CodeGenModule.cpp revision 363496
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This coordinates the per-module state used while generating code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CodeGenModule.h"
14#include "CGBlocks.h"
15#include "CGCUDARuntime.h"
16#include "CGCXXABI.h"
17#include "CGCall.h"
18#include "CGDebugInfo.h"
19#include "CGObjCRuntime.h"
20#include "CGOpenCLRuntime.h"
21#include "CGOpenMPRuntime.h"
22#include "CGOpenMPRuntimeNVPTX.h"
23#include "CodeGenFunction.h"
24#include "CodeGenPGO.h"
25#include "ConstantEmitter.h"
26#include "CoverageMappingGen.h"
27#include "TargetInfo.h"
28#include "clang/AST/ASTContext.h"
29#include "clang/AST/CharUnits.h"
30#include "clang/AST/DeclCXX.h"
31#include "clang/AST/DeclObjC.h"
32#include "clang/AST/DeclTemplate.h"
33#include "clang/AST/Mangle.h"
34#include "clang/AST/RecordLayout.h"
35#include "clang/AST/RecursiveASTVisitor.h"
36#include "clang/AST/StmtVisitor.h"
37#include "clang/Basic/Builtins.h"
38#include "clang/Basic/CharInfo.h"
39#include "clang/Basic/CodeGenOptions.h"
40#include "clang/Basic/Diagnostic.h"
41#include "clang/Basic/Module.h"
42#include "clang/Basic/SourceManager.h"
43#include "clang/Basic/TargetInfo.h"
44#include "clang/Basic/Version.h"
45#include "clang/CodeGen/ConstantInitBuilder.h"
46#include "clang/Frontend/FrontendDiagnostic.h"
47#include "llvm/ADT/StringSwitch.h"
48#include "llvm/ADT/Triple.h"
49#include "llvm/Analysis/TargetLibraryInfo.h"
50#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
51#include "llvm/IR/CallingConv.h"
52#include "llvm/IR/DataLayout.h"
53#include "llvm/IR/Intrinsics.h"
54#include "llvm/IR/LLVMContext.h"
55#include "llvm/IR/Module.h"
56#include "llvm/IR/ProfileSummary.h"
57#include "llvm/ProfileData/InstrProfReader.h"
58#include "llvm/Support/CodeGen.h"
59#include "llvm/Support/CommandLine.h"
60#include "llvm/Support/ConvertUTF.h"
61#include "llvm/Support/ErrorHandling.h"
62#include "llvm/Support/MD5.h"
63#include "llvm/Support/TimeProfiler.h"
64
65using namespace clang;
66using namespace CodeGen;
67
68static llvm::cl::opt<bool> LimitedCoverage(
69    "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
70    llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
71    llvm::cl::init(false));
72
73static const char AnnotationSection[] = "llvm.metadata";
74
75static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
76  switch (CGM.getTarget().getCXXABI().getKind()) {
77  case TargetCXXABI::Fuchsia:
78  case TargetCXXABI::GenericAArch64:
79  case TargetCXXABI::GenericARM:
80  case TargetCXXABI::iOS:
81  case TargetCXXABI::iOS64:
82  case TargetCXXABI::WatchOS:
83  case TargetCXXABI::GenericMIPS:
84  case TargetCXXABI::GenericItanium:
85  case TargetCXXABI::WebAssembly:
86    return CreateItaniumCXXABI(CGM);
87  case TargetCXXABI::Microsoft:
88    return CreateMicrosoftCXXABI(CGM);
89  }
90
91  llvm_unreachable("invalid C++ ABI kind");
92}
93
94CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
95                             const PreprocessorOptions &PPO,
96                             const CodeGenOptions &CGO, llvm::Module &M,
97                             DiagnosticsEngine &diags,
98                             CoverageSourceInfo *CoverageInfo)
99    : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
100      PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
101      Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
102      VMContext(M.getContext()), Types(*this), VTables(*this),
103      SanitizerMD(new SanitizerMetadata(*this)) {
104
105  // Initialize the type cache.
106  llvm::LLVMContext &LLVMContext = M.getContext();
107  VoidTy = llvm::Type::getVoidTy(LLVMContext);
108  Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
109  Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
110  Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
111  Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
112  HalfTy = llvm::Type::getHalfTy(LLVMContext);
113  FloatTy = llvm::Type::getFloatTy(LLVMContext);
114  DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
115  PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
116  PointerAlignInBytes =
117    C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
118  SizeSizeInBytes =
119    C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
120  IntAlignInBytes =
121    C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
122  IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
123  IntPtrTy = llvm::IntegerType::get(LLVMContext,
124    C.getTargetInfo().getMaxPointerWidth());
125  Int8PtrTy = Int8Ty->getPointerTo(0);
126  Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
127  AllocaInt8PtrTy = Int8Ty->getPointerTo(
128      M.getDataLayout().getAllocaAddrSpace());
129  ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
130
131  RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
132
133  if (LangOpts.ObjC)
134    createObjCRuntime();
135  if (LangOpts.OpenCL)
136    createOpenCLRuntime();
137  if (LangOpts.OpenMP)
138    createOpenMPRuntime();
139  if (LangOpts.CUDA)
140    createCUDARuntime();
141
142  // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
143  if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
144      (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
145    TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
146                               getCXXABI().getMangleContext()));
147
148  // If debug info or coverage generation is enabled, create the CGDebugInfo
149  // object.
150  if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
151      CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
152    DebugInfo.reset(new CGDebugInfo(*this));
153
154  Block.GlobalUniqueCount = 0;
155
156  if (C.getLangOpts().ObjC)
157    ObjCData.reset(new ObjCEntrypoints());
158
159  if (CodeGenOpts.hasProfileClangUse()) {
160    auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
161        CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
162    if (auto E = ReaderOrErr.takeError()) {
163      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
164                                              "Could not read profile %0: %1");
165      llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
166        getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
167                                  << EI.message();
168      });
169    } else
170      PGOReader = std::move(ReaderOrErr.get());
171  }
172
173  // If coverage mapping generation is enabled, create the
174  // CoverageMappingModuleGen object.
175  if (CodeGenOpts.CoverageMapping)
176    CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
177}
178
179CodeGenModule::~CodeGenModule() {}
180
181void CodeGenModule::createObjCRuntime() {
182  // This is just isGNUFamily(), but we want to force implementors of
183  // new ABIs to decide how best to do this.
184  switch (LangOpts.ObjCRuntime.getKind()) {
185  case ObjCRuntime::GNUstep:
186  case ObjCRuntime::GCC:
187  case ObjCRuntime::ObjFW:
188    ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
189    return;
190
191  case ObjCRuntime::FragileMacOSX:
192  case ObjCRuntime::MacOSX:
193  case ObjCRuntime::iOS:
194  case ObjCRuntime::WatchOS:
195    ObjCRuntime.reset(CreateMacObjCRuntime(*this));
196    return;
197  }
198  llvm_unreachable("bad runtime kind");
199}
200
201void CodeGenModule::createOpenCLRuntime() {
202  OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
203}
204
205void CodeGenModule::createOpenMPRuntime() {
206  // Select a specialized code generation class based on the target, if any.
207  // If it does not exist use the default implementation.
208  switch (getTriple().getArch()) {
209  case llvm::Triple::nvptx:
210  case llvm::Triple::nvptx64:
211    assert(getLangOpts().OpenMPIsDevice &&
212           "OpenMP NVPTX is only prepared to deal with device code.");
213    OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
214    break;
215  default:
216    if (LangOpts.OpenMPSimd)
217      OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
218    else
219      OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
220    break;
221  }
222
223  // The OpenMP-IR-Builder should eventually replace the above runtime codegens
224  // but we are not there yet so they both reside in CGModule for now and the
225  // OpenMP-IR-Builder is opt-in only.
226  if (LangOpts.OpenMPIRBuilder) {
227    OMPBuilder.reset(new llvm::OpenMPIRBuilder(TheModule));
228    OMPBuilder->initialize();
229  }
230}
231
232void CodeGenModule::createCUDARuntime() {
233  CUDARuntime.reset(CreateNVCUDARuntime(*this));
234}
235
236void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
237  Replacements[Name] = C;
238}
239
240void CodeGenModule::applyReplacements() {
241  for (auto &I : Replacements) {
242    StringRef MangledName = I.first();
243    llvm::Constant *Replacement = I.second;
244    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
245    if (!Entry)
246      continue;
247    auto *OldF = cast<llvm::Function>(Entry);
248    auto *NewF = dyn_cast<llvm::Function>(Replacement);
249    if (!NewF) {
250      if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
251        NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
252      } else {
253        auto *CE = cast<llvm::ConstantExpr>(Replacement);
254        assert(CE->getOpcode() == llvm::Instruction::BitCast ||
255               CE->getOpcode() == llvm::Instruction::GetElementPtr);
256        NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
257      }
258    }
259
260    // Replace old with new, but keep the old order.
261    OldF->replaceAllUsesWith(Replacement);
262    if (NewF) {
263      NewF->removeFromParent();
264      OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
265                                                       NewF);
266    }
267    OldF->eraseFromParent();
268  }
269}
270
271void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
272  GlobalValReplacements.push_back(std::make_pair(GV, C));
273}
274
275void CodeGenModule::applyGlobalValReplacements() {
276  for (auto &I : GlobalValReplacements) {
277    llvm::GlobalValue *GV = I.first;
278    llvm::Constant *C = I.second;
279
280    GV->replaceAllUsesWith(C);
281    GV->eraseFromParent();
282  }
283}
284
285// This is only used in aliases that we created and we know they have a
286// linear structure.
287static const llvm::GlobalObject *getAliasedGlobal(
288    const llvm::GlobalIndirectSymbol &GIS) {
289  llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
290  const llvm::Constant *C = &GIS;
291  for (;;) {
292    C = C->stripPointerCasts();
293    if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
294      return GO;
295    // stripPointerCasts will not walk over weak aliases.
296    auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
297    if (!GIS2)
298      return nullptr;
299    if (!Visited.insert(GIS2).second)
300      return nullptr;
301    C = GIS2->getIndirectSymbol();
302  }
303}
304
305void CodeGenModule::checkAliases() {
306  // Check if the constructed aliases are well formed. It is really unfortunate
307  // that we have to do this in CodeGen, but we only construct mangled names
308  // and aliases during codegen.
309  bool Error = false;
310  DiagnosticsEngine &Diags = getDiags();
311  for (const GlobalDecl &GD : Aliases) {
312    const auto *D = cast<ValueDecl>(GD.getDecl());
313    SourceLocation Location;
314    bool IsIFunc = D->hasAttr<IFuncAttr>();
315    if (const Attr *A = D->getDefiningAttr())
316      Location = A->getLocation();
317    else
318      llvm_unreachable("Not an alias or ifunc?");
319    StringRef MangledName = getMangledName(GD);
320    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
321    auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
322    const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
323    if (!GV) {
324      Error = true;
325      Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
326    } else if (GV->isDeclaration()) {
327      Error = true;
328      Diags.Report(Location, diag::err_alias_to_undefined)
329          << IsIFunc << IsIFunc;
330    } else if (IsIFunc) {
331      // Check resolver function type.
332      llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
333          GV->getType()->getPointerElementType());
334      assert(FTy);
335      if (!FTy->getReturnType()->isPointerTy())
336        Diags.Report(Location, diag::err_ifunc_resolver_return);
337    }
338
339    llvm::Constant *Aliasee = Alias->getIndirectSymbol();
340    llvm::GlobalValue *AliaseeGV;
341    if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
342      AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
343    else
344      AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
345
346    if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
347      StringRef AliasSection = SA->getName();
348      if (AliasSection != AliaseeGV->getSection())
349        Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
350            << AliasSection << IsIFunc << IsIFunc;
351    }
352
353    // We have to handle alias to weak aliases in here. LLVM itself disallows
354    // this since the object semantics would not match the IL one. For
355    // compatibility with gcc we implement it by just pointing the alias
356    // to its aliasee's aliasee. We also warn, since the user is probably
357    // expecting the link to be weak.
358    if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
359      if (GA->isInterposable()) {
360        Diags.Report(Location, diag::warn_alias_to_weak_alias)
361            << GV->getName() << GA->getName() << IsIFunc;
362        Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
363            GA->getIndirectSymbol(), Alias->getType());
364        Alias->setIndirectSymbol(Aliasee);
365      }
366    }
367  }
368  if (!Error)
369    return;
370
371  for (const GlobalDecl &GD : Aliases) {
372    StringRef MangledName = getMangledName(GD);
373    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
374    auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
375    Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
376    Alias->eraseFromParent();
377  }
378}
379
380void CodeGenModule::clear() {
381  DeferredDeclsToEmit.clear();
382  if (OpenMPRuntime)
383    OpenMPRuntime->clear();
384}
385
386void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
387                                       StringRef MainFile) {
388  if (!hasDiagnostics())
389    return;
390  if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
391    if (MainFile.empty())
392      MainFile = "<stdin>";
393    Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
394  } else {
395    if (Mismatched > 0)
396      Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
397
398    if (Missing > 0)
399      Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
400  }
401}
402
403void CodeGenModule::Release() {
404  EmitDeferred();
405  EmitVTablesOpportunistically();
406  applyGlobalValReplacements();
407  applyReplacements();
408  checkAliases();
409  emitMultiVersionFunctions();
410  EmitCXXGlobalInitFunc();
411  EmitCXXGlobalDtorFunc();
412  registerGlobalDtorsWithAtExit();
413  EmitCXXThreadLocalInitFunc();
414  if (ObjCRuntime)
415    if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
416      AddGlobalCtor(ObjCInitFunction);
417  if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
418      CUDARuntime) {
419    if (llvm::Function *CudaCtorFunction =
420            CUDARuntime->makeModuleCtorFunction())
421      AddGlobalCtor(CudaCtorFunction);
422  }
423  if (OpenMPRuntime) {
424    if (llvm::Function *OpenMPRequiresDirectiveRegFun =
425            OpenMPRuntime->emitRequiresDirectiveRegFun()) {
426      AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
427    }
428    OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
429    OpenMPRuntime->clear();
430  }
431  if (PGOReader) {
432    getModule().setProfileSummary(
433        PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
434        llvm::ProfileSummary::PSK_Instr);
435    if (PGOStats.hasDiagnostics())
436      PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
437  }
438  EmitCtorList(GlobalCtors, "llvm.global_ctors");
439  EmitCtorList(GlobalDtors, "llvm.global_dtors");
440  EmitGlobalAnnotations();
441  EmitStaticExternCAliases();
442  EmitDeferredUnusedCoverageMappings();
443  if (CoverageMapping)
444    CoverageMapping->emit();
445  if (CodeGenOpts.SanitizeCfiCrossDso) {
446    CodeGenFunction(*this).EmitCfiCheckFail();
447    CodeGenFunction(*this).EmitCfiCheckStub();
448  }
449  emitAtAvailableLinkGuard();
450  emitLLVMUsed();
451  if (SanStats)
452    SanStats->finish();
453
454  if (CodeGenOpts.Autolink &&
455      (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
456    EmitModuleLinkOptions();
457  }
458
459  // On ELF we pass the dependent library specifiers directly to the linker
460  // without manipulating them. This is in contrast to other platforms where
461  // they are mapped to a specific linker option by the compiler. This
462  // difference is a result of the greater variety of ELF linkers and the fact
463  // that ELF linkers tend to handle libraries in a more complicated fashion
464  // than on other platforms. This forces us to defer handling the dependent
465  // libs to the linker.
466  //
467  // CUDA/HIP device and host libraries are different. Currently there is no
468  // way to differentiate dependent libraries for host or device. Existing
469  // usage of #pragma comment(lib, *) is intended for host libraries on
470  // Windows. Therefore emit llvm.dependent-libraries only for host.
471  if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
472    auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
473    for (auto *MD : ELFDependentLibraries)
474      NMD->addOperand(MD);
475  }
476
477  // Record mregparm value now so it is visible through rest of codegen.
478  if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
479    getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
480                              CodeGenOpts.NumRegisterParameters);
481
482  if (CodeGenOpts.DwarfVersion) {
483    getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
484                              CodeGenOpts.DwarfVersion);
485  }
486  if (CodeGenOpts.EmitCodeView) {
487    // Indicate that we want CodeView in the metadata.
488    getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
489  }
490  if (CodeGenOpts.CodeViewGHash) {
491    getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
492  }
493  if (CodeGenOpts.ControlFlowGuard) {
494    // Function ID tables and checks for Control Flow Guard (cfguard=2).
495    getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
496  } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
497    // Function ID tables for Control Flow Guard (cfguard=1).
498    getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
499  }
500  if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
501    // We don't support LTO with 2 with different StrictVTablePointers
502    // FIXME: we could support it by stripping all the information introduced
503    // by StrictVTablePointers.
504
505    getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
506
507    llvm::Metadata *Ops[2] = {
508              llvm::MDString::get(VMContext, "StrictVTablePointers"),
509              llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
510                  llvm::Type::getInt32Ty(VMContext), 1))};
511
512    getModule().addModuleFlag(llvm::Module::Require,
513                              "StrictVTablePointersRequirement",
514                              llvm::MDNode::get(VMContext, Ops));
515  }
516  if (DebugInfo)
517    // We support a single version in the linked module. The LLVM
518    // parser will drop debug info with a different version number
519    // (and warn about it, too).
520    getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
521                              llvm::DEBUG_METADATA_VERSION);
522
523  // We need to record the widths of enums and wchar_t, so that we can generate
524  // the correct build attributes in the ARM backend. wchar_size is also used by
525  // TargetLibraryInfo.
526  uint64_t WCharWidth =
527      Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
528  getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
529
530  llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
531  if (   Arch == llvm::Triple::arm
532      || Arch == llvm::Triple::armeb
533      || Arch == llvm::Triple::thumb
534      || Arch == llvm::Triple::thumbeb) {
535    // The minimum width of an enum in bytes
536    uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
537    getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
538  }
539
540  if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
541    StringRef ABIStr = Target.getABI();
542    llvm::LLVMContext &Ctx = TheModule.getContext();
543    getModule().addModuleFlag(llvm::Module::Error, "target-abi",
544                              llvm::MDString::get(Ctx, ABIStr));
545  }
546
547  if (CodeGenOpts.SanitizeCfiCrossDso) {
548    // Indicate that we want cross-DSO control flow integrity checks.
549    getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
550  }
551
552  if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
553    getModule().addModuleFlag(llvm::Module::Override,
554                              "CFI Canonical Jump Tables",
555                              CodeGenOpts.SanitizeCfiCanonicalJumpTables);
556  }
557
558  if (CodeGenOpts.CFProtectionReturn &&
559      Target.checkCFProtectionReturnSupported(getDiags())) {
560    // Indicate that we want to instrument return control flow protection.
561    getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
562                              1);
563  }
564
565  if (CodeGenOpts.CFProtectionBranch &&
566      Target.checkCFProtectionBranchSupported(getDiags())) {
567    // Indicate that we want to instrument branch control flow protection.
568    getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
569                              1);
570  }
571
572  if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
573    // Indicate whether __nvvm_reflect should be configured to flush denormal
574    // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
575    // property.)
576    getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
577                              CodeGenOpts.FlushDenorm ? 1 : 0);
578  }
579
580  // Emit OpenCL specific module metadata: OpenCL/SPIR version.
581  if (LangOpts.OpenCL) {
582    EmitOpenCLMetadata();
583    // Emit SPIR version.
584    if (getTriple().isSPIR()) {
585      // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
586      // opencl.spir.version named metadata.
587      // C++ is backwards compatible with OpenCL v2.0.
588      auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
589      llvm::Metadata *SPIRVerElts[] = {
590          llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
591              Int32Ty, Version / 100)),
592          llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
593              Int32Ty, (Version / 100 > 1) ? 0 : 2))};
594      llvm::NamedMDNode *SPIRVerMD =
595          TheModule.getOrInsertNamedMetadata("opencl.spir.version");
596      llvm::LLVMContext &Ctx = TheModule.getContext();
597      SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
598    }
599  }
600
601  if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
602    assert(PLevel < 3 && "Invalid PIC Level");
603    getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
604    if (Context.getLangOpts().PIE)
605      getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
606  }
607
608  if (getCodeGenOpts().CodeModel.size() > 0) {
609    unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
610                  .Case("tiny", llvm::CodeModel::Tiny)
611                  .Case("small", llvm::CodeModel::Small)
612                  .Case("kernel", llvm::CodeModel::Kernel)
613                  .Case("medium", llvm::CodeModel::Medium)
614                  .Case("large", llvm::CodeModel::Large)
615                  .Default(~0u);
616    if (CM != ~0u) {
617      llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
618      getModule().setCodeModel(codeModel);
619    }
620  }
621
622  if (CodeGenOpts.NoPLT)
623    getModule().setRtLibUseGOT();
624
625  SimplifyPersonality();
626
627  if (getCodeGenOpts().EmitDeclMetadata)
628    EmitDeclMetadata();
629
630  if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
631    EmitCoverageFile();
632
633  if (DebugInfo)
634    DebugInfo->finalize();
635
636  if (getCodeGenOpts().EmitVersionIdentMetadata)
637    EmitVersionIdentMetadata();
638
639  if (!getCodeGenOpts().RecordCommandLine.empty())
640    EmitCommandLineMetadata();
641
642  EmitTargetMetadata();
643}
644
645void CodeGenModule::EmitOpenCLMetadata() {
646  // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
647  // opencl.ocl.version named metadata node.
648  // C++ is backwards compatible with OpenCL v2.0.
649  // FIXME: We might need to add CXX version at some point too?
650  auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
651  llvm::Metadata *OCLVerElts[] = {
652      llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
653          Int32Ty, Version / 100)),
654      llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
655          Int32Ty, (Version % 100) / 10))};
656  llvm::NamedMDNode *OCLVerMD =
657      TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
658  llvm::LLVMContext &Ctx = TheModule.getContext();
659  OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
660}
661
662void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
663  // Make sure that this type is translated.
664  Types.UpdateCompletedType(TD);
665}
666
667void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
668  // Make sure that this type is translated.
669  Types.RefreshTypeCacheForClass(RD);
670}
671
672llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
673  if (!TBAA)
674    return nullptr;
675  return TBAA->getTypeInfo(QTy);
676}
677
678TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
679  if (!TBAA)
680    return TBAAAccessInfo();
681  return TBAA->getAccessInfo(AccessType);
682}
683
684TBAAAccessInfo
685CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
686  if (!TBAA)
687    return TBAAAccessInfo();
688  return TBAA->getVTablePtrAccessInfo(VTablePtrType);
689}
690
691llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
692  if (!TBAA)
693    return nullptr;
694  return TBAA->getTBAAStructInfo(QTy);
695}
696
697llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
698  if (!TBAA)
699    return nullptr;
700  return TBAA->getBaseTypeInfo(QTy);
701}
702
703llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
704  if (!TBAA)
705    return nullptr;
706  return TBAA->getAccessTagInfo(Info);
707}
708
709TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
710                                                   TBAAAccessInfo TargetInfo) {
711  if (!TBAA)
712    return TBAAAccessInfo();
713  return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
714}
715
716TBAAAccessInfo
717CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
718                                                   TBAAAccessInfo InfoB) {
719  if (!TBAA)
720    return TBAAAccessInfo();
721  return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
722}
723
724TBAAAccessInfo
725CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
726                                              TBAAAccessInfo SrcInfo) {
727  if (!TBAA)
728    return TBAAAccessInfo();
729  return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
730}
731
732void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
733                                                TBAAAccessInfo TBAAInfo) {
734  if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
735    Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
736}
737
738void CodeGenModule::DecorateInstructionWithInvariantGroup(
739    llvm::Instruction *I, const CXXRecordDecl *RD) {
740  I->setMetadata(llvm::LLVMContext::MD_invariant_group,
741                 llvm::MDNode::get(getLLVMContext(), {}));
742}
743
744void CodeGenModule::Error(SourceLocation loc, StringRef message) {
745  unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
746  getDiags().Report(Context.getFullLoc(loc), diagID) << message;
747}
748
749/// ErrorUnsupported - Print out an error that codegen doesn't support the
750/// specified stmt yet.
751void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
752  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
753                                               "cannot compile this %0 yet");
754  std::string Msg = Type;
755  getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
756      << Msg << S->getSourceRange();
757}
758
759/// ErrorUnsupported - Print out an error that codegen doesn't support the
760/// specified decl yet.
