SemaDeclObjC.cpp revision 226633
1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for Objective C declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/Sema/ExternalSemaSource.h"
17#include "clang/Sema/Scope.h"
18#include "clang/Sema/ScopeInfo.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/Basic/SourceManager.h"
25#include "clang/Sema/DeclSpec.h"
26#include "llvm/ADT/DenseSet.h"
27
28using namespace clang;
29
30/// Check whether the given method, which must be in the 'init'
31/// family, is a valid member of that family.
32///
33/// \param receiverTypeIfCall - if null, check this as if declaring it;
34///   if non-null, check this as if making a call to it with the given
35///   receiver type
36///
37/// \return true to indicate that there was an error and appropriate
38///   actions were taken
39bool Sema::checkInitMethod(ObjCMethodDecl *method,
40                           QualType receiverTypeIfCall) {
41  if (method->isInvalidDecl()) return true;
42
43  // This castAs is safe: methods that don't return an object
44  // pointer won't be inferred as inits and will reject an explicit
45  // objc_method_family(init).
46
47  // We ignore protocols here.  Should we?  What about Class?
48
49  const ObjCObjectType *result = method->getResultType()
50    ->castAs<ObjCObjectPointerType>()->getObjectType();
51
52  if (result->isObjCId()) {
53    return false;
54  } else if (result->isObjCClass()) {
55    // fall through: always an error
56  } else {
57    ObjCInterfaceDecl *resultClass = result->getInterface();
58    assert(resultClass && "unexpected object type!");
59
60    // It's okay for the result type to still be a forward declaration
61    // if we're checking an interface declaration.
62    if (resultClass->isForwardDecl()) {
63      if (receiverTypeIfCall.isNull() &&
64          !isa<ObjCImplementationDecl>(method->getDeclContext()))
65        return false;
66
67    // Otherwise, we try to compare class types.
68    } else {
69      // If this method was declared in a protocol, we can't check
70      // anything unless we have a receiver type that's an interface.
71      const ObjCInterfaceDecl *receiverClass = 0;
72      if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
73        if (receiverTypeIfCall.isNull())
74          return false;
75
76        receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
77          ->getInterfaceDecl();
78
79        // This can be null for calls to e.g. id<Foo>.
80        if (!receiverClass) return false;
81      } else {
82        receiverClass = method->getClassInterface();
83        assert(receiverClass && "method not associated with a class!");
84      }
85
86      // If either class is a subclass of the other, it's fine.
87      if (receiverClass->isSuperClassOf(resultClass) ||
88          resultClass->isSuperClassOf(receiverClass))
89        return false;
90    }
91  }
92
93  SourceLocation loc = method->getLocation();
94
95  // If we're in a system header, and this is not a call, just make
96  // the method unusable.
97  if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
98    method->addAttr(new (Context) UnavailableAttr(loc, Context,
99                "init method returns a type unrelated to its receiver type"));
100    return true;
101  }
102
103  // Otherwise, it's an error.
104  Diag(loc, diag::err_arc_init_method_unrelated_result_type);
105  method->setInvalidDecl();
106  return true;
107}
108
109void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
110                                   const ObjCMethodDecl *Overridden,
111                                   bool IsImplementation) {
112  if (Overridden->hasRelatedResultType() &&
113      !NewMethod->hasRelatedResultType()) {
114    // This can only happen when the method follows a naming convention that
115    // implies a related result type, and the original (overridden) method has
116    // a suitable return type, but the new (overriding) method does not have
117    // a suitable return type.
118    QualType ResultType = NewMethod->getResultType();
119    SourceRange ResultTypeRange;
120    if (const TypeSourceInfo *ResultTypeInfo
121                                        = NewMethod->getResultTypeSourceInfo())
122      ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
123
124    // Figure out which class this method is part of, if any.
125    ObjCInterfaceDecl *CurrentClass
126      = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
127    if (!CurrentClass) {
128      DeclContext *DC = NewMethod->getDeclContext();
129      if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
130        CurrentClass = Cat->getClassInterface();
131      else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
132        CurrentClass = Impl->getClassInterface();
133      else if (ObjCCategoryImplDecl *CatImpl
134               = dyn_cast<ObjCCategoryImplDecl>(DC))
135        CurrentClass = CatImpl->getClassInterface();
136    }
137
138    if (CurrentClass) {
139      Diag(NewMethod->getLocation(),
140           diag::warn_related_result_type_compatibility_class)
141        << Context.getObjCInterfaceType(CurrentClass)
142        << ResultType
143        << ResultTypeRange;
144    } else {
145      Diag(NewMethod->getLocation(),
146           diag::warn_related_result_type_compatibility_protocol)
147        << ResultType
148        << ResultTypeRange;
149    }
150
151    if (ObjCMethodFamily Family = Overridden->getMethodFamily())
152      Diag(Overridden->getLocation(),
153           diag::note_related_result_type_overridden_family)
154        << Family;
155    else
156      Diag(Overridden->getLocation(),
157           diag::note_related_result_type_overridden);
158  }
159  if (getLangOptions().ObjCAutoRefCount) {
160    if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
161         Overridden->hasAttr<NSReturnsRetainedAttr>())) {
162        Diag(NewMethod->getLocation(),
163             diag::err_nsreturns_retained_attribute_mismatch) << 1;
164        Diag(Overridden->getLocation(), diag::note_previous_decl)
165        << "method";
166    }
167    if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
168              Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
169        Diag(NewMethod->getLocation(),
170             diag::err_nsreturns_retained_attribute_mismatch) << 0;
171        Diag(Overridden->getLocation(), diag::note_previous_decl)
172        << "method";
173    }
174    ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin();
175    for (ObjCMethodDecl::param_iterator
176           ni = NewMethod->param_begin(), ne = NewMethod->param_end();
177         ni != ne; ++ni, ++oi) {
178      const ParmVarDecl *oldDecl = (*oi);
179      ParmVarDecl *newDecl = (*ni);
180      if (newDecl->hasAttr<NSConsumedAttr>() !=
181          oldDecl->hasAttr<NSConsumedAttr>()) {
182        Diag(newDecl->getLocation(),
183             diag::err_nsconsumed_attribute_mismatch);
184        Diag(oldDecl->getLocation(), diag::note_previous_decl)
185          << "parameter";
186      }
187    }
188  }
189}
190
191/// \brief Check a method declaration for compatibility with the Objective-C
192/// ARC conventions.
193static bool CheckARCMethodDecl(Sema &S, ObjCMethodDecl *method) {
194  ObjCMethodFamily family = method->getMethodFamily();
195  switch (family) {
196  case OMF_None:
197  case OMF_dealloc:
198  case OMF_finalize:
199  case OMF_retain:
200  case OMF_release:
201  case OMF_autorelease:
202  case OMF_retainCount:
203  case OMF_self:
204  case OMF_performSelector:
205    return false;
206
207  case OMF_init:
208    // If the method doesn't obey the init rules, don't bother annotating it.
209    if (S.checkInitMethod(method, QualType()))
210      return true;
211
212    method->addAttr(new (S.Context) NSConsumesSelfAttr(SourceLocation(),
213                                                       S.Context));
214
215    // Don't add a second copy of this attribute, but otherwise don't
216    // let it be suppressed.
217    if (method->hasAttr<NSReturnsRetainedAttr>())
218      return false;
219    break;
220
221  case OMF_alloc:
222  case OMF_copy:
223  case OMF_mutableCopy:
224  case OMF_new:
225    if (method->hasAttr<NSReturnsRetainedAttr>() ||
226        method->hasAttr<NSReturnsNotRetainedAttr>() ||
227        method->hasAttr<NSReturnsAutoreleasedAttr>())
228      return false;
229    break;
230  }
231
232  method->addAttr(new (S.Context) NSReturnsRetainedAttr(SourceLocation(),
233                                                        S.Context));
234  return false;
235}
236
237static void DiagnoseObjCImplementedDeprecations(Sema &S,
238                                                NamedDecl *ND,
239                                                SourceLocation ImplLoc,
240                                                int select) {
241  if (ND && ND->isDeprecated()) {
242    S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
243    if (select == 0)
244      S.Diag(ND->getLocation(), diag::note_method_declared_at);
245    else
246      S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
247  }
248}
249
250/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
251/// pool.
252void Sema::AddAnyMethodToGlobalPool(Decl *D) {
253  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
254
255  // If we don't have a valid method decl, simply return.
256  if (!MDecl)
257    return;
258  if (MDecl->isInstanceMethod())
259    AddInstanceMethodToGlobalPool(MDecl, true);
260  else
261    AddFactoryMethodToGlobalPool(MDecl, true);
262}
263
264/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
265/// and user declared, in the method definition's AST.
266void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
267  assert(getCurMethodDecl() == 0 && "Method parsing confused");
268  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
269
270  // If we don't have a valid method decl, simply return.
271  if (!MDecl)
272    return;
273
274  // Allow all of Sema to see that we are entering a method definition.
275  PushDeclContext(FnBodyScope, MDecl);
276  PushFunctionScope();
277
278  // Create Decl objects for each parameter, entrring them in the scope for
279  // binding to their use.
280
281  // Insert the invisible arguments, self and _cmd!
282  MDecl->createImplicitParams(Context, MDecl->getClassInterface());
283
284  PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
285  PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
286
287  // Introduce all of the other parameters into this scope.
288  for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
289       E = MDecl->param_end(); PI != E; ++PI) {
290    ParmVarDecl *Param = (*PI);
291    if (!Param->isInvalidDecl() &&
292        RequireCompleteType(Param->getLocation(), Param->getType(),
293                            diag::err_typecheck_decl_incomplete_type))
294          Param->setInvalidDecl();
295    if ((*PI)->getIdentifier())
296      PushOnScopeChains(*PI, FnBodyScope);
297  }
298
299  // In ARC, disallow definition of retain/release/autorelease/retainCount
300  if (getLangOptions().ObjCAutoRefCount) {
301    switch (MDecl->getMethodFamily()) {
302    case OMF_retain:
303    case OMF_retainCount:
304    case OMF_release:
305    case OMF_autorelease:
306      Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
307        << MDecl->getSelector();
308      break;
309
310    case OMF_None:
311    case OMF_dealloc:
312    case OMF_finalize:
313    case OMF_alloc:
314    case OMF_init:
315    case OMF_mutableCopy:
316    case OMF_copy:
317    case OMF_new:
318    case OMF_self:
319    case OMF_performSelector:
320      break;
321    }
322  }
323
324  // Warn on deprecated methods under -Wdeprecated-implementations,
325  // and prepare for warning on missing super calls.
326  if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
327    if (ObjCMethodDecl *IMD =
328          IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod()))
329      DiagnoseObjCImplementedDeprecations(*this,
330                                          dyn_cast<NamedDecl>(IMD),
331                                          MDecl->getLocation(), 0);
332
333    // If this is "dealloc" or "finalize", set some bit here.
334    // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
335    // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
336    // Only do this if the current class actually has a superclass.
337    if (IC->getSuperClass()) {
338      ObjCShouldCallSuperDealloc =
339        !(Context.getLangOptions().ObjCAutoRefCount ||
340          Context.getLangOptions().getGC() == LangOptions::GCOnly) &&
341        MDecl->getMethodFamily() == OMF_dealloc;
342      ObjCShouldCallSuperFinalize =
343        Context.getLangOptions().getGC() != LangOptions::NonGC &&
344        MDecl->getMethodFamily() == OMF_finalize;
345    }
346  }
347}
348
349Decl *Sema::
350ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
351                         IdentifierInfo *ClassName, SourceLocation ClassLoc,
352                         IdentifierInfo *SuperName, SourceLocation SuperLoc,
353                         Decl * const *ProtoRefs, unsigned NumProtoRefs,
354                         const SourceLocation *ProtoLocs,
355                         SourceLocation EndProtoLoc, AttributeList *AttrList) {
356  assert(ClassName && "Missing class identifier");
357
358  // Check for another declaration kind with the same name.
359  NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
360                                         LookupOrdinaryName, ForRedeclaration);
361
362  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
363    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
364    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
365  }
366
367  ObjCInterfaceDecl* IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
368  if (IDecl) {
369    // Class already seen. Is it a forward declaration?
370    if (!IDecl->isForwardDecl()) {
371      IDecl->setInvalidDecl();
372      Diag(AtInterfaceLoc, diag::err_duplicate_class_def)<<IDecl->getDeclName();
373      Diag(IDecl->getLocation(), diag::note_previous_definition);
374
375      // Return the previous class interface.
376      // FIXME: don't leak the objects passed in!
377      return ActOnObjCContainerStartDefinition(IDecl);
378    } else {
379      IDecl->setLocation(ClassLoc);
380      IDecl->setForwardDecl(false);
381      IDecl->setAtStartLoc(AtInterfaceLoc);
382      // If the forward decl was in a PCH, we need to write it again in a
383      // dependent AST file.
384      IDecl->setChangedSinceDeserialization(true);
385
386      // Since this ObjCInterfaceDecl was created by a forward declaration,
387      // we now add it to the DeclContext since it wasn't added before
388      // (see ActOnForwardClassDeclaration).
