CGObjCGNU.cpp revision 296417
1//===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This provides Objective-C code generation targeting the GNU runtime.  The
11// class in this file generates structures used by the GNU Objective-C runtime
12// library.  These structures are defined in objc/objc.h and objc/objc-api.h in
13// the GNU runtime distribution.
14//
15//===----------------------------------------------------------------------===//
16
17#include "CGObjCRuntime.h"
18#include "CGCleanup.h"
19#include "CodeGenFunction.h"
20#include "CodeGenModule.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/Decl.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/Basic/FileManager.h"
27#include "clang/Basic/SourceManager.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/StringMap.h"
30#include "llvm/IR/CallSite.h"
31#include "llvm/IR/DataLayout.h"
32#include "llvm/IR/Intrinsics.h"
33#include "llvm/IR/LLVMContext.h"
34#include "llvm/IR/Module.h"
35#include "llvm/Support/Compiler.h"
36#include <cstdarg>
37
38
39using namespace clang;
40using namespace CodeGen;
41
42
43namespace {
44/// Class that lazily initialises the runtime function.  Avoids inserting the
45/// types and the function declaration into a module if they're not used, and
46/// avoids constructing the type more than once if it's used more than once.
47class LazyRuntimeFunction {
48  CodeGenModule *CGM;
49  llvm::FunctionType *FTy;
50  const char *FunctionName;
51  llvm::Constant *Function;
52
53public:
54  /// Constructor leaves this class uninitialized, because it is intended to
55  /// be used as a field in another class and not all of the types that are
56  /// used as arguments will necessarily be available at construction time.
57  LazyRuntimeFunction()
58      : CGM(nullptr), FunctionName(nullptr), Function(nullptr) {}
59
60  /// Initialises the lazy function with the name, return type, and the types
61  /// of the arguments.
62  LLVM_END_WITH_NULL
63  void init(CodeGenModule *Mod, const char *name, llvm::Type *RetTy, ...) {
64    CGM = Mod;
65    FunctionName = name;
66    Function = nullptr;
67    std::vector<llvm::Type *> ArgTys;
68    va_list Args;
69    va_start(Args, RetTy);
70    while (llvm::Type *ArgTy = va_arg(Args, llvm::Type *))
71      ArgTys.push_back(ArgTy);
72    va_end(Args);
73    FTy = llvm::FunctionType::get(RetTy, ArgTys, false);
74  }
75
76  llvm::FunctionType *getType() { return FTy; }
77
78  /// Overloaded cast operator, allows the class to be implicitly cast to an
79  /// LLVM constant.
80  operator llvm::Constant *() {
81    if (!Function) {
82      if (!FunctionName)
83        return nullptr;
84      Function =
85          cast<llvm::Constant>(CGM->CreateRuntimeFunction(FTy, FunctionName));
86    }
87    return Function;
88  }
89  operator llvm::Function *() {
90    return cast<llvm::Function>((llvm::Constant *)*this);
91  }
92};
93
94
95/// GNU Objective-C runtime code generation.  This class implements the parts of
96/// Objective-C support that are specific to the GNU family of runtimes (GCC,
97/// GNUstep and ObjFW).
98class CGObjCGNU : public CGObjCRuntime {
99protected:
100  /// The LLVM module into which output is inserted
101  llvm::Module &TheModule;
102  /// strut objc_super.  Used for sending messages to super.  This structure
103  /// contains the receiver (object) and the expected class.
104  llvm::StructType *ObjCSuperTy;
105  /// struct objc_super*.  The type of the argument to the superclass message
106  /// lookup functions.
107  llvm::PointerType *PtrToObjCSuperTy;
108  /// LLVM type for selectors.  Opaque pointer (i8*) unless a header declaring
109  /// SEL is included in a header somewhere, in which case it will be whatever
110  /// type is declared in that header, most likely {i8*, i8*}.
111  llvm::PointerType *SelectorTy;
112  /// LLVM i8 type.  Cached here to avoid repeatedly getting it in all of the
113  /// places where it's used
114  llvm::IntegerType *Int8Ty;
115  /// Pointer to i8 - LLVM type of char*, for all of the places where the
116  /// runtime needs to deal with C strings.
117  llvm::PointerType *PtrToInt8Ty;
118  /// Instance Method Pointer type.  This is a pointer to a function that takes,
119  /// at a minimum, an object and a selector, and is the generic type for
120  /// Objective-C methods.  Due to differences between variadic / non-variadic
121  /// calling conventions, it must always be cast to the correct type before
122  /// actually being used.
123  llvm::PointerType *IMPTy;
124  /// Type of an untyped Objective-C object.  Clang treats id as a built-in type
125  /// when compiling Objective-C code, so this may be an opaque pointer (i8*),
126  /// but if the runtime header declaring it is included then it may be a
127  /// pointer to a structure.
128  llvm::PointerType *IdTy;
129  /// Pointer to a pointer to an Objective-C object.  Used in the new ABI
130  /// message lookup function and some GC-related functions.
131  llvm::PointerType *PtrToIdTy;
132  /// The clang type of id.  Used when using the clang CGCall infrastructure to
133  /// call Objective-C methods.
134  CanQualType ASTIdTy;
135  /// LLVM type for C int type.
136  llvm::IntegerType *IntTy;
137  /// LLVM type for an opaque pointer.  This is identical to PtrToInt8Ty, but is
138  /// used in the code to document the difference between i8* meaning a pointer
139  /// to a C string and i8* meaning a pointer to some opaque type.
140  llvm::PointerType *PtrTy;
141  /// LLVM type for C long type.  The runtime uses this in a lot of places where
142  /// it should be using intptr_t, but we can't fix this without breaking
143  /// compatibility with GCC...
144  llvm::IntegerType *LongTy;
145  /// LLVM type for C size_t.  Used in various runtime data structures.
146  llvm::IntegerType *SizeTy;
147  /// LLVM type for C intptr_t.
148  llvm::IntegerType *IntPtrTy;
149  /// LLVM type for C ptrdiff_t.  Mainly used in property accessor functions.
150  llvm::IntegerType *PtrDiffTy;
151  /// LLVM type for C int*.  Used for GCC-ABI-compatible non-fragile instance
152  /// variables.
153  llvm::PointerType *PtrToIntTy;
154  /// LLVM type for Objective-C BOOL type.
155  llvm::Type *BoolTy;
156  /// 32-bit integer type, to save us needing to look it up every time it's used.
157  llvm::IntegerType *Int32Ty;
158  /// 64-bit integer type, to save us needing to look it up every time it's used.
159  llvm::IntegerType *Int64Ty;
160  /// Metadata kind used to tie method lookups to message sends.  The GNUstep
161  /// runtime provides some LLVM passes that can use this to do things like
162  /// automatic IMP caching and speculative inlining.
163  unsigned msgSendMDKind;
164  /// Helper function that generates a constant string and returns a pointer to
165  /// the start of the string.  The result of this function can be used anywhere
166  /// where the C code specifies const char*.
167  llvm::Constant *MakeConstantString(const std::string &Str,
168                                     const std::string &Name="") {
169    ConstantAddress Array = CGM.GetAddrOfConstantCString(Str, Name.c_str());
170    return llvm::ConstantExpr::getGetElementPtr(Array.getElementType(),
171                                                Array.getPointer(), Zeros);
172  }
173  /// Emits a linkonce_odr string, whose name is the prefix followed by the
174  /// string value.  This allows the linker to combine the strings between
175  /// different modules.  Used for EH typeinfo names, selector strings, and a
176  /// few other things.
177  llvm::Constant *ExportUniqueString(const std::string &Str,
178                                     const std::string prefix) {
179    std::string name = prefix + Str;
180    auto *ConstStr = TheModule.getGlobalVariable(name);
181    if (!ConstStr) {
182      llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str);
183      ConstStr = new llvm::GlobalVariable(TheModule, value->getType(), true,
184              llvm::GlobalValue::LinkOnceODRLinkage, value, prefix + Str);
185    }
186    return llvm::ConstantExpr::getGetElementPtr(ConstStr->getValueType(),
187                                                ConstStr, Zeros);
188  }
189  /// Generates a global structure, initialized by the elements in the vector.
190  /// The element types must match the types of the structure elements in the
191  /// first argument.
192  llvm::GlobalVariable *MakeGlobal(llvm::StructType *Ty,
193                                   ArrayRef<llvm::Constant *> V,
194                                   CharUnits Align,
195                                   StringRef Name="",
196                                   llvm::GlobalValue::LinkageTypes linkage
197                                         =llvm::GlobalValue::InternalLinkage) {
198    llvm::Constant *C = llvm::ConstantStruct::get(Ty, V);
199    auto GV = new llvm::GlobalVariable(TheModule, Ty, false,
200                                       linkage, C, Name);
201    GV->setAlignment(Align.getQuantity());
202    return GV;
203  }
204  /// Generates a global array.  The vector must contain the same number of
205  /// elements that the array type declares, of the type specified as the array
206  /// element type.
207  llvm::GlobalVariable *MakeGlobal(llvm::ArrayType *Ty,
208                                   ArrayRef<llvm::Constant *> V,
209                                   CharUnits Align,
210                                   StringRef Name="",
211                                   llvm::GlobalValue::LinkageTypes linkage
212                                         =llvm::GlobalValue::InternalLinkage) {
213    llvm::Constant *C = llvm::ConstantArray::get(Ty, V);
214    auto GV = new llvm::GlobalVariable(TheModule, Ty, false,
215                                       linkage, C, Name);
216    GV->setAlignment(Align.getQuantity());
217    return GV;
218  }
219  /// Generates a global array, inferring the array type from the specified
220  /// element type and the size of the initialiser.
221  llvm::GlobalVariable *MakeGlobalArray(llvm::Type *Ty,
222                                        ArrayRef<llvm::Constant *> V,
223                                        CharUnits Align,
224                                        StringRef Name="",
225                                        llvm::GlobalValue::LinkageTypes linkage
226                                         =llvm::GlobalValue::InternalLinkage) {
227    llvm::ArrayType *ArrayTy = llvm::ArrayType::get(Ty, V.size());
228    return MakeGlobal(ArrayTy, V, Align, Name, linkage);
229  }
230  /// Returns a property name and encoding string.
231  llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD,
232                                             const Decl *Container) {
233    const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
234    if ((R.getKind() == ObjCRuntime::GNUstep) &&
235        (R.getVersion() >= VersionTuple(1, 6))) {
236      std::string NameAndAttributes;
237      std::string TypeStr;
238      CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container, TypeStr);
239      NameAndAttributes += '\0';
240      NameAndAttributes += TypeStr.length() + 3;
241      NameAndAttributes += TypeStr;
242      NameAndAttributes += '\0';
243      NameAndAttributes += PD->getNameAsString();
244      return MakeConstantString(NameAndAttributes);
245    }
246    return MakeConstantString(PD->getNameAsString());
247  }
248  /// Push the property attributes into two structure fields.
249  void PushPropertyAttributes(std::vector<llvm::Constant*> &Fields,
250      ObjCPropertyDecl *property, bool isSynthesized=true, bool
251      isDynamic=true) {
252    int attrs = property->getPropertyAttributes();
253    // For read-only properties, clear the copy and retain flags
254    if (attrs & ObjCPropertyDecl::OBJC_PR_readonly) {
255      attrs &= ~ObjCPropertyDecl::OBJC_PR_copy;
256      attrs &= ~ObjCPropertyDecl::OBJC_PR_retain;
257      attrs &= ~ObjCPropertyDecl::OBJC_PR_weak;
258      attrs &= ~ObjCPropertyDecl::OBJC_PR_strong;
259    }
260    // The first flags field has the same attribute values as clang uses internally
261    Fields.push_back(llvm::ConstantInt::get(Int8Ty, attrs & 0xff));
262    attrs >>= 8;
263    attrs <<= 2;
264    // For protocol properties, synthesized and dynamic have no meaning, so we
265    // reuse these flags to indicate that this is a protocol property (both set
266    // has no meaning, as a property can't be both synthesized and dynamic)
267    attrs |= isSynthesized ? (1<<0) : 0;
268    attrs |= isDynamic ? (1<<1) : 0;
269    // The second field is the next four fields left shifted by two, with the
270    // low bit set to indicate whether the field is synthesized or dynamic.
271    Fields.push_back(llvm::ConstantInt::get(Int8Ty, attrs & 0xff));
272    // Two padding fields
273    Fields.push_back(llvm::ConstantInt::get(Int8Ty, 0));
274    Fields.push_back(llvm::ConstantInt::get(Int8Ty, 0));
275  }
276  /// Ensures that the value has the required type, by inserting a bitcast if
277  /// required.  This function lets us avoid inserting bitcasts that are
278  /// redundant.
279  llvm::Value* EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) {
280    if (V->getType() == Ty) return V;
281    return B.CreateBitCast(V, Ty);
282  }
283  Address EnforceType(CGBuilderTy &B, Address V, llvm::Type *Ty) {
284    if (V.getType() == Ty) return V;
285    return B.CreateBitCast(V, Ty);
286  }
287  // Some zeros used for GEPs in lots of places.
288  llvm::Constant *Zeros[2];
289  /// Null pointer value.  Mainly used as a terminator in various arrays.
290  llvm::Constant *NULLPtr;
291  /// LLVM context.
292  llvm::LLVMContext &VMContext;
293private:
294  /// Placeholder for the class.  Lots of things refer to the class before we've
295  /// actually emitted it.  We use this alias as a placeholder, and then replace
296  /// it with a pointer to the class structure before finally emitting the
297  /// module.
298  llvm::GlobalAlias *ClassPtrAlias;
299  /// Placeholder for the metaclass.  Lots of things refer to the class before
300  /// we've / actually emitted it.  We use this alias as a placeholder, and then
301  /// replace / it with a pointer to the metaclass structure before finally
302  /// emitting the / module.
303  llvm::GlobalAlias *MetaClassPtrAlias;
304  /// All of the classes that have been generated for this compilation units.
305  std::vector<llvm::Constant*> Classes;
306  /// All of the categories that have been generated for this compilation units.
307  std::vector<llvm::Constant*> Categories;
308  /// All of the Objective-C constant strings that have been generated for this
309  /// compilation units.
310  std::vector<llvm::Constant*> ConstantStrings;
311  /// Map from string values to Objective-C constant strings in the output.
312  /// Used to prevent emitting Objective-C strings more than once.  This should
313  /// not be required at all - CodeGenModule should manage this list.
314  llvm::StringMap<llvm::Constant*> ObjCStrings;
315  /// All of the protocols that have been declared.
316  llvm::StringMap<llvm::Constant*> ExistingProtocols;
317  /// For each variant of a selector, we store the type encoding and a
318  /// placeholder value.  For an untyped selector, the type will be the empty
319  /// string.  Selector references are all done via the module's selector table,
320  /// so we create an alias as a placeholder and then replace it with the real
321  /// value later.
322  typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector;
323  /// Type of the selector map.  This is roughly equivalent to the structure
324  /// used in the GNUstep runtime, which maintains a list of all of the valid
325  /// types for a selector in a table.
326  typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> >
327    SelectorMap;
328  /// A map from selectors to selector types.  This allows us to emit all
329  /// selectors of the same name and type together.
330  SelectorMap SelectorTable;
331
332  /// Selectors related to memory management.  When compiling in GC mode, we
333  /// omit these.
334  Selector RetainSel, ReleaseSel, AutoreleaseSel;
335  /// Runtime functions used for memory management in GC mode.  Note that clang
336  /// supports code generation for calling these functions, but neither GNU
337  /// runtime actually supports this API properly yet.
338  LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn,
339    WeakAssignFn, GlobalAssignFn;
340
341  typedef std::pair<std::string, std::string> ClassAliasPair;
342  /// All classes that have aliases set for them.
343  std::vector<ClassAliasPair> ClassAliases;
344
345protected:
346  /// Function used for throwing Objective-C exceptions.
347  LazyRuntimeFunction ExceptionThrowFn;
348  /// Function used for rethrowing exceptions, used at the end of \@finally or
349  /// \@synchronize blocks.
