CGExprAgg.cpp revision 344779
1//===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Aggregate Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CGCXXABI.h"
16#include "CGObjCRuntime.h"
17#include "CodeGenModule.h"
18#include "ConstantEmitter.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/StmtVisitor.h"
23#include "llvm/IR/Constants.h"
24#include "llvm/IR/Function.h"
25#include "llvm/IR/GlobalVariable.h"
26#include "llvm/IR/Intrinsics.h"
27#include "llvm/IR/IntrinsicInst.h"
28using namespace clang;
29using namespace CodeGen;
30
31//===----------------------------------------------------------------------===//
32//                        Aggregate Expression Emitter
33//===----------------------------------------------------------------------===//
34
35namespace  {
36class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
37  CodeGenFunction &CGF;
38  CGBuilderTy &Builder;
39  AggValueSlot Dest;
40  bool IsResultUnused;
41
42  AggValueSlot EnsureSlot(QualType T) {
43    if (!Dest.isIgnored()) return Dest;
44    return CGF.CreateAggTemp(T, "agg.tmp.ensured");
45  }
46  void EnsureDest(QualType T) {
47    if (!Dest.isIgnored()) return;
48    Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
49  }
50
51  // Calls `Fn` with a valid return value slot, potentially creating a temporary
52  // to do so. If a temporary is created, an appropriate copy into `Dest` will
53  // be emitted, as will lifetime markers.
54  //
55  // The given function should take a ReturnValueSlot, and return an RValue that
56  // points to said slot.
57  void withReturnValueSlot(const Expr *E,
58                           llvm::function_ref<RValue(ReturnValueSlot)> Fn);
59
60public:
61  AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
62    : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
63    IsResultUnused(IsResultUnused) { }
64
65  //===--------------------------------------------------------------------===//
66  //                               Utilities
67  //===--------------------------------------------------------------------===//
68
69  /// EmitAggLoadOfLValue - Given an expression with aggregate type that
70  /// represents a value lvalue, this method emits the address of the lvalue,
71  /// then loads the result into DestPtr.
72  void EmitAggLoadOfLValue(const Expr *E);
73
74  enum ExprValueKind {
75    EVK_RValue,
76    EVK_NonRValue
77  };
78
79  /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
80  /// SrcIsRValue is true if source comes from an RValue.
81  void EmitFinalDestCopy(QualType type, const LValue &src,
82                         ExprValueKind SrcValueKind = EVK_NonRValue);
83  void EmitFinalDestCopy(QualType type, RValue src);
84  void EmitCopy(QualType type, const AggValueSlot &dest,
85                const AggValueSlot &src);
86
87  void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
88
89  void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
90                     QualType ArrayQTy, InitListExpr *E);
91
92  AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
93    if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
94      return AggValueSlot::NeedsGCBarriers;
95    return AggValueSlot::DoesNotNeedGCBarriers;
96  }
97
98  bool TypeRequiresGCollection(QualType T);
99
100  //===--------------------------------------------------------------------===//
101  //                            Visitor Methods
102  //===--------------------------------------------------------------------===//
103
104  void Visit(Expr *E) {
105    ApplyDebugLocation DL(CGF, E);
106    StmtVisitor<AggExprEmitter>::Visit(E);
107  }
108
109  void VisitStmt(Stmt *S) {
110    CGF.ErrorUnsupported(S, "aggregate expression");
111  }
112  void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
113  void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
114    Visit(GE->getResultExpr());
115  }
116  void VisitCoawaitExpr(CoawaitExpr *E) {
117    CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
118  }
119  void VisitCoyieldExpr(CoyieldExpr *E) {
120    CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
121  }
122  void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
123  void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
124  void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
125    return Visit(E->getReplacement());
126  }
127
128  void VisitConstantExpr(ConstantExpr *E) {
129    return Visit(E->getSubExpr());
130  }
131
132  // l-values.
133  void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
134  void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
135  void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
136  void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
137  void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
138  void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
139    EmitAggLoadOfLValue(E);
140  }
141  void VisitPredefinedExpr(const PredefinedExpr *E) {
142    EmitAggLoadOfLValue(E);
143  }
144
145  // Operators.
146  void VisitCastExpr(CastExpr *E);
147  void VisitCallExpr(const CallExpr *E);
148  void VisitStmtExpr(const StmtExpr *E);
149  void VisitBinaryOperator(const BinaryOperator *BO);
150  void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
151  void VisitBinAssign(const BinaryOperator *E);
152  void VisitBinComma(const BinaryOperator *E);
153  void VisitBinCmp(const BinaryOperator *E);
154
155  void VisitObjCMessageExpr(ObjCMessageExpr *E);
156  void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
157    EmitAggLoadOfLValue(E);
158  }
159
160  void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
161  void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
162  void VisitChooseExpr(const ChooseExpr *CE);
163  void VisitInitListExpr(InitListExpr *E);
164  void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
165                              llvm::Value *outerBegin = nullptr);
166  void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
167  void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
168  void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
169    Visit(DAE->getExpr());
170  }
171  void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
172    CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
173    Visit(DIE->getExpr());
174  }
175  void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
176  void VisitCXXConstructExpr(const CXXConstructExpr *E);
177  void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
178  void VisitLambdaExpr(LambdaExpr *E);
179  void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
180  void VisitExprWithCleanups(ExprWithCleanups *E);
181  void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
182  void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
183  void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
184  void VisitOpaqueValueExpr(OpaqueValueExpr *E);
185
186  void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
187    if (E->isGLValue()) {
188      LValue LV = CGF.EmitPseudoObjectLValue(E);
189      return EmitFinalDestCopy(E->getType(), LV);
190    }
191
192    CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
193  }
194
195  void VisitVAArgExpr(VAArgExpr *E);
196
197  void EmitInitializationToLValue(Expr *E, LValue Address);
198  void EmitNullInitializationToLValue(LValue Address);
199  //  case Expr::ChooseExprClass:
200  void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
201  void VisitAtomicExpr(AtomicExpr *E) {
202    RValue Res = CGF.EmitAtomicExpr(E);
203    EmitFinalDestCopy(E->getType(), Res);
204  }
205};
206}  // end anonymous namespace.
207
208//===----------------------------------------------------------------------===//
209//                                Utilities
210//===----------------------------------------------------------------------===//
211
212/// EmitAggLoadOfLValue - Given an expression with aggregate type that
213/// represents a value lvalue, this method emits the address of the lvalue,
214/// then loads the result into DestPtr.
215void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
216  LValue LV = CGF.EmitLValue(E);
217
218  // If the type of the l-value is atomic, then do an atomic load.
219  if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
220    CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
221    return;
222  }
223
224  EmitFinalDestCopy(E->getType(), LV);
225}
226
227/// True if the given aggregate type requires special GC API calls.
228bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
229  // Only record types have members that might require garbage collection.
230  const RecordType *RecordTy = T->getAs<RecordType>();
231  if (!RecordTy) return false;
232
233  // Don't mess with non-trivial C++ types.
234  RecordDecl *Record = RecordTy->getDecl();
235  if (isa<CXXRecordDecl>(Record) &&
236      (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
237       !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
238    return false;
239
240  // Check whether the type has an object member.
241  return Record->hasObjectMember();
242}
243
244void AggExprEmitter::withReturnValueSlot(
245    const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) {
246  QualType RetTy = E->getType();
247  bool RequiresDestruction =
248      Dest.isIgnored() &&
249      RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct;
250
251  // If it makes no observable difference, save a memcpy + temporary.
252  //
253  // We need to always provide our own temporary if destruction is required.
254  // Otherwise, EmitCall will emit its own, notice that it's "unused", and end
255  // its lifetime before we have the chance to emit a proper destructor call.