389      IDecl->setLexicalDeclContext(CurContext);
390      CurContext->addDecl(IDecl);
391
392      if (AttrList)
393        ProcessDeclAttributeList(TUScope, IDecl, AttrList);
394    }
395  } else {
396    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc,
397                                      ClassName, ClassLoc);
398    if (AttrList)
399      ProcessDeclAttributeList(TUScope, IDecl, AttrList);
400
401    PushOnScopeChains(IDecl, TUScope);
402  }
403
404  if (SuperName) {
405    // Check if a different kind of symbol declared in this scope.
406    PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
407                                LookupOrdinaryName);
408
409    if (!PrevDecl) {
410      // Try to correct for a typo in the superclass name.
411      TypoCorrection Corrected = CorrectTypo(
412          DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope,
413          NULL, NULL, false, CTC_NoKeywords);
414      if ((PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
415        Diag(SuperLoc, diag::err_undef_superclass_suggest)
416          << SuperName << ClassName << PrevDecl->getDeclName();
417        Diag(PrevDecl->getLocation(), diag::note_previous_decl)
418          << PrevDecl->getDeclName();
419      }
420    }
421
422    if (PrevDecl == IDecl) {
423      Diag(SuperLoc, diag::err_recursive_superclass)
424        << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
425      IDecl->setLocEnd(ClassLoc);
426    } else {
427      ObjCInterfaceDecl *SuperClassDecl =
428                                dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
429
430      // Diagnose classes that inherit from deprecated classes.
431      if (SuperClassDecl)
432        (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
433
434      if (PrevDecl && SuperClassDecl == 0) {
435        // The previous declaration was not a class decl. Check if we have a
436        // typedef. If we do, get the underlying class type.
437        if (const TypedefNameDecl *TDecl =
438              dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
439          QualType T = TDecl->getUnderlyingType();
440          if (T->isObjCObjectType()) {
441            if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface())
442              SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
443          }
444        }
445
446        // This handles the following case:
447        //
448        // typedef int SuperClass;
449        // @interface MyClass : SuperClass {} @end
450        //
451        if (!SuperClassDecl) {
452          Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
453          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
454        }
455      }
456
457      if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
458        if (!SuperClassDecl)
459          Diag(SuperLoc, diag::err_undef_superclass)
460            << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
461        else if (SuperClassDecl->isForwardDecl()) {
462          Diag(SuperLoc, diag::err_forward_superclass)
463            << SuperClassDecl->getDeclName() << ClassName
464            << SourceRange(AtInterfaceLoc, ClassLoc);
465          Diag(SuperClassDecl->getLocation(), diag::note_forward_class);
466          SuperClassDecl = 0;
467        }
468      }
469      IDecl->setSuperClass(SuperClassDecl);
470      IDecl->setSuperClassLoc(SuperLoc);
471      IDecl->setLocEnd(SuperLoc);
472    }
473  } else { // we have a root class.
474    IDecl->setLocEnd(ClassLoc);
475  }
476
477  // Check then save referenced protocols.
478  if (NumProtoRefs) {
479    IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
480                           ProtoLocs, Context);
481    IDecl->setLocEnd(EndProtoLoc);
482  }
483
484  CheckObjCDeclScope(IDecl);
485  return ActOnObjCContainerStartDefinition(IDecl);
486}
487
488/// ActOnCompatiblityAlias - this action is called after complete parsing of
489/// @compatibility_alias declaration. It sets up the alias relationships.
490Decl *Sema::ActOnCompatiblityAlias(SourceLocation AtLoc,
491                                        IdentifierInfo *AliasName,
492                                        SourceLocation AliasLocation,
493                                        IdentifierInfo *ClassName,
494                                        SourceLocation ClassLocation) {
495  // Look for previous declaration of alias name
496  NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
497                                      LookupOrdinaryName, ForRedeclaration);
498  if (ADecl) {
499    if (isa<ObjCCompatibleAliasDecl>(ADecl))
500      Diag(AliasLocation, diag::warn_previous_alias_decl);
501    else
502      Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
503    Diag(ADecl->getLocation(), diag::note_previous_declaration);
504    return 0;
505  }
506  // Check for class declaration
507  NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
508                                       LookupOrdinaryName, ForRedeclaration);
509  if (const TypedefNameDecl *TDecl =
510        dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
511    QualType T = TDecl->getUnderlyingType();
512    if (T->isObjCObjectType()) {
513      if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
514        ClassName = IDecl->getIdentifier();
515        CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
516                                  LookupOrdinaryName, ForRedeclaration);
517      }
518    }
519  }
520  ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
521  if (CDecl == 0) {
522    Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
523    if (CDeclU)
524      Diag(CDeclU->getLocation(), diag::note_previous_declaration);
525    return 0;
526  }
527
528  // Everything checked out, instantiate a new alias declaration AST.
529  ObjCCompatibleAliasDecl *AliasDecl =
530    ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
531
532  if (!CheckObjCDeclScope(AliasDecl))
533    PushOnScopeChains(AliasDecl, TUScope);
534
535  return AliasDecl;
536}
537
538bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
539  IdentifierInfo *PName,
540  SourceLocation &Ploc, SourceLocation PrevLoc,
541  const ObjCList<ObjCProtocolDecl> &PList) {
542
543  bool res = false;
544  for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
545       E = PList.end(); I != E; ++I) {
546    if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
547                                                 Ploc)) {
548      if (PDecl->getIdentifier() == PName) {
549        Diag(Ploc, diag::err_protocol_has_circular_dependency);
550        Diag(PrevLoc, diag::note_previous_definition);
551        res = true;
552      }
553      if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
554            PDecl->getLocation(), PDecl->getReferencedProtocols()))
555        res = true;
556    }
557  }
558  return res;
559}
560
561Decl *
562Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
563                                  IdentifierInfo *ProtocolName,
564                                  SourceLocation ProtocolLoc,
565                                  Decl * const *ProtoRefs,
566                                  unsigned NumProtoRefs,
567                                  const SourceLocation *ProtoLocs,
568                                  SourceLocation EndProtoLoc,
569                                  AttributeList *AttrList) {
570  bool err = false;
571  // FIXME: Deal with AttrList.
572  assert(ProtocolName && "Missing protocol identifier");
573  ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolName, ProtocolLoc);
574  if (PDecl) {
575    // Protocol already seen. Better be a forward protocol declaration
576    if (!PDecl->isForwardDecl()) {
577      Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
578      Diag(PDecl->getLocation(), diag::note_previous_definition);
579      // Just return the protocol we already had.
580      // FIXME: don't leak the objects passed in!
581      return ActOnObjCContainerStartDefinition(PDecl);
582    }
583    ObjCList<ObjCProtocolDecl> PList;
584    PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
585    err = CheckForwardProtocolDeclarationForCircularDependency(
586            ProtocolName, ProtocolLoc, PDecl->getLocation(), PList);
587
588    // Make sure the cached decl gets a valid start location.
589    PDecl->setAtStartLoc(AtProtoInterfaceLoc);
590    PDecl->setLocation(ProtocolLoc);
591    PDecl->setForwardDecl(false);
592    // Since this ObjCProtocolDecl was created by a forward declaration,
593    // we now add it to the DeclContext since it wasn't added before
594    PDecl->setLexicalDeclContext(CurContext);
595    CurContext->addDecl(PDecl);
596    // Repeat in dependent AST files.
597    PDecl->setChangedSinceDeserialization(true);
598  } else {
599    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
600                                     ProtocolLoc, AtProtoInterfaceLoc);
601    PushOnScopeChains(PDecl, TUScope);
602    PDecl->setForwardDecl(false);
603  }
604  if (AttrList)
605    ProcessDeclAttributeList(TUScope, PDecl, AttrList);
606  if (!err && NumProtoRefs ) {
607    /// Check then save referenced protocols.
608    PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
609                           ProtoLocs, Context);
610    PDecl->setLocEnd(EndProtoLoc);
611  }
612
613  CheckObjCDeclScope(PDecl);
614  return ActOnObjCContainerStartDefinition(PDecl);
615}
616
617/// FindProtocolDeclaration - This routine looks up protocols and
618/// issues an error if they are not declared. It returns list of
619/// protocol declarations in its 'Protocols' argument.
620void
621Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
622                              const IdentifierLocPair *ProtocolId,
623                              unsigned NumProtocols,
624                              SmallVectorImpl<Decl *> &Protocols) {
625  for (unsigned i = 0; i != NumProtocols; ++i) {
626    ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
627                                             ProtocolId[i].second);
628    if (!PDecl) {
629      TypoCorrection Corrected = CorrectTypo(
630          DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second),
631          LookupObjCProtocolName, TUScope, NULL, NULL, false, CTC_NoKeywords);
632      if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) {
633        Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
634          << ProtocolId[i].first << Corrected.getCorrection();
635        Diag(PDecl->getLocation(), diag::note_previous_decl)
636          << PDecl->getDeclName();
637      }
638    }
639
640    if (!PDecl) {
641      Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
642        << ProtocolId[i].first;
643      continue;
644    }
645
646    (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
647
648    // If this is a forward declaration and we are supposed to warn in this
649    // case, do it.
650    if (WarnOnDeclarations && PDecl->isForwardDecl())
651      Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
652        << ProtocolId[i].first;
653    Protocols.push_back(PDecl);
654  }
655}
656
657/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
658/// a class method in its extension.
659///
660void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
661                                            ObjCInterfaceDecl *ID) {
662  if (!ID)
663    return;  // Possibly due to previous error
664
665  llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
666  for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
667       e =  ID->meth_end(); i != e; ++i) {
668    ObjCMethodDecl *MD = *i;
669    MethodMap[MD->getSelector()] = MD;
670  }
671
672  if (MethodMap.empty())
673    return;
674  for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
675       e =  CAT->meth_end(); i != e; ++i) {
676    ObjCMethodDecl *Method = *i;
677    const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
678    if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
679      Diag(Method->getLocation(), diag::err_duplicate_method_decl)
680            << Method->getDeclName();
681      Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
682    }
683  }
684}
685
686/// ActOnForwardProtocolDeclaration - Handle @protocol foo;
687Decl *
688Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
689                                      const IdentifierLocPair *IdentList,
690                                      unsigned NumElts,
691                                      AttributeList *attrList) {
692  SmallVector<ObjCProtocolDecl*, 32> Protocols;
693  SmallVector<SourceLocation, 8> ProtoLocs;
694
695  for (unsigned i = 0; i != NumElts; ++i) {
696    IdentifierInfo *Ident = IdentList[i].first;
697    ObjCProtocolDecl *PDecl = LookupProtocol(Ident, IdentList[i].second);
698    bool isNew = false;
699    if (PDecl == 0) { // Not already seen?
700      PDecl = ObjCProtocolDecl::Create(Context, CurContext, Ident,
701                                       IdentList[i].second, AtProtocolLoc);
702      PushOnScopeChains(PDecl, TUScope, false);
703      isNew = true;
704    }
705    if (attrList) {
706      ProcessDeclAttributeList(TUScope, PDecl, attrList);
707      if (!isNew)
708        PDecl->setChangedSinceDeserialization(true);
709    }
710    Protocols.push_back(PDecl);
711    ProtoLocs.push_back(IdentList[i].second);
712  }
713
714  ObjCForwardProtocolDecl *PDecl =
715    ObjCForwardProtocolDecl::Create(Context, CurContext, AtProtocolLoc,
716                                    Protocols.data(), Protocols.size(),
717                                    ProtoLocs.data());
718  CurContext->addDecl(PDecl);
719  CheckObjCDeclScope(PDecl);
720  return PDecl;
721}
722
723Decl *Sema::
724ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
725                            IdentifierInfo *ClassName, SourceLocation ClassLoc,
726                            IdentifierInfo *CategoryName,
727                            SourceLocation CategoryLoc,
728                            Decl * const *ProtoRefs,
729                            unsigned NumProtoRefs,
730                            const SourceLocation *ProtoLocs,
731                            SourceLocation EndProtoLoc) {
732  ObjCCategoryDecl *CDecl;
733  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
734
735  /// Check that class of this category is already completely declared.
736  if (!IDecl || IDecl->isForwardDecl()) {
737    // Create an invalid ObjCCategoryDecl to serve as context for
738    // the enclosing method declarations.  We mark the decl invalid
739    // to make it clear that this isn't a valid AST.
740    CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
741                                     ClassLoc, CategoryLoc, CategoryName,IDecl);
742    CDecl->setInvalidDecl();
743    Diag(ClassLoc, diag::err_undef_interface) << ClassName;
744    return ActOnObjCContainerStartDefinition(CDecl);
745  }
746
747  if (!CategoryName && IDecl->getImplementation()) {
748    Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
749    Diag(IDecl->getImplementation()->getLocation(),
750          diag::note_implementation_declared);
751  }
752
753  if (CategoryName) {
754    /// Check for duplicate interface declaration for this category
755    ObjCCategoryDecl *CDeclChain;
756    for (CDeclChain = IDecl->getCategoryList(); CDeclChain;
757         CDeclChain = CDeclChain->getNextClassCategory()) {
758      if (CDeclChain->getIdentifier() == CategoryName) {
759        // Class extensions can be declared multiple times.
760        Diag(CategoryLoc, diag::warn_dup_category_def)
761          << ClassName << CategoryName;
762        Diag(CDeclChain->getLocation(), diag::note_previous_definition);
763        break;
764      }
765    }
766  }
767
768  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
769                                   ClassLoc, CategoryLoc, CategoryName, IDecl);
770  // FIXME: PushOnScopeChains?