350  LazyRuntimeFunction ExceptionReThrowFn;
351  /// Function called when entering a catch function.  This is required for
352  /// differentiating Objective-C exceptions and foreign exceptions.
353  LazyRuntimeFunction EnterCatchFn;
354  /// Function called when exiting from a catch block.  Used to do exception
355  /// cleanup.
356  LazyRuntimeFunction ExitCatchFn;
357  /// Function called when entering an \@synchronize block.  Acquires the lock.
358  LazyRuntimeFunction SyncEnterFn;
359  /// Function called when exiting an \@synchronize block.  Releases the lock.
360  LazyRuntimeFunction SyncExitFn;
361
362private:
363
364  /// Function called if fast enumeration detects that the collection is
365  /// modified during the update.
366  LazyRuntimeFunction EnumerationMutationFn;
367  /// Function for implementing synthesized property getters that return an
368  /// object.
369  LazyRuntimeFunction GetPropertyFn;
370  /// Function for implementing synthesized property setters that return an
371  /// object.
372  LazyRuntimeFunction SetPropertyFn;
373  /// Function used for non-object declared property getters.
374  LazyRuntimeFunction GetStructPropertyFn;
375  /// Function used for non-object declared property setters.
376  LazyRuntimeFunction SetStructPropertyFn;
377
378  /// The version of the runtime that this class targets.  Must match the
379  /// version in the runtime.
380  int RuntimeVersion;
381  /// The version of the protocol class.  Used to differentiate between ObjC1
382  /// and ObjC2 protocols.  Objective-C 1 protocols can not contain optional
383  /// components and can not contain declared properties.  We always emit
384  /// Objective-C 2 property structures, but we have to pretend that they're
385  /// Objective-C 1 property structures when targeting the GCC runtime or it
386  /// will abort.
387  const int ProtocolVersion;
388private:
389  /// Generates an instance variable list structure.  This is a structure
390  /// containing a size and an array of structures containing instance variable
391  /// metadata.  This is used purely for introspection in the fragile ABI.  In
392  /// the non-fragile ABI, it's used for instance variable fixup.
393  llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
394                                   ArrayRef<llvm::Constant *> IvarTypes,
395                                   ArrayRef<llvm::Constant *> IvarOffsets);
396  /// Generates a method list structure.  This is a structure containing a size
397  /// and an array of structures containing method metadata.
398  ///
399  /// This structure is used by both classes and categories, and contains a next
400  /// pointer allowing them to be chained together in a linked list.
401  llvm::Constant *GenerateMethodList(StringRef ClassName,
402      StringRef CategoryName,
403      ArrayRef<Selector> MethodSels,
404      ArrayRef<llvm::Constant *> MethodTypes,
405      bool isClassMethodList);
406  /// Emits an empty protocol.  This is used for \@protocol() where no protocol
407  /// is found.  The runtime will (hopefully) fix up the pointer to refer to the
408  /// real protocol.
409  llvm::Constant *GenerateEmptyProtocol(const std::string &ProtocolName);
410  /// Generates a list of property metadata structures.  This follows the same
411  /// pattern as method and instance variable metadata lists.
412  llvm::Constant *GeneratePropertyList(const ObjCImplementationDecl *OID,
413        SmallVectorImpl<Selector> &InstanceMethodSels,
414        SmallVectorImpl<llvm::Constant*> &InstanceMethodTypes);
415  /// Generates a list of referenced protocols.  Classes, categories, and
416  /// protocols all use this structure.
417  llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols);
418  /// To ensure that all protocols are seen by the runtime, we add a category on
419  /// a class defined in the runtime, declaring no methods, but adopting the
420  /// protocols.  This is a horribly ugly hack, but it allows us to collect all
421  /// of the protocols without changing the ABI.
422  void GenerateProtocolHolderCategory();
423  /// Generates a class structure.
424  llvm::Constant *GenerateClassStructure(
425      llvm::Constant *MetaClass,
426      llvm::Constant *SuperClass,
427      unsigned info,
428      const char *Name,
429      llvm::Constant *Version,
430      llvm::Constant *InstanceSize,
431      llvm::Constant *IVars,
432      llvm::Constant *Methods,
433      llvm::Constant *Protocols,
434      llvm::Constant *IvarOffsets,
435      llvm::Constant *Properties,
436      llvm::Constant *StrongIvarBitmap,
437      llvm::Constant *WeakIvarBitmap,
438      bool isMeta=false);
439  /// Generates a method list.  This is used by protocols to define the required
440  /// and optional methods.
441  llvm::Constant *GenerateProtocolMethodList(
442      ArrayRef<llvm::Constant *> MethodNames,
443      ArrayRef<llvm::Constant *> MethodTypes);
444  /// Returns a selector with the specified type encoding.  An empty string is
445  /// used to return an untyped selector (with the types field set to NULL).
446  llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel,
447                           const std::string &TypeEncoding);
448  /// Returns the variable used to store the offset of an instance variable.
449  llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
450      const ObjCIvarDecl *Ivar);
451  /// Emits a reference to a class.  This allows the linker to object if there
452  /// is no class of the matching name.
453protected:
454  void EmitClassRef(const std::string &className);
455  /// Emits a pointer to the named class
456  virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF,
457                                     const std::string &Name, bool isWeak);
458  /// Looks up the method for sending a message to the specified object.  This
459  /// mechanism differs between the GCC and GNU runtimes, so this method must be
460  /// overridden in subclasses.
461  virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
462                                 llvm::Value *&Receiver,
463                                 llvm::Value *cmd,
464                                 llvm::MDNode *node,
465                                 MessageSendInfo &MSI) = 0;
466  /// Looks up the method for sending a message to a superclass.  This
467  /// mechanism differs between the GCC and GNU runtimes, so this method must
468  /// be overridden in subclasses.
469  virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
470                                      Address ObjCSuper,
471                                      llvm::Value *cmd,
472                                      MessageSendInfo &MSI) = 0;
473  /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
474  /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
475  /// bits set to their values, LSB first, while larger ones are stored in a
476  /// structure of this / form:
477  ///
478  /// struct { int32_t length; int32_t values[length]; };
479  ///
480  /// The values in the array are stored in host-endian format, with the least
481  /// significant bit being assumed to come first in the bitfield.  Therefore,
482  /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] },
483  /// while a bitfield / with the 63rd bit set will be 1<<64.
484  llvm::Constant *MakeBitField(ArrayRef<bool> bits);
485public:
486  CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
487      unsigned protocolClassVersion);
488
489  ConstantAddress GenerateConstantString(const StringLiteral *) override;
490
491  RValue
492  GenerateMessageSend(CodeGenFunction &CGF, ReturnValueSlot Return,
493                      QualType ResultType, Selector Sel,
494                      llvm::Value *Receiver, const CallArgList &CallArgs,
495                      const ObjCInterfaceDecl *Class,
496                      const ObjCMethodDecl *Method) override;
497  RValue
498  GenerateMessageSendSuper(CodeGenFunction &CGF, ReturnValueSlot Return,
499                           QualType ResultType, Selector Sel,
500                           const ObjCInterfaceDecl *Class,
501                           bool isCategoryImpl, llvm::Value *Receiver,
502                           bool IsClassMessage, const CallArgList &CallArgs,
503                           const ObjCMethodDecl *Method) override;
504  llvm::Value *GetClass(CodeGenFunction &CGF,
505                        const ObjCInterfaceDecl *OID) override;
506  llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override;
507  Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override;
508  llvm::Value *GetSelector(CodeGenFunction &CGF,
509                           const ObjCMethodDecl *Method) override;
510  llvm::Constant *GetEHType(QualType T) override;
511
512  llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
513                                 const ObjCContainerDecl *CD) override;
514  void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
515  void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
516  void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override;
517  llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
518                                   const ObjCProtocolDecl *PD) override;
519  void GenerateProtocol(const ObjCProtocolDecl *PD) override;
520  llvm::Function *ModuleInitFunction() override;
521  llvm::Constant *GetPropertyGetFunction() override;
522  llvm::Constant *GetPropertySetFunction() override;
523  llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
524                                                  bool copy) override;
525  llvm::Constant *GetSetStructFunction() override;
526  llvm::Constant *GetGetStructFunction() override;
527  llvm::Constant *GetCppAtomicObjectGetFunction() override;
528  llvm::Constant *GetCppAtomicObjectSetFunction() override;
529  llvm::Constant *EnumerationMutationFunction() override;
530
531  void EmitTryStmt(CodeGenFunction &CGF,
532                   const ObjCAtTryStmt &S) override;
533  void EmitSynchronizedStmt(CodeGenFunction &CGF,
534                            const ObjCAtSynchronizedStmt &S) override;
535  void EmitThrowStmt(CodeGenFunction &CGF,
536                     const ObjCAtThrowStmt &S,
537                     bool ClearInsertionPoint=true) override;
538  llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF,
539                                 Address AddrWeakObj) override;
540  void EmitObjCWeakAssign(CodeGenFunction &CGF,
541                          llvm::Value *src, Address dst) override;
542  void EmitObjCGlobalAssign(CodeGenFunction &CGF,
543                            llvm::Value *src, Address dest,
544                            bool threadlocal=false) override;
545  void EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src,
546                          Address dest, llvm::Value *ivarOffset) override;
547  void EmitObjCStrongCastAssign(CodeGenFunction &CGF,
548                                llvm::Value *src, Address dest) override;
549  void EmitGCMemmoveCollectable(CodeGenFunction &CGF, Address DestPtr,
550                                Address SrcPtr,
551                                llvm::Value *Size) override;
552  LValue EmitObjCValueForIvar(CodeGenFunction &CGF, QualType ObjectTy,
553                              llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
554                              unsigned CVRQualifiers) override;
555  llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
556                              const ObjCInterfaceDecl *Interface,
557                              const ObjCIvarDecl *Ivar) override;
558  llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
559  llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM,
560                                     const CGBlockInfo &blockInfo) override {
561    return NULLPtr;
562  }
563  llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM,
564                                     const CGBlockInfo &blockInfo) override {
565    return NULLPtr;
566  }
567
568  llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, QualType T) override {
569    return NULLPtr;
570  }
571
572  llvm::GlobalVariable *GetClassGlobal(const std::string &Name,
573                                       bool Weak = false) override {
574    return nullptr;
575  }
576};
577/// Class representing the legacy GCC Objective-C ABI.  This is the default when
578/// -fobjc-nonfragile-abi is not specified.
579///
580/// The GCC ABI target actually generates code that is approximately compatible
581/// with the new GNUstep runtime ABI, but refrains from using any features that
582/// would not work with the GCC runtime.  For example, clang always generates
583/// the extended form of the class structure, and the extra fields are simply
584/// ignored by GCC libobjc.
585class CGObjCGCC : public CGObjCGNU {
586  /// The GCC ABI message lookup function.  Returns an IMP pointing to the
587  /// method implementation for this message.
588  LazyRuntimeFunction MsgLookupFn;
589  /// The GCC ABI superclass message lookup function.  Takes a pointer to a
590  /// structure describing the receiver and the class, and a selector as
591  /// arguments.  Returns the IMP for the corresponding method.
592  LazyRuntimeFunction MsgLookupSuperFn;
593protected:
594  llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
595                         llvm::Value *cmd, llvm::MDNode *node,
596                         MessageSendInfo &MSI) override {
597    CGBuilderTy &Builder = CGF.Builder;
598    llvm::Value *args[] = {
599            EnforceType(Builder, Receiver, IdTy),
600            EnforceType(Builder, cmd, SelectorTy) };
601    llvm::CallSite imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
602    imp->setMetadata(msgSendMDKind, node);
603    return imp.getInstruction();
604  }
605  llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
606                              llvm::Value *cmd, MessageSendInfo &MSI) override {
607      CGBuilderTy &Builder = CGF.Builder;
608      llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper,
609          PtrToObjCSuperTy).getPointer(), cmd};
610      return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
611    }
612  public:
613    CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) {
614      // IMP objc_msg_lookup(id, SEL);
615      MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy,
616                       nullptr);
617      // IMP objc_msg_lookup_super(struct objc_super*, SEL);
618      MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
619              PtrToObjCSuperTy, SelectorTy, nullptr);
620    }
621};
622/// Class used when targeting the new GNUstep runtime ABI.
623class CGObjCGNUstep : public CGObjCGNU {
624    /// The slot lookup function.  Returns a pointer to a cacheable structure
625    /// that contains (among other things) the IMP.
626    LazyRuntimeFunction SlotLookupFn;
627    /// The GNUstep ABI superclass message lookup function.  Takes a pointer to
628    /// a structure describing the receiver and the class, and a selector as
629    /// arguments.  Returns the slot for the corresponding method.  Superclass
630    /// message lookup rarely changes, so this is a good caching opportunity.
631    LazyRuntimeFunction SlotLookupSuperFn;
632    /// Specialised function for setting atomic retain properties
633    LazyRuntimeFunction SetPropertyAtomic;
634    /// Specialised function for setting atomic copy properties
635    LazyRuntimeFunction SetPropertyAtomicCopy;
636    /// Specialised function for setting nonatomic retain properties
637    LazyRuntimeFunction SetPropertyNonAtomic;
638    /// Specialised function for setting nonatomic copy properties
639    LazyRuntimeFunction SetPropertyNonAtomicCopy;
640    /// Function to perform atomic copies of C++ objects with nontrivial copy
641    /// constructors from Objective-C ivars.
642    LazyRuntimeFunction CxxAtomicObjectGetFn;
643    /// Function to perform atomic copies of C++ objects with nontrivial copy
644    /// constructors to Objective-C ivars.
645    LazyRuntimeFunction CxxAtomicObjectSetFn;
646    /// Type of an slot structure pointer.  This is returned by the various
647    /// lookup functions.
648    llvm::Type *SlotTy;
649  public:
650    llvm::Constant *GetEHType(QualType T) override;
651  protected:
652    llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
653                           llvm::Value *cmd, llvm::MDNode *node,
654                           MessageSendInfo &MSI) override {
655      CGBuilderTy &Builder = CGF.Builder;
656      llvm::Function *LookupFn = SlotLookupFn;
657
658      // Store the receiver on the stack so that we can reload it later
659      Address ReceiverPtr =
660        CGF.CreateTempAlloca(Receiver->getType(), CGF.getPointerAlign());
661      Builder.CreateStore(Receiver, ReceiverPtr);
662
663      llvm::Value *self;
664
665      if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) {
666        self = CGF.LoadObjCSelf();
667      } else {
668        self = llvm::ConstantPointerNull::get(IdTy);
669      }
670
671      // The lookup function is guaranteed not to capture the receiver pointer.
672      LookupFn->setDoesNotCapture(1);
673
674      llvm::Value *args[] = {
675              EnforceType(Builder, ReceiverPtr.getPointer(), PtrToIdTy),
676              EnforceType(Builder, cmd, SelectorTy),
677              EnforceType(Builder, self, IdTy) };
678      llvm::CallSite slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args);
679      slot.setOnlyReadsMemory();
680      slot->setMetadata(msgSendMDKind, node);
681
682      // Load the imp from the slot
683      llvm::Value *imp = Builder.CreateAlignedLoad(
684          Builder.CreateStructGEP(nullptr, slot.getInstruction(), 4),
685          CGF.getPointerAlign());
686
687      // The lookup function may have changed the receiver, so make sure we use
688      // the new one.