761void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
762  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
763                                               "cannot compile this %0 yet");
764  std::string Msg = Type;
765  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
766}
767
768llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
769  return llvm::ConstantInt::get(SizeTy, size.getQuantity());
770}
771
772void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
773                                        const NamedDecl *D) const {
774  if (GV->hasDLLImportStorageClass())
775    return;
776  // Internal definitions always have default visibility.
777  if (GV->hasLocalLinkage()) {
778    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
779    return;
780  }
781  if (!D)
782    return;
783  // Set visibility for definitions, and for declarations if requested globally
784  // or set explicitly.
785  LinkageInfo LV = D->getLinkageAndVisibility();
786  if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
787      !GV->isDeclarationForLinker())
788    GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
789}
790
791static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
792                                 llvm::GlobalValue *GV) {
793  if (GV->hasLocalLinkage())
794    return true;
795
796  if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
797    return true;
798
799  // DLLImport explicitly marks the GV as external.
800  if (GV->hasDLLImportStorageClass())
801    return false;
802
803  const llvm::Triple &TT = CGM.getTriple();
804  if (TT.isWindowsGNUEnvironment()) {
805    // In MinGW, variables without DLLImport can still be automatically
806    // imported from a DLL by the linker; don't mark variables that
807    // potentially could come from another DLL as DSO local.
808    if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
809        !GV->isThreadLocal())
810      return false;
811  }
812
813  // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
814  // remain unresolved in the link, they can be resolved to zero, which is
815  // outside the current DSO.
816  if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
817    return false;
818
819  // Every other GV is local on COFF.
820  // Make an exception for windows OS in the triple: Some firmware builds use
821  // *-win32-macho triples. This (accidentally?) produced windows relocations
822  // without GOT tables in older clang versions; Keep this behaviour.
823  // FIXME: even thread local variables?
824  if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
825    return true;
826
827  // Only handle COFF and ELF for now.
828  if (!TT.isOSBinFormatELF())
829    return false;
830
831  // If this is not an executable, don't assume anything is local.
832  const auto &CGOpts = CGM.getCodeGenOpts();
833  llvm::Reloc::Model RM = CGOpts.RelocationModel;
834  const auto &LOpts = CGM.getLangOpts();
835  if (RM != llvm::Reloc::Static && !LOpts.PIE)
836    return false;
837
838  // A definition cannot be preempted from an executable.
839  if (!GV->isDeclarationForLinker())
840    return true;
841
842  // Most PIC code sequences that assume that a symbol is local cannot produce a
843  // 0 if it turns out the symbol is undefined. While this is ABI and relocation
844  // depended, it seems worth it to handle it here.
845  if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
846    return false;
847
848  // PPC has no copy relocations and cannot use a plt entry as a symbol address.
849  llvm::Triple::ArchType Arch = TT.getArch();
850  if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
851      Arch == llvm::Triple::ppc64le)
852    return false;
853
854  // If we can use copy relocations we can assume it is local.
855  if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
856    if (!Var->isThreadLocal() &&
857        (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
858      return true;
859
860  // If we can use a plt entry as the symbol address we can assume it
861  // is local.
862  // FIXME: This should work for PIE, but the gold linker doesn't support it.
863  if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
864    return true;
865
866  // Otherwise don't assue it is local.
867  return false;
868}
869
870void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
871  GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
872}
873
874void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
875                                          GlobalDecl GD) const {
876  const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
877  // C++ destructors have a few C++ ABI specific special cases.
878  if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
879    getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
880    return;
881  }
882  setDLLImportDLLExport(GV, D);
883}
884
885void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
886                                          const NamedDecl *D) const {
887  if (D && D->isExternallyVisible()) {
888    if (D->hasAttr<DLLImportAttr>())
889      GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
890    else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
891      GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
892  }
893}
894
895void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
896                                    GlobalDecl GD) const {
897  setDLLImportDLLExport(GV, GD);
898  setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
899}
900
901void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
902                                    const NamedDecl *D) const {
903  setDLLImportDLLExport(GV, D);
904  setGVPropertiesAux(GV, D);
905}
906
907void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
908                                       const NamedDecl *D) const {
909  setGlobalVisibility(GV, D);
910  setDSOLocal(GV);
911  GV->setPartition(CodeGenOpts.SymbolPartition);
912}
913
914static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
915  return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
916      .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
917      .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
918      .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
919      .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
920}
921
922static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
923    CodeGenOptions::TLSModel M) {
924  switch (M) {
925  case CodeGenOptions::GeneralDynamicTLSModel:
926    return llvm::GlobalVariable::GeneralDynamicTLSModel;
927  case CodeGenOptions::LocalDynamicTLSModel:
928    return llvm::GlobalVariable::LocalDynamicTLSModel;
929  case CodeGenOptions::InitialExecTLSModel:
930    return llvm::GlobalVariable::InitialExecTLSModel;
931  case CodeGenOptions::LocalExecTLSModel:
932    return llvm::GlobalVariable::LocalExecTLSModel;
933  }
934  llvm_unreachable("Invalid TLS model!");
935}
936
937void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
938  assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
939
940  llvm::GlobalValue::ThreadLocalMode TLM;
941  TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
942
943  // Override the TLS model if it is explicitly specified.
944  if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
945    TLM = GetLLVMTLSModel(Attr->getModel());
946  }
947
948  GV->setThreadLocalMode(TLM);
949}
950
951static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
952                                          StringRef Name) {
953  const TargetInfo &Target = CGM.getTarget();
954  return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
955}
956
957static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
958                                                 const CPUSpecificAttr *Attr,
959                                                 unsigned CPUIndex,
960                                                 raw_ostream &Out) {
961  // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
962  // supported.
963  if (Attr)
964    Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
965  else if (CGM.getTarget().supportsIFunc())
966    Out << ".resolver";
967}
968
969static void AppendTargetMangling(const CodeGenModule &CGM,
970                                 const TargetAttr *Attr, raw_ostream &Out) {
971  if (Attr->isDefaultVersion())
972    return;
973
974  Out << '.';
975  const TargetInfo &Target = CGM.getTarget();
976  ParsedTargetAttr Info =
977      Attr->parse([&Target](StringRef LHS, StringRef RHS) {
978        // Multiversioning doesn't allow "no-${feature}", so we can
979        // only have "+" prefixes here.
980        assert(LHS.startswith("+") && RHS.startswith("+") &&
981               "Features should always have a prefix.");
982        return Target.multiVersionSortPriority(LHS.substr(1)) >
983               Target.multiVersionSortPriority(RHS.substr(1));
984      });
985
986  bool IsFirst = true;
987
988  if (!Info.Architecture.empty()) {
989    IsFirst = false;
990    Out << "arch_" << Info.Architecture;
991  }
992
993  for (StringRef Feat : Info.Features) {
994    if (!IsFirst)
995      Out << '_';
996    IsFirst = false;
997    Out << Feat.substr(1);
998  }
999}
1000
1001static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
1002                                      const NamedDecl *ND,
1003                                      bool OmitMultiVersionMangling = false) {
1004  SmallString<256> Buffer;
1005  llvm::raw_svector_ostream Out(Buffer);
1006  MangleContext &MC = CGM.getCXXABI().getMangleContext();
1007  if (MC.shouldMangleDeclName(ND)) {
1008    llvm::raw_svector_ostream Out(Buffer);
1009    if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
1010      MC.mangleCXXCtor(D, GD.getCtorType(), Out);
1011    else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
1012      MC.mangleCXXDtor(D, GD.getDtorType(), Out);
1013    else
1014      MC.mangleName(ND, Out);
1015  } else {
1016    IdentifierInfo *II = ND->getIdentifier();
1017    assert(II && "Attempt to mangle unnamed decl.");
1018    const auto *FD = dyn_cast<FunctionDecl>(ND);
1019
1020    if (FD &&
1021        FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1022      llvm::raw_svector_ostream Out(Buffer);
1023      Out << "__regcall3__" << II->getName();
1024    } else {
1025      Out << II->getName();
1026    }
1027  }
1028
1029  if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1030    if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1031      switch (FD->getMultiVersionKind()) {
1032      case MultiVersionKind::CPUDispatch:
1033      case MultiVersionKind::CPUSpecific:
1034        AppendCPUSpecificCPUDispatchMangling(CGM,
1035                                             FD->getAttr<CPUSpecificAttr>(),
1036                                             GD.getMultiVersionIndex(), Out);
1037        break;
1038      case MultiVersionKind::Target:
1039        AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1040        break;
1041      case MultiVersionKind::None:
1042        llvm_unreachable("None multiversion type isn't valid here");
1043      }
1044    }
1045
1046  return Out.str();
1047}
1048
1049void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1050                                            const FunctionDecl *FD) {
1051  if (!FD->isMultiVersion())
1052    return;
1053
1054  // Get the name of what this would be without the 'target' attribute.  This
1055  // allows us to lookup the version that was emitted when this wasn't a
1056  // multiversion function.
1057  std::string NonTargetName =
1058      getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1059  GlobalDecl OtherGD;
1060  if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1061    assert(OtherGD.getCanonicalDecl()
1062               .getDecl()
1063               ->getAsFunction()
1064               ->isMultiVersion() &&
1065           "Other GD should now be a multiversioned function");
1066    // OtherFD is the version of this function that was mangled BEFORE
1067    // becoming a MultiVersion function.  It potentially needs to be updated.
1068    const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1069                                      .getDecl()
1070                                      ->getAsFunction()
1071                                      ->getMostRecentDecl();
1072    std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1073    // This is so that if the initial version was already the 'default'
1074    // version, we don't try to update it.
1075    if (OtherName != NonTargetName) {
1076      // Remove instead of erase, since others may have stored the StringRef
1077      // to this.
1078      const auto ExistingRecord = Manglings.find(NonTargetName);
1079      if (ExistingRecord != std::end(Manglings))
1080        Manglings.remove(&(*ExistingRecord));
1081      auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1082      MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1083      if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1084        Entry->setName(OtherName);
1085    }
1086  }
1087}
1088
1089StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1090  GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1091
1092  // Some ABIs don't have constructor variants.  Make sure that base and
1093  // complete constructors get mangled the same.
1094  if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1095    if (!getTarget().getCXXABI().hasConstructorVariants()) {
1096      CXXCtorType OrigCtorType = GD.getCtorType();
1097      assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1098      if (OrigCtorType == Ctor_Base)
1099        CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1100    }
1101  }
1102
1103  auto FoundName = MangledDeclNames.find(CanonicalGD);
1104  if (FoundName != MangledDeclNames.end())
1105    return FoundName->second;
1106
1107  // Keep the first result in the case of a mangling collision.
1108  const auto *ND = cast<NamedDecl>(GD.getDecl());
1109  std::string MangledName = getMangledNameImpl(*this, GD, ND);
1110
1111  // Adjust kernel stub mangling as we may need to be able to differentiate
1112  // them from the kernel itself (e.g., for HIP).
1113  if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()))
1114    if (!getLangOpts().CUDAIsDevice && FD->hasAttr<CUDAGlobalAttr>())
1115      MangledName = getCUDARuntime().getDeviceStubName(MangledName);
1116
1117  auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1118  return MangledDeclNames[CanonicalGD] = Result.first->first();
1119}
1120
1121StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1122                                             const BlockDecl *BD) {
1123  MangleContext &MangleCtx = getCXXABI().getMangleContext();
1124  const Decl *D = GD.getDecl();
1125
1126  SmallString<256> Buffer;
1127  llvm::raw_svector_ostream Out(Buffer);
1128  if (!D)
1129    MangleCtx.mangleGlobalBlock(BD,
1130      dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1131  else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1132    MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1133  else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1134    MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1135  else
1136    MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1137
1138  auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1139  return Result.first->first();
1140}
1141
1142llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1143  return getModule().getNamedValue(Name);
1144}
1145
1146/// AddGlobalCtor - Add a function to the list that will be called before
1147/// main() runs.
1148void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1149                                  llvm::Constant *AssociatedData) {
1150  // FIXME: Type coercion of void()* types.
1151  GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1152}
1153
1154/// AddGlobalDtor - Add a function to the list that will be called
1155/// when the module is unloaded.
1156void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1157  if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1158    DtorsUsingAtExit[Priority].push_back(Dtor);
1159    return;
1160  }
1161
1162  // FIXME: Type coercion of void()* types.
1163  GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1164}
1165
1166void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1167  if (Fns.empty()) return;
1168
1169  // Ctor function type is void()*.
1170  llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1171  llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1172      TheModule.getDataLayout().getProgramAddressSpace());
1173
1174  // Get the type of a ctor entry, { i32, void ()*, i8* }.
1175  llvm::StructType *CtorStructTy = llvm::StructType::get(
1176      Int32Ty, CtorPFTy, VoidPtrTy);
1177
1178  // Construct the constructor and destructor arrays.
1179  ConstantInitBuilder builder(*this);
1180  auto ctors = builder.beginArray(CtorStructTy);
1181  for (const auto &I : Fns) {
1182    auto ctor = ctors.beginStruct(CtorStructTy);
1183    ctor.addInt(Int32Ty, I.Priority);
1184    ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1185    if (I.AssociatedData)
1186      ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1187    else
1188      ctor.addNullPointer(VoidPtrTy);
1189    ctor.finishAndAddTo(ctors);
1190  }
1191
1192  auto list =
1193    ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1194                                /*constant*/ false,
1195                                llvm::GlobalValue::AppendingLinkage);
1196
1197  // The LTO linker doesn't seem to like it when we set an alignment
1198  // on appending variables.  Take it off as a workaround.
1199  list->setAlignment(llvm::None);
1200
1201  Fns.clear();
1202}
1203
1204llvm::GlobalValue::LinkageTypes
1205CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1206  const auto *D = cast<FunctionDecl>(GD.getDecl());
1207
1208  GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1209
1210  if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1211    return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1212
1213  if (isa<CXXConstructorDecl>(D) &&
1214      cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1215      Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1216    // Our approach to inheriting constructors is fundamentally different from
1217    // that used by the MS ABI, so keep our inheriting constructor thunks
1218    // internal rather than trying to pick an unambiguous mangling for them.
1219    return llvm::GlobalValue::InternalLinkage;
1220  }
1221
1222  return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1223}
1224
1225llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1226  llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1227  if (!MDS) return nullptr;
1228
1229  return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1230}
1231
1232void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1233                                              const CGFunctionInfo &Info,
1234                                              llvm::Function *F) {
1235  unsigned CallingConv;
1236  llvm::AttributeList PAL;
1237  ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1238  F->setAttributes(PAL);
1239  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1240}
1241
1242static void removeImageAccessQualifier(std::string& TyName) {
1243  std::string ReadOnlyQual("__read_only");
1244  std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1245  if (ReadOnlyPos != std::string::npos)
1246    // "+ 1" for the space after access qualifier.
1247    TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1248  else {
1249    std::string WriteOnlyQual("__write_only");
1250    std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1251    if (WriteOnlyPos != std::string::npos)
1252      TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1253    else {
1254      std::string ReadWriteQual("__read_write");
1255      std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1256      if (ReadWritePos != std::string::npos)
1257        TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1258    }
1259  }
1260}
1261
1262// Returns the address space id that should be produced to the
1263// kernel_arg_addr_space metadata. This is always fixed to the ids
1264// as specified in the SPIR 2.0 specification in order to differentiate
1265// for example in clGetKernelArgInfo() implementation between the address
1266// spaces with targets without unique mapping to the OpenCL address spaces
1267// (basically all single AS CPUs).
1268static unsigned ArgInfoAddressSpace(LangAS AS) {
1269  switch (AS) {
1270  case LangAS::opencl_global:   return 1;
1271  case LangAS::opencl_constant: return 2;
1272  case LangAS::opencl_local:    return 3;
1273  case LangAS::opencl_generic:  return 4; // Not in SPIR 2.0 specs.
1274  default:
1275    return 0; // Assume private.
1276  }
1277}
1278
1279void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1280                                         const FunctionDecl *FD,
1281                                         CodeGenFunction *CGF) {
1282  assert(((FD && CGF) || (!FD && !CGF)) &&
1283         "Incorrect use - FD and CGF should either be both null or not!");
1284  // Create MDNodes that represent the kernel arg metadata.
1285  // Each MDNode is a list in the form of "key", N number of values which is
1286  // the same number of values as their are kernel arguments.
1287
1288  const PrintingPolicy &Policy = Context.getPrintingPolicy();
1289
1290  // MDNode for the kernel argument address space qualifiers.
1291  SmallVector<llvm::Metadata *, 8> addressQuals;
1292
1293  // MDNode for the kernel argument access qualifiers (images only).
1294  SmallVector<llvm::Metadata *, 8> accessQuals;
1295
1296  // MDNode for the kernel argument type names.
1297  SmallVector<llvm::Metadata *, 8> argTypeNames;
1298
1299  // MDNode for the kernel argument base type names.
1300  SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1301
1302  // MDNode for the kernel argument type qualifiers.
1303  SmallVector<llvm::Metadata *, 8> argTypeQuals;
1304
1305  // MDNode for the kernel argument names.
1306  SmallVector<llvm::Metadata *, 8> argNames;
1307
1308  if (FD && CGF)
1309    for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1310      const ParmVarDecl *parm = FD->getParamDecl(i);
1311      QualType ty = parm->getType();
1312      std::string typeQuals;
1313
1314      if (ty->isPointerType()) {
1315        QualType pointeeTy = ty->getPointeeType();
1316
1317        // Get address qualifier.
1318        addressQuals.push_back(
1319            llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1320                ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1321
1322        // Get argument type name.
1323        std::string typeName =
1324            pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1325
1326        // Turn "unsigned type" to "utype"
1327        std::string::size_type pos = typeName.find("unsigned");
1328        if (pointeeTy.isCanonical() && pos != std::string::npos)
1329          typeName.erase(pos + 1, 8);
1330
1331        argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1332
1333        std::string baseTypeName =
1334            pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1335                Policy) +
1336            "*";
1337
1338        // Turn "unsigned type" to "utype"
1339        pos = baseTypeName.find("unsigned");
1340        if (pos != std::string::npos)
1341          baseTypeName.erase(pos + 1, 8);
1342
1343        argBaseTypeNames.push_back(
1344            llvm::MDString::get(VMContext, baseTypeName));
1345
1346        // Get argument type qualifiers:
1347        if (ty.isRestrictQualified())
1348          typeQuals = "restrict";
1349        if (pointeeTy.isConstQualified() ||
1350            (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1351          typeQuals += typeQuals.empty() ? "const" : " const";
1352        if (pointeeTy.isVolatileQualified())
1353          typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1354      } else {
1355        uint32_t AddrSpc = 0;
1356        bool isPipe = ty->isPipeType();
1357        if (ty->isImageType() || isPipe)
1358          AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1359
1360        addressQuals.push_back(
1361            llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1362
1363        // Get argument type name.
1364        std::string typeName;
1365        if (isPipe)
1366          typeName = ty.getCanonicalType()
1367                         ->getAs<PipeType>()
1368                         ->getElementType()
1369                         .getAsString(Policy);
1370        else
1371          typeName = ty.getUnqualifiedType().getAsString(Policy);
1372
1373        // Turn "unsigned type" to "utype"
1374        std::string::size_type pos = typeName.find("unsigned");
1375        if (ty.isCanonical() && pos != std::string::npos)
1376          typeName.erase(pos + 1, 8);
1377
1378        std::string baseTypeName;
1379        if (isPipe)
1380          baseTypeName = ty.getCanonicalType()
1381                             ->getAs<PipeType>()
1382                             ->getElementType()
1383                             .getCanonicalType()
1384                             .getAsString(Policy);
1385        else
1386          baseTypeName =
1387              ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1388
1389        // Remove access qualifiers on images
1390        // (as they are inseparable from type in clang implementation,
1391        // but OpenCL spec provides a special query to get access qualifier
1392        // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1393        if (ty->isImageType()) {
1394          removeImageAccessQualifier(typeName);
1395          removeImageAccessQualifier(baseTypeName);
1396        }
1397
1398        argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1399
1400        // Turn "unsigned type" to "utype"
1401        pos = baseTypeName.find("unsigned");
1402        if (pos != std::string::npos)
1403          baseTypeName.erase(pos + 1, 8);
1404
1405        argBaseTypeNames.push_back(
1406            llvm::MDString::get(VMContext, baseTypeName));
1407
1408        if (isPipe)
1409          typeQuals = "pipe";
1410      }
1411
1412      argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1413
1414      // Get image and pipe access qualifier:
1415      if (ty->isImageType() || ty->isPipeType()) {
1416        const Decl *PDecl = parm;
1417        if (auto *TD = dyn_cast<TypedefType>(ty))
1418          PDecl = TD->getDecl();
1419        const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1420        if (A && A->isWriteOnly())
1421          accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1422        else if (A && A->isReadWrite())
1423          accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1424        else
1425          accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1426      } else
1427        accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1428
1429      // Get argument name.
1430      argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1431    }
1432
1433  Fn->setMetadata("kernel_arg_addr_space",
1434                  llvm::MDNode::get(VMContext, addressQuals));
1435  Fn->setMetadata("kernel_arg_access_qual",
1436                  llvm::MDNode::get(VMContext, accessQuals));
1437  Fn->setMetadata("kernel_arg_type",
1438                  llvm::MDNode::get(VMContext, argTypeNames));
1439  Fn->setMetadata("kernel_arg_base_type",
1440                  llvm::MDNode::get(VMContext, argBaseTypeNames));
1441  Fn->setMetadata("kernel_arg_type_qual",
1442                  llvm::MDNode::get(VMContext, argTypeQuals));
1443  if (getCodeGenOpts().EmitOpenCLArgMetadata)
1444    Fn->setMetadata("kernel_arg_name",
1445                    llvm::MDNode::get(VMContext, argNames));
1446}
1447
1448/// Determines whether the language options require us to model
1449/// unwind exceptions.  We treat -fexceptions as mandating this
1450/// except under the fragile ObjC ABI with only ObjC exceptions
1451/// enabled.  This means, for example, that C with -fexceptions
1452/// enables this.
1453static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1454  // If exceptions are completely disabled, obviously this is false.
1455  if (!LangOpts.Exceptions) return false;
1456
1457  // If C++ exceptions are enabled, this is true.
1458  if (LangOpts.CXXExceptions) return true;
1459
1460  // If ObjC exceptions are enabled, this depends on the ABI.
1461  if (LangOpts.ObjCExceptions) {
1462    return LangOpts.ObjCRuntime.hasUnwindExceptions();
1463  }
1464
1465  return true;
1466}
1467
1468static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1469                                                      const CXXMethodDecl *MD) {
1470  // Check that the type metadata can ever actually be used by a call.
1471  if (!CGM.getCodeGenOpts().LTOUnit ||
1472      !CGM.HasHiddenLTOVisibility(MD->getParent()))
1473    return false;
1474
1475  // Only functions whose address can be taken with a member function pointer
1476  // need this sort of type metadata.
1477  return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1478         !isa<CXXDestructorDecl>(MD);
1479}
1480
1481std::vector<const CXXRecordDecl *>
1482CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1483  llvm::SetVector<const CXXRecordDecl *> MostBases;
1484
1485  std::function<void (const CXXRecordDecl *)> CollectMostBases;
1486  CollectMostBases = [&](const CXXRecordDecl *RD) {
1487    if (RD->getNumBases() == 0)
1488      MostBases.insert(RD);
1489    for (const CXXBaseSpecifier &B : RD->bases())
1490      CollectMostBases(B.getType()->getAsCXXRecordDecl());
1491  };
1492  CollectMostBases(RD);
1493  return MostBases.takeVector();
1494}
1495
1496void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1497                                                           llvm::Function *F) {
1498  llvm::AttrBuilder B;
1499
1500  if (CodeGenOpts.UnwindTables)
1501    B.addAttribute(llvm::Attribute::UWTable);
1502
1503  if (!hasUnwindExceptions(LangOpts))
1504    B.addAttribute(llvm::Attribute::NoUnwind);
1505
1506  if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1507    if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1508      B.addAttribute(llvm::Attribute::StackProtect);
1509    else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1510      B.addAttribute(llvm::Attribute::StackProtectStrong);
1511    else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1512      B.addAttribute(llvm::Attribute::StackProtectReq);
1513  }
1514
1515  if (!D) {
1516    // If we don't have a declaration to control inlining, the function isn't
1517    // explicitly marked as alwaysinline for semantic reasons, and inlining is
1518    // disabled, mark the function as noinline.