771  CurContext->addDecl(CDecl);
772
773  if (NumProtoRefs) {
774    CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
775                           ProtoLocs, Context);
776    // Protocols in the class extension belong to the class.
777    if (CDecl->IsClassExtension())
778     IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs,
779                                            NumProtoRefs, Context);
780  }
781
782  CheckObjCDeclScope(CDecl);
783  return ActOnObjCContainerStartDefinition(CDecl);
784}
785
786/// ActOnStartCategoryImplementation - Perform semantic checks on the
787/// category implementation declaration and build an ObjCCategoryImplDecl
788/// object.
789Decl *Sema::ActOnStartCategoryImplementation(
790                      SourceLocation AtCatImplLoc,
791                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
792                      IdentifierInfo *CatName, SourceLocation CatLoc) {
793  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
794  ObjCCategoryDecl *CatIDecl = 0;
795  if (IDecl) {
796    CatIDecl = IDecl->FindCategoryDeclaration(CatName);
797    if (!CatIDecl) {
798      // Category @implementation with no corresponding @interface.
799      // Create and install one.
800      CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, SourceLocation(),
801                                          SourceLocation(), SourceLocation(),
802                                          CatName, IDecl);
803    }
804  }
805
806  ObjCCategoryImplDecl *CDecl =
807    ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
808                                 ClassLoc, AtCatImplLoc);
809  /// Check that class of this category is already completely declared.
810  if (!IDecl || IDecl->isForwardDecl()) {
811    Diag(ClassLoc, diag::err_undef_interface) << ClassName;
812    CDecl->setInvalidDecl();
813  }
814
815  // FIXME: PushOnScopeChains?
816  CurContext->addDecl(CDecl);
817
818  // If the interface is deprecated/unavailable, warn/error about it.
819  if (IDecl)
820    DiagnoseUseOfDecl(IDecl, ClassLoc);
821
822  /// Check that CatName, category name, is not used in another implementation.
823  if (CatIDecl) {
824    if (CatIDecl->getImplementation()) {
825      Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
826        << CatName;
827      Diag(CatIDecl->getImplementation()->getLocation(),
828           diag::note_previous_definition);
829    } else {
830      CatIDecl->setImplementation(CDecl);
831      // Warn on implementating category of deprecated class under
832      // -Wdeprecated-implementations flag.
833      DiagnoseObjCImplementedDeprecations(*this,
834                                          dyn_cast<NamedDecl>(IDecl),
835                                          CDecl->getLocation(), 2);
836    }
837  }
838
839  CheckObjCDeclScope(CDecl);
840  return ActOnObjCContainerStartDefinition(CDecl);
841}
842
843Decl *Sema::ActOnStartClassImplementation(
844                      SourceLocation AtClassImplLoc,
845                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
846                      IdentifierInfo *SuperClassname,
847                      SourceLocation SuperClassLoc) {
848  ObjCInterfaceDecl* IDecl = 0;
849  // Check for another declaration kind with the same name.
850  NamedDecl *PrevDecl
851    = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
852                       ForRedeclaration);
853  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
854    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
855    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
856  } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
857    // If this is a forward declaration of an interface, warn.
858    if (IDecl->isForwardDecl()) {
859      Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
860      IDecl = 0;
861    }
862  } else {
863    // We did not find anything with the name ClassName; try to correct for
864    // typos in the class name.
865    TypoCorrection Corrected = CorrectTypo(
866        DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
867        NULL, NULL, false, CTC_NoKeywords);
868    if ((IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
869      // Suggest the (potentially) correct interface name. However, put the
870      // fix-it hint itself in a separate note, since changing the name in
871      // the warning would make the fix-it change semantics.However, don't
872      // provide a code-modification hint or use the typo name for recovery,
873      // because this is just a warning. The program may actually be correct.
874      DeclarationName CorrectedName = Corrected.getCorrection();
875      Diag(ClassLoc, diag::warn_undef_interface_suggest)
876        << ClassName << CorrectedName;
877      Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName
878        << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString());
879      IDecl = 0;
880    } else {
881      Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
882    }
883  }
884
885  // Check that super class name is valid class name
886  ObjCInterfaceDecl* SDecl = 0;
887  if (SuperClassname) {
888    // Check if a different kind of symbol declared in this scope.
889    PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
890                                LookupOrdinaryName);
891    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
892      Diag(SuperClassLoc, diag::err_redefinition_different_kind)
893        << SuperClassname;
894      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
895    } else {
896      SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
897      if (!SDecl)
898        Diag(SuperClassLoc, diag::err_undef_superclass)
899          << SuperClassname << ClassName;
900      else if (IDecl && IDecl->getSuperClass() != SDecl) {
901        // This implementation and its interface do not have the same
902        // super class.
903        Diag(SuperClassLoc, diag::err_conflicting_super_class)
904          << SDecl->getDeclName();
905        Diag(SDecl->getLocation(), diag::note_previous_definition);
906      }
907    }
908  }
909
910  if (!IDecl) {
911    // Legacy case of @implementation with no corresponding @interface.
912    // Build, chain & install the interface decl into the identifier.
913
914    // FIXME: Do we support attributes on the @implementation? If so we should
915    // copy them over.
916    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
917                                      ClassName, ClassLoc, false, true);
918    IDecl->setSuperClass(SDecl);
919    IDecl->setLocEnd(ClassLoc);
920
921    PushOnScopeChains(IDecl, TUScope);
922  } else {
923    // Mark the interface as being completed, even if it was just as
924    //   @class ....;
925    // declaration; the user cannot reopen it.
926    IDecl->setForwardDecl(false);
927  }
928
929  ObjCImplementationDecl* IMPDecl =
930    ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
931                                   ClassLoc, AtClassImplLoc);
932
933  if (CheckObjCDeclScope(IMPDecl))
934    return ActOnObjCContainerStartDefinition(IMPDecl);
935
936  // Check that there is no duplicate implementation of this class.
937  if (IDecl->getImplementation()) {
938    // FIXME: Don't leak everything!
939    Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
940    Diag(IDecl->getImplementation()->getLocation(),
941         diag::note_previous_definition);
942  } else { // add it to the list.
943    IDecl->setImplementation(IMPDecl);
944    PushOnScopeChains(IMPDecl, TUScope);
945    // Warn on implementating deprecated class under
946    // -Wdeprecated-implementations flag.
947    DiagnoseObjCImplementedDeprecations(*this,
948                                        dyn_cast<NamedDecl>(IDecl),
949                                        IMPDecl->getLocation(), 1);
950  }
951  return ActOnObjCContainerStartDefinition(IMPDecl);
952}
953
954void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
955                                    ObjCIvarDecl **ivars, unsigned numIvars,
956                                    SourceLocation RBrace) {
957  assert(ImpDecl && "missing implementation decl");
958  ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
959  if (!IDecl)
960    return;
961  /// Check case of non-existing @interface decl.
962  /// (legacy objective-c @implementation decl without an @interface decl).
963  /// Add implementations's ivar to the synthesize class's ivar list.
964  if (IDecl->isImplicitInterfaceDecl()) {
965    IDecl->setLocEnd(RBrace);
966    // Add ivar's to class's DeclContext.
967    for (unsigned i = 0, e = numIvars; i != e; ++i) {
968      ivars[i]->setLexicalDeclContext(ImpDecl);
969      IDecl->makeDeclVisibleInContext(ivars[i], false);
970      ImpDecl->addDecl(ivars[i]);
971    }
972
973    return;
974  }
975  // If implementation has empty ivar list, just return.
976  if (numIvars == 0)
977    return;
978
979  assert(ivars && "missing @implementation ivars");
980  if (LangOpts.ObjCNonFragileABI2) {
981    if (ImpDecl->getSuperClass())
982      Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
983    for (unsigned i = 0; i < numIvars; i++) {
984      ObjCIvarDecl* ImplIvar = ivars[i];
985      if (const ObjCIvarDecl *ClsIvar =
986            IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
987        Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
988        Diag(ClsIvar->getLocation(), diag::note_previous_definition);
989        continue;
990      }
991      // Instance ivar to Implementation's DeclContext.
992      ImplIvar->setLexicalDeclContext(ImpDecl);
993      IDecl->makeDeclVisibleInContext(ImplIvar, false);
994      ImpDecl->addDecl(ImplIvar);
995    }
996    return;
997  }
998  // Check interface's Ivar list against those in the implementation.
999  // names and types must match.
1000  //
1001  unsigned j = 0;
1002  ObjCInterfaceDecl::ivar_iterator
1003    IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
1004  for (; numIvars > 0 && IVI != IVE; ++IVI) {
1005    ObjCIvarDecl* ImplIvar = ivars[j++];
1006    ObjCIvarDecl* ClsIvar = *IVI;
1007    assert (ImplIvar && "missing implementation ivar");
1008    assert (ClsIvar && "missing class ivar");
1009
1010    // First, make sure the types match.
1011    if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
1012      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
1013        << ImplIvar->getIdentifier()
1014        << ImplIvar->getType() << ClsIvar->getType();
1015      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1016    } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
1017               ImplIvar->getBitWidthValue(Context) !=
1018               ClsIvar->getBitWidthValue(Context)) {
1019      Diag(ImplIvar->getBitWidth()->getLocStart(),
1020           diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
1021      Diag(ClsIvar->getBitWidth()->getLocStart(),
1022           diag::note_previous_definition);
1023    }
1024    // Make sure the names are identical.
1025    if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
1026      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
1027        << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
1028      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1029    }
1030    --numIvars;
1031  }
1032
1033  if (numIvars > 0)
1034    Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
1035  else if (IVI != IVE)
1036    Diag((*IVI)->getLocation(), diag::err_inconsistant_ivar_count);
1037}
1038
1039void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
1040                               bool &IncompleteImpl, unsigned DiagID) {
1041  // No point warning no definition of method which is 'unavailable'.
1042  if (method->hasAttr<UnavailableAttr>())
1043    return;
1044  if (!IncompleteImpl) {
1045    Diag(ImpLoc, diag::warn_incomplete_impl);
1046    IncompleteImpl = true;
1047  }
1048  if (DiagID == diag::warn_unimplemented_protocol_method)
1049    Diag(ImpLoc, DiagID) << method->getDeclName();
1050  else
1051    Diag(method->getLocation(), DiagID) << method->getDeclName();
1052}
1053
1054/// Determines if type B can be substituted for type A.  Returns true if we can
1055/// guarantee that anything that the user will do to an object of type A can
1056/// also be done to an object of type B.  This is trivially true if the two
1057/// types are the same, or if B is a subclass of A.  It becomes more complex
1058/// in cases where protocols are involved.
1059///
1060/// Object types in Objective-C describe the minimum requirements for an
1061/// object, rather than providing a complete description of a type.  For
1062/// example, if A is a subclass of B, then B* may refer to an instance of A.
1063/// The principle of substitutability means that we may use an instance of A
1064/// anywhere that we may use an instance of B - it will implement all of the
1065/// ivars of B and all of the methods of B.
1066///
1067/// This substitutability is important when type checking methods, because
1068/// the implementation may have stricter type definitions than the interface.
1069/// The interface specifies minimum requirements, but the implementation may
1070/// have more accurate ones.  For example, a method may privately accept
1071/// instances of B, but only publish that it accepts instances of A.  Any
1072/// object passed to it will be type checked against B, and so will implicitly
1073/// by a valid A*.  Similarly, a method may return a subclass of the class that
1074/// it is declared as returning.
1075///
1076/// This is most important when considering subclassing.  A method in a
1077/// subclass must accept any object as an argument that its superclass's
1078/// implementation accepts.  It may, however, accept a more general type
1079/// without breaking substitutability (i.e. you can still use the subclass
1080/// anywhere that you can use the superclass, but not vice versa).  The
1081/// converse requirement applies to return types: the return type for a
1082/// subclass method must be a valid object of the kind that the superclass
1083/// advertises, but it may be specified more accurately.  This avoids the need
1084/// for explicit down-casting by callers.
1085///
1086/// Note: This is a stricter requirement than for assignment.
1087static bool isObjCTypeSubstitutable(ASTContext &Context,
1088                                    const ObjCObjectPointerType *A,
1089                                    const ObjCObjectPointerType *B,
1090                                    bool rejectId) {
1091  // Reject a protocol-unqualified id.
1092  if (rejectId && B->isObjCIdType()) return false;
1093
1094  // If B is a qualified id, then A must also be a qualified id and it must
1095  // implement all of the protocols in B.  It may not be a qualified class.
1096  // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
1097  // stricter definition so it is not substitutable for id<A>.
1098  if (B->isObjCQualifiedIdType()) {
1099    return A->isObjCQualifiedIdType() &&
1100           Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
1101                                                     QualType(B,0),
1102                                                     false);
1103  }
1104
1105  /*
1106  // id is a special type that bypasses type checking completely.  We want a
1107  // warning when it is used in one place but not another.
1108  if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
1109
1110
1111  // If B is a qualified id, then A must also be a qualified id (which it isn't
1112  // if we've got this far)
1113  if (B->isObjCQualifiedIdType()) return false;
1114  */
1115
1116  // Now we know that A and B are (potentially-qualified) class types.  The
1117  // normal rules for assignment apply.
