avxintrin.h revision 309124
1/*===---- avxintrin.h - AVX intrinsics -------------------------------------===
2 *
3 * Permission is hereby granted, free of charge, to any person obtaining a copy
4 * of this software and associated documentation files (the "Software"), to deal
5 * in the Software without restriction, including without limitation the rights
6 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7 * copies of the Software, and to permit persons to whom the Software is
8 * furnished to do so, subject to the following conditions:
9 *
10 * The above copyright notice and this permission notice shall be included in
11 * all copies or substantial portions of the Software.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19 * THE SOFTWARE.
20 *
21 *===-----------------------------------------------------------------------===
22 */
23
24#ifndef __IMMINTRIN_H
25#error "Never use <avxintrin.h> directly; include <immintrin.h> instead."
26#endif
27
28#ifndef __AVXINTRIN_H
29#define __AVXINTRIN_H
30
31typedef double __v4df __attribute__ ((__vector_size__ (32)));
32typedef float __v8sf __attribute__ ((__vector_size__ (32)));
33typedef long long __v4di __attribute__ ((__vector_size__ (32)));
34typedef int __v8si __attribute__ ((__vector_size__ (32)));
35typedef short __v16hi __attribute__ ((__vector_size__ (32)));
36typedef char __v32qi __attribute__ ((__vector_size__ (32)));
37
38/* Unsigned types */
39typedef unsigned long long __v4du __attribute__ ((__vector_size__ (32)));
40typedef unsigned int __v8su __attribute__ ((__vector_size__ (32)));
41typedef unsigned short __v16hu __attribute__ ((__vector_size__ (32)));
42typedef unsigned char __v32qu __attribute__ ((__vector_size__ (32)));
43
44/* We need an explicitly signed variant for char. Note that this shouldn't
45 * appear in the interface though. */
46typedef signed char __v32qs __attribute__((__vector_size__(32)));
47
48typedef float __m256 __attribute__ ((__vector_size__ (32)));
49typedef double __m256d __attribute__((__vector_size__(32)));
50typedef long long __m256i __attribute__((__vector_size__(32)));
51
52/* Define the default attributes for the functions in this file. */
53#define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("avx")))
54
55/* Arithmetic */
56/// \brief Adds two 256-bit vectors of [4 x double].
57///
58/// \headerfile <x86intrin.h>
59///
60/// This intrinsic corresponds to the \c VADDPD / ADDPD instruction.
61///
62/// \param __a
63///    A 256-bit vector of [4 x double] containing one of the source operands.
64/// \param __b
65///    A 256-bit vector of [4 x double] containing one of the source operands.
66/// \returns A 256-bit vector of [4 x double] containing the sums of both
67///    operands.
68static __inline __m256d __DEFAULT_FN_ATTRS
69_mm256_add_pd(__m256d __a, __m256d __b)
70{
71  return (__m256d)((__v4df)__a+(__v4df)__b);
72}
73
74/// \brief Adds two 256-bit vectors of [8 x float].
75///
76/// \headerfile <x86intrin.h>
77///
78/// This intrinsic corresponds to the \c VADDPS / ADDPS instruction.
79///
80/// \param __a
81///    A 256-bit vector of [8 x float] containing one of the source operands.
82/// \param __b
83///    A 256-bit vector of [8 x float] containing one of the source operands.
84/// \returns A 256-bit vector of [8 x float] containing the sums of both
85///    operands.
86static __inline __m256 __DEFAULT_FN_ATTRS
87_mm256_add_ps(__m256 __a, __m256 __b)
88{
89  return (__m256)((__v8sf)__a+(__v8sf)__b);
90}
91
92/// \brief Subtracts two 256-bit vectors of [4 x double].
93///
94/// \headerfile <x86intrin.h>
95///
96/// This intrinsic corresponds to the \c VSUBPD / SUBPD instruction.
97///
98/// \param __a
99///    A 256-bit vector of [4 x double] containing the minuend.
100/// \param __b
101///    A 256-bit vector of [4 x double] containing the subtrahend.
102/// \returns A 256-bit vector of [4 x double] containing the differences between
103///    both operands.
104static __inline __m256d __DEFAULT_FN_ATTRS
105_mm256_sub_pd(__m256d __a, __m256d __b)
106{
107  return (__m256d)((__v4df)__a-(__v4df)__b);
108}
109
110/// \brief Subtracts two 256-bit vectors of [8 x float].
111///
112/// \headerfile <x86intrin.h>
113///
114/// This intrinsic corresponds to the \c VSUBPS / SUBPS instruction.
115///
116/// \param __a
117///    A 256-bit vector of [8 x float] containing the minuend.
118/// \param __b
119///    A 256-bit vector of [8 x float] containing the subtrahend.
120/// \returns A 256-bit vector of [8 x float] containing the differences between
121///    both operands.
122static __inline __m256 __DEFAULT_FN_ATTRS
123_mm256_sub_ps(__m256 __a, __m256 __b)
124{
125  return (__m256)((__v8sf)__a-(__v8sf)__b);
126}
127
128/// \brief Adds the even-indexed values and subtracts the odd-indexed values of
129///    two 256-bit vectors of [4 x double].
130///
131/// \headerfile <x86intrin.h>
132///
133/// This intrinsic corresponds to the \c VADDSUBPD / ADDSUBPD instruction.
134///
135/// \param __a
136///    A 256-bit vector of [4 x double] containing the left source operand.
137/// \param __b
138///    A 256-bit vector of [4 x double] containing the right source operand.
139/// \returns A 256-bit vector of [4 x double] containing the alternating sums
140///    and differences between both operands.
141static __inline __m256d __DEFAULT_FN_ATTRS
142_mm256_addsub_pd(__m256d __a, __m256d __b)
143{
144  return (__m256d)__builtin_ia32_addsubpd256((__v4df)__a, (__v4df)__b);
145}
146
147/// \brief Adds the even-indexed values and subtracts the odd-indexed values of
148///    two 256-bit vectors of [8 x float].
149///
150/// \headerfile <x86intrin.h>
151///
152/// This intrinsic corresponds to the \c VADDSUBPS / ADDSUBPS instruction.
153///
154/// \param __a
155///    A 256-bit vector of [8 x float] containing the left source operand.
156/// \param __b
157///    A 256-bit vector of [8 x float] containing the right source operand.
158/// \returns A 256-bit vector of [8 x float] containing the alternating sums and
159///    differences between both operands.
160static __inline __m256 __DEFAULT_FN_ATTRS
161_mm256_addsub_ps(__m256 __a, __m256 __b)
162{
163  return (__m256)__builtin_ia32_addsubps256((__v8sf)__a, (__v8sf)__b);
164}
165
166/// \brief Divides two 256-bit vectors of [4 x double].
167///
168/// \headerfile <x86intrin.h>
169///
170/// This intrinsic corresponds to the \c VDIVPD / DIVPD instruction.
171///
172/// \param __a
173///    A 256-bit vector of [4 x double] containing the dividend.
174/// \param __b
175///    A 256-bit vector of [4 x double] containing the divisor.
176/// \returns A 256-bit vector of [4 x double] containing the quotients of both
177///    operands.
178static __inline __m256d __DEFAULT_FN_ATTRS
179_mm256_div_pd(__m256d __a, __m256d __b)
180{
181  return (__m256d)((__v4df)__a/(__v4df)__b);
182}
183
184/// \brief Divides two 256-bit vectors of [8 x float].
185///
186/// \headerfile <x86intrin.h>
187///
188/// This intrinsic corresponds to the \c VDIVPS / DIVPS instruction.
189///
190/// \param __a
191///    A 256-bit vector of [8 x float] containing the dividend.
192/// \param __b
193///    A 256-bit vector of [8 x float] containing the divisor.
194/// \returns A 256-bit vector of [8 x float] containing the quotients of both
195///    operands.
196static __inline __m256 __DEFAULT_FN_ATTRS
197_mm256_div_ps(__m256 __a, __m256 __b)
198{
199  return (__m256)((__v8sf)__a/(__v8sf)__b);
200}
201
202/// \brief Compares two 256-bit vectors of [4 x double] and returns the greater
203///    of each pair of values.
204///
205/// \headerfile <x86intrin.h>
206///
207/// This intrinsic corresponds to the \c VMAXPD / MAXPD instruction.
208///
209/// \param __a
210///    A 256-bit vector of [4 x double] containing one of the operands.
211/// \param __b
212///    A 256-bit vector of [4 x double] containing one of the operands.
213/// \returns A 256-bit vector of [4 x double] containing the maximum values
214///    between both operands.
215static __inline __m256d __DEFAULT_FN_ATTRS
216_mm256_max_pd(__m256d __a, __m256d __b)
217{
218  return (__m256d)__builtin_ia32_maxpd256((__v4df)__a, (__v4df)__b);
219}
220
221/// \brief Compares two 256-bit vectors of [8 x float] and returns the greater
222///    of each pair of values.
223///
224/// \headerfile <x86intrin.h>
225///
226/// This intrinsic corresponds to the \c VMAXPS / MAXPS instruction.
227///
228/// \param __a
229///    A 256-bit vector of [8 x float] containing one of the operands.
230/// \param __b
231///    A 256-bit vector of [8 x float] containing one of the operands.
232/// \returns A 256-bit vector of [8 x float] containing the maximum values
233///    between both operands.
234static __inline __m256 __DEFAULT_FN_ATTRS
235_mm256_max_ps(__m256 __a, __m256 __b)
236{
237  return (__m256)__builtin_ia32_maxps256((__v8sf)__a, (__v8sf)__b);
238}
239
240/// \brief Compares two 256-bit vectors of [4 x double] and returns the lesser
241///    of each pair of values.
242///
243/// \headerfile <x86intrin.h>
244///
245/// This intrinsic corresponds to the \c VMINPD / MINPD instruction.
246///
247/// \param __a
248///    A 256-bit vector of [4 x double] containing one of the operands.
249/// \param __b
250///    A 256-bit vector of [4 x double] containing one of the operands.
251/// \returns A 256-bit vector of [4 x double] containing the minimum values
252///    between both operands.
253static __inline __m256d __DEFAULT_FN_ATTRS
254_mm256_min_pd(__m256d __a, __m256d __b)
255{
256  return (__m256d)__builtin_ia32_minpd256((__v4df)__a, (__v4df)__b);
257}
258
259/// \brief Compares two 256-bit vectors of [8 x float] and returns the lesser
260///    of each pair of values.
261///
262/// \headerfile <x86intrin.h>
263///
264/// This intrinsic corresponds to the \c VMINPS / MINPS instruction.
265///
266/// \param __a
267///    A 256-bit vector of [8 x float] containing one of the operands.
268/// \param __b
269///    A 256-bit vector of [8 x float] containing one of the operands.
270/// \returns A 256-bit vector of [8 x float] containing the minimum values
271///    between both operands.
272static __inline __m256 __DEFAULT_FN_ATTRS
273_mm256_min_ps(__m256 __a, __m256 __b)
274{
275  return (__m256)__builtin_ia32_minps256((__v8sf)__a, (__v8sf)__b);
276}
277
278/// \brief Multiplies two 256-bit vectors of [4 x double].
279///
280/// \headerfile <x86intrin.h>
281///
282/// This intrinsic corresponds to the \c VMULPD / MULPD instruction.
283///
284/// \param __a
285///    A 256-bit vector of [4 x double] containing one of the operands.
286/// \param __b
287///    A 256-bit vector of [4 x double] containing one of the operands.
288/// \returns A 256-bit vector of [4 x double] containing the products of both
289///    operands.
290static __inline __m256d __DEFAULT_FN_ATTRS
291_mm256_mul_pd(__m256d __a, __m256d __b)
292{
293  return (__m256d)((__v4df)__a * (__v4df)__b);
294}
295
296/// \brief Multiplies two 256-bit vectors of [8 x float].
297///
298/// \headerfile <x86intrin.h>
299///
300/// This intrinsic corresponds to the \c VMULPS / MULPS instruction.
301///
302/// \param __a
303///    A 256-bit vector of [8 x float] containing one of the operands.
304/// \param __b
305///    A 256-bit vector of [8 x float] containing one of the operands.
306/// \returns A 256-bit vector of [8 x float] containing the products of both
307///    operands.
308static __inline __m256 __DEFAULT_FN_ATTRS
309_mm256_mul_ps(__m256 __a, __m256 __b)
310{
311  return (__m256)((__v8sf)__a * (__v8sf)__b);
312}
313
314/// \brief Calculates the square roots of the values in a 256-bit vector of
315///    [4 x double].
316///
317/// \headerfile <x86intrin.h>
318///
319/// This intrinsic corresponds to the \c VSQRTPD / SQRTPD instruction.
320///
321/// \param __a
322///    A 256-bit vector of [4 x double].
323/// \returns A 256-bit vector of [4 x double] containing the square roots of the
324///    values in the operand.
325static __inline __m256d __DEFAULT_FN_ATTRS
326_mm256_sqrt_pd(__m256d __a)
327{
328  return (__m256d)__builtin_ia32_sqrtpd256((__v4df)__a);
329}
330
331/// \brief Calculates the square roots of the values in a 256-bit vector of
332///    [8 x float].
333///
334/// \headerfile <x86intrin.h>
335///
336/// This intrinsic corresponds to the \c VSQRTPS / SQRTPS instruction.
337///
338/// \param __a
339///    A 256-bit vector of [8 x float].
340/// \returns A 256-bit vector of [8 x float] containing the square roots of the
341///    values in the operand.
342static __inline __m256 __DEFAULT_FN_ATTRS
343_mm256_sqrt_ps(__m256 __a)
344{
345  return (__m256)__builtin_ia32_sqrtps256((__v8sf)__a);
346}
347
348/// \brief Calculates the reciprocal square roots of the values in a 256-bit
349///    vector of [8 x float].
350///
351/// \headerfile <x86intrin.h>
352///
353/// This intrinsic corresponds to the \c VRSQRTPS / RSQRTPS instruction.
354///
355/// \param __a
356///    A 256-bit vector of [8 x float].
357/// \returns A 256-bit vector of [8 x float] containing the reciprocal square
358///    roots of the values in the operand.
359static __inline __m256 __DEFAULT_FN_ATTRS
360_mm256_rsqrt_ps(__m256 __a)
361{
362  return (__m256)__builtin_ia32_rsqrtps256((__v8sf)__a);
363}
364
365/// \brief Calculates the reciprocals of the values in a 256-bit vector of
366///    [8 x float].
367///
368/// \headerfile <x86intrin.h>
369///
370/// This intrinsic corresponds to the \c VRCPPS / RCPPS instruction.
371///
372/// \param __a
373///    A 256-bit vector of [8 x float].
374/// \returns A 256-bit vector of [8 x float] containing the reciprocals of the
375///    values in the operand.
376static __inline __m256 __DEFAULT_FN_ATTRS
377_mm256_rcp_ps(__m256 __a)
378{
379  return (__m256)__builtin_ia32_rcpps256((__v8sf)__a);
380}
381
382/// \brief Rounds the values in a 256-bit vector of [4 x double] as specified
383///    by the byte operand. The source values are rounded to integer values and
384///    returned as 64-bit double-precision floating-point values.
385///
386/// \headerfile <x86intrin.h>
387///
388/// \code
389/// __m256d _mm256_round_pd(__m256d V, const int M);
390/// \endcode
391///
392/// This intrinsic corresponds to the \c VROUNDPD / ROUNDPD instruction.
393///
394/// \param V
395///    A 256-bit vector of [4 x double].
396/// \param M
397///    An integer value that specifies the rounding operation.
398///    Bits [7:4] are reserved.
399///    Bit [3] is a precision exception value:
400///    0: A normal PE exception is used.
401///    1: The PE field is not updated.
402///    Bit [2] is the rounding control source:
403///    0: Use bits [1:0] of M.
404///    1: Use the current MXCSR setting.
405///    Bits [1:0] contain the rounding control definition:
406///    00: Nearest.
407///    01: Downward (toward negative infinity).
408///    10: Upward (toward positive infinity).