689      Receiver = Builder.CreateLoad(ReceiverPtr, true);
690      return imp;
691    }
692    llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
693                                llvm::Value *cmd,
694                                MessageSendInfo &MSI) override {
695      CGBuilderTy &Builder = CGF.Builder;
696      llvm::Value *lookupArgs[] = {ObjCSuper.getPointer(), cmd};
697
698      llvm::CallInst *slot =
699        CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs);
700      slot->setOnlyReadsMemory();
701
702      return Builder.CreateAlignedLoad(Builder.CreateStructGEP(nullptr, slot, 4),
703                                       CGF.getPointerAlign());
704    }
705  public:
706    CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNU(Mod, 9, 3) {
707      const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
708
709      llvm::StructType *SlotStructTy = llvm::StructType::get(PtrTy,
710          PtrTy, PtrTy, IntTy, IMPTy, nullptr);
711      SlotTy = llvm::PointerType::getUnqual(SlotStructTy);
712      // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender);
713      SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy,
714          SelectorTy, IdTy, nullptr);
715      // Slot_t objc_msg_lookup_super(struct objc_super*, SEL);
716      SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy,
717              PtrToObjCSuperTy, SelectorTy, nullptr);
718      // If we're in ObjC++ mode, then we want to make
719      if (CGM.getLangOpts().CPlusPlus) {
720        llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
721        // void *__cxa_begin_catch(void *e)
722        EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy, nullptr);
723        // void __cxa_end_catch(void)
724        ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy, nullptr);
725        // void _Unwind_Resume_or_Rethrow(void*)
726        ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy,
727            PtrTy, nullptr);
728      } else if (R.getVersion() >= VersionTuple(1, 7)) {
729        llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
730        // id objc_begin_catch(void *e)
731        EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy, nullptr);
732        // void objc_end_catch(void)
733        ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy, nullptr);
734        // void _Unwind_Resume_or_Rethrow(void*)
735        ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy,
736            PtrTy, nullptr);
737      }
738      llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
739      SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy,
740          SelectorTy, IdTy, PtrDiffTy, nullptr);
741      SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy,
742          IdTy, SelectorTy, IdTy, PtrDiffTy, nullptr);
743      SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy,
744          IdTy, SelectorTy, IdTy, PtrDiffTy, nullptr);
745      SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy",
746          VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy, nullptr);
747      // void objc_setCppObjectAtomic(void *dest, const void *src, void
748      // *helper);
749      CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy,
750          PtrTy, PtrTy, nullptr);
751      // void objc_getCppObjectAtomic(void *dest, const void *src, void
752      // *helper);
753      CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy,
754          PtrTy, PtrTy, nullptr);
755    }
756    llvm::Constant *GetCppAtomicObjectGetFunction() override {
757      // The optimised functions were added in version 1.7 of the GNUstep
758      // runtime.
759      assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
760          VersionTuple(1, 7));
761      return CxxAtomicObjectGetFn;
762    }
763    llvm::Constant *GetCppAtomicObjectSetFunction() override {
764      // The optimised functions were added in version 1.7 of the GNUstep
765      // runtime.
766      assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
767          VersionTuple(1, 7));
768      return CxxAtomicObjectSetFn;
769    }
770    llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
771                                                    bool copy) override {
772      // The optimised property functions omit the GC check, and so are not
773      // safe to use in GC mode.  The standard functions are fast in GC mode,
774      // so there is less advantage in using them.
775      assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC));
776      // The optimised functions were added in version 1.7 of the GNUstep
777      // runtime.
778      assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
779          VersionTuple(1, 7));
780
781      if (atomic) {
782        if (copy) return SetPropertyAtomicCopy;
783        return SetPropertyAtomic;
784      }
785
786      return copy ? SetPropertyNonAtomicCopy : SetPropertyNonAtomic;
787    }
788};
789
790/// Support for the ObjFW runtime.
791class CGObjCObjFW: public CGObjCGNU {
792protected:
793  /// The GCC ABI message lookup function.  Returns an IMP pointing to the
794  /// method implementation for this message.
795  LazyRuntimeFunction MsgLookupFn;
796  /// stret lookup function.  While this does not seem to make sense at the
797  /// first look, this is required to call the correct forwarding function.
798  LazyRuntimeFunction MsgLookupFnSRet;
799  /// The GCC ABI superclass message lookup function.  Takes a pointer to a
800  /// structure describing the receiver and the class, and a selector as
801  /// arguments.  Returns the IMP for the corresponding method.
802  LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet;
803
804  llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
805                         llvm::Value *cmd, llvm::MDNode *node,
806                         MessageSendInfo &MSI) override {
807    CGBuilderTy &Builder = CGF.Builder;
808    llvm::Value *args[] = {
809            EnforceType(Builder, Receiver, IdTy),
810            EnforceType(Builder, cmd, SelectorTy) };
811
812    llvm::CallSite imp;
813    if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
814      imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args);
815    else
816      imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
817
818    imp->setMetadata(msgSendMDKind, node);
819    return imp.getInstruction();
820  }
821
822  llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, Address ObjCSuper,
823                              llvm::Value *cmd, MessageSendInfo &MSI) override {
824      CGBuilderTy &Builder = CGF.Builder;
825      llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper.getPointer(),
826          PtrToObjCSuperTy), cmd};
827
828      if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
829        return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs);
830      else
831        return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
832    }
833
834  llvm::Value *GetClassNamed(CodeGenFunction &CGF,
835                             const std::string &Name, bool isWeak) override {
836    if (isWeak)
837      return CGObjCGNU::GetClassNamed(CGF, Name, isWeak);
838
839    EmitClassRef(Name);
840
841    std::string SymbolName = "_OBJC_CLASS_" + Name;
842
843    llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName);
844
845    if (!ClassSymbol)
846      ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
847                                             llvm::GlobalValue::ExternalLinkage,
848                                             nullptr, SymbolName);
849
850    return ClassSymbol;
851  }
852
853public:
854  CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) {
855    // IMP objc_msg_lookup(id, SEL);
856    MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy, nullptr);
857    MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy,
858                         SelectorTy, nullptr);
859    // IMP objc_msg_lookup_super(struct objc_super*, SEL);
860    MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
861                          PtrToObjCSuperTy, SelectorTy, nullptr);
862    MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy,
863                              PtrToObjCSuperTy, SelectorTy, nullptr);
864  }
865};
866} // end anonymous namespace
867
868
869/// Emits a reference to a dummy variable which is emitted with each class.
870/// This ensures that a linker error will be generated when trying to link
871/// together modules where a referenced class is not defined.
872void CGObjCGNU::EmitClassRef(const std::string &className) {
873  std::string symbolRef = "__objc_class_ref_" + className;
874  // Don't emit two copies of the same symbol
875  if (TheModule.getGlobalVariable(symbolRef))
876    return;
877  std::string symbolName = "__objc_class_name_" + className;
878  llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName);
879  if (!ClassSymbol) {
880    ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
881                                           llvm::GlobalValue::ExternalLinkage,
882                                           nullptr, symbolName);
883  }
884  new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true,
885    llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef);
886}
887
888static std::string SymbolNameForMethod( StringRef ClassName,
889     StringRef CategoryName, const Selector MethodName,
890    bool isClassMethod) {
891  std::string MethodNameColonStripped = MethodName.getAsString();
892  std::replace(MethodNameColonStripped.begin(), MethodNameColonStripped.end(),
893      ':', '_');
894  return (Twine(isClassMethod ? "_c_" : "_i_") + ClassName + "_" +
895    CategoryName + "_" + MethodNameColonStripped).str();
896}
897
898CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
899                     unsigned protocolClassVersion)
900  : CGObjCRuntime(cgm), TheModule(CGM.getModule()),
901    VMContext(cgm.getLLVMContext()), ClassPtrAlias(nullptr),
902    MetaClassPtrAlias(nullptr), RuntimeVersion(runtimeABIVersion),
903    ProtocolVersion(protocolClassVersion) {
904
905  msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend");
906
907  CodeGenTypes &Types = CGM.getTypes();
908  IntTy = cast<llvm::IntegerType>(
909      Types.ConvertType(CGM.getContext().IntTy));
910  LongTy = cast<llvm::IntegerType>(
911      Types.ConvertType(CGM.getContext().LongTy));
912  SizeTy = cast<llvm::IntegerType>(
913      Types.ConvertType(CGM.getContext().getSizeType()));
914  PtrDiffTy = cast<llvm::IntegerType>(
915      Types.ConvertType(CGM.getContext().getPointerDiffType()));
916  BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
917
918  Int8Ty = llvm::Type::getInt8Ty(VMContext);
919  // C string type.  Used in lots of places.
920  PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty);
921
922  Zeros[0] = llvm::ConstantInt::get(LongTy, 0);
923  Zeros[1] = Zeros[0];
924  NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty);
925  // Get the selector Type.
926  QualType selTy = CGM.getContext().getObjCSelType();
927  if (QualType() == selTy) {
928    SelectorTy = PtrToInt8Ty;
929  } else {
930    SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy));
931  }
932
933  PtrToIntTy = llvm::PointerType::getUnqual(IntTy);
934  PtrTy = PtrToInt8Ty;
935
936  Int32Ty = llvm::Type::getInt32Ty(VMContext);
937  Int64Ty = llvm::Type::getInt64Ty(VMContext);
938
939  IntPtrTy =
940      CGM.getDataLayout().getPointerSizeInBits() == 32 ? Int32Ty : Int64Ty;
941
942  // Object type
943  QualType UnqualIdTy = CGM.getContext().getObjCIdType();
944  ASTIdTy = CanQualType();
945  if (UnqualIdTy != QualType()) {
946    ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy);
947    IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
948  } else {
949    IdTy = PtrToInt8Ty;
950  }
951  PtrToIdTy = llvm::PointerType::getUnqual(IdTy);
952
953  ObjCSuperTy = llvm::StructType::get(IdTy, IdTy, nullptr);
954  PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy);
955
956  llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
957
958  // void objc_exception_throw(id);
959  ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy, nullptr);
960  ExceptionReThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy, nullptr);
961  // int objc_sync_enter(id);
962  SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy, nullptr);
963  // int objc_sync_exit(id);
964  SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy, nullptr);
965
966  // void objc_enumerationMutation (id)
967  EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy,
968      IdTy, nullptr);
969
970  // id objc_getProperty(id, SEL, ptrdiff_t, BOOL)
971  GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy,
972      PtrDiffTy, BoolTy, nullptr);
973  // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL)
974  SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy,
975      PtrDiffTy, IdTy, BoolTy, BoolTy, nullptr);
976  // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
977  GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy,
978      PtrDiffTy, BoolTy, BoolTy, nullptr);
979  // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
980  SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy,
981      PtrDiffTy, BoolTy, BoolTy, nullptr);
982
983  // IMP type
984  llvm::Type *IMPArgs[] = { IdTy, SelectorTy };
985  IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs,
986              true));
987
988  const LangOptions &Opts = CGM.getLangOpts();
989  if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount)
990    RuntimeVersion = 10;
991
992  // Don't bother initialising the GC stuff unless we're compiling in GC mode
993  if (Opts.getGC() != LangOptions::NonGC) {
994    // This is a bit of an hack.  We should sort this out by having a proper
995    // CGObjCGNUstep subclass for GC, but we may want to really support the old
996    // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now
997    // Get selectors needed in GC mode
998    RetainSel = GetNullarySelector("retain", CGM.getContext());
999    ReleaseSel = GetNullarySelector("release", CGM.getContext());
1000    AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext());
1001
1002    // Get functions needed in GC mode
1003
1004    // id objc_assign_ivar(id, id, ptrdiff_t);
1005    IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy,
1006        nullptr);
1007    // id objc_assign_strongCast (id, id*)
1008    StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy,
1009        PtrToIdTy, nullptr);
1010    // id objc_assign_global(id, id*);
1011    GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy,
1012        nullptr);
1013    // id objc_assign_weak(id, id*);
1014    WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy, nullptr);
1015    // id objc_read_weak(id*);
1016    WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy, nullptr);
1017    // void *objc_memmove_collectable(void*, void *, size_t);
1018    MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy,
1019        SizeTy, nullptr);
1020  }
1021}
1022
1023llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF,
1024                                      const std::string &Name,
1025                                      bool isWeak) {
1026  llvm::Constant *ClassName = MakeConstantString(Name);
1027  // With the incompatible ABI, this will need to be replaced with a direct
1028  // reference to the class symbol.  For the compatible nonfragile ABI we are
1029  // still performing this lookup at run time but emitting the symbol for the
1030  // class externally so that we can make the switch later.
1031  //
1032  // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class
1033  // with memoized versions or with static references if it's safe to do so.
1034  if (!isWeak)
1035    EmitClassRef(Name);
1036
1037  llvm::Constant *ClassLookupFn =
1038    CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, PtrToInt8Ty, true),
1039                              "objc_lookup_class");
1040  return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName);
1041}
1042
1043// This has to perform the lookup every time, since posing and related
1044// techniques can modify the name -> class mapping.
1045llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF,
1046                                 const ObjCInterfaceDecl *OID) {
1047  return GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported());
1048}
1049llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
1050  return GetClassNamed(CGF, "NSAutoreleasePool", false);
1051}
1052
1053llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel,
1054                                    const std::string &TypeEncoding) {
1055
1056  SmallVectorImpl<TypedSelector> &Types = SelectorTable[Sel];
1057  llvm::GlobalAlias *SelValue = nullptr;
1058
1059  for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
1060      e = Types.end() ; i!=e ; i++) {
1061    if (i->first == TypeEncoding) {
1062      SelValue = i->second;
1063      break;
1064    }
1065  }
1066  if (!SelValue) {
1067    SelValue = llvm::GlobalAlias::create(
1068        SelectorTy->getElementType(), 0, llvm::GlobalValue::PrivateLinkage,
1069        ".objc_selector_" + Sel.getAsString(), &TheModule);
1070    Types.emplace_back(TypeEncoding, SelValue);
1071  }
1072
1073  return SelValue;
1074}
1075
1076Address CGObjCGNU::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) {
1077  llvm::Value *SelValue = GetSelector(CGF, Sel);
1078
1079  // Store it to a temporary.  Does this satisfy the semantics of
1080  // GetAddrOfSelector?  Hopefully.
1081  Address tmp = CGF.CreateTempAlloca(SelValue->getType(),
1082                                     CGF.getPointerAlign());
1083  CGF.Builder.CreateStore(SelValue, tmp);
1084  return tmp;
1085}
1086
1087llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel) {
1088  return GetSelector(CGF, Sel, std::string());
1089}
1090
1091llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF,
1092                                    const ObjCMethodDecl *Method) {
1093  std::string SelTypes;
1094  CGM.getContext().getObjCEncodingForMethodDecl(Method, SelTypes);
1095  return GetSelector(CGF, Method->getSelector(), SelTypes);
1096}
1097
1098llvm::Constant *CGObjCGNU::GetEHType(QualType T) {
1099  if (T->isObjCIdType() || T->isObjCQualifiedIdType()) {
1100    // With the old ABI, there was only one kind of catchall, which broke
1101    // foreign exceptions.  With the new ABI, we use __objc_id_typeinfo as
1102    // a pointer indicating object catchalls, and NULL to indicate real
1103    // catchalls
1104    if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
1105      return MakeConstantString("@id");
1106    } else {
1107      return nullptr;
1108    }
1109  }
1110
1111  // All other types should be Objective-C interface pointer types.
1112  const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>();
1113  assert(OPT && "Invalid @catch type.");
1114  const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface();
1115  assert(IDecl && "Invalid @catch type.");
1116  return MakeConstantString(IDecl->getIdentifier()->getName());
1117}
1118
1119llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) {
1120  if (!CGM.getLangOpts().CPlusPlus)
1121    return CGObjCGNU::GetEHType(T);
1122
1123  // For Objective-C++, we want to provide the ability to catch both C++ and
1124  // Objective-C objects in the same function.
1125
1126  // There's a particular fixed type info for 'id'.
1127  if (T->isObjCIdType() ||
1128      T->isObjCQualifiedIdType()) {
1129    llvm::Constant *IDEHType =
1130      CGM.getModule().getGlobalVariable("__objc_id_type_info");
1131    if (!IDEHType)
1132      IDEHType =
1133        new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty,
1134                                 false,
1135                                 llvm::GlobalValue::ExternalLinkage,
1136                                 nullptr, "__objc_id_type_info");
1137    return llvm::ConstantExpr::getBitCast(IDEHType, PtrToInt8Ty);
1138  }
1139
1140  const ObjCObjectPointerType *PT =
1141    T->getAs<ObjCObjectPointerType>();
1142  assert(PT && "Invalid @catch type.");
1143  const ObjCInterfaceType *IT = PT->getInterfaceType();
1144  assert(IT && "Invalid @catch type.");
1145  std::string className = IT->getDecl()->getIdentifier()->getName();
1146
1147  std::string typeinfoName = "__objc_eh_typeinfo_" + className;
1148
1149  // Return the existing typeinfo if it exists
1150  llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName);
1151  if (typeinfo)
1152    return llvm::ConstantExpr::getBitCast(typeinfo, PtrToInt8Ty);
1153
1154  // Otherwise create it.