256  bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() ||
257                 (RequiresDestruction && !Dest.getAddress().isValid());
258
259  Address RetAddr = Address::invalid();
260  Address RetAllocaAddr = Address::invalid();
261
262  EHScopeStack::stable_iterator LifetimeEndBlock;
263  llvm::Value *LifetimeSizePtr = nullptr;
264  llvm::IntrinsicInst *LifetimeStartInst = nullptr;
265  if (!UseTemp) {
266    RetAddr = Dest.getAddress();
267  } else {
268    RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr);
269    uint64_t Size =
270        CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy));
271    LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer());
272    if (LifetimeSizePtr) {
273      LifetimeStartInst =
274          cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint()));
275      assert(LifetimeStartInst->getIntrinsicID() ==
276                 llvm::Intrinsic::lifetime_start &&
277             "Last insertion wasn't a lifetime.start?");
278
279      CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>(
280          NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr);
281      LifetimeEndBlock = CGF.EHStack.stable_begin();
282    }
283  }
284
285  RValue Src =
286      EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused));
287
288  if (RequiresDestruction)
289    CGF.pushDestroy(RetTy.isDestructedType(), Src.getAggregateAddress(), RetTy);
290
291  if (!UseTemp)
292    return;
293
294  assert(Dest.getPointer() != Src.getAggregatePointer());
295  EmitFinalDestCopy(E->getType(), Src);
296
297  if (!RequiresDestruction && LifetimeStartInst) {
298    // If there's no dtor to run, the copy was the last use of our temporary.
299    // Since we're not guaranteed to be in an ExprWithCleanups, clean up
300    // eagerly.
301    CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst);
302    CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer());
303  }
304}
305
306/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
307void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
308  assert(src.isAggregate() && "value must be aggregate value!");
309  LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
310  EmitFinalDestCopy(type, srcLV, EVK_RValue);
311}
312
313/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
314void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src,
315                                       ExprValueKind SrcValueKind) {
316  // If Dest is ignored, then we're evaluating an aggregate expression
317  // in a context that doesn't care about the result.  Note that loads
318  // from volatile l-values force the existence of a non-ignored
319  // destination.
320  if (Dest.isIgnored())
321    return;
322
323  // Copy non-trivial C structs here.
324  LValue DstLV = CGF.MakeAddrLValue(
325      Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type);
326
327  if (SrcValueKind == EVK_RValue) {
328    if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) {
329      if (Dest.isPotentiallyAliased())
330        CGF.callCStructMoveAssignmentOperator(DstLV, src);
331      else
332        CGF.callCStructMoveConstructor(DstLV, src);
333      return;
334    }
335  } else {
336    if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
337      if (Dest.isPotentiallyAliased())
338        CGF.callCStructCopyAssignmentOperator(DstLV, src);
339      else
340        CGF.callCStructCopyConstructor(DstLV, src);
341      return;
342    }
343  }
344
345  AggValueSlot srcAgg =
346    AggValueSlot::forLValue(src, AggValueSlot::IsDestructed,
347                            needsGC(type), AggValueSlot::IsAliased,
348                            AggValueSlot::MayOverlap);
349  EmitCopy(type, Dest, srcAgg);
350}
351
352/// Perform a copy from the source into the destination.
353///
354/// \param type - the type of the aggregate being copied; qualifiers are
355///   ignored
356void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
357                              const AggValueSlot &src) {
358  if (dest.requiresGCollection()) {
359    CharUnits sz = dest.getPreferredSize(CGF.getContext(), type);
360    llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
361    CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
362                                                      dest.getAddress(),
363                                                      src.getAddress(),
364                                                      size);
365    return;
366  }
367
368  // If the result of the assignment is used, copy the LHS there also.
369  // It's volatile if either side is.  Use the minimum alignment of
370  // the two sides.
371  LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
372  LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
373  CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(),
374                        dest.isVolatile() || src.isVolatile());
375}
376
377/// Emit the initializer for a std::initializer_list initialized with a
378/// real initializer list.
379void
380AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
381  // Emit an array containing the elements.  The array is externally destructed
382  // if the std::initializer_list object is.
383  ASTContext &Ctx = CGF.getContext();
384  LValue Array = CGF.EmitLValue(E->getSubExpr());
385  assert(Array.isSimple() && "initializer_list array not a simple lvalue");
386  Address ArrayPtr = Array.getAddress();
387
388  const ConstantArrayType *ArrayType =
389      Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
390  assert(ArrayType && "std::initializer_list constructed from non-array");
391
392  // FIXME: Perform the checks on the field types in SemaInit.
393  RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
394  RecordDecl::field_iterator Field = Record->field_begin();
395  if (Field == Record->field_end()) {
396    CGF.ErrorUnsupported(E, "weird std::initializer_list");
397    return;
398  }
399
400  // Start pointer.
401  if (!Field->getType()->isPointerType() ||
402      !Ctx.hasSameType(Field->getType()->getPointeeType(),
403                       ArrayType->getElementType())) {
404    CGF.ErrorUnsupported(E, "weird std::initializer_list");
405    return;
406  }
407
408  AggValueSlot Dest = EnsureSlot(E->getType());
409  LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
410  LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
411  llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
412  llvm::Value *IdxStart[] = { Zero, Zero };
413  llvm::Value *ArrayStart =
414      Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart");
415  CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
416  ++Field;
417
418  if (Field == Record->field_end()) {
419    CGF.ErrorUnsupported(E, "weird std::initializer_list");
420    return;
421  }
422
423  llvm::Value *Size = Builder.getInt(ArrayType->getSize());
424  LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
425  if (Field->getType()->isPointerType() &&
426      Ctx.hasSameType(Field->getType()->getPointeeType(),
427                      ArrayType->getElementType())) {
428    // End pointer.
429    llvm::Value *IdxEnd[] = { Zero, Size };
430    llvm::Value *ArrayEnd =
431        Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend");
432    CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
433  } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
434    // Length.
435    CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
436  } else {
437    CGF.ErrorUnsupported(E, "weird std::initializer_list");
438    return;
439  }
440}
441
442/// Determine if E is a trivial array filler, that is, one that is
443/// equivalent to zero-initialization.
444static bool isTrivialFiller(Expr *E) {
445  if (!E)
446    return true;
447
448  if (isa<ImplicitValueInitExpr>(E))
449    return true;
450
451  if (auto *ILE = dyn_cast<InitListExpr>(E)) {
452    if (ILE->getNumInits())
453      return false;
454    return isTrivialFiller(ILE->getArrayFiller());
455  }
456
457  if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
458    return Cons->getConstructor()->isDefaultConstructor() &&
459           Cons->getConstructor()->isTrivial();
460
461  // FIXME: Are there other cases where we can avoid emitting an initializer?
462  return false;
463}
464
465/// Emit initialization of an array from an initializer list.
466void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
467                                   QualType ArrayQTy, InitListExpr *E) {
468  uint64_t NumInitElements = E->getNumInits();
469
470  uint64_t NumArrayElements = AType->getNumElements();
471  assert(NumInitElements <= NumArrayElements);
472
473  QualType elementType =
474      CGF.getContext().getAsArrayType(ArrayQTy)->getElementType();
475
476  // DestPtr is an array*.  Construct an elementType* by drilling
477  // down a level.
478  llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
479  llvm::Value *indices[] = { zero, zero };
480  llvm::Value *begin =
481    Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin");
482
483  CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
484  CharUnits elementAlign =
485    DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
486
487  // Consider initializing the array by copying from a global. For this to be
488  // more efficient than per-element initialization, the size of the elements
489  // with explicit initializers should be large enough.
490  if (NumInitElements * elementSize.getQuantity() > 16 &&
491      elementType.isTriviallyCopyableType(CGF.getContext())) {
492    CodeGen::CodeGenModule &CGM = CGF.CGM;
493    ConstantEmitter Emitter(CGM);
494    LangAS AS = ArrayQTy.getAddressSpace();
495    if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) {
496      auto GV = new llvm::GlobalVariable(
497          CGM.getModule(), C->getType(),
498          CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true),
499          llvm::GlobalValue::PrivateLinkage, C, "constinit",
500          /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal,
501          CGM.getContext().getTargetAddressSpace(AS));
502      Emitter.finalize(GV);
503      CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy);
504      GV->setAlignment(Align.getQuantity());
505      EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align));
506      return;
507    }
508  }
509
510  // Exception safety requires us to destroy all the
511  // already-constructed members if an initializer throws.