1519    if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1520        CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1521      B.addAttribute(llvm::Attribute::NoInline);
1522
1523    F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1524    return;
1525  }
1526
1527  // Track whether we need to add the optnone LLVM attribute,
1528  // starting with the default for this optimization level.
1529  bool ShouldAddOptNone =
1530      !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1531  // We can't add optnone in the following cases, it won't pass the verifier.
1532  ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1533  ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1534
1535  // Add optnone, but do so only if the function isn't always_inline.
1536  if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1537      !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1538    B.addAttribute(llvm::Attribute::OptimizeNone);
1539
1540    // OptimizeNone implies noinline; we should not be inlining such functions.
1541    B.addAttribute(llvm::Attribute::NoInline);
1542
1543    // We still need to handle naked functions even though optnone subsumes
1544    // much of their semantics.
1545    if (D->hasAttr<NakedAttr>())
1546      B.addAttribute(llvm::Attribute::Naked);
1547
1548    // OptimizeNone wins over OptimizeForSize and MinSize.
1549    F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1550    F->removeFnAttr(llvm::Attribute::MinSize);
1551  } else if (D->hasAttr<NakedAttr>()) {
1552    // Naked implies noinline: we should not be inlining such functions.
1553    B.addAttribute(llvm::Attribute::Naked);
1554    B.addAttribute(llvm::Attribute::NoInline);
1555  } else if (D->hasAttr<NoDuplicateAttr>()) {
1556    B.addAttribute(llvm::Attribute::NoDuplicate);
1557  } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1558    // Add noinline if the function isn't always_inline.
1559    B.addAttribute(llvm::Attribute::NoInline);
1560  } else if (D->hasAttr<AlwaysInlineAttr>() &&
1561             !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1562    // (noinline wins over always_inline, and we can't specify both in IR)
1563    B.addAttribute(llvm::Attribute::AlwaysInline);
1564  } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1565    // If we're not inlining, then force everything that isn't always_inline to
1566    // carry an explicit noinline attribute.
1567    if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1568      B.addAttribute(llvm::Attribute::NoInline);
1569  } else {
1570    // Otherwise, propagate the inline hint attribute and potentially use its
1571    // absence to mark things as noinline.
1572    if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1573      // Search function and template pattern redeclarations for inline.
1574      auto CheckForInline = [](const FunctionDecl *FD) {
1575        auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1576          return Redecl->isInlineSpecified();
1577        };
1578        if (any_of(FD->redecls(), CheckRedeclForInline))
1579          return true;
1580        const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1581        if (!Pattern)
1582          return false;
1583        return any_of(Pattern->redecls(), CheckRedeclForInline);
1584      };
1585      if (CheckForInline(FD)) {
1586        B.addAttribute(llvm::Attribute::InlineHint);
1587      } else if (CodeGenOpts.getInlining() ==
1588                     CodeGenOptions::OnlyHintInlining &&
1589                 !FD->isInlined() &&
1590                 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1591        B.addAttribute(llvm::Attribute::NoInline);
1592      }
1593    }
1594  }
1595
1596  // Add other optimization related attributes if we are optimizing this
1597  // function.
1598  if (!D->hasAttr<OptimizeNoneAttr>()) {
1599    if (D->hasAttr<ColdAttr>()) {
1600      if (!ShouldAddOptNone)
1601        B.addAttribute(llvm::Attribute::OptimizeForSize);
1602      B.addAttribute(llvm::Attribute::Cold);
1603    }
1604
1605    if (D->hasAttr<MinSizeAttr>())
1606      B.addAttribute(llvm::Attribute::MinSize);
1607  }
1608
1609  F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1610
1611  unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1612  if (alignment)
1613    F->setAlignment(llvm::Align(alignment));
1614
1615  if (!D->hasAttr<AlignedAttr>())
1616    if (LangOpts.FunctionAlignment)
1617      F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1618
1619  // Some C++ ABIs require 2-byte alignment for member functions, in order to
1620  // reserve a bit for differentiating between virtual and non-virtual member
1621  // functions. If the current target's C++ ABI requires this and this is a
1622  // member function, set its alignment accordingly.
1623  if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1624    if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1625      F->setAlignment(llvm::Align(2));
1626  }
1627
1628  // In the cross-dso CFI mode with canonical jump tables, we want !type
1629  // attributes on definitions only.
1630  if (CodeGenOpts.SanitizeCfiCrossDso &&
1631      CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1632    if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1633      // Skip available_externally functions. They won't be codegen'ed in the
1634      // current module anyway.
1635      if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1636        CreateFunctionTypeMetadataForIcall(FD, F);
1637    }
1638  }
1639
1640  // Emit type metadata on member functions for member function pointer checks.
1641  // These are only ever necessary on definitions; we're guaranteed that the
1642  // definition will be present in the LTO unit as a result of LTO visibility.
1643  auto *MD = dyn_cast<CXXMethodDecl>(D);
1644  if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1645    for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1646      llvm::Metadata *Id =
1647          CreateMetadataIdentifierForType(Context.getMemberPointerType(
1648              MD->getType(), Context.getRecordType(Base).getTypePtr()));
1649      F->addTypeMetadata(0, Id);
1650    }
1651  }
1652}
1653
1654void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1655  const Decl *D = GD.getDecl();
1656  if (dyn_cast_or_null<NamedDecl>(D))
1657    setGVProperties(GV, GD);
1658  else
1659    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1660
1661  if (D && D->hasAttr<UsedAttr>())
1662    addUsedGlobal(GV);
1663
1664  if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1665    const auto *VD = cast<VarDecl>(D);
1666    if (VD->getType().isConstQualified() &&
1667        VD->getStorageDuration() == SD_Static)
1668      addUsedGlobal(GV);
1669  }
1670}
1671
1672bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1673                                                llvm::AttrBuilder &Attrs) {
1674  // Add target-cpu and target-features attributes to functions. If
1675  // we have a decl for the function and it has a target attribute then
1676  // parse that and add it to the feature set.
1677  StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1678  std::vector<std::string> Features;
1679  const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1680  FD = FD ? FD->getMostRecentDecl() : FD;
1681  const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1682  const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1683  bool AddedAttr = false;
1684  if (TD || SD) {
1685    llvm::StringMap<bool> FeatureMap;
1686    getContext().getFunctionFeatureMap(FeatureMap, GD);
1687
1688    // Produce the canonical string for this set of features.
1689    for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1690      Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1691
1692    // Now add the target-cpu and target-features to the function.
1693    // While we populated the feature map above, we still need to
1694    // get and parse the target attribute so we can get the cpu for
1695    // the function.
1696    if (TD) {
1697      ParsedTargetAttr ParsedAttr = TD->parse();
1698      if (ParsedAttr.Architecture != "" &&
1699          getTarget().isValidCPUName(ParsedAttr.Architecture))
1700        TargetCPU = ParsedAttr.Architecture;
1701    }
1702  } else {
1703    // Otherwise just add the existing target cpu and target features to the
1704    // function.
1705    Features = getTarget().getTargetOpts().Features;
1706  }
1707
1708  if (TargetCPU != "") {
1709    Attrs.addAttribute("target-cpu", TargetCPU);
1710    AddedAttr = true;
1711  }
1712  if (!Features.empty()) {
1713    llvm::sort(Features);
1714    Attrs.addAttribute("target-features", llvm::join(Features, ","));
1715    AddedAttr = true;
1716  }
1717
1718  return AddedAttr;
1719}
1720
1721void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1722                                          llvm::GlobalObject *GO) {
1723  const Decl *D = GD.getDecl();
1724  SetCommonAttributes(GD, GO);
1725
1726  if (D) {
1727    if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1728      if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1729        GV->addAttribute("bss-section", SA->getName());
1730      if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1731        GV->addAttribute("data-section", SA->getName());
1732      if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1733        GV->addAttribute("rodata-section", SA->getName());
1734      if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1735        GV->addAttribute("relro-section", SA->getName());
1736    }
1737
1738    if (auto *F = dyn_cast<llvm::Function>(GO)) {
1739      if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1740        if (!D->getAttr<SectionAttr>())
1741          F->addFnAttr("implicit-section-name", SA->getName());
1742
1743      llvm::AttrBuilder Attrs;
1744      if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1745        // We know that GetCPUAndFeaturesAttributes will always have the
1746        // newest set, since it has the newest possible FunctionDecl, so the
1747        // new ones should replace the old.
1748        F->removeFnAttr("target-cpu");
1749        F->removeFnAttr("target-features");
1750        F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1751      }
1752    }
1753
1754    if (const auto *CSA = D->getAttr<CodeSegAttr>())
1755      GO->setSection(CSA->getName());
1756    else if (const auto *SA = D->getAttr<SectionAttr>())
1757      GO->setSection(SA->getName());
1758  }
1759
1760  getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1761}
1762
1763void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1764                                                  llvm::Function *F,
1765                                                  const CGFunctionInfo &FI) {
1766  const Decl *D = GD.getDecl();
1767  SetLLVMFunctionAttributes(GD, FI, F);
1768  SetLLVMFunctionAttributesForDefinition(D, F);
1769
1770  F->setLinkage(llvm::Function::InternalLinkage);
1771
1772  setNonAliasAttributes(GD, F);
1773}
1774
1775static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1776  // Set linkage and visibility in case we never see a definition.
1777  LinkageInfo LV = ND->getLinkageAndVisibility();
1778  // Don't set internal linkage on declarations.
1779  // "extern_weak" is overloaded in LLVM; we probably should have
1780  // separate linkage types for this.
1781  if (isExternallyVisible(LV.getLinkage()) &&
1782      (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1783    GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1784}
1785
1786void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1787                                                       llvm::Function *F) {
1788  // Only if we are checking indirect calls.
1789  if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1790    return;
1791
1792  // Non-static class methods are handled via vtable or member function pointer
1793  // checks elsewhere.
1794  if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1795    return;
1796
1797  llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1798  F->addTypeMetadata(0, MD);
1799  F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1800
1801  // Emit a hash-based bit set entry for cross-DSO calls.
1802  if (CodeGenOpts.SanitizeCfiCrossDso)
1803    if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1804      F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1805}
1806
1807void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1808                                          bool IsIncompleteFunction,
1809                                          bool IsThunk) {
1810
1811  if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1812    // If this is an intrinsic function, set the function's attributes
1813    // to the intrinsic's attributes.
1814    F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1815    return;
1816  }
1817
1818  const auto *FD = cast<FunctionDecl>(GD.getDecl());
1819
1820  if (!IsIncompleteFunction)
1821    SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1822
1823  // Add the Returned attribute for "this", except for iOS 5 and earlier
1824  // where substantial code, including the libstdc++ dylib, was compiled with
1825  // GCC and does not actually return "this".
1826  if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1827      !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1828    assert(!F->arg_empty() &&
1829           F->arg_begin()->getType()
1830             ->canLosslesslyBitCastTo(F->getReturnType()) &&
1831           "unexpected this return");
1832    F->addAttribute(1, llvm::Attribute::Returned);
1833  }
1834
1835  // Only a few attributes are set on declarations; these may later be
1836  // overridden by a definition.
1837
1838  setLinkageForGV(F, FD);
1839  setGVProperties(F, FD);
1840
1841  // Setup target-specific attributes.
1842  if (!IsIncompleteFunction && F->isDeclaration())
1843    getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1844
1845  if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1846    F->setSection(CSA->getName());
1847  else if (const auto *SA = FD->getAttr<SectionAttr>())
1848     F->setSection(SA->getName());
1849
1850  // If we plan on emitting this inline builtin, we can't treat it as a builtin.
1851  if (FD->isInlineBuiltinDeclaration()) {
1852    const FunctionDecl *FDBody;
1853    bool HasBody = FD->hasBody(FDBody);
1854    (void)HasBody;
1855    assert(HasBody && "Inline builtin declarations should always have an "
1856                      "available body!");
1857    if (shouldEmitFunction(FDBody))
1858      F->addAttribute(llvm::AttributeList::FunctionIndex,
1859                      llvm::Attribute::NoBuiltin);
1860  }
1861
1862  if (FD->isReplaceableGlobalAllocationFunction()) {
1863    // A replaceable global allocation function does not act like a builtin by
1864    // default, only if it is invoked by a new-expression or delete-expression.
1865    F->addAttribute(llvm::AttributeList::FunctionIndex,
1866                    llvm::Attribute::NoBuiltin);
1867
1868    // A sane operator new returns a non-aliasing pointer.
1869    // FIXME: Also add NonNull attribute to the return value
1870    // for the non-nothrow forms?
1871    auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1872    if (getCodeGenOpts().AssumeSaneOperatorNew &&
1873        (Kind == OO_New || Kind == OO_Array_New))
1874      F->addAttribute(llvm::AttributeList::ReturnIndex,
1875                      llvm::Attribute::NoAlias);
1876  }
1877
1878  if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1879    F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1880  else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1881    if (MD->isVirtual())
1882      F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1883
1884  // Don't emit entries for function declarations in the cross-DSO mode. This
1885  // is handled with better precision by the receiving DSO. But if jump tables
1886  // are non-canonical then we need type metadata in order to produce the local
1887  // jump table.
1888  if (!CodeGenOpts.SanitizeCfiCrossDso ||
1889      !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
1890    CreateFunctionTypeMetadataForIcall(FD, F);
1891
1892  if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1893    getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1894
1895  if (const auto *CB = FD->getAttr<CallbackAttr>()) {
1896    // Annotate the callback behavior as metadata:
1897    //  - The callback callee (as argument number).
1898    //  - The callback payloads (as argument numbers).
1899    llvm::LLVMContext &Ctx = F->getContext();
1900    llvm::MDBuilder MDB(Ctx);
1901
1902    // The payload indices are all but the first one in the encoding. The first
1903    // identifies the callback callee.
1904    int CalleeIdx = *CB->encoding_begin();
1905    ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
1906    F->addMetadata(llvm::LLVMContext::MD_callback,
1907                   *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
1908                                               CalleeIdx, PayloadIndices,
1909                                               /* VarArgsArePassed */ false)}));
1910  }
1911}
1912
1913void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1914  assert(!GV->isDeclaration() &&
1915         "Only globals with definition can force usage.");
1916  LLVMUsed.emplace_back(GV);
1917}
1918
1919void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1920  assert(!GV->isDeclaration() &&
1921         "Only globals with definition can force usage.");
1922  LLVMCompilerUsed.emplace_back(GV);
1923}
1924
1925static void emitUsed(CodeGenModule &CGM, StringRef Name,
1926                     std::vector<llvm::WeakTrackingVH> &List) {
1927  // Don't create llvm.used if there is no need.
1928  if (List.empty())
1929    return;
1930
1931  // Convert List to what ConstantArray needs.
1932  SmallVector<llvm::Constant*, 8> UsedArray;
1933  UsedArray.resize(List.size());
1934  for (unsigned i = 0, e = List.size(); i != e; ++i) {
1935    UsedArray[i] =
1936        llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1937            cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1938  }
1939
1940  if (UsedArray.empty())
1941    return;
1942  llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1943
1944  auto *GV = new llvm::GlobalVariable(
1945      CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1946      llvm::ConstantArray::get(ATy, UsedArray), Name);
1947
1948  GV->setSection("llvm.metadata");
1949}
1950
1951void CodeGenModule::emitLLVMUsed() {
1952  emitUsed(*this, "llvm.used", LLVMUsed);
1953  emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1954}
1955
1956void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1957  auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1958  LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1959}
1960
1961void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1962  llvm::SmallString<32> Opt;
1963  getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1964  if (Opt.empty())
1965    return;
1966  auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1967  LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1968}
1969
1970void CodeGenModule::AddDependentLib(StringRef Lib) {
1971  auto &C = getLLVMContext();
1972  if (getTarget().getTriple().isOSBinFormatELF()) {
1973      ELFDependentLibraries.push_back(
1974        llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
1975    return;
1976  }
1977
1978  llvm::SmallString<24> Opt;
1979  getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1980  auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1981  LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
1982}
1983
1984/// Add link options implied by the given module, including modules
1985/// it depends on, using a postorder walk.
1986static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1987                                    SmallVectorImpl<llvm::MDNode *> &Metadata,
1988                                    llvm::SmallPtrSet<Module *, 16> &Visited) {
1989  // Import this module's parent.
1990  if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1991    addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1992  }
1993
1994  // Import this module's dependencies.
1995  for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1996    if (Visited.insert(Mod->Imports[I - 1]).second)
1997      addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1998  }
1999
2000  // Add linker options to link against the libraries/frameworks
2001  // described by this module.
2002  llvm::LLVMContext &Context = CGM.getLLVMContext();
2003  bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2004
2005  // For modules that use export_as for linking, use that module
2006  // name instead.
2007  if (Mod->UseExportAsModuleLinkName)
2008    return;
2009
2010  for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2011    // Link against a framework.  Frameworks are currently Darwin only, so we
2012    // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2013    if (Mod->LinkLibraries[I-1].IsFramework) {
2014      llvm::Metadata *Args[2] = {
2015          llvm::MDString::get(Context, "-framework"),
2016          llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2017
2018      Metadata.push_back(llvm::MDNode::get(Context, Args));
2019      continue;
2020    }
2021
2022    // Link against a library.
2023    if (IsELF) {
2024      llvm::Metadata *Args[2] = {
2025          llvm::MDString::get(Context, "lib"),
2026          llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2027      };
2028      Metadata.push_back(llvm::MDNode::get(Context, Args));
2029    } else {
2030      llvm::SmallString<24> Opt;
2031      CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2032          Mod->LinkLibraries[I - 1].Library, Opt);
2033      auto *OptString = llvm::MDString::get(Context, Opt);
2034      Metadata.push_back(llvm::MDNode::get(Context, OptString));
2035    }
2036  }
2037}
2038
2039void CodeGenModule::EmitModuleLinkOptions() {
2040  // Collect the set of all of the modules we want to visit to emit link
2041  // options, which is essentially the imported modules and all of their
2042  // non-explicit child modules.
2043  llvm::SetVector<clang::Module *> LinkModules;
2044  llvm::SmallPtrSet<clang::Module *, 16> Visited;
2045  SmallVector<clang::Module *, 16> Stack;
2046
2047  // Seed the stack with imported modules.
2048  for (Module *M : ImportedModules) {
2049    // Do not add any link flags when an implementation TU of a module imports
2050    // a header of that same module.
2051    if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2052        !getLangOpts().isCompilingModule())
2053      continue;
2054    if (Visited.insert(M).second)
2055      Stack.push_back(M);
2056  }
2057
2058  // Find all of the modules to import, making a little effort to prune
2059  // non-leaf modules.
2060  while (!Stack.empty()) {
2061    clang::Module *Mod = Stack.pop_back_val();
2062
2063    bool AnyChildren = false;
2064
2065    // Visit the submodules of this module.
2066    for (const auto &SM : Mod->submodules()) {
2067      // Skip explicit children; they need to be explicitly imported to be
2068      // linked against.
2069      if (SM->IsExplicit)
2070        continue;
2071
2072      if (Visited.insert(SM).second) {
2073        Stack.push_back(SM);
2074        AnyChildren = true;
2075      }
2076    }
2077
2078    // We didn't find any children, so add this module to the list of
2079    // modules to link against.
2080    if (!AnyChildren) {
2081      LinkModules.insert(Mod);
2082    }
2083  }
2084
2085  // Add link options for all of the imported modules in reverse topological
2086  // order.  We don't do anything to try to order import link flags with respect
2087  // to linker options inserted by things like #pragma comment().
2088  SmallVector<llvm::MDNode *, 16> MetadataArgs;
2089  Visited.clear();
2090  for (Module *M : LinkModules)
2091    if (Visited.insert(M).second)
2092      addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2093  std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2094  LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2095
2096  // Add the linker options metadata flag.
2097  auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2098  for (auto *MD : LinkerOptionsMetadata)
2099    NMD->addOperand(MD);
2100}
2101
2102void CodeGenModule::EmitDeferred() {
2103  // Emit deferred declare target declarations.
2104  if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2105    getOpenMPRuntime().emitDeferredTargetDecls();
2106
2107  // Emit code for any potentially referenced deferred decls.  Since a
2108  // previously unused static decl may become used during the generation of code
2109  // for a static function, iterate until no changes are made.
2110
2111  if (!DeferredVTables.empty()) {
2112    EmitDeferredVTables();
2113
2114    // Emitting a vtable doesn't directly cause more vtables to
2115    // become deferred, although it can cause functions to be
2116    // emitted that then need those vtables.
2117    assert(DeferredVTables.empty());
2118  }
2119
2120  // Stop if we're out of both deferred vtables and deferred declarations.
2121  if (DeferredDeclsToEmit.empty())
2122    return;
2123
2124  // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2125  // work, it will not interfere with this.
2126  std::vector<GlobalDecl> CurDeclsToEmit;
2127  CurDeclsToEmit.swap(DeferredDeclsToEmit);
2128
2129  for (GlobalDecl &D : CurDeclsToEmit) {
2130    // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2131    // to get GlobalValue with exactly the type we need, not something that
2132    // might had been created for another decl with the same mangled name but
2133    // different type.
2134    llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2135        GetAddrOfGlobal(D, ForDefinition));
2136
2137    // In case of different address spaces, we may still get a cast, even with
2138    // IsForDefinition equal to true. Query mangled names table to get
2139    // GlobalValue.
2140    if (!GV)
2141      GV = GetGlobalValue(getMangledName(D));
2142
2143    // Make sure GetGlobalValue returned non-null.
2144    assert(GV);
2145
2146    // Check to see if we've already emitted this.  This is necessary
2147    // for a couple of reasons: first, decls can end up in the
2148    // deferred-decls queue multiple times, and second, decls can end
2149    // up with definitions in unusual ways (e.g. by an extern inline
2150    // function acquiring a strong function redefinition).  Just
2151    // ignore these cases.
2152    if (!GV->isDeclaration())
2153      continue;
2154
2155    // If this is OpenMP, check if it is legal to emit this global normally.
2156    if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2157      continue;
2158
2159    // Otherwise, emit the definition and move on to the next one.
2160    EmitGlobalDefinition(D, GV);
2161
2162    // If we found out that we need to emit more decls, do that recursively.
2163    // This has the advantage that the decls are emitted in a DFS and related
2164    // ones are close together, which is convenient for testing.
2165    if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2166      EmitDeferred();
2167      assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2168    }
2169  }
2170}
2171
2172void CodeGenModule::EmitVTablesOpportunistically() {
2173  // Try to emit external vtables as available_externally if they have emitted
2174  // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2175  // is not allowed to create new references to things that need to be emitted
2176  // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2177
2178  assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2179         && "Only emit opportunistic vtables with optimizations");
2180
2181  for (const CXXRecordDecl *RD : OpportunisticVTables) {
2182    assert(getVTables().isVTableExternal(RD) &&
2183           "This queue should only contain external vtables");
2184    if (getCXXABI().canSpeculativelyEmitVTable(RD))
2185      VTables.GenerateClassData(RD);
2186  }
2187  OpportunisticVTables.clear();
2188}
2189
2190void CodeGenModule::EmitGlobalAnnotations() {
2191  if (Annotations.empty())
2192    return;
2193
2194  // Create a new global variable for the ConstantStruct in the Module.
2195  llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2196    Annotations[0]->getType(), Annotations.size()), Annotations);
2197  auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2198                                      llvm::GlobalValue::AppendingLinkage,
2199                                      Array, "llvm.global.annotations");
2200  gv->setSection(AnnotationSection);
2201}
2202
2203llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2204  llvm::Constant *&AStr = AnnotationStrings[Str];
2205  if (AStr)
2206    return AStr;
2207
2208  // Not found yet, create a new global.