409///    11: Truncated.
410/// \returns A 256-bit vector of [4 x double] containing the rounded values.
411#define _mm256_round_pd(V, M) __extension__ ({ \
412    (__m256d)__builtin_ia32_roundpd256((__v4df)(__m256d)(V), (M)); })
413
414/// \brief Rounds the values stored in a 256-bit vector of [8 x float] as
415///    specified by the byte operand. The source values are rounded to integer
416///    values and returned as floating-point values.
417///
418/// \headerfile <x86intrin.h>
419///
420/// \code
421/// __m256 _mm256_round_ps(__m256 V, const int M);
422/// \endcode
423///
424/// This intrinsic corresponds to the \c VROUNDPS / ROUNDPS instruction.
425///
426/// \param V
427///    A 256-bit vector of [8 x float].
428/// \param M
429///    An integer value that specifies the rounding operation.
430///    Bits [7:4] are reserved.
431///    Bit [3] is a precision exception value:
432///    0: A normal PE exception is used.
433///    1: The PE field is not updated.
434///    Bit [2] is the rounding control source:
435///    0: Use bits [1:0] of M.
436///    1: Use the current MXCSR setting.
437///    Bits [1:0] contain the rounding control definition:
438///    00: Nearest.
439///    01: Downward (toward negative infinity).
440///    10: Upward (toward positive infinity).
441///    11: Truncated.
442/// \returns A 256-bit vector of [8 x float] containing the rounded values.
443#define _mm256_round_ps(V, M) __extension__ ({ \
444  (__m256)__builtin_ia32_roundps256((__v8sf)(__m256)(V), (M)); })
445
446/// \brief Rounds up the values stored in a 256-bit vector of [4 x double]. The
447///    source values are rounded up to integer values and returned as 64-bit
448///    double-precision floating-point values.
449///
450/// \headerfile <x86intrin.h>
451///
452/// \code
453/// __m256d _mm256_ceil_pd(__m256d V);
454/// \endcode
455///
456/// This intrinsic corresponds to the \c VROUNDPD / ROUNDPD instruction.
457///
458/// \param V
459///    A 256-bit vector of [4 x double].
460/// \returns A 256-bit vector of [4 x double] containing the rounded up values.
461#define _mm256_ceil_pd(V)  _mm256_round_pd((V), _MM_FROUND_CEIL)
462
463/// \brief Rounds down the values stored in a 256-bit vector of [4 x double].
464///    The source values are rounded down to integer values and returned as
465///    64-bit double-precision floating-point values.
466///
467/// \headerfile <x86intrin.h>
468///
469/// \code
470/// __m256d _mm256_floor_pd(__m256d V);
471/// \endcode
472///
473/// This intrinsic corresponds to the \c VROUNDPD / ROUNDPD instruction.
474///
475/// \param V
476///    A 256-bit vector of [4 x double].
477/// \returns A 256-bit vector of [4 x double] containing the rounded down
478///    values.
479#define _mm256_floor_pd(V) _mm256_round_pd((V), _MM_FROUND_FLOOR)
480
481/// \brief Rounds up the values stored in a 256-bit vector of [8 x float]. The
482///    source values are rounded up to integer values and returned as
483///    floating-point values.
484///
485/// \headerfile <x86intrin.h>
486///
487/// \code
488/// __m256 _mm256_ceil_ps(__m256 V);
489/// \endcode
490///
491/// This intrinsic corresponds to the \c VROUNDPS / ROUNDPS instruction.
492///
493/// \param V
494///    A 256-bit vector of [8 x float].
495/// \returns A 256-bit vector of [8 x float] containing the rounded up values.
496#define _mm256_ceil_ps(V)  _mm256_round_ps((V), _MM_FROUND_CEIL)
497
498/// \brief Rounds down the values stored in a 256-bit vector of [8 x float]. The
499///    source values are rounded down to integer values and returned as
500///    floating-point values.
501///
502/// \headerfile <x86intrin.h>
503///
504/// \code
505/// __m256 _mm256_floor_ps(__m256 V);
506/// \endcode
507///
508/// This intrinsic corresponds to the \c VROUNDPS / ROUNDPS instruction.
509///
510/// \param V
511///    A 256-bit vector of [8 x float].
512/// \returns A 256-bit vector of [8 x float] containing the rounded down values.
513#define _mm256_floor_ps(V) _mm256_round_ps((V), _MM_FROUND_FLOOR)
514
515/* Logical */
516/// \brief Performs a bitwise AND of two 256-bit vectors of [4 x double].
517///
518/// \headerfile <x86intrin.h>
519///
520/// This intrinsic corresponds to the \c VANDPD / ANDPD instruction.
521///
522/// \param __a
523///    A 256-bit vector of [4 x double] containing one of the source operands.
524/// \param __b
525///    A 256-bit vector of [4 x double] containing one of the source operands.
526/// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
527///    values between both operands.
528static __inline __m256d __DEFAULT_FN_ATTRS
529_mm256_and_pd(__m256d __a, __m256d __b)
530{
531  return (__m256d)((__v4du)__a & (__v4du)__b);
532}
533
534/// \brief Performs a bitwise AND of two 256-bit vectors of [8 x float].
535///
536/// \headerfile <x86intrin.h>
537///
538/// This intrinsic corresponds to the \c VANDPS / ANDPS instruction.
539///
540/// \param __a
541///    A 256-bit vector of [8 x float] containing one of the source operands.
542/// \param __b
543///    A 256-bit vector of [8 x float] containing one of the source operands.
544/// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
545///    values between both operands.
546static __inline __m256 __DEFAULT_FN_ATTRS
547_mm256_and_ps(__m256 __a, __m256 __b)
548{
549  return (__m256)((__v8su)__a & (__v8su)__b);
550}
551
552/// \brief Performs a bitwise AND of two 256-bit vectors of [4 x double], using
553///    the one's complement of the values contained in the first source operand.
554///
555/// \headerfile <x86intrin.h>
556///
557/// This intrinsic corresponds to the \c VANDNPD / ANDNPD instruction.
558///
559/// \param __a
560///    A 256-bit vector of [4 x double] containing the left source operand. The
561///    one's complement of this value is used in the bitwise AND.
562/// \param __b
563///    A 256-bit vector of [4 x double] containing the right source operand.
564/// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
565///    values of the second operand and the one's complement of the first
566///    operand.
567static __inline __m256d __DEFAULT_FN_ATTRS
568_mm256_andnot_pd(__m256d __a, __m256d __b)
569{
570  return (__m256d)(~(__v4du)__a & (__v4du)__b);
571}
572
573/// \brief Performs a bitwise AND of two 256-bit vectors of [8 x float], using
574///    the one's complement of the values contained in the first source operand.
575///
576/// \headerfile <x86intrin.h>
577///
578/// This intrinsic corresponds to the \c VANDNPS / ANDNPS instruction.
579///
580/// \param __a
581///    A 256-bit vector of [8 x float] containing the left source operand. The
582///    one's complement of this value is used in the bitwise AND.
583/// \param __b
584///    A 256-bit vector of [8 x float] containing the right source operand.
585/// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
586///    values of the second operand and the one's complement of the first
587///    operand.
588static __inline __m256 __DEFAULT_FN_ATTRS
589_mm256_andnot_ps(__m256 __a, __m256 __b)
590{
591  return (__m256)(~(__v8su)__a & (__v8su)__b);
592}
593
594/// \brief Performs a bitwise OR of two 256-bit vectors of [4 x double].
595///
596/// \headerfile <x86intrin.h>
597///
598/// This intrinsic corresponds to the \c VORPD / ORPD instruction.
599///
600/// \param __a
601///    A 256-bit vector of [4 x double] containing one of the source operands.
602/// \param __b
603///    A 256-bit vector of [4 x double] containing one of the source operands.
604/// \returns A 256-bit vector of [4 x double] containing the bitwise OR of the
605///    values between both operands.
606static __inline __m256d __DEFAULT_FN_ATTRS
607_mm256_or_pd(__m256d __a, __m256d __b)
608{
609  return (__m256d)((__v4du)__a | (__v4du)__b);
610}
611
612/// \brief Performs a bitwise OR of two 256-bit vectors of [8 x float].
613///
614/// \headerfile <x86intrin.h>
615///
616/// This intrinsic corresponds to the \c VORPS / ORPS instruction.
617///
618/// \param __a
619///    A 256-bit vector of [8 x float] containing one of the source operands.
620/// \param __b
621///    A 256-bit vector of [8 x float] containing one of the source operands.
622/// \returns A 256-bit vector of [8 x float] containing the bitwise OR of the
623///    values between both operands.
624static __inline __m256 __DEFAULT_FN_ATTRS
625_mm256_or_ps(__m256 __a, __m256 __b)
626{
627  return (__m256)((__v8su)__a | (__v8su)__b);
628}
629
630/// \brief Performs a bitwise XOR of two 256-bit vectors of [4 x double].
631///
632/// \headerfile <x86intrin.h>
633///
634/// This intrinsic corresponds to the \c VXORPD / XORPD instruction.
635///
636/// \param __a
637///    A 256-bit vector of [4 x double] containing one of the source operands.
638/// \param __b
639///    A 256-bit vector of [4 x double] containing one of the source operands.
640/// \returns A 256-bit vector of [4 x double] containing the bitwise XOR of the
641///    values between both operands.
642static __inline __m256d __DEFAULT_FN_ATTRS
643_mm256_xor_pd(__m256d __a, __m256d __b)
644{
645  return (__m256d)((__v4du)__a ^ (__v4du)__b);
646}
647
648/// \brief Performs a bitwise XOR of two 256-bit vectors of [8 x float].
649///
650/// \headerfile <x86intrin.h>
651///
652/// This intrinsic corresponds to the \c VXORPS / XORPS instruction.
653///
654/// \param __a
655///    A 256-bit vector of [8 x float] containing one of the source operands.
656/// \param __b
657///    A 256-bit vector of [8 x float] containing one of the source operands.
658/// \returns A 256-bit vector of [8 x float] containing the bitwise XOR of the
659///    values between both operands.
660static __inline __m256 __DEFAULT_FN_ATTRS
661_mm256_xor_ps(__m256 __a, __m256 __b)
662{
663  return (__m256)((__v8su)__a ^ (__v8su)__b);
664}
665
666/* Horizontal arithmetic */
667/// \brief Horizontally adds the adjacent pairs of values contained in two
668///    256-bit vectors of [4 x double].
669///
670/// \headerfile <x86intrin.h>
671///
672/// This intrinsic corresponds to the \c VHADDPD / HADDPD instruction.
673///
674/// \param __a
675///    A 256-bit vector of [4 x double] containing one of the source operands.
676///    The horizontal sums of the values are returned in the even-indexed
677///    elements of a vector of [4 x double].
678/// \param __b
679///    A 256-bit vector of [4 x double] containing one of the source operands.
680///    The horizontal sums of the values are returned in the odd-indexed
681///    elements of a vector of [4 x double].
682/// \returns A 256-bit vector of [4 x double] containing the horizontal sums of
683///    both operands.
684static __inline __m256d __DEFAULT_FN_ATTRS
685_mm256_hadd_pd(__m256d __a, __m256d __b)
686{
687  return (__m256d)__builtin_ia32_haddpd256((__v4df)__a, (__v4df)__b);
688}
689
690/// \brief Horizontally adds the adjacent pairs of values contained in two
691///    256-bit vectors of [8 x float].
692///
693/// \headerfile <x86intrin.h>
694///
695/// This intrinsic corresponds to the \c VHADDPS / HADDPS instruction.
696///
697/// \param __a
698///    A 256-bit vector of [8 x float] containing one of the source operands.
699///    The horizontal sums of the values are returned in the elements with
700///    index 0, 1, 4, 5 of a vector of [8 x float].
701/// \param __b
702///    A 256-bit vector of [8 x float] containing one of the source operands.
703///    The horizontal sums of the values are returned in the elements with
704///    index 2, 3, 6, 7 of a vector of [8 x float].
705/// \returns A 256-bit vector of [8 x float] containing the horizontal sums of
706///    both operands.
707static __inline __m256 __DEFAULT_FN_ATTRS
708_mm256_hadd_ps(__m256 __a, __m256 __b)
709{
710  return (__m256)__builtin_ia32_haddps256((__v8sf)__a, (__v8sf)__b);
711}
712
713/// \brief Horizontally subtracts the adjacent pairs of values contained in two
714///    256-bit vectors of [4 x double].
715///
716/// \headerfile <x86intrin.h>
717///
718/// This intrinsic corresponds to the \c VHSUBPD / HSUBPD instruction.
719///
720/// \param __a
721///    A 256-bit vector of [4 x double] containing one of the source operands.
722///    The horizontal differences between the values are returned in the
723///    even-indexed elements of a vector of [4 x double].
724/// \param __b
725///    A 256-bit vector of [4 x double] containing one of the source operands.
726///    The horizontal differences between the values are returned in the
727///    odd-indexed elements of a vector of [4 x double].
728/// \returns A 256-bit vector of [4 x double] containing the horizontal
729///    differences of both operands.
730static __inline __m256d __DEFAULT_FN_ATTRS
731_mm256_hsub_pd(__m256d __a, __m256d __b)
732{
733  return (__m256d)__builtin_ia32_hsubpd256((__v4df)__a, (__v4df)__b);
734}
735
736/// \brief Horizontally subtracts the adjacent pairs of values contained in two
737///    256-bit vectors of [8 x float].
738///
739/// \headerfile <x86intrin.h>
740///
741/// This intrinsic corresponds to the \c VHSUBPS / HSUBPS instruction.
742///
743/// \param __a
744///    A 256-bit vector of [8 x float] containing one of the source operands.
745///    The horizontal differences between the values are returned in the
746///    elements with index 0, 1, 4, 5 of a vector of [8 x float].
747/// \param __b
748///    A 256-bit vector of [8 x float] containing one of the source operands.
749///    The horizontal differences between the values are returned in the
750///    elements with index 2, 3, 6, 7 of a vector of [8 x float].
751/// \returns A 256-bit vector of [8 x float] containing the horizontal
752///    differences of both operands.
753static __inline __m256 __DEFAULT_FN_ATTRS
754_mm256_hsub_ps(__m256 __a, __m256 __b)
755{
756  return (__m256)__builtin_ia32_hsubps256((__v8sf)__a, (__v8sf)__b);
757}
758
759/* Vector permutations */
760/// \brief Copies the values in a 128-bit vector of [2 x double] as specified
761///    by the 128-bit integer vector operand.
762///
763/// \headerfile <x86intrin.h>
764///
765/// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
766///
767/// \param __a
768///    A 128-bit vector of [2 x double].
769/// \param __c
770///    A 128-bit integer vector operand specifying how the values are to be
771///    copied.
772///    Bit [1]:
773///    0: Bits [63:0] of the source are copied to bits [63:0] of the
774///    returned vector.
775///    1: Bits [127:64] of the source are copied to bits [63:0] of the
776///    returned vector.
777///    Bit [65]:
778///    0: Bits [63:0] of the source are copied to bits [127:64] of the
779///    returned vector.
780///    1: Bits [127:64] of the source are copied to bits [127:64] of the
781///    returned vector.
782/// \returns A 128-bit vector of [2 x double] containing the copied values.
783static __inline __m128d __DEFAULT_FN_ATTRS
784_mm_permutevar_pd(__m128d __a, __m128i __c)
785{
786  return (__m128d)__builtin_ia32_vpermilvarpd((__v2df)__a, (__v2di)__c);
787}
788
789/// \brief Copies the values in a 256-bit vector of [4 x double] as
790///    specified by the 256-bit integer vector operand.
791///
792/// \headerfile <x86intrin.h>
793///
794/// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
795///
796/// \param __a
797///    A 256-bit vector of [4 x double].
798/// \param __c
799///    A 256-bit integer vector operand specifying how the values are to be
800///    copied.
801///    Bit [1]:
802///    0: Bits [63:0] of the source are copied to bits [63:0] of the
803///    returned vector.