512  // For that, we'll need an EH cleanup.
513  QualType::DestructionKind dtorKind = elementType.isDestructedType();
514  Address endOfInit = Address::invalid();
515  EHScopeStack::stable_iterator cleanup;
516  llvm::Instruction *cleanupDominator = nullptr;
517  if (CGF.needsEHCleanup(dtorKind)) {
518    // In principle we could tell the cleanup where we are more
519    // directly, but the control flow can get so varied here that it
520    // would actually be quite complex.  Therefore we go through an
521    // alloca.
522    endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
523                                     "arrayinit.endOfInit");
524    cleanupDominator = Builder.CreateStore(begin, endOfInit);
525    CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
526                                         elementAlign,
527                                         CGF.getDestroyer(dtorKind));
528    cleanup = CGF.EHStack.stable_begin();
529
530  // Otherwise, remember that we didn't need a cleanup.
531  } else {
532    dtorKind = QualType::DK_none;
533  }
534
535  llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
536
537  // The 'current element to initialize'.  The invariants on this
538  // variable are complicated.  Essentially, after each iteration of
539  // the loop, it points to the last initialized element, except
540  // that it points to the beginning of the array before any
541  // elements have been initialized.
542  llvm::Value *element = begin;
543
544  // Emit the explicit initializers.
545  for (uint64_t i = 0; i != NumInitElements; ++i) {
546    // Advance to the next element.
547    if (i > 0) {
548      element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
549
550      // Tell the cleanup that it needs to destroy up to this
551      // element.  TODO: some of these stores can be trivially
552      // observed to be unnecessary.
553      if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
554    }
555
556    LValue elementLV =
557      CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
558    EmitInitializationToLValue(E->getInit(i), elementLV);
559  }
560
561  // Check whether there's a non-trivial array-fill expression.
562  Expr *filler = E->getArrayFiller();
563  bool hasTrivialFiller = isTrivialFiller(filler);
564
565  // Any remaining elements need to be zero-initialized, possibly
566  // using the filler expression.  We can skip this if the we're
567  // emitting to zeroed memory.
568  if (NumInitElements != NumArrayElements &&
569      !(Dest.isZeroed() && hasTrivialFiller &&
570        CGF.getTypes().isZeroInitializable(elementType))) {
571
572    // Use an actual loop.  This is basically
573    //   do { *array++ = filler; } while (array != end);
574
575    // Advance to the start of the rest of the array.
576    if (NumInitElements) {
577      element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
578      if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
579    }
580
581    // Compute the end of the array.
582    llvm::Value *end = Builder.CreateInBoundsGEP(begin,
583                      llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
584                                                 "arrayinit.end");
585
586    llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
587    llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
588
589    // Jump into the body.
590    CGF.EmitBlock(bodyBB);
591    llvm::PHINode *currentElement =
592      Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
593    currentElement->addIncoming(element, entryBB);
594
595    // Emit the actual filler expression.
596    {
597      // C++1z [class.temporary]p5:
598      //   when a default constructor is called to initialize an element of
599      //   an array with no corresponding initializer [...] the destruction of
600      //   every temporary created in a default argument is sequenced before
601      //   the construction of the next array element, if any
602      CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
603      LValue elementLV =
604        CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
605      if (filler)
606        EmitInitializationToLValue(filler, elementLV);
607      else
608        EmitNullInitializationToLValue(elementLV);
609    }
610
611    // Move on to the next element.
612    llvm::Value *nextElement =
613      Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
614
615    // Tell the EH cleanup that we finished with the last element.
616    if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
617
618    // Leave the loop if we're done.
619    llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
620                                             "arrayinit.done");
621    llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
622    Builder.CreateCondBr(done, endBB, bodyBB);
623    currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
624
625    CGF.EmitBlock(endBB);
626  }
627
628  // Leave the partial-array cleanup if we entered one.
629  if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
630}
631
632//===----------------------------------------------------------------------===//
633//                            Visitor Methods
634//===----------------------------------------------------------------------===//
635
636void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
637  Visit(E->GetTemporaryExpr());
638}
639
640void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
641  // If this is a unique OVE, just visit its source expression.
642  if (e->isUnique())
643    Visit(e->getSourceExpr());
644  else
645    EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e));
646}
647
648void
649AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
650  if (Dest.isPotentiallyAliased() &&
651      E->getType().isPODType(CGF.getContext())) {
652    // For a POD type, just emit a load of the lvalue + a copy, because our
653    // compound literal might alias the destination.
654    EmitAggLoadOfLValue(E);
655    return;
656  }
657
658  AggValueSlot Slot = EnsureSlot(E->getType());
659  CGF.EmitAggExpr(E->getInitializer(), Slot);
660}
661
662/// Attempt to look through various unimportant expressions to find a
663/// cast of the given kind.
664static Expr *findPeephole(Expr *op, CastKind kind) {
665  while (true) {
666    op = op->IgnoreParens();
667    if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
668      if (castE->getCastKind() == kind)
669        return castE->getSubExpr();
670      if (castE->getCastKind() == CK_NoOp)
671        continue;
672    }
673    return nullptr;
674  }
675}
676
677void AggExprEmitter::VisitCastExpr(CastExpr *E) {
678  if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
679    CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
680  switch (E->getCastKind()) {
681  case CK_Dynamic: {
682    // FIXME: Can this actually happen? We have no test coverage for it.
683    assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
684    LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
685                                      CodeGenFunction::TCK_Load);
686    // FIXME: Do we also need to handle property references here?
687    if (LV.isSimple())
688      CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
689    else
690      CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
691
692    if (!Dest.isIgnored())
693      CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
694    break;
695  }
696
697  case CK_ToUnion: {
698    // Evaluate even if the destination is ignored.
699    if (Dest.isIgnored()) {
700      CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
701                      /*ignoreResult=*/true);
702      break;
703    }
704
705    // GCC union extension
706    QualType Ty = E->getSubExpr()->getType();
707    Address CastPtr =
708      Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
709    EmitInitializationToLValue(E->getSubExpr(),
710                               CGF.MakeAddrLValue(CastPtr, Ty));
711    break;
712  }
713
714  case CK_DerivedToBase:
715  case CK_BaseToDerived:
716  case CK_UncheckedDerivedToBase: {
717    llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
718                "should have been unpacked before we got here");
719  }
720
721  case CK_NonAtomicToAtomic:
722  case CK_AtomicToNonAtomic: {
723    bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
724
725    // Determine the atomic and value types.
726    QualType atomicType = E->getSubExpr()->getType();
727    QualType valueType = E->getType();
728    if (isToAtomic) std::swap(atomicType, valueType);
729
730    assert(atomicType->isAtomicType());
731    assert(CGF.getContext().hasSameUnqualifiedType(valueType,
732                          atomicType->castAs<AtomicType>()->getValueType()));
733
734    // Just recurse normally if we're ignoring the result or the
735    // atomic type doesn't change representation.
736    if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
737      return Visit(E->getSubExpr());
738    }
739
740    CastKind peepholeTarget =
741      (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
742
743    // These two cases are reverses of each other; try to peephole them.
744    if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
745      assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
746                                                     E->getType()) &&
747           "peephole significantly changed types?");
748      return Visit(op);
749    }
750
751    // If we're converting an r-value of non-atomic type to an r-value
752    // of atomic type, just emit directly into the relevant sub-object.
753    if (isToAtomic) {
754      AggValueSlot valueDest = Dest;
755      if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
756        // Zero-initialize.  (Strictly speaking, we only need to initialize
757        // the padding at the end, but this is simpler.)
758        if (!Dest.isZeroed())
759          CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
760
761        // Build a GEP to refer to the subobject.