2209  llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2210  auto *gv =
2211      new llvm::GlobalVariable(getModule(), s->getType(), true,
2212                               llvm::GlobalValue::PrivateLinkage, s, ".str");
2213  gv->setSection(AnnotationSection);
2214  gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2215  AStr = gv;
2216  return gv;
2217}
2218
2219llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2220  SourceManager &SM = getContext().getSourceManager();
2221  PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2222  if (PLoc.isValid())
2223    return EmitAnnotationString(PLoc.getFilename());
2224  return EmitAnnotationString(SM.getBufferName(Loc));
2225}
2226
2227llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2228  SourceManager &SM = getContext().getSourceManager();
2229  PresumedLoc PLoc = SM.getPresumedLoc(L);
2230  unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2231    SM.getExpansionLineNumber(L);
2232  return llvm::ConstantInt::get(Int32Ty, LineNo);
2233}
2234
2235llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2236                                                const AnnotateAttr *AA,
2237                                                SourceLocation L) {
2238  // Get the globals for file name, annotation, and the line number.
2239  llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2240                 *UnitGV = EmitAnnotationUnit(L),
2241                 *LineNoCst = EmitAnnotationLineNo(L);
2242
2243  llvm::Constant *ASZeroGV = GV;
2244  if (GV->getAddressSpace() != 0) {
2245    ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2246                   GV, GV->getValueType()->getPointerTo(0));
2247  }
2248
2249  // Create the ConstantStruct for the global annotation.
2250  llvm::Constant *Fields[4] = {
2251    llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2252    llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2253    llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2254    LineNoCst
2255  };
2256  return llvm::ConstantStruct::getAnon(Fields);
2257}
2258
2259void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2260                                         llvm::GlobalValue *GV) {
2261  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2262  // Get the struct elements for these annotations.
2263  for (const auto *I : D->specific_attrs<AnnotateAttr>())
2264    Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2265}
2266
2267bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2268                                           llvm::Function *Fn,
2269                                           SourceLocation Loc) const {
2270  const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2271  // Blacklist by function name.
2272  if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2273    return true;
2274  // Blacklist by location.
2275  if (Loc.isValid())
2276    return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2277  // If location is unknown, this may be a compiler-generated function. Assume
2278  // it's located in the main file.
2279  auto &SM = Context.getSourceManager();
2280  if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2281    return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2282  }
2283  return false;
2284}
2285
2286bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2287                                           SourceLocation Loc, QualType Ty,
2288                                           StringRef Category) const {
2289  // For now globals can be blacklisted only in ASan and KASan.
2290  const SanitizerMask EnabledAsanMask =
2291      LangOpts.Sanitize.Mask &
2292      (SanitizerKind::Address | SanitizerKind::KernelAddress |
2293       SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2294       SanitizerKind::MemTag);
2295  if (!EnabledAsanMask)
2296    return false;
2297  const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2298  if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2299    return true;
2300  if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2301    return true;
2302  // Check global type.
2303  if (!Ty.isNull()) {
2304    // Drill down the array types: if global variable of a fixed type is
2305    // blacklisted, we also don't instrument arrays of them.
2306    while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2307      Ty = AT->getElementType();
2308    Ty = Ty.getCanonicalType().getUnqualifiedType();
2309    // We allow to blacklist only record types (classes, structs etc.)
2310    if (Ty->isRecordType()) {
2311      std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2312      if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2313        return true;
2314    }
2315  }
2316  return false;
2317}
2318
2319bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2320                                   StringRef Category) const {
2321  const auto &XRayFilter = getContext().getXRayFilter();
2322  using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2323  auto Attr = ImbueAttr::NONE;
2324  if (Loc.isValid())
2325    Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2326  if (Attr == ImbueAttr::NONE)
2327    Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2328  switch (Attr) {
2329  case ImbueAttr::NONE:
2330    return false;
2331  case ImbueAttr::ALWAYS:
2332    Fn->addFnAttr("function-instrument", "xray-always");
2333    break;
2334  case ImbueAttr::ALWAYS_ARG1:
2335    Fn->addFnAttr("function-instrument", "xray-always");
2336    Fn->addFnAttr("xray-log-args", "1");
2337    break;
2338  case ImbueAttr::NEVER:
2339    Fn->addFnAttr("function-instrument", "xray-never");
2340    break;
2341  }
2342  return true;
2343}
2344
2345bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2346  // Never defer when EmitAllDecls is specified.
2347  if (LangOpts.EmitAllDecls)
2348    return true;
2349
2350  if (CodeGenOpts.KeepStaticConsts) {
2351    const auto *VD = dyn_cast<VarDecl>(Global);
2352    if (VD && VD->getType().isConstQualified() &&
2353        VD->getStorageDuration() == SD_Static)
2354      return true;
2355  }
2356
2357  return getContext().DeclMustBeEmitted(Global);
2358}
2359
2360bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2361  if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2362    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2363      // Implicit template instantiations may change linkage if they are later
2364      // explicitly instantiated, so they should not be emitted eagerly.
2365      return false;
2366    // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2367    // not emit them eagerly unless we sure that the function must be emitted on
2368    // the host.
2369    if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2370        !LangOpts.OpenMPIsDevice &&
2371        !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2372        !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2373      return false;
2374  }
2375  if (const auto *VD = dyn_cast<VarDecl>(Global))
2376    if (Context.getInlineVariableDefinitionKind(VD) ==
2377        ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2378      // A definition of an inline constexpr static data member may change
2379      // linkage later if it's redeclared outside the class.
2380      return false;
2381  // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2382  // codegen for global variables, because they may be marked as threadprivate.
2383  if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2384      getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2385      !isTypeConstant(Global->getType(), false) &&
2386      !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2387    return false;
2388
2389  return true;
2390}
2391
2392ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2393    const CXXUuidofExpr* E) {
2394  // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2395  // well-formed.
2396  StringRef Uuid = E->getUuidStr();
2397  std::string Name = "_GUID_" + Uuid.lower();
2398  std::replace(Name.begin(), Name.end(), '-', '_');
2399
2400  // The UUID descriptor should be pointer aligned.
2401  CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2402
2403  // Look for an existing global.
2404  if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2405    return ConstantAddress(GV, Alignment);
2406
2407  llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2408  assert(Init && "failed to initialize as constant");
2409
2410  auto *GV = new llvm::GlobalVariable(
2411      getModule(), Init->getType(),
2412      /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2413  if (supportsCOMDAT())
2414    GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2415  setDSOLocal(GV);
2416  return ConstantAddress(GV, Alignment);
2417}
2418
2419ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2420  const AliasAttr *AA = VD->getAttr<AliasAttr>();
2421  assert(AA && "No alias?");
2422
2423  CharUnits Alignment = getContext().getDeclAlign(VD);
2424  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2425
2426  // See if there is already something with the target's name in the module.
2427  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2428  if (Entry) {
2429    unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2430    auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2431    return ConstantAddress(Ptr, Alignment);
2432  }
2433
2434  llvm::Constant *Aliasee;
2435  if (isa<llvm::FunctionType>(DeclTy))
2436    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2437                                      GlobalDecl(cast<FunctionDecl>(VD)),
2438                                      /*ForVTable=*/false);
2439  else
2440    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2441                                    llvm::PointerType::getUnqual(DeclTy),
2442                                    nullptr);
2443
2444  auto *F = cast<llvm::GlobalValue>(Aliasee);
2445  F->setLinkage(llvm::Function::ExternalWeakLinkage);
2446  WeakRefReferences.insert(F);
2447
2448  return ConstantAddress(Aliasee, Alignment);
2449}
2450
2451void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2452  const auto *Global = cast<ValueDecl>(GD.getDecl());
2453
2454  // Weak references don't produce any output by themselves.
2455  if (Global->hasAttr<WeakRefAttr>())
2456    return;
2457
2458  // If this is an alias definition (which otherwise looks like a declaration)
2459  // emit it now.
2460  if (Global->hasAttr<AliasAttr>())
2461    return EmitAliasDefinition(GD);
2462
2463  // IFunc like an alias whose value is resolved at runtime by calling resolver.
2464  if (Global->hasAttr<IFuncAttr>())
2465    return emitIFuncDefinition(GD);
2466
2467  // If this is a cpu_dispatch multiversion function, emit the resolver.
2468  if (Global->hasAttr<CPUDispatchAttr>())
2469    return emitCPUDispatchDefinition(GD);
2470
2471  // If this is CUDA, be selective about which declarations we emit.
2472  if (LangOpts.CUDA) {
2473    if (LangOpts.CUDAIsDevice) {
2474      if (!Global->hasAttr<CUDADeviceAttr>() &&
2475          !Global->hasAttr<CUDAGlobalAttr>() &&
2476          !Global->hasAttr<CUDAConstantAttr>() &&
2477          !Global->hasAttr<CUDASharedAttr>() &&
2478          !(LangOpts.HIP && Global->hasAttr<HIPPinnedShadowAttr>()))
2479        return;
2480    } else {
2481      // We need to emit host-side 'shadows' for all global
2482      // device-side variables because the CUDA runtime needs their
2483      // size and host-side address in order to provide access to
2484      // their device-side incarnations.
2485
2486      // So device-only functions are the only things we skip.
2487      if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2488          Global->hasAttr<CUDADeviceAttr>())
2489        return;
2490
2491      assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2492             "Expected Variable or Function");
2493    }
2494  }
2495
2496  if (LangOpts.OpenMP) {
2497    // If this is OpenMP, check if it is legal to emit this global normally.
2498    if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2499      return;
2500    if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2501      if (MustBeEmitted(Global))
2502        EmitOMPDeclareReduction(DRD);
2503      return;
2504    } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2505      if (MustBeEmitted(Global))
2506        EmitOMPDeclareMapper(DMD);
2507      return;
2508    }
2509  }
2510
2511  // Ignore declarations, they will be emitted on their first use.
2512  if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2513    // Forward declarations are emitted lazily on first use.
2514    if (!FD->doesThisDeclarationHaveABody()) {
2515      if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2516        return;
2517
2518      StringRef MangledName = getMangledName(GD);
2519
2520      // Compute the function info and LLVM type.
2521      const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2522      llvm::Type *Ty = getTypes().GetFunctionType(FI);
2523
2524      GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2525                              /*DontDefer=*/false);
2526      return;
2527    }
2528  } else {
2529    const auto *VD = cast<VarDecl>(Global);
2530    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2531    if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2532        !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2533      if (LangOpts.OpenMP) {
2534        // Emit declaration of the must-be-emitted declare target variable.
2535        if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2536                OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2537          bool UnifiedMemoryEnabled =
2538              getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2539          if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2540              !UnifiedMemoryEnabled) {
2541            (void)GetAddrOfGlobalVar(VD);
2542          } else {
2543            assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2544                    (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2545                     UnifiedMemoryEnabled)) &&
2546                   "Link clause or to clause with unified memory expected.");
2547            (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2548          }
2549
2550          return;
2551        }
2552      }
2553      // If this declaration may have caused an inline variable definition to
2554      // change linkage, make sure that it's emitted.
2555      if (Context.getInlineVariableDefinitionKind(VD) ==
2556          ASTContext::InlineVariableDefinitionKind::Strong)
2557        GetAddrOfGlobalVar(VD);
2558      return;
2559    }
2560  }
2561
2562  // Defer code generation to first use when possible, e.g. if this is an inline
2563  // function. If the global must always be emitted, do it eagerly if possible
2564  // to benefit from cache locality.
2565  if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2566    // Emit the definition if it can't be deferred.
2567    EmitGlobalDefinition(GD);
2568    return;
2569  }
2570
2571    // Check if this must be emitted as declare variant.
2572  if (LangOpts.OpenMP && isa<FunctionDecl>(Global) && OpenMPRuntime &&
2573      OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/false))
2574    return;
2575
2576  // If we're deferring emission of a C++ variable with an
2577  // initializer, remember the order in which it appeared in the file.
2578  if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2579      cast<VarDecl>(Global)->hasInit()) {
2580    DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2581    CXXGlobalInits.push_back(nullptr);
2582  }
2583
2584  StringRef MangledName = getMangledName(GD);
2585  if (GetGlobalValue(MangledName) != nullptr) {
2586    // The value has already been used and should therefore be emitted.
2587    addDeferredDeclToEmit(GD);
2588  } else if (MustBeEmitted(Global)) {
2589    // The value must be emitted, but cannot be emitted eagerly.
2590    assert(!MayBeEmittedEagerly(Global));
2591    addDeferredDeclToEmit(GD);
2592  } else {
2593    // Otherwise, remember that we saw a deferred decl with this name.  The
2594    // first use of the mangled name will cause it to move into
2595    // DeferredDeclsToEmit.
2596    DeferredDecls[MangledName] = GD;
2597  }
2598}
2599
2600// Check if T is a class type with a destructor that's not dllimport.
2601static bool HasNonDllImportDtor(QualType T) {
2602  if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2603    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2604      if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2605        return true;
2606
2607  return false;
2608}
2609
2610namespace {
2611  struct FunctionIsDirectlyRecursive
2612      : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2613    const StringRef Name;
2614    const Builtin::Context &BI;
2615    FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2616        : Name(N), BI(C) {}
2617
2618    bool VisitCallExpr(const CallExpr *E) {
2619      const FunctionDecl *FD = E->getDirectCallee();
2620      if (!FD)
2621        return false;
2622      AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2623      if (Attr && Name == Attr->getLabel())
2624        return true;
2625      unsigned BuiltinID = FD->getBuiltinID();
2626      if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2627        return false;
2628      StringRef BuiltinName = BI.getName(BuiltinID);
2629      if (BuiltinName.startswith("__builtin_") &&
2630          Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2631        return true;
2632      }
2633      return false;
2634    }
2635
2636    bool VisitStmt(const Stmt *S) {
2637      for (const Stmt *Child : S->children())
2638        if (Child && this->Visit(Child))
2639          return true;
2640      return false;
2641    }
2642  };
2643
2644  // Make sure we're not referencing non-imported vars or functions.
2645  struct DLLImportFunctionVisitor
2646      : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2647    bool SafeToInline = true;
2648
2649    bool shouldVisitImplicitCode() const { return true; }
2650
2651    bool VisitVarDecl(VarDecl *VD) {
2652      if (VD->getTLSKind()) {
2653        // A thread-local variable cannot be imported.
2654        SafeToInline = false;
2655        return SafeToInline;
2656      }
2657
2658      // A variable definition might imply a destructor call.
2659      if (VD->isThisDeclarationADefinition())
2660        SafeToInline = !HasNonDllImportDtor(VD->getType());
2661
2662      return SafeToInline;
2663    }
2664
2665    bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2666      if (const auto *D = E->getTemporary()->getDestructor())
2667        SafeToInline = D->hasAttr<DLLImportAttr>();
2668      return SafeToInline;
2669    }
2670
2671    bool VisitDeclRefExpr(DeclRefExpr *E) {
2672      ValueDecl *VD = E->getDecl();
2673      if (isa<FunctionDecl>(VD))
2674        SafeToInline = VD->hasAttr<DLLImportAttr>();
2675      else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2676        SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2677      return SafeToInline;
2678    }
2679
2680    bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2681      SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2682      return SafeToInline;
2683    }
2684
2685    bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2686      CXXMethodDecl *M = E->getMethodDecl();
2687      if (!M) {
2688        // Call through a pointer to member function. This is safe to inline.
2689        SafeToInline = true;
2690      } else {
2691        SafeToInline = M->hasAttr<DLLImportAttr>();
2692      }
2693      return SafeToInline;
2694    }
2695
2696    bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2697      SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2698      return SafeToInline;
2699    }
2700
2701    bool VisitCXXNewExpr(CXXNewExpr *E) {
2702      SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2703      return SafeToInline;
2704    }
2705  };
2706}
2707
2708// isTriviallyRecursive - Check if this function calls another
2709// decl that, because of the asm attribute or the other decl being a builtin,
2710// ends up pointing to itself.
2711bool
2712CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2713  StringRef Name;
2714  if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2715    // asm labels are a special kind of mangling we have to support.
2716    AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2717    if (!Attr)
2718      return false;
2719    Name = Attr->getLabel();
2720  } else {
2721    Name = FD->getName();
2722  }
2723
2724  FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2725  const Stmt *Body = FD->getBody();
2726  return Body ? Walker.Visit(Body) : false;
2727}
2728
2729bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2730  if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2731    return true;
2732  const auto *F = cast<FunctionDecl>(GD.getDecl());
2733  if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2734    return false;
2735
2736  if (F->hasAttr<DLLImportAttr>()) {
2737    // Check whether it would be safe to inline this dllimport function.
2738    DLLImportFunctionVisitor Visitor;
2739    Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2740    if (!Visitor.SafeToInline)
2741      return false;
2742
2743    if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2744      // Implicit destructor invocations aren't captured in the AST, so the
2745      // check above can't see them. Check for them manually here.
2746      for (const Decl *Member : Dtor->getParent()->decls())
2747        if (isa<FieldDecl>(Member))
2748          if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2749            return false;
2750      for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2751        if (HasNonDllImportDtor(B.getType()))
2752          return false;
2753    }
2754  }
2755
2756  // PR9614. Avoid cases where the source code is lying to us. An available
2757  // externally function should have an equivalent function somewhere else,
2758  // but a function that calls itself is clearly not equivalent to the real
2759  // implementation.
2760  // This happens in glibc's btowc and in some configure checks.
2761  return !isTriviallyRecursive(F);
2762}
2763
2764bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2765  return CodeGenOpts.OptimizationLevel > 0;
2766}
2767
2768void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2769                                                       llvm::GlobalValue *GV) {
2770  const auto *FD = cast<FunctionDecl>(GD.getDecl());
2771
2772  if (FD->isCPUSpecificMultiVersion()) {
2773    auto *Spec = FD->getAttr<CPUSpecificAttr>();
2774    for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2775      EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2776    // Requires multiple emits.
2777  } else
2778    EmitGlobalFunctionDefinition(GD, GV);
2779}
2780
2781void CodeGenModule::emitOpenMPDeviceFunctionRedefinition(
2782    GlobalDecl OldGD, GlobalDecl NewGD, llvm::GlobalValue *GV) {
2783  assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2784         OpenMPRuntime && "Expected OpenMP device mode.");
2785  const auto *D = cast<FunctionDecl>(OldGD.getDecl());
2786
2787  // Compute the function info and LLVM type.
2788  const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(OldGD);
2789  llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2790
2791  // Get or create the prototype for the function.
2792  if (!GV || (GV->getType()->getElementType() != Ty)) {
2793    GV = cast<llvm::GlobalValue>(GetOrCreateLLVMFunction(
2794        getMangledName(OldGD), Ty, GlobalDecl(), /*ForVTable=*/false,
2795        /*DontDefer=*/true, /*IsThunk=*/false, llvm::AttributeList(),
2796        ForDefinition));
2797    SetFunctionAttributes(OldGD, cast<llvm::Function>(GV),
2798                          /*IsIncompleteFunction=*/false,
2799                          /*IsThunk=*/false);
2800  }
2801  // We need to set linkage and visibility on the function before
2802  // generating code for it because various parts of IR generation
2803  // want to propagate this information down (e.g. to local static
2804  // declarations).
2805  auto *Fn = cast<llvm::Function>(GV);
2806  setFunctionLinkage(OldGD, Fn);
2807
2808  // FIXME: this is redundant with part of
2809  // setFunctionDefinitionAttributes
2810  setGVProperties(Fn, OldGD);
2811
2812  MaybeHandleStaticInExternC(D, Fn);
2813
2814  maybeSetTrivialComdat(*D, *Fn);
2815
2816  CodeGenFunction(*this).GenerateCode(NewGD, Fn, FI);
2817
2818  setNonAliasAttributes(OldGD, Fn);
2819  SetLLVMFunctionAttributesForDefinition(D, Fn);
2820
2821  if (D->hasAttr<AnnotateAttr>())
2822    AddGlobalAnnotations(D, Fn);
2823}
2824
2825void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2826  const auto *D = cast<ValueDecl>(GD.getDecl());
2827
2828  PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2829                                 Context.getSourceManager(),
2830                                 "Generating code for declaration");
2831
2832  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2833    // At -O0, don't generate IR for functions with available_externally
2834    // linkage.
2835    if (!shouldEmitFunction(GD))
2836      return;
2837
2838    llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
2839      std::string Name;
2840      llvm::raw_string_ostream OS(Name);
2841      FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
2842                               /*Qualified=*/true);
2843      return Name;
2844    });
2845
2846    if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2847      // Make sure to emit the definition(s) before we emit the thunks.
2848      // This is necessary for the generation of certain thunks.
2849      if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
2850        ABI->emitCXXStructor(GD);
2851      else if (FD->isMultiVersion())
2852        EmitMultiVersionFunctionDefinition(GD, GV);
2853      else
2854        EmitGlobalFunctionDefinition(GD, GV);
2855
2856      if (Method->isVirtual())
2857        getVTables().EmitThunks(GD);
2858
2859      return;
2860    }
2861
2862    if (FD->isMultiVersion())
2863      return EmitMultiVersionFunctionDefinition(GD, GV);
2864    return EmitGlobalFunctionDefinition(GD, GV);
2865  }
2866
2867  if (const auto *VD = dyn_cast<VarDecl>(D))
2868    return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2869
2870  llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2871}
2872
2873static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2874                                                      llvm::Function *NewFn);
2875
2876static unsigned
2877TargetMVPriority(const TargetInfo &TI,
2878                 const CodeGenFunction::MultiVersionResolverOption &RO) {
2879  unsigned Priority = 0;
2880  for (StringRef Feat : RO.Conditions.Features)
2881    Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2882
2883  if (!RO.Conditions.Architecture.empty())
2884    Priority = std::max(
2885        Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2886  return Priority;
2887}
2888
2889void CodeGenModule::emitMultiVersionFunctions() {
2890  for (GlobalDecl GD : MultiVersionFuncs) {
2891    SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2892    const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2893    getContext().forEachMultiversionedFunctionVersion(
2894        FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2895          GlobalDecl CurGD{
2896              (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2897          StringRef MangledName = getMangledName(CurGD);
2898          llvm::Constant *Func = GetGlobalValue(MangledName);
2899          if (!Func) {
2900            if (CurFD->isDefined()) {
2901              EmitGlobalFunctionDefinition(CurGD, nullptr);
2902              Func = GetGlobalValue(MangledName);
2903            } else {
2904              const CGFunctionInfo &FI =
2905                  getTypes().arrangeGlobalDeclaration(GD);
2906              llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2907              Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2908                                       /*DontDefer=*/false, ForDefinition);
2909            }
2910            assert(Func && "This should have just been created");
2911          }
2912
2913          const auto *TA = CurFD->getAttr<TargetAttr>();
2914          llvm::SmallVector<StringRef, 8> Feats;
2915          TA->getAddedFeatures(Feats);
2916
2917          Options.emplace_back(cast<llvm::Function>(Func),
2918                               TA->getArchitecture(), Feats);
2919        });
2920
2921    llvm::Function *ResolverFunc;
2922    const TargetInfo &TI = getTarget();
2923
2924    if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
2925      ResolverFunc = cast<llvm::Function>(
2926          GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2927      ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2928    } else {
2929      ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2930    }
2931
2932    if (supportsCOMDAT())
2933      ResolverFunc->setComdat(
2934          getModule().getOrInsertComdat(ResolverFunc->getName()));
2935
2936    llvm::stable_sort(
2937        Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2938                       const CodeGenFunction::MultiVersionResolverOption &RHS) {
2939          return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2940        });
2941    CodeGenFunction CGF(*this);
2942    CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2943  }
2944}
2945
2946void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2947  const auto *FD = cast<FunctionDecl>(GD.getDecl());
2948  assert(FD && "Not a FunctionDecl?");
2949  const auto *DD = FD->getAttr<CPUDispatchAttr>();
2950  assert(DD && "Not a cpu_dispatch Function?");
2951  llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
2952
2953  if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
2954    const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2955    DeclTy = getTypes().GetFunctionType(FInfo);
2956  }
2957
2958  StringRef ResolverName = getMangledName(GD);
2959
2960  llvm::Type *ResolverType;
2961  GlobalDecl ResolverGD;
2962  if (getTarget().supportsIFunc())
2963    ResolverType = llvm::FunctionType::get(
2964        llvm::PointerType::get(DeclTy,
2965                               Context.getTargetAddressSpace(FD->getType())),
2966        false);
2967  else {
2968    ResolverType = DeclTy;
2969    ResolverGD = GD;
2970  }
2971
2972  auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
2973      ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
2974  ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
2975  if (supportsCOMDAT())
2976    ResolverFunc->setComdat(
2977        getModule().getOrInsertComdat(ResolverFunc->getName()));
2978
2979  SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2980  const TargetInfo &Target = getTarget();
2981  unsigned Index = 0;
2982  for (const IdentifierInfo *II : DD->cpus()) {
2983    // Get the name of the target function so we can look it up/create it.
