode,
1209                                      bool Warn) {
1210  if (IsProtocolMethodDecl &&
1211      (MethodDecl->getObjCDeclQualifier() !=
1212       MethodImpl->getObjCDeclQualifier())) {
1213    if (Warn) {
1214        S.Diag(MethodImpl->getLocation(),
1215               (IsOverridingMode ?
1216                 diag::warn_conflicting_overriding_ret_type_modifiers
1217                 : diag::warn_conflicting_ret_type_modifiers))
1218          << MethodImpl->getDeclName()
1219          << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1220        S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
1221          << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1222    }
1223    else
1224      return false;
1225  }
1226
1227  if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(),
1228                                       MethodDecl->getResultType()))
1229    return true;
1230  if (!Warn)
1231    return false;
1232
1233  unsigned DiagID =
1234    IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
1235                     : diag::warn_conflicting_ret_types;
1236
1237  // Mismatches between ObjC pointers go into a different warning
1238  // category, and sometimes they're even completely whitelisted.
1239  if (const ObjCObjectPointerType *ImplPtrTy =
1240        MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) {
1241    if (const ObjCObjectPointerType *IfacePtrTy =
1242          MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) {
1243      // Allow non-matching return types as long as they don't violate
1244      // the principle of substitutability.  Specifically, we permit
1245      // return types that are subclasses of the declared return type,
1246      // or that are more-qualified versions of the declared type.
1247      if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
1248        return false;
1249
1250      DiagID =
1251        IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
1252                          : diag::warn_non_covariant_ret_types;
1253    }
1254  }
1255
1256  S.Diag(MethodImpl->getLocation(), DiagID)
1257    << MethodImpl->getDeclName()
1258    << MethodDecl->getResultType()
1259    << MethodImpl->getResultType()
1260    << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1261  S.Diag(MethodDecl->getLocation(),
1262         IsOverridingMode ? diag::note_previous_declaration
1263                          : diag::note_previous_definition)
1264    << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1265  return false;
1266}
1267
1268static bool CheckMethodOverrideParam(Sema &S,
1269                                     ObjCMethodDecl *MethodImpl,
1270                                     ObjCMethodDecl *MethodDecl,
1271                                     ParmVarDecl *ImplVar,
1272                                     ParmVarDecl *IfaceVar,
1273                                     bool IsProtocolMethodDecl,
1274                                     bool IsOverridingMode,
1275                                     bool Warn) {
1276  if (IsProtocolMethodDecl &&
1277      (ImplVar->getObjCDeclQualifier() !=
1278       IfaceVar->getObjCDeclQualifier())) {
1279    if (Warn) {
1280      if (IsOverridingMode)
1281        S.Diag(ImplVar->getLocation(),
1282               diag::warn_conflicting_overriding_param_modifiers)
1283            << getTypeRange(ImplVar->getTypeSourceInfo())
1284            << MethodImpl->getDeclName();
1285      else S.Diag(ImplVar->getLocation(),
1286             diag::warn_conflicting_param_modifiers)
1287          << getTypeRange(ImplVar->getTypeSourceInfo())
1288          << MethodImpl->getDeclName();
1289      S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
1290          << getTypeRange(IfaceVar->getTypeSourceInfo());
1291    }
1292    else
1293      return false;
1294  }
1295
1296  QualType ImplTy = ImplVar->getType();
1297  QualType IfaceTy = IfaceVar->getType();
1298
1299  if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
1300    return true;
1301
1302  if (!Warn)
1303    return false;
1304  unsigned DiagID =
1305    IsOverridingMode ? diag::warn_conflicting_overriding_param_types
1306                     : diag::warn_conflicting_param_types;
1307
1308  // Mismatches between ObjC pointers go into a different warning
1309  // category, and sometimes they're even completely whitelisted.
1310  if (const ObjCObjectPointerType *ImplPtrTy =
1311        ImplTy->getAs<ObjCObjectPointerType>()) {
1312    if (const ObjCObjectPointerType *IfacePtrTy =
1313          IfaceTy->getAs<ObjCObjectPointerType>()) {
1314      // Allow non-matching argument types as long as they don't
1315      // violate the principle of substitutability.  Specifically, the
1316      // implementation must accept any objects that the superclass
1317      // accepts, however it may also accept others.
1318      if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
1319        return false;
1320
1321      DiagID =
1322      IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
1323                       :  diag::warn_non_contravariant_param_types;
1324    }
1325  }
1326
1327  S.Diag(ImplVar->getLocation(), DiagID)
1328    << getTypeRange(ImplVar->getTypeSourceInfo())
1329    << MethodImpl->getDeclName() << IfaceTy << ImplTy;
1330  S.Diag(IfaceVar->getLocation(),
1331         (IsOverridingMode ? diag::note_previous_declaration
1332                        : diag::note_previous_definition))
1333    << getTypeRange(IfaceVar->getTypeSourceInfo());
1334  return false;
1335}
1336
1337/// In ARC, check whether the conventional meanings of the two methods
1338/// match.  If they don't, it's a hard error.
1339static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
1340                                      ObjCMethodDecl *decl) {
1341  ObjCMethodFamily implFamily = impl->getMethodFamily();
1342  ObjCMethodFamily declFamily = decl->getMethodFamily();
1343  if (implFamily == declFamily) return false;
1344
1345  // Since conventions are sorted by selector, the only possibility is
1346  // that the types differ enough to cause one selector or the other
1347  // to fall out of the family.
1348  assert(implFamily == OMF_None || declFamily == OMF_None);
1349
1350  // No further diagnostics required on invalid declarations.
1351  if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
1352
1353  const ObjCMethodDecl *unmatched = impl;
1354  ObjCMethodFamily family = declFamily;
1355  unsigned errorID = diag::err_arc_lost_method_convention;
1356  unsigned noteID = diag::note_arc_lost_method_convention;
1357  if (declFamily == OMF_None) {
1358    unmatched = decl;
1359    family = implFamily;
1360    errorID = diag::err_arc_gained_method_convention;
1361    noteID = diag::note_arc_gained_method_convention;
1362  }
1363
1364  // Indexes into a %select clause in the diagnostic.
1365  enum FamilySelector {
1366    F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
1367  };
1368  FamilySelector familySelector = FamilySelector();
1369
1370  switch (family) {
1371  case OMF_None: llvm_unreachable("logic error, no method convention");
1372  case OMF_retain:
1373  case OMF_release:
1374  case OMF_autorelease:
1375  case OMF_dealloc:
1376  case OMF_finalize:
1377  case OMF_retainCount:
1378  case OMF_self:
1379  case OMF_performSelector:
1380    // Mismatches for these methods don't change ownership
1381    // conventions, so we don't care.
1382    return false;
1383
1384  case OMF_init: familySelector = F_init; break;
1385  case OMF_alloc: familySelector = F_alloc; break;
1386  case OMF_copy: familySelector = F_copy; break;
1387  case OMF_mutableCopy: familySelector = F_mutableCopy; break;
1388  case OMF_new: familySelector = F_new; break;
1389  }
1390
1391  enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
1392  ReasonSelector reasonSelector;
1393
1394  // The only reason these methods don't fall within their families is
1395  // due to unusual result types.
1396  if (unmatched->getResultType()->isObjCObjectPointerType()) {
1397    reasonSelector = R_UnrelatedReturn;
1398  } else {
1399    reasonSelector = R_NonObjectReturn;
1400  }
1401
1402  S.Diag(impl->getLocation(), errorID) << familySelector << reasonSelector;
1403  S.Diag(decl->getLocation(), noteID) << familySelector << reasonSelector;
1404
1405  return true;
1406}
1407
1408void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1409                                       ObjCMethodDecl *MethodDecl,
1410                                       bool IsProtocolMethodDecl) {
1411  if (getLangOpts().ObjCAutoRefCount &&
1412      checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
1413    return;
1414
1415  CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1416                            IsProtocolMethodDecl, false,
1417                            true);
1418
1419  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1420       IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
1421       EF = MethodDecl->param_end();
1422       IM != EM && IF != EF; ++IM, ++IF) {
1423    CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
1424                             IsProtocolMethodDecl, false, true);
1425  }
1426
1427  if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
1428    Diag(ImpMethodDecl->getLocation(),
1429         diag::warn_conflicting_variadic);
1430    Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
1431  }
1432}
1433
1434void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
1435                                       ObjCMethodDecl *Overridden,
1436                                       bool IsProtocolMethodDecl) {
1437
1438  CheckMethodOverrideReturn(*this, Method, Overridden,
1439                            IsProtocolMethodDecl, true,
1440                            true);
1441
1442  for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
1443       IF = Overridden->param_begin(), EM = Method->param_end(),
1444       EF = Overridden->param_end();
1445       IM != EM && IF != EF; ++IM, ++IF) {
1446    CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
1447                             IsProtocolMethodDecl, true, true);
1448  }
1449
1450  if (Method->isVariadic() != Overridden->isVariadic()) {
1451    Diag(Method->getLocation(),
1452         diag::warn_conflicting_overriding_variadic);
1453    Diag(Overridden->getLocation(), diag::note_previous_declaration);
1454  }
1455}
1456
1457/// WarnExactTypedMethods - This routine issues a warning if method
1458/// implementation declaration matches exactly that of its declaration.