762        Address valueAddr =
763            CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0,
764                                        CharUnits());
765        valueDest = AggValueSlot::forAddr(valueAddr,
766                                          valueDest.getQualifiers(),
767                                          valueDest.isExternallyDestructed(),
768                                          valueDest.requiresGCollection(),
769                                          valueDest.isPotentiallyAliased(),
770                                          AggValueSlot::DoesNotOverlap,
771                                          AggValueSlot::IsZeroed);
772      }
773
774      CGF.EmitAggExpr(E->getSubExpr(), valueDest);
775      return;
776    }
777
778    // Otherwise, we're converting an atomic type to a non-atomic type.
779    // Make an atomic temporary, emit into that, and then copy the value out.
780    AggValueSlot atomicSlot =
781      CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
782    CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
783
784    Address valueAddr =
785      Builder.CreateStructGEP(atomicSlot.getAddress(), 0, CharUnits());
786    RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
787    return EmitFinalDestCopy(valueType, rvalue);
788  }
789
790  case CK_LValueToRValue:
791    // If we're loading from a volatile type, force the destination
792    // into existence.
793    if (E->getSubExpr()->getType().isVolatileQualified()) {
794      EnsureDest(E->getType());
795      return Visit(E->getSubExpr());
796    }
797
798    LLVM_FALLTHROUGH;
799
800  case CK_NoOp:
801  case CK_UserDefinedConversion:
802  case CK_ConstructorConversion:
803    assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
804                                                   E->getType()) &&
805           "Implicit cast types must be compatible");
806    Visit(E->getSubExpr());
807    break;
808
809  case CK_LValueBitCast:
810    llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
811
812  case CK_Dependent:
813  case CK_BitCast:
814  case CK_ArrayToPointerDecay:
815  case CK_FunctionToPointerDecay:
816  case CK_NullToPointer:
817  case CK_NullToMemberPointer:
818  case CK_BaseToDerivedMemberPointer:
819  case CK_DerivedToBaseMemberPointer:
820  case CK_MemberPointerToBoolean:
821  case CK_ReinterpretMemberPointer:
822  case CK_IntegralToPointer:
823  case CK_PointerToIntegral:
824  case CK_PointerToBoolean:
825  case CK_ToVoid:
826  case CK_VectorSplat:
827  case CK_IntegralCast:
828  case CK_BooleanToSignedIntegral:
829  case CK_IntegralToBoolean:
830  case CK_IntegralToFloating:
831  case CK_FloatingToIntegral:
832  case CK_FloatingToBoolean:
833  case CK_FloatingCast:
834  case CK_CPointerToObjCPointerCast:
835  case CK_BlockPointerToObjCPointerCast:
836  case CK_AnyPointerToBlockPointerCast:
837  case CK_ObjCObjectLValueCast:
838  case CK_FloatingRealToComplex:
839  case CK_FloatingComplexToReal:
840  case CK_FloatingComplexToBoolean:
841  case CK_FloatingComplexCast:
842  case CK_FloatingComplexToIntegralComplex:
843  case CK_IntegralRealToComplex:
844  case CK_IntegralComplexToReal:
845  case CK_IntegralComplexToBoolean:
846  case CK_IntegralComplexCast:
847  case CK_IntegralComplexToFloatingComplex:
848  case CK_ARCProduceObject:
849  case CK_ARCConsumeObject:
850  case CK_ARCReclaimReturnedObject:
851  case CK_ARCExtendBlockObject:
852  case CK_CopyAndAutoreleaseBlockObject:
853  case CK_BuiltinFnToFnPtr:
854  case CK_ZeroToOCLOpaqueType:
855  case CK_AddressSpaceConversion:
856  case CK_IntToOCLSampler:
857  case CK_FixedPointCast:
858  case CK_FixedPointToBoolean:
859    llvm_unreachable("cast kind invalid for aggregate types");
860  }
861}
862
863void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
864  if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
865    EmitAggLoadOfLValue(E);
866    return;
867  }
868
869  withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
870    return CGF.EmitCallExpr(E, Slot);
871  });
872}
873
874void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
875  withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
876    return CGF.EmitObjCMessageExpr(E, Slot);
877  });
878}
879
880void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
881  CGF.EmitIgnoredExpr(E->getLHS());
882  Visit(E->getRHS());
883}
884
885void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
886  CodeGenFunction::StmtExprEvaluation eval(CGF);
887  CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
888}
889
890enum CompareKind {
891  CK_Less,
892  CK_Greater,
893  CK_Equal,
894};
895
896static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF,
897                                const BinaryOperator *E, llvm::Value *LHS,
898                                llvm::Value *RHS, CompareKind Kind,
899                                const char *NameSuffix = "") {
900  QualType ArgTy = E->getLHS()->getType();
901  if (const ComplexType *CT = ArgTy->getAs<ComplexType>())
902    ArgTy = CT->getElementType();
903
904  if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) {
905    assert(Kind == CK_Equal &&
906           "member pointers may only be compared for equality");
907    return CGF.CGM.getCXXABI().EmitMemberPointerComparison(
908        CGF, LHS, RHS, MPT, /*IsInequality*/ false);
909  }
910
911  // Compute the comparison instructions for the specified comparison kind.
912  struct CmpInstInfo {
913    const char *Name;
914    llvm::CmpInst::Predicate FCmp;
915    llvm::CmpInst::Predicate SCmp;
916    llvm::CmpInst::Predicate UCmp;
917  };
918  CmpInstInfo InstInfo = [&]() -> CmpInstInfo {
919    using FI = llvm::FCmpInst;
920    using II = llvm::ICmpInst;
921    switch (Kind) {
922    case CK_Less:
923      return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT};
924    case CK_Greater:
925      return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT};
926    case CK_Equal:
927      return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ};
928    }
929    llvm_unreachable("Unrecognised CompareKind enum");
930  }();
931
932  if (ArgTy->hasFloatingRepresentation())
933    return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS,
934                              llvm::Twine(InstInfo.Name) + NameSuffix);
935  if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) {
936    auto Inst =
937        ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp;
938    return Builder.CreateICmp(Inst, LHS, RHS,
939                              llvm::Twine(InstInfo.Name) + NameSuffix);
940  }
941
942  llvm_unreachable("unsupported aggregate binary expression should have "
943                   "already been handled");
944}
945
946void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) {
947  using llvm::BasicBlock;
948  using llvm::PHINode;
949  using llvm::Value;
950  assert(CGF.getContext().hasSameType(E->getLHS()->getType(),
951                                      E->getRHS()->getType()));
952  const ComparisonCategoryInfo &CmpInfo =
953      CGF.getContext().CompCategories.getInfoForType(E->getType());
954  assert(CmpInfo.Record->isTriviallyCopyable() &&
955         "cannot copy non-trivially copyable aggregate");
956
957  QualType ArgTy = E->getLHS()->getType();
958
959  // TODO: Handle comparing these types.
960  if (ArgTy->isVectorType())
961    return CGF.ErrorUnsupported(
962        E, "aggregate three-way comparison with vector arguments");
963  if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() &&
964      !ArgTy->isNullPtrType() && !ArgTy->isPointerType() &&
965      !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) {
966    return CGF.ErrorUnsupported(E, "aggregate three-way comparison");
967  }
968  bool IsComplex = ArgTy->isAnyComplexType();
969
970  // Evaluate the operands to the expression and extract their values.