1118  return Context.canAssignObjCInterfaces(A, B);
1119}
1120
1121static SourceRange getTypeRange(TypeSourceInfo *TSI) {
1122  return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
1123}
1124
1125static bool CheckMethodOverrideReturn(Sema &S,
1126                                      ObjCMethodDecl *MethodImpl,
1127                                      ObjCMethodDecl *MethodDecl,
1128                                      bool IsProtocolMethodDecl,
1129                                      bool IsOverridingMode,
1130                                      bool Warn) {
1131  if (IsProtocolMethodDecl &&
1132      (MethodDecl->getObjCDeclQualifier() !=
1133       MethodImpl->getObjCDeclQualifier())) {
1134    if (Warn) {
1135        S.Diag(MethodImpl->getLocation(),
1136               (IsOverridingMode ?
1137                 diag::warn_conflicting_overriding_ret_type_modifiers
1138                 : diag::warn_conflicting_ret_type_modifiers))
1139          << MethodImpl->getDeclName()
1140          << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1141        S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
1142          << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1143    }
1144    else
1145      return false;
1146  }
1147
1148  if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(),
1149                                       MethodDecl->getResultType()))
1150    return true;
1151  if (!Warn)
1152    return false;
1153
1154  unsigned DiagID =
1155    IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
1156                     : diag::warn_conflicting_ret_types;
1157
1158  // Mismatches between ObjC pointers go into a different warning
1159  // category, and sometimes they're even completely whitelisted.
1160  if (const ObjCObjectPointerType *ImplPtrTy =
1161        MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) {
1162    if (const ObjCObjectPointerType *IfacePtrTy =
1163          MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) {
1164      // Allow non-matching return types as long as they don't violate
1165      // the principle of substitutability.  Specifically, we permit
1166      // return types that are subclasses of the declared return type,
1167      // or that are more-qualified versions of the declared type.
1168      if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
1169        return false;
1170
1171      DiagID =
1172        IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
1173                          : diag::warn_non_covariant_ret_types;
1174    }
1175  }
1176
1177  S.Diag(MethodImpl->getLocation(), DiagID)
1178    << MethodImpl->getDeclName()
1179    << MethodDecl->getResultType()
1180    << MethodImpl->getResultType()
1181    << getTypeRange(MethodImpl->getResultTypeSourceInfo());
1182  S.Diag(MethodDecl->getLocation(),
1183         IsOverridingMode ? diag::note_previous_declaration
1184                          : diag::note_previous_definition)
1185    << getTypeRange(MethodDecl->getResultTypeSourceInfo());
1186  return false;
1187}
1188
1189static bool CheckMethodOverrideParam(Sema &S,
1190                                     ObjCMethodDecl *MethodImpl,
1191                                     ObjCMethodDecl *MethodDecl,
1192                                     ParmVarDecl *ImplVar,
1193                                     ParmVarDecl *IfaceVar,
1194                                     bool IsProtocolMethodDecl,
1195                                     bool IsOverridingMode,
1196                                     bool Warn) {
1197  if (IsProtocolMethodDecl &&
1198      (ImplVar->getObjCDeclQualifier() !=
1199       IfaceVar->getObjCDeclQualifier())) {
1200    if (Warn) {
1201      if (IsOverridingMode)
1202        S.Diag(ImplVar->getLocation(),
1203               diag::warn_conflicting_overriding_param_modifiers)
1204            << getTypeRange(ImplVar->getTypeSourceInfo())
1205            << MethodImpl->getDeclName();
1206      else S.Diag(ImplVar->getLocation(),
1207             diag::warn_conflicting_param_modifiers)
1208          << getTypeRange(ImplVar->getTypeSourceInfo())
1209          << MethodImpl->getDeclName();
1210      S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
1211          << getTypeRange(IfaceVar->getTypeSourceInfo());
1212    }
1213    else
1214      return false;
1215  }
1216
1217  QualType ImplTy = ImplVar->getType();
1218  QualType IfaceTy = IfaceVar->getType();
1219
1220  if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
1221    return true;
1222
1223  if (!Warn)
1224    return false;
1225  unsigned DiagID =
1226    IsOverridingMode ? diag::warn_conflicting_overriding_param_types
1227                     : diag::warn_conflicting_param_types;
1228
1229  // Mismatches between ObjC pointers go into a different warning
1230  // category, and sometimes they're even completely whitelisted.
1231  if (const ObjCObjectPointerType *ImplPtrTy =
1232        ImplTy->getAs<ObjCObjectPointerType>()) {
1233    if (const ObjCObjectPointerType *IfacePtrTy =
1234          IfaceTy->getAs<ObjCObjectPointerType>()) {
1235      // Allow non-matching argument types as long as they don't
1236      // violate the principle of substitutability.  Specifically, the
1237      // implementation must accept any objects that the superclass
1238      // accepts, however it may also accept others.
1239      if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
1240        return false;
1241
1242      DiagID =
1243      IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
1244                       :  diag::warn_non_contravariant_param_types;
1245    }
1246  }
1247
1248  S.Diag(ImplVar->getLocation(), DiagID)
1249    << getTypeRange(ImplVar->getTypeSourceInfo())
1250    << MethodImpl->getDeclName() << IfaceTy << ImplTy;
1251  S.Diag(IfaceVar->getLocation(),
1252         (IsOverridingMode ? diag::note_previous_declaration
1253                        : diag::note_previous_definition))
1254    << getTypeRange(IfaceVar->getTypeSourceInfo());
1255  return false;
1256}
1257
1258/// In ARC, check whether the conventional meanings of the two methods
1259/// match.  If they don't, it's a hard error.
1260static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
1261                                      ObjCMethodDecl *decl) {
1262  ObjCMethodFamily implFamily = impl->getMethodFamily();
1263  ObjCMethodFamily declFamily = decl->getMethodFamily();
1264  if (implFamily == declFamily) return false;
1265
1266  // Since conventions are sorted by selector, the only possibility is
1267  // that the types differ enough to cause one selector or the other
1268  // to fall out of the family.
1269  assert(implFamily == OMF_None || declFamily == OMF_None);
1270
1271  // No further diagnostics required on invalid declarations.
1272  if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
1273
1274  const ObjCMethodDecl *unmatched = impl;
1275  ObjCMethodFamily family = declFamily;
1276  unsigned errorID = diag::err_arc_lost_method_convention;
1277  unsigned noteID = diag::note_arc_lost_method_convention;
1278  if (declFamily == OMF_None) {
1279    unmatched = decl;
1280    family = implFamily;
1281    errorID = diag::err_arc_gained_method_convention;
1282    noteID = diag::note_arc_gained_method_convention;
1283  }
1284
1285  // Indexes into a %select clause in the diagnostic.
1286  enum FamilySelector {
1287    F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
1288  };
1289  FamilySelector familySelector = FamilySelector();
1290
1291  switch (family) {
1292  case OMF_None: llvm_unreachable("logic error, no method convention");
1293  case OMF_retain:
1294  case OMF_release:
1295  case OMF_autorelease:
1296  case OMF_dealloc:
1297  case OMF_finalize:
1298  case OMF_retainCount:
1299  case OMF_self:
1300  case OMF_performSelector:
1301    // Mismatches for these methods don't change ownership
1302    // conventions, so we don't care.
1303    return false;
1304
1305  case OMF_init: familySelector = F_init; break;
1306  case OMF_alloc: familySelector = F_alloc; break;
1307  case OMF_copy: familySelector = F_copy; break;
1308  case OMF_mutableCopy: familySelector = F_mutableCopy; break;
1309  case OMF_new: familySelector = F_new; break;
1310  }
1311
1312  enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
1313  ReasonSelector reasonSelector;
1314
1315  // The only reason these methods don't fall within their families is
1316  // due to unusual result types.
1317  if (unmatched->getResultType()->isObjCObjectPointerType()) {
1318    reasonSelector = R_UnrelatedReturn;
1319  } else {
1320    reasonSelector = R_NonObjectReturn;
1321  }
1322
1323  S.Diag(impl->getLocation(), errorID) << familySelector << reasonSelector;
1324  S.Diag(decl->getLocation(), noteID) << familySelector << reasonSelector;
1325
1326  return true;
1327}
1328
1329void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1330                                       ObjCMethodDecl *MethodDecl,
1331                                       bool IsProtocolMethodDecl) {
1332  if (getLangOptions().ObjCAutoRefCount &&
1333      checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
1334    return;
1335
1336  CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1337                            IsProtocolMethodDecl, false,
1338                            true);
1339
1340  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1341       IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end();
1342       IM != EM; ++IM, ++IF) {
1343    CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
1344                             IsProtocolMethodDecl, false, true);
1345  }
1346
1347  if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
1348    Diag(ImpMethodDecl->getLocation(),
1349         diag::warn_conflicting_variadic);
1350    Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
1351  }
1352}
1353
1354void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
1355                                       ObjCMethodDecl *Overridden,
1356                                       bool IsProtocolMethodDecl) {
1357
1358  CheckMethodOverrideReturn(*this, Method, Overridden,
1359                            IsProtocolMethodDecl, true,
1360                            true);
1361
1362  for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
1363       IF = Overridden->param_begin(), EM = Method->param_end();
1364       IM != EM; ++IM, ++IF) {
1365    CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
1366                             IsProtocolMethodDecl, true, true);
1367  }
1368
1369  if (Method->isVariadic() != Overridden->isVariadic()) {
1370    Diag(Method->getLocation(),
1371         diag::warn_conflicting_overriding_variadic);
1372    Diag(Overridden->getLocation(), diag::note_previous_declaration);
1373  }
1374}
1375
1376/// WarnExactTypedMethods - This routine issues a warning if method
1377/// implementation declaration matches exactly that of its declaration.
1378void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1379                                 ObjCMethodDecl *MethodDecl,
1380                                 bool IsProtocolMethodDecl) {
1381  // don't issue warning when protocol method is optional because primary
1382  // class is not required to implement it and it is safe for protocol
1383  // to implement it.
1384  if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
1385    return;
1386  // don't issue warning when primary class's method is
1387  // depecated/unavailable.
1388  if (MethodDecl->hasAttr<UnavailableAttr>() ||
1389      MethodDecl->hasAttr<DeprecatedAttr>())
1390    return;
1391
1392  bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1393                                      IsProtocolMethodDecl, false, false);
1394  if (match)
1395    for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1396         IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end();
1397         IM != EM; ++IM, ++IF) {
1398      match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
1399                                       *IM, *IF,
1400                                       IsProtocolMethodDecl, false, false);
1401      if (!match)
1402        break;
1403    }
1404  if (match)
1405    match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
1406  if (match)
1407    match = !(MethodDecl->isClassMethod() &&
1408              MethodDecl->getSelector() == GetNullarySelector("load", Context));
1409
1410  if (match) {
1411    Diag(ImpMethodDecl->getLocation(),
1412         diag::warn_category_method_impl_match);
1413    Diag(MethodDecl->getLocation(), diag::note_method_declared_at);
1414  }
1415}
1416
1417/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
1418/// improve the efficiency of selector lookups and type checking by associating
1419/// with each protocol / interface / category the flattened instance tables. If
1420/// we used an immutable set to keep the table then it wouldn't add significant
1421/// memory cost and it would be handy for lookups.
1422
1423/// CheckProtocolMethodDefs - This routine checks unimplemented methods
1424/// Declared in protocol, and those referenced by it.
1425void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
1426                                   ObjCProtocolDecl *PDecl,
1427                                   bool& IncompleteImpl,
1428                                   const llvm::DenseSet<Selector> &InsMap,
1429                                   const llvm::DenseSet<Selector> &ClsMap,
1430                                   ObjCContainerDecl *CDecl) {
1431  ObjCInterfaceDecl *IDecl;
1432  if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl))
1433    IDecl = C->getClassInterface();
1434  else
1435    IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl);
1436  assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
1437
1438  ObjCInterfaceDecl *Super = IDecl->getSuperClass();
1439  ObjCInterfaceDecl *NSIDecl = 0;
1440  if (getLangOptions().NeXTRuntime) {
1441    // check to see if class implements forwardInvocation method and objects
1442    // of this class are derived from 'NSProxy' so that to forward requests
1443    // from one object to another.
1444    // Under such conditions, which means that every method possible is
1445    // implemented in the class, we should not issue "Method definition not
1446    // found" warnings.
1447    // FIXME: Use a general GetUnarySelector method for this.
1448    IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
1449    Selector fISelector = Context.Selectors.getSelector(1, &II);
1450    if (InsMap.count(fISelector))
1451      // Is IDecl derived from 'NSProxy'? If so, no instance methods
1452      // need be implemented in the implementation.
1453      NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
1454  }
1455
1456  // If a method lookup fails locally we still need to look and see if
1457  // the method was implemented by a base class or an inherited
1458  // protocol. This lookup is slow, but occurs rarely in correct code
1459  // and otherwise would terminate in a warning.
1460
1461  // check unimplemented instance methods.