1459void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1460                                 ObjCMethodDecl *MethodDecl,
1461                                 bool IsProtocolMethodDecl) {
1462  // don't issue warning when protocol method is optional because primary
1463  // class is not required to implement it and it is safe for protocol
1464  // to implement it.
1465  if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
1466    return;
1467  // don't issue warning when primary class's method is
1468  // depecated/unavailable.
1469  if (MethodDecl->hasAttr<UnavailableAttr>() ||
1470      MethodDecl->hasAttr<DeprecatedAttr>())
1471    return;
1472
1473  bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1474                                      IsProtocolMethodDecl, false, false);
1475  if (match)
1476    for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1477         IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
1478         EF = MethodDecl->param_end();
1479         IM != EM && IF != EF; ++IM, ++IF) {
1480      match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
1481                                       *IM, *IF,
1482                                       IsProtocolMethodDecl, false, false);
1483      if (!match)
1484        break;
1485    }
1486  if (match)
1487    match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
1488  if (match)
1489    match = !(MethodDecl->isClassMethod() &&
1490              MethodDecl->getSelector() == GetNullarySelector("load", Context));
1491
1492  if (match) {
1493    Diag(ImpMethodDecl->getLocation(),
1494         diag::warn_category_method_impl_match);
1495    Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
1496      << MethodDecl->getDeclName();
1497  }
1498}
1499
1500/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
1501/// improve the efficiency of selector lookups and type checking by associating
1502/// with each protocol / interface / category the flattened instance tables. If
1503/// we used an immutable set to keep the table then it wouldn't add significant
1504/// memory cost and it would be handy for lookups.
1505
1506/// CheckProtocolMethodDefs - This routine checks unimplemented methods
1507/// Declared in protocol, and those referenced by it.
1508void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
1509                                   ObjCProtocolDecl *PDecl,
1510                                   bool& IncompleteImpl,
1511                                   const SelectorSet &InsMap,
1512                                   const SelectorSet &ClsMap,
1513                                   ObjCContainerDecl *CDecl) {
1514  ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
1515  ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
1516                               : dyn_cast<ObjCInterfaceDecl>(CDecl);
1517  assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
1518
1519  ObjCInterfaceDecl *Super = IDecl->getSuperClass();
1520  ObjCInterfaceDecl *NSIDecl = 0;
1521  if (getLangOpts().ObjCRuntime.isNeXTFamily()) {
1522    // check to see if class implements forwardInvocation method and objects
1523    // of this class are derived from 'NSProxy' so that to forward requests
1524    // from one object to another.
1525    // Under such conditions, which means that every method possible is
1526    // implemented in the class, we should not issue "Method definition not
1527    // found" warnings.
1528    // FIXME: Use a general GetUnarySelector method for this.
1529    IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
1530    Selector fISelector = Context.Selectors.getSelector(1, &II);
1531    if (InsMap.count(fISelector))
1532      // Is IDecl derived from 'NSProxy'? If so, no instance methods
1533      // need be implemented in the implementation.
1534      NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
1535  }
1536
1537  // If a method lookup fails locally we still need to look and see if
1538  // the method was implemented by a base class or an inherited
1539  // protocol. This lookup is slow, but occurs rarely in correct code
1540  // and otherwise would terminate in a warning.
1541
1542  // check unimplemented instance methods.
1543  if (!NSIDecl)
1544    for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
1545         E = PDecl->instmeth_end(); I != E; ++I) {
1546      ObjCMethodDecl *method = *I;
1547      if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1548          !method->isSynthesized() && !InsMap.count(method->getSelector()) &&
1549          (!Super ||
1550           !Super->lookupInstanceMethod(method->getSelector()))) {
1551            // If a method is not implemented in the category implementation but
1552            // has been declared in its primary class, superclass,
1553            // or in one of their protocols, no need to issue the warning.
1554            // This is because method will be implemented in the primary class
1555            // or one of its super class implementation.
1556
1557            // Ugly, but necessary. Method declared in protcol might have
1558            // have been synthesized due to a property declared in the class which
1559            // uses the protocol.
1560            if (ObjCMethodDecl *MethodInClass =
1561                  IDecl->lookupInstanceMethod(method->getSelector(),
1562                                              true /*shallowCategoryLookup*/))
1563              if (C || MethodInClass->isSynthesized())
1564                continue;
1565            unsigned DIAG = diag::warn_unimplemented_protocol_method;
1566            if (Diags.getDiagnosticLevel(DIAG, ImpLoc)
1567                != DiagnosticsEngine::Ignored) {
1568              WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1569              Diag(method->getLocation(), diag::note_method_declared_at)
1570                << method->getDeclName();
1571              Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
1572                << PDecl->getDeclName();
1573            }
1574          }
1575    }
1576  // check unimplemented class methods
1577  for (ObjCProtocolDecl::classmeth_iterator
1578         I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
1579       I != E; ++I) {
1580    ObjCMethodDecl *method = *I;
1581    if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1582        !ClsMap.count(method->getSelector()) &&
1583        (!Super || !Super->lookupClassMethod(method->getSelector()))) {
1584      // See above comment for instance method lookups.
1585      if (C && IDecl->lookupClassMethod(method->getSelector(),
1586                                        true /*shallowCategoryLookup*/))
1587        continue;
1588      unsigned DIAG = diag::warn_unimplemented_protocol_method;
1589      if (Diags.getDiagnosticLevel(DIAG, ImpLoc) !=
1590            DiagnosticsEngine::Ignored) {
1591        WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1592        Diag(method->getLocation(), diag::note_method_declared_at)
1593          << method->getDeclName();
1594        Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
1595          PDecl->getDeclName();
1596      }
1597    }
1598  }
1599  // Check on this protocols's referenced protocols, recursively.
1600  for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
1601       E = PDecl->protocol_end(); PI != E; ++PI)
1602    CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, CDecl);
1603}
1604
1605/// MatchAllMethodDeclarations - Check methods declared in interface
1606/// or protocol against those declared in their implementations.
1607///
1608void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
1609                                      const SelectorSet &ClsMap,
1610                                      SelectorSet &InsMapSeen,
1611                                      SelectorSet &ClsMapSeen,
1612                                      ObjCImplDecl* IMPDecl,
1613                                      ObjCContainerDecl* CDecl,
1614                                      bool &IncompleteImpl,
1615                                      bool ImmediateClass,
1616                                      bool WarnCategoryMethodImpl) {
1617  // Check and see if instance methods in class interface have been
1618  // implemented in the implementation class. If so, their types match.
1619  for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
1620       E = CDecl->instmeth_end(); I != E; ++I) {
1621    if (InsMapSeen.count((*I)->getSelector()))
1622        continue;
1623    InsMapSeen.insert((*I)->getSelector());
1624    if (!(*I)->isSynthesized() &&
1625        !InsMap.count((*I)->getSelector())) {
1626      if (ImmediateClass)
1627        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1628                            diag::note_undef_method_impl);
1629      continue;
1630    } else {
1631      ObjCMethodDecl *ImpMethodDecl =
1632        IMPDecl->getInstanceMethod((*I)->getSelector());
1633      assert(CDecl->getInstanceMethod((*I)->getSelector()) &&
1634             "Expected to find the method through lookup as well");
1635      ObjCMethodDecl *MethodDecl = *I;
1636      // ImpMethodDecl may be null as in a @dynamic property.
1637      if (ImpMethodDecl) {
1638        if (!WarnCategoryMethodImpl)
1639          WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1640                                      isa<ObjCProtocolDecl>(CDecl));
1641        else if (!MethodDecl->isSynthesized())
1642          WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
1643                                isa<ObjCProtocolDecl>(CDecl));
1644      }
1645    }
1646  }
1647
1648  // Check and see if class methods in class interface have been
1649  // implemented in the implementation class. If so, their types match.