804///    1: Bits [127:64] of the source are copied to bits [63:0] of the
805///    returned vector.
806///    Bit [65]:
807///    0: Bits [63:0] of the source are copied to bits [127:64] of the
808///    returned vector.
809///    1: Bits [127:64] of the source are copied to bits [127:64] of the
810///    returned vector.
811///    Bit [129]:
812///    0: Bits [191:128] of the source are copied to bits [191:128] of the
813///    returned vector.
814///    1: Bits [255:192] of the source are copied to bits [191:128] of the
815///    returned vector.
816///    Bit [193]:
817///    0: Bits [191:128] of the source are copied to bits [255:192] of the
818///    returned vector.
819///    1: Bits [255:192] of the source are copied to bits [255:192] of the
820///    returned vector.
821/// \returns A 256-bit vector of [4 x double] containing the copied values.
822static __inline __m256d __DEFAULT_FN_ATTRS
823_mm256_permutevar_pd(__m256d __a, __m256i __c)
824{
825  return (__m256d)__builtin_ia32_vpermilvarpd256((__v4df)__a, (__v4di)__c);
826}
827
828/// \brief Copies the values stored in a 128-bit vector of [4 x float] as
829///    specified by the 128-bit integer vector operand.
830///
831/// \headerfile <x86intrin.h>
832///
833/// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
834///
835/// \param __a
836///    A 128-bit vector of [4 x float].
837/// \param __c
838///    A 128-bit integer vector operand specifying how the values are to be
839///    copied.
840///    Bits [1:0]:
841///    00: Bits [31:0] of the source are copied to bits [31:0] of the
842///    returned vector.
843///    01: Bits [63:32] of the source are copied to bits [31:0] of the
844///    returned vector.
845///    10: Bits [95:64] of the source are copied to bits [31:0] of the
846///    returned vector.
847///    11: Bits [127:96] of the source are copied to bits [31:0] of the
848///    returned vector.
849///    Bits [33:32]:
850///    00: Bits [31:0] of the source are copied to bits [63:32] of the
851///    returned vector.
852///    01: Bits [63:32] of the source are copied to bits [63:32] of the
853///    returned vector.
854///    10: Bits [95:64] of the source are copied to bits [63:32] of the
855///    returned vector.
856///    11: Bits [127:96] of the source are copied to bits [63:32] of the
857///    returned vector.
858///    Bits [65:64]:
859///    00: Bits [31:0] of the source are copied to bits [95:64] of the
860///    returned vector.
861///    01: Bits [63:32] of the source are copied to bits [95:64] of the
862///    returned vector.
863///    10: Bits [95:64] of the source are copied to bits [95:64] of the
864///    returned vector.
865///    11: Bits [127:96] of the source are copied to bits [95:64] of the
866///    returned vector.
867///    Bits [97:96]:
868///    00: Bits [31:0] of the source are copied to bits [127:96] of the
869///    returned vector.
870///    01: Bits [63:32] of the source are copied to bits [127:96] of the
871///    returned vector.
872///    10: Bits [95:64] of the source are copied to bits [127:96] of the
873///    returned vector.
874///    11: Bits [127:96] of the source are copied to bits [127:96] of the
875///    returned vector.
876/// \returns A 128-bit vector of [4 x float] containing the copied values.
877static __inline __m128 __DEFAULT_FN_ATTRS
878_mm_permutevar_ps(__m128 __a, __m128i __c)
879{
880  return (__m128)__builtin_ia32_vpermilvarps((__v4sf)__a, (__v4si)__c);
881}
882
883/// \brief Copies the values stored in a 256-bit vector of [8 x float] as
884///    specified by the 256-bit integer vector operand.
885///
886/// \headerfile <x86intrin.h>
887///
888/// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
889///
890/// \param __a
891///    A 256-bit vector of [8 x float].
892/// \param __c
893///    A 256-bit integer vector operand specifying how the values are to be
894///    copied.
895///    Bits [1:0]:
896///    00: Bits [31:0] of the source are copied to bits [31:0] of the
897///    returned vector.
898///    01: Bits [63:32] of the source are copied to bits [31:0] of the
899///    returned vector.
900///    10: Bits [95:64] of the source are copied to bits [31:0] of the
901///    returned vector.
902///    11: Bits [127:96] of the source are copied to bits [31:0] of the
903///    returned vector.
904///    Bits [33:32]:
905///    00: Bits [31:0] of the source are copied to bits [63:32] of the
906///    returned vector.
907///    01: Bits [63:32] of the source are copied to bits [63:32] of the
908///    returned vector.
909///    10: Bits [95:64] of the source are copied to bits [63:32] of the
910///    returned vector.
911///    11: Bits [127:96] of the source are copied to bits [63:32] of the
912///    returned vector.
913///    Bits [65:64]:
914///    00: Bits [31:0] of the source are copied to bits [95:64] of the
915///    returned vector.
916///    01: Bits [63:32] of the source are copied to bits [95:64] of the
917///    returned vector.
918///    10: Bits [95:64] of the source are copied to bits [95:64] of the
919///    returned vector.
920///    11: Bits [127:96] of the source are copied to bits [95:64] of the
921///    returned vector.
922///    Bits [97:96]:
923///    00: Bits [31:0] of the source are copied to bits [127:96] of the
924///    returned vector.
925///    01: Bits [63:32] of the source are copied to bits [127:96] of the
926///    returned vector.
927///    10: Bits [95:64] of the source are copied to bits [127:96] of the
928///    returned vector.
929///    11: Bits [127:96] of the source are copied to bits [127:96] of the
930///    returned vector.
931///    Bits [129:128]:
932///    00: Bits [159:128] of the source are copied to bits [159:128] of the
933///    returned vector.
934///    01: Bits [191:160] of the source are copied to bits [159:128] of the
935///    returned vector.
936///    10: Bits [223:192] of the source are copied to bits [159:128] of the
937///    returned vector.
938///    11: Bits [255:224] of the source are copied to bits [159:128] of the
939///    returned vector.
940///    Bits [161:160]:
941///    00: Bits [159:128] of the source are copied to bits [191:160] of the
942///    returned vector.
943///    01: Bits [191:160] of the source are copied to bits [191:160] of the
944///    returned vector.
945///    10: Bits [223:192] of the source are copied to bits [191:160] of the
946///    returned vector.
947///    11: Bits [255:224] of the source are copied to bits [191:160] of the
948///    returned vector.
949///    Bits [193:192]:
950///    00: Bits [159:128] of the source are copied to bits [223:192] of the
951///    returned vector.
952///    01: Bits [191:160] of the source are copied to bits [223:192] of the
953///    returned vector.
954///    10: Bits [223:192] of the source are copied to bits [223:192] of the
955///    returned vector.
956///    11: Bits [255:224] of the source are copied to bits [223:192] of the
957///    returned vector.
958///    Bits [225:224]:
959///    00: Bits [159:128] of the source are copied to bits [255:224] of the
960///    returned vector.
961///    01: Bits [191:160] of the source are copied to bits [255:224] of the
962///    returned vector.
963///    10: Bits [223:192] of the source are copied to bits [255:224] of the
964///    returned vector.
965///    11: Bits [255:224] of the source are copied to bits [255:224] of the
966///    returned vector.
967/// \returns A 256-bit vector of [8 x float] containing the copied values.
968static __inline __m256 __DEFAULT_FN_ATTRS
969_mm256_permutevar_ps(__m256 __a, __m256i __c)
970{
971  return (__m256)__builtin_ia32_vpermilvarps256((__v8sf)__a, (__v8si)__c);
972}
973
974/// \brief Copies the values in a 128-bit vector of [2 x double] as
975///    specified by the immediate integer operand.
976///
977/// \headerfile <x86intrin.h>
978///
979/// \code
980/// __m128d _mm_permute_pd(__m128d A, const int C);
981/// \endcode
982///
983/// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
984///
985/// \param A
986///    A 128-bit vector of [2 x double].
987/// \param C
988///    An immediate integer operand specifying how the values are to be copied.
989///    Bit [0]:
990///    0: Bits [63:0] of the source are copied to bits [63:0] of the
991///    returned vector.
992///    1: Bits [127:64] of the source are copied to bits [63:0] of the
993///    returned vector.
994///    Bit [1]:
995///    0: Bits [63:0] of the source are copied to bits [127:64] of the
996///    returned vector.
997///    1: Bits [127:64] of the source are copied to bits [127:64] of the
998///    returned vector.
999/// \returns A 128-bit vector of [2 x double] containing the copied values.
1000#define _mm_permute_pd(A, C) __extension__ ({ \
1001  (__m128d)__builtin_shufflevector((__v2df)(__m128d)(A), \
1002                                   (__v2df)_mm_undefined_pd(), \
1003                                   ((C) >> 0) & 0x1, ((C) >> 1) & 0x1); })
1004
1005/// \brief Copies the values in a 256-bit vector of [4 x double] as
1006///    specified by the immediate integer operand.
1007///
1008/// \headerfile <x86intrin.h>
1009///
1010/// \code
1011/// __m256d _mm256_permute_pd(__m256d A, const int C);
1012/// \endcode
1013///
1014/// This intrinsic corresponds to the \c VPERMILPD / PERMILPD instruction.
1015///
1016/// \param A
1017///    A 256-bit vector of [4 x double].
1018/// \param C
1019///    An immediate integer operand specifying how the values are to be copied.
1020///    Bit [0]:
1021///    0: Bits [63:0] of the source are copied to bits [63:0] of the
1022///    returned vector.
1023///    1: Bits [127:64] of the source are copied to bits [63:0] of the
1024///    returned vector.
1025///    Bit [1]:
1026///    0: Bits [63:0] of the source are copied to bits [127:64] of the
1027///    returned vector.
1028///    1: Bits [127:64] of the source are copied to bits [127:64] of the
1029///    returned vector.
1030///    Bit [2]:
1031///    0: Bits [191:128] of the source are copied to bits [191:128] of the
1032///    returned vector.
1033///    1: Bits [255:192] of the source are copied to bits [191:128] of the
1034///    returned vector.
1035///    Bit [3]:
1036///    0: Bits [191:128] of the source are copied to bits [255:192] of the
1037///    returned vector.
1038///    1: Bits [255:192] of the source are copied to bits [255:192] of the
1039///    returned vector.
1040/// \returns A 256-bit vector of [4 x double] containing the copied values.
1041#define _mm256_permute_pd(A, C) __extension__ ({ \
1042  (__m256d)__builtin_shufflevector((__v4df)(__m256d)(A), \
1043                                   (__v4df)_mm256_undefined_pd(), \
1044                                   0 + (((C) >> 0) & 0x1), \
1045                                   0 + (((C) >> 1) & 0x1), \
1046                                   2 + (((C) >> 2) & 0x1), \
1047                                   2 + (((C) >> 3) & 0x1)); })
1048
1049/// \brief Copies the values in a 128-bit vector of [4 x float] as
1050///    specified by the immediate integer operand.
1051///
1052/// \headerfile <x86intrin.h>
1053///
1054/// \code
1055/// __m128 _mm_permute_ps(__m128 A, const int C);
1056/// \endcode
1057///
1058/// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
1059///
1060/// \param A
1061///    A 128-bit vector of [4 x float].
1062/// \param C
1063///    An immediate integer operand specifying how the values are to be copied.
1064///    Bits [1:0]:
1065///    00: Bits [31:0] of the source are copied to bits [31:0] of the
1066///    returned vector.
1067///    01: Bits [63:32] of the source are copied to bits [31:0] of the
1068///    returned vector.
1069///    10: Bits [95:64] of the source are copied to bits [31:0] of the
1070///    returned vector.
1071///    11: Bits [127:96] of the source are copied to bits [31:0] of the
1072///    returned vector.
1073///    Bits [3:2]:
1074///    00: Bits [31:0] of the source are copied to bits [63:32] of the
1075///    returned vector.
1076///    01: Bits [63:32] of the source are copied to bits [63:32] of the
1077///    returned vector.
1078///    10: Bits [95:64] of the source are copied to bits [63:32] of the
1079///    returned vector.
1080///    11: Bits [127:96] of the source are copied to bits [63:32] of the
1081///    returned vector.
1082///    Bits [5:4]:
1083///    00: Bits [31:0] of the source are copied to bits [95:64] of the
1084///    returned vector.
1085///    01: Bits [63:32] of the source are copied to bits [95:64] of the
1086///    returned vector.
1087///    10: Bits [95:64] of the source are copied to bits [95:64] of the
1088///    returned vector.
1089///    11: Bits [127:96] of the source are copied to bits [95:64] of the
1090///    returned vector.
1091///    Bits [7:6]:
1092///    00: Bits [31:0] of the source are copied to bits [127:96] of the
1093///    returned vector.
1094///    01: Bits [63:32] of the source are copied to bits [127:96] of the
1095///    returned vector.
1096///    10: Bits [95:64] of the source are copied to bits [127:96] of the
1097///    returned vector.
1098///    11: Bits [127:96] of the source are copied to bits [127:96] of the
1099///    returned vector.
1100/// \returns A 128-bit vector of [4 x float] containing the copied values.
1101#define _mm_permute_ps(A, C) __extension__ ({ \
1102  (__m128)__builtin_shufflevector((__v4sf)(__m128)(A), \
1103                                  (__v4sf)_mm_undefined_ps(), \
1104                                  ((C) >> 0) & 0x3, ((C) >> 2) & 0x3, \
1105                                  ((C) >> 4) & 0x3, ((C) >> 6) & 0x3); })
1106
1107/// \brief Copies the values in a 256-bit vector of [8 x float] as
1108///    specified by the immediate integer operand.
1109///
1110/// \headerfile <x86intrin.h>
1111///
1112/// \code
1113/// __m256 _mm256_permute_ps(__m256 A, const int C);
1114/// \endcode
1115///
1116/// This intrinsic corresponds to the \c VPERMILPS / PERMILPS instruction.
1117///
1118/// \param A
1119///    A 256-bit vector of [8 x float].
1120/// \param C
1121///    An immediate integer operand specifying how the values are to be copied.
1122///    Bits [1:0]:
1123///    00: Bits [31:0] of the source are copied to bits [31:0] of the
1124///    returned vector.
1125///    01: Bits [63:32] of the source are copied to bits [31:0] of the
1126///    returned vector.
1127///    10: Bits [95:64] of the source are copied to bits [31:0] of the
1128///    returned vector.
1129///    11: Bits [127:96] of the source are copied to bits [31:0] of the
1130///    returned vector.
1131///    Bits [3:2]:
1132///    00: Bits [31:0] of the source are copied to bits [63:32] of the
1133///    returned vector.
1134///    01: Bits [63:32] of the source are copied to bits [63:32] of the
1135///    returned vector.
1136///    10: Bits [95:64] of the source are copied to bits [63:32] of the
1137///    returned vector.
1138///    11: Bits [127:96] of the source are copied to bits [63:32] of the
1139///    returned vector.
1140///    Bits [5:4]:
1141///    00: Bits [31:0] of the source are copied to bits [95:64] of the
1142///    returned vector.
1143///    01: Bits [63:32] of the source are copied to bits [95:64] of the
1144///    returned vector.
1145///    10: Bits [95:64] of the source are copied to bits [95:64] of the
1146///    returned vector.
1147///    11: Bits [127:96] of the source are copied to bits [95:64] of the
1148///    returned vector.
1149///    Bits [7:6]:
1150///    00: Bits [31:0] of the source are copied to bits [127:96] of the
1151///    returned vector.
1152///    01: Bits [63:32] of the source are copied to bits [127:96] of the
1153///    returned vector.
1154///    10: Bits [95:64] of the source are copied to bits [127:96] of the
1155///    returned vector.
1156///    11: Bits [127:96] of the source are copied to bits [127:96] of the
1157///    returned vector.
1158///    Bits [1:0]:
1159///    00: Bits [159:128] of the source are copied to bits [159:128] of the
1160///    returned vector.
1161///    01: Bits [191:160] of the source are copied to bits [159:128] of the
1162///    returned vector.