1462  if (!NSIDecl)
1463    for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
1464         E = PDecl->instmeth_end(); I != E; ++I) {
1465      ObjCMethodDecl *method = *I;
1466      if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1467          !method->isSynthesized() && !InsMap.count(method->getSelector()) &&
1468          (!Super ||
1469           !Super->lookupInstanceMethod(method->getSelector()))) {
1470            // Ugly, but necessary. Method declared in protcol might have
1471            // have been synthesized due to a property declared in the class which
1472            // uses the protocol.
1473            ObjCMethodDecl *MethodInClass =
1474            IDecl->lookupInstanceMethod(method->getSelector());
1475            if (!MethodInClass || !MethodInClass->isSynthesized()) {
1476              unsigned DIAG = diag::warn_unimplemented_protocol_method;
1477              if (Diags.getDiagnosticLevel(DIAG, ImpLoc)
1478                      != DiagnosticsEngine::Ignored) {
1479                WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1480                Diag(method->getLocation(), diag::note_method_declared_at);
1481                Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
1482                  << PDecl->getDeclName();
1483              }
1484            }
1485          }
1486    }
1487  // check unimplemented class methods
1488  for (ObjCProtocolDecl::classmeth_iterator
1489         I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
1490       I != E; ++I) {
1491    ObjCMethodDecl *method = *I;
1492    if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1493        !ClsMap.count(method->getSelector()) &&
1494        (!Super || !Super->lookupClassMethod(method->getSelector()))) {
1495      unsigned DIAG = diag::warn_unimplemented_protocol_method;
1496      if (Diags.getDiagnosticLevel(DIAG, ImpLoc) !=
1497            DiagnosticsEngine::Ignored) {
1498        WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
1499        Diag(method->getLocation(), diag::note_method_declared_at);
1500        Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
1501          PDecl->getDeclName();
1502      }
1503    }
1504  }
1505  // Check on this protocols's referenced protocols, recursively.
1506  for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
1507       E = PDecl->protocol_end(); PI != E; ++PI)
1508    CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, IDecl);
1509}
1510
1511/// MatchAllMethodDeclarations - Check methods declared in interface
1512/// or protocol against those declared in their implementations.
1513///
1514void Sema::MatchAllMethodDeclarations(const llvm::DenseSet<Selector> &InsMap,
1515                                      const llvm::DenseSet<Selector> &ClsMap,
1516                                      llvm::DenseSet<Selector> &InsMapSeen,
1517                                      llvm::DenseSet<Selector> &ClsMapSeen,
1518                                      ObjCImplDecl* IMPDecl,
1519                                      ObjCContainerDecl* CDecl,
1520                                      bool &IncompleteImpl,
1521                                      bool ImmediateClass,
1522                                      bool WarnExactMatch) {
1523  // Check and see if instance methods in class interface have been
1524  // implemented in the implementation class. If so, their types match.
1525  for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
1526       E = CDecl->instmeth_end(); I != E; ++I) {
1527    if (InsMapSeen.count((*I)->getSelector()))
1528        continue;
1529    InsMapSeen.insert((*I)->getSelector());
1530    if (!(*I)->isSynthesized() &&
1531        !InsMap.count((*I)->getSelector())) {
1532      if (ImmediateClass)
1533        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1534                            diag::note_undef_method_impl);
1535      continue;
1536    } else {
1537      ObjCMethodDecl *ImpMethodDecl =
1538        IMPDecl->getInstanceMethod((*I)->getSelector());
1539      assert(CDecl->getInstanceMethod((*I)->getSelector()) &&
1540             "Expected to find the method through lookup as well");
1541      ObjCMethodDecl *MethodDecl = *I;
1542      // ImpMethodDecl may be null as in a @dynamic property.
1543      if (ImpMethodDecl) {
1544        if (!WarnExactMatch)
1545          WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1546                                      isa<ObjCProtocolDecl>(CDecl));
1547        else if (!MethodDecl->isSynthesized())
1548          WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
1549                               isa<ObjCProtocolDecl>(CDecl));
1550      }
1551    }
1552  }
1553
1554  // Check and see if class methods in class interface have been
1555  // implemented in the implementation class. If so, their types match.
1556   for (ObjCInterfaceDecl::classmeth_iterator
1557       I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
1558     if (ClsMapSeen.count((*I)->getSelector()))
1559       continue;
1560     ClsMapSeen.insert((*I)->getSelector());
1561    if (!ClsMap.count((*I)->getSelector())) {
1562      if (ImmediateClass)
1563        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1564                            diag::note_undef_method_impl);
1565    } else {
1566      ObjCMethodDecl *ImpMethodDecl =
1567        IMPDecl->getClassMethod((*I)->getSelector());
1568      assert(CDecl->getClassMethod((*I)->getSelector()) &&
1569             "Expected to find the method through lookup as well");
1570      ObjCMethodDecl *MethodDecl = *I;
1571      if (!WarnExactMatch)
1572        WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
1573                                    isa<ObjCProtocolDecl>(CDecl));
1574      else
1575        WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
1576                             isa<ObjCProtocolDecl>(CDecl));
1577    }
1578  }
1579
1580  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1581    // Also methods in class extensions need be looked at next.
1582    for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension();
1583         ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension())
1584      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1585                                 IMPDecl,
1586                                 const_cast<ObjCCategoryDecl *>(ClsExtDecl),
1587                                 IncompleteImpl, false, WarnExactMatch);
1588
1589    // Check for any implementation of a methods declared in protocol.
1590    for (ObjCInterfaceDecl::all_protocol_iterator
1591          PI = I->all_referenced_protocol_begin(),
1592          E = I->all_referenced_protocol_end(); PI != E; ++PI)
1593      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1594                                 IMPDecl,
1595                                 (*PI), IncompleteImpl, false, WarnExactMatch);
1596
1597    // FIXME. For now, we are not checking for extact match of methods
1598    // in category implementation and its primary class's super class.
1599    if (!WarnExactMatch && I->getSuperClass())
1600      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1601                                 IMPDecl,
1602                                 I->getSuperClass(), IncompleteImpl, false);
1603  }
1604}
1605
1606/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
1607/// category matches with those implemented in its primary class and
1608/// warns each time an exact match is found.
1609void Sema::CheckCategoryVsClassMethodMatches(
1610                                  ObjCCategoryImplDecl *CatIMPDecl) {
1611  llvm::DenseSet<Selector> InsMap, ClsMap;
1612
1613  for (ObjCImplementationDecl::instmeth_iterator
1614       I = CatIMPDecl->instmeth_begin(),
1615       E = CatIMPDecl->instmeth_end(); I!=E; ++I)
1616    InsMap.insert((*I)->getSelector());
1617
1618  for (ObjCImplementationDecl::classmeth_iterator
1619       I = CatIMPDecl->classmeth_begin(),
1620       E = CatIMPDecl->classmeth_end(); I != E; ++I)
1621    ClsMap.insert((*I)->getSelector());
1622  if (InsMap.empty() && ClsMap.empty())
1623    return;
1624
1625  // Get category's primary class.
1626  ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
1627  if (!CatDecl)
1628    return;
1629  ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
1630  if (!IDecl)
1631    return;
1632  llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen;
1633  bool IncompleteImpl = false;
1634  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1635                             CatIMPDecl, IDecl,
1636                             IncompleteImpl, false, true /*WarnExactMatch*/);
1637}
1638
1639void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
1640                                     ObjCContainerDecl* CDecl,
1641                                     bool IncompleteImpl) {
1642  llvm::DenseSet<Selector> InsMap;
1643  // Check and see if instance methods in class interface have been
1644  // implemented in the implementation class.
1645  for (ObjCImplementationDecl::instmeth_iterator
1646         I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
1647    InsMap.insert((*I)->getSelector());
1648
1649  // Check and see if properties declared in the interface have either 1)
1650  // an implementation or 2) there is a @synthesize/@dynamic implementation
1651  // of the property in the @implementation.
1652  if (isa<ObjCInterfaceDecl>(CDecl) &&
1653        !(LangOpts.ObjCDefaultSynthProperties && LangOpts.ObjCNonFragileABI2))
1654    DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
1655
1656  llvm::DenseSet<Selector> ClsMap;
1657  for (ObjCImplementationDecl::classmeth_iterator
1658       I = IMPDecl->classmeth_begin(),
1659       E = IMPDecl->classmeth_end(); I != E; ++I)
1660    ClsMap.insert((*I)->getSelector());
1661
1662  // Check for type conflict of methods declared in a class/protocol and
1663  // its implementation; if any.
1664  llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen;
1665  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1666                             IMPDecl, CDecl,
1667                             IncompleteImpl, true);
1668
1669  // check all methods implemented in category against those declared
1670  // in its primary class.
1671  if (ObjCCategoryImplDecl *CatDecl =
1672        dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
1673    CheckCategoryVsClassMethodMatches(CatDecl);
1674
1675  // Check the protocol list for unimplemented methods in the @implementation
1676  // class.
1677  // Check and see if class methods in class interface have been
1678  // implemented in the implementation class.
1679
1680  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1681    for (ObjCInterfaceDecl::all_protocol_iterator
1682          PI = I->all_referenced_protocol_begin(),
1683          E = I->all_referenced_protocol_end(); PI != E; ++PI)
1684      CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1685                              InsMap, ClsMap, I);
1686    // Check class extensions (unnamed categories)
1687    for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension();
1688         Categories; Categories = Categories->getNextClassExtension())
1689      ImplMethodsVsClassMethods(S, IMPDecl,
1690                                const_cast<ObjCCategoryDecl*>(Categories),
1691                                IncompleteImpl);
1692  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1693    // For extended class, unimplemented methods in its protocols will
1694    // be reported in the primary class.
1695    if (!C->IsClassExtension()) {
1696      for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
1697           E = C->protocol_end(); PI != E; ++PI)
1698        CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1699                                InsMap, ClsMap, CDecl);
1700      // Report unimplemented properties in the category as well.
1701      // When reporting on missing setter/getters, do not report when
1702      // setter/getter is implemented in category's primary class
1703      // implementation.
1704      if (ObjCInterfaceDecl *ID = C->getClassInterface())
1705        if (ObjCImplDecl *IMP = ID->getImplementation()) {
1706          for (ObjCImplementationDecl::instmeth_iterator
1707               I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I)
1708            InsMap.insert((*I)->getSelector());
1709        }
1710      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
1711    }
1712  } else
1713    llvm_unreachable("invalid ObjCContainerDecl type.");
1714}
1715
1716/// ActOnForwardClassDeclaration -
1717Sema::DeclGroupPtrTy
1718Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
1719                                   IdentifierInfo **IdentList,
1720                                   SourceLocation *IdentLocs,
1721                                   unsigned NumElts) {
1722  SmallVector<Decl *, 8> DeclsInGroup;
1723  for (unsigned i = 0; i != NumElts; ++i) {
1724    // Check for another declaration kind with the same name.
1725    NamedDecl *PrevDecl
1726      = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
1727                         LookupOrdinaryName, ForRedeclaration);
1728    if (PrevDecl && PrevDecl->isTemplateParameter()) {
1729      // Maybe we will complain about the shadowed template parameter.
1730      DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl);
1731      // Just pretend that we didn't see the previous declaration.
1732      PrevDecl = 0;
1733    }
1734
1735    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1736      // GCC apparently allows the following idiom:
1737      //
1738      // typedef NSObject < XCElementTogglerP > XCElementToggler;
1739      // @class XCElementToggler;
1740      //
1741      // FIXME: Make an extension?
1742      TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
1743      if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
1744        Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
1745        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1746      } else {
1747        // a forward class declaration matching a typedef name of a class refers
1748        // to the underlying class.
1749        if (const ObjCObjectType *OI =
1750              TDD->getUnderlyingType()->getAs<ObjCObjectType>())
1751          PrevDecl = OI->getInterface();
1752      }
1753    }
1754    ObjCInterfaceDecl *IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1755    if (!IDecl) {  // Not already seen?  Make a forward decl.
1756      IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
1757                                        IdentList[i], IdentLocs[i], true);
1758
1759      // Push the ObjCInterfaceDecl on the scope chain but do *not* add it to
1760      // the current DeclContext.  This prevents clients that walk DeclContext
1761      // from seeing the imaginary ObjCInterfaceDecl until it is actually
1762      // declared later (if at all).  We also take care to explicitly make
1763      // sure this declaration is visible for name lookup.
1764      PushOnScopeChains(IDecl, TUScope, false);
1765      CurContext->makeDeclVisibleInContext(IDecl, true);
1766    }
1767    ObjCClassDecl *CDecl = ObjCClassDecl::Create(Context, CurContext, AtClassLoc,
1768                                                 IDecl, IdentLocs[i]);
1769    CurContext->addDecl(CDecl);
1770    CheckObjCDeclScope(CDecl);
1771    DeclsInGroup.push_back(CDecl);
1772  }
1773
1774  return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
1775}
1776
1777static bool tryMatchRecordTypes(ASTContext &Context,
1778                                Sema::MethodMatchStrategy strategy,
1779                                const Type *left, const Type *right);
1780
1781static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
1782                       QualType leftQT, QualType rightQT) {
1783  const Type *left =
1784    Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
1785  const Type *right =
1786    Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
1787
1788  if (left == right) return true;
1789
1790  // If we're doing a strict match, the types have to match exactly.