1155
1156  // vtable for gnustep::libobjc::__objc_class_type_info
1157  // It's quite ugly hard-coding this.  Ideally we'd generate it using the host
1158  // platform's name mangling.
1159  const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE";
1160  auto *Vtable = TheModule.getGlobalVariable(vtableName);
1161  if (!Vtable) {
1162    Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true,
1163                                      llvm::GlobalValue::ExternalLinkage,
1164                                      nullptr, vtableName);
1165  }
1166  llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2);
1167  auto *BVtable = llvm::ConstantExpr::getBitCast(
1168      llvm::ConstantExpr::getGetElementPtr(Vtable->getValueType(), Vtable, Two),
1169      PtrToInt8Ty);
1170
1171  llvm::Constant *typeName =
1172    ExportUniqueString(className, "__objc_eh_typename_");
1173
1174  std::vector<llvm::Constant*> fields;
1175  fields.push_back(BVtable);
1176  fields.push_back(typeName);
1177  llvm::Constant *TI =
1178      MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, nullptr),
1179                 fields, CGM.getPointerAlign(),
1180                 "__objc_eh_typeinfo_" + className,
1181          llvm::GlobalValue::LinkOnceODRLinkage);
1182  return llvm::ConstantExpr::getBitCast(TI, PtrToInt8Ty);
1183}
1184
1185/// Generate an NSConstantString object.
1186ConstantAddress CGObjCGNU::GenerateConstantString(const StringLiteral *SL) {
1187
1188  std::string Str = SL->getString().str();
1189  CharUnits Align = CGM.getPointerAlign();
1190
1191  // Look for an existing one
1192  llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
1193  if (old != ObjCStrings.end())
1194    return ConstantAddress(old->getValue(), Align);
1195
1196  StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
1197
1198  if (StringClass.empty()) StringClass = "NXConstantString";
1199
1200  std::string Sym = "_OBJC_CLASS_";
1201  Sym += StringClass;
1202
1203  llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
1204
1205  if (!isa)
1206    isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false,
1207            llvm::GlobalValue::ExternalWeakLinkage, nullptr, Sym);
1208  else if (isa->getType() != PtrToIdTy)
1209    isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy);
1210
1211  std::vector<llvm::Constant*> Ivars;
1212  Ivars.push_back(isa);
1213  Ivars.push_back(MakeConstantString(Str));
1214  Ivars.push_back(llvm::ConstantInt::get(IntTy, Str.size()));
1215  llvm::Constant *ObjCStr = MakeGlobal(
1216    llvm::StructType::get(PtrToIdTy, PtrToInt8Ty, IntTy, nullptr),
1217    Ivars, Align, ".objc_str");
1218  ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStr, PtrToInt8Ty);
1219  ObjCStrings[Str] = ObjCStr;
1220  ConstantStrings.push_back(ObjCStr);
1221  return ConstantAddress(ObjCStr, Align);
1222}
1223
1224///Generates a message send where the super is the receiver.  This is a message
1225///send to self with special delivery semantics indicating which class's method
1226///should be called.
1227RValue
1228CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF,
1229                                    ReturnValueSlot Return,
1230                                    QualType ResultType,
1231                                    Selector Sel,
1232                                    const ObjCInterfaceDecl *Class,
1233                                    bool isCategoryImpl,
1234                                    llvm::Value *Receiver,
1235                                    bool IsClassMessage,
1236                                    const CallArgList &CallArgs,
1237                                    const ObjCMethodDecl *Method) {
1238  CGBuilderTy &Builder = CGF.Builder;
1239  if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
1240    if (Sel == RetainSel || Sel == AutoreleaseSel) {
1241      return RValue::get(EnforceType(Builder, Receiver,
1242                  CGM.getTypes().ConvertType(ResultType)));
1243    }
1244    if (Sel == ReleaseSel) {
1245      return RValue::get(nullptr);
1246    }
1247  }
1248
1249  llvm::Value *cmd = GetSelector(CGF, Sel);
1250
1251
1252  CallArgList ActualArgs;
1253
1254  ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy);
1255  ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
1256  ActualArgs.addFrom(CallArgs);
1257
1258  MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
1259
1260  llvm::Value *ReceiverClass = nullptr;
1261  if (isCategoryImpl) {
1262    llvm::Constant *classLookupFunction = nullptr;
1263    if (IsClassMessage)  {
1264      classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
1265            IdTy, PtrTy, true), "objc_get_meta_class");
1266    } else {
1267      classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
1268            IdTy, PtrTy, true), "objc_get_class");
1269    }
1270    ReceiverClass = Builder.CreateCall(classLookupFunction,
1271        MakeConstantString(Class->getNameAsString()));
1272  } else {
1273    // Set up global aliases for the metaclass or class pointer if they do not
1274    // already exist.  These will are forward-references which will be set to
1275    // pointers to the class and metaclass structure created for the runtime
1276    // load function.  To send a message to super, we look up the value of the
1277    // super_class pointer from either the class or metaclass structure.
1278    if (IsClassMessage)  {
1279      if (!MetaClassPtrAlias) {
1280        MetaClassPtrAlias = llvm::GlobalAlias::create(
1281            IdTy->getElementType(), 0, llvm::GlobalValue::InternalLinkage,
1282            ".objc_metaclass_ref" + Class->getNameAsString(), &TheModule);
1283      }
1284      ReceiverClass = MetaClassPtrAlias;
1285    } else {
1286      if (!ClassPtrAlias) {
1287        ClassPtrAlias = llvm::GlobalAlias::create(
1288            IdTy->getElementType(), 0, llvm::GlobalValue::InternalLinkage,
1289            ".objc_class_ref" + Class->getNameAsString(), &TheModule);
1290      }
1291      ReceiverClass = ClassPtrAlias;
1292    }
1293  }
1294  // Cast the pointer to a simplified version of the class structure
1295  llvm::Type *CastTy = llvm::StructType::get(IdTy, IdTy, nullptr);
1296  ReceiverClass = Builder.CreateBitCast(ReceiverClass,
1297                                        llvm::PointerType::getUnqual(CastTy));
1298  // Get the superclass pointer
1299  ReceiverClass = Builder.CreateStructGEP(CastTy, ReceiverClass, 1);
1300  // Load the superclass pointer
1301  ReceiverClass =
1302    Builder.CreateAlignedLoad(ReceiverClass, CGF.getPointerAlign());
1303  // Construct the structure used to look up the IMP
1304  llvm::StructType *ObjCSuperTy = llvm::StructType::get(
1305      Receiver->getType(), IdTy, nullptr);
1306
1307  // FIXME: Is this really supposed to be a dynamic alloca?
1308  Address ObjCSuper = Address(Builder.CreateAlloca(ObjCSuperTy),
1309                              CGF.getPointerAlign());
1310
1311  Builder.CreateStore(Receiver,
1312                   Builder.CreateStructGEP(ObjCSuper, 0, CharUnits::Zero()));
1313  Builder.CreateStore(ReceiverClass,
1314                   Builder.CreateStructGEP(ObjCSuper, 1, CGF.getPointerSize()));
1315
1316  ObjCSuper = EnforceType(Builder, ObjCSuper, PtrToObjCSuperTy);
1317
1318  // Get the IMP
1319  llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI);
1320  imp = EnforceType(Builder, imp, MSI.MessengerType);
1321
1322  llvm::Metadata *impMD[] = {
1323      llvm::MDString::get(VMContext, Sel.getAsString()),
1324      llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()),
1325      llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1326          llvm::Type::getInt1Ty(VMContext), IsClassMessage))};
1327  llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
1328
1329  llvm::Instruction *call;
1330  RValue msgRet = CGF.EmitCall(MSI.CallInfo, imp, Return, ActualArgs,
1331                               CGCalleeInfo(), &call);
1332  call->setMetadata(msgSendMDKind, node);
1333  return msgRet;
1334}
1335
1336/// Generate code for a message send expression.
1337RValue
1338CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF,
1339                               ReturnValueSlot Return,
1340                               QualType ResultType,
1341                               Selector Sel,
1342                               llvm::Value *Receiver,
1343                               const CallArgList &CallArgs,
1344                               const ObjCInterfaceDecl *Class,
1345                               const ObjCMethodDecl *Method) {
1346  CGBuilderTy &Builder = CGF.Builder;
1347
1348  // Strip out message sends to retain / release in GC mode
1349  if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
1350    if (Sel == RetainSel || Sel == AutoreleaseSel) {
1351      return RValue::get(EnforceType(Builder, Receiver,
1352                  CGM.getTypes().ConvertType(ResultType)));
1353    }
1354    if (Sel == ReleaseSel) {
1355      return RValue::get(nullptr);
1356    }
1357  }
1358
1359  // If the return type is something that goes in an integer register, the
1360  // runtime will handle 0 returns.  For other cases, we fill in the 0 value
1361  // ourselves.
1362  //
1363  // The language spec says the result of this kind of message send is
1364  // undefined, but lots of people seem to have forgotten to read that
1365  // paragraph and insist on sending messages to nil that have structure
1366  // returns.  With GCC, this generates a random return value (whatever happens
1367  // to be on the stack / in those registers at the time) on most platforms,
1368  // and generates an illegal instruction trap on SPARC.  With LLVM it corrupts
1369  // the stack.
1370  bool isPointerSizedReturn = (ResultType->isAnyPointerType() ||
1371      ResultType->isIntegralOrEnumerationType() || ResultType->isVoidType());
1372
1373  llvm::BasicBlock *startBB = nullptr;
1374  llvm::BasicBlock *messageBB = nullptr;
1375  llvm::BasicBlock *continueBB = nullptr;
1376
1377  if (!isPointerSizedReturn) {
1378    startBB = Builder.GetInsertBlock();
1379    messageBB = CGF.createBasicBlock("msgSend");
1380    continueBB = CGF.createBasicBlock("continue");
1381
1382    llvm::Value *isNil = Builder.CreateICmpEQ(Receiver,
1383            llvm::Constant::getNullValue(Receiver->getType()));
1384    Builder.CreateCondBr(isNil, continueBB, messageBB);
1385    CGF.EmitBlock(messageBB);
1386  }
1387
1388  IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
1389  llvm::Value *cmd;
1390  if (Method)
1391    cmd = GetSelector(CGF, Method);
1392  else
1393    cmd = GetSelector(CGF, Sel);
1394  cmd = EnforceType(Builder, cmd, SelectorTy);
1395  Receiver = EnforceType(Builder, Receiver, IdTy);
1396
1397  llvm::Metadata *impMD[] = {
1398      llvm::MDString::get(VMContext, Sel.getAsString()),
1399      llvm::MDString::get(VMContext, Class ? Class->getNameAsString() : ""),
1400      llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1401          llvm::Type::getInt1Ty(VMContext), Class != nullptr))};
1402  llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
1403
1404  CallArgList ActualArgs;
1405  ActualArgs.add(RValue::get(Receiver), ASTIdTy);
1406  ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
1407  ActualArgs.addFrom(CallArgs);
1408
1409  MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
1410
1411  // Get the IMP to call
1412  llvm::Value *imp;
1413
1414  // If we have non-legacy dispatch specified, we try using the objc_msgSend()
1415  // functions.  These are not supported on all platforms (or all runtimes on a
1416  // given platform), so we
1417  switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
1418    case CodeGenOptions::Legacy:
1419      imp = LookupIMP(CGF, Receiver, cmd, node, MSI);
1420      break;
1421    case CodeGenOptions::Mixed:
1422    case CodeGenOptions::NonLegacy:
1423      if (CGM.ReturnTypeUsesFPRet(ResultType)) {
1424        imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1425                                  "objc_msgSend_fpret");
1426      } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) {
1427        // The actual types here don't matter - we're going to bitcast the
1428        // function anyway
1429        imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1430                                  "objc_msgSend_stret");
1431      } else {
1432        imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1433                                  "objc_msgSend");
1434      }
1435  }
1436
1437  // Reset the receiver in case the lookup modified it
1438  ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy, false);
1439
1440  imp = EnforceType(Builder, imp, MSI.MessengerType);
1441
1442  llvm::Instruction *call;
1443  RValue msgRet = CGF.EmitCall(MSI.CallInfo, imp, Return, ActualArgs,
1444                               CGCalleeInfo(), &call);
1445  call->setMetadata(msgSendMDKind, node);
1446
1447
1448  if (!isPointerSizedReturn) {
1449    messageBB = CGF.Builder.GetInsertBlock();
1450    CGF.Builder.CreateBr(continueBB);
1451    CGF.EmitBlock(continueBB);
1452    if (msgRet.isScalar()) {
1453      llvm::Value *v = msgRet.getScalarVal();
1454      llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
1455      phi->addIncoming(v, messageBB);
1456      phi->addIncoming(llvm::Constant::getNullValue(v->getType()), startBB);
1457      msgRet = RValue::get(phi);
1458    } else if (msgRet.isAggregate()) {
1459      Address v = msgRet.getAggregateAddress();
1460      llvm::PHINode *phi = Builder.CreatePHI(v.getType(), 2);
1461      llvm::Type *RetTy = v.getElementType();
1462      Address NullVal = CGF.CreateTempAlloca(RetTy, v.getAlignment(), "null");
1463      CGF.InitTempAlloca(NullVal, llvm::Constant::getNullValue(RetTy));
1464      phi->addIncoming(v.getPointer(), messageBB);
1465      phi->addIncoming(NullVal.getPointer(), startBB);
1466      msgRet = RValue::getAggregate(Address(phi, v.getAlignment()));
1467    } else /* isComplex() */ {
1468      std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal();
1469      llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2);
1470      phi->addIncoming(v.first, messageBB);
1471      phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()),
1472          startBB);
1473      llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2);
1474      phi2->addIncoming(v.second, messageBB);
1475      phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()),
1476          startBB);
1477      msgRet = RValue::getComplex(phi, phi2);
1478    }
1479  }
1480  return msgRet;
1481}
1482
1483/// Generates a MethodList.  Used in construction of a objc_class and
1484/// objc_category structures.
1485llvm::Constant *CGObjCGNU::
1486GenerateMethodList(StringRef ClassName,
1487                   StringRef CategoryName,
1488                   ArrayRef<Selector> MethodSels,
1489                   ArrayRef<llvm::Constant *> MethodTypes,
1490                   bool isClassMethodList) {
1491  if (MethodSels.empty())
1492    return NULLPtr;
1493  // Get the method structure type.