2984    std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2985                              getCPUSpecificMangling(*this, II->getName());
2986
2987    llvm::Constant *Func = GetGlobalValue(MangledName);
2988
2989    if (!Func) {
2990      GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
2991      if (ExistingDecl.getDecl() &&
2992          ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
2993        EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
2994        Func = GetGlobalValue(MangledName);
2995      } else {
2996        if (!ExistingDecl.getDecl())
2997          ExistingDecl = GD.getWithMultiVersionIndex(Index);
2998
2999      Func = GetOrCreateLLVMFunction(
3000          MangledName, DeclTy, ExistingDecl,
3001          /*ForVTable=*/false, /*DontDefer=*/true,
3002          /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3003      }
3004    }
3005
3006    llvm::SmallVector<StringRef, 32> Features;
3007    Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3008    llvm::transform(Features, Features.begin(),
3009                    [](StringRef Str) { return Str.substr(1); });
3010    Features.erase(std::remove_if(
3011        Features.begin(), Features.end(), [&Target](StringRef Feat) {
3012          return !Target.validateCpuSupports(Feat);
3013        }), Features.end());
3014    Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3015    ++Index;
3016  }
3017
3018  llvm::sort(
3019      Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3020                  const CodeGenFunction::MultiVersionResolverOption &RHS) {
3021        return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3022               CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3023      });
3024
3025  // If the list contains multiple 'default' versions, such as when it contains
3026  // 'pentium' and 'generic', don't emit the call to the generic one (since we
3027  // always run on at least a 'pentium'). We do this by deleting the 'least
3028  // advanced' (read, lowest mangling letter).
3029  while (Options.size() > 1 &&
3030         CodeGenFunction::GetX86CpuSupportsMask(
3031             (Options.end() - 2)->Conditions.Features) == 0) {
3032    StringRef LHSName = (Options.end() - 2)->Function->getName();
3033    StringRef RHSName = (Options.end() - 1)->Function->getName();
3034    if (LHSName.compare(RHSName) < 0)
3035      Options.erase(Options.end() - 2);
3036    else
3037      Options.erase(Options.end() - 1);
3038  }
3039
3040  CodeGenFunction CGF(*this);
3041  CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3042
3043  if (getTarget().supportsIFunc()) {
3044    std::string AliasName = getMangledNameImpl(
3045        *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3046    llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3047    if (!AliasFunc) {
3048      auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3049          AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3050          /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3051      auto *GA = llvm::GlobalAlias::create(
3052         DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3053      GA->setLinkage(llvm::Function::WeakODRLinkage);
3054      SetCommonAttributes(GD, GA);
3055    }
3056  }
3057}
3058
3059/// If a dispatcher for the specified mangled name is not in the module, create
3060/// and return an llvm Function with the specified type.
3061llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3062    GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3063  std::string MangledName =
3064      getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3065
3066  // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3067  // a separate resolver).
3068  std::string ResolverName = MangledName;
3069  if (getTarget().supportsIFunc())
3070    ResolverName += ".ifunc";
3071  else if (FD->isTargetMultiVersion())
3072    ResolverName += ".resolver";
3073
3074  // If this already exists, just return that one.
3075  if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3076    return ResolverGV;
3077
3078  // Since this is the first time we've created this IFunc, make sure
3079  // that we put this multiversioned function into the list to be
3080  // replaced later if necessary (target multiversioning only).
3081  if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3082    MultiVersionFuncs.push_back(GD);
3083
3084  if (getTarget().supportsIFunc()) {
3085    llvm::Type *ResolverType = llvm::FunctionType::get(
3086        llvm::PointerType::get(
3087            DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3088        false);
3089    llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3090        MangledName + ".resolver", ResolverType, GlobalDecl{},
3091        /*ForVTable=*/false);
3092    llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3093        DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3094    GIF->setName(ResolverName);
3095    SetCommonAttributes(FD, GIF);
3096
3097    return GIF;
3098  }
3099
3100  llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3101      ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3102  assert(isa<llvm::GlobalValue>(Resolver) &&
3103         "Resolver should be created for the first time");
3104  SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3105  return Resolver;
3106}
3107
3108/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3109/// module, create and return an llvm Function with the specified type. If there
3110/// is something in the module with the specified name, return it potentially
3111/// bitcasted to the right type.
3112///
3113/// If D is non-null, it specifies a decl that correspond to this.  This is used
3114/// to set the attributes on the function when it is first created.
3115llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3116    StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3117    bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3118    ForDefinition_t IsForDefinition) {
3119  const Decl *D = GD.getDecl();
3120
3121  // Any attempts to use a MultiVersion function should result in retrieving
3122  // the iFunc instead. Name Mangling will handle the rest of the changes.
3123  if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3124    // For the device mark the function as one that should be emitted.
3125    if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3126        !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3127        !DontDefer && !IsForDefinition) {
3128      if (const FunctionDecl *FDDef = FD->getDefinition()) {
3129        GlobalDecl GDDef;
3130        if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3131          GDDef = GlobalDecl(CD, GD.getCtorType());
3132        else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3133          GDDef = GlobalDecl(DD, GD.getDtorType());
3134        else
3135          GDDef = GlobalDecl(FDDef);
3136        EmitGlobal(GDDef);
3137      }
3138    }
3139    // Check if this must be emitted as declare variant and emit reference to
3140    // the the declare variant function.
3141    if (LangOpts.OpenMP && OpenMPRuntime)
3142      (void)OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true);
3143
3144    if (FD->isMultiVersion()) {
3145      const auto *TA = FD->getAttr<TargetAttr>();
3146      if (TA && TA->isDefaultVersion())
3147        UpdateMultiVersionNames(GD, FD);
3148      if (!IsForDefinition)
3149        return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3150    }
3151  }
3152
3153  // Lookup the entry, lazily creating it if necessary.
3154  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3155  if (Entry) {
3156    if (WeakRefReferences.erase(Entry)) {
3157      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3158      if (FD && !FD->hasAttr<WeakAttr>())
3159        Entry->setLinkage(llvm::Function::ExternalLinkage);
3160    }
3161
3162    // Handle dropped DLL attributes.
3163    if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3164      Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3165      setDSOLocal(Entry);
3166    }
3167
3168    // If there are two attempts to define the same mangled name, issue an
3169    // error.
3170    if (IsForDefinition && !Entry->isDeclaration()) {
3171      GlobalDecl OtherGD;
3172      // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3173      // to make sure that we issue an error only once.
3174      if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3175          (GD.getCanonicalDecl().getDecl() !=
3176           OtherGD.getCanonicalDecl().getDecl()) &&
3177          DiagnosedConflictingDefinitions.insert(GD).second) {
3178        getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3179            << MangledName;
3180        getDiags().Report(OtherGD.getDecl()->getLocation(),
3181                          diag::note_previous_definition);
3182      }
3183    }
3184
3185    if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3186        (Entry->getType()->getElementType() == Ty)) {
3187      return Entry;
3188    }
3189
3190    // Make sure the result is of the correct type.
3191    // (If function is requested for a definition, we always need to create a new
3192    // function, not just return a bitcast.)
3193    if (!IsForDefinition)
3194      return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3195  }
3196
3197  // This function doesn't have a complete type (for example, the return
3198  // type is an incomplete struct). Use a fake type instead, and make
3199  // sure not to try to set attributes.
3200  bool IsIncompleteFunction = false;
3201
3202  llvm::FunctionType *FTy;
3203  if (isa<llvm::FunctionType>(Ty)) {
3204    FTy = cast<llvm::FunctionType>(Ty);
3205  } else {
3206    FTy = llvm::FunctionType::get(VoidTy, false);
3207    IsIncompleteFunction = true;
3208  }
3209
3210  llvm::Function *F =
3211      llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3212                             Entry ? StringRef() : MangledName, &getModule());
3213
3214  // If we already created a function with the same mangled name (but different
3215  // type) before, take its name and add it to the list of functions to be
3216  // replaced with F at the end of CodeGen.
3217  //
3218  // This happens if there is a prototype for a function (e.g. "int f()") and
3219  // then a definition of a different type (e.g. "int f(int x)").
3220  if (Entry) {
3221    F->takeName(Entry);
3222
3223    // This might be an implementation of a function without a prototype, in
3224    // which case, try to do special replacement of calls which match the new
3225    // prototype.  The really key thing here is that we also potentially drop
3226    // arguments from the call site so as to make a direct call, which makes the
3227    // inliner happier and suppresses a number of optimizer warnings (!) about
3228    // dropping arguments.
3229    if (!Entry->use_empty()) {
3230      ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3231      Entry->removeDeadConstantUsers();
3232    }
3233
3234    llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3235        F, Entry->getType()->getElementType()->getPointerTo());
3236    addGlobalValReplacement(Entry, BC);
3237  }
3238
3239  assert(F->getName() == MangledName && "name was uniqued!");
3240  if (D)
3241    SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3242  if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3243    llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3244    F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3245  }
3246
3247  if (!DontDefer) {
3248    // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3249    // each other bottoming out with the base dtor.  Therefore we emit non-base
3250    // dtors on usage, even if there is no dtor definition in the TU.
3251    if (D && isa<CXXDestructorDecl>(D) &&
3252        getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3253                                           GD.getDtorType()))
3254      addDeferredDeclToEmit(GD);
3255
3256    // This is the first use or definition of a mangled name.  If there is a
3257    // deferred decl with this name, remember that we need to emit it at the end
3258    // of the file.
3259    auto DDI = DeferredDecls.find(MangledName);
3260    if (DDI != DeferredDecls.end()) {
3261      // Move the potentially referenced deferred decl to the
3262      // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3263      // don't need it anymore).
3264      addDeferredDeclToEmit(DDI->second);
3265      DeferredDecls.erase(DDI);
3266
3267      // Otherwise, there are cases we have to worry about where we're
3268      // using a declaration for which we must emit a definition but where
3269      // we might not find a top-level definition:
3270      //   - member functions defined inline in their classes
3271      //   - friend functions defined inline in some class
3272      //   - special member functions with implicit definitions
3273      // If we ever change our AST traversal to walk into class methods,
3274      // this will be unnecessary.
3275      //
3276      // We also don't emit a definition for a function if it's going to be an
3277      // entry in a vtable, unless it's already marked as used.
3278    } else if (getLangOpts().CPlusPlus && D) {
3279      // Look for a declaration that's lexically in a record.
3280      for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3281           FD = FD->getPreviousDecl()) {
3282        if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3283          if (FD->doesThisDeclarationHaveABody()) {
3284            addDeferredDeclToEmit(GD.getWithDecl(FD));
3285            break;
3286          }
3287        }
3288      }
3289    }
3290  }
3291
3292  // Make sure the result is of the requested type.
3293  if (!IsIncompleteFunction) {
3294    assert(F->getType()->getElementType() == Ty);
3295    return F;
3296  }
3297
3298  llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3299  return llvm::ConstantExpr::getBitCast(F, PTy);
3300}
3301
3302/// GetAddrOfFunction - Return the address of the given function.  If Ty is
3303/// non-null, then this function will use the specified type if it has to
3304/// create it (this occurs when we see a definition of the function).
3305llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3306                                                 llvm::Type *Ty,
3307                                                 bool ForVTable,
3308                                                 bool DontDefer,
3309                                              ForDefinition_t IsForDefinition) {
3310  // If there was no specific requested type, just convert it now.
3311  if (!Ty) {
3312    const auto *FD = cast<FunctionDecl>(GD.getDecl());
3313    Ty = getTypes().ConvertType(FD->getType());
3314  }
3315
3316  // Devirtualized destructor calls may come through here instead of via
3317  // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3318  // of the complete destructor when necessary.
3319  if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3320    if (getTarget().getCXXABI().isMicrosoft() &&
3321        GD.getDtorType() == Dtor_Complete &&
3322        DD->getParent()->getNumVBases() == 0)
3323      GD = GlobalDecl(DD, Dtor_Base);
3324  }
3325
3326  StringRef MangledName = getMangledName(GD);
3327  return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3328                                 /*IsThunk=*/false, llvm::AttributeList(),
3329                                 IsForDefinition);
3330}
3331
3332static const FunctionDecl *
3333GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3334  TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3335  DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3336
3337  IdentifierInfo &CII = C.Idents.get(Name);
3338  for (const auto &Result : DC->lookup(&CII))
3339    if (const auto FD = dyn_cast<FunctionDecl>(Result))
3340      return FD;
3341
3342  if (!C.getLangOpts().CPlusPlus)
3343    return nullptr;
3344
3345  // Demangle the premangled name from getTerminateFn()
3346  IdentifierInfo &CXXII =
3347      (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3348          ? C.Idents.get("terminate")
3349          : C.Idents.get(Name);
3350
3351  for (const auto &N : {"__cxxabiv1", "std"}) {
3352    IdentifierInfo &NS = C.Idents.get(N);
3353    for (const auto &Result : DC->lookup(&NS)) {
3354      NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3355      if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3356        for (const auto &Result : LSD->lookup(&NS))
3357          if ((ND = dyn_cast<NamespaceDecl>(Result)))
3358            break;
3359
3360      if (ND)
3361        for (const auto &Result : ND->lookup(&CXXII))
3362          if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3363            return FD;
3364    }
3365  }
3366
3367  return nullptr;
3368}
3369
3370/// CreateRuntimeFunction - Create a new runtime function with the specified
3371/// type and name.
3372llvm::FunctionCallee
3373CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3374                                     llvm::AttributeList ExtraAttrs, bool Local,
3375                                     bool AssumeConvergent) {
3376  if (AssumeConvergent) {
3377    ExtraAttrs =
3378        ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3379                                llvm::Attribute::Convergent);
3380  }
3381
3382  llvm::Constant *C =
3383      GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3384                              /*DontDefer=*/false, /*IsThunk=*/false,
3385                              ExtraAttrs);
3386
3387  if (auto *F = dyn_cast<llvm::Function>(C)) {
3388    if (F->empty()) {
3389      F->setCallingConv(getRuntimeCC());
3390
3391      // In Windows Itanium environments, try to mark runtime functions
3392      // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3393      // will link their standard library statically or dynamically. Marking
3394      // functions imported when they are not imported can cause linker errors
3395      // and warnings.
3396      if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3397          !getCodeGenOpts().LTOVisibilityPublicStd) {
3398        const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3399        if (!FD || FD->hasAttr<DLLImportAttr>()) {
3400          F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3401          F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3402        }
3403      }
3404      setDSOLocal(F);
3405    }
3406  }
3407
3408  return {FTy, C};
3409}
3410
3411/// isTypeConstant - Determine whether an object of this type can be emitted
3412/// as a constant.
3413///
3414/// If ExcludeCtor is true, the duration when the object's constructor runs
3415/// will not be considered. The caller will need to verify that the object is
3416/// not written to during its construction.
3417bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3418  if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3419    return false;
3420
3421  if (Context.getLangOpts().CPlusPlus) {
3422    if (const CXXRecordDecl *Record
3423          = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3424      return ExcludeCtor && !Record->hasMutableFields() &&
3425             Record->hasTrivialDestructor();
3426  }
3427
3428  return true;
3429}
3430
3431/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3432/// create and return an llvm GlobalVariable with the specified type.  If there
3433/// is something in the module with the specified name, return it potentially
3434/// bitcasted to the right type.
3435///
3436/// If D is non-null, it specifies a decl that correspond to this.  This is used
3437/// to set the attributes on the global when it is first created.
3438///
3439/// If IsForDefinition is true, it is guaranteed that an actual global with
3440/// type Ty will be returned, not conversion of a variable with the same
3441/// mangled name but some other type.
3442llvm::Constant *
3443CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3444                                     llvm::PointerType *Ty,
3445                                     const VarDecl *D,
3446                                     ForDefinition_t IsForDefinition) {
3447  // Lookup the entry, lazily creating it if necessary.
3448  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3449  if (Entry) {
3450    if (WeakRefReferences.erase(Entry)) {
3451      if (D && !D->hasAttr<WeakAttr>())
3452        Entry->setLinkage(llvm::Function::ExternalLinkage);
3453    }
3454
3455    // Handle dropped DLL attributes.
3456    if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3457      Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3458
3459    if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3460      getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3461
3462    if (Entry->getType() == Ty)
3463      return Entry;
3464
3465    // If there are two attempts to define the same mangled name, issue an
3466    // error.
3467    if (IsForDefinition && !Entry->isDeclaration()) {
3468      GlobalDecl OtherGD;
3469      const VarDecl *OtherD;
3470
3471      // Check that D is not yet in DiagnosedConflictingDefinitions is required
3472      // to make sure that we issue an error only once.
3473      if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3474          (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3475          (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3476          OtherD->hasInit() &&
3477          DiagnosedConflictingDefinitions.insert(D).second) {
3478        getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3479            << MangledName;
3480        getDiags().Report(OtherGD.getDecl()->getLocation(),
3481                          diag::note_previous_definition);
3482      }
3483    }
3484
3485    // Make sure the result is of the correct type.
3486    if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3487      return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3488
3489    // (If global is requested for a definition, we always need to create a new
3490    // global, not just return a bitcast.)
3491    if (!IsForDefinition)
3492      return llvm::ConstantExpr::getBitCast(Entry, Ty);
3493  }
3494
3495  auto AddrSpace = GetGlobalVarAddressSpace(D);
3496  auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3497
3498  auto *GV = new llvm::GlobalVariable(
3499      getModule(), Ty->getElementType(), false,
3500      llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3501      llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3502
3503  // If we already created a global with the same mangled name (but different
3504  // type) before, take its name and remove it from its parent.
3505  if (Entry) {
3506    GV->takeName(Entry);
3507
3508    if (!Entry->use_empty()) {
3509      llvm::Constant *NewPtrForOldDecl =
3510          llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3511      Entry->replaceAllUsesWith(NewPtrForOldDecl);
3512    }
3513
3514    Entry->eraseFromParent();
3515  }
3516
3517  // This is the first use or definition of a mangled name.  If there is a
3518  // deferred decl with this name, remember that we need to emit it at the end
3519  // of the file.
3520  auto DDI = DeferredDecls.find(MangledName);
3521  if (DDI != DeferredDecls.end()) {
3522    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3523    // list, and remove it from DeferredDecls (since we don't need it anymore).
3524    addDeferredDeclToEmit(DDI->second);
3525    DeferredDecls.erase(DDI);
3526  }
3527
3528  // Handle things which are present even on external declarations.
3529  if (D) {
3530    if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3531      getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3532
3533    // FIXME: This code is overly simple and should be merged with other global
3534    // handling.
3535    GV->setConstant(isTypeConstant(D->getType(), false));
3536
3537    GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3538
3539    setLinkageForGV(GV, D);
3540
3541    if (D->getTLSKind()) {
3542      if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3543        CXXThreadLocals.push_back(D);
3544      setTLSMode(GV, *D);
3545    }
3546
3547    setGVProperties(GV, D);
3548
3549    // If required by the ABI, treat declarations of static data members with
3550    // inline initializers as definitions.
3551    if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3552      EmitGlobalVarDefinition(D);
3553    }
3554
3555    // Emit section information for extern variables.
3556    if (D->hasExternalStorage()) {
3557      if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3558        GV->setSection(SA->getName());
3559    }
3560
3561    // Handle XCore specific ABI requirements.
3562    if (getTriple().getArch() == llvm::Triple::xcore &&
3563        D->getLanguageLinkage() == CLanguageLinkage &&
3564        D->getType().isConstant(Context) &&
3565        isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3566      GV->setSection(".cp.rodata");
3567
3568    // Check if we a have a const declaration with an initializer, we may be
3569    // able to emit it as available_externally to expose it's value to the
3570    // optimizer.
3571    if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3572        D->getType().isConstQualified() && !GV->hasInitializer() &&
3573        !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3574      const auto *Record =
3575          Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3576      bool HasMutableFields = Record && Record->hasMutableFields();
3577      if (!HasMutableFields) {
3578        const VarDecl *InitDecl;
3579        const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3580        if (InitExpr) {
3581          ConstantEmitter emitter(*this);
3582          llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3583          if (Init) {
3584            auto *InitType = Init->getType();
3585            if (GV->getType()->getElementType() != InitType) {
3586              // The type of the initializer does not match the definition.
3587              // This happens when an initializer has a different type from
3588              // the type of the global (because of padding at the end of a
3589              // structure for instance).
3590              GV->setName(StringRef());
3591              // Make a new global with the correct type, this is now guaranteed
3592              // to work.
3593              auto *NewGV = cast<llvm::GlobalVariable>(
3594                  GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3595                      ->stripPointerCasts());
3596
3597              // Erase the old global, since it is no longer used.
3598              GV->eraseFromParent();
3599              GV = NewGV;
3600            } else {
3601              GV->setInitializer(Init);
3602              GV->setConstant(true);
3603              GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3604            }
3605            emitter.finalize(GV);
3606          }
3607        }
3608      }
3609    }
3610  }
3611
3612  if (GV->isDeclaration())
3613    getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3614
3615  LangAS ExpectedAS =
3616      D ? D->getType().getAddressSpace()
3617        : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3618  assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3619         Ty->getPointerAddressSpace());
3620  if (AddrSpace != ExpectedAS)
3621    return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3622                                                       ExpectedAS, Ty);
3623
3624  return GV;
3625}
3626
3627llvm::Constant *
3628CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3629                               ForDefinition_t IsForDefinition) {
3630  const Decl *D = GD.getDecl();
3631  if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3632    return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3633                                /*DontDefer=*/false, IsForDefinition);
3634  else if (isa<CXXMethodDecl>(D)) {
3635    auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3636        cast<CXXMethodDecl>(D));
3637    auto Ty = getTypes().GetFunctionType(*FInfo);
3638    return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3639                             IsForDefinition);
3640  } else if (isa<FunctionDecl>(D)) {
3641    const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3642    llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3643    return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3644                             IsForDefinition);
3645  } else
3646    return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3647                              IsForDefinition);
3648}
3649
3650llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3651    StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3652    unsigned Alignment) {
3653  llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3654  llvm::GlobalVariable *OldGV = nullptr;
3655
3656  if (GV) {
3657    // Check if the variable has the right type.
3658    if (GV->getType()->getElementType() == Ty)
3659      return GV;
3660
3661    // Because C++ name mangling, the only way we can end up with an already
3662    // existing global with the same name is if it has been declared extern "C".
3663    assert(GV->isDeclaration() && "Declaration has wrong type!");
3664    OldGV = GV;
3665  }
3666
3667  // Create a new variable.
3668  GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3669                                Linkage, nullptr, Name);
3670
3671  if (OldGV) {
3672    // Replace occurrences of the old variable if needed.
3673    GV->takeName(OldGV);
3674
3675    if (!OldGV->use_empty()) {
3676      llvm::Constant *NewPtrForOldDecl =
3677      llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3678      OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3679    }
3680
3681    OldGV->eraseFromParent();
3682  }
3683
3684  if (supportsCOMDAT() && GV->isWeakForLinker() &&
3685      !GV->hasAvailableExternallyLinkage())
3686    GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3687
3688  GV->setAlignment(llvm::MaybeAlign(Alignment));
3689
3690  return GV;
3691}
3692
3693/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3694/// given global variable.  If Ty is non-null and if the global doesn't exist,
3695/// then it will be created with the specified type instead of whatever the
3696/// normal requested type would be. If IsForDefinition is true, it is guaranteed
3697/// that an actual global with type Ty will be returned, not conversion of a
3698/// variable with the same mangled name but some other type.
3699llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3700                                                  llvm::Type *Ty,
3701                                           ForDefinition_t IsForDefinition) {
3702  assert(D->hasGlobalStorage() && "Not a global variable");
3703  QualType ASTTy = D->getType();
3704  if (!Ty)
3705    Ty = getTypes().ConvertTypeForMem(ASTTy);
3706
3707  llvm::PointerType *PTy =
3708    llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3709
3710  StringRef MangledName = getMangledName(D);
3711  return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3712}
3713
3714/// CreateRuntimeVariable - Create a new runtime global variable with the
3715/// specified type and name.