1791  if (strategy == Sema::MMS_strict) return false;
1792
1793  if (left->isIncompleteType() || right->isIncompleteType()) return false;
1794
1795  // Otherwise, use this absurdly complicated algorithm to try to
1796  // validate the basic, low-level compatibility of the two types.
1797
1798  // As a minimum, require the sizes and alignments to match.
1799  if (Context.getTypeInfo(left) != Context.getTypeInfo(right))
1800    return false;
1801
1802  // Consider all the kinds of non-dependent canonical types:
1803  // - functions and arrays aren't possible as return and parameter types
1804
1805  // - vector types of equal size can be arbitrarily mixed
1806  if (isa<VectorType>(left)) return isa<VectorType>(right);
1807  if (isa<VectorType>(right)) return false;
1808
1809  // - references should only match references of identical type
1810  // - structs, unions, and Objective-C objects must match more-or-less
1811  //   exactly
1812  // - everything else should be a scalar
1813  if (!left->isScalarType() || !right->isScalarType())
1814    return tryMatchRecordTypes(Context, strategy, left, right);
1815
1816  // Make scalars agree in kind, except count bools as chars, and group
1817  // all non-member pointers together.
1818  Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
1819  Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
1820  if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
1821  if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
1822  if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
1823    leftSK = Type::STK_ObjCObjectPointer;
1824  if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
1825    rightSK = Type::STK_ObjCObjectPointer;
1826
1827  // Note that data member pointers and function member pointers don't
1828  // intermix because of the size differences.
1829
1830  return (leftSK == rightSK);
1831}
1832
1833static bool tryMatchRecordTypes(ASTContext &Context,
1834                                Sema::MethodMatchStrategy strategy,
1835                                const Type *lt, const Type *rt) {
1836  assert(lt && rt && lt != rt);
1837
1838  if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
1839  RecordDecl *left = cast<RecordType>(lt)->getDecl();
1840  RecordDecl *right = cast<RecordType>(rt)->getDecl();
1841
1842  // Require union-hood to match.
1843  if (left->isUnion() != right->isUnion()) return false;
1844
1845  // Require an exact match if either is non-POD.
1846  if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
1847      (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
1848    return false;
1849
1850  // Require size and alignment to match.
1851  if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false;
1852
1853  // Require fields to match.
1854  RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
1855  RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
1856  for (; li != le && ri != re; ++li, ++ri) {
1857    if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
1858      return false;
1859  }
1860  return (li == le && ri == re);
1861}
1862
1863/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
1864/// returns true, or false, accordingly.
1865/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
1866bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
1867                                      const ObjCMethodDecl *right,
1868                                      MethodMatchStrategy strategy) {
1869  if (!matchTypes(Context, strategy,
1870                  left->getResultType(), right->getResultType()))
1871    return false;
1872
1873  if (getLangOptions().ObjCAutoRefCount &&
1874      (left->hasAttr<NSReturnsRetainedAttr>()
1875         != right->hasAttr<NSReturnsRetainedAttr>() ||
1876       left->hasAttr<NSConsumesSelfAttr>()
1877         != right->hasAttr<NSConsumesSelfAttr>()))
1878    return false;
1879
1880  ObjCMethodDecl::param_const_iterator
1881    li = left->param_begin(), le = left->param_end(), ri = right->param_begin();
1882
1883  for (; li != le; ++li, ++ri) {
1884    assert(ri != right->param_end() && "Param mismatch");
1885    const ParmVarDecl *lparm = *li, *rparm = *ri;
1886
1887    if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
1888      return false;
1889
1890    if (getLangOptions().ObjCAutoRefCount &&
1891        lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
1892      return false;
1893  }
1894  return true;
1895}
1896
1897/// \brief Read the contents of the method pool for a given selector from
1898/// external storage.
1899///
1900/// This routine should only be called once, when the method pool has no entry
1901/// for this selector.
1902Sema::GlobalMethodPool::iterator Sema::ReadMethodPool(Selector Sel) {
1903  assert(ExternalSource && "We need an external AST source");
1904  assert(MethodPool.find(Sel) == MethodPool.end() &&
1905         "Selector data already loaded into the method pool");
1906
1907  // Read the method list from the external source.
1908  GlobalMethods Methods = ExternalSource->ReadMethodPool(Sel);
1909
1910  return MethodPool.insert(std::make_pair(Sel, Methods)).first;
1911}
1912
1913void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
1914                                 bool instance) {
1915  GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
1916  if (Pos == MethodPool.end()) {
1917    if (ExternalSource)
1918      Pos = ReadMethodPool(Method->getSelector());
1919    else
1920      Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
1921                                             GlobalMethods())).first;
1922  }
1923  Method->setDefined(impl);
1924  ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
1925  if (Entry.Method == 0) {
1926    // Haven't seen a method with this selector name yet - add it.
1927    Entry.Method = Method;
1928    Entry.Next = 0;
1929    return;
1930  }
1931
1932  // We've seen a method with this name, see if we have already seen this type
1933  // signature.
1934  for (ObjCMethodList *List = &Entry; List; List = List->Next) {
1935    bool match = MatchTwoMethodDeclarations(Method, List->Method);
1936
1937    if (match) {
1938      ObjCMethodDecl *PrevObjCMethod = List->Method;
1939      PrevObjCMethod->setDefined(impl);
1940      // If a method is deprecated, push it in the global pool.
1941      // This is used for better diagnostics.
1942      if (Method->isDeprecated()) {
1943        if (!PrevObjCMethod->isDeprecated())
1944          List->Method = Method;
1945      }
1946      // If new method is unavailable, push it into global pool
1947      // unless previous one is deprecated.
1948      if (Method->isUnavailable()) {
1949        if (PrevObjCMethod->getAvailability() < AR_Deprecated)
1950          List->Method = Method;
1951      }
1952      return;
1953    }
1954  }
1955
1956  // We have a new signature for an existing method - add it.
1957  // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
1958  ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
1959  Entry.Next = new (Mem) ObjCMethodList(Method, Entry.Next);
1960}
1961
1962/// Determines if this is an "acceptable" loose mismatch in the global
1963/// method pool.  This exists mostly as a hack to get around certain
1964/// global mismatches which we can't afford to make warnings / errors.
1965/// Really, what we want is a way to take a method out of the global
1966/// method pool.
1967static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
1968                                       ObjCMethodDecl *other) {
1969  if (!chosen->isInstanceMethod())
1970    return false;
1971
1972  Selector sel = chosen->getSelector();
1973  if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
1974    return false;
1975
1976  // Don't complain about mismatches for -length if the method we
1977  // chose has an integral result type.
1978  return (chosen->getResultType()->isIntegerType());
1979}
1980
1981ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
1982                                               bool receiverIdOrClass,
1983                                               bool warn, bool instance) {
1984  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
1985  if (Pos == MethodPool.end()) {
1986    if (ExternalSource)
1987      Pos = ReadMethodPool(Sel);
1988    else
1989      return 0;
1990  }
1991
1992  ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
1993
1994  if (warn && MethList.Method && MethList.Next) {
1995    bool issueDiagnostic = false, issueError = false;
1996
1997    // We support a warning which complains about *any* difference in
1998    // method signature.
1999    bool strictSelectorMatch =
2000      (receiverIdOrClass && warn &&
2001       (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl,
2002                                 R.getBegin()) !=
2003      DiagnosticsEngine::Ignored));
2004    if (strictSelectorMatch)
2005      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
2006        if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method,
2007                                        MMS_strict)) {
2008          issueDiagnostic = true;
2009          break;
2010        }
2011      }
2012
2013    // If we didn't see any strict differences, we won't see any loose
2014    // differences.  In ARC, however, we also need to check for loose
2015    // mismatches, because most of them are errors.
2016    if (!strictSelectorMatch ||
2017        (issueDiagnostic && getLangOptions().ObjCAutoRefCount))
2018      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
2019        // This checks if the methods differ in type mismatch.
2020        if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method,
2021                                        MMS_loose) &&
2022            !isAcceptableMethodMismatch(MethList.Method, Next->Method)) {
2023          issueDiagnostic = true;
2024          if (getLangOptions().ObjCAutoRefCount)
2025            issueError = true;
2026          break;
2027        }
2028      }
2029
2030    if (issueDiagnostic) {
2031      if (issueError)
2032        Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
2033      else if (strictSelectorMatch)
2034        Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
2035      else
2036        Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
2037
2038      Diag(MethList.Method->getLocStart(),
2039           issueError ? diag::note_possibility : diag::note_using)
2040        << MethList.Method->getSourceRange();
2041      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next)
2042        Diag(Next->Method->getLocStart(), diag::note_also_found)
2043          << Next->Method->getSourceRange();
2044    }
2045  }
2046  return MethList.Method;
2047}
2048
2049ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
2050  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2051  if (Pos == MethodPool.end())
2052    return 0;
2053
2054  GlobalMethods &Methods = Pos->second;
2055
2056  if (Methods.first.Method && Methods.first.Method->isDefined())
2057    return Methods.first.Method;
2058  if (Methods.second.Method && Methods.second.Method->isDefined())
2059    return Methods.second.Method;
2060  return 0;
2061}
2062
2063/// CompareMethodParamsInBaseAndSuper - This routine compares methods with
2064/// identical selector names in current and its super classes and issues
2065/// a warning if any of their argument types are incompatible.
2066void Sema::CompareMethodParamsInBaseAndSuper(Decl *ClassDecl,
2067                                             ObjCMethodDecl *Method,
2068                                             bool IsInstance)  {
2069  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
2070  if (ID == 0) return;
2071
2072  while (ObjCInterfaceDecl *SD = ID->getSuperClass()) {
2073    ObjCMethodDecl *SuperMethodDecl =
2074        SD->lookupMethod(Method->getSelector(), IsInstance);
2075    if (SuperMethodDecl == 0) {
2076      ID = SD;
2077      continue;
2078    }
2079    ObjCMethodDecl::param_iterator ParamI = Method->param_begin(),
2080      E = Method->param_end();
2081    ObjCMethodDecl::param_iterator PrevI = SuperMethodDecl->param_begin();
2082    for (; ParamI != E; ++ParamI, ++PrevI) {
2083      // Number of parameters are the same and is guaranteed by selector match.
2084      assert(PrevI != SuperMethodDecl->param_end() && "Param mismatch");
2085      QualType T1 = Context.getCanonicalType((*ParamI)->getType());
2086      QualType T2 = Context.getCanonicalType((*PrevI)->getType());
2087      // If type of argument of method in this class does not match its
2088      // respective argument type in the super class method, issue warning;
2089      if (!Context.typesAreCompatible(T1, T2)) {
2090        Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
2091          << T1 << T2;
2092        Diag(SuperMethodDecl->getLocation(), diag::note_previous_declaration);
2093        return;
2094      }
2095    }
2096    ID = SD;
2097  }
2098}
2099
2100/// DiagnoseDuplicateIvars -
2101/// Check for duplicate ivars in the entire class at the start of
2102/// @implementation. This becomes necesssary because class extension can
2103/// add ivars to a class in random order which will not be known until
2104/// class's @implementation is seen.
2105void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
2106                                  ObjCInterfaceDecl *SID) {
2107  for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
2108       IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
2109    ObjCIvarDecl* Ivar = (*IVI);
2110    if (Ivar->isInvalidDecl())
2111      continue;
2112    if (IdentifierInfo *II = Ivar->getIdentifier()) {
2113      ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
2114      if (prevIvar) {
2115        Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
2116        Diag(prevIvar->getLocation(), diag::note_previous_declaration);
2117        Ivar->setInvalidDecl();
2118      }
2119    }
2120  }
2121}
2122
2123// Note: For class/category implemenations, allMethods/allProperties is
2124// always null.
2125void Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd,
2126                      Decl **allMethods, unsigned allNum,
2127                      Decl **allProperties, unsigned pNum,
2128                      DeclGroupPtrTy *allTUVars, unsigned tuvNum) {
2129
2130  if (!CurContext->isObjCContainer())
2131    return;
2132  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
2133  Decl *ClassDecl = cast<Decl>(OCD);
2134
2135  bool isInterfaceDeclKind =
2136        isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
2137         || isa<ObjCProtocolDecl>(ClassDecl);
2138  bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
2139
2140  if (!isInterfaceDeclKind && AtEnd.isInvalid()) {
2141    // FIXME: This is wrong.  We shouldn't be pretending that there is
2142    //  an '@end' in the declaration.
2143    SourceLocation L = ClassDecl->getLocation();
2144    AtEnd.setBegin(L);
2145    AtEnd.setEnd(L);
2146    Diag(L, diag::err_missing_atend);
2147  }
2148
2149  // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
2150  llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
2151  llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
2152
2153  for (unsigned i = 0; i < allNum; i++ ) {
2154    ObjCMethodDecl *Method =
2155      cast_or_null<ObjCMethodDecl>(allMethods[i]);
2156
2157    if (!Method) continue;  // Already issued a diagnostic.
2158    if (Method->isInstanceMethod()) {
2159      /// Check for instance method of the same name with incompatible types
2160      const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
2161      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2162                              : false;
2163      if ((isInterfaceDeclKind && PrevMethod && !match)
2164          || (checkIdenticalMethods && match)) {
2165          Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2166            << Method->getDeclName();
2167          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2168        Method->setInvalidDecl();
2169      } else {
2170        if (PrevMethod)
2171          Method->setAsRedeclaration(PrevMethod);
2172        InsMap[Method->getSelector()] = Method;
2173        /// The following allows us to typecheck messages to "id".