1494  llvm::StructType *ObjCMethodTy = llvm::StructType::get(
1495    PtrToInt8Ty, // Really a selector, but the runtime creates it us.
1496    PtrToInt8Ty, // Method types
1497    IMPTy, //Method pointer
1498    nullptr);
1499  std::vector<llvm::Constant*> Methods;
1500  std::vector<llvm::Constant*> Elements;
1501  for (unsigned int i = 0, e = MethodTypes.size(); i < e; ++i) {
1502    Elements.clear();
1503    llvm::Constant *Method =
1504      TheModule.getFunction(SymbolNameForMethod(ClassName, CategoryName,
1505                                                MethodSels[i],
1506                                                isClassMethodList));
1507    assert(Method && "Can't generate metadata for method that doesn't exist");
1508    llvm::Constant *C = MakeConstantString(MethodSels[i].getAsString());
1509    Elements.push_back(C);
1510    Elements.push_back(MethodTypes[i]);
1511    Method = llvm::ConstantExpr::getBitCast(Method,
1512        IMPTy);
1513    Elements.push_back(Method);
1514    Methods.push_back(llvm::ConstantStruct::get(ObjCMethodTy, Elements));
1515  }
1516
1517  // Array of method structures
1518  llvm::ArrayType *ObjCMethodArrayTy = llvm::ArrayType::get(ObjCMethodTy,
1519                                                            Methods.size());
1520  llvm::Constant *MethodArray = llvm::ConstantArray::get(ObjCMethodArrayTy,
1521                                                         Methods);
1522
1523  // Structure containing list pointer, array and array count
1524  llvm::StructType *ObjCMethodListTy = llvm::StructType::create(VMContext);
1525  llvm::Type *NextPtrTy = llvm::PointerType::getUnqual(ObjCMethodListTy);
1526  ObjCMethodListTy->setBody(
1527      NextPtrTy,
1528      IntTy,
1529      ObjCMethodArrayTy,
1530      nullptr);
1531
1532  Methods.clear();
1533  Methods.push_back(llvm::ConstantPointerNull::get(
1534        llvm::PointerType::getUnqual(ObjCMethodListTy)));
1535  Methods.push_back(llvm::ConstantInt::get(Int32Ty, MethodTypes.size()));
1536  Methods.push_back(MethodArray);
1537
1538  // Create an instance of the structure
1539  return MakeGlobal(ObjCMethodListTy, Methods, CGM.getPointerAlign(),
1540                    ".objc_method_list");
1541}
1542
1543/// Generates an IvarList.  Used in construction of a objc_class.
1544llvm::Constant *CGObjCGNU::
1545GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
1546                 ArrayRef<llvm::Constant *> IvarTypes,
1547                 ArrayRef<llvm::Constant *> IvarOffsets) {
1548  if (IvarNames.size() == 0)
1549    return NULLPtr;
1550  // Get the method structure type.
1551  llvm::StructType *ObjCIvarTy = llvm::StructType::get(
1552    PtrToInt8Ty,
1553    PtrToInt8Ty,
1554    IntTy,
1555    nullptr);
1556  std::vector<llvm::Constant*> Ivars;
1557  std::vector<llvm::Constant*> Elements;
1558  for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) {
1559    Elements.clear();
1560    Elements.push_back(IvarNames[i]);
1561    Elements.push_back(IvarTypes[i]);
1562    Elements.push_back(IvarOffsets[i]);
1563    Ivars.push_back(llvm::ConstantStruct::get(ObjCIvarTy, Elements));
1564  }
1565
1566  // Array of method structures
1567  llvm::ArrayType *ObjCIvarArrayTy = llvm::ArrayType::get(ObjCIvarTy,
1568      IvarNames.size());
1569
1570
1571  Elements.clear();
1572  Elements.push_back(llvm::ConstantInt::get(IntTy, (int)IvarNames.size()));
1573  Elements.push_back(llvm::ConstantArray::get(ObjCIvarArrayTy, Ivars));
1574  // Structure containing array and array count
1575  llvm::StructType *ObjCIvarListTy = llvm::StructType::get(IntTy,
1576    ObjCIvarArrayTy,
1577    nullptr);
1578
1579  // Create an instance of the structure
1580  return MakeGlobal(ObjCIvarListTy, Elements, CGM.getPointerAlign(),
1581                    ".objc_ivar_list");
1582}
1583
1584/// Generate a class structure
1585llvm::Constant *CGObjCGNU::GenerateClassStructure(
1586    llvm::Constant *MetaClass,
1587    llvm::Constant *SuperClass,
1588    unsigned info,
1589    const char *Name,
1590    llvm::Constant *Version,
1591    llvm::Constant *InstanceSize,
1592    llvm::Constant *IVars,
1593    llvm::Constant *Methods,
1594    llvm::Constant *Protocols,
1595    llvm::Constant *IvarOffsets,
1596    llvm::Constant *Properties,
1597    llvm::Constant *StrongIvarBitmap,
1598    llvm::Constant *WeakIvarBitmap,
1599    bool isMeta) {
1600  // Set up the class structure
1601  // Note:  Several of these are char*s when they should be ids.  This is
1602  // because the runtime performs this translation on load.
1603  //
1604  // Fields marked New ABI are part of the GNUstep runtime.  We emit them
1605  // anyway; the classes will still work with the GNU runtime, they will just
1606  // be ignored.
1607  llvm::StructType *ClassTy = llvm::StructType::get(
1608      PtrToInt8Ty,        // isa
1609      PtrToInt8Ty,        // super_class
1610      PtrToInt8Ty,        // name
1611      LongTy,             // version
1612      LongTy,             // info
1613      LongTy,             // instance_size
1614      IVars->getType(),   // ivars
1615      Methods->getType(), // methods
1616      // These are all filled in by the runtime, so we pretend
1617      PtrTy,              // dtable
1618      PtrTy,              // subclass_list
1619      PtrTy,              // sibling_class
1620      PtrTy,              // protocols
1621      PtrTy,              // gc_object_type
1622      // New ABI:
1623      LongTy,                 // abi_version
1624      IvarOffsets->getType(), // ivar_offsets
1625      Properties->getType(),  // properties
1626      IntPtrTy,               // strong_pointers
1627      IntPtrTy,               // weak_pointers
1628      nullptr);
1629  llvm::Constant *Zero = llvm::ConstantInt::get(LongTy, 0);
1630  // Fill in the structure
1631  std::vector<llvm::Constant*> Elements;
1632  Elements.push_back(llvm::ConstantExpr::getBitCast(MetaClass, PtrToInt8Ty));
1633  Elements.push_back(SuperClass);
1634  Elements.push_back(MakeConstantString(Name, ".class_name"));
1635  Elements.push_back(Zero);
1636  Elements.push_back(llvm::ConstantInt::get(LongTy, info));
1637  if (isMeta) {
1638    llvm::DataLayout td(&TheModule);
1639    Elements.push_back(
1640        llvm::ConstantInt::get(LongTy,
1641                               td.getTypeSizeInBits(ClassTy) /
1642                                 CGM.getContext().getCharWidth()));
1643  } else
1644    Elements.push_back(InstanceSize);
1645  Elements.push_back(IVars);
1646  Elements.push_back(Methods);
1647  Elements.push_back(NULLPtr);
1648  Elements.push_back(NULLPtr);
1649  Elements.push_back(NULLPtr);
1650  Elements.push_back(llvm::ConstantExpr::getBitCast(Protocols, PtrTy));
1651  Elements.push_back(NULLPtr);
1652  Elements.push_back(llvm::ConstantInt::get(LongTy, 1));
1653  Elements.push_back(IvarOffsets);
1654  Elements.push_back(Properties);
1655  Elements.push_back(StrongIvarBitmap);
1656  Elements.push_back(WeakIvarBitmap);
1657  // Create an instance of the structure
1658  // This is now an externally visible symbol, so that we can speed up class
1659  // messages in the next ABI.  We may already have some weak references to
1660  // this, so check and fix them properly.
1661  std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") +
1662          std::string(Name));
1663  llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym);
1664  llvm::Constant *Class =
1665    MakeGlobal(ClassTy, Elements, CGM.getPointerAlign(), ClassSym,
1666               llvm::GlobalValue::ExternalLinkage);
1667  if (ClassRef) {
1668      ClassRef->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(Class,
1669                  ClassRef->getType()));
1670      ClassRef->removeFromParent();
1671      Class->setName(ClassSym);
1672  }
1673  return Class;
1674}
1675
1676llvm::Constant *CGObjCGNU::
1677GenerateProtocolMethodList(ArrayRef<llvm::Constant *> MethodNames,
1678                           ArrayRef<llvm::Constant *> MethodTypes) {
1679  // Get the method structure type.
1680  llvm::StructType *ObjCMethodDescTy = llvm::StructType::get(
1681    PtrToInt8Ty, // Really a selector, but the runtime does the casting for us.
1682    PtrToInt8Ty,
1683    nullptr);
1684  std::vector<llvm::Constant*> Methods;
1685  std::vector<llvm::Constant*> Elements;
1686  for (unsigned int i = 0, e = MethodTypes.size() ; i < e ; i++) {
1687    Elements.clear();
1688    Elements.push_back(MethodNames[i]);
1689    Elements.push_back(MethodTypes[i]);
1690    Methods.push_back(llvm::ConstantStruct::get(ObjCMethodDescTy, Elements));
1691  }
1692  llvm::ArrayType *ObjCMethodArrayTy = llvm::ArrayType::get(ObjCMethodDescTy,
1693      MethodNames.size());
1694  llvm::Constant *Array = llvm::ConstantArray::get(ObjCMethodArrayTy,
1695                                                   Methods);
1696  llvm::StructType *ObjCMethodDescListTy = llvm::StructType::get(
1697      IntTy, ObjCMethodArrayTy, nullptr);
1698  Methods.clear();
1699  Methods.push_back(llvm::ConstantInt::get(IntTy, MethodNames.size()));
1700  Methods.push_back(Array);
1701  return MakeGlobal(ObjCMethodDescListTy, Methods, CGM.getPointerAlign(),
1702                    ".objc_method_list");
1703}
1704
1705// Create the protocol list structure used in classes, categories and so on
1706llvm::Constant *CGObjCGNU::GenerateProtocolList(ArrayRef<std::string>Protocols){
1707  llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(PtrToInt8Ty,
1708      Protocols.size());
1709  llvm::StructType *ProtocolListTy = llvm::StructType::get(
1710      PtrTy, //Should be a recurisve pointer, but it's always NULL here.
1711      SizeTy,
1712      ProtocolArrayTy,
1713      nullptr);
1714  std::vector<llvm::Constant*> Elements;
1715  for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end();
1716      iter != endIter ; iter++) {
1717    llvm::Constant *protocol = nullptr;
1718    llvm::StringMap<llvm::Constant*>::iterator value =
1719      ExistingProtocols.find(*iter);
1720    if (value == ExistingProtocols.end()) {
1721      protocol = GenerateEmptyProtocol(*iter);
1722    } else {
1723      protocol = value->getValue();
1724    }
1725    llvm::Constant *Ptr = llvm::ConstantExpr::getBitCast(protocol,
1726                                                           PtrToInt8Ty);
1727    Elements.push_back(Ptr);
1728  }
1729  llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1730      Elements);
1731  Elements.clear();
1732  Elements.push_back(NULLPtr);
1733  Elements.push_back(llvm::ConstantInt::get(LongTy, Protocols.size()));
1734  Elements.push_back(ProtocolArray);
1735  return MakeGlobal(ProtocolListTy, Elements, CGM.getPointerAlign(),
1736                    ".objc_protocol_list");
1737}
1738
1739llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF,
1740                                            const ObjCProtocolDecl *PD) {
1741  llvm::Value *protocol = ExistingProtocols[PD->getNameAsString()];
1742  llvm::Type *T =
1743    CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType());
1744  return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T));
1745}
1746
1747llvm::Constant *CGObjCGNU::GenerateEmptyProtocol(
1748  const std::string &ProtocolName) {
1749  SmallVector<std::string, 0> EmptyStringVector;
1750  SmallVector<llvm::Constant*, 0> EmptyConstantVector;
1751
1752  llvm::Constant *ProtocolList = GenerateProtocolList(EmptyStringVector);
1753  llvm::Constant *MethodList =
1754    GenerateProtocolMethodList(EmptyConstantVector, EmptyConstantVector);
1755  // Protocols are objects containing lists of the methods implemented and
1756  // protocols adopted.
1757  llvm::StructType *ProtocolTy = llvm::StructType::get(IdTy,
1758      PtrToInt8Ty,
1759      ProtocolList->getType(),
1760      MethodList->getType(),
1761      MethodList->getType(),
1762      MethodList->getType(),
1763      MethodList->getType(),
1764      nullptr);
1765  std::vector<llvm::Constant*> Elements;
1766  // The isa pointer must be set to a magic number so the runtime knows it's
1767  // the correct layout.
1768  Elements.push_back(llvm::ConstantExpr::getIntToPtr(
1769        llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1770  Elements.push_back(MakeConstantString(ProtocolName, ".objc_protocol_name"));
1771  Elements.push_back(ProtocolList);
1772  Elements.push_back(MethodList);
1773  Elements.push_back(MethodList);
1774  Elements.push_back(MethodList);
1775  Elements.push_back(MethodList);
1776  return MakeGlobal(ProtocolTy, Elements, CGM.getPointerAlign(),
1777                    ".objc_protocol");
1778}
1779
1780void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) {
1781  ASTContext &Context = CGM.getContext();
1782  std::string ProtocolName = PD->getNameAsString();
1783
1784  // Use the protocol definition, if there is one.
1785  if (const ObjCProtocolDecl *Def = PD->getDefinition())
1786    PD = Def;
1787
1788  SmallVector<std::string, 16> Protocols;
1789  for (const auto *PI : PD->protocols())
1790    Protocols.push_back(PI->getNameAsString());
1791  SmallVector<llvm::Constant*, 16> InstanceMethodNames;
1792  SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
1793  SmallVector<llvm::Constant*, 16> OptionalInstanceMethodNames;
1794  SmallVector<llvm::Constant*, 16> OptionalInstanceMethodTypes;
1795  for (const auto *I : PD->instance_methods()) {
1796    std::string TypeStr;
1797    Context.getObjCEncodingForMethodDecl(I, TypeStr);
1798    if (I->getImplementationControl() == ObjCMethodDecl::Optional) {
1799      OptionalInstanceMethodNames.push_back(
1800          MakeConstantString(I->getSelector().getAsString()));
1801      OptionalInstanceMethodTypes.push_back(MakeConstantString(TypeStr));
1802    } else {
1803      InstanceMethodNames.push_back(
1804          MakeConstantString(I->getSelector().getAsString()));
1805      InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
1806    }
1807  }
1808  // Collect information about class methods:
1809  SmallVector<llvm::Constant*, 16> ClassMethodNames;
1810  SmallVector<llvm::Constant*, 16> ClassMethodTypes;
1811  SmallVector<llvm::Constant*, 16> OptionalClassMethodNames;
1812  SmallVector<llvm::Constant*, 16> OptionalClassMethodTypes;
1813  for (const auto *I : PD->class_methods()) {
1814    std::string TypeStr;
1815    Context.getObjCEncodingForMethodDecl(I,TypeStr);
1816    if (I->getImplementationControl() == ObjCMethodDecl::Optional) {
1817      OptionalClassMethodNames.push_back(
1818          MakeConstantString(I->getSelector().getAsString()));
1819      OptionalClassMethodTypes.push_back(MakeConstantString(TypeStr));
1820    } else {
1821      ClassMethodNames.push_back(
1822          MakeConstantString(I->getSelector().getAsString()));
1823      ClassMethodTypes.push_back(MakeConstantString(TypeStr));
1824    }
1825  }
1826
1827  llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
1828  llvm::Constant *InstanceMethodList =
1829    GenerateProtocolMethodList(InstanceMethodNames, InstanceMethodTypes);
1830  llvm::Constant *ClassMethodList =
1831    GenerateProtocolMethodList(ClassMethodNames, ClassMethodTypes);
1832  llvm::Constant *OptionalInstanceMethodList =
1833    GenerateProtocolMethodList(OptionalInstanceMethodNames,
1834            OptionalInstanceMethodTypes);
1835  llvm::Constant *OptionalClassMethodList =
1836    GenerateProtocolMethodList(OptionalClassMethodNames,
1837            OptionalClassMethodTypes);
1838
1839  // Property metadata: name, attributes, isSynthesized, setter name, setter
1840  // types, getter name, getter types.
1841  // The isSynthesized value is always set to 0 in a protocol.  It exists to
1842  // simplify the runtime library by allowing it to use the same data
1843  // structures for protocol metadata everywhere.
1844  llvm::StructType *PropertyMetadataTy = llvm::StructType::get(
1845          PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty,
1846          PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, nullptr);
1847  std::vector<llvm::Constant*> Properties;
1848  std::vector<llvm::Constant*> OptionalProperties;
1849
1850  // Add all of the property methods need adding to the method list and to the
1851  // property metadata list.