3716llvm::Constant *
3717CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3718                                     StringRef Name) {
3719  auto PtrTy =
3720      getContext().getLangOpts().OpenCL
3721          ? llvm::PointerType::get(
3722                Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3723          : llvm::PointerType::getUnqual(Ty);
3724  auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3725  setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3726  return Ret;
3727}
3728
3729void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3730  assert(!D->getInit() && "Cannot emit definite definitions here!");
3731
3732  StringRef MangledName = getMangledName(D);
3733  llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3734
3735  // We already have a definition, not declaration, with the same mangled name.
3736  // Emitting of declaration is not required (and actually overwrites emitted
3737  // definition).
3738  if (GV && !GV->isDeclaration())
3739    return;
3740
3741  // If we have not seen a reference to this variable yet, place it into the
3742  // deferred declarations table to be emitted if needed later.
3743  if (!MustBeEmitted(D) && !GV) {
3744      DeferredDecls[MangledName] = D;
3745      return;
3746  }
3747
3748  // The tentative definition is the only definition.
3749  EmitGlobalVarDefinition(D);
3750}
3751
3752void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
3753  EmitExternalVarDeclaration(D);
3754}
3755
3756CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3757  return Context.toCharUnitsFromBits(
3758      getDataLayout().getTypeStoreSizeInBits(Ty));
3759}
3760
3761LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3762  LangAS AddrSpace = LangAS::Default;
3763  if (LangOpts.OpenCL) {
3764    AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3765    assert(AddrSpace == LangAS::opencl_global ||
3766           AddrSpace == LangAS::opencl_constant ||
3767           AddrSpace == LangAS::opencl_local ||
3768           AddrSpace >= LangAS::FirstTargetAddressSpace);
3769    return AddrSpace;
3770  }
3771
3772  if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3773    if (D && D->hasAttr<CUDAConstantAttr>())
3774      return LangAS::cuda_constant;
3775    else if (D && D->hasAttr<CUDASharedAttr>())
3776      return LangAS::cuda_shared;
3777    else if (D && D->hasAttr<CUDADeviceAttr>())
3778      return LangAS::cuda_device;
3779    else if (D && D->getType().isConstQualified())
3780      return LangAS::cuda_constant;
3781    else
3782      return LangAS::cuda_device;
3783  }
3784
3785  if (LangOpts.OpenMP) {
3786    LangAS AS;
3787    if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3788      return AS;
3789  }
3790  return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3791}
3792
3793LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3794  // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3795  if (LangOpts.OpenCL)
3796    return LangAS::opencl_constant;
3797  if (auto AS = getTarget().getConstantAddressSpace())
3798    return AS.getValue();
3799  return LangAS::Default;
3800}
3801
3802// In address space agnostic languages, string literals are in default address
3803// space in AST. However, certain targets (e.g. amdgcn) request them to be
3804// emitted in constant address space in LLVM IR. To be consistent with other
3805// parts of AST, string literal global variables in constant address space
3806// need to be casted to default address space before being put into address
3807// map and referenced by other part of CodeGen.
3808// In OpenCL, string literals are in constant address space in AST, therefore
3809// they should not be casted to default address space.
3810static llvm::Constant *
3811castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3812                                       llvm::GlobalVariable *GV) {
3813  llvm::Constant *Cast = GV;
3814  if (!CGM.getLangOpts().OpenCL) {
3815    if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3816      if (AS != LangAS::Default)
3817        Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3818            CGM, GV, AS.getValue(), LangAS::Default,
3819            GV->getValueType()->getPointerTo(
3820                CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3821    }
3822  }
3823  return Cast;
3824}
3825
3826template<typename SomeDecl>
3827void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3828                                               llvm::GlobalValue *GV) {
3829  if (!getLangOpts().CPlusPlus)
3830    return;
3831
3832  // Must have 'used' attribute, or else inline assembly can't rely on
3833  // the name existing.
3834  if (!D->template hasAttr<UsedAttr>())
3835    return;
3836
3837  // Must have internal linkage and an ordinary name.
3838  if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3839    return;
3840
3841  // Must be in an extern "C" context. Entities declared directly within
3842  // a record are not extern "C" even if the record is in such a context.
3843  const SomeDecl *First = D->getFirstDecl();
3844  if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3845    return;
3846
3847  // OK, this is an internal linkage entity inside an extern "C" linkage
3848  // specification. Make a note of that so we can give it the "expected"
3849  // mangled name if nothing else is using that name.
3850  std::pair<StaticExternCMap::iterator, bool> R =
3851      StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3852
3853  // If we have multiple internal linkage entities with the same name
3854  // in extern "C" regions, none of them gets that name.
3855  if (!R.second)
3856    R.first->second = nullptr;
3857}
3858
3859static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3860  if (!CGM.supportsCOMDAT())
3861    return false;
3862
3863  // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
3864  // them being "merged" by the COMDAT Folding linker optimization.
3865  if (D.hasAttr<CUDAGlobalAttr>())
3866    return false;
3867
3868  if (D.hasAttr<SelectAnyAttr>())
3869    return true;
3870
3871  GVALinkage Linkage;
3872  if (auto *VD = dyn_cast<VarDecl>(&D))
3873    Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3874  else
3875    Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3876
3877  switch (Linkage) {
3878  case GVA_Internal:
3879  case GVA_AvailableExternally:
3880  case GVA_StrongExternal:
3881    return false;
3882  case GVA_DiscardableODR:
3883  case GVA_StrongODR:
3884    return true;
3885  }
3886  llvm_unreachable("No such linkage");
3887}
3888
3889void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3890                                          llvm::GlobalObject &GO) {
3891  if (!shouldBeInCOMDAT(*this, D))
3892    return;
3893  GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3894}
3895
3896/// Pass IsTentative as true if you want to create a tentative definition.
3897void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3898                                            bool IsTentative) {
3899  // OpenCL global variables of sampler type are translated to function calls,
3900  // therefore no need to be translated.
3901  QualType ASTTy = D->getType();
3902  if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3903    return;
3904
3905  // If this is OpenMP device, check if it is legal to emit this global
3906  // normally.
3907  if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3908      OpenMPRuntime->emitTargetGlobalVariable(D))
3909    return;
3910
3911  llvm::Constant *Init = nullptr;
3912  bool NeedsGlobalCtor = false;
3913  bool NeedsGlobalDtor =
3914      D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
3915
3916  const VarDecl *InitDecl;
3917  const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3918
3919  Optional<ConstantEmitter> emitter;
3920
3921  // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3922  // as part of their declaration."  Sema has already checked for
3923  // error cases, so we just need to set Init to UndefValue.
3924  bool IsCUDASharedVar =
3925      getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3926  // Shadows of initialized device-side global variables are also left
3927  // undefined.
3928  bool IsCUDAShadowVar =
3929      !getLangOpts().CUDAIsDevice &&
3930      (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3931       D->hasAttr<CUDASharedAttr>());
3932  // HIP pinned shadow of initialized host-side global variables are also
3933  // left undefined.
3934  bool IsHIPPinnedShadowVar =
3935      getLangOpts().CUDAIsDevice && D->hasAttr<HIPPinnedShadowAttr>();
3936  if (getLangOpts().CUDA &&
3937      (IsCUDASharedVar || IsCUDAShadowVar || IsHIPPinnedShadowVar))
3938    Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3939  else if (!InitExpr) {
3940    // This is a tentative definition; tentative definitions are
3941    // implicitly initialized with { 0 }.
3942    //
3943    // Note that tentative definitions are only emitted at the end of
3944    // a translation unit, so they should never have incomplete
3945    // type. In addition, EmitTentativeDefinition makes sure that we
3946    // never attempt to emit a tentative definition if a real one
3947    // exists. A use may still exists, however, so we still may need
3948    // to do a RAUW.
3949    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3950    Init = EmitNullConstant(D->getType());
3951  } else {
3952    initializedGlobalDecl = GlobalDecl(D);
3953    emitter.emplace(*this);
3954    Init = emitter->tryEmitForInitializer(*InitDecl);
3955
3956    if (!Init) {
3957      QualType T = InitExpr->getType();
3958      if (D->getType()->isReferenceType())
3959        T = D->getType();
3960
3961      if (getLangOpts().CPlusPlus) {
3962        Init = EmitNullConstant(T);
3963        NeedsGlobalCtor = true;
3964      } else {
3965        ErrorUnsupported(D, "static initializer");
3966        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3967      }
3968    } else {
3969      // We don't need an initializer, so remove the entry for the delayed
3970      // initializer position (just in case this entry was delayed) if we
3971      // also don't need to register a destructor.
3972      if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3973        DelayedCXXInitPosition.erase(D);
3974    }
3975  }
3976
3977  llvm::Type* InitType = Init->getType();
3978  llvm::Constant *Entry =
3979      GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3980
3981  // Strip off pointer casts if we got them.
3982  Entry = Entry->stripPointerCasts();
3983
3984  // Entry is now either a Function or GlobalVariable.
3985  auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3986
3987  // We have a definition after a declaration with the wrong type.
3988  // We must make a new GlobalVariable* and update everything that used OldGV
3989  // (a declaration or tentative definition) with the new GlobalVariable*
3990  // (which will be a definition).
3991  //
3992  // This happens if there is a prototype for a global (e.g.
3993  // "extern int x[];") and then a definition of a different type (e.g.
3994  // "int x[10];"). This also happens when an initializer has a different type
3995  // from the type of the global (this happens with unions).
3996  if (!GV || GV->getType()->getElementType() != InitType ||
3997      GV->getType()->getAddressSpace() !=
3998          getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3999
4000    // Move the old entry aside so that we'll create a new one.
4001    Entry->setName(StringRef());
4002
4003    // Make a new global with the correct type, this is now guaranteed to work.
4004    GV = cast<llvm::GlobalVariable>(
4005        GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4006            ->stripPointerCasts());
4007
4008    // Replace all uses of the old global with the new global
4009    llvm::Constant *NewPtrForOldDecl =
4010        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4011    Entry->replaceAllUsesWith(NewPtrForOldDecl);
4012
4013    // Erase the old global, since it is no longer used.
4014    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4015  }
4016
4017  MaybeHandleStaticInExternC(D, GV);
4018
4019  if (D->hasAttr<AnnotateAttr>())
4020    AddGlobalAnnotations(D, GV);
4021
4022  // Set the llvm linkage type as appropriate.
4023  llvm::GlobalValue::LinkageTypes Linkage =
4024      getLLVMLinkageVarDefinition(D, GV->isConstant());
4025
4026  // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4027  // the device. [...]"
4028  // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4029  // __device__, declares a variable that: [...]
4030  // Is accessible from all the threads within the grid and from the host
4031  // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4032  // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4033  if (GV && LangOpts.CUDA) {
4034    if (LangOpts.CUDAIsDevice) {
4035      if (Linkage != llvm::GlobalValue::InternalLinkage &&
4036          (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4037        GV->setExternallyInitialized(true);
4038    } else {
4039      // Host-side shadows of external declarations of device-side
4040      // global variables become internal definitions. These have to
4041      // be internal in order to prevent name conflicts with global
4042      // host variables with the same name in a different TUs.
4043      if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4044          D->hasAttr<HIPPinnedShadowAttr>()) {
4045        Linkage = llvm::GlobalValue::InternalLinkage;
4046
4047        // Shadow variables and their properties must be registered
4048        // with CUDA runtime.
4049        unsigned Flags = 0;
4050        if (!D->hasDefinition())
4051          Flags |= CGCUDARuntime::ExternDeviceVar;
4052        if (D->hasAttr<CUDAConstantAttr>())
4053          Flags |= CGCUDARuntime::ConstantDeviceVar;
4054        // Extern global variables will be registered in the TU where they are
4055        // defined.
4056        if (!D->hasExternalStorage())
4057          getCUDARuntime().registerDeviceVar(D, *GV, Flags);
4058      } else if (D->hasAttr<CUDASharedAttr>())
4059        // __shared__ variables are odd. Shadows do get created, but
4060        // they are not registered with the CUDA runtime, so they
4061        // can't really be used to access their device-side
4062        // counterparts. It's not clear yet whether it's nvcc's bug or
4063        // a feature, but we've got to do the same for compatibility.
4064        Linkage = llvm::GlobalValue::InternalLinkage;
4065    }
4066  }
4067
4068  if (!IsHIPPinnedShadowVar)
4069    GV->setInitializer(Init);
4070  if (emitter) emitter->finalize(GV);
4071
4072  // If it is safe to mark the global 'constant', do so now.
4073  GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4074                  isTypeConstant(D->getType(), true));
4075
4076  // If it is in a read-only section, mark it 'constant'.
4077  if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4078    const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4079    if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4080      GV->setConstant(true);
4081  }
4082
4083  GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4084
4085  // On Darwin, if the normal linkage of a C++ thread_local variable is
4086  // LinkOnce or Weak, we keep the normal linkage to prevent multiple
4087  // copies within a linkage unit; otherwise, the backing variable has
4088  // internal linkage and all accesses should just be calls to the
4089  // Itanium-specified entry point, which has the normal linkage of the
4090  // variable. This is to preserve the ability to change the implementation
4091  // behind the scenes.
4092  if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
4093      Context.getTargetInfo().getTriple().isOSDarwin() &&
4094      !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
4095      !llvm::GlobalVariable::isWeakLinkage(Linkage))
4096    Linkage = llvm::GlobalValue::InternalLinkage;
4097
4098  GV->setLinkage(Linkage);
4099  if (D->hasAttr<DLLImportAttr>())
4100    GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4101  else if (D->hasAttr<DLLExportAttr>())
4102    GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4103  else
4104    GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4105
4106  if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4107    // common vars aren't constant even if declared const.
4108    GV->setConstant(false);
4109    // Tentative definition of global variables may be initialized with
4110    // non-zero null pointers. In this case they should have weak linkage
4111    // since common linkage must have zero initializer and must not have
4112    // explicit section therefore cannot have non-zero initial value.
4113    if (!GV->getInitializer()->isNullValue())
4114      GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4115  }
4116
4117  setNonAliasAttributes(D, GV);
4118
4119  if (D->getTLSKind() && !GV->isThreadLocal()) {
4120    if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4121      CXXThreadLocals.push_back(D);
4122    setTLSMode(GV, *D);
4123  }
4124
4125  maybeSetTrivialComdat(*D, *GV);
4126
4127  // Emit the initializer function if necessary.
4128  if (NeedsGlobalCtor || NeedsGlobalDtor)
4129    EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4130
4131  SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4132
4133  // Emit global variable debug information.
4134  if (CGDebugInfo *DI = getModuleDebugInfo())
4135    if (getCodeGenOpts().hasReducedDebugInfo())
4136      DI->EmitGlobalVariable(GV, D);
4137}
4138
4139void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4140  if (CGDebugInfo *DI = getModuleDebugInfo())
4141    if (getCodeGenOpts().hasReducedDebugInfo()) {
4142      QualType ASTTy = D->getType();
4143      llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4144      llvm::PointerType *PTy =
4145          llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4146      llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
4147      DI->EmitExternalVariable(
4148          cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4149    }
4150}
4151
4152static bool isVarDeclStrongDefinition(const ASTContext &Context,
4153                                      CodeGenModule &CGM, const VarDecl *D,
4154                                      bool NoCommon) {
4155  // Don't give variables common linkage if -fno-common was specified unless it
4156  // was overridden by a NoCommon attribute.
4157  if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4158    return true;
4159
4160  // C11 6.9.2/2:
4161  //   A declaration of an identifier for an object that has file scope without
4162  //   an initializer, and without a storage-class specifier or with the
4163  //   storage-class specifier static, constitutes a tentative definition.
4164  if (D->getInit() || D->hasExternalStorage())
4165    return true;
4166
4167  // A variable cannot be both common and exist in a section.
4168  if (D->hasAttr<SectionAttr>())
4169    return true;
4170
4171  // A variable cannot be both common and exist in a section.
4172  // We don't try to determine which is the right section in the front-end.
4173  // If no specialized section name is applicable, it will resort to default.
4174  if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4175      D->hasAttr<PragmaClangDataSectionAttr>() ||
4176      D->hasAttr<PragmaClangRelroSectionAttr>() ||
4177      D->hasAttr<PragmaClangRodataSectionAttr>())
4178    return true;
4179
4180  // Thread local vars aren't considered common linkage.
4181  if (D->getTLSKind())
4182    return true;
4183
4184  // Tentative definitions marked with WeakImportAttr are true definitions.
4185  if (D->hasAttr<WeakImportAttr>())
4186    return true;
4187
4188  // A variable cannot be both common and exist in a comdat.
4189  if (shouldBeInCOMDAT(CGM, *D))
4190    return true;
4191
4192  // Declarations with a required alignment do not have common linkage in MSVC
4193  // mode.
4194  if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4195    if (D->hasAttr<AlignedAttr>())
4196      return true;
4197    QualType VarType = D->getType();
4198    if (Context.isAlignmentRequired(VarType))
4199      return true;
4200
4201    if (const auto *RT = VarType->getAs<RecordType>()) {
4202      const RecordDecl *RD = RT->getDecl();
4203      for (const FieldDecl *FD : RD->fields()) {
4204        if (FD->isBitField())
4205          continue;
4206        if (FD->hasAttr<AlignedAttr>())
4207          return true;
4208        if (Context.isAlignmentRequired(FD->getType()))
4209          return true;
4210      }
4211    }
4212  }
4213
4214  // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4215  // common symbols, so symbols with greater alignment requirements cannot be
4216  // common.
4217  // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4218  // alignments for common symbols via the aligncomm directive, so this
4219  // restriction only applies to MSVC environments.
4220  if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4221      Context.getTypeAlignIfKnown(D->getType()) >
4222          Context.toBits(CharUnits::fromQuantity(32)))
4223    return true;
4224
4225  return false;
4226}
4227
4228llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4229    const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4230  if (Linkage == GVA_Internal)
4231    return llvm::Function::InternalLinkage;
4232
4233  if (D->hasAttr<WeakAttr>()) {
4234    if (IsConstantVariable)
4235      return llvm::GlobalVariable::WeakODRLinkage;
4236    else
4237      return llvm::GlobalVariable::WeakAnyLinkage;
4238  }
4239
4240  if (const auto *FD = D->getAsFunction())
4241    if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4242      return llvm::GlobalVariable::LinkOnceAnyLinkage;
4243
4244  // We are guaranteed to have a strong definition somewhere else,
4245  // so we can use available_externally linkage.
4246  if (Linkage == GVA_AvailableExternally)
4247    return llvm::GlobalValue::AvailableExternallyLinkage;
4248
4249  // Note that Apple's kernel linker doesn't support symbol
4250  // coalescing, so we need to avoid linkonce and weak linkages there.
4251  // Normally, this means we just map to internal, but for explicit
4252  // instantiations we'll map to external.
4253
4254  // In C++, the compiler has to emit a definition in every translation unit
4255  // that references the function.  We should use linkonce_odr because
4256  // a) if all references in this translation unit are optimized away, we
4257  // don't need to codegen it.  b) if the function persists, it needs to be
4258  // merged with other definitions. c) C++ has the ODR, so we know the
4259  // definition is dependable.
4260  if (Linkage == GVA_DiscardableODR)
4261    return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4262                                            : llvm::Function::InternalLinkage;
4263
4264  // An explicit instantiation of a template has weak linkage, since
4265  // explicit instantiations can occur in multiple translation units
4266  // and must all be equivalent. However, we are not allowed to
4267  // throw away these explicit instantiations.
4268  //
4269  // We don't currently support CUDA device code spread out across multiple TUs,
4270  // so say that CUDA templates are either external (for kernels) or internal.
4271  // This lets llvm perform aggressive inter-procedural optimizations.
4272  if (Linkage == GVA_StrongODR) {
4273    if (Context.getLangOpts().AppleKext)
4274      return llvm::Function::ExternalLinkage;
4275    if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
4276      return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4277                                          : llvm::Function::InternalLinkage;
4278    return llvm::Function::WeakODRLinkage;
4279  }
4280
4281  // C++ doesn't have tentative definitions and thus cannot have common
4282  // linkage.
4283  if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4284      !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4285                                 CodeGenOpts.NoCommon))
4286    return llvm::GlobalVariable::CommonLinkage;
4287
4288  // selectany symbols are externally visible, so use weak instead of
4289  // linkonce.  MSVC optimizes away references to const selectany globals, so
4290  // all definitions should be the same and ODR linkage should be used.
4291  // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4292  if (D->hasAttr<SelectAnyAttr>())
4293    return llvm::GlobalVariable::WeakODRLinkage;
4294
4295  // Otherwise, we have strong external linkage.
4296  assert(Linkage == GVA_StrongExternal);
4297  return llvm::GlobalVariable::ExternalLinkage;
4298}
4299
4300llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4301    const VarDecl *VD, bool IsConstant) {
4302  GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4303  return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4304}
4305
4306/// Replace the uses of a function that was declared with a non-proto type.
4307/// We want to silently drop extra arguments from call sites
4308static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4309                                          llvm::Function *newFn) {
4310  // Fast path.
4311  if (old->use_empty()) return;
4312
4313  llvm::Type *newRetTy = newFn->getReturnType();
4314  SmallVector<llvm::Value*, 4> newArgs;
4315  SmallVector<llvm::OperandBundleDef, 1> newBundles;
4316
4317  for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4318         ui != ue; ) {
4319    llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4320    llvm::User *user = use->getUser();
4321
4322    // Recognize and replace uses of bitcasts.  Most calls to
4323    // unprototyped functions will use bitcasts.
4324    if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4325      if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4326        replaceUsesOfNonProtoConstant(bitcast, newFn);
4327      continue;
4328    }
4329
4330    // Recognize calls to the function.
4331    llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4332    if (!callSite) continue;
4333    if (!callSite->isCallee(&*use))
4334      continue;
4335
4336    // If the return types don't match exactly, then we can't
4337    // transform this call unless it's dead.
4338    if (callSite->getType() != newRetTy && !callSite->use_empty())
4339      continue;
4340
4341    // Get the call site's attribute list.
4342    SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4343    llvm::AttributeList oldAttrs = callSite->getAttributes();
4344
4345    // If the function was passed too few arguments, don't transform.
4346    unsigned newNumArgs = newFn->arg_size();
4347    if (callSite->arg_size() < newNumArgs)
4348      continue;
4349
4350    // If extra arguments were passed, we silently drop them.
4351    // If any of the types mismatch, we don't transform.
4352    unsigned argNo = 0;
4353    bool dontTransform = false;
4354    for (llvm::Argument &A : newFn->args()) {
4355      if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4356        dontTransform = true;
4357        break;
4358      }
4359
4360      // Add any parameter attributes.
4361      newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4362      argNo++;
4363    }
4364    if (dontTransform)
4365      continue;
4366
4367    // Okay, we can transform this.  Create the new call instruction and copy
4368    // over the required information.
4369    newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4370
4371    // Copy over any operand bundles.
4372    callSite->getOperandBundlesAsDefs(newBundles);
4373
4374    llvm::CallBase *newCall;
4375    if (dyn_cast<llvm::CallInst>(callSite)) {
4376      newCall =
4377          llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4378    } else {
4379      auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4380      newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4381                                         oldInvoke->getUnwindDest(), newArgs,
4382                                         newBundles, "", callSite);
4383    }
4384    newArgs.clear(); // for the next iteration
4385
4386    if (!newCall->getType()->isVoidTy())
4387      newCall->takeName(callSite);
4388    newCall->setAttributes(llvm::AttributeList::get(
4389        newFn->getContext(), oldAttrs.getFnAttributes(),
4390        oldAttrs.getRetAttributes(), newArgAttrs));
4391    newCall->setCallingConv(callSite->getCallingConv());
4392
4393    // Finally, remove the old call, replacing any uses with the new one.
4394    if (!callSite->use_empty())
4395      callSite->replaceAllUsesWith(newCall);
4396
4397    // Copy debug location attached to CI.
4398    if (callSite->getDebugLoc())
4399      newCall->setDebugLoc(callSite->getDebugLoc());
4400
4401    callSite->eraseFromParent();
4402  }
4403}
4404
4405/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4406/// implement a function with no prototype, e.g. "int foo() {}".  If there are
4407/// existing call uses of the old function in the module, this adjusts them to
4408/// call the new function directly.