1650   for (ObjCInterfaceDecl::classmeth_iterator
1651       I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
1652     if (ClsMapSeen.count((*I)->getSelector()))
1653       continue;
1654     ClsMapSeen.insert((*I)->getSelector());
1655    if (!ClsMap.count((*I)->getSelector())) {
1656      if (ImmediateClass)
1657        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1658                            diag::note_undef_method_impl);
1659    } else {
1660      ObjCMethodDecl *ImpMethodDecl =
1661        IMPDecl->getClassMethod((*I)->getSelector());
1662      assert(CDecl->getClassMethod((*I)->getSelector()) &&
1663             "Expected to find the method through lookup as well");
1664      ObjCMethodDecl *MethodDecl = *I;
1665      if (!WarnCategoryMethodImpl)
1666        WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1667                                    isa<ObjCProtocolDecl>(CDecl));
1668      else
1669        WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
1670                              isa<ObjCProtocolDecl>(CDecl));
1671    }
1672  }
1673
1674  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1675    // Also methods in class extensions need be looked at next.
1676    for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension();
1677         ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension())
1678      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1679                                 IMPDecl,
1680                                 const_cast<ObjCCategoryDecl *>(ClsExtDecl),
1681                                 IncompleteImpl, false,
1682                                 WarnCategoryMethodImpl);
1683
1684    // Check for any implementation of a methods declared in protocol.
1685    for (ObjCInterfaceDecl::all_protocol_iterator
1686          PI = I->all_referenced_protocol_begin(),
1687          E = I->all_referenced_protocol_end(); PI != E; ++PI)
1688      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1689                                 IMPDecl,
1690                                 (*PI), IncompleteImpl, false,
1691                                 WarnCategoryMethodImpl);
1692
1693    // FIXME. For now, we are not checking for extact match of methods
1694    // in category implementation and its primary class's super class.
1695    if (!WarnCategoryMethodImpl && I->getSuperClass())
1696      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1697                                 IMPDecl,
1698                                 I->getSuperClass(), IncompleteImpl, false);
1699  }
1700}
1701
1702/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
1703/// category matches with those implemented in its primary class and
1704/// warns each time an exact match is found.
1705void Sema::CheckCategoryVsClassMethodMatches(
1706                                  ObjCCategoryImplDecl *CatIMPDecl) {
1707  SelectorSet InsMap, ClsMap;
1708
1709  for (ObjCImplementationDecl::instmeth_iterator
1710       I = CatIMPDecl->instmeth_begin(),
1711       E = CatIMPDecl->instmeth_end(); I!=E; ++I)
1712    InsMap.insert((*I)->getSelector());
1713
1714  for (ObjCImplementationDecl::classmeth_iterator
1715       I = CatIMPDecl->classmeth_begin(),
1716       E = CatIMPDecl->classmeth_end(); I != E; ++I)
1717    ClsMap.insert((*I)->getSelector());
1718  if (InsMap.empty() && ClsMap.empty())
1719    return;
1720
1721  // Get category's primary class.
1722  ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
1723  if (!CatDecl)
1724    return;
1725  ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
1726  if (!IDecl)
1727    return;
1728  SelectorSet InsMapSeen, ClsMapSeen;
1729  bool IncompleteImpl = false;
1730  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1731                             CatIMPDecl, IDecl,
1732                             IncompleteImpl, false,
1733                             true /*WarnCategoryMethodImpl*/);
1734}
1735
1736void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
1737                                     ObjCContainerDecl* CDecl,
1738                                     bool IncompleteImpl) {
1739  SelectorSet InsMap;
1740  // Check and see if instance methods in class interface have been
1741  // implemented in the implementation class.
1742  for (ObjCImplementationDecl::instmeth_iterator
1743         I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
1744    InsMap.insert((*I)->getSelector());
1745
1746  // Check and see if properties declared in the interface have either 1)
1747  // an implementation or 2) there is a @synthesize/@dynamic implementation
1748  // of the property in the @implementation.
1749  if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl))
1750    if  (!(LangOpts.ObjCDefaultSynthProperties &&
1751           LangOpts.ObjCRuntime.isNonFragile()) ||
1752         IDecl->isObjCRequiresPropertyDefs())
1753      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
1754
1755  SelectorSet ClsMap;
1756  for (ObjCImplementationDecl::classmeth_iterator
1757       I = IMPDecl->classmeth_begin(),
1758       E = IMPDecl->classmeth_end(); I != E; ++I)
1759    ClsMap.insert((*I)->getSelector());
1760
1761  // Check for type conflict of methods declared in a class/protocol and
1762  // its implementation; if any.
1763  SelectorSet InsMapSeen, ClsMapSeen;
1764  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1765                             IMPDecl, CDecl,
1766                             IncompleteImpl, true);
1767
1768  // check all methods implemented in category against those declared
1769  // in its primary class.
1770  if (ObjCCategoryImplDecl *CatDecl =
1771        dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
1772    CheckCategoryVsClassMethodMatches(CatDecl);
1773
1774  // Check the protocol list for unimplemented methods in the @implementation
1775  // class.
1776  // Check and see if class methods in class interface have been
1777  // implemented in the implementation class.
1778
1779  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1780    for (ObjCInterfaceDecl::all_protocol_iterator
1781          PI = I->all_referenced_protocol_begin(),
1782          E = I->all_referenced_protocol_end(); PI != E; ++PI)
1783      CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1784                              InsMap, ClsMap, I);
1785    // Check class extensions (unnamed categories)
1786    for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension();
1787         Categories; Categories = Categories->getNextClassExtension())
1788      ImplMethodsVsClassMethods(S, IMPDecl,
1789                                const_cast<ObjCCategoryDecl*>(Categories),
1790                                IncompleteImpl);
1791  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1792    // For extended class, unimplemented methods in its protocols will
1793    // be reported in the primary class.
1794    if (!C->IsClassExtension()) {
1795      for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
1796           E = C->protocol_end(); PI != E; ++PI)
1797        CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1798                                InsMap, ClsMap, CDecl);
1799      // Report unimplemented properties in the category as well.
1800      // When reporting on missing setter/getters, do not report when
1801      // setter/getter is implemented in category's primary class
1802      // implementation.
1803      if (ObjCInterfaceDecl *ID = C->getClassInterface())
1804        if (ObjCImplDecl *IMP = ID->getImplementation()) {
1805          for (ObjCImplementationDecl::instmeth_iterator
1806               I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I)
1807            InsMap.insert((*I)->getSelector());
1808        }
1809      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
1810    }
1811  } else
1812    llvm_unreachable("invalid ObjCContainerDecl type.");
1813}
1814
1815/// ActOnForwardClassDeclaration -
1816Sema::DeclGroupPtrTy
1817Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
1818                                   IdentifierInfo **IdentList,
1819                                   SourceLocation *IdentLocs,
1820                                   unsigned NumElts) {
1821  SmallVector<Decl *, 8> DeclsInGroup;
1822  for (unsigned i = 0; i != NumElts; ++i) {
1823    // Check for another declaration kind with the same name.
1824    NamedDecl *PrevDecl
1825      = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
1826                         LookupOrdinaryName, ForRedeclaration);
1827    if (PrevDecl && PrevDecl->isTemplateParameter()) {
1828      // Maybe we will complain about the shadowed template parameter.
1829      DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl);
1830      // Just pretend that we didn't see the previous declaration.
1831      PrevDecl = 0;
1832    }
1833
1834    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1835      // GCC apparently allows the following idiom:
1836      //
1837      // typedef NSObject < XCElementTogglerP > XCElementToggler;
1838      // @class XCElementToggler;
1839      //
1840      // Here we have chosen to ignore the forward class declaration
1841      // with a warning. Since this is the implied behavior.
1842      TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
1843      if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
1844        Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
1845        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1846      } else {
1847        // a forward class declaration matching a typedef name of a class refers
1848        // to the underlying class. Just ignore the forward class with a warning
1849        // as this will force the intended behavior which is to lookup the typedef
1850        // name.
1851        if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
1852          Diag(AtClassLoc, diag::warn_forward_class_redefinition) << IdentList[i];
1853          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1854          continue;
1855        }
1856      }
1857    }
1858
1859    // Create a declaration to describe this forward declaration.
1860    ObjCInterfaceDecl *PrevIDecl
1861      = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1862    ObjCInterfaceDecl *IDecl
1863      = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
1864                                  IdentList[i], PrevIDecl, IdentLocs[i]);
1865    IDecl->setAtEndRange(IdentLocs[i]);
1866
1867    PushOnScopeChains(IDecl, TUScope);
1868    CheckObjCDeclScope(IDecl);
1869    DeclsInGroup.push_back(IDecl);
1870  }
1871
1872  return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
1873}
1874
1875static bool tryMatchRecordTypes(ASTContext &Context,
1876                                Sema::MethodMatchStrategy strategy,
1877                                const Type *left, const Type *right);
1878
1879static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
1880                       QualType leftQT, QualType rightQT) {
1881  const Type *left =
1882    Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
1883  const Type *right =
1884    Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
1885
1886  if (left == right) return true;
1887
1888  // If we're doing a strict match, the types have to match exactly.