1852  for (auto *property : PD->properties()) {
1853    std::vector<llvm::Constant*> Fields;
1854
1855    Fields.push_back(MakePropertyEncodingString(property, nullptr));
1856    PushPropertyAttributes(Fields, property);
1857
1858    if (ObjCMethodDecl *getter = property->getGetterMethodDecl()) {
1859      std::string TypeStr;
1860      Context.getObjCEncodingForMethodDecl(getter,TypeStr);
1861      llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
1862      InstanceMethodTypes.push_back(TypeEncoding);
1863      Fields.push_back(MakeConstantString(getter->getSelector().getAsString()));
1864      Fields.push_back(TypeEncoding);
1865    } else {
1866      Fields.push_back(NULLPtr);
1867      Fields.push_back(NULLPtr);
1868    }
1869    if (ObjCMethodDecl *setter = property->getSetterMethodDecl()) {
1870      std::string TypeStr;
1871      Context.getObjCEncodingForMethodDecl(setter,TypeStr);
1872      llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
1873      InstanceMethodTypes.push_back(TypeEncoding);
1874      Fields.push_back(MakeConstantString(setter->getSelector().getAsString()));
1875      Fields.push_back(TypeEncoding);
1876    } else {
1877      Fields.push_back(NULLPtr);
1878      Fields.push_back(NULLPtr);
1879    }
1880    if (property->getPropertyImplementation() == ObjCPropertyDecl::Optional) {
1881      OptionalProperties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
1882    } else {
1883      Properties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
1884    }
1885  }
1886  llvm::Constant *PropertyArray = llvm::ConstantArray::get(
1887      llvm::ArrayType::get(PropertyMetadataTy, Properties.size()), Properties);
1888  llvm::Constant* PropertyListInitFields[] =
1889    {llvm::ConstantInt::get(IntTy, Properties.size()), NULLPtr, PropertyArray};
1890
1891  llvm::Constant *PropertyListInit =
1892      llvm::ConstantStruct::getAnon(PropertyListInitFields);
1893  llvm::Constant *PropertyList = new llvm::GlobalVariable(TheModule,
1894      PropertyListInit->getType(), false, llvm::GlobalValue::InternalLinkage,
1895      PropertyListInit, ".objc_property_list");
1896
1897  llvm::Constant *OptionalPropertyArray =
1898      llvm::ConstantArray::get(llvm::ArrayType::get(PropertyMetadataTy,
1899          OptionalProperties.size()) , OptionalProperties);
1900  llvm::Constant* OptionalPropertyListInitFields[] = {
1901      llvm::ConstantInt::get(IntTy, OptionalProperties.size()), NULLPtr,
1902      OptionalPropertyArray };
1903
1904  llvm::Constant *OptionalPropertyListInit =
1905      llvm::ConstantStruct::getAnon(OptionalPropertyListInitFields);
1906  llvm::Constant *OptionalPropertyList = new llvm::GlobalVariable(TheModule,
1907          OptionalPropertyListInit->getType(), false,
1908          llvm::GlobalValue::InternalLinkage, OptionalPropertyListInit,
1909          ".objc_property_list");
1910
1911  // Protocols are objects containing lists of the methods implemented and
1912  // protocols adopted.
1913  llvm::StructType *ProtocolTy = llvm::StructType::get(IdTy,
1914      PtrToInt8Ty,
1915      ProtocolList->getType(),
1916      InstanceMethodList->getType(),
1917      ClassMethodList->getType(),
1918      OptionalInstanceMethodList->getType(),
1919      OptionalClassMethodList->getType(),
1920      PropertyList->getType(),
1921      OptionalPropertyList->getType(),
1922      nullptr);
1923  std::vector<llvm::Constant*> Elements;
1924  // The isa pointer must be set to a magic number so the runtime knows it's
1925  // the correct layout.
1926  Elements.push_back(llvm::ConstantExpr::getIntToPtr(
1927        llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1928  Elements.push_back(MakeConstantString(ProtocolName, ".objc_protocol_name"));
1929  Elements.push_back(ProtocolList);
1930  Elements.push_back(InstanceMethodList);
1931  Elements.push_back(ClassMethodList);
1932  Elements.push_back(OptionalInstanceMethodList);
1933  Elements.push_back(OptionalClassMethodList);
1934  Elements.push_back(PropertyList);
1935  Elements.push_back(OptionalPropertyList);
1936  ExistingProtocols[ProtocolName] =
1937    llvm::ConstantExpr::getBitCast(MakeGlobal(ProtocolTy, Elements,
1938          CGM.getPointerAlign(), ".objc_protocol"), IdTy);
1939}
1940void CGObjCGNU::GenerateProtocolHolderCategory() {
1941  // Collect information about instance methods
1942  SmallVector<Selector, 1> MethodSels;
1943  SmallVector<llvm::Constant*, 1> MethodTypes;
1944
1945  std::vector<llvm::Constant*> Elements;
1946  const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack";
1947  const std::string CategoryName = "AnotherHack";
1948  Elements.push_back(MakeConstantString(CategoryName));
1949  Elements.push_back(MakeConstantString(ClassName));
1950  // Instance method list
1951  Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
1952          ClassName, CategoryName, MethodSels, MethodTypes, false), PtrTy));
1953  // Class method list
1954  Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
1955          ClassName, CategoryName, MethodSels, MethodTypes, true), PtrTy));
1956  // Protocol list
1957  llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(PtrTy,
1958      ExistingProtocols.size());
1959  llvm::StructType *ProtocolListTy = llvm::StructType::get(
1960      PtrTy, //Should be a recurisve pointer, but it's always NULL here.
1961      SizeTy,
1962      ProtocolArrayTy,
1963      nullptr);
1964  std::vector<llvm::Constant*> ProtocolElements;
1965  for (llvm::StringMapIterator<llvm::Constant*> iter =
1966       ExistingProtocols.begin(), endIter = ExistingProtocols.end();
1967       iter != endIter ; iter++) {
1968    llvm::Constant *Ptr = llvm::ConstantExpr::getBitCast(iter->getValue(),
1969            PtrTy);
1970    ProtocolElements.push_back(Ptr);
1971  }
1972  llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1973      ProtocolElements);
1974  ProtocolElements.clear();
1975  ProtocolElements.push_back(NULLPtr);
1976  ProtocolElements.push_back(llvm::ConstantInt::get(LongTy,
1977              ExistingProtocols.size()));
1978  ProtocolElements.push_back(ProtocolArray);
1979  Elements.push_back(llvm::ConstantExpr::getBitCast(MakeGlobal(ProtocolListTy,
1980                  ProtocolElements, CGM.getPointerAlign(),
1981                  ".objc_protocol_list"), PtrTy));
1982  Categories.push_back(llvm::ConstantExpr::getBitCast(
1983        MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
1984            PtrTy, PtrTy, PtrTy, nullptr), Elements, CGM.getPointerAlign()),
1985        PtrTy));
1986}
1987
1988/// Libobjc2 uses a bitfield representation where small(ish) bitfields are
1989/// stored in a 64-bit value with the low bit set to 1 and the remaining 63
1990/// bits set to their values, LSB first, while larger ones are stored in a
1991/// structure of this / form:
1992///
1993/// struct { int32_t length; int32_t values[length]; };
1994///
1995/// The values in the array are stored in host-endian format, with the least
1996/// significant bit being assumed to come first in the bitfield.  Therefore, a
1997/// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a
1998/// bitfield / with the 63rd bit set will be 1<<64.
1999llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) {
2000  int bitCount = bits.size();
2001  int ptrBits = CGM.getDataLayout().getPointerSizeInBits();
2002  if (bitCount < ptrBits) {
2003    uint64_t val = 1;
2004    for (int i=0 ; i<bitCount ; ++i) {
2005      if (bits[i]) val |= 1ULL<<(i+1);
2006    }
2007    return llvm::ConstantInt::get(IntPtrTy, val);
2008  }
2009  SmallVector<llvm::Constant *, 8> values;
2010  int v=0;
2011  while (v < bitCount) {
2012    int32_t word = 0;
2013    for (int i=0 ; (i<32) && (v<bitCount)  ; ++i) {
2014      if (bits[v]) word |= 1<<i;
2015      v++;
2016    }
2017    values.push_back(llvm::ConstantInt::get(Int32Ty, word));
2018  }
2019  llvm::ArrayType *arrayTy = llvm::ArrayType::get(Int32Ty, values.size());
2020  llvm::Constant *array = llvm::ConstantArray::get(arrayTy, values);
2021  llvm::Constant *fields[2] = {
2022      llvm::ConstantInt::get(Int32Ty, values.size()),
2023      array };
2024  llvm::Constant *GS = MakeGlobal(llvm::StructType::get(Int32Ty, arrayTy,
2025        nullptr), fields, CharUnits::fromQuantity(4));
2026  llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy);
2027  return ptr;
2028}
2029
2030void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
2031  std::string ClassName = OCD->getClassInterface()->getNameAsString();
2032  std::string CategoryName = OCD->getNameAsString();
2033  // Collect information about instance methods
2034  SmallVector<Selector, 16> InstanceMethodSels;
2035  SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
2036  for (const auto *I : OCD->instance_methods()) {
2037    InstanceMethodSels.push_back(I->getSelector());
2038    std::string TypeStr;
2039    CGM.getContext().getObjCEncodingForMethodDecl(I,TypeStr);
2040    InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
2041  }
2042
2043  // Collect information about class methods
2044  SmallVector<Selector, 16> ClassMethodSels;
2045  SmallVector<llvm::Constant*, 16> ClassMethodTypes;
2046  for (const auto *I : OCD->class_methods()) {
2047    ClassMethodSels.push_back(I->getSelector());
2048    std::string TypeStr;
2049    CGM.getContext().getObjCEncodingForMethodDecl(I,TypeStr);
2050    ClassMethodTypes.push_back(MakeConstantString(TypeStr));
2051  }
2052
2053  // Collect the names of referenced protocols
2054  SmallVector<std::string, 16> Protocols;
2055  const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl();
2056  const ObjCList<ObjCProtocolDecl> &Protos = CatDecl->getReferencedProtocols();
2057  for (ObjCList<ObjCProtocolDecl>::iterator I = Protos.begin(),
2058       E = Protos.end(); I != E; ++I)
2059    Protocols.push_back((*I)->getNameAsString());
2060
2061  std::vector<llvm::Constant*> Elements;
2062  Elements.push_back(MakeConstantString(CategoryName));
2063  Elements.push_back(MakeConstantString(ClassName));
2064  // Instance method list
2065  Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
2066          ClassName, CategoryName, InstanceMethodSels, InstanceMethodTypes,
2067          false), PtrTy));
2068  // Class method list
2069  Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
2070          ClassName, CategoryName, ClassMethodSels, ClassMethodTypes, true),
2071        PtrTy));
2072  // Protocol list
2073  Elements.push_back(llvm::ConstantExpr::getBitCast(
2074        GenerateProtocolList(Protocols), PtrTy));
2075  Categories.push_back(llvm::ConstantExpr::getBitCast(
2076        MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
2077            PtrTy, PtrTy, PtrTy, nullptr), Elements, CGM.getPointerAlign()),
2078        PtrTy));
2079}
2080
2081llvm::Constant *CGObjCGNU::GeneratePropertyList(const ObjCImplementationDecl *OID,
2082        SmallVectorImpl<Selector> &InstanceMethodSels,
2083        SmallVectorImpl<llvm::Constant*> &InstanceMethodTypes) {
2084  ASTContext &Context = CGM.getContext();
2085  // Property metadata: name, attributes, attributes2, padding1, padding2,
2086  // setter name, setter types, getter name, getter types.
2087  llvm::StructType *PropertyMetadataTy = llvm::StructType::get(
2088          PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty,
2089          PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, nullptr);
2090  std::vector<llvm::Constant*> Properties;
2091
2092  // Add all of the property methods need adding to the method list and to the
2093  // property metadata list.
2094  for (auto *propertyImpl : OID->property_impls()) {
2095    std::vector<llvm::Constant*> Fields;
2096    ObjCPropertyDecl *property = propertyImpl->getPropertyDecl();
2097    bool isSynthesized = (propertyImpl->getPropertyImplementation() ==
2098        ObjCPropertyImplDecl::Synthesize);
2099    bool isDynamic = (propertyImpl->getPropertyImplementation() ==
2100        ObjCPropertyImplDecl::Dynamic);
2101
2102    Fields.push_back(MakePropertyEncodingString(property, OID));
2103    PushPropertyAttributes(Fields, property, isSynthesized, isDynamic);
2104    if (ObjCMethodDecl *getter = property->getGetterMethodDecl()) {
2105      std::string TypeStr;
2106      Context.getObjCEncodingForMethodDecl(getter,TypeStr);
2107      llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
2108      if (isSynthesized) {
2109        InstanceMethodTypes.push_back(TypeEncoding);
2110        InstanceMethodSels.push_back(getter->getSelector());
2111      }
2112      Fields.push_back(MakeConstantString(getter->getSelector().getAsString()));
2113      Fields.push_back(TypeEncoding);
2114    } else {
2115      Fields.push_back(NULLPtr);
2116      Fields.push_back(NULLPtr);
2117    }
2118    if (ObjCMethodDecl *setter = property->getSetterMethodDecl()) {
2119      std::string TypeStr;
2120      Context.getObjCEncodingForMethodDecl(setter,TypeStr);
2121      llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
2122      if (isSynthesized) {
2123        InstanceMethodTypes.push_back(TypeEncoding);
2124        InstanceMethodSels.push_back(setter->getSelector());
2125      }
2126      Fields.push_back(MakeConstantString(setter->getSelector().getAsString()));
2127      Fields.push_back(TypeEncoding);
2128    } else {
2129      Fields.push_back(NULLPtr);
2130      Fields.push_back(NULLPtr);
2131    }
2132    Properties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
2133  }
2134  llvm::ArrayType *PropertyArrayTy =
2135      llvm::ArrayType::get(PropertyMetadataTy, Properties.size());
2136  llvm::Constant *PropertyArray = llvm::ConstantArray::get(PropertyArrayTy,
2137          Properties);
2138  llvm::Constant* PropertyListInitFields[] =
2139    {llvm::ConstantInt::get(IntTy, Properties.size()), NULLPtr, PropertyArray};
2140
2141  llvm::Constant *PropertyListInit =
2142      llvm::ConstantStruct::getAnon(PropertyListInitFields);
2143  return new llvm::GlobalVariable(TheModule, PropertyListInit->getType(), false,
2144          llvm::GlobalValue::InternalLinkage, PropertyListInit,
2145          ".objc_property_list");
2146}
2147
2148void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) {
2149  // Get the class declaration for which the alias is specified.
2150  ObjCInterfaceDecl *ClassDecl =
2151    const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface());
2152  ClassAliases.emplace_back(ClassDecl->getNameAsString(),
2153                            OAD->getNameAsString());
2154}
2155
2156void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) {
2157  ASTContext &Context = CGM.getContext();
2158
2159  // Get the superclass name.
2160  const ObjCInterfaceDecl * SuperClassDecl =
2161    OID->getClassInterface()->getSuperClass();
2162  std::string SuperClassName;
2163  if (SuperClassDecl) {
2164    SuperClassName = SuperClassDecl->getNameAsString();
2165    EmitClassRef(SuperClassName);
2166  }
2167
2168  // Get the class name
2169  ObjCInterfaceDecl *ClassDecl =
2170    const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
2171  std::string ClassName = ClassDecl->getNameAsString();
2172  // Emit the symbol that is used to generate linker errors if this class is
2173  // referenced in other modules but not declared.
2174  std::string classSymbolName = "__objc_class_name_" + ClassName;
2175  if (llvm::GlobalVariable *symbol =
2176      TheModule.getGlobalVariable(classSymbolName)) {
2177    symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0));
2178  } else {
2179    new llvm::GlobalVariable(TheModule, LongTy, false,
2180    llvm::GlobalValue::ExternalLinkage, llvm::ConstantInt::get(LongTy, 0),
2181    classSymbolName);
2182  }
2183
2184  // Get the size of instances.