4409///
4410/// This is not just a cleanup: the always_inline pass requires direct calls to
4411/// functions to be able to inline them.  If there is a bitcast in the way, it
4412/// won't inline them.  Instcombine normally deletes these calls, but it isn't
4413/// run at -O0.
4414static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4415                                                      llvm::Function *NewFn) {
4416  // If we're redefining a global as a function, don't transform it.
4417  if (!isa<llvm::Function>(Old)) return;
4418
4419  replaceUsesOfNonProtoConstant(Old, NewFn);
4420}
4421
4422void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4423  auto DK = VD->isThisDeclarationADefinition();
4424  if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4425    return;
4426
4427  TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4428  // If we have a definition, this might be a deferred decl. If the
4429  // instantiation is explicit, make sure we emit it at the end.
4430  if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4431    GetAddrOfGlobalVar(VD);
4432
4433  EmitTopLevelDecl(VD);
4434}
4435
4436void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4437                                                 llvm::GlobalValue *GV) {
4438  // Check if this must be emitted as declare variant.
4439  if (LangOpts.OpenMP && OpenMPRuntime &&
4440      OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true))
4441    return;
4442
4443  const auto *D = cast<FunctionDecl>(GD.getDecl());
4444
4445  // Compute the function info and LLVM type.
4446  const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4447  llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4448
4449  // Get or create the prototype for the function.
4450  if (!GV || (GV->getType()->getElementType() != Ty))
4451    GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4452                                                   /*DontDefer=*/true,
4453                                                   ForDefinition));
4454
4455  // Already emitted.
4456  if (!GV->isDeclaration())
4457    return;
4458
4459  // We need to set linkage and visibility on the function before
4460  // generating code for it because various parts of IR generation
4461  // want to propagate this information down (e.g. to local static
4462  // declarations).
4463  auto *Fn = cast<llvm::Function>(GV);
4464  setFunctionLinkage(GD, Fn);
4465
4466  // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4467  setGVProperties(Fn, GD);
4468
4469  MaybeHandleStaticInExternC(D, Fn);
4470
4471
4472  maybeSetTrivialComdat(*D, *Fn);
4473
4474  CodeGenFunction(*this).GenerateCode(D, Fn, FI);
4475
4476  setNonAliasAttributes(GD, Fn);
4477  SetLLVMFunctionAttributesForDefinition(D, Fn);
4478
4479  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4480    AddGlobalCtor(Fn, CA->getPriority());
4481  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4482    AddGlobalDtor(Fn, DA->getPriority());
4483  if (D->hasAttr<AnnotateAttr>())
4484    AddGlobalAnnotations(D, Fn);
4485}
4486
4487void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4488  const auto *D = cast<ValueDecl>(GD.getDecl());
4489  const AliasAttr *AA = D->getAttr<AliasAttr>();
4490  assert(AA && "Not an alias?");
4491
4492  StringRef MangledName = getMangledName(GD);
4493
4494  if (AA->getAliasee() == MangledName) {
4495    Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4496    return;
4497  }
4498
4499  // If there is a definition in the module, then it wins over the alias.
4500  // This is dubious, but allow it to be safe.  Just ignore the alias.
4501  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4502  if (Entry && !Entry->isDeclaration())
4503    return;
4504
4505  Aliases.push_back(GD);
4506
4507  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4508
4509  // Create a reference to the named value.  This ensures that it is emitted
4510  // if a deferred decl.
4511  llvm::Constant *Aliasee;
4512  llvm::GlobalValue::LinkageTypes LT;
4513  if (isa<llvm::FunctionType>(DeclTy)) {
4514    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4515                                      /*ForVTable=*/false);
4516    LT = getFunctionLinkage(GD);
4517  } else {
4518    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4519                                    llvm::PointerType::getUnqual(DeclTy),
4520                                    /*D=*/nullptr);
4521    LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()),
4522                                     D->getType().isConstQualified());
4523  }
4524
4525  // Create the new alias itself, but don't set a name yet.
4526  auto *GA =
4527      llvm::GlobalAlias::create(DeclTy, 0, LT, "", Aliasee, &getModule());
4528
4529  if (Entry) {
4530    if (GA->getAliasee() == Entry) {
4531      Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4532      return;
4533    }
4534
4535    assert(Entry->isDeclaration());
4536
4537    // If there is a declaration in the module, then we had an extern followed
4538    // by the alias, as in:
4539    //   extern int test6();
4540    //   ...
4541    //   int test6() __attribute__((alias("test7")));
4542    //
4543    // Remove it and replace uses of it with the alias.
4544    GA->takeName(Entry);
4545
4546    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4547                                                          Entry->getType()));
4548    Entry->eraseFromParent();
4549  } else {
4550    GA->setName(MangledName);
4551  }
4552
4553  // Set attributes which are particular to an alias; this is a
4554  // specialization of the attributes which may be set on a global
4555  // variable/function.
4556  if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4557      D->isWeakImported()) {
4558    GA->setLinkage(llvm::Function::WeakAnyLinkage);
4559  }
4560
4561  if (const auto *VD = dyn_cast<VarDecl>(D))
4562    if (VD->getTLSKind())
4563      setTLSMode(GA, *VD);
4564
4565  SetCommonAttributes(GD, GA);
4566}
4567
4568void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4569  const auto *D = cast<ValueDecl>(GD.getDecl());
4570  const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4571  assert(IFA && "Not an ifunc?");
4572
4573  StringRef MangledName = getMangledName(GD);
4574
4575  if (IFA->getResolver() == MangledName) {
4576    Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4577    return;
4578  }
4579
4580  // Report an error if some definition overrides ifunc.
4581  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4582  if (Entry && !Entry->isDeclaration()) {
4583    GlobalDecl OtherGD;
4584    if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4585        DiagnosedConflictingDefinitions.insert(GD).second) {
4586      Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4587          << MangledName;
4588      Diags.Report(OtherGD.getDecl()->getLocation(),
4589                   diag::note_previous_definition);
4590    }
4591    return;
4592  }
4593
4594  Aliases.push_back(GD);
4595
4596  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4597  llvm::Constant *Resolver =
4598      GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4599                              /*ForVTable=*/false);
4600  llvm::GlobalIFunc *GIF =
4601      llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4602                                "", Resolver, &getModule());
4603  if (Entry) {
4604    if (GIF->getResolver() == Entry) {
4605      Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4606      return;
4607    }
4608    assert(Entry->isDeclaration());
4609
4610    // If there is a declaration in the module, then we had an extern followed
4611    // by the ifunc, as in:
4612    //   extern int test();
4613    //   ...
4614    //   int test() __attribute__((ifunc("resolver")));
4615    //
4616    // Remove it and replace uses of it with the ifunc.
4617    GIF->takeName(Entry);
4618
4619    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4620                                                          Entry->getType()));
4621    Entry->eraseFromParent();
4622  } else
4623    GIF->setName(MangledName);
4624
4625  SetCommonAttributes(GD, GIF);
4626}
4627
4628llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4629                                            ArrayRef<llvm::Type*> Tys) {
4630  return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4631                                         Tys);
4632}
4633
4634static llvm::StringMapEntry<llvm::GlobalVariable *> &
4635GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4636                         const StringLiteral *Literal, bool TargetIsLSB,
4637                         bool &IsUTF16, unsigned &StringLength) {
4638  StringRef String = Literal->getString();
4639  unsigned NumBytes = String.size();
4640
4641  // Check for simple case.
4642  if (!Literal->containsNonAsciiOrNull()) {
4643    StringLength = NumBytes;
4644    return *Map.insert(std::make_pair(String, nullptr)).first;
4645  }
4646
4647  // Otherwise, convert the UTF8 literals into a string of shorts.
4648  IsUTF16 = true;
4649
4650  SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4651  const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4652  llvm::UTF16 *ToPtr = &ToBuf[0];
4653
4654  (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4655                                 ToPtr + NumBytes, llvm::strictConversion);
4656
4657  // ConvertUTF8toUTF16 returns the length in ToPtr.
4658  StringLength = ToPtr - &ToBuf[0];
4659
4660  // Add an explicit null.
4661  *ToPtr = 0;
4662  return *Map.insert(std::make_pair(
4663                         StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4664                                   (StringLength + 1) * 2),
4665                         nullptr)).first;
4666}
4667
4668ConstantAddress
4669CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4670  unsigned StringLength = 0;
4671  bool isUTF16 = false;
4672  llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4673      GetConstantCFStringEntry(CFConstantStringMap, Literal,
4674                               getDataLayout().isLittleEndian(), isUTF16,
4675                               StringLength);
4676
4677  if (auto *C = Entry.second)
4678    return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4679
4680  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4681  llvm::Constant *Zeros[] = { Zero, Zero };
4682
4683  const ASTContext &Context = getContext();
4684  const llvm::Triple &Triple = getTriple();
4685
4686  const auto CFRuntime = getLangOpts().CFRuntime;
4687  const bool IsSwiftABI =
4688      static_cast<unsigned>(CFRuntime) >=
4689      static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4690  const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4691
4692  // If we don't already have it, get __CFConstantStringClassReference.
4693  if (!CFConstantStringClassRef) {
4694    const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4695    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4696    Ty = llvm::ArrayType::get(Ty, 0);
4697
4698    switch (CFRuntime) {
4699    default: break;
4700    case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4701    case LangOptions::CoreFoundationABI::Swift5_0:
4702      CFConstantStringClassName =
4703          Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4704                              : "$s10Foundation19_NSCFConstantStringCN";
4705      Ty = IntPtrTy;
4706      break;
4707    case LangOptions::CoreFoundationABI::Swift4_2:
4708      CFConstantStringClassName =
4709          Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4710                              : "$S10Foundation19_NSCFConstantStringCN";
4711      Ty = IntPtrTy;
4712      break;
4713    case LangOptions::CoreFoundationABI::Swift4_1:
4714      CFConstantStringClassName =
4715          Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4716                              : "__T010Foundation19_NSCFConstantStringCN";
4717      Ty = IntPtrTy;
4718      break;
4719    }
4720
4721    llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4722
4723    if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4724      llvm::GlobalValue *GV = nullptr;
4725
4726      if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4727        IdentifierInfo &II = Context.Idents.get(GV->getName());
4728        TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4729        DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4730
4731        const VarDecl *VD = nullptr;
4732        for (const auto &Result : DC->lookup(&II))
4733          if ((VD = dyn_cast<VarDecl>(Result)))
4734            break;
4735
4736        if (Triple.isOSBinFormatELF()) {
4737          if (!VD)
4738            GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4739        } else {
4740          GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4741          if (!VD || !VD->hasAttr<DLLExportAttr>())
4742            GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4743          else
4744            GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4745        }
4746
4747        setDSOLocal(GV);
4748      }
4749    }
4750
4751    // Decay array -> ptr
4752    CFConstantStringClassRef =
4753        IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4754                   : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4755  }
4756
4757  QualType CFTy = Context.getCFConstantStringType();
4758
4759  auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4760
4761  ConstantInitBuilder Builder(*this);
4762  auto Fields = Builder.beginStruct(STy);
4763
4764  // Class pointer.
4765  Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4766
4767  // Flags.
4768  if (IsSwiftABI) {
4769    Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4770    Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4771  } else {
4772    Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4773  }
4774
4775  // String pointer.
4776  llvm::Constant *C = nullptr;
4777  if (isUTF16) {
4778    auto Arr = llvm::makeArrayRef(
4779        reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4780        Entry.first().size() / 2);
4781    C = llvm::ConstantDataArray::get(VMContext, Arr);
4782  } else {
4783    C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4784  }
4785
4786  // Note: -fwritable-strings doesn't make the backing store strings of
4787  // CFStrings writable. (See <rdar://problem/10657500>)
4788  auto *GV =
4789      new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4790                               llvm::GlobalValue::PrivateLinkage, C, ".str");
4791  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4792  // Don't enforce the target's minimum global alignment, since the only use
4793  // of the string is via this class initializer.
4794  CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4795                            : Context.getTypeAlignInChars(Context.CharTy);
4796  GV->setAlignment(Align.getAsAlign());
4797
4798  // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4799  // Without it LLVM can merge the string with a non unnamed_addr one during
4800  // LTO.  Doing that changes the section it ends in, which surprises ld64.
4801  if (Triple.isOSBinFormatMachO())
4802    GV->setSection(isUTF16 ? "__TEXT,__ustring"
4803                           : "__TEXT,__cstring,cstring_literals");
4804  // Make sure the literal ends up in .rodata to allow for safe ICF and for
4805  // the static linker to adjust permissions to read-only later on.
4806  else if (Triple.isOSBinFormatELF())
4807    GV->setSection(".rodata");
4808
4809  // String.
4810  llvm::Constant *Str =
4811      llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4812
4813  if (isUTF16)
4814    // Cast the UTF16 string to the correct type.
4815    Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4816  Fields.add(Str);
4817
4818  // String length.
4819  llvm::IntegerType *LengthTy =
4820      llvm::IntegerType::get(getModule().getContext(),
4821                             Context.getTargetInfo().getLongWidth());
4822  if (IsSwiftABI) {
4823    if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4824        CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4825      LengthTy = Int32Ty;
4826    else
4827      LengthTy = IntPtrTy;
4828  }
4829  Fields.addInt(LengthTy, StringLength);
4830
4831  // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
4832  // properly aligned on 32-bit platforms.
4833  CharUnits Alignment =
4834      IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
4835
4836  // The struct.
4837  GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4838                                    /*isConstant=*/false,
4839                                    llvm::GlobalVariable::PrivateLinkage);
4840  GV->addAttribute("objc_arc_inert");
4841  switch (Triple.getObjectFormat()) {
4842  case llvm::Triple::UnknownObjectFormat:
4843    llvm_unreachable("unknown file format");
4844  case llvm::Triple::XCOFF:
4845    llvm_unreachable("XCOFF is not yet implemented");
4846  case llvm::Triple::COFF:
4847  case llvm::Triple::ELF:
4848  case llvm::Triple::Wasm:
4849    GV->setSection("cfstring");
4850    break;
4851  case llvm::Triple::MachO:
4852    GV->setSection("__DATA,__cfstring");
4853    break;
4854  }
4855  Entry.second = GV;
4856
4857  return ConstantAddress(GV, Alignment);
4858}
4859
4860bool CodeGenModule::getExpressionLocationsEnabled() const {
4861  return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4862}
4863
4864QualType CodeGenModule::getObjCFastEnumerationStateType() {
4865  if (ObjCFastEnumerationStateType.isNull()) {
4866    RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4867    D->startDefinition();
4868
4869    QualType FieldTypes[] = {
4870      Context.UnsignedLongTy,
4871      Context.getPointerType(Context.getObjCIdType()),
4872      Context.getPointerType(Context.UnsignedLongTy),
4873      Context.getConstantArrayType(Context.UnsignedLongTy,
4874                           llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
4875    };
4876
4877    for (size_t i = 0; i < 4; ++i) {
4878      FieldDecl *Field = FieldDecl::Create(Context,
4879                                           D,
4880                                           SourceLocation(),
4881                                           SourceLocation(), nullptr,
4882                                           FieldTypes[i], /*TInfo=*/nullptr,
4883                                           /*BitWidth=*/nullptr,
4884                                           /*Mutable=*/false,
4885                                           ICIS_NoInit);
4886      Field->setAccess(AS_public);
4887      D->addDecl(Field);
4888    }
4889
4890    D->completeDefinition();
4891    ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4892  }
4893
4894  return ObjCFastEnumerationStateType;
4895}
4896
4897llvm::Constant *
4898CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4899  assert(!E->getType()->isPointerType() && "Strings are always arrays");
4900
4901  // Don't emit it as the address of the string, emit the string data itself
4902  // as an inline array.
4903  if (E->getCharByteWidth() == 1) {
4904    SmallString<64> Str(E->getString());
4905
4906    // Resize the string to the right size, which is indicated by its type.
4907    const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4908    Str.resize(CAT->getSize().getZExtValue());
4909    return llvm::ConstantDataArray::getString(VMContext, Str, false);
4910  }
4911
4912  auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4913  llvm::Type *ElemTy = AType->getElementType();
4914  unsigned NumElements = AType->getNumElements();
4915
4916  // Wide strings have either 2-byte or 4-byte elements.
4917  if (ElemTy->getPrimitiveSizeInBits() == 16) {
4918    SmallVector<uint16_t, 32> Elements;
4919    Elements.reserve(NumElements);
4920
4921    for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4922      Elements.push_back(E->getCodeUnit(i));
4923    Elements.resize(NumElements);
4924    return llvm::ConstantDataArray::get(VMContext, Elements);
4925  }
4926
4927  assert(ElemTy->getPrimitiveSizeInBits() == 32);
4928  SmallVector<uint32_t, 32> Elements;
4929  Elements.reserve(NumElements);
4930
4931  for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4932    Elements.push_back(E->getCodeUnit(i));
4933  Elements.resize(NumElements);
4934  return llvm::ConstantDataArray::get(VMContext, Elements);
4935}
4936
4937static llvm::GlobalVariable *
4938GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4939                      CodeGenModule &CGM, StringRef GlobalName,
4940                      CharUnits Alignment) {
4941  unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4942      CGM.getStringLiteralAddressSpace());
4943
4944  llvm::Module &M = CGM.getModule();
4945  // Create a global variable for this string
4946  auto *GV = new llvm::GlobalVariable(
4947      M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4948      nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4949  GV->setAlignment(Alignment.getAsAlign());
4950  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4951  if (GV->isWeakForLinker()) {
4952    assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4953    GV->setComdat(M.getOrInsertComdat(GV->getName()));
4954  }
4955  CGM.setDSOLocal(GV);
4956
4957  return GV;
4958}
4959
4960/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4961/// constant array for the given string literal.
4962ConstantAddress
4963CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4964                                                  StringRef Name) {
4965  CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4966
4967  llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4968  llvm::GlobalVariable **Entry = nullptr;
4969  if (!LangOpts.WritableStrings) {
4970    Entry = &ConstantStringMap[C];
4971    if (auto GV = *Entry) {
4972      if (Alignment.getQuantity() > GV->getAlignment())
4973        GV->setAlignment(Alignment.getAsAlign());
4974      return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4975                             Alignment);
4976    }
4977  }
4978
4979  SmallString<256> MangledNameBuffer;
4980  StringRef GlobalVariableName;
4981  llvm::GlobalValue::LinkageTypes LT;
4982
4983  // Mangle the string literal if that's how the ABI merges duplicate strings.
4984  // Don't do it if they are writable, since we don't want writes in one TU to
4985  // affect strings in another.
4986  if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4987      !LangOpts.WritableStrings) {
4988    llvm::raw_svector_ostream Out(MangledNameBuffer);
4989    getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4990    LT = llvm::GlobalValue::LinkOnceODRLinkage;
4991    GlobalVariableName = MangledNameBuffer;
4992  } else {
4993    LT = llvm::GlobalValue::PrivateLinkage;
4994    GlobalVariableName = Name;
4995  }
4996
4997  auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4998  if (Entry)
4999    *Entry = GV;
5000
5001  SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5002                                  QualType());
5003
5004  return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5005                         Alignment);
5006}
5007
5008/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5009/// array for the given ObjCEncodeExpr node.
5010ConstantAddress
5011CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5012  std::string Str;
5013  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5014
5015  return GetAddrOfConstantCString(Str);
5016}
5017
5018/// GetAddrOfConstantCString - Returns a pointer to a character array containing
5019/// the literal and a terminating '\0' character.
5020/// The result has pointer to array type.
5021ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5022    const std::string &Str, const char *GlobalName) {
5023  StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5024  CharUnits Alignment =
5025    getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5026
5027  llvm::Constant *C =
5028      llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5029
5030  // Don't share any string literals if strings aren't constant.
5031  llvm::GlobalVariable **Entry = nullptr;
5032  if (!LangOpts.WritableStrings) {
5033    Entry = &ConstantStringMap[C];
5034    if (auto GV = *Entry) {
5035      if (Alignment.getQuantity() > GV->getAlignment())
5036        GV->setAlignment(Alignment.getAsAlign());
5037      return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5038                             Alignment);
5039    }
5040  }
5041
5042  // Get the default prefix if a name wasn't specified.
5043  if (!GlobalName)
5044    GlobalName = ".str";
5045  // Create a global variable for this.
5046  auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5047                                  GlobalName, Alignment);
5048  if (Entry)
5049    *Entry = GV;
5050
5051  return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5052                         Alignment);
5053}
5054
5055ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5056    const MaterializeTemporaryExpr *E, const Expr *Init) {
5057  assert((E->getStorageDuration() == SD_Static ||
5058          E->getStorageDuration() == SD_Thread) && "not a global temporary");
5059  const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5060
5061  // If we're not materializing a subobject of the temporary, keep the
5062  // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5063  QualType MaterializedType = Init->getType();
5064  if (Init == E->getSubExpr())
5065    MaterializedType = E->getType();
5066
5067  CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5068
5069  if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5070    return ConstantAddress(Slot, Align);
5071
5072  // FIXME: If an externally-visible declaration extends multiple temporaries,
5073  // we need to give each temporary the same name in every translation unit (and
5074  // we also need to make the temporaries externally-visible).
5075  SmallString<256> Name;
5076  llvm::raw_svector_ostream Out(Name);
5077  getCXXABI().getMangleContext().mangleReferenceTemporary(
5078      VD, E->getManglingNumber(), Out);
5079
5080  APValue *Value = nullptr;
5081  if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5082    // If the initializer of the extending declaration is a constant
5083    // initializer, we should have a cached constant initializer for this
5084    // temporary. Note that this might have a different value from the value
5085    // computed by evaluating the initializer if the surrounding constant
5086    // expression modifies the temporary.
5087    Value = E->getOrCreateValue(false);
5088  }
5089
5090  // Try evaluating it now, it might have a constant initializer.
5091  Expr::EvalResult EvalResult;
5092  if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5093      !EvalResult.hasSideEffects())
5094    Value = &EvalResult.Val;
5095
5096  LangAS AddrSpace =
5097      VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5098
5099  Optional<ConstantEmitter> emitter;
5100  llvm::Constant *InitialValue = nullptr;
5101  bool Constant = false;
5102  llvm::Type *Type;
5103  if (Value) {
5104    // The temporary has a constant initializer, use it.
5105    emitter.emplace(*this);
5106    InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5107                                               MaterializedType);
5108    Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5109    Type = InitialValue->getType();
5110  } else {
5111    // No initializer, the initialization will be provided when we
5112    // initialize the declaration which performed lifetime extension.
5113    Type = getTypes().ConvertTypeForMem(MaterializedType);
5114  }
5115
5116  // Create a global variable for this lifetime-extended temporary.
5117  llvm::GlobalValue::LinkageTypes Linkage =
5118      getLLVMLinkageVarDefinition(VD, Constant);
5119  if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5120    const VarDecl *InitVD;
5121    if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5122        isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5123      // Temporaries defined inside a class get linkonce_odr linkage because the
5124      // class can be defined in multiple translation units.
5125      Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5126    } else {
5127      // There is no need for this temporary to have external linkage if the
5128      // VarDecl has external linkage.
5129      Linkage = llvm::GlobalVariable::InternalLinkage;
5130    }
5131  }
5132  auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5133  auto *GV = new llvm::GlobalVariable(
5134      getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5135      /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5136  if (emitter) emitter->finalize(GV);
5137  setGVProperties(GV, VD);
5138  GV->setAlignment(Align.getAsAlign());
5139  if (supportsCOMDAT() && GV->isWeakForLinker())
5140    GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5141  if (VD->getTLSKind())
5142    setTLSMode(GV, *VD);
5143  llvm::Constant *CV = GV;
5144  if (AddrSpace != LangAS::Default)
5145    CV = getTargetCodeGenInfo().performAddrSpaceCast(
5146        *this, GV, AddrSpace, LangAS::Default,
5147        Type->getPointerTo(
5148            getContext().getTargetAddressSpace(LangAS::Default)));
5149  MaterializedGlobalTemporaryMap[E] = CV;
5150  return ConstantAddress(CV, Align);
5151}
5152
5153/// EmitObjCPropertyImplementations - Emit information for synthesized
5154/// properties for an implementation.