1889  if (strategy == Sema::MMS_strict) return false;
1890
1891  if (left->isIncompleteType() || right->isIncompleteType()) return false;
1892
1893  // Otherwise, use this absurdly complicated algorithm to try to
1894  // validate the basic, low-level compatibility of the two types.
1895
1896  // As a minimum, require the sizes and alignments to match.
1897  if (Context.getTypeInfo(left) != Context.getTypeInfo(right))
1898    return false;
1899
1900  // Consider all the kinds of non-dependent canonical types:
1901  // - functions and arrays aren't possible as return and parameter types
1902
1903  // - vector types of equal size can be arbitrarily mixed
1904  if (isa<VectorType>(left)) return isa<VectorType>(right);
1905  if (isa<VectorType>(right)) return false;
1906
1907  // - references should only match references of identical type
1908  // - structs, unions, and Objective-C objects must match more-or-less
1909  //   exactly
1910  // - everything else should be a scalar
1911  if (!left->isScalarType() || !right->isScalarType())
1912    return tryMatchRecordTypes(Context, strategy, left, right);
1913
1914  // Make scalars agree in kind, except count bools as chars, and group
1915  // all non-member pointers together.
1916  Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
1917  Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
1918  if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
1919  if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
1920  if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
1921    leftSK = Type::STK_ObjCObjectPointer;
1922  if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
1923    rightSK = Type::STK_ObjCObjectPointer;
1924
1925  // Note that data member pointers and function member pointers don't
1926  // intermix because of the size differences.
1927
1928  return (leftSK == rightSK);
1929}
1930
1931static bool tryMatchRecordTypes(ASTContext &Context,
1932                                Sema::MethodMatchStrategy strategy,
1933                                const Type *lt, const Type *rt) {
1934  assert(lt && rt && lt != rt);
1935
1936  if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
1937  RecordDecl *left = cast<RecordType>(lt)->getDecl();
1938  RecordDecl *right = cast<RecordType>(rt)->getDecl();
1939
1940  // Require union-hood to match.
1941  if (left->isUnion() != right->isUnion()) return false;
1942
1943  // Require an exact match if either is non-POD.
1944  if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
1945      (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
1946    return false;
1947
1948  // Require size and alignment to match.
1949  if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false;
1950
1951  // Require fields to match.
1952  RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
1953  RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
1954  for (; li != le && ri != re; ++li, ++ri) {
1955    if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
1956      return false;
1957  }
1958  return (li == le && ri == re);
1959}
1960
1961/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
1962/// returns true, or false, accordingly.
1963/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
1964bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
1965                                      const ObjCMethodDecl *right,
1966                                      MethodMatchStrategy strategy) {
1967  if (!matchTypes(Context, strategy,
1968                  left->getResultType(), right->getResultType()))
1969    return false;
1970
1971  if (getLangOpts().ObjCAutoRefCount &&
1972      (left->hasAttr<NSReturnsRetainedAttr>()
1973         != right->hasAttr<NSReturnsRetainedAttr>() ||
1974       left->hasAttr<NSConsumesSelfAttr>()
1975         != right->hasAttr<NSConsumesSelfAttr>()))
1976    return false;
1977
1978  ObjCMethodDecl::param_const_iterator
1979    li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
1980    re = right->param_end();
1981
1982  for (; li != le && ri != re; ++li, ++ri) {
1983    assert(ri != right->param_end() && "Param mismatch");
1984    const ParmVarDecl *lparm = *li, *rparm = *ri;
1985
1986    if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
1987      return false;
1988
1989    if (getLangOpts().ObjCAutoRefCount &&
1990        lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
1991      return false;
1992  }
1993  return true;
1994}
1995
1996void Sema::addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method) {
1997  // If the list is empty, make it a singleton list.
1998  if (List->Method == 0) {
1999    List->Method = Method;
2000    List->Next = 0;
2001    return;
2002  }
2003
2004  // We've seen a method with this name, see if we have already seen this type
2005  // signature.
2006  ObjCMethodList *Previous = List;
2007  for (; List; Previous = List, List = List->Next) {
2008    if (!MatchTwoMethodDeclarations(Method, List->Method))
2009      continue;
2010
2011    ObjCMethodDecl *PrevObjCMethod = List->Method;
2012
2013    // Propagate the 'defined' bit.
2014    if (Method->isDefined())
2015      PrevObjCMethod->setDefined(true);
2016
2017    // If a method is deprecated, push it in the global pool.
2018    // This is used for better diagnostics.
2019    if (Method->isDeprecated()) {
2020      if (!PrevObjCMethod->isDeprecated())
2021        List->Method = Method;
2022    }
2023    // If new method is unavailable, push it into global pool
2024    // unless previous one is deprecated.
2025    if (Method->isUnavailable()) {
2026      if (PrevObjCMethod->getAvailability() < AR_Deprecated)
2027        List->Method = Method;
2028    }
2029
2030    return;
2031  }
2032
2033  // We have a new signature for an existing method - add it.
2034  // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
2035  ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
2036  Previous->Next = new (Mem) ObjCMethodList(Method, 0);
2037}
2038
2039/// \brief Read the contents of the method pool for a given selector from
2040/// external storage.
2041void Sema::ReadMethodPool(Selector Sel) {
2042  assert(ExternalSource && "We need an external AST source");
2043  ExternalSource->ReadMethodPool(Sel);
2044}
2045
2046void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
2047                                 bool instance) {
2048  // Ignore methods of invalid containers.
2049  if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
2050    return;
2051
2052  if (ExternalSource)
2053    ReadMethodPool(Method->getSelector());
2054
2055  GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
2056  if (Pos == MethodPool.end())
2057    Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
2058                                           GlobalMethods())).first;
2059
2060  Method->setDefined(impl);
2061
2062  ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
2063  addMethodToGlobalList(&Entry, Method);
2064}
2065
2066/// Determines if this is an "acceptable" loose mismatch in the global
2067/// method pool.  This exists mostly as a hack to get around certain
2068/// global mismatches which we can't afford to make warnings / errors.
2069/// Really, what we want is a way to take a method out of the global
2070/// method pool.
2071static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
2072                                       ObjCMethodDecl *other) {
2073  if (!chosen->isInstanceMethod())
2074    return false;
2075
2076  Selector sel = chosen->getSelector();
2077  if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
2078    return false;
2079
2080  // Don't complain about mismatches for -length if the method we
2081  // chose has an integral result type.
2082  return (chosen->getResultType()->isIntegerType());
2083}
2084
2085ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
2086                                               bool receiverIdOrClass,
2087                                               bool warn, bool instance) {
2088  if (ExternalSource)
2089    ReadMethodPool(Sel);
2090
2091  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2092  if (Pos == MethodPool.end())
2093    return 0;
2094
2095  ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
2096
2097  if (warn && MethList.Method && MethList.Next) {
2098    bool issueDiagnostic = false, issueError = false;
2099
2100    // We support a warning which complains about *any* difference in
2101    // method signature.
2102    bool strictSelectorMatch =
2103      (receiverIdOrClass && warn &&
2104       (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl,
2105                                 R.getBegin()) !=
2106      DiagnosticsEngine::Ignored));
2107    if (strictSelectorMatch)
2108      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
2109        if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method,
2110                                        MMS_strict)) {
2111          issueDiagnostic = true;
2112          break;
2113        }
2114      }
2115
2116    // If we didn't see any strict differences, we won't see any loose
2117    // differences.  In ARC, however, we also need to check for loose
2118    // mismatches, because most of them are errors.
2119    if (!strictSelectorMatch ||
2120        (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
2121      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
2122        // This checks if the methods differ in type mismatch.
2123        if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method,
2124                                        MMS_loose) &&
2125            !isAcceptableMethodMismatch(MethList.Method, Next->Method)) {
2126          issueDiagnostic = true;
2127          if (getLangOpts().ObjCAutoRefCount)
2128            issueError = true;
2129          break;
2130        }
2131      }
2132
2133    if (issueDiagnostic) {
2134      if (issueError)
2135        Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
2136      else if (strictSelectorMatch)
2137        Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
2138      else
2139        Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
2140
2141      Diag(MethList.Method->getLocStart(),
2142           issueError ? diag::note_possibility : diag::note_using)
2143        << MethList.Method->getSourceRange();
2144      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next)
2145        Diag(Next->Method->getLocStart(), diag::note_also_found)
2146          << Next->Method->getSourceRange();
2147    }
2148  }
2149  return MethList.Method;
2150}
2151
2152ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
2153  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2154  if (Pos == MethodPool.end())
2155    return 0;
2156
2157  GlobalMethods &Methods = Pos->second;
2158
2159  if (Methods.first.Method && Methods.first.Method->isDefined())
2160    return Methods.first.Method;
2161  if (Methods.second.Method && Methods.second.Method->isDefined())
2162    return Methods.second.Method;
2163  return 0;
2164}
2165
2166/// DiagnoseDuplicateIvars -
2167/// Check for duplicate ivars in the entire class at the start of
2168/// \@implementation. This becomes necesssary because class extension can
2169/// add ivars to a class in random order which will not be known until
2170/// class's \@implementation is seen.