1163///    10: Bits [223:192] of the source are copied to bits [159:128] of the
1164///    returned vector.
1165///    11: Bits [255:224] of the source are copied to bits [159:128] of the
1166///    returned vector.
1167///    Bits [3:2]:
1168///    00: Bits [159:128] of the source are copied to bits [191:160] of the
1169///    returned vector.
1170///    01: Bits [191:160] of the source are copied to bits [191:160] of the
1171///    returned vector.
1172///    10: Bits [223:192] of the source are copied to bits [191:160] of the
1173///    returned vector.
1174///    11: Bits [255:224] of the source are copied to bits [191:160] of the
1175///    returned vector.
1176///    Bits [5:4]:
1177///    00: Bits [159:128] of the source are copied to bits [223:192] of the
1178///    returned vector.
1179///    01: Bits [191:160] of the source are copied to bits [223:192] of the
1180///    returned vector.
1181///    10: Bits [223:192] of the source are copied to bits [223:192] of the
1182///    returned vector.
1183///    11: Bits [255:224] of the source are copied to bits [223:192] of the
1184///    returned vector.
1185///    Bits [7:6]:
1186///    00: Bits [159:128] of the source are copied to bits [255:224] of the
1187///    returned vector.
1188///    01: Bits [191:160] of the source are copied to bits [255:224] of the
1189///    returned vector.
1190///    10: Bits [223:192] of the source are copied to bits [255:224] of the
1191///    returned vector.
1192///    11: Bits [255:224] of the source are copied to bits [255:224] of the
1193///    returned vector.
1194/// \returns A 256-bit vector of [8 x float] containing the copied values.
1195#define _mm256_permute_ps(A, C) __extension__ ({ \
1196  (__m256)__builtin_shufflevector((__v8sf)(__m256)(A), \
1197                                  (__v8sf)_mm256_undefined_ps(), \
1198                                  0 + (((C) >> 0) & 0x3), \
1199                                  0 + (((C) >> 2) & 0x3), \
1200                                  0 + (((C) >> 4) & 0x3), \
1201                                  0 + (((C) >> 6) & 0x3), \
1202                                  4 + (((C) >> 0) & 0x3), \
1203                                  4 + (((C) >> 2) & 0x3), \
1204                                  4 + (((C) >> 4) & 0x3), \
1205                                  4 + (((C) >> 6) & 0x3)); })
1206
1207/// \brief Permutes 128-bit data values stored in two 256-bit vectors of
1208///    [4 x double], as specified by the immediate integer operand.
1209///
1210/// \headerfile <x86intrin.h>
1211///
1212/// \code
1213/// __m256d _mm256_permute2f128_pd(__m256d V1, __m256d V2, const int M);
1214/// \endcode
1215///
1216/// This intrinsic corresponds to the \c VPERM2F128 / PERM2F128 instruction.
1217///
1218/// \param V1
1219///    A 256-bit vector of [4 x double].
1220/// \param V2
1221///    A 256-bit vector of [4 x double.
1222/// \param M
1223///    An immediate integer operand specifying how the values are to be
1224///    permuted.
1225///    Bits [1:0]:
1226///    00: Bits [127:0] of operand V1 are copied to bits [127:0] of the
1227///    destination.
1228///    01: Bits [255:128] of operand V1 are copied to bits [127:0] of the
1229///    destination.
1230///    10: Bits [127:0] of operand V2 are copied to bits [127:0] of the
1231///    destination.
1232///    11: Bits [255:128] of operand V2 are copied to bits [127:0] of the
1233///    destination.
1234///    Bits [5:4]:
1235///    00: Bits [127:0] of operand V1 are copied to bits [255:128] of the
1236///    destination.
1237///    01: Bits [255:128] of operand V1 are copied to bits [255:128] of the
1238///    destination.
1239///    10: Bits [127:0] of operand V2 are copied to bits [255:128] of the
1240///    destination.
1241///    11: Bits [255:128] of operand V2 are copied to bits [255:128] of the
1242///    destination.
1243/// \returns A 256-bit vector of [4 x double] containing the copied values.
1244#define _mm256_permute2f128_pd(V1, V2, M) __extension__ ({ \
1245  (__m256d)__builtin_ia32_vperm2f128_pd256((__v4df)(__m256d)(V1), \
1246                                           (__v4df)(__m256d)(V2), (M)); })
1247
1248/// \brief Permutes 128-bit data values stored in two 256-bit vectors of
1249///    [8 x float], as specified by the immediate integer operand.
1250///
1251/// \headerfile <x86intrin.h>
1252///
1253/// \code
1254/// __m256 _mm256_permute2f128_ps(__m256 V1, __m256 V2, const int M);
1255/// \endcode
1256///
1257/// This intrinsic corresponds to the \c VPERM2F128 / PERM2F128 instruction.
1258///
1259/// \param V1
1260///    A 256-bit vector of [8 x float].
1261/// \param V2
1262///    A 256-bit vector of [8 x float].
1263/// \param M
1264///    An immediate integer operand specifying how the values are to be
1265///    permuted.
1266///    Bits [1:0]:
1267///    00: Bits [127:0] of operand V1 are copied to bits [127:0] of the
1268///    destination.
1269///    01: Bits [255:128] of operand V1 are copied to bits [127:0] of the
1270///    destination.
1271///    10: Bits [127:0] of operand V2 are copied to bits [127:0] of the
1272///    destination.
1273///    11: Bits [255:128] of operand V2 are copied to bits [127:0] of the
1274///    destination.
1275///    Bits [5:4]:
1276///    00: Bits [127:0] of operand V1 are copied to bits [255:128] of the
1277///    destination.
1278///    01: Bits [255:128] of operand V1 are copied to bits [255:128] of the
1279///    destination.
1280///    10: Bits [127:0] of operand V2 are copied to bits [255:128] of the
1281///    destination.
1282///    11: Bits [255:128] of operand V2 are copied to bits [255:128] of the
1283///    destination.
1284/// \returns A 256-bit vector of [8 x float] containing the copied values.
1285#define _mm256_permute2f128_ps(V1, V2, M) __extension__ ({ \
1286  (__m256)__builtin_ia32_vperm2f128_ps256((__v8sf)(__m256)(V1), \
1287                                          (__v8sf)(__m256)(V2), (M)); })
1288
1289/// \brief Permutes 128-bit data values stored in two 256-bit integer vectors,
1290///    as specified by the immediate integer operand.
1291///
1292/// \headerfile <x86intrin.h>
1293///
1294/// \code
1295/// __m256i _mm256_permute2f128_si256(__m256i V1, __m256i V2, const int M);
1296/// \endcode
1297///
1298/// This intrinsic corresponds to the \c VPERM2F128 / PERM2F128 instruction.
1299///
1300/// \param V1
1301///    A 256-bit integer vector.
1302/// \param V2
1303///    A 256-bit integer vector.
1304/// \param M
1305///    An immediate integer operand specifying how the values are to be copied.
1306///    Bits [1:0]:
1307///    00: Bits [127:0] of operand V1 are copied to bits [127:0] of the
1308///    destination.
1309///    01: Bits [255:128] of operand V1 are copied to bits [127:0] of the
1310///    destination.
1311///    10: Bits [127:0] of operand V2 are copied to bits [127:0] of the
1312///    destination.
1313///    11: Bits [255:128] of operand V2 are copied to bits [127:0] of the
1314///    destination.
1315///    Bits [5:4]:
1316///    00: Bits [127:0] of operand V1 are copied to bits [255:128] of the
1317///    destination.
1318///    01: Bits [255:128] of operand V1 are copied to bits [255:128] of the
1319///    destination.
1320///    10: Bits [127:0] of operand V2 are copied to bits [255:128] of the
1321///    destination.
1322///    11: Bits [255:128] of operand V2 are copied to bits [255:128] of the
1323///    destination.
1324/// \returns A 256-bit integer vector containing the copied values.
1325#define _mm256_permute2f128_si256(V1, V2, M) __extension__ ({ \
1326  (__m256i)__builtin_ia32_vperm2f128_si256((__v8si)(__m256i)(V1), \
1327                                           (__v8si)(__m256i)(V2), (M)); })
1328
1329/* Vector Blend */
1330/// \brief Merges 64-bit double-precision data values stored in either of the
1331///    two 256-bit vectors of [4 x double], as specified by the immediate
1332///    integer operand.
1333///
1334/// \headerfile <x86intrin.h>
1335///
1336/// \code
1337/// __m256d _mm256_blend_pd(__m256d V1, __m256d V2, const int M);
1338/// \endcode
1339///
1340/// This intrinsic corresponds to the \c VBLENDPD / BLENDPD instruction.
1341///
1342/// \param V1
1343///    A 256-bit vector of [4 x double].
1344/// \param V2
1345///    A 256-bit vector of [4 x double].
1346/// \param M
1347///    An immediate integer operand, with mask bits [3:0] specifying how the
1348///    values are to be copied. The position of the mask bit corresponds to the
1349///    index of a copied value. When a mask bit is 0, the corresponding 64-bit
1350///    element in operand V1 is copied to the same position in the destination.
1351///    When a mask bit is 1, the corresponding 64-bit element in operand V2 is
1352///    copied to the same position in the destination.
1353/// \returns A 256-bit vector of [4 x double] containing the copied values.
1354#define _mm256_blend_pd(V1, V2, M) __extension__ ({ \
1355  (__m256d)__builtin_shufflevector((__v4df)(__m256d)(V1), \
1356                                   (__v4df)(__m256d)(V2), \
1357                                   (((M) & 0x01) ? 4 : 0), \
1358                                   (((M) & 0x02) ? 5 : 1), \
1359                                   (((M) & 0x04) ? 6 : 2), \
1360                                   (((M) & 0x08) ? 7 : 3)); })
1361
1362/// \brief Merges 32-bit single-precision data values stored in either of the
1363///    two 256-bit vectors of [8 x float], as specified by the immediate
1364///    integer operand.
1365///
1366/// \headerfile <x86intrin.h>
1367///
1368/// \code
1369/// __m256 _mm256_blend_ps(__m256 V1, __m256 V2, const int M);
1370/// \endcode
1371///
1372/// This intrinsic corresponds to the \c VBLENDPS / BLENDPS instruction.
1373///
1374/// \param V1
1375///    A 256-bit vector of [8 x float].
1376/// \param V2
1377///    A 256-bit vector of [8 x float].
1378/// \param M
1379///    An immediate integer operand, with mask bits [7:0] specifying how the
1380///    values are to be copied. The position of the mask bit corresponds to the
1381///    index of a copied value. When a mask bit is 0, the corresponding 32-bit
1382///    element in operand V1 is copied to the same position in the destination.
1383///    When a mask bit is 1, the corresponding 32-bit element in operand V2 is
1384///    copied to the same position in the destination.
1385/// \returns A 256-bit vector of [8 x float] containing the copied values.
1386#define _mm256_blend_ps(V1, V2, M) __extension__ ({ \
1387  (__m256)__builtin_shufflevector((__v8sf)(__m256)(V1), \
1388                                  (__v8sf)(__m256)(V2), \
1389                                  (((M) & 0x01) ?  8 : 0), \
1390                                  (((M) & 0x02) ?  9 : 1), \
1391                                  (((M) & 0x04) ? 10 : 2), \
1392                                  (((M) & 0x08) ? 11 : 3), \
1393                                  (((M) & 0x10) ? 12 : 4), \
1394                                  (((M) & 0x20) ? 13 : 5), \
1395                                  (((M) & 0x40) ? 14 : 6), \
1396                                  (((M) & 0x80) ? 15 : 7)); })
1397
1398/// \brief Merges 64-bit double-precision data values stored in either of the
1399///    two 256-bit vectors of [4 x double], as specified by the 256-bit vector
1400///    operand.
1401///
1402/// \headerfile <x86intrin.h>
1403///
1404/// This intrinsic corresponds to the \c VBLENDVPD / BLENDVPD instruction.
1405///
1406/// \param __a
1407///    A 256-bit vector of [4 x double].
1408/// \param __b
1409///    A 256-bit vector of [4 x double].
1410/// \param __c
1411///    A 256-bit vector operand, with mask bits 255, 191, 127, and 63 specifying
1412///    how the values are to be copied. The position of the mask bit corresponds
1413///    to the most significant bit of a copied value. When a mask bit is 0, the
1414///    corresponding 64-bit element in operand __a is copied to the same
1415///    position in the destination. When a mask bit is 1, the corresponding
1416///    64-bit element in operand __b is copied to the same position in the
1417///    destination.
1418/// \returns A 256-bit vector of [4 x double] containing the copied values.
1419static __inline __m256d __DEFAULT_FN_ATTRS
1420_mm256_blendv_pd(__m256d __a, __m256d __b, __m256d __c)
1421{
1422  return (__m256d)__builtin_ia32_blendvpd256(
1423    (__v4df)__a, (__v4df)__b, (__v4df)__c);
1424}
1425
1426/// \brief Merges 32-bit single-precision data values stored in either of the
1427///    two 256-bit vectors of [8 x float], as specified by the 256-bit vector
1428///    operand.
1429///
1430/// \headerfile <x86intrin.h>
1431///
1432/// This intrinsic corresponds to the \c VBLENDVPS / BLENDVPS instruction.
1433///
1434/// \param __a
1435///    A 256-bit vector of [8 x float].
1436/// \param __b
1437///    A 256-bit vector of [8 x float].
1438/// \param __c
1439///    A 256-bit vector operand, with mask bits 255, 223, 191, 159, 127, 95, 63,
1440///    and 31 specifying how the values are to be copied. The position of the
1441///    mask bit corresponds to the most significant bit of a copied value. When
1442///    a mask bit is 0, the corresponding 32-bit element in operand __a is
1443///    copied to the same position in the destination. When a mask bit is 1, the
1444///    corresponding 32-bit element in operand __b is copied to the same
1445///    position in the destination.
1446/// \returns A 256-bit vector of [8 x float] containing the copied values.
1447static __inline __m256 __DEFAULT_FN_ATTRS
1448_mm256_blendv_ps(__m256 __a, __m256 __b, __m256 __c)
1449{
1450  return (__m256)__builtin_ia32_blendvps256(
1451    (__v8sf)__a, (__v8sf)__b, (__v8sf)__c);
1452}
1453
1454/* Vector Dot Product */
1455/// \brief Computes two dot products in parallel, using the lower and upper
1456///    halves of two [8 x float] vectors as input to the two computations, and
1457///    returning the two dot products in the lower and upper halves of the
1458///    [8 x float] result. The immediate integer operand controls which
1459///    input elements will contribute to the dot product, and where the final
1460///    results are returned. In general, for each dot product, the four
1461///    corresponding elements of the input vectors are multiplied; the first
1462///    two and second two products are summed, then the two sums are added to
1463///    form the final result.
1464///
1465/// \headerfile <x86intrin.h>
1466///
1467/// \code
1468/// __m256 _mm256_dp_ps(__m256 V1, __m256 V2, const int M);
1469/// \endcode
1470///
1471/// This intrinsic corresponds to the \c VDPPS / DPPS instruction.
1472///
1473/// \param V1
1474///    A vector of [8 x float] values, treated as two [4 x float] vectors.
1475/// \param V2
1476///    A vector of [8 x float] values, treated as two [4 x float] vectors.
1477/// \param M
1478///    An immediate integer argument. Bits [7:4] determine which elements of
1479///    the input vectors are used, with bit [4] corresponding to the lowest
1480///    element and bit [7] corresponding to the highest element of each [4 x
1481///    float] subvector. If a bit is set, the corresponding elements from the
1482///    two input vectors are used as an input for dot product; otherwise that
1483///    input is treated as zero. Bits [3:0] determine which elements of the
1484///    result will receive a copy of the final dot product, with bit [0]
1485///    corresponding to the lowest element and bit [3] corresponding to the
1486///    highest element of each [4 x float] subvector. If a bit is set, the dot
1487///    product is returned in the corresponding element; otherwise that element
1488///    is set to zero. The bitmask is applied in the same way to each of the
1489///    two parallel dot product computations.