2185  int instanceSize =
2186    Context.getASTObjCImplementationLayout(OID).getSize().getQuantity();
2187
2188  // Collect information about instance variables.
2189  SmallVector<llvm::Constant*, 16> IvarNames;
2190  SmallVector<llvm::Constant*, 16> IvarTypes;
2191  SmallVector<llvm::Constant*, 16> IvarOffsets;
2192
2193  std::vector<llvm::Constant*> IvarOffsetValues;
2194  SmallVector<bool, 16> WeakIvars;
2195  SmallVector<bool, 16> StrongIvars;
2196
2197  int superInstanceSize = !SuperClassDecl ? 0 :
2198    Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
2199  // For non-fragile ivars, set the instance size to 0 - {the size of just this
2200  // class}.  The runtime will then set this to the correct value on load.
2201  if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2202    instanceSize = 0 - (instanceSize - superInstanceSize);
2203  }
2204
2205  for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
2206       IVD = IVD->getNextIvar()) {
2207      // Store the name
2208      IvarNames.push_back(MakeConstantString(IVD->getNameAsString()));
2209      // Get the type encoding for this ivar
2210      std::string TypeStr;
2211      Context.getObjCEncodingForType(IVD->getType(), TypeStr);
2212      IvarTypes.push_back(MakeConstantString(TypeStr));
2213      // Get the offset
2214      uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
2215      uint64_t Offset = BaseOffset;
2216      if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2217        Offset = BaseOffset - superInstanceSize;
2218      }
2219      llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
2220      // Create the direct offset value
2221      std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." +
2222          IVD->getNameAsString();
2223      llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
2224      if (OffsetVar) {
2225        OffsetVar->setInitializer(OffsetValue);
2226        // If this is the real definition, change its linkage type so that
2227        // different modules will use this one, rather than their private
2228        // copy.
2229        OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage);
2230      } else
2231        OffsetVar = new llvm::GlobalVariable(TheModule, IntTy,
2232          false, llvm::GlobalValue::ExternalLinkage,
2233          OffsetValue,
2234          "__objc_ivar_offset_value_" + ClassName +"." +
2235          IVD->getNameAsString());
2236      IvarOffsets.push_back(OffsetValue);
2237      IvarOffsetValues.push_back(OffsetVar);
2238      Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime();
2239      switch (lt) {
2240        case Qualifiers::OCL_Strong:
2241          StrongIvars.push_back(true);
2242          WeakIvars.push_back(false);
2243          break;
2244        case Qualifiers::OCL_Weak:
2245          StrongIvars.push_back(false);
2246          WeakIvars.push_back(true);
2247          break;
2248        default:
2249          StrongIvars.push_back(false);
2250          WeakIvars.push_back(false);
2251      }
2252  }
2253  llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars);
2254  llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars);
2255  llvm::GlobalVariable *IvarOffsetArray =
2256    MakeGlobalArray(PtrToIntTy, IvarOffsetValues, CGM.getPointerAlign(),
2257                    ".ivar.offsets");
2258
2259
2260  // Collect information about instance methods
2261  SmallVector<Selector, 16> InstanceMethodSels;
2262  SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
2263  for (const auto *I : OID->instance_methods()) {
2264    InstanceMethodSels.push_back(I->getSelector());
2265    std::string TypeStr;
2266    Context.getObjCEncodingForMethodDecl(I,TypeStr);
2267    InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
2268  }
2269
2270  llvm::Constant *Properties = GeneratePropertyList(OID, InstanceMethodSels,
2271          InstanceMethodTypes);
2272
2273
2274  // Collect information about class methods
2275  SmallVector<Selector, 16> ClassMethodSels;
2276  SmallVector<llvm::Constant*, 16> ClassMethodTypes;
2277  for (const auto *I : OID->class_methods()) {
2278    ClassMethodSels.push_back(I->getSelector());
2279    std::string TypeStr;
2280    Context.getObjCEncodingForMethodDecl(I,TypeStr);
2281    ClassMethodTypes.push_back(MakeConstantString(TypeStr));
2282  }
2283  // Collect the names of referenced protocols
2284  SmallVector<std::string, 16> Protocols;
2285  for (const auto *I : ClassDecl->protocols())
2286    Protocols.push_back(I->getNameAsString());
2287
2288  // Get the superclass pointer.
2289  llvm::Constant *SuperClass;
2290  if (!SuperClassName.empty()) {
2291    SuperClass = MakeConstantString(SuperClassName, ".super_class_name");
2292  } else {
2293    SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty);
2294  }
2295  // Empty vector used to construct empty method lists
2296  SmallVector<llvm::Constant*, 1>  empty;
2297  // Generate the method and instance variable lists
2298  llvm::Constant *MethodList = GenerateMethodList(ClassName, "",
2299      InstanceMethodSels, InstanceMethodTypes, false);
2300  llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "",
2301      ClassMethodSels, ClassMethodTypes, true);
2302  llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes,
2303      IvarOffsets);
2304  // Irrespective of whether we are compiling for a fragile or non-fragile ABI,
2305  // we emit a symbol containing the offset for each ivar in the class.  This
2306  // allows code compiled for the non-Fragile ABI to inherit from code compiled
2307  // for the legacy ABI, without causing problems.  The converse is also
2308  // possible, but causes all ivar accesses to be fragile.
2309
2310  // Offset pointer for getting at the correct field in the ivar list when
2311  // setting up the alias.  These are: The base address for the global, the
2312  // ivar array (second field), the ivar in this list (set for each ivar), and
2313  // the offset (third field in ivar structure)
2314  llvm::Type *IndexTy = Int32Ty;
2315  llvm::Constant *offsetPointerIndexes[] = {Zeros[0],
2316      llvm::ConstantInt::get(IndexTy, 1), nullptr,
2317      llvm::ConstantInt::get(IndexTy, 2) };
2318
2319  unsigned ivarIndex = 0;
2320  for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
2321       IVD = IVD->getNextIvar()) {
2322      const std::string Name = "__objc_ivar_offset_" + ClassName + '.'
2323          + IVD->getNameAsString();
2324      offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex);
2325      // Get the correct ivar field
2326      llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr(
2327          cast<llvm::GlobalVariable>(IvarList)->getValueType(), IvarList,
2328          offsetPointerIndexes);
2329      // Get the existing variable, if one exists.
2330      llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name);
2331      if (offset) {
2332        offset->setInitializer(offsetValue);
2333        // If this is the real definition, change its linkage type so that
2334        // different modules will use this one, rather than their private
2335        // copy.
2336        offset->setLinkage(llvm::GlobalValue::ExternalLinkage);
2337      } else {
2338        // Add a new alias if there isn't one already.
2339        offset = new llvm::GlobalVariable(TheModule, offsetValue->getType(),
2340                false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name);
2341        (void) offset; // Silence dead store warning.
2342      }
2343      ++ivarIndex;
2344  }
2345  llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0);
2346  //Generate metaclass for class methods
2347  llvm::Constant *MetaClassStruct = GenerateClassStructure(NULLPtr,
2348      NULLPtr, 0x12L, ClassName.c_str(), nullptr, Zeros[0], GenerateIvarList(
2349        empty, empty, empty), ClassMethodList, NULLPtr,
2350      NULLPtr, NULLPtr, ZeroPtr, ZeroPtr, true);
2351
2352  // Generate the class structure
2353  llvm::Constant *ClassStruct =
2354    GenerateClassStructure(MetaClassStruct, SuperClass, 0x11L,
2355                           ClassName.c_str(), nullptr,
2356      llvm::ConstantInt::get(LongTy, instanceSize), IvarList,
2357      MethodList, GenerateProtocolList(Protocols), IvarOffsetArray,
2358      Properties, StrongIvarBitmap, WeakIvarBitmap);
2359
2360  // Resolve the class aliases, if they exist.
2361  if (ClassPtrAlias) {
2362    ClassPtrAlias->replaceAllUsesWith(
2363        llvm::ConstantExpr::getBitCast(ClassStruct, IdTy));
2364    ClassPtrAlias->eraseFromParent();
2365    ClassPtrAlias = nullptr;
2366  }
2367  if (MetaClassPtrAlias) {
2368    MetaClassPtrAlias->replaceAllUsesWith(
2369        llvm::ConstantExpr::getBitCast(MetaClassStruct, IdTy));
2370    MetaClassPtrAlias->eraseFromParent();
2371    MetaClassPtrAlias = nullptr;
2372  }
2373
2374  // Add class structure to list to be added to the symtab later
2375  ClassStruct = llvm::ConstantExpr::getBitCast(ClassStruct, PtrToInt8Ty);
2376  Classes.push_back(ClassStruct);
2377}
2378
2379
2380llvm::Function *CGObjCGNU::ModuleInitFunction() {
2381  // Only emit an ObjC load function if no Objective-C stuff has been called
2382  if (Classes.empty() && Categories.empty() && ConstantStrings.empty() &&
2383      ExistingProtocols.empty() && SelectorTable.empty())
2384    return nullptr;
2385
2386  // Add all referenced protocols to a category.
2387  GenerateProtocolHolderCategory();
2388
2389  llvm::StructType *SelStructTy = dyn_cast<llvm::StructType>(
2390          SelectorTy->getElementType());
2391  llvm::Type *SelStructPtrTy = SelectorTy;
2392  if (!SelStructTy) {
2393    SelStructTy = llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, nullptr);
2394    SelStructPtrTy = llvm::PointerType::getUnqual(SelStructTy);
2395  }
2396
2397  std::vector<llvm::Constant*> Elements;
2398  llvm::Constant *Statics = NULLPtr;
2399  // Generate statics list:
2400  if (!ConstantStrings.empty()) {
2401    llvm::ArrayType *StaticsArrayTy = llvm::ArrayType::get(PtrToInt8Ty,
2402        ConstantStrings.size() + 1);
2403    ConstantStrings.push_back(NULLPtr);
2404
2405    StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
2406
2407    if (StringClass.empty()) StringClass = "NXConstantString";
2408
2409    Elements.push_back(MakeConstantString(StringClass,
2410                ".objc_static_class_name"));
2411    Elements.push_back(llvm::ConstantArray::get(StaticsArrayTy,
2412       ConstantStrings));
2413    llvm::StructType *StaticsListTy =
2414      llvm::StructType::get(PtrToInt8Ty, StaticsArrayTy, nullptr);
2415    llvm::Type *StaticsListPtrTy =
2416      llvm::PointerType::getUnqual(StaticsListTy);
2417    Statics = MakeGlobal(StaticsListTy, Elements, CGM.getPointerAlign(),
2418                         ".objc_statics");
2419    llvm::ArrayType *StaticsListArrayTy =
2420      llvm::ArrayType::get(StaticsListPtrTy, 2);
2421    Elements.clear();
2422    Elements.push_back(Statics);
2423    Elements.push_back(llvm::Constant::getNullValue(StaticsListPtrTy));
2424    Statics = MakeGlobal(StaticsListArrayTy, Elements,
2425                         CGM.getPointerAlign(), ".objc_statics_ptr");
2426    Statics = llvm::ConstantExpr::getBitCast(Statics, PtrTy);
2427  }
2428  // Array of classes, categories, and constant objects
2429  llvm::ArrayType *ClassListTy = llvm::ArrayType::get(PtrToInt8Ty,
2430      Classes.size() + Categories.size()  + 2);
2431  llvm::StructType *SymTabTy = llvm::StructType::get(LongTy, SelStructPtrTy,
2432                                                     llvm::Type::getInt16Ty(VMContext),
2433                                                     llvm::Type::getInt16Ty(VMContext),
2434                                                     ClassListTy, nullptr);
2435
2436  Elements.clear();
2437  // Pointer to an array of selectors used in this module.
2438  std::vector<llvm::Constant*> Selectors;
2439  std::vector<llvm::GlobalAlias*> SelectorAliases;
2440  for (SelectorMap::iterator iter = SelectorTable.begin(),
2441      iterEnd = SelectorTable.end(); iter != iterEnd ; ++iter) {
2442
2443    std::string SelNameStr = iter->first.getAsString();
2444    llvm::Constant *SelName = ExportUniqueString(SelNameStr, ".objc_sel_name");
2445
2446    SmallVectorImpl<TypedSelector> &Types = iter->second;
2447    for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
2448        e = Types.end() ; i!=e ; i++) {
2449
2450      llvm::Constant *SelectorTypeEncoding = NULLPtr;
2451      if (!i->first.empty())
2452        SelectorTypeEncoding = MakeConstantString(i->first, ".objc_sel_types");
2453
2454      Elements.push_back(SelName);
2455      Elements.push_back(SelectorTypeEncoding);
2456      Selectors.push_back(llvm::ConstantStruct::get(SelStructTy, Elements));
2457      Elements.clear();
2458
2459      // Store the selector alias for later replacement
2460      SelectorAliases.push_back(i->second);
2461    }
2462  }
2463  unsigned SelectorCount = Selectors.size();
2464  // NULL-terminate the selector list.  This should not actually be required,
2465  // because the selector list has a length field.  Unfortunately, the GCC
2466  // runtime decides to ignore the length field and expects a NULL terminator,
2467  // and GCC cooperates with this by always setting the length to 0.
2468  Elements.push_back(NULLPtr);
2469  Elements.push_back(NULLPtr);
2470  Selectors.push_back(llvm::ConstantStruct::get(SelStructTy, Elements));
2471  Elements.clear();
2472
2473  // Number of static selectors
2474  Elements.push_back(llvm::ConstantInt::get(LongTy, SelectorCount));
2475  llvm::GlobalVariable *SelectorList =
2476      MakeGlobalArray(SelStructTy, Selectors, CGM.getPointerAlign(),
2477                      ".objc_selector_list");
2478  Elements.push_back(llvm::ConstantExpr::getBitCast(SelectorList,
2479    SelStructPtrTy));
2480
2481  // Now that all of the static selectors exist, create pointers to them.
2482  for (unsigned int i=0 ; i<SelectorCount ; i++) {
2483
2484    llvm::Constant *Idxs[] = {Zeros[0],
2485      llvm::ConstantInt::get(Int32Ty, i), Zeros[0]};
2486    // FIXME: We're generating redundant loads and stores here!
2487    llvm::Constant *SelPtr = llvm::ConstantExpr::getGetElementPtr(
2488        SelectorList->getValueType(), SelectorList, makeArrayRef(Idxs, 2));
2489    // If selectors are defined as an opaque type, cast the pointer to this
2490    // type.
2491    SelPtr = llvm::ConstantExpr::getBitCast(SelPtr, SelectorTy);
2492    SelectorAliases[i]->replaceAllUsesWith(SelPtr);
2493    SelectorAliases[i]->eraseFromParent();
2494  }
2495
2496  // Number of classes defined.
2497  Elements.push_back(llvm::ConstantInt::get(llvm::Type::getInt16Ty(VMContext),
2498        Classes.size()));
2499  // Number of categories defined
2500  Elements.push_back(llvm::ConstantInt::get(llvm::Type::getInt16Ty(VMContext),
2501        Categories.size()));
2502  // Create an array of classes, then categories, then static object instances
2503  Classes.insert(Classes.end(), Categories.begin(), Categories.end());
2504  //  NULL-terminated list of static object instances (mainly constant strings)
2505  Classes.push_back(Statics);
2506  Classes.push_back(NULLPtr);
2507  llvm::Constant *ClassList = llvm::ConstantArray::get(ClassListTy, Classes);
2508  Elements.push_back(ClassList);
2509  // Construct the symbol table
2510  llvm::Constant *SymTab =
2511    MakeGlobal(SymTabTy, Elements, CGM.getPointerAlign());
2512
2513  // The symbol table is contained in a module which has some version-checking
2514  // constants
2515  llvm::StructType * ModuleTy = llvm::StructType::get(LongTy, LongTy,
2516      PtrToInt8Ty, llvm::PointerType::getUnqual(SymTabTy),
2517      (RuntimeVersion >= 10) ? IntTy : nullptr, nullptr);
2518  Elements.clear();
2519  // Runtime version, used for ABI compatibility checking.