971  auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> {
972    RValue RV = CGF.EmitAnyExpr(E);
973    if (RV.isScalar())
974      return {RV.getScalarVal(), nullptr};
975    if (RV.isAggregate())
976      return {RV.getAggregatePointer(), nullptr};
977    assert(RV.isComplex());
978    return RV.getComplexVal();
979  };
980  auto LHSValues = EmitOperand(E->getLHS()),
981       RHSValues = EmitOperand(E->getRHS());
982
983  auto EmitCmp = [&](CompareKind K) {
984    Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first,
985                             K, IsComplex ? ".r" : "");
986    if (!IsComplex)
987      return Cmp;
988    assert(K == CompareKind::CK_Equal);
989    Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second,
990                                 RHSValues.second, K, ".i");
991    return Builder.CreateAnd(Cmp, CmpImag, "and.eq");
992  };
993  auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) {
994    return Builder.getInt(VInfo->getIntValue());
995  };
996
997  Value *Select;
998  if (ArgTy->isNullPtrType()) {
999    Select = EmitCmpRes(CmpInfo.getEqualOrEquiv());
1000  } else if (CmpInfo.isEquality()) {
1001    Select = Builder.CreateSelect(
1002        EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1003        EmitCmpRes(CmpInfo.getNonequalOrNonequiv()), "sel.eq");
1004  } else if (!CmpInfo.isPartial()) {
1005    Value *SelectOne =
1006        Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()),
1007                             EmitCmpRes(CmpInfo.getGreater()), "sel.lt");
1008    Select = Builder.CreateSelect(EmitCmp(CK_Equal),
1009                                  EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1010                                  SelectOne, "sel.eq");
1011  } else {
1012    Value *SelectEq = Builder.CreateSelect(
1013        EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1014        EmitCmpRes(CmpInfo.getUnordered()), "sel.eq");
1015    Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater),
1016                                           EmitCmpRes(CmpInfo.getGreater()),
1017                                           SelectEq, "sel.gt");
1018    Select = Builder.CreateSelect(
1019        EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt");
1020  }
1021  // Create the return value in the destination slot.
1022  EnsureDest(E->getType());
1023  LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1024
1025  // Emit the address of the first (and only) field in the comparison category
1026  // type, and initialize it from the constant integer value selected above.
1027  LValue FieldLV = CGF.EmitLValueForFieldInitialization(
1028      DestLV, *CmpInfo.Record->field_begin());
1029  CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true);
1030
1031  // All done! The result is in the Dest slot.
1032}
1033
1034void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
1035  if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
1036    VisitPointerToDataMemberBinaryOperator(E);
1037  else
1038    CGF.ErrorUnsupported(E, "aggregate binary expression");
1039}
1040
1041void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
1042                                                    const BinaryOperator *E) {
1043  LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
1044  EmitFinalDestCopy(E->getType(), LV);
1045}
1046
1047/// Is the value of the given expression possibly a reference to or
1048/// into a __block variable?
1049static bool isBlockVarRef(const Expr *E) {
1050  // Make sure we look through parens.
1051  E = E->IgnoreParens();
1052
1053  // Check for a direct reference to a __block variable.
1054  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
1055    const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
1056    return (var && var->hasAttr<BlocksAttr>());
1057  }
1058
1059  // More complicated stuff.
1060
1061  // Binary operators.
1062  if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
1063    // For an assignment or pointer-to-member operation, just care
1064    // about the LHS.
1065    if (op->isAssignmentOp() || op->isPtrMemOp())
1066      return isBlockVarRef(op->getLHS());
1067
1068    // For a comma, just care about the RHS.
1069    if (op->getOpcode() == BO_Comma)
1070      return isBlockVarRef(op->getRHS());
1071
1072    // FIXME: pointer arithmetic?
1073    return false;
1074
1075  // Check both sides of a conditional operator.
1076  } else if (const AbstractConditionalOperator *op
1077               = dyn_cast<AbstractConditionalOperator>(E)) {
1078    return isBlockVarRef(op->getTrueExpr())
1079        || isBlockVarRef(op->getFalseExpr());
1080
1081  // OVEs are required to support BinaryConditionalOperators.
1082  } else if (const OpaqueValueExpr *op
1083               = dyn_cast<OpaqueValueExpr>(E)) {
1084    if (const Expr *src = op->getSourceExpr())
1085      return isBlockVarRef(src);
1086
1087  // Casts are necessary to get things like (*(int*)&var) = foo().
1088  // We don't really care about the kind of cast here, except
1089  // we don't want to look through l2r casts, because it's okay
1090  // to get the *value* in a __block variable.
1091  } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
1092    if (cast->getCastKind() == CK_LValueToRValue)
1093      return false;
1094    return isBlockVarRef(cast->getSubExpr());
1095
1096  // Handle unary operators.  Again, just aggressively look through
1097  // it, ignoring the operation.
1098  } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
1099    return isBlockVarRef(uop->getSubExpr());
1100
1101  // Look into the base of a field access.
1102  } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
1103    return isBlockVarRef(mem->getBase());
1104
1105  // Look into the base of a subscript.
1106  } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
1107    return isBlockVarRef(sub->getBase());
1108  }
1109
1110  return false;
1111}
1112
1113void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1114  // For an assignment to work, the value on the right has
1115  // to be compatible with the value on the left.
1116  assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1117                                                 E->getRHS()->getType())
1118         && "Invalid assignment");
1119
1120  // If the LHS might be a __block variable, and the RHS can
1121  // potentially cause a block copy, we need to evaluate the RHS first
1122  // so that the assignment goes the right place.
1123  // This is pretty semantically fragile.
1124  if (isBlockVarRef(E->getLHS()) &&
1125      E->getRHS()->HasSideEffects(CGF.getContext())) {
1126    // Ensure that we have a destination, and evaluate the RHS into that.
1127    EnsureDest(E->getRHS()->getType());
1128    Visit(E->getRHS());
1129
1130    // Now emit the LHS and copy into it.
1131    LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1132
1133    // That copy is an atomic copy if the LHS is atomic.
1134    if (LHS.getType()->isAtomicType() ||
1135        CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1136      CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1137      return;
1138    }
1139
1140    EmitCopy(E->getLHS()->getType(),
1141             AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
1142                                     needsGC(E->getLHS()->getType()),
1143                                     AggValueSlot::IsAliased,
1144                                     AggValueSlot::MayOverlap),
1145             Dest);
1146    return;
1147  }
1148
1149  LValue LHS = CGF.EmitLValue(E->getLHS());
1150
1151  // If we have an atomic type, evaluate into the destination and then
1152  // do an atomic copy.
1153  if (LHS.getType()->isAtomicType() ||
1154      CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1155    EnsureDest(E->getRHS()->getType());
1156    Visit(E->getRHS());
1157    CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1158    return;
1159  }
1160
1161  // Codegen the RHS so that it stores directly into the LHS.
1162  AggValueSlot LHSSlot =
1163    AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
1164                            needsGC(E->getLHS()->getType()),
1165                            AggValueSlot::IsAliased,
1166                            AggValueSlot::MayOverlap);
1167  // A non-volatile aggregate destination might have volatile member.
1168  if (!LHSSlot.isVolatile() &&
1169      CGF.hasVolatileMember(E->getLHS()->getType()))
1170    LHSSlot.setVolatile(true);
1171
1172  CGF.EmitAggExpr(E->getRHS(), LHSSlot);
1173
1174  // Copy into the destination if the assignment isn't ignored.
1175  EmitFinalDestCopy(E->getType(), LHS);
1176}
1177
1178void AggExprEmitter::
1179VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1180  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1181  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1182  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1183
1184  // Bind the common expression if necessary.
1185  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1186
1187  CodeGenFunction::ConditionalEvaluation eval(CGF);
1188  CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1189                           CGF.getProfileCount(E));
1190
1191  // Save whether the destination's lifetime is externally managed.
1192  bool isExternallyDestructed = Dest.isExternallyDestructed();
1193
1194  eval.begin(CGF);
1195  CGF.EmitBlock(LHSBlock);
1196  CGF.incrementProfileCounter(E);
1197  Visit(E->getTrueExpr());
1198  eval.end(CGF);
1199
1200  assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
1201  CGF.Builder.CreateBr(ContBlock);
1202
1203  // If the result of an agg expression is unused, then the emission
1204  // of the LHS might need to create a destination slot.  That's fine
1205  // with us, and we can safely emit the RHS into the same slot, but
1206  // we shouldn't claim that it's already being destructed.
1207  Dest.setExternallyDestructed(isExternallyDestructed);
1208
1209  eval.begin(CGF);
1210  CGF.EmitBlock(RHSBlock);
1211  Visit(E->getFalseExpr());
1212  eval.end(CGF);
1213
1214  CGF.EmitBlock(ContBlock);
1215}
1216
1217void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
1218  Visit(CE->getChosenSubExpr());
1219}
1220
1221void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1222  Address ArgValue = Address::invalid();
1223  Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
1224
1225  // If EmitVAArg fails, emit an error.