1490/// \returns A 256-bit vector of [8 x float] containing the two dot products.
1491#define _mm256_dp_ps(V1, V2, M) __extension__ ({ \
1492  (__m256)__builtin_ia32_dpps256((__v8sf)(__m256)(V1), \
1493                                 (__v8sf)(__m256)(V2), (M)); })
1494
1495/* Vector shuffle */
1496/// \brief Selects 8 float values from the 256-bit operands of [8 x float], as
1497///    specified by the immediate value operand. The four selected elements in
1498///    each operand are copied to the destination according to the bits
1499///    specified in the immediate operand. The selected elements from the first
1500///    256-bit operand are copied to bits [63:0] and bits [191:128] of the
1501///    destination, and the selected elements from the second 256-bit operand
1502///    are copied to bits [127:64] and bits [255:192] of the destination. For
1503///    example, if bits [7:0] of the immediate operand contain a value of 0xFF,
1504///    the 256-bit destination vector would contain the following values: b[7],
1505///    b[7], a[7], a[7], b[3], b[3], a[3], a[3].
1506///
1507/// \headerfile <x86intrin.h>
1508///
1509/// \code
1510/// __m256 _mm256_shuffle_ps(__m256 a, __m256 b, const int mask);
1511/// \endcode
1512///
1513/// This intrinsic corresponds to the \c VSHUFPS / SHUFPS instruction.
1514///
1515/// \param a
1516///    A 256-bit vector of [8 x float]. The four selected elements in this
1517///    operand are copied to bits [63:0] and bits [191:128] in the destination,
1518///    according to the bits specified in the immediate operand.
1519/// \param b
1520///    A 256-bit vector of [8 x float]. The four selected elements in this
1521///    operand are copied to bits [127:64] and bits [255:192] in the
1522///    destination, according to the bits specified in the immediate operand.
1523/// \param mask
1524///    An immediate value containing an 8-bit value specifying which elements to
1525///    copy from a and b. Bits [3:0] specify the values copied from operand a.
1526///    Bits [7:4] specify the values copied from operand b.
1527///    The destinations within the 256-bit destination are assigned values as
1528///    follows, according to the bit value assignments described below:
1529///    Bits [1:0] are used to assign values to bits [31:0] and [159:128] in the
1530///    destination.
1531///    Bits [3:2] are used to assign values to bits [63:32] and [191:160] in the
1532///    destination.
1533///    Bits [5:4] are used to assign values to bits [95:64] and [223:192] in the
1534///    destination.
1535///    Bits [7:6] are used to assign values to bits [127:96] and [255:224] in
1536///    the destination.
1537///    Bit value assignments:
1538///    00: Bits [31:0] and [159:128] are copied from the selected operand.
1539///    01: Bits [63:32] and [191:160] are copied from the selected operand.
1540///    10: Bits [95:64] and [223:192] are copied from the selected operand.
1541///    11: Bits [127:96] and [255:224] are copied from the selected operand.
1542/// \returns A 256-bit vector of [8 x float] containing the shuffled values.
1543#define _mm256_shuffle_ps(a, b, mask) __extension__ ({ \
1544  (__m256)__builtin_shufflevector((__v8sf)(__m256)(a), \
1545                                  (__v8sf)(__m256)(b), \
1546                                  0  + (((mask) >> 0) & 0x3), \
1547                                  0  + (((mask) >> 2) & 0x3), \
1548                                  8  + (((mask) >> 4) & 0x3), \
1549                                  8  + (((mask) >> 6) & 0x3), \
1550                                  4  + (((mask) >> 0) & 0x3), \
1551                                  4  + (((mask) >> 2) & 0x3), \
1552                                  12 + (((mask) >> 4) & 0x3), \
1553                                  12 + (((mask) >> 6) & 0x3)); })
1554
1555/// \brief Selects four double-precision values from the 256-bit operands of
1556///    [4 x double], as specified by the immediate value operand. The selected
1557///    elements from the first 256-bit operand are copied to bits [63:0] and
1558///    bits [191:128] in the destination, and the selected elements from the
1559///    second 256-bit operand are copied to bits [127:64] and bits [255:192] in
1560///    the destination. For example, if bits [3:0] of the immediate operand
1561///    contain a value of 0xF, the 256-bit destination vector would contain the
1562///    following values: b[3], a[3], b[1], a[1].
1563///
1564/// \headerfile <x86intrin.h>
1565///
1566/// \code
1567/// __m256d _mm256_shuffle_pd(__m256d a, __m256d b, const int mask);
1568/// \endcode
1569///
1570/// This intrinsic corresponds to the \c VSHUFPD / SHUFPD instruction.
1571///
1572/// \param a
1573///    A 256-bit vector of [4 x double].
1574/// \param b
1575///    A 256-bit vector of [4 x double].
1576/// \param mask
1577///    An immediate value containing 8-bit values specifying which elements to
1578///    copy from a and b:
1579///    Bit [0]=0: Bits [63:0] are copied from a to bits [63:0] of the
1580///    destination.
1581///    Bit [0]=1: Bits [127:64] are copied from a to bits [63:0] of the
1582///    destination.
1583///    Bit [1]=0: Bits [63:0] are copied from b to bits [127:64] of the
1584///    destination.
1585///    Bit [1]=1: Bits [127:64] are copied from b to bits [127:64] of the
1586///    destination.
1587///    Bit [2]=0: Bits [191:128] are copied from a to bits [191:128] of the
1588///    destination.
1589///    Bit [2]=1: Bits [255:192] are copied from a to bits [191:128] of the
1590///    destination.
1591///    Bit [3]=0: Bits [191:128] are copied from b to bits [255:192] of the
1592///    destination.
1593///    Bit [3]=1: Bits [255:192] are copied from b to bits [255:192] of the
1594///    destination.
1595/// \returns A 256-bit vector of [4 x double] containing the shuffled values.
1596#define _mm256_shuffle_pd(a, b, mask) __extension__ ({ \
1597  (__m256d)__builtin_shufflevector((__v4df)(__m256d)(a), \
1598                                   (__v4df)(__m256d)(b), \
1599                                   0 + (((mask) >> 0) & 0x1), \
1600                                   4 + (((mask) >> 1) & 0x1), \
1601                                   2 + (((mask) >> 2) & 0x1), \
1602                                   6 + (((mask) >> 3) & 0x1)); })
1603
1604/* Compare */
1605#define _CMP_EQ_OQ    0x00 /* Equal (ordered, non-signaling)  */
1606#define _CMP_LT_OS    0x01 /* Less-than (ordered, signaling)  */
1607#define _CMP_LE_OS    0x02 /* Less-than-or-equal (ordered, signaling)  */
1608#define _CMP_UNORD_Q  0x03 /* Unordered (non-signaling)  */
1609#define _CMP_NEQ_UQ   0x04 /* Not-equal (unordered, non-signaling)  */
1610#define _CMP_NLT_US   0x05 /* Not-less-than (unordered, signaling)  */
1611#define _CMP_NLE_US   0x06 /* Not-less-than-or-equal (unordered, signaling)  */
1612#define _CMP_ORD_Q    0x07 /* Ordered (nonsignaling)   */
1613#define _CMP_EQ_UQ    0x08 /* Equal (unordered, non-signaling)  */
1614#define _CMP_NGE_US   0x09 /* Not-greater-than-or-equal (unord, signaling)  */
1615#define _CMP_NGT_US   0x0a /* Not-greater-than (unordered, signaling)  */
1616#define _CMP_FALSE_OQ 0x0b /* False (ordered, non-signaling)  */
1617#define _CMP_NEQ_OQ   0x0c /* Not-equal (ordered, non-signaling)  */
1618#define _CMP_GE_OS    0x0d /* Greater-than-or-equal (ordered, signaling)  */
1619#define _CMP_GT_OS    0x0e /* Greater-than (ordered, signaling)  */
1620#define _CMP_TRUE_UQ  0x0f /* True (unordered, non-signaling)  */
1621#define _CMP_EQ_OS    0x10 /* Equal (ordered, signaling)  */
1622#define _CMP_LT_OQ    0x11 /* Less-than (ordered, non-signaling)  */
1623#define _CMP_LE_OQ    0x12 /* Less-than-or-equal (ordered, non-signaling)  */
1624#define _CMP_UNORD_S  0x13 /* Unordered (signaling)  */
1625#define _CMP_NEQ_US   0x14 /* Not-equal (unordered, signaling)  */
1626#define _CMP_NLT_UQ   0x15 /* Not-less-than (unordered, non-signaling)  */
1627#define _CMP_NLE_UQ   0x16 /* Not-less-than-or-equal (unord, non-signaling)  */
1628#define _CMP_ORD_S    0x17 /* Ordered (signaling)  */
1629#define _CMP_EQ_US    0x18 /* Equal (unordered, signaling)  */
1630#define _CMP_NGE_UQ   0x19 /* Not-greater-than-or-equal (unord, non-sign)  */
1631#define _CMP_NGT_UQ   0x1a /* Not-greater-than (unordered, non-signaling)  */
1632#define _CMP_FALSE_OS 0x1b /* False (ordered, signaling)  */
1633#define _CMP_NEQ_OS   0x1c /* Not-equal (ordered, signaling)  */
1634#define _CMP_GE_OQ    0x1d /* Greater-than-or-equal (ordered, non-signaling)  */
1635#define _CMP_GT_OQ    0x1e /* Greater-than (ordered, non-signaling)  */
1636#define _CMP_TRUE_US  0x1f /* True (unordered, signaling)  */
1637
1638/// \brief Compares each of the corresponding double-precision values of two
1639///    128-bit vectors of [2 x double], using the operation specified by the
1640///    immediate integer operand. Returns a [2 x double] vector consisting of
1641///    two doubles corresponding to the two comparison results: zero if the
1642///    comparison is false, and all 1's if the comparison is true.
1643///
1644/// \headerfile <x86intrin.h>
1645///
1646/// \code
1647/// __m128d _mm_cmp_pd(__m128d a, __m128d b, const int c);
1648/// \endcode
1649///
1650/// This intrinsic corresponds to the \c VCMPPD / CMPPD instruction.
1651///
1652/// \param a
1653///    A 128-bit vector of [2 x double].
1654/// \param b
1655///    A 128-bit vector of [2 x double].
1656/// \param c
1657///    An immediate integer operand, with bits [4:0] specifying which comparison
1658///    operation to use:
1659///    00h, 08h, 10h, 18h: Equal
1660///    01h, 09h, 11h, 19h: Less than
1661///    02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
1662///                        operands)
1663///    03h, 0Bh, 13h, 1Bh: Unordered
1664///    04h, 0Ch, 14h, 1Ch: Not equal
1665///    05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
1666///    06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
1667///                        (swapped operands)
1668///    07h, 0Fh, 17h, 1Fh: Ordered
1669/// \returns A 128-bit vector of [2 x double] containing the comparison results.
1670#define _mm_cmp_pd(a, b, c) __extension__ ({ \
1671  (__m128d)__builtin_ia32_cmppd((__v2df)(__m128d)(a), \
1672                                (__v2df)(__m128d)(b), (c)); })
1673
1674/// \brief Compares each of the corresponding values of two 128-bit vectors of
1675///    [4 x float], using the operation specified by the immediate integer
1676///    operand. Returns a [4 x float] vector consisting of four floats
1677///    corresponding to the four comparison results: zero if the comparison is
1678///    false, and all 1's if the comparison is true.
1679///
1680/// \headerfile <x86intrin.h>
1681///
1682/// \code
1683/// __m128 _mm_cmp_ps(__m128 a, __m128 b, const int c);
1684/// \endcode
1685///
1686/// This intrinsic corresponds to the \c VCMPPS / CMPPS instruction.
1687///
1688/// \param a
1689///    A 128-bit vector of [4 x float].
1690/// \param b
1691///    A 128-bit vector of [4 x float].
1692/// \param c
1693///    An immediate integer operand, with bits [4:0] specifying which comparison
1694///    operation to use:
1695///    00h, 08h, 10h, 18h: Equal
1696///    01h, 09h, 11h, 19h: Less than
1697///    02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
1698///                        operands)
1699///    03h, 0Bh, 13h, 1Bh: Unordered
1700///    04h, 0Ch, 14h, 1Ch: Not equal
1701///    05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
1702///    06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
1703///                       (swapped operands)
1704///    07h, 0Fh, 17h, 1Fh: Ordered
1705/// \returns A 128-bit vector of [4 x float] containing the comparison results.
1706#define _mm_cmp_ps(a, b, c) __extension__ ({ \
1707  (__m128)__builtin_ia32_cmpps((__v4sf)(__m128)(a), \
1708                               (__v4sf)(__m128)(b), (c)); })
1709
1710/// \brief Compares each of the corresponding double-precision values of two
1711///    256-bit vectors of [4 x double], using the operation specified by the
1712///    immediate integer operand. Returns a [4 x double] vector consisting of
1713///    four doubles corresponding to the four comparison results: zero if the
1714///    comparison is false, and all 1's if the comparison is true.
1715///
1716/// \headerfile <x86intrin.h>
1717///
1718/// \code
1719/// __m256d _mm256_cmp_pd(__m256d a, __m256d b, const int c);
1720/// \endcode
1721///
1722/// This intrinsic corresponds to the \c VCMPPD / CMPPD instruction.
1723///
1724/// \param a
1725///    A 256-bit vector of [4 x double].
1726/// \param b
1727///    A 256-bit vector of [4 x double].
1728/// \param c
1729///    An immediate integer operand, with bits [4:0] specifying which comparison
1730///    operation to use:
1731///    00h, 08h, 10h, 18h: Equal
1732///    01h, 09h, 11h, 19h: Less than
1733///    02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
1734///                        operands)
1735///    03h, 0Bh, 13h, 1Bh: Unordered
1736///    04h, 0Ch, 14h, 1Ch: Not equal
1737///    05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
1738///    06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
1739///                        (swapped operands)
1740///    07h, 0Fh, 17h, 1Fh: Ordered
1741/// \returns A 256-bit vector of [4 x double] containing the comparison results.
1742#define _mm256_cmp_pd(a, b, c) __extension__ ({ \
1743  (__m256d)__builtin_ia32_cmppd256((__v4df)(__m256d)(a), \
1744                                   (__v4df)(__m256d)(b), (c)); })
1745
1746/// \brief Compares each of the corresponding values of two 256-bit vectors of
1747///    [8 x float], using the operation specified by the immediate integer
1748///    operand. Returns a [8 x float] vector consisting of eight floats
1749///    corresponding to the eight comparison results: zero if the comparison is
1750///    false, and all 1's if the comparison is true.
1751///
1752/// \headerfile <x86intrin.h>
1753///
1754/// \code
1755/// __m256 _mm256_cmp_ps(__m256 a, __m256 b, const int c);
1756/// \endcode
1757///
1758/// This intrinsic corresponds to the \c VCMPPS / CMPPS instruction.
1759///
1760/// \param a
1761///    A 256-bit vector of [8 x float].
1762/// \param b
1763///    A 256-bit vector of [8 x float].
1764/// \param c
1765///    An immediate integer operand, with bits [4:0] specifying which comparison
1766///    operation to use:
1767///    00h, 08h, 10h, 18h: Equal
1768///    01h, 09h, 11h, 19h: Less than
1769///    02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
1770///                        operands)
1771///    03h, 0Bh, 13h, 1Bh: Unordered
1772///    04h, 0Ch, 14h, 1Ch: Not equal
1773///    05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
1774///    06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
1775///                       (swapped operands)
1776///    07h, 0Fh, 17h, 1Fh: Ordered
1777/// \returns A 256-bit vector of [8 x float] containing the comparison results.
1778#define _mm256_cmp_ps(a, b, c) __extension__ ({ \
1779  (__m256)__builtin_ia32_cmpps256((__v8sf)(__m256)(a), \
1780                                  (__v8sf)(__m256)(b), (c)); })
1781
1782/// \brief Compares each of the corresponding scalar double-precision values of
1783///    two 128-bit vectors of [2 x double], using the operation specified by the
1784///    immediate integer operand. If the result is true, all 64 bits of the
1785///    destination vector are set; otherwise they are cleared.