2171void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
2172                                  ObjCInterfaceDecl *SID) {
2173  for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
2174       IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
2175    ObjCIvarDecl* Ivar = *IVI;
2176    if (Ivar->isInvalidDecl())
2177      continue;
2178    if (IdentifierInfo *II = Ivar->getIdentifier()) {
2179      ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
2180      if (prevIvar) {
2181        Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
2182        Diag(prevIvar->getLocation(), diag::note_previous_declaration);
2183        Ivar->setInvalidDecl();
2184      }
2185    }
2186  }
2187}
2188
2189Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
2190  switch (CurContext->getDeclKind()) {
2191    case Decl::ObjCInterface:
2192      return Sema::OCK_Interface;
2193    case Decl::ObjCProtocol:
2194      return Sema::OCK_Protocol;
2195    case Decl::ObjCCategory:
2196      if (dyn_cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
2197        return Sema::OCK_ClassExtension;
2198      else
2199        return Sema::OCK_Category;
2200    case Decl::ObjCImplementation:
2201      return Sema::OCK_Implementation;
2202    case Decl::ObjCCategoryImpl:
2203      return Sema::OCK_CategoryImplementation;
2204
2205    default:
2206      return Sema::OCK_None;
2207  }
2208}
2209
2210// Note: For class/category implemenations, allMethods/allProperties is
2211// always null.
2212Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd,
2213                       Decl **allMethods, unsigned allNum,
2214                       Decl **allProperties, unsigned pNum,
2215                       DeclGroupPtrTy *allTUVars, unsigned tuvNum) {
2216
2217  if (getObjCContainerKind() == Sema::OCK_None)
2218    return 0;
2219
2220  assert(AtEnd.isValid() && "Invalid location for '@end'");
2221
2222  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
2223  Decl *ClassDecl = cast<Decl>(OCD);
2224
2225  bool isInterfaceDeclKind =
2226        isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
2227         || isa<ObjCProtocolDecl>(ClassDecl);
2228  bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
2229
2230  // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
2231  llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
2232  llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
2233
2234  for (unsigned i = 0; i < allNum; i++ ) {
2235    ObjCMethodDecl *Method =
2236      cast_or_null<ObjCMethodDecl>(allMethods[i]);
2237
2238    if (!Method) continue;  // Already issued a diagnostic.
2239    if (Method->isInstanceMethod()) {
2240      /// Check for instance method of the same name with incompatible types
2241      const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
2242      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2243                              : false;
2244      if ((isInterfaceDeclKind && PrevMethod && !match)
2245          || (checkIdenticalMethods && match)) {
2246          Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2247            << Method->getDeclName();
2248          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2249        Method->setInvalidDecl();
2250      } else {
2251        if (PrevMethod) {
2252          Method->setAsRedeclaration(PrevMethod);
2253          if (!Context.getSourceManager().isInSystemHeader(
2254                 Method->getLocation()))
2255            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2256              << Method->getDeclName();
2257          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2258        }
2259        InsMap[Method->getSelector()] = Method;
2260        /// The following allows us to typecheck messages to "id".
2261        AddInstanceMethodToGlobalPool(Method);
2262      }
2263    } else {
2264      /// Check for class method of the same name with incompatible types
2265      const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
2266      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2267                              : false;
2268      if ((isInterfaceDeclKind && PrevMethod && !match)
2269          || (checkIdenticalMethods && match)) {
2270        Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2271          << Method->getDeclName();
2272        Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2273        Method->setInvalidDecl();
2274      } else {
2275        if (PrevMethod) {
2276          Method->setAsRedeclaration(PrevMethod);
2277          if (!Context.getSourceManager().isInSystemHeader(
2278                 Method->getLocation()))
2279            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2280              << Method->getDeclName();
2281          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2282        }
2283        ClsMap[Method->getSelector()] = Method;
2284        AddFactoryMethodToGlobalPool(Method);
2285      }
2286    }
2287  }
2288  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
2289    // Compares properties declared in this class to those of its
2290    // super class.
2291    ComparePropertiesInBaseAndSuper(I);
2292    CompareProperties(I, I);
2293  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
2294    // Categories are used to extend the class by declaring new methods.
2295    // By the same token, they are also used to add new properties. No
2296    // need to compare the added property to those in the class.
2297
2298    // Compare protocol properties with those in category
2299    CompareProperties(C, C);
2300    if (C->IsClassExtension()) {
2301      ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
2302      DiagnoseClassExtensionDupMethods(C, CCPrimary);
2303    }
2304  }
2305  if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
2306    if (CDecl->getIdentifier())
2307      // ProcessPropertyDecl is responsible for diagnosing conflicts with any
2308      // user-defined setter/getter. It also synthesizes setter/getter methods
2309      // and adds them to the DeclContext and global method pools.
2310      for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
2311                                            E = CDecl->prop_end();
2312           I != E; ++I)
2313        ProcessPropertyDecl(*I, CDecl);
2314    CDecl->setAtEndRange(AtEnd);
2315  }
2316  if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
2317    IC->setAtEndRange(AtEnd);
2318    if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
2319      // Any property declared in a class extension might have user
2320      // declared setter or getter in current class extension or one
2321      // of the other class extensions. Mark them as synthesized as
2322      // property will be synthesized when property with same name is
2323      // seen in the @implementation.
2324      for (const ObjCCategoryDecl *ClsExtDecl =
2325           IDecl->getFirstClassExtension();
2326           ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
2327        for (ObjCContainerDecl::prop_iterator I = ClsExtDecl->prop_begin(),
2328             E = ClsExtDecl->prop_end(); I != E; ++I) {
2329          ObjCPropertyDecl *Property = *I;
2330          // Skip over properties declared @dynamic
2331          if (const ObjCPropertyImplDecl *PIDecl
2332              = IC->FindPropertyImplDecl(Property->getIdentifier()))
2333            if (PIDecl->getPropertyImplementation()
2334                  == ObjCPropertyImplDecl::Dynamic)
2335              continue;
2336
2337          for (const ObjCCategoryDecl *CExtDecl =
2338               IDecl->getFirstClassExtension();
2339               CExtDecl; CExtDecl = CExtDecl->getNextClassExtension()) {
2340            if (ObjCMethodDecl *GetterMethod =
2341                CExtDecl->getInstanceMethod(Property->getGetterName()))
2342              GetterMethod->setSynthesized(true);
2343            if (!Property->isReadOnly())
2344              if (ObjCMethodDecl *SetterMethod =
2345                  CExtDecl->getInstanceMethod(Property->getSetterName()))
2346                SetterMethod->setSynthesized(true);
2347          }
2348        }
2349      }
2350      ImplMethodsVsClassMethods(S, IC, IDecl);
2351      AtomicPropertySetterGetterRules(IC, IDecl);
2352      DiagnoseOwningPropertyGetterSynthesis(IC);
2353
2354      bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
2355      if (IDecl->getSuperClass() == NULL) {
2356        // This class has no superclass, so check that it has been marked with
2357        // __attribute((objc_root_class)).
2358        if (!HasRootClassAttr) {
2359          SourceLocation DeclLoc(IDecl->getLocation());
2360          SourceLocation SuperClassLoc(PP.getLocForEndOfToken(DeclLoc));
2361          Diag(DeclLoc, diag::warn_objc_root_class_missing)
2362            << IDecl->getIdentifier();
2363          // See if NSObject is in the current scope, and if it is, suggest
2364          // adding " : NSObject " to the class declaration.
2365          NamedDecl *IF = LookupSingleName(TUScope,
2366                                           NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
2367                                           DeclLoc, LookupOrdinaryName);
2368          ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
2369          if (NSObjectDecl && NSObjectDecl->getDefinition()) {
2370            Diag(SuperClassLoc, diag::note_objc_needs_superclass)
2371              << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
2372          } else {
2373            Diag(SuperClassLoc, diag::note_objc_needs_superclass);
2374          }
2375        }
2376      } else if (HasRootClassAttr) {
2377        // Complain that only root classes may have this attribute.