2174        AddInstanceMethodToGlobalPool(Method);
2175        // verify that the instance method conforms to the same definition of
2176        // parent methods if it shadows one.
2177        CompareMethodParamsInBaseAndSuper(ClassDecl, Method, true);
2178      }
2179    } else {
2180      /// Check for class method of the same name with incompatible types
2181      const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
2182      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2183                              : false;
2184      if ((isInterfaceDeclKind && PrevMethod && !match)
2185          || (checkIdenticalMethods && match)) {
2186        Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2187          << Method->getDeclName();
2188        Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2189        Method->setInvalidDecl();
2190      } else {
2191        if (PrevMethod)
2192          Method->setAsRedeclaration(PrevMethod);
2193        ClsMap[Method->getSelector()] = Method;
2194        /// The following allows us to typecheck messages to "Class".
2195        AddFactoryMethodToGlobalPool(Method);
2196        // verify that the class method conforms to the same definition of
2197        // parent methods if it shadows one.
2198        CompareMethodParamsInBaseAndSuper(ClassDecl, Method, false);
2199      }
2200    }
2201  }
2202  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
2203    // Compares properties declared in this class to those of its
2204    // super class.
2205    ComparePropertiesInBaseAndSuper(I);
2206    CompareProperties(I, I);
2207  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
2208    // Categories are used to extend the class by declaring new methods.
2209    // By the same token, they are also used to add new properties. No
2210    // need to compare the added property to those in the class.
2211
2212    // Compare protocol properties with those in category
2213    CompareProperties(C, C);
2214    if (C->IsClassExtension()) {
2215      ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
2216      DiagnoseClassExtensionDupMethods(C, CCPrimary);
2217    }
2218  }
2219  if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
2220    if (CDecl->getIdentifier())
2221      // ProcessPropertyDecl is responsible for diagnosing conflicts with any
2222      // user-defined setter/getter. It also synthesizes setter/getter methods
2223      // and adds them to the DeclContext and global method pools.
2224      for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
2225                                            E = CDecl->prop_end();
2226           I != E; ++I)
2227        ProcessPropertyDecl(*I, CDecl);
2228    CDecl->setAtEndRange(AtEnd);
2229  }
2230  if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
2231    IC->setAtEndRange(AtEnd);
2232    if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
2233      // Any property declared in a class extension might have user
2234      // declared setter or getter in current class extension or one
2235      // of the other class extensions. Mark them as synthesized as
2236      // property will be synthesized when property with same name is
2237      // seen in the @implementation.
2238      for (const ObjCCategoryDecl *ClsExtDecl =
2239           IDecl->getFirstClassExtension();
2240           ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
2241        for (ObjCContainerDecl::prop_iterator I = ClsExtDecl->prop_begin(),
2242             E = ClsExtDecl->prop_end(); I != E; ++I) {
2243          ObjCPropertyDecl *Property = (*I);
2244          // Skip over properties declared @dynamic
2245          if (const ObjCPropertyImplDecl *PIDecl
2246              = IC->FindPropertyImplDecl(Property->getIdentifier()))
2247            if (PIDecl->getPropertyImplementation()
2248                  == ObjCPropertyImplDecl::Dynamic)
2249              continue;
2250
2251          for (const ObjCCategoryDecl *CExtDecl =
2252               IDecl->getFirstClassExtension();
2253               CExtDecl; CExtDecl = CExtDecl->getNextClassExtension()) {
2254            if (ObjCMethodDecl *GetterMethod =
2255                CExtDecl->getInstanceMethod(Property->getGetterName()))
2256              GetterMethod->setSynthesized(true);
2257            if (!Property->isReadOnly())
2258              if (ObjCMethodDecl *SetterMethod =
2259                  CExtDecl->getInstanceMethod(Property->getSetterName()))
2260                SetterMethod->setSynthesized(true);
2261          }
2262        }
2263      }
2264      ImplMethodsVsClassMethods(S, IC, IDecl);
2265      AtomicPropertySetterGetterRules(IC, IDecl);
2266      DiagnoseOwningPropertyGetterSynthesis(IC);
2267
2268      if (LangOpts.ObjCNonFragileABI2)
2269        while (IDecl->getSuperClass()) {
2270          DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
2271          IDecl = IDecl->getSuperClass();
2272        }
2273    }
2274    SetIvarInitializers(IC);
2275  } else if (ObjCCategoryImplDecl* CatImplClass =
2276                                   dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
2277    CatImplClass->setAtEndRange(AtEnd);
2278
2279    // Find category interface decl and then check that all methods declared
2280    // in this interface are implemented in the category @implementation.
2281    if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
2282      for (ObjCCategoryDecl *Categories = IDecl->getCategoryList();
2283           Categories; Categories = Categories->getNextClassCategory()) {
2284        if (Categories->getIdentifier() == CatImplClass->getIdentifier()) {
2285          ImplMethodsVsClassMethods(S, CatImplClass, Categories);
2286          break;
2287        }
2288      }
2289    }
2290  }
2291  if (isInterfaceDeclKind) {
2292    // Reject invalid vardecls.
2293    for (unsigned i = 0; i != tuvNum; i++) {
2294      DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
2295      for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2296        if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
2297          if (!VDecl->hasExternalStorage())
2298            Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
2299        }
2300    }
2301  }
2302  ActOnObjCContainerFinishDefinition();
2303}
2304
2305
2306/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
2307/// objective-c's type qualifier from the parser version of the same info.
2308static Decl::ObjCDeclQualifier
2309CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
2310  return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
2311}
2312
2313static inline
2314bool containsInvalidMethodImplAttribute(const AttrVec &A) {
2315  // The 'ibaction' attribute is allowed on method definitions because of
2316  // how the IBAction macro is used on both method declarations and definitions.
2317  // If the method definitions contains any other attributes, return true.
2318  for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i)
2319    if ((*i)->getKind() != attr::IBAction)
2320      return true;
2321  return false;
2322}
2323
2324namespace  {
2325  /// \brief Describes the compatibility of a result type with its method.
2326  enum ResultTypeCompatibilityKind {
2327    RTC_Compatible,
2328    RTC_Incompatible,
2329    RTC_Unknown
2330  };
2331}
2332
2333/// \brief Check whether the declared result type of the given Objective-C
2334/// method declaration is compatible with the method's class.
2335///
2336static ResultTypeCompatibilityKind
2337CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
2338                                    ObjCInterfaceDecl *CurrentClass) {
2339  QualType ResultType = Method->getResultType();
2340
2341  // If an Objective-C method inherits its related result type, then its
2342  // declared result type must be compatible with its own class type. The
2343  // declared result type is compatible if:
2344  if (const ObjCObjectPointerType *ResultObjectType
2345                                = ResultType->getAs<ObjCObjectPointerType>()) {
2346    //   - it is id or qualified id, or
2347    if (ResultObjectType->isObjCIdType() ||
2348        ResultObjectType->isObjCQualifiedIdType())
2349      return RTC_Compatible;
2350
2351    if (CurrentClass) {
2352      if (ObjCInterfaceDecl *ResultClass
2353                                      = ResultObjectType->getInterfaceDecl()) {
2354        //   - it is the same as the method's class type, or
2355        if (CurrentClass == ResultClass)
2356          return RTC_Compatible;
2357
2358        //   - it is a superclass of the method's class type
2359        if (ResultClass->isSuperClassOf(CurrentClass))
2360          return RTC_Compatible;
2361      }
2362    } else {
2363      // Any Objective-C pointer type might be acceptable for a protocol
2364      // method; we just don't know.
2365      return RTC_Unknown;
2366    }
2367  }
2368
2369  return RTC_Incompatible;
2370}
2371
2372namespace {
2373/// A helper class for searching for methods which a particular method
2374/// overrides.
2375class OverrideSearch {
2376  Sema &S;
2377  ObjCMethodDecl *Method;
2378  llvm::SmallPtrSet<ObjCContainerDecl*, 8> Searched;
2379  llvm::SmallPtrSet<ObjCMethodDecl*, 8> Overridden;
2380  bool Recursive;
2381
2382public:
2383  OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
2384    Selector selector = method->getSelector();
2385
2386    // Bypass this search if we've never seen an instance/class method
2387    // with this selector before.
2388    Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
2389    if (it == S.MethodPool.end()) {
2390      if (!S.ExternalSource) return;
2391      it = S.ReadMethodPool(selector);
2392    }
2393    ObjCMethodList &list =
2394      method->isInstanceMethod() ? it->second.first : it->second.second;
2395    if (!list.Method) return;
2396
2397    ObjCContainerDecl *container
2398      = cast<ObjCContainerDecl>(method->getDeclContext());
2399
2400    // Prevent the search from reaching this container again.  This is
2401    // important with categories, which override methods from the
2402    // interface and each other.
2403    Searched.insert(container);
2404    searchFromContainer(container);
2405  }
2406
2407  typedef llvm::SmallPtrSet<ObjCMethodDecl*,8>::iterator iterator;
2408  iterator begin() const { return Overridden.begin(); }
2409  iterator end() const { return Overridden.end(); }
2410
2411private:
2412  void searchFromContainer(ObjCContainerDecl *container) {
2413    if (container->isInvalidDecl()) return;
2414
2415    switch (container->getDeclKind()) {
2416#define OBJCCONTAINER(type, base) \
2417    case Decl::type: \
2418      searchFrom(cast<type##Decl>(container)); \
2419      break;
2420#define ABSTRACT_DECL(expansion)
2421#define DECL(type, base) \
2422    case Decl::type:
2423#include "clang/AST/DeclNodes.inc"
2424      llvm_unreachable("not an ObjC container!");
2425    }
2426  }
2427
2428  void searchFrom(ObjCProtocolDecl *protocol) {
2429    // A method in a protocol declaration overrides declarations from
2430    // referenced ("parent") protocols.
2431    search(protocol->getReferencedProtocols());
2432  }
2433
2434  void searchFrom(ObjCCategoryDecl *category) {
2435    // A method in a category declaration overrides declarations from
2436    // the main class and from protocols the category references.
2437    search(category->getClassInterface());
2438    search(category->getReferencedProtocols());
2439  }
2440
2441  void searchFrom(ObjCCategoryImplDecl *impl) {
2442    // A method in a category definition that has a category
2443    // declaration overrides declarations from the category
2444    // declaration.
2445    if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
2446      search(category);
2447
2448    // Otherwise it overrides declarations from the class.
2449    } else {
2450      search(impl->getClassInterface());
2451    }
2452  }
2453
2454  void searchFrom(ObjCInterfaceDecl *iface) {
2455    // A method in a class declaration overrides declarations from
2456
2457    //   - categories,
2458    for (ObjCCategoryDecl *category = iface->getCategoryList();
2459           category; category = category->getNextClassCategory())
2460      search(category);
2461
2462    //   - the super class, and
2463    if (ObjCInterfaceDecl *super = iface->getSuperClass())
2464      search(super);
2465
2466    //   - any referenced protocols.
2467    search(iface->getReferencedProtocols());
2468  }
2469
2470  void searchFrom(ObjCImplementationDecl *impl) {
2471    // A method in a class implementation overrides declarations from
2472    // the class interface.
2473    search(impl->getClassInterface());
2474  }
2475
2476
2477  void search(const ObjCProtocolList &protocols) {
2478    for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
2479         i != e; ++i)
2480      search(*i);
2481  }
2482
2483  void search(ObjCContainerDecl *container) {
2484    // Abort if we've already searched this container.
2485    if (!Searched.insert(container)) return;
2486
2487    // Check for a method in this container which matches this selector.
2488    ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
2489                                                Method->isInstanceMethod());
2490
2491    // If we find one, record it and bail out.
2492    if (meth) {
2493      Overridden.insert(meth);
2494      return;
2495    }
2496
2497    // Otherwise, search for methods that a hypothetical method here
2498    // would have overridden.
2499
2500    // Note that we're now in a recursive case.
2501    Recursive = true;
2502
2503    searchFromContainer(container);
2504  }
2505};
2506}
2507
2508Decl *Sema::ActOnMethodDeclaration(
2509    Scope *S,
2510    SourceLocation MethodLoc, SourceLocation EndLoc,
2511    tok::TokenKind MethodType,
2512    ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
2513    ArrayRef<SourceLocation> SelectorLocs,
2514    Selector Sel,
2515    // optional arguments. The number of types/arguments is obtained
2516    // from the Sel.getNumArgs().
2517    ObjCArgInfo *ArgInfo,
2518    DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
2519    AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
2520    bool isVariadic, bool MethodDefinition) {
2521  // Make sure we can establish a context for the method.
2522  if (!CurContext->isObjCContainer()) {
2523    Diag(MethodLoc, diag::error_missing_method_context);
2524    return 0;
2525  }
2526  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
2527  Decl *ClassDecl = cast<Decl>(OCD);
2528  QualType resultDeclType;
2529
2530  bool HasRelatedResultType = false;
2531  TypeSourceInfo *ResultTInfo = 0;
2532  if (ReturnType) {
2533    resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
2534
2535    // Methods cannot return interface types. All ObjC objects are
2536    // passed by reference.