1786///
1787/// \headerfile <x86intrin.h>
1788///
1789/// \code
1790/// __m128d _mm_cmp_sd(__m128d a, __m128d b, const int c);
1791/// \endcode
1792///
1793/// This intrinsic corresponds to the \c VCMPSD / CMPSD instruction.
1794///
1795/// \param a
1796///    A 128-bit vector of [2 x double].
1797/// \param b
1798///    A 128-bit vector of [2 x double].
1799/// \param c
1800///    An immediate integer operand, with bits [4:0] specifying which comparison
1801///    operation to use:
1802///    00h, 08h, 10h, 18h: Equal
1803///    01h, 09h, 11h, 19h: Less than
1804///    02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
1805///                        operands)
1806///    03h, 0Bh, 13h, 1Bh: Unordered
1807///    04h, 0Ch, 14h, 1Ch: Not equal
1808///    05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
1809///    06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
1810///                       (swapped operands)
1811///    07h, 0Fh, 17h, 1Fh: Ordered
1812/// \returns A 128-bit vector of [2 x double] containing the comparison results.
1813#define _mm_cmp_sd(a, b, c) __extension__ ({ \
1814  (__m128d)__builtin_ia32_cmpsd((__v2df)(__m128d)(a), \
1815                                (__v2df)(__m128d)(b), (c)); })
1816
1817/// \brief Compares each of the corresponding scalar values of two 128-bit
1818///    vectors of [4 x float], using the operation specified by the immediate
1819///    integer operand. If the result is true, all 32 bits of the destination
1820///    vector are set; otherwise they are cleared.
1821///
1822/// \headerfile <x86intrin.h>
1823///
1824/// \code
1825/// __m128 _mm_cmp_ss(__m128 a, __m128 b, const int c);
1826/// \endcode
1827///
1828/// This intrinsic corresponds to the \c VCMPSS / CMPSS instruction.
1829///
1830/// \param a
1831///    A 128-bit vector of [4 x float].
1832/// \param b
1833///    A 128-bit vector of [4 x float].
1834/// \param c
1835///    An immediate integer operand, with bits [4:0] specifying which comparison
1836///    operation to use:
1837///    00h, 08h, 10h, 18h: Equal
1838///    01h, 09h, 11h, 19h: Less than
1839///    02h, 0Ah, 12h, 1Ah: Less than or equal / Greater than or equal (swapped
1840///                        operands)
1841///    03h, 0Bh, 13h, 1Bh: Unordered
1842///    04h, 0Ch, 14h, 1Ch: Not equal
1843///    05h, 0Dh, 15h, 1Dh: Not less than / Not greater than (swapped operands)
1844///    06h, 0Eh, 16h, 1Eh: Not less than or equal / Not greater than or equal
1845///                       (swapped operands)
1846///    07h, 0Fh, 17h, 1Fh: Ordered
1847/// \returns A 128-bit vector of [4 x float] containing the comparison results.
1848#define _mm_cmp_ss(a, b, c) __extension__ ({ \
1849  (__m128)__builtin_ia32_cmpss((__v4sf)(__m128)(a), \
1850                               (__v4sf)(__m128)(b), (c)); })
1851
1852/// \brief Takes a [8 x i32] vector and returns the vector element value
1853///    indexed by the immediate constant operand.
1854///
1855/// \headerfile <x86intrin.h>
1856///
1857/// This intrinsic corresponds to the \c VEXTRACTF128+COMPOSITE /
1858///   EXTRACTF128+COMPOSITE instruction.
1859///
1860/// \param __a
1861///    A 256-bit vector of [8 x i32].
1862/// \param __imm
1863///    An immediate integer operand with bits [2:0] determining which vector
1864///    element is extracted and returned.
1865/// \returns A 32-bit integer containing the extracted 32 bits of extended
1866///    packed data.
1867static __inline int __DEFAULT_FN_ATTRS
1868_mm256_extract_epi32(__m256i __a, const int __imm)
1869{
1870  __v8si __b = (__v8si)__a;
1871  return __b[__imm & 7];
1872}
1873
1874/// \brief Takes a [16 x i16] vector and returns the vector element value
1875///    indexed by the immediate constant operand.
1876///
1877/// \headerfile <x86intrin.h>
1878///
1879/// This intrinsic corresponds to the \c VEXTRACTF128+COMPOSITE /
1880///    EXTRACTF128+COMPOSITE instruction.
1881///
1882/// \param __a
1883///    A 256-bit integer vector of [16 x i16].
1884/// \param __imm
1885///    An immediate integer operand with bits [3:0] determining which vector
1886///    element is extracted and returned.
1887/// \returns A 32-bit integer containing the extracted 16 bits of zero extended
1888///    packed data.
1889static __inline int __DEFAULT_FN_ATTRS
1890_mm256_extract_epi16(__m256i __a, const int __imm)
1891{
1892  __v16hi __b = (__v16hi)__a;
1893  return (unsigned short)__b[__imm & 15];
1894}
1895
1896/// \brief Takes a [32 x i8] vector and returns the vector element value
1897///    indexed by the immediate constant operand.
1898///
1899/// \headerfile <x86intrin.h>
1900///
1901/// This intrinsic corresponds to the \c VEXTRACTF128+COMPOSITE /
1902///    EXTRACTF128+COMPOSITE instruction.
1903///
1904/// \param __a
1905///    A 256-bit integer vector of [32 x i8].
1906/// \param __imm
1907///    An immediate integer operand with bits [4:0] determining which vector
1908///    element is extracted and returned.
1909/// \returns A 32-bit integer containing the extracted 8 bits of zero extended
1910///    packed data.
1911static __inline int __DEFAULT_FN_ATTRS
1912_mm256_extract_epi8(__m256i __a, const int __imm)
1913{
1914  __v32qi __b = (__v32qi)__a;
1915  return (unsigned char)__b[__imm & 31];
1916}
1917
1918#ifdef __x86_64__
1919/// \brief Takes a [4 x i64] vector and returns the vector element value
1920///    indexed by the immediate constant operand.
1921///
1922/// \headerfile <x86intrin.h>
1923///
1924/// This intrinsic corresponds to the \c VEXTRACTF128+COMPOSITE /
1925///    EXTRACTF128+COMPOSITE instruction.
1926///
1927/// \param __a
1928///    A 256-bit integer vector of [4 x i64].
1929/// \param __imm
1930///    An immediate integer operand with bits [1:0] determining which vector
1931///    element is extracted and returned.
1932/// \returns A 64-bit integer containing the extracted 64 bits of extended
1933///    packed data.
1934static __inline long long  __DEFAULT_FN_ATTRS
1935_mm256_extract_epi64(__m256i __a, const int __imm)
1936{
1937  __v4di __b = (__v4di)__a;
1938  return __b[__imm & 3];
1939}
1940#endif
1941
1942/// \brief Takes a [8 x i32] vector and replaces the vector element value
1943///    indexed by the immediate constant operand by a new value. Returns the
1944///    modified vector.
1945///
1946/// \headerfile <x86intrin.h>
1947///
1948/// This intrinsic corresponds to the \c VINSERTF128+COMPOSITE /
1949///    INSERTF128+COMPOSITE instruction.
1950///
1951/// \param __a
1952///    A vector of [8 x i32] to be used by the insert operation.
1953/// \param __b
1954///    An integer value. The replacement value for the insert operation.
1955/// \param __imm
1956///    An immediate integer specifying the index of the vector element to be
1957///    replaced.
1958/// \returns A copy of vector __a, after replacing its element indexed by __imm
1959///     with __b.
1960static __inline __m256i __DEFAULT_FN_ATTRS
1961_mm256_insert_epi32(__m256i __a, int __b, int const __imm)
1962{
1963  __v8si __c = (__v8si)__a;
1964  __c[__imm & 7] = __b;
1965  return (__m256i)__c;
1966}
1967
1968
1969/// \brief Takes a [16 x i16] vector and replaces the vector element value
1970///    indexed by the immediate constant operand with a new value. Returns the
1971///    modified vector.
1972///
1973/// \headerfile <x86intrin.h>
1974///
1975/// This intrinsic corresponds to the \c VINSERTF128+COMPOSITE /
1976///    INSERTF128+COMPOSITE instruction.
1977///
1978/// \param __a
1979///    A vector of [16 x i16] to be used by the insert operation.
1980/// \param __b
1981///    An i16 integer value. The replacement value for the insert operation.
1982/// \param __imm
1983///    An immediate integer specifying the index of the vector element to be
1984///    replaced.
1985/// \returns A copy of vector __a, after replacing its element indexed by __imm
1986///     with __b.
1987static __inline __m256i __DEFAULT_FN_ATTRS
1988_mm256_insert_epi16(__m256i __a, int __b, int const __imm)
1989{
1990  __v16hi __c = (__v16hi)__a;
1991  __c[__imm & 15] = __b;
1992  return (__m256i)__c;
1993}
1994
1995/// \brief Takes a [32 x i8] vector and replaces the vector element value
1996///    indexed by the immediate constant operand with a new value. Returns the
1997///    modified vector.
1998///
1999/// \headerfile <x86intrin.h>
2000///
2001/// This intrinsic corresponds to the \c VINSERTF128+COMPOSITE /
2002///    INSERTF128+COMPOSITE instruction.
2003///
2004/// \param __a
2005///    A vector of [32 x i8] to be used by the insert operation.
2006/// \param __b
2007///    An i8 integer value. The replacement value for the insert operation.
2008/// \param __imm
2009///    An immediate integer specifying the index of the vector element to be
2010///    replaced.
2011/// \returns A copy of vector __a, after replacing its element indexed by __imm
2012///    with __b.
2013static __inline __m256i __DEFAULT_FN_ATTRS
2014_mm256_insert_epi8(__m256i __a, int __b, int const __imm)
2015{
2016  __v32qi __c = (__v32qi)__a;
2017  __c[__imm & 31] = __b;
2018  return (__m256i)__c;
2019}
2020
2021#ifdef __x86_64__
2022/// \brief Takes a [4 x i64] vector and replaces the vector element value
2023///    indexed by the immediate constant operand with a new value. Returns the
2024///    modified vector.
2025///
2026/// \headerfile <x86intrin.h>
2027///
2028/// This intrinsic corresponds to the \c VINSERTF128+COMPOSITE /
2029///    INSERTF128+COMPOSITE instruction.
2030///
2031/// \param __a
2032///    A vector of [4 x i64] to be used by the insert operation.
2033/// \param __b
2034///    A 64-bit integer value. The replacement value for the insert operation.
2035/// \param __imm
2036///    An immediate integer specifying the index of the vector element to be
2037///    replaced.
2038/// \returns A copy of vector __a, after replacing its element indexed by __imm
2039///     with __b.
2040static __inline __m256i __DEFAULT_FN_ATTRS
2041_mm256_insert_epi64(__m256i __a, long long __b, int const __imm)
2042{
2043  __v4di __c = (__v4di)__a;
2044  __c[__imm & 3] = __b;
2045  return (__m256i)__c;
2046}
2047#endif
2048
2049/* Conversion */
2050/// \brief Converts a vector of [4 x i32] into a vector of [4 x double].
2051///
2052/// \headerfile <x86intrin.h>
2053///
2054/// This intrinsic corresponds to the \c VCVTDQ2PD / CVTDQ2PD instruction.
2055///
2056/// \param __a
2057///    A 128-bit integer vector of [4 x i32].
2058/// \returns A 256-bit vector of [4 x double] containing the converted values.
2059static __inline __m256d __DEFAULT_FN_ATTRS
2060_mm256_cvtepi32_pd(__m128i __a)
2061{
2062  return (__m256d)__builtin_convertvector((__v4si)__a, __v4df);
2063}
2064
2065/// \brief Converts a vector of [8 x i32] into a vector of [8 x float].
2066///
2067/// \headerfile <x86intrin.h>
2068///
2069/// This intrinsic corresponds to the \c VCVTDQ2PS / CVTDQ2PS instruction.
2070///
2071/// \param __a
2072///    A 256-bit integer vector.
2073/// \returns A 256-bit vector of [8 x float] containing the converted values.
2074static __inline __m256 __DEFAULT_FN_ATTRS
2075_mm256_cvtepi32_ps(__m256i __a)
2076{
2077  return (__m256)__builtin_ia32_cvtdq2ps256((__v8si) __a);
2078}
2079
2080/// \brief Converts a 256-bit vector of [4 x double] into a 128-bit vector of
2081///    [4 x float].
2082///
2083/// \headerfile <x86intrin.h>
2084///
2085/// This intrinsic corresponds to the \c VCVTPD2PS / CVTPD2PS instruction.
2086///
2087/// \param __a
2088///    A 256-bit vector of [4 x double].
2089/// \returns A 128-bit vector of [4 x float] containing the converted values.
2090static __inline __m128 __DEFAULT_FN_ATTRS
2091_mm256_cvtpd_ps(__m256d __a)
2092{
2093  return (__m128)__builtin_ia32_cvtpd2ps256((__v4df) __a);
2094}
2095
2096/// \brief Converts a vector of [8 x float] into a vector of [8 x i32].
2097///
2098/// \headerfile <x86intrin.h>
2099///
2100/// This intrinsic corresponds to the \c VCVTPS2DQ / CVTPS2DQ instruction.
2101///
2102/// \param __a
2103///    A 256-bit vector of [8 x float].
2104/// \returns A 256-bit integer vector containing the converted values.