2378        Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
2379      }
2380
2381      if (LangOpts.ObjCRuntime.isNonFragile()) {
2382        while (IDecl->getSuperClass()) {
2383          DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
2384          IDecl = IDecl->getSuperClass();
2385        }
2386      }
2387    }
2388    SetIvarInitializers(IC);
2389  } else if (ObjCCategoryImplDecl* CatImplClass =
2390                                   dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
2391    CatImplClass->setAtEndRange(AtEnd);
2392
2393    // Find category interface decl and then check that all methods declared
2394    // in this interface are implemented in the category @implementation.
2395    if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
2396      for (ObjCCategoryDecl *Categories = IDecl->getCategoryList();
2397           Categories; Categories = Categories->getNextClassCategory()) {
2398        if (Categories->getIdentifier() == CatImplClass->getIdentifier()) {
2399          ImplMethodsVsClassMethods(S, CatImplClass, Categories);
2400          break;
2401        }
2402      }
2403    }
2404  }
2405  if (isInterfaceDeclKind) {
2406    // Reject invalid vardecls.
2407    for (unsigned i = 0; i != tuvNum; i++) {
2408      DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
2409      for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2410        if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
2411          if (!VDecl->hasExternalStorage())
2412            Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
2413        }
2414    }
2415  }
2416  ActOnObjCContainerFinishDefinition();
2417
2418  for (unsigned i = 0; i != tuvNum; i++) {
2419    DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
2420    for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2421      (*I)->setTopLevelDeclInObjCContainer();
2422    Consumer.HandleTopLevelDeclInObjCContainer(DG);
2423  }
2424
2425  ActOnDocumentableDecl(ClassDecl);
2426  return ClassDecl;
2427}
2428
2429
2430/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
2431/// objective-c's type qualifier from the parser version of the same info.
2432static Decl::ObjCDeclQualifier
2433CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
2434  return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
2435}
2436
2437static inline
2438bool containsInvalidMethodImplAttribute(ObjCMethodDecl *IMD,
2439                                        const AttrVec &A) {
2440  // If method is only declared in implementation (private method),
2441  // No need to issue any diagnostics on method definition with attributes.
2442  if (!IMD)
2443    return false;
2444
2445  // method declared in interface has no attribute.
2446  // But implementation has attributes. This is invalid
2447  if (!IMD->hasAttrs())
2448    return true;
2449
2450  const AttrVec &D = IMD->getAttrs();
2451  if (D.size() != A.size())
2452    return true;
2453
2454  // attributes on method declaration and definition must match exactly.
2455  // Note that we have at most a couple of attributes on methods, so this
2456  // n*n search is good enough.
2457  for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i) {
2458    bool match = false;
2459    for (AttrVec::const_iterator i1 = D.begin(), e1 = D.end(); i1 != e1; ++i1) {
2460      if ((*i)->getKind() == (*i1)->getKind()) {
2461        match = true;
2462        break;
2463      }
2464    }
2465    if (!match)
2466      return true;
2467  }
2468  return false;
2469}
2470
2471/// \brief Check whether the declared result type of the given Objective-C
2472/// method declaration is compatible with the method's class.
2473///
2474static Sema::ResultTypeCompatibilityKind
2475CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
2476                                    ObjCInterfaceDecl *CurrentClass) {
2477  QualType ResultType = Method->getResultType();
2478
2479  // If an Objective-C method inherits its related result type, then its
2480  // declared result type must be compatible with its own class type. The
2481  // declared result type is compatible if:
2482  if (const ObjCObjectPointerType *ResultObjectType
2483                                = ResultType->getAs<ObjCObjectPointerType>()) {
2484    //   - it is id or qualified id, or
2485    if (ResultObjectType->isObjCIdType() ||
2486        ResultObjectType->isObjCQualifiedIdType())
2487      return Sema::RTC_Compatible;
2488
2489    if (CurrentClass) {
2490      if (ObjCInterfaceDecl *ResultClass
2491                                      = ResultObjectType->getInterfaceDecl()) {
2492        //   - it is the same as the method's class type, or
2493        if (declaresSameEntity(CurrentClass, ResultClass))
2494          return Sema::RTC_Compatible;
2495
2496        //   - it is a superclass of the method's class type
2497        if (ResultClass->isSuperClassOf(CurrentClass))
2498          return Sema::RTC_Compatible;
2499      }
2500    } else {
2501      // Any Objective-C pointer type might be acceptable for a protocol
2502      // method; we just don't know.
2503      return Sema::RTC_Unknown;
2504    }
2505  }
2506
2507  return Sema::RTC_Incompatible;
2508}
2509
2510namespace {
2511/// A helper class for searching for methods which a particular method
2512/// overrides.
2513class OverrideSearch {
2514public:
2515  Sema &S;
2516  ObjCMethodDecl *Method;
2517  llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden;
2518  bool Recursive;
2519
2520public:
2521  OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
2522    Selector selector = method->getSelector();
2523
2524    // Bypass this search if we've never seen an instance/class method
2525    // with this selector before.
2526    Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
2527    if (it == S.MethodPool.end()) {
2528      if (!S.ExternalSource) return;
2529      S.ReadMethodPool(selector);
2530
2531      it = S.MethodPool.find(selector);
2532      if (it == S.MethodPool.end())
2533        return;
2534    }
2535    ObjCMethodList &list =
2536      method->isInstanceMethod() ? it->second.first : it->second.second;
2537    if (!list.Method) return;
2538
2539    ObjCContainerDecl *container
2540      = cast<ObjCContainerDecl>(method->getDeclContext());
2541
2542    // Prevent the search from reaching this container again.  This is
2543    // important with categories, which override methods from the
2544    // interface and each other.
2545    if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
2546      searchFromContainer(container);
2547      if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
2548        searchFromContainer(Interface);
2549    } else {
2550      searchFromContainer(container);
2551    }
2552  }
2553
2554  typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator;
2555  iterator begin() const { return Overridden.begin(); }
2556  iterator end() const { return Overridden.end(); }
2557
2558private:
2559  void searchFromContainer(ObjCContainerDecl *container) {
2560    if (container->isInvalidDecl()) return;
2561
2562    switch (container->getDeclKind()) {
2563#define OBJCCONTAINER(type, base) \
2564    case Decl::type: \
2565      searchFrom(cast<type##Decl>(container)); \
2566      break;
2567#define ABSTRACT_DECL(expansion)
2568#define DECL(type, base) \
2569    case Decl::type:
2570#include "clang/AST/DeclNodes.inc"
2571      llvm_unreachable("not an ObjC container!");
2572    }
2573  }
2574
2575  void searchFrom(ObjCProtocolDecl *protocol) {
2576    if (!protocol->hasDefinition())
2577      return;
2578
2579    // A method in a protocol declaration overrides declarations from
2580    // referenced ("parent") protocols.
2581    search(protocol->getReferencedProtocols());
2582  }
2583
2584  void searchFrom(ObjCCategoryDecl *category) {
2585    // A method in a category declaration overrides declarations from
2586    // the main class and from protocols the category references.
2587    // The main class is handled in the constructor.
2588    search(category->getReferencedProtocols());
2589  }
2590
2591  void searchFrom(ObjCCategoryImplDecl *impl) {
2592    // A method in a category definition that has a category
2593    // declaration overrides declarations from the category
2594    // declaration.
2595    if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
2596      search(category);
2597      if (ObjCInterfaceDecl *Interface = category->getClassInterface())
2598        search(Interface);
2599
2600    // Otherwise it overrides declarations from the class.
2601    } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
2602      search(Interface);
2603    }
2604  }
2605
2606  void searchFrom(ObjCInterfaceDecl *iface) {
2607    // A method in a class declaration overrides declarations from
2608    if (!iface->hasDefinition())
2609      return;
2610
2611    //   - categories,
2612    for (ObjCCategoryDecl *category = iface->getCategoryList();
2613           category; category = category->getNextClassCategory())
2614      search(category);
2615
2616    //   - the super class, and
2617    if (ObjCInterfaceDecl *super = iface->getSuperClass())
2618      search(super);
2619
2620    //   - any referenced protocols.
2621    search(iface->getReferencedProtocols());
2622  }
2623
2624  void searchFrom(ObjCImplementationDecl *impl) {
2625    // A method in a class implementation overrides declarations from
2626    // the class interface.
2627    if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
2628      search(Interface);
2629  }
2630
2631
2632  void search(const ObjCProtocolList &protocols) {
2633    for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
2634         i != e; ++i)
2635      search(*i);
2636  }
2637
2638  void search(ObjCContainerDecl *container) {
2639    // Check for a method in this container which matches this selector.