1226  if (!ArgPtr.isValid()) {
1227    CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1228    return;
1229  }
1230
1231  EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
1232}
1233
1234void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1235  // Ensure that we have a slot, but if we already do, remember
1236  // whether it was externally destructed.
1237  bool wasExternallyDestructed = Dest.isExternallyDestructed();
1238  EnsureDest(E->getType());
1239
1240  // We're going to push a destructor if there isn't already one.
1241  Dest.setExternallyDestructed();
1242
1243  Visit(E->getSubExpr());
1244
1245  // Push that destructor we promised.
1246  if (!wasExternallyDestructed)
1247    CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
1248}
1249
1250void
1251AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1252  AggValueSlot Slot = EnsureSlot(E->getType());
1253  CGF.EmitCXXConstructExpr(E, Slot);
1254}
1255
1256void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1257    const CXXInheritedCtorInitExpr *E) {
1258  AggValueSlot Slot = EnsureSlot(E->getType());
1259  CGF.EmitInheritedCXXConstructorCall(
1260      E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1261      E->inheritedFromVBase(), E);
1262}
1263
1264void
1265AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1266  AggValueSlot Slot = EnsureSlot(E->getType());
1267  CGF.EmitLambdaExpr(E, Slot);
1268}
1269
1270void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1271  CGF.enterFullExpression(E);
1272  CodeGenFunction::RunCleanupsScope cleanups(CGF);
1273  Visit(E->getSubExpr());
1274}
1275
1276void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1277  QualType T = E->getType();
1278  AggValueSlot Slot = EnsureSlot(T);
1279  EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1280}
1281
1282void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1283  QualType T = E->getType();
1284  AggValueSlot Slot = EnsureSlot(T);
1285  EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1286}
1287
1288/// isSimpleZero - If emitting this value will obviously just cause a store of
1289/// zero to memory, return true.  This can return false if uncertain, so it just
1290/// handles simple cases.
1291static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1292  E = E->IgnoreParens();
1293
1294  // 0
1295  if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1296    return IL->getValue() == 0;
1297  // +0.0
1298  if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1299    return FL->getValue().isPosZero();
1300  // int()
1301  if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1302      CGF.getTypes().isZeroInitializable(E->getType()))
1303    return true;
1304  // (int*)0 - Null pointer expressions.
1305  if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1306    return ICE->getCastKind() == CK_NullToPointer &&
1307        CGF.getTypes().isPointerZeroInitializable(E->getType());
1308  // '\0'
1309  if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1310    return CL->getValue() == 0;
1311
1312  // Otherwise, hard case: conservatively return false.
1313  return false;
1314}
1315
1316
1317void
1318AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1319  QualType type = LV.getType();
1320  // FIXME: Ignore result?
1321  // FIXME: Are initializers affected by volatile?
1322  if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1323    // Storing "i32 0" to a zero'd memory location is a noop.
1324    return;
1325  } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1326    return EmitNullInitializationToLValue(LV);
1327  } else if (isa<NoInitExpr>(E)) {
1328    // Do nothing.
1329    return;
1330  } else if (type->isReferenceType()) {
1331    RValue RV = CGF.EmitReferenceBindingToExpr(E);
1332    return CGF.EmitStoreThroughLValue(RV, LV);
1333  }
1334
1335  switch (CGF.getEvaluationKind(type)) {
1336  case TEK_Complex:
1337    CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1338    return;
1339  case TEK_Aggregate:
1340    CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
1341                                               AggValueSlot::IsDestructed,
1342                                      AggValueSlot::DoesNotNeedGCBarriers,
1343                                               AggValueSlot::IsNotAliased,
1344                                               AggValueSlot::MayOverlap,
1345                                               Dest.isZeroed()));
1346    return;
1347  case TEK_Scalar:
1348    if (LV.isSimple()) {
1349      CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1350    } else {
1351      CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1352    }
1353    return;
1354  }
1355  llvm_unreachable("bad evaluation kind");
1356}
1357
1358void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1359  QualType type = lv.getType();
1360
1361  // If the destination slot is already zeroed out before the aggregate is
1362  // copied into it, we don't have to emit any zeros here.
1363  if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1364    return;
1365
1366  if (CGF.hasScalarEvaluationKind(type)) {
1367    // For non-aggregates, we can store the appropriate null constant.
1368    llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1369    // Note that the following is not equivalent to
1370    // EmitStoreThroughBitfieldLValue for ARC types.
1371    if (lv.isBitField()) {
1372      CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1373    } else {
1374      assert(lv.isSimple());
1375      CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1376    }
1377  } else {
1378    // There's a potential optimization opportunity in combining
1379    // memsets; that would be easy for arrays, but relatively
1380    // difficult for structures with the current code.
1381    CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
1382  }
1383}
1384
1385void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1386#if 0
1387  // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1388  // (Length of globals? Chunks of zeroed-out space?).
1389  //
1390  // If we can, prefer a copy from a global; this is a lot less code for long
1391  // globals, and it's easier for the current optimizers to analyze.
1392  if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1393    llvm::GlobalVariable* GV =
1394    new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1395                             llvm::GlobalValue::InternalLinkage, C, "");
1396    EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1397    return;
1398  }
1399#endif
1400  if (E->hadArrayRangeDesignator())
1401    CGF.ErrorUnsupported(E, "GNU array range designator extension");
1402
1403  if (E->isTransparent())
1404    return Visit(E->getInit(0));
1405
1406  AggValueSlot Dest = EnsureSlot(E->getType());
1407
1408  LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1409
1410  // Handle initialization of an array.
1411  if (E->getType()->isArrayType()) {
1412    auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1413    EmitArrayInit(Dest.getAddress(), AType, E->getType(), E);
1414    return;
1415  }
1416
1417  assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1418
1419  // Do struct initialization; this code just sets each individual member
1420  // to the approprate value.  This makes bitfield support automatic;
1421  // the disadvantage is that the generated code is more difficult for
1422  // the optimizer, especially with bitfields.
1423  unsigned NumInitElements = E->getNumInits();
1424  RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1425
1426  // We'll need to enter cleanup scopes in case any of the element
1427  // initializers throws an exception.
1428  SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1429  llvm::Instruction *cleanupDominator = nullptr;
1430
1431  unsigned curInitIndex = 0;
1432
1433  // Emit initialization of base classes.
1434  if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1435    assert(E->getNumInits() >= CXXRD->getNumBases() &&
1436           "missing initializer for base class");
1437    for (auto &Base : CXXRD->bases()) {
1438      assert(!Base.isVirtual() && "should not see vbases here");
1439      auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1440      Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1441          Dest.getAddress(), CXXRD, BaseRD,
1442          /*isBaseVirtual*/ false);
1443      AggValueSlot AggSlot = AggValueSlot::forAddr(
1444          V, Qualifiers(),
1445          AggValueSlot::IsDestructed,
1446          AggValueSlot::DoesNotNeedGCBarriers,
1447          AggValueSlot::IsNotAliased,
1448          CGF.overlapForBaseInit(CXXRD, BaseRD, Base.isVirtual()));
1449      CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot);
1450
1451      if (QualType::DestructionKind dtorKind =
1452              Base.getType().isDestructedType()) {
1453        CGF.pushDestroy(dtorKind, V, Base.getType());
1454        cleanups.push_back(CGF.EHStack.stable_begin());
1455      }
1456    }
1457  }
1458
1459  // Prepare a 'this' for CXXDefaultInitExprs.
1460  CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1461
1462  if (record->isUnion()) {
1463    // Only initialize one field of a union. The field itself is
1464    // specified by the initializer list.
1465    if (!E->getInitializedFieldInUnion()) {
1466      // Empty union; we have nothing to do.