2105static __inline __m256i __DEFAULT_FN_ATTRS
2106_mm256_cvtps_epi32(__m256 __a)
2107{
2108  return (__m256i)__builtin_ia32_cvtps2dq256((__v8sf) __a);
2109}
2110
2111static __inline __m256d __DEFAULT_FN_ATTRS
2112_mm256_cvtps_pd(__m128 __a)
2113{
2114  return (__m256d)__builtin_convertvector((__v4sf)__a, __v4df);
2115}
2116
2117static __inline __m128i __DEFAULT_FN_ATTRS
2118_mm256_cvttpd_epi32(__m256d __a)
2119{
2120  return (__m128i)__builtin_ia32_cvttpd2dq256((__v4df) __a);
2121}
2122
2123static __inline __m128i __DEFAULT_FN_ATTRS
2124_mm256_cvtpd_epi32(__m256d __a)
2125{
2126  return (__m128i)__builtin_ia32_cvtpd2dq256((__v4df) __a);
2127}
2128
2129static __inline __m256i __DEFAULT_FN_ATTRS
2130_mm256_cvttps_epi32(__m256 __a)
2131{
2132  return (__m256i)__builtin_ia32_cvttps2dq256((__v8sf) __a);
2133}
2134
2135static __inline double __DEFAULT_FN_ATTRS
2136_mm256_cvtsd_f64(__m256d __a)
2137{
2138 return __a[0];
2139}
2140
2141static __inline int __DEFAULT_FN_ATTRS
2142_mm256_cvtsi256_si32(__m256i __a)
2143{
2144 __v8si __b = (__v8si)__a;
2145 return __b[0];
2146}
2147
2148static __inline float __DEFAULT_FN_ATTRS
2149_mm256_cvtss_f32(__m256 __a)
2150{
2151 return __a[0];
2152}
2153
2154/* Vector replicate */
2155static __inline __m256 __DEFAULT_FN_ATTRS
2156_mm256_movehdup_ps(__m256 __a)
2157{
2158  return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 1, 1, 3, 3, 5, 5, 7, 7);
2159}
2160
2161static __inline __m256 __DEFAULT_FN_ATTRS
2162_mm256_moveldup_ps(__m256 __a)
2163{
2164  return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 0, 2, 2, 4, 4, 6, 6);
2165}
2166
2167static __inline __m256d __DEFAULT_FN_ATTRS
2168_mm256_movedup_pd(__m256d __a)
2169{
2170  return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 0, 2, 2);
2171}
2172
2173/* Unpack and Interleave */
2174static __inline __m256d __DEFAULT_FN_ATTRS
2175_mm256_unpackhi_pd(__m256d __a, __m256d __b)
2176{
2177  return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 1, 5, 1+2, 5+2);
2178}
2179
2180static __inline __m256d __DEFAULT_FN_ATTRS
2181_mm256_unpacklo_pd(__m256d __a, __m256d __b)
2182{
2183  return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 0, 4, 0+2, 4+2);
2184}
2185
2186static __inline __m256 __DEFAULT_FN_ATTRS
2187_mm256_unpackhi_ps(__m256 __a, __m256 __b)
2188{
2189  return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 2, 10, 2+1, 10+1, 6, 14, 6+1, 14+1);
2190}
2191
2192static __inline __m256 __DEFAULT_FN_ATTRS
2193_mm256_unpacklo_ps(__m256 __a, __m256 __b)
2194{
2195  return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 0, 8, 0+1, 8+1, 4, 12, 4+1, 12+1);
2196}
2197
2198/* Bit Test */
2199static __inline int __DEFAULT_FN_ATTRS
2200_mm_testz_pd(__m128d __a, __m128d __b)
2201{
2202  return __builtin_ia32_vtestzpd((__v2df)__a, (__v2df)__b);
2203}
2204
2205static __inline int __DEFAULT_FN_ATTRS
2206_mm_testc_pd(__m128d __a, __m128d __b)
2207{
2208  return __builtin_ia32_vtestcpd((__v2df)__a, (__v2df)__b);
2209}
2210
2211static __inline int __DEFAULT_FN_ATTRS
2212_mm_testnzc_pd(__m128d __a, __m128d __b)
2213{
2214  return __builtin_ia32_vtestnzcpd((__v2df)__a, (__v2df)__b);
2215}
2216
2217static __inline int __DEFAULT_FN_ATTRS
2218_mm_testz_ps(__m128 __a, __m128 __b)
2219{
2220  return __builtin_ia32_vtestzps((__v4sf)__a, (__v4sf)__b);
2221}
2222
2223static __inline int __DEFAULT_FN_ATTRS
2224_mm_testc_ps(__m128 __a, __m128 __b)
2225{
2226  return __builtin_ia32_vtestcps((__v4sf)__a, (__v4sf)__b);
2227}
2228
2229static __inline int __DEFAULT_FN_ATTRS
2230_mm_testnzc_ps(__m128 __a, __m128 __b)
2231{
2232  return __builtin_ia32_vtestnzcps((__v4sf)__a, (__v4sf)__b);
2233}
2234
2235static __inline int __DEFAULT_FN_ATTRS
2236_mm256_testz_pd(__m256d __a, __m256d __b)
2237{
2238  return __builtin_ia32_vtestzpd256((__v4df)__a, (__v4df)__b);
2239}
2240
2241static __inline int __DEFAULT_FN_ATTRS
2242_mm256_testc_pd(__m256d __a, __m256d __b)
2243{
2244  return __builtin_ia32_vtestcpd256((__v4df)__a, (__v4df)__b);
2245}
2246
2247static __inline int __DEFAULT_FN_ATTRS
2248_mm256_testnzc_pd(__m256d __a, __m256d __b)
2249{
2250  return __builtin_ia32_vtestnzcpd256((__v4df)__a, (__v4df)__b);
2251}
2252
2253static __inline int __DEFAULT_FN_ATTRS
2254_mm256_testz_ps(__m256 __a, __m256 __b)
2255{
2256  return __builtin_ia32_vtestzps256((__v8sf)__a, (__v8sf)__b);
2257}
2258
2259static __inline int __DEFAULT_FN_ATTRS
2260_mm256_testc_ps(__m256 __a, __m256 __b)
2261{
2262  return __builtin_ia32_vtestcps256((__v8sf)__a, (__v8sf)__b);
2263}
2264
2265static __inline int __DEFAULT_FN_ATTRS
2266_mm256_testnzc_ps(__m256 __a, __m256 __b)
2267{
2268  return __builtin_ia32_vtestnzcps256((__v8sf)__a, (__v8sf)__b);
2269}
2270
2271static __inline int __DEFAULT_FN_ATTRS
2272_mm256_testz_si256(__m256i __a, __m256i __b)
2273{
2274  return __builtin_ia32_ptestz256((__v4di)__a, (__v4di)__b);
2275}
2276
2277static __inline int __DEFAULT_FN_ATTRS
2278_mm256_testc_si256(__m256i __a, __m256i __b)
2279{
2280  return __builtin_ia32_ptestc256((__v4di)__a, (__v4di)__b);
2281}
2282
2283static __inline int __DEFAULT_FN_ATTRS
2284_mm256_testnzc_si256(__m256i __a, __m256i __b)
2285{
2286  return __builtin_ia32_ptestnzc256((__v4di)__a, (__v4di)__b);
2287}
2288
2289/* Vector extract sign mask */
2290static __inline int __DEFAULT_FN_ATTRS
2291_mm256_movemask_pd(__m256d __a)
2292{
2293  return __builtin_ia32_movmskpd256((__v4df)__a);
2294}
2295
2296static __inline int __DEFAULT_FN_ATTRS
2297_mm256_movemask_ps(__m256 __a)
2298{
2299  return __builtin_ia32_movmskps256((__v8sf)__a);
2300}
2301
2302/* Vector __zero */
2303static __inline void __DEFAULT_FN_ATTRS
2304_mm256_zeroall(void)
2305{
2306  __builtin_ia32_vzeroall();
2307}
2308
2309static __inline void __DEFAULT_FN_ATTRS
2310_mm256_zeroupper(void)
2311{
2312  __builtin_ia32_vzeroupper();
2313}
2314
2315/* Vector load with broadcast */
2316static __inline __m128 __DEFAULT_FN_ATTRS
2317_mm_broadcast_ss(float const *__a)
2318{
2319  float __f = *__a;
2320  return (__m128)(__v4sf){ __f, __f, __f, __f };
2321}
2322
2323static __inline __m256d __DEFAULT_FN_ATTRS
2324_mm256_broadcast_sd(double const *__a)
2325{
2326  double __d = *__a;
2327  return (__m256d)(__v4df){ __d, __d, __d, __d };
2328}
2329
2330static __inline __m256 __DEFAULT_FN_ATTRS
2331_mm256_broadcast_ss(float const *__a)
2332{
2333  float __f = *__a;
2334  return (__m256)(__v8sf){ __f, __f, __f, __f, __f, __f, __f, __f };
2335}
2336
2337static __inline __m256d __DEFAULT_FN_ATTRS
2338_mm256_broadcast_pd(__m128d const *__a)
2339{
2340  return (__m256d)__builtin_ia32_vbroadcastf128_pd256((__v2df const *)__a);
2341}
2342
2343static __inline __m256 __DEFAULT_FN_ATTRS
2344_mm256_broadcast_ps(__m128 const *__a)
2345{
2346  return (__m256)__builtin_ia32_vbroadcastf128_ps256((__v4sf const *)__a);
2347}
2348
2349/* SIMD load ops */
2350static __inline __m256d __DEFAULT_FN_ATTRS
2351_mm256_load_pd(double const *__p)
2352{
2353  return *(__m256d *)__p;
2354}
2355
2356static __inline __m256 __DEFAULT_FN_ATTRS
2357_mm256_load_ps(float const *__p)
2358{
2359  return *(__m256 *)__p;
2360}
2361
2362static __inline __m256d __DEFAULT_FN_ATTRS
2363_mm256_loadu_pd(double const *__p)
2364{
2365  struct __loadu_pd {
2366    __m256d __v;
2367  } __attribute__((__packed__, __may_alias__));
2368  return ((struct __loadu_pd*)__p)->__v;
2369}
2370
2371static __inline __m256 __DEFAULT_FN_ATTRS
2372_mm256_loadu_ps(float const *__p)
2373{
2374  struct __loadu_ps {
2375    __m256 __v;
2376  } __attribute__((__packed__, __may_alias__));
2377  return ((struct __loadu_ps*)__p)->__v;
2378}
2379
2380static __inline __m256i __DEFAULT_FN_ATTRS
2381_mm256_load_si256(__m256i const *__p)
2382{
2383  return *__p;
2384}
2385
2386static __inline __m256i __DEFAULT_FN_ATTRS
2387_mm256_loadu_si256(__m256i const *__p)
2388{
2389  struct __loadu_si256 {
2390    __m256i __v;
2391  } __attribute__((__packed__, __may_alias__));
2392  return ((struct __loadu_si256*)__p)->__v;
2393}
2394
2395static __inline __m256i __DEFAULT_FN_ATTRS
2396_mm256_lddqu_si256(__m256i const *__p)
2397{
2398  return (__m256i)__builtin_ia32_lddqu256((char const *)__p);
2399}
2400
2401/* SIMD store ops */
2402static __inline void __DEFAULT_FN_ATTRS
2403_mm256_store_pd(double *__p, __m256d __a)
2404{
2405  *(__m256d *)__p = __a;
2406}
2407
2408static __inline void __DEFAULT_FN_ATTRS
2409_mm256_store_ps(float *__p, __m256 __a)
2410{
2411  *(__m256 *)__p = __a;
2412}
2413
2414static __inline void __DEFAULT_FN_ATTRS
2415_mm256_storeu_pd(double *__p, __m256d __a)
2416{
2417  struct __storeu_pd {
2418    __m256d __v;
2419  } __attribute__((__packed__, __may_alias__));
2420  ((struct __storeu_pd*)__p)->__v = __a;
2421}
2422
2423static __inline void __DEFAULT_FN_ATTRS
2424_mm256_storeu_ps(float *__p, __m256 __a)
2425{
2426  struct __storeu_ps {
2427    __m256 __v;
2428  } __attribute__((__packed__, __may_alias__));
2429  ((struct __storeu_ps*)__p)->__v = __a;
2430}
2431
2432static __inline void __DEFAULT_FN_ATTRS
2433_mm256_store_si256(__m256i *__p, __m256i __a)
2434{
2435  *__p = __a;
2436}
2437
2438static __inline void __DEFAULT_FN_ATTRS
2439_mm256_storeu_si256(__m256i *__p, __m256i __a)
2440{
2441  struct __storeu_si256 {
2442    __m256i __v;
2443  } __attribute__((__packed__, __may_alias__));
2444  ((struct __storeu_si256*)__p)->__v = __a;
2445}
2446
2447/* Conditional load ops */
2448static __inline __m128d __DEFAULT_FN_ATTRS
2449_mm_maskload_pd(double const *__p, __m128i __m)
2450{
2451  return (__m128d)__builtin_ia32_maskloadpd((const __v2df *)__p, (__v2di)__m);
2452}
2453
2454static __inline __m256d __DEFAULT_FN_ATTRS
2455_mm256_maskload_pd(double const *__p, __m256i __m)
2456{
2457  return (__m256d)__builtin_ia32_maskloadpd256((const __v4df *)__p,
2458                                               (__v4di)__m);
2459}
2460
2461static __inline __m128 __DEFAULT_FN_ATTRS
2462_mm_maskload_ps(float const *__p, __m128i __m)
2463{
2464  return (__m128)__builtin_ia32_maskloadps((const __v4sf *)__p, (__v4si)__m);
2465}
2466
2467static __inline __m256 __DEFAULT_FN_ATTRS
2468_mm256_maskload_ps(float const *__p, __m256i __m)
2469{
2470  return (__m256)__builtin_ia32_maskloadps256((const __v8sf *)__p, (__v8si)__m);
2471}
2472
2473/* Conditional store ops */
2474static __inline void __DEFAULT_FN_ATTRS
2475_mm256_maskstore_ps(float *__p, __m256i __m, __m256 __a)
2476{
2477  __builtin_ia32_maskstoreps256((__v8sf *)__p, (__v8si)__m, (__v8sf)__a);
2478}
2479
2480static __inline void __DEFAULT_FN_ATTRS
2481_mm_maskstore_pd(double *__p, __m128i __m, __m128d __a)
2482{
2483  __builtin_ia32_maskstorepd((__v2df *)__p, (__v2di)__m, (__v2df)__a);
2484}
2485
2486static __inline void __DEFAULT_FN_ATTRS
2487_mm256_maskstore_pd(double *__p, __m256i __m, __m256d __a)
2488{
2489  __builtin_ia32_maskstorepd256((__v4df *)__p, (__v4di)__m, (__v4df)__a);
2490}
2491
2492static __inline void __DEFAULT_FN_ATTRS
2493_mm_maskstore_ps(float *__p, __m128i __m, __m128 __a)
2494{
2495  __builtin_ia32_maskstoreps((__v4sf *)__p, (__v4si)__m, (__v4sf)__a);
2496}
2497
2498/* Cacheability support ops */
2499static __inline void __DEFAULT_FN_ATTRS
2500_mm256_stream_si256(__m256i *__a, __m256i __b)
2501{
2502  __builtin_nontemporal_store((__v4di)__b, (__v4di*)__a);
2503}
2504
2505static __inline void __DEFAULT_FN_ATTRS
2506_mm256_stream_pd(double *__a, __m256d __b)
2507{
2508  __builtin_nontemporal_store((__v4df)__b, (__v4df*)__a);
2509}
2510
2511static __inline void __DEFAULT_FN_ATTRS
2512_mm256_stream_ps(float *__p, __m256 __a)
2513{
2514  __builtin_nontemporal_store((__v8sf)__a, (__v8sf*)__p);
2515}
2516
2517/* Create vectors */
2518static __inline__ __m256d __DEFAULT_FN_ATTRS
2519_mm256_undefined_pd(void)
2520{
2521  return (__m256d)__builtin_ia32_undef256();
2522}
2523
2524static __inline__ __m256 __DEFAULT_FN_ATTRS
2525_mm256_undefined_ps(void)
2526{
2527  return (__m256)__builtin_ia32_undef256();
2528}
2529
2530static __inline__ __m256i __DEFAULT_FN_ATTRS
2531_mm256_undefined_si256(void)
2532{
2533  return (__m256i)__builtin_ia32_undef256();
2534}
2535
2536static __inline __m256d __DEFAULT_FN_ATTRS
2537_mm256_set_pd(double __a, double __b, double __c, double __d)
2538{
2539  return (__m256d){ __d, __c, __b, __a };
2540}
2541
2542static __inline __m256 __DEFAULT_FN_ATTRS
2543_mm256_set_ps(float __a, float __b, float __c, float __d,
2544              float __e, float __f, float __g, float __h)
2545{
2546  return (__m256){ __h, __g, __f, __e, __d, __c, __b, __a };
2547}
2548
2549static __inline __m256i __DEFAULT_FN_ATTRS
2550_mm256_set_epi32(int __i0, int __i1, int __i2, int __i3,
2551                 int __i4, int __i5, int __i6, int __i7)
2552{
2553  return (__m256i)(__v8si){ __i7, __i6, __i5, __i4, __i3, __i2, __i1, __i0 };
2554}
2555
2556static __inline __m256i __DEFAULT_FN_ATTRS