2640    ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
2641                                                Method->isInstanceMethod());
2642
2643    // If we find one, record it and bail out.
2644    if (meth) {
2645      Overridden.insert(meth);
2646      return;
2647    }
2648
2649    // Otherwise, search for methods that a hypothetical method here
2650    // would have overridden.
2651
2652    // Note that we're now in a recursive case.
2653    Recursive = true;
2654
2655    searchFromContainer(container);
2656  }
2657};
2658}
2659
2660void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
2661                                    ObjCInterfaceDecl *CurrentClass,
2662                                    ResultTypeCompatibilityKind RTC) {
2663  // Search for overridden methods and merge information down from them.
2664  OverrideSearch overrides(*this, ObjCMethod);
2665  // Keep track if the method overrides any method in the class's base classes,
2666  // its protocols, or its categories' protocols; we will keep that info
2667  // in the ObjCMethodDecl.
2668  // For this info, a method in an implementation is not considered as
2669  // overriding the same method in the interface or its categories.
2670  bool hasOverriddenMethodsInBaseOrProtocol = false;
2671  for (OverrideSearch::iterator
2672         i = overrides.begin(), e = overrides.end(); i != e; ++i) {
2673    ObjCMethodDecl *overridden = *i;
2674
2675    if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
2676        CurrentClass != overridden->getClassInterface() ||
2677        overridden->isOverriding())
2678      hasOverriddenMethodsInBaseOrProtocol = true;
2679
2680    // Propagate down the 'related result type' bit from overridden methods.
2681    if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
2682      ObjCMethod->SetRelatedResultType();
2683
2684    // Then merge the declarations.
2685    mergeObjCMethodDecls(ObjCMethod, overridden);
2686
2687    if (ObjCMethod->isImplicit() && overridden->isImplicit())
2688      continue; // Conflicting properties are detected elsewhere.
2689
2690    // Check for overriding methods
2691    if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
2692        isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
2693      CheckConflictingOverridingMethod(ObjCMethod, overridden,
2694              isa<ObjCProtocolDecl>(overridden->getDeclContext()));
2695
2696    if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
2697        isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
2698        !overridden->isImplicit() /* not meant for properties */) {
2699      ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
2700                                          E = ObjCMethod->param_end();
2701      ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
2702                                     PrevE = overridden->param_end();
2703      for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
2704        assert(PrevI != overridden->param_end() && "Param mismatch");
2705        QualType T1 = Context.getCanonicalType((*ParamI)->getType());
2706        QualType T2 = Context.getCanonicalType((*PrevI)->getType());
2707        // If type of argument of method in this class does not match its
2708        // respective argument type in the super class method, issue warning;
2709        if (!Context.typesAreCompatible(T1, T2)) {
2710          Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
2711            << T1 << T2;
2712          Diag(overridden->getLocation(), diag::note_previous_declaration);
2713          break;
2714        }
2715      }
2716    }
2717  }
2718
2719  ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
2720}
2721
2722Decl *Sema::ActOnMethodDeclaration(
2723    Scope *S,
2724    SourceLocation MethodLoc, SourceLocation EndLoc,
2725    tok::TokenKind MethodType,
2726    ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
2727    ArrayRef<SourceLocation> SelectorLocs,
2728    Selector Sel,
2729    // optional arguments. The number of types/arguments is obtained
2730    // from the Sel.getNumArgs().
2731    ObjCArgInfo *ArgInfo,
2732    DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
2733    AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
2734    bool isVariadic, bool MethodDefinition) {
2735  // Make sure we can establish a context for the method.
2736  if (!CurContext->isObjCContainer()) {
2737    Diag(MethodLoc, diag::error_missing_method_context);
2738    return 0;
2739  }
2740  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
2741  Decl *ClassDecl = cast<Decl>(OCD);
2742  QualType resultDeclType;
2743
2744  bool HasRelatedResultType = false;
2745  TypeSourceInfo *ResultTInfo = 0;
2746  if (ReturnType) {
2747    resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
2748
2749    // Methods cannot return interface types. All ObjC objects are
2750    // passed by reference.
2751    if (resultDeclType->isObjCObjectType()) {
2752      Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value)
2753        << 0 << resultDeclType;
2754      return 0;
2755    }
2756
2757    HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType());
2758  } else { // get the type for "id".
2759    resultDeclType = Context.getObjCIdType();
2760    Diag(MethodLoc, diag::warn_missing_method_return_type)
2761      << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
2762  }
2763
2764  ObjCMethodDecl* ObjCMethod =
2765    ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel,
2766                           resultDeclType,
2767                           ResultTInfo,
2768                           CurContext,
2769                           MethodType == tok::minus, isVariadic,
2770                           /*isSynthesized=*/false,
2771                           /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
2772                           MethodDeclKind == tok::objc_optional
2773                             ? ObjCMethodDecl::Optional
2774                             : ObjCMethodDecl::Required,
2775                           HasRelatedResultType);
2776
2777  SmallVector<ParmVarDecl*, 16> Params;
2778
2779  for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
2780    QualType ArgType;
2781    TypeSourceInfo *DI;
2782
2783    if (ArgInfo[i].Type == 0) {
2784      ArgType = Context.getObjCIdType();
2785      DI = 0;
2786    } else {
2787      ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
2788      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
2789      ArgType = Context.getAdjustedParameterType(ArgType);
2790    }
2791
2792    LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
2793                   LookupOrdinaryName, ForRedeclaration);
2794    LookupName(R, S);
2795    if (R.isSingleResult()) {
2796      NamedDecl *PrevDecl = R.getFoundDecl();
2797      if (S->isDeclScope(PrevDecl)) {
2798        Diag(ArgInfo[i].NameLoc,
2799             (MethodDefinition ? diag::warn_method_param_redefinition
2800                               : diag::warn_method_param_declaration))
2801          << ArgInfo[i].Name;
2802        Diag(PrevDecl->getLocation(),
2803             diag::note_previous_declaration);
2804      }
2805    }
2806
2807    SourceLocation StartLoc = DI
2808      ? DI->getTypeLoc().getBeginLoc()
2809      : ArgInfo[i].NameLoc;
2810
2811    ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
2812                                        ArgInfo[i].NameLoc, ArgInfo[i].Name,
2813                                        ArgType, DI, SC_None, SC_None);
2814
2815    Param->setObjCMethodScopeInfo(i);
2816
2817    Param->setObjCDeclQualifier(
2818      CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
2819
2820    // Apply the attributes to the parameter.
2821    ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
2822
2823    if (Param->hasAttr<BlocksAttr>()) {
2824      Diag(Param->getLocation(), diag::err_block_on_nonlocal);
2825      Param->setInvalidDecl();
2826    }
2827    S->AddDecl(Param);
2828    IdResolver.AddDecl(Param);
2829
2830    Params.push_back(Param);
2831  }
2832
2833  for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
2834    ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
2835    QualType ArgType = Param->getType();
2836    if (ArgType.isNull())
2837      ArgType = Context.getObjCIdType();
2838    else
2839      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
2840      ArgType = Context.getAdjustedParameterType(ArgType);
2841    if (ArgType->isObjCObjectType()) {
2842      Diag(Param->getLocation(),
2843           diag::err_object_cannot_be_passed_returned_by_value)
2844      << 1 << ArgType;
2845      Param->setInvalidDecl();
2846    }
2847    Param->setDeclContext(ObjCMethod);
2848
2849    Params.push_back(Param);
2850  }
2851
2852  ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
2853  ObjCMethod->setObjCDeclQualifier(
2854    CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
2855
2856  if (AttrList)
2857    ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
2858
2859  // Add the method now.
2860  const ObjCMethodDecl *PrevMethod = 0;
2861  if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
2862    if (MethodType == tok::minus) {
2863      PrevMethod = ImpDecl->getInstanceMethod(Sel);
2864      ImpDecl->addInstanceMethod(ObjCMethod);
2865    } else {
2866      PrevMethod = ImpDecl->getClassMethod(Sel);
2867      ImpDecl->addClassMethod(ObjCMethod);
2868    }
2869
2870    ObjCMethodDecl *IMD = 0;
2871    if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface())
2872      IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
2873                                ObjCMethod->isInstanceMethod());
2874    if (ObjCMethod->hasAttrs() &&
2875        containsInvalidMethodImplAttribute(IMD, ObjCMethod->getAttrs())) {
2876      SourceLocation MethodLoc = IMD->getLocation();
2877      if (!getSourceManager().isInSystemHeader(MethodLoc)) {
2878        Diag(EndLoc, diag::warn_attribute_method_def);
2879        Diag(MethodLoc, diag::note_method_declared_at)
2880          << ObjCMethod->getDeclName();
2881      }
2882    }
2883  } else {
2884    cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
2885  }
2886
2887  if (PrevMethod) {
2888    // You can never have two method definitions with the same name.