1467
1468#ifndef NDEBUG
1469      // Make sure that it's really an empty and not a failure of
1470      // semantic analysis.
1471      for (const auto *Field : record->fields())
1472        assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1473#endif
1474      return;
1475    }
1476
1477    // FIXME: volatility
1478    FieldDecl *Field = E->getInitializedFieldInUnion();
1479
1480    LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1481    if (NumInitElements) {
1482      // Store the initializer into the field
1483      EmitInitializationToLValue(E->getInit(0), FieldLoc);
1484    } else {
1485      // Default-initialize to null.
1486      EmitNullInitializationToLValue(FieldLoc);
1487    }
1488
1489    return;
1490  }
1491
1492  // Here we iterate over the fields; this makes it simpler to both
1493  // default-initialize fields and skip over unnamed fields.
1494  for (const auto *field : record->fields()) {
1495    // We're done once we hit the flexible array member.
1496    if (field->getType()->isIncompleteArrayType())
1497      break;
1498
1499    // Always skip anonymous bitfields.
1500    if (field->isUnnamedBitfield())
1501      continue;
1502
1503    // We're done if we reach the end of the explicit initializers, we
1504    // have a zeroed object, and the rest of the fields are
1505    // zero-initializable.
1506    if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1507        CGF.getTypes().isZeroInitializable(E->getType()))
1508      break;
1509
1510
1511    LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1512    // We never generate write-barries for initialized fields.
1513    LV.setNonGC(true);
1514
1515    if (curInitIndex < NumInitElements) {
1516      // Store the initializer into the field.
1517      EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1518    } else {
1519      // We're out of initializers; default-initialize to null
1520      EmitNullInitializationToLValue(LV);
1521    }
1522
1523    // Push a destructor if necessary.
1524    // FIXME: if we have an array of structures, all explicitly
1525    // initialized, we can end up pushing a linear number of cleanups.
1526    bool pushedCleanup = false;
1527    if (QualType::DestructionKind dtorKind
1528          = field->getType().isDestructedType()) {
1529      assert(LV.isSimple());
1530      if (CGF.needsEHCleanup(dtorKind)) {
1531        if (!cleanupDominator)
1532          cleanupDominator = CGF.Builder.CreateAlignedLoad(
1533              CGF.Int8Ty,
1534              llvm::Constant::getNullValue(CGF.Int8PtrTy),
1535              CharUnits::One()); // placeholder
1536
1537        CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
1538                        CGF.getDestroyer(dtorKind), false);
1539        cleanups.push_back(CGF.EHStack.stable_begin());
1540        pushedCleanup = true;
1541      }
1542    }
1543
1544    // If the GEP didn't get used because of a dead zero init or something
1545    // else, clean it up for -O0 builds and general tidiness.
1546    if (!pushedCleanup && LV.isSimple())
1547      if (llvm::GetElementPtrInst *GEP =
1548            dyn_cast<llvm::GetElementPtrInst>(LV.getPointer()))
1549        if (GEP->use_empty())
1550          GEP->eraseFromParent();
1551  }
1552
1553  // Deactivate all the partial cleanups in reverse order, which
1554  // generally means popping them.
1555  for (unsigned i = cleanups.size(); i != 0; --i)
1556    CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1557
1558  // Destroy the placeholder if we made one.
1559  if (cleanupDominator)
1560    cleanupDominator->eraseFromParent();
1561}
1562
1563void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1564                                            llvm::Value *outerBegin) {
1565  // Emit the common subexpression.
1566  CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1567
1568  Address destPtr = EnsureSlot(E->getType()).getAddress();
1569  uint64_t numElements = E->getArraySize().getZExtValue();
1570
1571  if (!numElements)
1572    return;
1573
1574  // destPtr is an array*. Construct an elementType* by drilling down a level.
1575  llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1576  llvm::Value *indices[] = {zero, zero};
1577  llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices,
1578                                                 "arrayinit.begin");
1579
1580  // Prepare to special-case multidimensional array initialization: we avoid
1581  // emitting multiple destructor loops in that case.
1582  if (!outerBegin)
1583    outerBegin = begin;
1584  ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1585
1586  QualType elementType =
1587      CGF.getContext().getAsArrayType(E->getType())->getElementType();
1588  CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1589  CharUnits elementAlign =
1590      destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1591
1592  llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1593  llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1594
1595  // Jump into the body.
1596  CGF.EmitBlock(bodyBB);
1597  llvm::PHINode *index =
1598      Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1599  index->addIncoming(zero, entryBB);
1600  llvm::Value *element = Builder.CreateInBoundsGEP(begin, index);
1601
1602  // Prepare for a cleanup.
1603  QualType::DestructionKind dtorKind = elementType.isDestructedType();
1604  EHScopeStack::stable_iterator cleanup;
1605  if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1606    if (outerBegin->getType() != element->getType())
1607      outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1608    CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1609                                       elementAlign,
1610                                       CGF.getDestroyer(dtorKind));
1611    cleanup = CGF.EHStack.stable_begin();
1612  } else {
1613    dtorKind = QualType::DK_none;
1614  }
1615
1616  // Emit the actual filler expression.
1617  {
1618    // Temporaries created in an array initialization loop are destroyed
1619    // at the end of each iteration.
1620    CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1621    CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1622    LValue elementLV =
1623        CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
1624
1625    if (InnerLoop) {
1626      // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1627      auto elementSlot = AggValueSlot::forLValue(
1628          elementLV, AggValueSlot::IsDestructed,
1629          AggValueSlot::DoesNotNeedGCBarriers,
1630          AggValueSlot::IsNotAliased,
1631          AggValueSlot::DoesNotOverlap);
1632      AggExprEmitter(CGF, elementSlot, false)
1633          .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1634    } else
1635      EmitInitializationToLValue(E->getSubExpr(), elementLV);
1636  }
1637
1638  // Move on to the next element.
1639  llvm::Value *nextIndex = Builder.CreateNUWAdd(
1640      index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1641  index->addIncoming(nextIndex, Builder.GetInsertBlock());
1642
1643  // Leave the loop if we're done.
1644  llvm::Value *done = Builder.CreateICmpEQ(
1645      nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1646      "arrayinit.done");
1647  llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1648  Builder.CreateCondBr(done, endBB, bodyBB);
1649
1650  CGF.EmitBlock(endBB);
1651
1652  // Leave the partial-array cleanup if we entered one.
1653  if (dtorKind)
1654    CGF.DeactivateCleanupBlock(cleanup, index);
1655}
1656
1657void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1658  AggValueSlot Dest = EnsureSlot(E->getType());
1659
1660  LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1661  EmitInitializationToLValue(E->getBase(), DestLV);
1662  VisitInitListExpr(E->getUpdater());
1663}
1664
1665//===----------------------------------------------------------------------===//
1666//                        Entry Points into this File
1667//===----------------------------------------------------------------------===//
1668
1669/// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1670/// non-zero bytes that will be stored when outputting the initializer for the
1671/// specified initializer expression.
1672static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1673  E = E->IgnoreParens();
1674
1675  // 0 and 0.0 won't require any non-zero stores!
1676  if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1677
1678  // If this is an initlist expr, sum up the size of sizes of the (present)
1679  // elements.  If this is something weird, assume the whole thing is non-zero.
1680  const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1681  while (ILE && ILE->isTransparent())
1682    ILE = dyn_cast<InitListExpr>(ILE->getInit(0));
1683  if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1684    return CGF.getContext().getTypeSizeInChars(E->getType());
1685
1686  // InitListExprs for structs have to be handled carefully.  If there are
1687  // reference members, we need to consider the size of the reference, not the
1688  // referencee.  InitListExprs for unions and arrays can't have references.
1689  if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1690    if (!RT->isUnionType()) {
1691      RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
1692      CharUnits NumNonZeroBytes = CharUnits::Zero();
1693
1694      unsigned ILEElement = 0;
1695      if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1696        while (ILEElement != CXXRD->getNumBases())
1697          NumNonZeroBytes +=
1698              GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1699      for (const auto *Field : SD->fields()) {
1700        // We're done once we hit the flexible array member or run out of
1701        // InitListExpr elements.