2520  Elements.push_back(llvm::ConstantInt::get(LongTy, RuntimeVersion));
2521  // sizeof(ModuleTy)
2522  llvm::DataLayout td(&TheModule);
2523  Elements.push_back(
2524    llvm::ConstantInt::get(LongTy,
2525                           td.getTypeSizeInBits(ModuleTy) /
2526                             CGM.getContext().getCharWidth()));
2527
2528  // The path to the source file where this module was declared
2529  SourceManager &SM = CGM.getContext().getSourceManager();
2530  const FileEntry *mainFile = SM.getFileEntryForID(SM.getMainFileID());
2531  std::string path =
2532    std::string(mainFile->getDir()->getName()) + '/' + mainFile->getName();
2533  Elements.push_back(MakeConstantString(path, ".objc_source_file_name"));
2534  Elements.push_back(SymTab);
2535
2536  if (RuntimeVersion >= 10)
2537    switch (CGM.getLangOpts().getGC()) {
2538      case LangOptions::GCOnly:
2539        Elements.push_back(llvm::ConstantInt::get(IntTy, 2));
2540        break;
2541      case LangOptions::NonGC:
2542        if (CGM.getLangOpts().ObjCAutoRefCount)
2543          Elements.push_back(llvm::ConstantInt::get(IntTy, 1));
2544        else
2545          Elements.push_back(llvm::ConstantInt::get(IntTy, 0));
2546        break;
2547      case LangOptions::HybridGC:
2548          Elements.push_back(llvm::ConstantInt::get(IntTy, 1));
2549        break;
2550    }
2551
2552  llvm::Value *Module = MakeGlobal(ModuleTy, Elements, CGM.getPointerAlign());
2553
2554  // Create the load function calling the runtime entry point with the module
2555  // structure
2556  llvm::Function * LoadFunction = llvm::Function::Create(
2557      llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
2558      llvm::GlobalValue::InternalLinkage, ".objc_load_function",
2559      &TheModule);
2560  llvm::BasicBlock *EntryBB =
2561      llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
2562  CGBuilderTy Builder(CGM, VMContext);
2563  Builder.SetInsertPoint(EntryBB);
2564
2565  llvm::FunctionType *FT =
2566    llvm::FunctionType::get(Builder.getVoidTy(),
2567                            llvm::PointerType::getUnqual(ModuleTy), true);
2568  llvm::Value *Register = CGM.CreateRuntimeFunction(FT, "__objc_exec_class");
2569  Builder.CreateCall(Register, Module);
2570
2571  if (!ClassAliases.empty()) {
2572    llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty};
2573    llvm::FunctionType *RegisterAliasTy =
2574      llvm::FunctionType::get(Builder.getVoidTy(),
2575                              ArgTypes, false);
2576    llvm::Function *RegisterAlias = llvm::Function::Create(
2577      RegisterAliasTy,
2578      llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np",
2579      &TheModule);
2580    llvm::BasicBlock *AliasBB =
2581      llvm::BasicBlock::Create(VMContext, "alias", LoadFunction);
2582    llvm::BasicBlock *NoAliasBB =
2583      llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction);
2584
2585    // Branch based on whether the runtime provided class_registerAlias_np()
2586    llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias,
2587            llvm::Constant::getNullValue(RegisterAlias->getType()));
2588    Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB);
2589
2590    // The true branch (has alias registration function):
2591    Builder.SetInsertPoint(AliasBB);
2592    // Emit alias registration calls:
2593    for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin();
2594       iter != ClassAliases.end(); ++iter) {
2595       llvm::Constant *TheClass =
2596         TheModule.getGlobalVariable(("_OBJC_CLASS_" + iter->first).c_str(),
2597            true);
2598       if (TheClass) {
2599         TheClass = llvm::ConstantExpr::getBitCast(TheClass, PtrTy);
2600         Builder.CreateCall(RegisterAlias,
2601                            {TheClass, MakeConstantString(iter->second)});
2602       }
2603    }
2604    // Jump to end:
2605    Builder.CreateBr(NoAliasBB);
2606
2607    // Missing alias registration function, just return from the function:
2608    Builder.SetInsertPoint(NoAliasBB);
2609  }
2610  Builder.CreateRetVoid();
2611
2612  return LoadFunction;
2613}
2614
2615llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD,
2616                                          const ObjCContainerDecl *CD) {
2617  const ObjCCategoryImplDecl *OCD =
2618    dyn_cast<ObjCCategoryImplDecl>(OMD->getDeclContext());
2619  StringRef CategoryName = OCD ? OCD->getName() : "";
2620  StringRef ClassName = CD->getName();
2621  Selector MethodName = OMD->getSelector();
2622  bool isClassMethod = !OMD->isInstanceMethod();
2623
2624  CodeGenTypes &Types = CGM.getTypes();
2625  llvm::FunctionType *MethodTy =
2626    Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
2627  std::string FunctionName = SymbolNameForMethod(ClassName, CategoryName,
2628      MethodName, isClassMethod);
2629
2630  llvm::Function *Method
2631    = llvm::Function::Create(MethodTy,
2632                             llvm::GlobalValue::InternalLinkage,
2633                             FunctionName,
2634                             &TheModule);
2635  return Method;
2636}
2637
2638llvm::Constant *CGObjCGNU::GetPropertyGetFunction() {
2639  return GetPropertyFn;
2640}
2641
2642llvm::Constant *CGObjCGNU::GetPropertySetFunction() {
2643  return SetPropertyFn;
2644}
2645
2646llvm::Constant *CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic,
2647                                                           bool copy) {
2648  return nullptr;
2649}
2650
2651llvm::Constant *CGObjCGNU::GetGetStructFunction() {
2652  return GetStructPropertyFn;
2653}
2654llvm::Constant *CGObjCGNU::GetSetStructFunction() {
2655  return SetStructPropertyFn;
2656}
2657llvm::Constant *CGObjCGNU::GetCppAtomicObjectGetFunction() {
2658  return nullptr;
2659}
2660llvm::Constant *CGObjCGNU::GetCppAtomicObjectSetFunction() {
2661  return nullptr;
2662}
2663
2664llvm::Constant *CGObjCGNU::EnumerationMutationFunction() {
2665  return EnumerationMutationFn;
2666}
2667
2668void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF,
2669                                     const ObjCAtSynchronizedStmt &S) {
2670  EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn);
2671}
2672
2673
2674void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF,
2675                            const ObjCAtTryStmt &S) {
2676  // Unlike the Apple non-fragile runtimes, which also uses
2677  // unwind-based zero cost exceptions, the GNU Objective C runtime's
2678  // EH support isn't a veneer over C++ EH.  Instead, exception
2679  // objects are created by objc_exception_throw and destroyed by
2680  // the personality function; this avoids the need for bracketing
2681  // catch handlers with calls to __blah_begin_catch/__blah_end_catch
2682  // (or even _Unwind_DeleteException), but probably doesn't
2683  // interoperate very well with foreign exceptions.
2684  //
2685  // In Objective-C++ mode, we actually emit something equivalent to the C++
2686  // exception handler.
2687  EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn);
2688  return ;
2689}
2690
2691void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF,
2692                              const ObjCAtThrowStmt &S,
2693                              bool ClearInsertionPoint) {
2694  llvm::Value *ExceptionAsObject;
2695
2696  if (const Expr *ThrowExpr = S.getThrowExpr()) {
2697    llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
2698    ExceptionAsObject = Exception;
2699  } else {
2700    assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
2701           "Unexpected rethrow outside @catch block.");
2702    ExceptionAsObject = CGF.ObjCEHValueStack.back();
2703  }
2704  ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy);
2705  llvm::CallSite Throw =
2706      CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject);
2707  Throw.setDoesNotReturn();
2708  CGF.Builder.CreateUnreachable();
2709  if (ClearInsertionPoint)
2710    CGF.Builder.ClearInsertionPoint();
2711}
2712
2713llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF,
2714                                          Address AddrWeakObj) {
2715  CGBuilderTy &B = CGF.Builder;
2716  AddrWeakObj = EnforceType(B, AddrWeakObj, PtrToIdTy);
2717  return B.CreateCall(WeakReadFn.getType(), WeakReadFn,
2718                      AddrWeakObj.getPointer());
2719}
2720
2721void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF,
2722                                   llvm::Value *src, Address dst) {
2723  CGBuilderTy &B = CGF.Builder;
2724  src = EnforceType(B, src, IdTy);
2725  dst = EnforceType(B, dst, PtrToIdTy);
2726  B.CreateCall(WeakAssignFn.getType(), WeakAssignFn,
2727               {src, dst.getPointer()});
2728}
2729
2730void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF,
2731                                     llvm::Value *src, Address dst,
2732                                     bool threadlocal) {
2733  CGBuilderTy &B = CGF.Builder;
2734  src = EnforceType(B, src, IdTy);
2735  dst = EnforceType(B, dst, PtrToIdTy);
2736  // FIXME. Add threadloca assign API
2737  assert(!threadlocal && "EmitObjCGlobalAssign - Threal Local API NYI");
2738  B.CreateCall(GlobalAssignFn.getType(), GlobalAssignFn,
2739               {src, dst.getPointer()});
2740}
2741
2742void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF,
2743                                   llvm::Value *src, Address dst,
2744                                   llvm::Value *ivarOffset) {
2745  CGBuilderTy &B = CGF.Builder;
2746  src = EnforceType(B, src, IdTy);
2747  dst = EnforceType(B, dst, IdTy);
2748  B.CreateCall(IvarAssignFn.getType(), IvarAssignFn,
2749               {src, dst.getPointer(), ivarOffset});
2750}
2751
2752void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF,
2753                                         llvm::Value *src, Address dst) {
2754  CGBuilderTy &B = CGF.Builder;
2755  src = EnforceType(B, src, IdTy);
2756  dst = EnforceType(B, dst, PtrToIdTy);
2757  B.CreateCall(StrongCastAssignFn.getType(), StrongCastAssignFn,
2758               {src, dst.getPointer()});
2759}
2760
2761void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF,
2762                                         Address DestPtr,
2763                                         Address SrcPtr,
2764                                         llvm::Value *Size) {
2765  CGBuilderTy &B = CGF.Builder;
2766  DestPtr = EnforceType(B, DestPtr, PtrTy);
2767  SrcPtr = EnforceType(B, SrcPtr, PtrTy);
2768
2769  B.CreateCall(MemMoveFn.getType(), MemMoveFn,
2770               {DestPtr.getPointer(), SrcPtr.getPointer(), Size});
2771}
2772
2773llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable(
2774                              const ObjCInterfaceDecl *ID,
2775                              const ObjCIvarDecl *Ivar) {
2776  const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
2777    + '.' + Ivar->getNameAsString();
2778  // Emit the variable and initialize it with what we think the correct value
2779  // is.  This allows code compiled with non-fragile ivars to work correctly
2780  // when linked against code which isn't (most of the time).
2781  llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
2782  if (!IvarOffsetPointer) {
2783    // This will cause a run-time crash if we accidentally use it.  A value of
2784    // 0 would seem more sensible, but will silently overwrite the isa pointer
2785    // causing a great deal of confusion.
2786    uint64_t Offset = -1;
2787    // We can't call ComputeIvarBaseOffset() here if we have the
2788    // implementation, because it will create an invalid ASTRecordLayout object
2789    // that we are then stuck with forever, so we only initialize the ivar
2790    // offset variable with a guess if we only have the interface.  The
2791    // initializer will be reset later anyway, when we are generating the class
2792    // description.
2793    if (!CGM.getContext().getObjCImplementation(
2794              const_cast<ObjCInterfaceDecl *>(ID)))
2795      Offset = ComputeIvarBaseOffset(CGM, ID, Ivar);
2796
2797    llvm::ConstantInt *OffsetGuess = llvm::ConstantInt::get(Int32Ty, Offset,
2798                             /*isSigned*/true);
2799    // Don't emit the guess in non-PIC code because the linker will not be able
2800    // to replace it with the real version for a library.  In non-PIC code you
2801    // must compile with the fragile ABI if you want to use ivars from a
2802    // GCC-compiled class.
2803    if (CGM.getLangOpts().PICLevel || CGM.getLangOpts().PIELevel) {
2804      llvm::GlobalVariable *IvarOffsetGV = new llvm::GlobalVariable(TheModule,
2805            Int32Ty, false,
2806            llvm::GlobalValue::PrivateLinkage, OffsetGuess, Name+".guess");
2807      IvarOffsetPointer = new llvm::GlobalVariable(TheModule,
2808            IvarOffsetGV->getType(), false, llvm::GlobalValue::LinkOnceAnyLinkage,
2809            IvarOffsetGV, Name);
2810    } else {
2811      IvarOffsetPointer = new llvm::GlobalVariable(TheModule,
2812              llvm::Type::getInt32PtrTy(VMContext), false,
2813              llvm::GlobalValue::ExternalLinkage, nullptr, Name);
2814    }
2815  }
2816  return IvarOffsetPointer;
2817}
2818
2819LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF,
2820                                       QualType ObjectTy,
2821                                       llvm::Value *BaseValue,
2822                                       const ObjCIvarDecl *Ivar,
2823                                       unsigned CVRQualifiers) {
2824  const ObjCInterfaceDecl *ID =
2825    ObjectTy->getAs<ObjCObjectType>()->getInterface();
2826  return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
2827                                  EmitIvarOffset(CGF, ID, Ivar));
2828}
2829
2830static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context,
2831                                                  const ObjCInterfaceDecl *OID,
2832                                                  const ObjCIvarDecl *OIVD) {
2833  for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next;
2834       next = next->getNextIvar()) {
2835    if (OIVD == next)
2836      return OID;
2837  }
2838
2839  // Otherwise check in the super class.
2840  if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
2841    return FindIvarInterface(Context, Super, OIVD);
2842
2843  return nullptr;
2844}
2845
2846llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF,
2847                         const ObjCInterfaceDecl *Interface,
2848                         const ObjCIvarDecl *Ivar) {
2849  if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2850    Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar);
2851    if (RuntimeVersion < 10)
2852      return CGF.Builder.CreateZExtOrBitCast(
2853          CGF.Builder.CreateDefaultAlignedLoad(CGF.Builder.CreateAlignedLoad(
2854                  ObjCIvarOffsetVariable(Interface, Ivar),
2855                  CGF.getPointerAlign(), "ivar")),
2856          PtrDiffTy);
2857    std::string name = "__objc_ivar_offset_value_" +
2858      Interface->getNameAsString() +"." + Ivar->getNameAsString();
2859    CharUnits Align = CGM.getIntAlign();
2860    llvm::Value *Offset = TheModule.getGlobalVariable(name);
2861    if (!Offset) {
2862      auto GV = new llvm::GlobalVariable(TheModule, IntTy,
2863          false, llvm::GlobalValue::LinkOnceAnyLinkage,
2864          llvm::Constant::getNullValue(IntTy), name);
2865      GV->setAlignment(Align.getQuantity());
2866      Offset = GV;
2867    }
2868    Offset = CGF.Builder.CreateAlignedLoad(Offset, Align);
2869    if (Offset->getType() != PtrDiffTy)
2870      Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
2871    return Offset;
2872  }
2873  uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar);
2874  return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true);
2875}
2876
2877CGObjCRuntime *
2878clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) {
2879  switch (CGM.getLangOpts().ObjCRuntime.getKind()) {
2880  case ObjCRuntime::GNUstep:
2881    return new CGObjCGNUstep(CGM);
2882
2883  case ObjCRuntime::GCC:
2884    return new CGObjCGCC(CGM);
2885
2886  case ObjCRuntime::ObjFW:
2887    return new CGObjCObjFW(CGM);
2888
2889  case ObjCRuntime::FragileMacOSX:
2890  case ObjCRuntime::MacOSX:
2891  case ObjCRuntime::iOS:
2892  case ObjCRuntime::WatchOS:
2893    llvm_unreachable("these runtimes are not GNU runtimes");
2894  }
2895  llvm_unreachable("bad runtime");
2896}
2897