2889    Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
2890      << ObjCMethod->getDeclName();
2891    Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2892  }
2893
2894  // If this Objective-C method does not have a related result type, but we
2895  // are allowed to infer related result types, try to do so based on the
2896  // method family.
2897  ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
2898  if (!CurrentClass) {
2899    if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
2900      CurrentClass = Cat->getClassInterface();
2901    else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
2902      CurrentClass = Impl->getClassInterface();
2903    else if (ObjCCategoryImplDecl *CatImpl
2904                                   = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
2905      CurrentClass = CatImpl->getClassInterface();
2906  }
2907
2908  ResultTypeCompatibilityKind RTC
2909    = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
2910
2911  CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
2912
2913  bool ARCError = false;
2914  if (getLangOpts().ObjCAutoRefCount)
2915    ARCError = CheckARCMethodDecl(*this, ObjCMethod);
2916
2917  // Infer the related result type when possible.
2918  if (!ARCError && RTC == Sema::RTC_Compatible &&
2919      !ObjCMethod->hasRelatedResultType() &&
2920      LangOpts.ObjCInferRelatedResultType) {
2921    bool InferRelatedResultType = false;
2922    switch (ObjCMethod->getMethodFamily()) {
2923    case OMF_None:
2924    case OMF_copy:
2925    case OMF_dealloc:
2926    case OMF_finalize:
2927    case OMF_mutableCopy:
2928    case OMF_release:
2929    case OMF_retainCount:
2930    case OMF_performSelector:
2931      break;
2932
2933    case OMF_alloc:
2934    case OMF_new:
2935      InferRelatedResultType = ObjCMethod->isClassMethod();
2936      break;
2937
2938    case OMF_init:
2939    case OMF_autorelease:
2940    case OMF_retain:
2941    case OMF_self:
2942      InferRelatedResultType = ObjCMethod->isInstanceMethod();
2943      break;
2944    }
2945
2946    if (InferRelatedResultType)
2947      ObjCMethod->SetRelatedResultType();
2948  }
2949
2950  ActOnDocumentableDecl(ObjCMethod);
2951
2952  return ObjCMethod;
2953}
2954
2955bool Sema::CheckObjCDeclScope(Decl *D) {
2956  // Following is also an error. But it is caused by a missing @end
2957  // and diagnostic is issued elsewhere.
2958  if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
2959    return false;
2960
2961  // If we switched context to translation unit while we are still lexically in
2962  // an objc container, it means the parser missed emitting an error.
2963  if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
2964    return false;
2965
2966  Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
2967  D->setInvalidDecl();
2968
2969  return true;
2970}
2971
2972/// Called whenever \@defs(ClassName) is encountered in the source.  Inserts the
2973/// instance variables of ClassName into Decls.
2974void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
2975                     IdentifierInfo *ClassName,
2976                     SmallVectorImpl<Decl*> &Decls) {
2977  // Check that ClassName is a valid class
2978  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
2979  if (!Class) {
2980    Diag(DeclStart, diag::err_undef_interface) << ClassName;
2981    return;
2982  }
2983  if (LangOpts.ObjCRuntime.isNonFragile()) {
2984    Diag(DeclStart, diag::err_atdef_nonfragile_interface);
2985    return;
2986  }
2987
2988  // Collect the instance variables
2989  SmallVector<const ObjCIvarDecl*, 32> Ivars;
2990  Context.DeepCollectObjCIvars(Class, true, Ivars);
2991  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
2992  for (unsigned i = 0; i < Ivars.size(); i++) {
2993    const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
2994    RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
2995    Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
2996                                           /*FIXME: StartL=*/ID->getLocation(),
2997                                           ID->getLocation(),
2998                                           ID->getIdentifier(), ID->getType(),
2999                                           ID->getBitWidth());
3000    Decls.push_back(FD);
3001  }
3002
3003  // Introduce all of these fields into the appropriate scope.
3004  for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
3005       D != Decls.end(); ++D) {
3006    FieldDecl *FD = cast<FieldDecl>(*D);
3007    if (getLangOpts().CPlusPlus)
3008      PushOnScopeChains(cast<FieldDecl>(FD), S);
3009    else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
3010      Record->addDecl(FD);
3011  }
3012}
3013
3014/// \brief Build a type-check a new Objective-C exception variable declaration.
3015VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
3016                                      SourceLocation StartLoc,
3017                                      SourceLocation IdLoc,
3018                                      IdentifierInfo *Id,
3019                                      bool Invalid) {
3020  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3021  // duration shall not be qualified by an address-space qualifier."
3022  // Since all parameters have automatic store duration, they can not have
3023  // an address space.
3024  if (T.getAddressSpace() != 0) {
3025    Diag(IdLoc, diag::err_arg_with_address_space);
3026    Invalid = true;
3027  }
3028
3029  // An @catch parameter must be an unqualified object pointer type;
3030  // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
3031  if (Invalid) {
3032    // Don't do any further checking.
3033  } else if (T->isDependentType()) {
3034    // Okay: we don't know what this type will instantiate to.
3035  } else if (!T->isObjCObjectPointerType()) {
3036    Invalid = true;
3037    Diag(IdLoc ,diag::err_catch_param_not_objc_type);
3038  } else if (T->isObjCQualifiedIdType()) {
3039    Invalid = true;
3040    Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
3041  }
3042
3043  VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
3044                                 T, TInfo, SC_None, SC_None);
3045  New->setExceptionVariable(true);
3046
3047  // In ARC, infer 'retaining' for variables of retainable type.
3048  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
3049    Invalid = true;
3050
3051  if (Invalid)
3052    New->setInvalidDecl();
3053  return New;
3054}
3055
3056Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
3057  const DeclSpec &DS = D.getDeclSpec();
3058
3059  // We allow the "register" storage class on exception variables because
3060  // GCC did, but we drop it completely. Any other storage class is an error.
3061  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3062    Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
3063      << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
3064  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3065    Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
3066      << DS.getStorageClassSpec();
3067  }
3068  if (D.getDeclSpec().isThreadSpecified())
3069    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3070  D.getMutableDeclSpec().ClearStorageClassSpecs();
3071
3072  DiagnoseFunctionSpecifiers(D);
3073
3074  // Check that there are no default arguments inside the type of this
3075  // exception object (C++ only).
3076  if (getLangOpts().CPlusPlus)
3077    CheckExtraCXXDefaultArguments(D);
3078
3079  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3080  QualType ExceptionType = TInfo->getType();
3081
3082  VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
3083                                        D.getSourceRange().getBegin(),
3084                                        D.getIdentifierLoc(),
3085                                        D.getIdentifier(),
3086                                        D.isInvalidType());
3087
3088  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3089  if (D.getCXXScopeSpec().isSet()) {
3090    Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
3091      << D.getCXXScopeSpec().getRange();
3092    New->setInvalidDecl();
3093  }
3094
3095  // Add the parameter declaration into this scope.
3096  S->AddDecl(New);
3097  if (D.getIdentifier())
3098    IdResolver.AddDecl(New);
3099
3100  ProcessDeclAttributes(S, New, D);
3101
3102  if (New->hasAttr<BlocksAttr>())
3103    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3104  return New;
3105}
3106
3107/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
3108/// initialization.
3109void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
3110                                SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
3111  for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
3112       Iv= Iv->getNextIvar()) {
3113    QualType QT = Context.getBaseElementType(Iv->getType());
3114    if (QT->isRecordType())
3115      Ivars.push_back(Iv);
3116  }
3117}
3118
3119void Sema::DiagnoseUseOfUnimplementedSelectors() {
3120  // Load referenced selectors from the external source.
3121  if (ExternalSource) {
3122    SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
3123    ExternalSource->ReadReferencedSelectors(Sels);
3124    for (unsigned I = 0, N = Sels.size(); I != N; ++I)
3125      ReferencedSelectors[Sels[I].first] = Sels[I].second;
3126  }
3127
3128  // Warning will be issued only when selector table is
3129  // generated (which means there is at lease one implementation
3130  // in the TU). This is to match gcc's behavior.
3131  if (ReferencedSelectors.empty() ||
3132      !Context.AnyObjCImplementation())
3133    return;
3134  for (llvm::DenseMap<Selector, SourceLocation>::iterator S =
3135        ReferencedSelectors.begin(),
3136       E = ReferencedSelectors.end(); S != E; ++S) {
3137    Selector Sel = (*S).first;
3138    if (!LookupImplementedMethodInGlobalPool(Sel))
3139      Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
3140  }
3141  return;
3142}
3143