1702        if (Field->getType()->isIncompleteArrayType() ||
1703            ILEElement == ILE->getNumInits())
1704          break;
1705        if (Field->isUnnamedBitfield())
1706          continue;
1707
1708        const Expr *E = ILE->getInit(ILEElement++);
1709
1710        // Reference values are always non-null and have the width of a pointer.
1711        if (Field->getType()->isReferenceType())
1712          NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1713              CGF.getTarget().getPointerWidth(0));
1714        else
1715          NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1716      }
1717
1718      return NumNonZeroBytes;
1719    }
1720  }
1721
1722
1723  CharUnits NumNonZeroBytes = CharUnits::Zero();
1724  for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1725    NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1726  return NumNonZeroBytes;
1727}
1728
1729/// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1730/// zeros in it, emit a memset and avoid storing the individual zeros.
1731///
1732static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1733                                     CodeGenFunction &CGF) {
1734  // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1735  // volatile stores.
1736  if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1737    return;
1738
1739  // C++ objects with a user-declared constructor don't need zero'ing.
1740  if (CGF.getLangOpts().CPlusPlus)
1741    if (const RecordType *RT = CGF.getContext()
1742                       .getBaseElementType(E->getType())->getAs<RecordType>()) {
1743      const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1744      if (RD->hasUserDeclaredConstructor())
1745        return;
1746    }
1747
1748  // If the type is 16-bytes or smaller, prefer individual stores over memset.
1749  CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType());
1750  if (Size <= CharUnits::fromQuantity(16))
1751    return;
1752
1753  // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1754  // we prefer to emit memset + individual stores for the rest.
1755  CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1756  if (NumNonZeroBytes*4 > Size)
1757    return;
1758
1759  // Okay, it seems like a good idea to use an initial memset, emit the call.
1760  llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
1761
1762  Address Loc = Slot.getAddress();
1763  Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
1764  CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
1765
1766  // Tell the AggExprEmitter that the slot is known zero.
1767  Slot.setZeroed();
1768}
1769
1770
1771
1772
1773/// EmitAggExpr - Emit the computation of the specified expression of aggregate
1774/// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1775/// the value of the aggregate expression is not needed.  If VolatileDest is
1776/// true, DestPtr cannot be 0.
1777void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1778  assert(E && hasAggregateEvaluationKind(E->getType()) &&
1779         "Invalid aggregate expression to emit");
1780  assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
1781         "slot has bits but no address");
1782
1783  // Optimize the slot if possible.
1784  CheckAggExprForMemSetUse(Slot, E, *this);
1785
1786  AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
1787}
1788
1789LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1790  assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1791  Address Temp = CreateMemTemp(E->getType());
1792  LValue LV = MakeAddrLValue(Temp, E->getType());
1793  EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1794                                         AggValueSlot::DoesNotNeedGCBarriers,
1795                                         AggValueSlot::IsNotAliased,
1796                                         AggValueSlot::DoesNotOverlap));
1797  return LV;
1798}
1799
1800AggValueSlot::Overlap_t CodeGenFunction::overlapForBaseInit(
1801    const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) {
1802  // Virtual bases are initialized first, in address order, so there's never
1803  // any overlap during their initialization.
1804  //
1805  // FIXME: Under P0840, this is no longer true: the tail padding of a vbase
1806  // of a field could be reused by a vbase of a containing class.
1807  if (IsVirtual)
1808    return AggValueSlot::DoesNotOverlap;
1809
1810  // If the base class is laid out entirely within the nvsize of the derived
1811  // class, its tail padding cannot yet be initialized, so we can issue
1812  // stores at the full width of the base class.
1813  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1814  if (Layout.getBaseClassOffset(BaseRD) +
1815          getContext().getASTRecordLayout(BaseRD).getSize() <=
1816      Layout.getNonVirtualSize())
1817    return AggValueSlot::DoesNotOverlap;
1818
1819  // The tail padding may contain values we need to preserve.
1820  return AggValueSlot::MayOverlap;
1821}
1822
1823void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty,
1824                                        AggValueSlot::Overlap_t MayOverlap,
1825                                        bool isVolatile) {
1826  assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1827
1828  Address DestPtr = Dest.getAddress();
1829  Address SrcPtr = Src.getAddress();
1830
1831  if (getLangOpts().CPlusPlus) {
1832    if (const RecordType *RT = Ty->getAs<RecordType>()) {
1833      CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1834      assert((Record->hasTrivialCopyConstructor() ||
1835              Record->hasTrivialCopyAssignment() ||
1836              Record->hasTrivialMoveConstructor() ||
1837              Record->hasTrivialMoveAssignment() ||
1838              Record->isUnion()) &&
1839             "Trying to aggregate-copy a type without a trivial copy/move "
1840             "constructor or assignment operator");
1841      // Ignore empty classes in C++.
1842      if (Record->isEmpty())
1843        return;
1844    }
1845  }
1846
1847  // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1848  // C99 6.5.16.1p3, which states "If the value being stored in an object is
1849  // read from another object that overlaps in anyway the storage of the first
1850  // object, then the overlap shall be exact and the two objects shall have
1851  // qualified or unqualified versions of a compatible type."
1852  //
1853  // memcpy is not defined if the source and destination pointers are exactly
1854  // equal, but other compilers do this optimization, and almost every memcpy
1855  // implementation handles this case safely.  If there is a libc that does not
1856  // safely handle this, we can add a target hook.
1857
1858  // Get data size info for this aggregate. Don't copy the tail padding if this
1859  // might be a potentially-overlapping subobject, since the tail padding might
1860  // be occupied by a different object. Otherwise, copying it is fine.
1861  std::pair<CharUnits, CharUnits> TypeInfo;
1862  if (MayOverlap)
1863    TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1864  else
1865    TypeInfo = getContext().getTypeInfoInChars(Ty);
1866
1867  llvm::Value *SizeVal = nullptr;
1868  if (TypeInfo.first.isZero()) {
1869    // But note that getTypeInfo returns 0 for a VLA.
1870    if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
1871            getContext().getAsArrayType(Ty))) {
1872      QualType BaseEltTy;
1873      SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
1874      TypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
1875      assert(!TypeInfo.first.isZero());
1876      SizeVal = Builder.CreateNUWMul(
1877          SizeVal,
1878          llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1879    }
1880  }
1881  if (!SizeVal) {
1882    SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity());
1883  }
1884
1885  // FIXME: If we have a volatile struct, the optimizer can remove what might
1886  // appear to be `extra' memory ops:
1887  //
1888  // volatile struct { int i; } a, b;
1889  //
1890  // int main() {
1891  //   a = b;
1892  //   a = b;
1893  // }
1894  //
1895  // we need to use a different call here.  We use isVolatile to indicate when
1896  // either the source or the destination is volatile.
1897
1898  DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1899  SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
1900
1901  // Don't do any of the memmove_collectable tests if GC isn't set.
1902  if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
1903    // fall through
1904  } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1905    RecordDecl *Record = RecordTy->getDecl();
1906    if (Record->hasObjectMember()) {
1907      CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1908                                                    SizeVal);
1909      return;
1910    }
1911  } else if (Ty->isArrayType()) {
1912    QualType BaseType = getContext().getBaseElementType(Ty);
1913    if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1914      if (RecordTy->getDecl()->hasObjectMember()) {
1915        CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1916                                                      SizeVal);
1917        return;
1918      }
1919    }
1920  }
1921
1922  auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
1923
1924  // Determine the metadata to describe the position of any padding in this
1925  // memcpy, as well as the TBAA tags for the members of the struct, in case
1926  // the optimizer wishes to expand it in to scalar memory operations.
1927  if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
1928    Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
1929
1930  if (CGM.getCodeGenOpts().NewStructPathTBAA) {
1931    TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer(
1932        Dest.getTBAAInfo(), Src.getTBAAInfo());
1933    CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
1934  }
1935}
1936