2557_mm256_set_epi16(short __w15, short __w14, short __w13, short __w12,
2558                 short __w11, short __w10, short __w09, short __w08,
2559                 short __w07, short __w06, short __w05, short __w04,
2560                 short __w03, short __w02, short __w01, short __w00)
2561{
2562  return (__m256i)(__v16hi){ __w00, __w01, __w02, __w03, __w04, __w05, __w06,
2563    __w07, __w08, __w09, __w10, __w11, __w12, __w13, __w14, __w15 };
2564}
2565
2566static __inline __m256i __DEFAULT_FN_ATTRS
2567_mm256_set_epi8(char __b31, char __b30, char __b29, char __b28,
2568                char __b27, char __b26, char __b25, char __b24,
2569                char __b23, char __b22, char __b21, char __b20,
2570                char __b19, char __b18, char __b17, char __b16,
2571                char __b15, char __b14, char __b13, char __b12,
2572                char __b11, char __b10, char __b09, char __b08,
2573                char __b07, char __b06, char __b05, char __b04,
2574                char __b03, char __b02, char __b01, char __b00)
2575{
2576  return (__m256i)(__v32qi){
2577    __b00, __b01, __b02, __b03, __b04, __b05, __b06, __b07,
2578    __b08, __b09, __b10, __b11, __b12, __b13, __b14, __b15,
2579    __b16, __b17, __b18, __b19, __b20, __b21, __b22, __b23,
2580    __b24, __b25, __b26, __b27, __b28, __b29, __b30, __b31
2581  };
2582}
2583
2584static __inline __m256i __DEFAULT_FN_ATTRS
2585_mm256_set_epi64x(long long __a, long long __b, long long __c, long long __d)
2586{
2587  return (__m256i)(__v4di){ __d, __c, __b, __a };
2588}
2589
2590/* Create vectors with elements in reverse order */
2591static __inline __m256d __DEFAULT_FN_ATTRS
2592_mm256_setr_pd(double __a, double __b, double __c, double __d)
2593{
2594  return (__m256d){ __a, __b, __c, __d };
2595}
2596
2597static __inline __m256 __DEFAULT_FN_ATTRS
2598_mm256_setr_ps(float __a, float __b, float __c, float __d,
2599               float __e, float __f, float __g, float __h)
2600{
2601  return (__m256){ __a, __b, __c, __d, __e, __f, __g, __h };
2602}
2603
2604static __inline __m256i __DEFAULT_FN_ATTRS
2605_mm256_setr_epi32(int __i0, int __i1, int __i2, int __i3,
2606                  int __i4, int __i5, int __i6, int __i7)
2607{
2608  return (__m256i)(__v8si){ __i0, __i1, __i2, __i3, __i4, __i5, __i6, __i7 };
2609}
2610
2611static __inline __m256i __DEFAULT_FN_ATTRS
2612_mm256_setr_epi16(short __w15, short __w14, short __w13, short __w12,
2613       short __w11, short __w10, short __w09, short __w08,
2614       short __w07, short __w06, short __w05, short __w04,
2615       short __w03, short __w02, short __w01, short __w00)
2616{
2617  return (__m256i)(__v16hi){ __w15, __w14, __w13, __w12, __w11, __w10, __w09,
2618    __w08, __w07, __w06, __w05, __w04, __w03, __w02, __w01, __w00 };
2619}
2620
2621static __inline __m256i __DEFAULT_FN_ATTRS
2622_mm256_setr_epi8(char __b31, char __b30, char __b29, char __b28,
2623                 char __b27, char __b26, char __b25, char __b24,
2624                 char __b23, char __b22, char __b21, char __b20,
2625                 char __b19, char __b18, char __b17, char __b16,
2626                 char __b15, char __b14, char __b13, char __b12,
2627                 char __b11, char __b10, char __b09, char __b08,
2628                 char __b07, char __b06, char __b05, char __b04,
2629                 char __b03, char __b02, char __b01, char __b00)
2630{
2631  return (__m256i)(__v32qi){
2632    __b31, __b30, __b29, __b28, __b27, __b26, __b25, __b24,
2633    __b23, __b22, __b21, __b20, __b19, __b18, __b17, __b16,
2634    __b15, __b14, __b13, __b12, __b11, __b10, __b09, __b08,
2635    __b07, __b06, __b05, __b04, __b03, __b02, __b01, __b00 };
2636}
2637
2638static __inline __m256i __DEFAULT_FN_ATTRS
2639_mm256_setr_epi64x(long long __a, long long __b, long long __c, long long __d)
2640{
2641  return (__m256i)(__v4di){ __a, __b, __c, __d };
2642}
2643
2644/* Create vectors with repeated elements */
2645static __inline __m256d __DEFAULT_FN_ATTRS
2646_mm256_set1_pd(double __w)
2647{
2648  return (__m256d){ __w, __w, __w, __w };
2649}
2650
2651static __inline __m256 __DEFAULT_FN_ATTRS
2652_mm256_set1_ps(float __w)
2653{
2654  return (__m256){ __w, __w, __w, __w, __w, __w, __w, __w };
2655}
2656
2657static __inline __m256i __DEFAULT_FN_ATTRS
2658_mm256_set1_epi32(int __i)
2659{
2660  return (__m256i)(__v8si){ __i, __i, __i, __i, __i, __i, __i, __i };
2661}
2662
2663static __inline __m256i __DEFAULT_FN_ATTRS
2664_mm256_set1_epi16(short __w)
2665{
2666  return (__m256i)(__v16hi){ __w, __w, __w, __w, __w, __w, __w, __w, __w, __w,
2667    __w, __w, __w, __w, __w, __w };
2668}
2669
2670static __inline __m256i __DEFAULT_FN_ATTRS
2671_mm256_set1_epi8(char __b)
2672{
2673  return (__m256i)(__v32qi){ __b, __b, __b, __b, __b, __b, __b, __b, __b, __b,
2674    __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b,
2675    __b, __b, __b, __b, __b, __b, __b };
2676}
2677
2678static __inline __m256i __DEFAULT_FN_ATTRS
2679_mm256_set1_epi64x(long long __q)
2680{
2681  return (__m256i)(__v4di){ __q, __q, __q, __q };
2682}
2683
2684/* Create __zeroed vectors */
2685static __inline __m256d __DEFAULT_FN_ATTRS
2686_mm256_setzero_pd(void)
2687{
2688  return (__m256d){ 0, 0, 0, 0 };
2689}
2690
2691static __inline __m256 __DEFAULT_FN_ATTRS
2692_mm256_setzero_ps(void)
2693{
2694  return (__m256){ 0, 0, 0, 0, 0, 0, 0, 0 };
2695}
2696
2697static __inline __m256i __DEFAULT_FN_ATTRS
2698_mm256_setzero_si256(void)
2699{
2700  return (__m256i){ 0LL, 0LL, 0LL, 0LL };
2701}
2702
2703/* Cast between vector types */
2704static __inline __m256 __DEFAULT_FN_ATTRS
2705_mm256_castpd_ps(__m256d __a)
2706{
2707  return (__m256)__a;
2708}
2709
2710static __inline __m256i __DEFAULT_FN_ATTRS
2711_mm256_castpd_si256(__m256d __a)
2712{
2713  return (__m256i)__a;
2714}
2715
2716static __inline __m256d __DEFAULT_FN_ATTRS
2717_mm256_castps_pd(__m256 __a)
2718{
2719  return (__m256d)__a;
2720}
2721
2722static __inline __m256i __DEFAULT_FN_ATTRS
2723_mm256_castps_si256(__m256 __a)
2724{
2725  return (__m256i)__a;
2726}
2727
2728static __inline __m256 __DEFAULT_FN_ATTRS
2729_mm256_castsi256_ps(__m256i __a)
2730{
2731  return (__m256)__a;
2732}
2733
2734static __inline __m256d __DEFAULT_FN_ATTRS
2735_mm256_castsi256_pd(__m256i __a)
2736{
2737  return (__m256d)__a;
2738}
2739
2740static __inline __m128d __DEFAULT_FN_ATTRS
2741_mm256_castpd256_pd128(__m256d __a)
2742{
2743  return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 1);
2744}
2745
2746static __inline __m128 __DEFAULT_FN_ATTRS
2747_mm256_castps256_ps128(__m256 __a)
2748{
2749  return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 1, 2, 3);
2750}
2751
2752static __inline __m128i __DEFAULT_FN_ATTRS
2753_mm256_castsi256_si128(__m256i __a)
2754{
2755  return __builtin_shufflevector((__v4di)__a, (__v4di)__a, 0, 1);
2756}
2757
2758static __inline __m256d __DEFAULT_FN_ATTRS
2759_mm256_castpd128_pd256(__m128d __a)
2760{
2761  return __builtin_shufflevector((__v2df)__a, (__v2df)__a, 0, 1, -1, -1);
2762}
2763
2764static __inline __m256 __DEFAULT_FN_ATTRS
2765_mm256_castps128_ps256(__m128 __a)
2766{
2767  return __builtin_shufflevector((__v4sf)__a, (__v4sf)__a, 0, 1, 2, 3, -1, -1, -1, -1);
2768}
2769
2770static __inline __m256i __DEFAULT_FN_ATTRS
2771_mm256_castsi128_si256(__m128i __a)
2772{
2773  return __builtin_shufflevector((__v2di)__a, (__v2di)__a, 0, 1, -1, -1);
2774}
2775
2776/*
2777   Vector insert.
2778   We use macros rather than inlines because we only want to accept
2779   invocations where the immediate M is a constant expression.
2780*/
2781#define _mm256_insertf128_ps(V1, V2, M) __extension__ ({ \
2782  (__m256)__builtin_shufflevector( \
2783    (__v8sf)(__m256)(V1), \
2784    (__v8sf)_mm256_castps128_ps256((__m128)(V2)), \
2785    (((M) & 1) ?  0 :  8), \
2786    (((M) & 1) ?  1 :  9), \
2787    (((M) & 1) ?  2 : 10), \
2788    (((M) & 1) ?  3 : 11), \
2789    (((M) & 1) ?  8 :  4), \
2790    (((M) & 1) ?  9 :  5), \
2791    (((M) & 1) ? 10 :  6), \
2792    (((M) & 1) ? 11 :  7) );})
2793
2794#define _mm256_insertf128_pd(V1, V2, M) __extension__ ({ \
2795  (__m256d)__builtin_shufflevector( \
2796    (__v4df)(__m256d)(V1), \
2797    (__v4df)_mm256_castpd128_pd256((__m128d)(V2)), \
2798    (((M) & 1) ? 0 : 4), \
2799    (((M) & 1) ? 1 : 5), \
2800    (((M) & 1) ? 4 : 2), \
2801    (((M) & 1) ? 5 : 3) );})
2802
2803#define _mm256_insertf128_si256(V1, V2, M) __extension__ ({ \
2804  (__m256i)__builtin_shufflevector( \
2805    (__v4di)(__m256i)(V1), \
2806    (__v4di)_mm256_castsi128_si256((__m128i)(V2)), \
2807    (((M) & 1) ? 0 : 4), \
2808    (((M) & 1) ? 1 : 5), \
2809    (((M) & 1) ? 4 : 2), \
2810    (((M) & 1) ? 5 : 3) );})
2811
2812/*
2813   Vector extract.
2814   We use macros rather than inlines because we only want to accept
2815   invocations where the immediate M is a constant expression.
2816*/
2817#define _mm256_extractf128_ps(V, M) __extension__ ({ \
2818  (__m128)__builtin_shufflevector( \
2819    (__v8sf)(__m256)(V), \
2820    (__v8sf)(_mm256_undefined_ps()), \
2821    (((M) & 1) ? 4 : 0), \
2822    (((M) & 1) ? 5 : 1), \
2823    (((M) & 1) ? 6 : 2), \
2824    (((M) & 1) ? 7 : 3) );})
2825
2826#define _mm256_extractf128_pd(V, M) __extension__ ({ \
2827  (__m128d)__builtin_shufflevector( \
2828    (__v4df)(__m256d)(V), \
2829    (__v4df)(_mm256_undefined_pd()), \
2830    (((M) & 1) ? 2 : 0), \
2831    (((M) & 1) ? 3 : 1) );})
2832
2833#define _mm256_extractf128_si256(V, M) __extension__ ({ \
2834  (__m128i)__builtin_shufflevector( \
2835    (__v4di)(__m256i)(V), \
2836    (__v4di)(_mm256_undefined_si256()), \
2837    (((M) & 1) ? 2 : 0), \
2838    (((M) & 1) ? 3 : 1) );})
2839
2840/* SIMD load ops (unaligned) */
2841static __inline __m256 __DEFAULT_FN_ATTRS
2842_mm256_loadu2_m128(float const *__addr_hi, float const *__addr_lo)
2843{
2844  __m256 __v256 = _mm256_castps128_ps256(_mm_loadu_ps(__addr_lo));
2845  return _mm256_insertf128_ps(__v256, _mm_loadu_ps(__addr_hi), 1);
2846}
2847
2848static __inline __m256d __DEFAULT_FN_ATTRS
2849_mm256_loadu2_m128d(double const *__addr_hi, double const *__addr_lo)
2850{
2851  __m256d __v256 = _mm256_castpd128_pd256(_mm_loadu_pd(__addr_lo));
2852  return _mm256_insertf128_pd(__v256, _mm_loadu_pd(__addr_hi), 1);
2853}
2854
2855static __inline __m256i __DEFAULT_FN_ATTRS
2856_mm256_loadu2_m128i(__m128i const *__addr_hi, __m128i const *__addr_lo)
2857{
2858  __m256i __v256 = _mm256_castsi128_si256(_mm_loadu_si128(__addr_lo));
2859  return _mm256_insertf128_si256(__v256, _mm_loadu_si128(__addr_hi), 1);
2860}
2861
2862/* SIMD store ops (unaligned) */
2863static __inline void __DEFAULT_FN_ATTRS
2864_mm256_storeu2_m128(float *__addr_hi, float *__addr_lo, __m256 __a)
2865{
2866  __m128 __v128;
2867
2868  __v128 = _mm256_castps256_ps128(__a);
2869  _mm_storeu_ps(__addr_lo, __v128);
2870  __v128 = _mm256_extractf128_ps(__a, 1);
2871  _mm_storeu_ps(__addr_hi, __v128);
2872}
2873
2874static __inline void __DEFAULT_FN_ATTRS
2875_mm256_storeu2_m128d(double *__addr_hi, double *__addr_lo, __m256d __a)
2876{
2877  __m128d __v128;
2878
2879  __v128 = _mm256_castpd256_pd128(__a);
2880  _mm_storeu_pd(__addr_lo, __v128);
2881  __v128 = _mm256_extractf128_pd(__a, 1);
2882  _mm_storeu_pd(__addr_hi, __v128);
2883}
2884
2885static __inline void __DEFAULT_FN_ATTRS
2886_mm256_storeu2_m128i(__m128i *__addr_hi, __m128i *__addr_lo, __m256i __a)
2887{
2888  __m128i __v128;
2889
2890  __v128 = _mm256_castsi256_si128(__a);
2891  _mm_storeu_si128(__addr_lo, __v128);
2892  __v128 = _mm256_extractf128_si256(__a, 1);
2893  _mm_storeu_si128(__addr_hi, __v128);
2894}
2895
2896static __inline __m256 __DEFAULT_FN_ATTRS
2897_mm256_set_m128 (__m128 __hi, __m128 __lo) {
2898  return (__m256) __builtin_shufflevector((__v4sf)__lo, (__v4sf)__hi, 0, 1, 2, 3, 4, 5, 6, 7);
2899}
2900
2901static __inline __m256d __DEFAULT_FN_ATTRS
2902_mm256_set_m128d (__m128d __hi, __m128d __lo) {
2903  return (__m256d)_mm256_set_m128((__m128)__hi, (__m128)__lo);
2904}
2905
2906static __inline __m256i __DEFAULT_FN_ATTRS
2907_mm256_set_m128i (__m128i __hi, __m128i __lo) {
2908  return (__m256i)_mm256_set_m128((__m128)__hi, (__m128)__lo);
2909}
2910
2911static __inline __m256 __DEFAULT_FN_ATTRS
2912_mm256_setr_m128 (__m128 __lo, __m128 __hi) {
2913  return _mm256_set_m128(__hi, __lo);
2914}
2915
2916static __inline __m256d __DEFAULT_FN_ATTRS
2917_mm256_setr_m128d (__m128d __lo, __m128d __hi) {
2918  return (__m256d)_mm256_set_m128((__m128)__hi, (__m128)__lo);
2919}
2920
2921static __inline __m256i __DEFAULT_FN_ATTRS
2922_mm256_setr_m128i (__m128i __lo, __m128i __hi) {
2923  return (__m256i)_mm256_set_m128((__m128)__hi, (__m128)__lo);
2924}
2925
2926#undef __DEFAULT_FN_ATTRS
2927
2928#endif /* __AVXINTRIN_H */
2929