5155void CodeGenModule::EmitObjCPropertyImplementations(const
5156                                                    ObjCImplementationDecl *D) {
5157  for (const auto *PID : D->property_impls()) {
5158    // Dynamic is just for type-checking.
5159    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5160      ObjCPropertyDecl *PD = PID->getPropertyDecl();
5161
5162      // Determine which methods need to be implemented, some may have
5163      // been overridden. Note that ::isPropertyAccessor is not the method
5164      // we want, that just indicates if the decl came from a
5165      // property. What we want to know is if the method is defined in
5166      // this implementation.
5167      auto *Getter = PID->getGetterMethodDecl();
5168      if (!Getter || Getter->isSynthesizedAccessorStub())
5169        CodeGenFunction(*this).GenerateObjCGetter(
5170            const_cast<ObjCImplementationDecl *>(D), PID);
5171      auto *Setter = PID->getSetterMethodDecl();
5172      if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5173        CodeGenFunction(*this).GenerateObjCSetter(
5174                                 const_cast<ObjCImplementationDecl *>(D), PID);
5175    }
5176  }
5177}
5178
5179static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5180  const ObjCInterfaceDecl *iface = impl->getClassInterface();
5181  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5182       ivar; ivar = ivar->getNextIvar())
5183    if (ivar->getType().isDestructedType())
5184      return true;
5185
5186  return false;
5187}
5188
5189static bool AllTrivialInitializers(CodeGenModule &CGM,
5190                                   ObjCImplementationDecl *D) {
5191  CodeGenFunction CGF(CGM);
5192  for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5193       E = D->init_end(); B != E; ++B) {
5194    CXXCtorInitializer *CtorInitExp = *B;
5195    Expr *Init = CtorInitExp->getInit();
5196    if (!CGF.isTrivialInitializer(Init))
5197      return false;
5198  }
5199  return true;
5200}
5201
5202/// EmitObjCIvarInitializations - Emit information for ivar initialization
5203/// for an implementation.
5204void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5205  // We might need a .cxx_destruct even if we don't have any ivar initializers.
5206  if (needsDestructMethod(D)) {
5207    IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5208    Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5209    ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5210        getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5211        getContext().VoidTy, nullptr, D,
5212        /*isInstance=*/true, /*isVariadic=*/false,
5213        /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5214        /*isImplicitlyDeclared=*/true,
5215        /*isDefined=*/false, ObjCMethodDecl::Required);
5216    D->addInstanceMethod(DTORMethod);
5217    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5218    D->setHasDestructors(true);
5219  }
5220
5221  // If the implementation doesn't have any ivar initializers, we don't need
5222  // a .cxx_construct.
5223  if (D->getNumIvarInitializers() == 0 ||
5224      AllTrivialInitializers(*this, D))
5225    return;
5226
5227  IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5228  Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5229  // The constructor returns 'self'.
5230  ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5231      getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5232      getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5233      /*isVariadic=*/false,
5234      /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5235      /*isImplicitlyDeclared=*/true,
5236      /*isDefined=*/false, ObjCMethodDecl::Required);
5237  D->addInstanceMethod(CTORMethod);
5238  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5239  D->setHasNonZeroConstructors(true);
5240}
5241
5242// EmitLinkageSpec - Emit all declarations in a linkage spec.
5243void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5244  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5245      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5246    ErrorUnsupported(LSD, "linkage spec");
5247    return;
5248  }
5249
5250  EmitDeclContext(LSD);
5251}
5252
5253void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5254  for (auto *I : DC->decls()) {
5255    // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5256    // are themselves considered "top-level", so EmitTopLevelDecl on an
5257    // ObjCImplDecl does not recursively visit them. We need to do that in
5258    // case they're nested inside another construct (LinkageSpecDecl /
5259    // ExportDecl) that does stop them from being considered "top-level".
5260    if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5261      for (auto *M : OID->methods())
5262        EmitTopLevelDecl(M);
5263    }
5264
5265    EmitTopLevelDecl(I);
5266  }
5267}
5268
5269/// EmitTopLevelDecl - Emit code for a single top level declaration.
5270void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5271  // Ignore dependent declarations.
5272  if (D->isTemplated())
5273    return;
5274
5275  switch (D->getKind()) {
5276  case Decl::CXXConversion:
5277  case Decl::CXXMethod:
5278  case Decl::Function:
5279    EmitGlobal(cast<FunctionDecl>(D));
5280    // Always provide some coverage mapping
5281    // even for the functions that aren't emitted.
5282    AddDeferredUnusedCoverageMapping(D);
5283    break;
5284
5285  case Decl::CXXDeductionGuide:
5286    // Function-like, but does not result in code emission.
5287    break;
5288
5289  case Decl::Var:
5290  case Decl::Decomposition:
5291  case Decl::VarTemplateSpecialization:
5292    EmitGlobal(cast<VarDecl>(D));
5293    if (auto *DD = dyn_cast<DecompositionDecl>(D))
5294      for (auto *B : DD->bindings())
5295        if (auto *HD = B->getHoldingVar())
5296          EmitGlobal(HD);
5297    break;
5298
5299  // Indirect fields from global anonymous structs and unions can be
5300  // ignored; only the actual variable requires IR gen support.
5301  case Decl::IndirectField:
5302    break;
5303
5304  // C++ Decls
5305  case Decl::Namespace:
5306    EmitDeclContext(cast<NamespaceDecl>(D));
5307    break;
5308  case Decl::ClassTemplateSpecialization: {
5309    const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5310    if (DebugInfo &&
5311        Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
5312        Spec->hasDefinition())
5313      DebugInfo->completeTemplateDefinition(*Spec);
5314  } LLVM_FALLTHROUGH;
5315  case Decl::CXXRecord:
5316    if (DebugInfo) {
5317      if (auto *ES = D->getASTContext().getExternalSource())
5318        if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5319          DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
5320    }
5321    // Emit any static data members, they may be definitions.
5322    for (auto *I : cast<CXXRecordDecl>(D)->decls())
5323      if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5324        EmitTopLevelDecl(I);
5325    break;
5326    // No code generation needed.
5327  case Decl::UsingShadow:
5328  case Decl::ClassTemplate:
5329  case Decl::VarTemplate:
5330  case Decl::Concept:
5331  case Decl::VarTemplatePartialSpecialization:
5332  case Decl::FunctionTemplate:
5333  case Decl::TypeAliasTemplate:
5334  case Decl::Block:
5335  case Decl::Empty:
5336  case Decl::Binding:
5337    break;
5338  case Decl::Using:          // using X; [C++]
5339    if (CGDebugInfo *DI = getModuleDebugInfo())
5340        DI->EmitUsingDecl(cast<UsingDecl>(*D));
5341    return;
5342  case Decl::NamespaceAlias:
5343    if (CGDebugInfo *DI = getModuleDebugInfo())
5344        DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5345    return;
5346  case Decl::UsingDirective: // using namespace X; [C++]
5347    if (CGDebugInfo *DI = getModuleDebugInfo())
5348      DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5349    return;
5350  case Decl::CXXConstructor:
5351    getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5352    break;
5353  case Decl::CXXDestructor:
5354    getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5355    break;
5356
5357  case Decl::StaticAssert:
5358    // Nothing to do.
5359    break;
5360
5361  // Objective-C Decls
5362
5363  // Forward declarations, no (immediate) code generation.
5364  case Decl::ObjCInterface:
5365  case Decl::ObjCCategory:
5366    break;
5367
5368  case Decl::ObjCProtocol: {
5369    auto *Proto = cast<ObjCProtocolDecl>(D);
5370    if (Proto->isThisDeclarationADefinition())
5371      ObjCRuntime->GenerateProtocol(Proto);
5372    break;
5373  }
5374
5375  case Decl::ObjCCategoryImpl:
5376    // Categories have properties but don't support synthesize so we
5377    // can ignore them here.
5378    ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5379    break;
5380
5381  case Decl::ObjCImplementation: {
5382    auto *OMD = cast<ObjCImplementationDecl>(D);
5383    EmitObjCPropertyImplementations(OMD);
5384    EmitObjCIvarInitializations(OMD);
5385    ObjCRuntime->GenerateClass(OMD);
5386    // Emit global variable debug information.
5387    if (CGDebugInfo *DI = getModuleDebugInfo())
5388      if (getCodeGenOpts().hasReducedDebugInfo())
5389        DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5390            OMD->getClassInterface()), OMD->getLocation());
5391    break;
5392  }
5393  case Decl::ObjCMethod: {
5394    auto *OMD = cast<ObjCMethodDecl>(D);
5395    // If this is not a prototype, emit the body.
5396    if (OMD->getBody())
5397      CodeGenFunction(*this).GenerateObjCMethod(OMD);
5398    break;
5399  }
5400  case Decl::ObjCCompatibleAlias:
5401    ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5402    break;
5403
5404  case Decl::PragmaComment: {
5405    const auto *PCD = cast<PragmaCommentDecl>(D);
5406    switch (PCD->getCommentKind()) {
5407    case PCK_Unknown:
5408      llvm_unreachable("unexpected pragma comment kind");
5409    case PCK_Linker:
5410      AppendLinkerOptions(PCD->getArg());
5411      break;
5412    case PCK_Lib:
5413        AddDependentLib(PCD->getArg());
5414      break;
5415    case PCK_Compiler:
5416    case PCK_ExeStr:
5417    case PCK_User:
5418      break; // We ignore all of these.
5419    }
5420    break;
5421  }
5422
5423  case Decl::PragmaDetectMismatch: {
5424    const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5425    AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5426    break;
5427  }
5428
5429  case Decl::LinkageSpec:
5430    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5431    break;
5432
5433  case Decl::FileScopeAsm: {
5434    // File-scope asm is ignored during device-side CUDA compilation.
5435    if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5436      break;
5437    // File-scope asm is ignored during device-side OpenMP compilation.
5438    if (LangOpts.OpenMPIsDevice)
5439      break;
5440    auto *AD = cast<FileScopeAsmDecl>(D);
5441    getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5442    break;
5443  }
5444
5445  case Decl::Import: {
5446    auto *Import = cast<ImportDecl>(D);
5447
5448    // If we've already imported this module, we're done.
5449    if (!ImportedModules.insert(Import->getImportedModule()))
5450      break;
5451
5452    // Emit debug information for direct imports.
5453    if (!Import->getImportedOwningModule()) {
5454      if (CGDebugInfo *DI = getModuleDebugInfo())
5455        DI->EmitImportDecl(*Import);
5456    }
5457
5458    // Find all of the submodules and emit the module initializers.
5459    llvm::SmallPtrSet<clang::Module *, 16> Visited;
5460    SmallVector<clang::Module *, 16> Stack;
5461    Visited.insert(Import->getImportedModule());
5462    Stack.push_back(Import->getImportedModule());
5463
5464    while (!Stack.empty()) {
5465      clang::Module *Mod = Stack.pop_back_val();
5466      if (!EmittedModuleInitializers.insert(Mod).second)
5467        continue;
5468
5469      for (auto *D : Context.getModuleInitializers(Mod))
5470        EmitTopLevelDecl(D);
5471
5472      // Visit the submodules of this module.
5473      for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5474                                             SubEnd = Mod->submodule_end();
5475           Sub != SubEnd; ++Sub) {
5476        // Skip explicit children; they need to be explicitly imported to emit
5477        // the initializers.
5478        if ((*Sub)->IsExplicit)
5479          continue;
5480
5481        if (Visited.insert(*Sub).second)
5482          Stack.push_back(*Sub);
5483      }
5484    }
5485    break;
5486  }
5487
5488  case Decl::Export:
5489    EmitDeclContext(cast<ExportDecl>(D));
5490    break;
5491
5492  case Decl::OMPThreadPrivate:
5493    EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5494    break;
5495
5496  case Decl::OMPAllocate:
5497    break;
5498
5499  case Decl::OMPDeclareReduction:
5500    EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5501    break;
5502
5503  case Decl::OMPDeclareMapper:
5504    EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5505    break;
5506
5507  case Decl::OMPRequires:
5508    EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5509    break;
5510
5511  default:
5512    // Make sure we handled everything we should, every other kind is a
5513    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5514    // function. Need to recode Decl::Kind to do that easily.
5515    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5516    break;
5517  }
5518}
5519
5520void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5521  // Do we need to generate coverage mapping?
5522  if (!CodeGenOpts.CoverageMapping)
5523    return;
5524  switch (D->getKind()) {
5525  case Decl::CXXConversion:
5526  case Decl::CXXMethod:
5527  case Decl::Function:
5528  case Decl::ObjCMethod:
5529  case Decl::CXXConstructor:
5530  case Decl::CXXDestructor: {
5531    if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5532      return;
5533    SourceManager &SM = getContext().getSourceManager();
5534    if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5535      return;
5536    auto I = DeferredEmptyCoverageMappingDecls.find(D);
5537    if (I == DeferredEmptyCoverageMappingDecls.end())
5538      DeferredEmptyCoverageMappingDecls[D] = true;
5539    break;
5540  }
5541  default:
5542    break;
5543  };
5544}
5545
5546void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5547  // Do we need to generate coverage mapping?
5548  if (!CodeGenOpts.CoverageMapping)
5549    return;
5550  if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5551    if (Fn->isTemplateInstantiation())
5552      ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5553  }
5554  auto I = DeferredEmptyCoverageMappingDecls.find(D);
5555  if (I == DeferredEmptyCoverageMappingDecls.end())
5556    DeferredEmptyCoverageMappingDecls[D] = false;
5557  else
5558    I->second = false;
5559}
5560
5561void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5562  // We call takeVector() here to avoid use-after-free.
5563  // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5564  // we deserialize function bodies to emit coverage info for them, and that
5565  // deserializes more declarations. How should we handle that case?
5566  for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5567    if (!Entry.second)
5568      continue;
5569    const Decl *D = Entry.first;
5570    switch (D->getKind()) {
5571    case Decl::CXXConversion:
5572    case Decl::CXXMethod:
5573    case Decl::Function:
5574    case Decl::ObjCMethod: {
5575      CodeGenPGO PGO(*this);
5576      GlobalDecl GD(cast<FunctionDecl>(D));
5577      PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5578                                  getFunctionLinkage(GD));
5579      break;
5580    }
5581    case Decl::CXXConstructor: {
5582      CodeGenPGO PGO(*this);
5583      GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5584      PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5585                                  getFunctionLinkage(GD));
5586      break;
5587    }
5588    case Decl::CXXDestructor: {
5589      CodeGenPGO PGO(*this);
5590      GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5591      PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5592                                  getFunctionLinkage(GD));
5593      break;
5594    }
5595    default:
5596      break;
5597    };
5598  }
5599}
5600
5601/// Turns the given pointer into a constant.
5602static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5603                                          const void *Ptr) {
5604  uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5605  llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5606  return llvm::ConstantInt::get(i64, PtrInt);
5607}
5608
5609static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5610                                   llvm::NamedMDNode *&GlobalMetadata,
5611                                   GlobalDecl D,
5612                                   llvm::GlobalValue *Addr) {
5613  if (!GlobalMetadata)
5614    GlobalMetadata =
5615      CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5616
5617  // TODO: should we report variant information for ctors/dtors?
5618  llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5619                           llvm::ConstantAsMetadata::get(GetPointerConstant(
5620                               CGM.getLLVMContext(), D.getDecl()))};
5621  GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5622}
5623
5624/// For each function which is declared within an extern "C" region and marked
5625/// as 'used', but has internal linkage, create an alias from the unmangled
5626/// name to the mangled name if possible. People expect to be able to refer
5627/// to such functions with an unmangled name from inline assembly within the
5628/// same translation unit.
5629void CodeGenModule::EmitStaticExternCAliases() {
5630  if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5631    return;
5632  for (auto &I : StaticExternCValues) {
5633    IdentifierInfo *Name = I.first;
5634    llvm::GlobalValue *Val = I.second;
5635    if (Val && !getModule().getNamedValue(Name->getName()))
5636      addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5637  }
5638}
5639
5640bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5641                                             GlobalDecl &Result) const {
5642  auto Res = Manglings.find(MangledName);
5643  if (Res == Manglings.end())
5644    return false;
5645  Result = Res->getValue();
5646  return true;
5647}
5648
5649/// Emits metadata nodes associating all the global values in the
5650/// current module with the Decls they came from.  This is useful for
5651/// projects using IR gen as a subroutine.
5652///
5653/// Since there's currently no way to associate an MDNode directly
5654/// with an llvm::GlobalValue, we create a global named metadata
5655/// with the name 'clang.global.decl.ptrs'.
5656void CodeGenModule::EmitDeclMetadata() {
5657  llvm::NamedMDNode *GlobalMetadata = nullptr;
5658
5659  for (auto &I : MangledDeclNames) {
5660    llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5661    // Some mangled names don't necessarily have an associated GlobalValue
5662    // in this module, e.g. if we mangled it for DebugInfo.
5663    if (Addr)
5664      EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5665  }
5666}
5667
5668/// Emits metadata nodes for all the local variables in the current
5669/// function.
5670void CodeGenFunction::EmitDeclMetadata() {
5671  if (LocalDeclMap.empty()) return;
5672
5673  llvm::LLVMContext &Context = getLLVMContext();
5674
5675  // Find the unique metadata ID for this name.
5676  unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5677
5678  llvm::NamedMDNode *GlobalMetadata = nullptr;
5679
5680  for (auto &I : LocalDeclMap) {
5681    const Decl *D = I.first;
5682    llvm::Value *Addr = I.second.getPointer();
5683    if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5684      llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5685      Alloca->setMetadata(
5686          DeclPtrKind, llvm::MDNode::get(
5687                           Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5688    } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5689      GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5690      EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5691    }
5692  }
5693}
5694
5695void CodeGenModule::EmitVersionIdentMetadata() {
5696  llvm::NamedMDNode *IdentMetadata =
5697    TheModule.getOrInsertNamedMetadata("llvm.ident");
5698  std::string Version = getClangFullVersion();
5699  llvm::LLVMContext &Ctx = TheModule.getContext();
5700
5701  llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5702  IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5703}
5704
5705void CodeGenModule::EmitCommandLineMetadata() {
5706  llvm::NamedMDNode *CommandLineMetadata =
5707    TheModule.getOrInsertNamedMetadata("llvm.commandline");
5708  std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5709  llvm::LLVMContext &Ctx = TheModule.getContext();
5710
5711  llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5712  CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5713}
5714
5715void CodeGenModule::EmitTargetMetadata() {
5716  // Warning, new MangledDeclNames may be appended within this loop.
5717  // We rely on MapVector insertions adding new elements to the end
5718  // of the container.
5719  // FIXME: Move this loop into the one target that needs it, and only
5720  // loop over those declarations for which we couldn't emit the target
5721  // metadata when we emitted the declaration.
5722  for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5723    auto Val = *(MangledDeclNames.begin() + I);
5724    const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5725    llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5726    getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5727  }
5728}
5729
5730void CodeGenModule::EmitCoverageFile() {
5731  if (getCodeGenOpts().CoverageDataFile.empty() &&
5732      getCodeGenOpts().CoverageNotesFile.empty())
5733    return;
5734
5735  llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5736  if (!CUNode)
5737    return;
5738
5739  llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5740  llvm::LLVMContext &Ctx = TheModule.getContext();
5741  auto *CoverageDataFile =
5742      llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5743  auto *CoverageNotesFile =
5744      llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5745  for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5746    llvm::MDNode *CU = CUNode->getOperand(i);
5747    llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5748    GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5749  }
5750}
5751
5752llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5753  // Sema has checked that all uuid strings are of the form
5754  // "12345678-1234-1234-1234-1234567890ab".
5755  assert(Uuid.size() == 36);
5756  for (unsigned i = 0; i < 36; ++i) {
5757    if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
5758    else                                         assert(isHexDigit(Uuid[i]));
5759  }
5760
5761  // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5762  const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5763
5764  llvm::Constant *Field3[8];
5765  for (unsigned Idx = 0; Idx < 8; ++Idx)
5766    Field3[Idx] = llvm::ConstantInt::get(
5767        Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5768
5769  llvm::Constant *Fields[4] = {
5770    llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
5771    llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
5772    llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5773    llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5774  };
5775
5776  return llvm::ConstantStruct::getAnon(Fields);
5777}
5778
5779llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5780                                                       bool ForEH) {
5781  // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5782  // FIXME: should we even be calling this method if RTTI is disabled
5783  // and it's not for EH?
5784  if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
5785    return llvm::Constant::getNullValue(Int8PtrTy);
5786
5787  if (ForEH && Ty->isObjCObjectPointerType() &&
5788      LangOpts.ObjCRuntime.isGNUFamily())
5789    return ObjCRuntime->GetEHType(Ty);
5790
5791  return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5792}
5793
5794void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5795  // Do not emit threadprivates in simd-only mode.
5796  if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5797    return;
5798  for (auto RefExpr : D->varlists()) {
5799    auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5800    bool PerformInit =
5801        VD->getAnyInitializer() &&
5802        !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5803                                                        /*ForRef=*/false);
5804
5805    Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5806    if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5807            VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5808      CXXGlobalInits.push_back(InitFunction);
5809  }
5810}
5811
5812llvm::Metadata *
5813CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5814                                            StringRef Suffix) {
5815  llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5816  if (InternalId)
5817    return InternalId;
5818
5819  if (isExternallyVisible(T->getLinkage())) {
5820    std::string OutName;
5821    llvm::raw_string_ostream Out(OutName);
5822    getCXXABI().getMangleContext().mangleTypeName(T, Out);
5823    Out << Suffix;
5824
5825    InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5826  } else {
5827    InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5828                                           llvm::ArrayRef<llvm::Metadata *>());
5829  }
5830
5831  return InternalId;
5832}
5833
5834llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5835  return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5836}
5837
5838llvm::Metadata *
5839CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5840  return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5841}
5842
5843// Generalize pointer types to a void pointer with the qualifiers of the
5844// originally pointed-to type, e.g. 'const char *' and 'char * const *'
5845// generalize to 'const void *' while 'char *' and 'const char **' generalize to
5846// 'void *'.
5847static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5848  if (!Ty->isPointerType())
5849    return Ty;
5850
5851  return Ctx.getPointerType(
5852      QualType(Ctx.VoidTy).withCVRQualifiers(
5853          Ty->getPointeeType().getCVRQualifiers()));
5854}
5855
5856// Apply type generalization to a FunctionType's return and argument types
5857static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5858  if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5859    SmallVector<QualType, 8> GeneralizedParams;
5860    for (auto &Param : FnType->param_types())
5861      GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5862
5863    return Ctx.getFunctionType(
5864        GeneralizeType(Ctx, FnType->getReturnType()),
5865        GeneralizedParams, FnType->getExtProtoInfo());
5866  }
5867
5868  if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5869    return Ctx.getFunctionNoProtoType(
5870        GeneralizeType(Ctx, FnType->getReturnType()));
5871
5872  llvm_unreachable("Encountered unknown FunctionType");
5873}
5874
5875llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5876  return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5877                                      GeneralizedMetadataIdMap, ".generalized");
5878}
5879
5880/// Returns whether this module needs the "all-vtables" type identifier.
5881bool CodeGenModule::NeedAllVtablesTypeId() const {
5882  // Returns true if at least one of vtable-based CFI checkers is enabled and
5883  // is not in the trapping mode.
5884  return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5885           !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5886          (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5887           !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5888          (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5889           !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5890          (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5891           !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5892}
5893
5894void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5895                                          CharUnits Offset,
5896                                          const CXXRecordDecl *RD) {
5897  llvm::Metadata *MD =
5898      CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5899  VTable->addTypeMetadata(Offset.getQuantity(), MD);
5900
5901  if (CodeGenOpts.SanitizeCfiCrossDso)
5902    if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5903      VTable->addTypeMetadata(Offset.getQuantity(),
5904                              llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5905
5906  if (NeedAllVtablesTypeId()) {
5907    llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5908    VTable->addTypeMetadata(Offset.getQuantity(), MD);
5909  }
5910}
5911
5912llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5913  if (!SanStats)
5914    SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
5915
5916  return *SanStats;
5917}
5918llvm::Value *
5919CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5920                                                  CodeGenFunction &CGF) {
5921  llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5922  auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5923  auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5924  return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5925                                "__translate_sampler_initializer"),
5926                                {C});
5927}
5928