2537    if (resultDeclType->isObjCObjectType()) {
2538      Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value)
2539        << 0 << resultDeclType;
2540      return 0;
2541    }
2542
2543    HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType());
2544  } else { // get the type for "id".
2545    resultDeclType = Context.getObjCIdType();
2546    Diag(MethodLoc, diag::warn_missing_method_return_type)
2547      << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
2548  }
2549
2550  ObjCMethodDecl* ObjCMethod =
2551    ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel,
2552                           resultDeclType,
2553                           ResultTInfo,
2554                           CurContext,
2555                           MethodType == tok::minus, isVariadic,
2556                           /*isSynthesized=*/false,
2557                           /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
2558                           MethodDeclKind == tok::objc_optional
2559                             ? ObjCMethodDecl::Optional
2560                             : ObjCMethodDecl::Required,
2561                           HasRelatedResultType);
2562
2563  SmallVector<ParmVarDecl*, 16> Params;
2564
2565  for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
2566    QualType ArgType;
2567    TypeSourceInfo *DI;
2568
2569    if (ArgInfo[i].Type == 0) {
2570      ArgType = Context.getObjCIdType();
2571      DI = 0;
2572    } else {
2573      ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
2574      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
2575      ArgType = Context.getAdjustedParameterType(ArgType);
2576    }
2577
2578    LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
2579                   LookupOrdinaryName, ForRedeclaration);
2580    LookupName(R, S);
2581    if (R.isSingleResult()) {
2582      NamedDecl *PrevDecl = R.getFoundDecl();
2583      if (S->isDeclScope(PrevDecl)) {
2584        Diag(ArgInfo[i].NameLoc,
2585             (MethodDefinition ? diag::warn_method_param_redefinition
2586                               : diag::warn_method_param_declaration))
2587          << ArgInfo[i].Name;
2588        Diag(PrevDecl->getLocation(),
2589             diag::note_previous_declaration);
2590      }
2591    }
2592
2593    SourceLocation StartLoc = DI
2594      ? DI->getTypeLoc().getBeginLoc()
2595      : ArgInfo[i].NameLoc;
2596
2597    ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
2598                                        ArgInfo[i].NameLoc, ArgInfo[i].Name,
2599                                        ArgType, DI, SC_None, SC_None);
2600
2601    Param->setObjCMethodScopeInfo(i);
2602
2603    Param->setObjCDeclQualifier(
2604      CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
2605
2606    // Apply the attributes to the parameter.
2607    ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
2608
2609    S->AddDecl(Param);
2610    IdResolver.AddDecl(Param);
2611
2612    Params.push_back(Param);
2613  }
2614
2615  for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
2616    ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
2617    QualType ArgType = Param->getType();
2618    if (ArgType.isNull())
2619      ArgType = Context.getObjCIdType();
2620    else
2621      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
2622      ArgType = Context.getAdjustedParameterType(ArgType);
2623    if (ArgType->isObjCObjectType()) {
2624      Diag(Param->getLocation(),
2625           diag::err_object_cannot_be_passed_returned_by_value)
2626      << 1 << ArgType;
2627      Param->setInvalidDecl();
2628    }
2629    Param->setDeclContext(ObjCMethod);
2630
2631    Params.push_back(Param);
2632  }
2633
2634  ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
2635  ObjCMethod->setObjCDeclQualifier(
2636    CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
2637
2638  if (AttrList)
2639    ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
2640
2641  // Add the method now.
2642  const ObjCMethodDecl *PrevMethod = 0;
2643  if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
2644    if (MethodType == tok::minus) {
2645      PrevMethod = ImpDecl->getInstanceMethod(Sel);
2646      ImpDecl->addInstanceMethod(ObjCMethod);
2647    } else {
2648      PrevMethod = ImpDecl->getClassMethod(Sel);
2649      ImpDecl->addClassMethod(ObjCMethod);
2650    }
2651
2652    if (ObjCMethod->hasAttrs() &&
2653        containsInvalidMethodImplAttribute(ObjCMethod->getAttrs()))
2654      Diag(EndLoc, diag::warn_attribute_method_def);
2655  } else {
2656    cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
2657  }
2658
2659  if (PrevMethod) {
2660    // You can never have two method definitions with the same name.
2661    Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
2662      << ObjCMethod->getDeclName();
2663    Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2664  }
2665
2666  // If this Objective-C method does not have a related result type, but we
2667  // are allowed to infer related result types, try to do so based on the
2668  // method family.
2669  ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
2670  if (!CurrentClass) {
2671    if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
2672      CurrentClass = Cat->getClassInterface();
2673    else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
2674      CurrentClass = Impl->getClassInterface();
2675    else if (ObjCCategoryImplDecl *CatImpl
2676                                   = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
2677      CurrentClass = CatImpl->getClassInterface();
2678  }
2679
2680  ResultTypeCompatibilityKind RTC
2681    = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
2682
2683  // Search for overridden methods and merge information down from them.
2684  OverrideSearch overrides(*this, ObjCMethod);
2685  for (OverrideSearch::iterator
2686         i = overrides.begin(), e = overrides.end(); i != e; ++i) {
2687    ObjCMethodDecl *overridden = *i;
2688
2689    // Propagate down the 'related result type' bit from overridden methods.
2690    if (RTC != RTC_Incompatible && overridden->hasRelatedResultType())
2691      ObjCMethod->SetRelatedResultType();
2692
2693    // Then merge the declarations.
2694    mergeObjCMethodDecls(ObjCMethod, overridden);
2695
2696    // Check for overriding methods
2697    if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
2698        isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
2699      CheckConflictingOverridingMethod(ObjCMethod, overridden,
2700              isa<ObjCProtocolDecl>(overridden->getDeclContext()));
2701  }
2702
2703  bool ARCError = false;
2704  if (getLangOptions().ObjCAutoRefCount)
2705    ARCError = CheckARCMethodDecl(*this, ObjCMethod);
2706
2707  // Infer the related result type when possible.
2708  if (!ARCError && RTC == RTC_Compatible &&
2709      !ObjCMethod->hasRelatedResultType() &&
2710      LangOpts.ObjCInferRelatedResultType) {
2711    bool InferRelatedResultType = false;
2712    switch (ObjCMethod->getMethodFamily()) {
2713    case OMF_None:
2714    case OMF_copy:
2715    case OMF_dealloc:
2716    case OMF_finalize:
2717    case OMF_mutableCopy:
2718    case OMF_release:
2719    case OMF_retainCount:
2720    case OMF_performSelector:
2721      break;
2722
2723    case OMF_alloc:
2724    case OMF_new:
2725      InferRelatedResultType = ObjCMethod->isClassMethod();
2726      break;
2727
2728    case OMF_init:
2729    case OMF_autorelease:
2730    case OMF_retain:
2731    case OMF_self:
2732      InferRelatedResultType = ObjCMethod->isInstanceMethod();
2733      break;
2734    }
2735
2736    if (InferRelatedResultType)
2737      ObjCMethod->SetRelatedResultType();
2738  }
2739
2740  return ObjCMethod;
2741}
2742
2743bool Sema::CheckObjCDeclScope(Decl *D) {
2744  if (isa<TranslationUnitDecl>(CurContext->getRedeclContext()))
2745    return false;
2746  // Following is also an error. But it is caused by a missing @end
2747  // and diagnostic is issued elsewhere.
2748  if (isa<ObjCContainerDecl>(CurContext->getRedeclContext())) {
2749    return false;
2750  }
2751
2752  Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
2753  D->setInvalidDecl();
2754
2755  return true;
2756}
2757
2758/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
2759/// instance variables of ClassName into Decls.
2760void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
2761                     IdentifierInfo *ClassName,
2762                     SmallVectorImpl<Decl*> &Decls) {
2763  // Check that ClassName is a valid class
2764  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
2765  if (!Class) {
2766    Diag(DeclStart, diag::err_undef_interface) << ClassName;
2767    return;
2768  }
2769  if (LangOpts.ObjCNonFragileABI) {
2770    Diag(DeclStart, diag::err_atdef_nonfragile_interface);
2771    return;
2772  }
2773
2774  // Collect the instance variables
2775  SmallVector<const ObjCIvarDecl*, 32> Ivars;
2776  Context.DeepCollectObjCIvars(Class, true, Ivars);
2777  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
2778  for (unsigned i = 0; i < Ivars.size(); i++) {
2779    const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
2780    RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
2781    Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
2782                                           /*FIXME: StartL=*/ID->getLocation(),
2783                                           ID->getLocation(),
2784                                           ID->getIdentifier(), ID->getType(),
2785                                           ID->getBitWidth());
2786    Decls.push_back(FD);
2787  }
2788
2789  // Introduce all of these fields into the appropriate scope.
2790  for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
2791       D != Decls.end(); ++D) {
2792    FieldDecl *FD = cast<FieldDecl>(*D);
2793    if (getLangOptions().CPlusPlus)
2794      PushOnScopeChains(cast<FieldDecl>(FD), S);
2795    else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
2796      Record->addDecl(FD);
2797  }
2798}
2799
2800/// \brief Build a type-check a new Objective-C exception variable declaration.
2801VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
2802                                      SourceLocation StartLoc,
2803                                      SourceLocation IdLoc,
2804                                      IdentifierInfo *Id,
2805                                      bool Invalid) {
2806  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
2807  // duration shall not be qualified by an address-space qualifier."
2808  // Since all parameters have automatic store duration, they can not have
2809  // an address space.
2810  if (T.getAddressSpace() != 0) {
2811    Diag(IdLoc, diag::err_arg_with_address_space);
2812    Invalid = true;
2813  }
2814
2815  // An @catch parameter must be an unqualified object pointer type;
2816  // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
2817  if (Invalid) {
2818    // Don't do any further checking.
2819  } else if (T->isDependentType()) {
2820    // Okay: we don't know what this type will instantiate to.
2821  } else if (!T->isObjCObjectPointerType()) {
2822    Invalid = true;
2823    Diag(IdLoc ,diag::err_catch_param_not_objc_type);
2824  } else if (T->isObjCQualifiedIdType()) {
2825    Invalid = true;
2826    Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
2827  }
2828
2829  VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
2830                                 T, TInfo, SC_None, SC_None);
2831  New->setExceptionVariable(true);
2832
2833  if (Invalid)
2834    New->setInvalidDecl();
2835  return New;
2836}
2837
2838Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
2839  const DeclSpec &DS = D.getDeclSpec();
2840
2841  // We allow the "register" storage class on exception variables because
2842  // GCC did, but we drop it completely. Any other storage class is an error.
2843  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2844    Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
2845      << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
2846  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2847    Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
2848      << DS.getStorageClassSpec();
2849  }
2850  if (D.getDeclSpec().isThreadSpecified())
2851    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2852  D.getMutableDeclSpec().ClearStorageClassSpecs();
2853
2854  DiagnoseFunctionSpecifiers(D);
2855
2856  // Check that there are no default arguments inside the type of this
2857  // exception object (C++ only).
2858  if (getLangOptions().CPlusPlus)
2859    CheckExtraCXXDefaultArguments(D);
2860
2861  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2862  QualType ExceptionType = TInfo->getType();
2863
2864  VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
2865                                        D.getSourceRange().getBegin(),
2866                                        D.getIdentifierLoc(),
2867                                        D.getIdentifier(),
2868                                        D.isInvalidType());
2869
2870  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2871  if (D.getCXXScopeSpec().isSet()) {
2872    Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
2873      << D.getCXXScopeSpec().getRange();
2874    New->setInvalidDecl();
2875  }
2876
2877  // Add the parameter declaration into this scope.
2878  S->AddDecl(New);
2879  if (D.getIdentifier())
2880    IdResolver.AddDecl(New);
2881
2882  ProcessDeclAttributes(S, New, D);
2883
2884  if (New->hasAttr<BlocksAttr>())
2885    Diag(New->getLocation(), diag::err_block_on_nonlocal);
2886  return New;
2887}
2888
2889/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
2890/// initialization.
2891void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
2892                                SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
2893  for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
2894       Iv= Iv->getNextIvar()) {
2895    QualType QT = Context.getBaseElementType(Iv->getType());
2896    if (QT->isRecordType())
2897      Ivars.push_back(Iv);
2898  }
2899}
2900
2901void Sema::DiagnoseUseOfUnimplementedSelectors() {
2902  // Load referenced selectors from the external source.
2903  if (ExternalSource) {
2904    SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
2905    ExternalSource->ReadReferencedSelectors(Sels);
2906    for (unsigned I = 0, N = Sels.size(); I != N; ++I)
2907      ReferencedSelectors[Sels[I].first] = Sels[I].second;
2908  }
2909
2910  // Warning will be issued only when selector table is
2911  // generated (which means there is at lease one implementation
2912  // in the TU). This is to match gcc's behavior.
2913  if (ReferencedSelectors.empty() ||
2914      !Context.AnyObjCImplementation())
2915    return;
2916  for (llvm::DenseMap<Selector, SourceLocation>::iterator S =
2917        ReferencedSelectors.begin(),
2918       E = ReferencedSelectors.end(); S != E; ++S) {
2919    Selector Sel = (*S).first;
2920    if (!LookupImplementedMethodInGlobalPool(Sel))
2921      Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
2922  }
2923  return;
2924}
2925