CGExprAgg.cpp revision 251662
1193326Sed//===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2193326Sed//
3193326Sed//                     The LLVM Compiler Infrastructure
4193326Sed//
5193326Sed// This file is distributed under the University of Illinois Open Source
6193326Sed// License. See LICENSE.TXT for details.
7193326Sed//
8193326Sed//===----------------------------------------------------------------------===//
9193326Sed//
10193326Sed// This contains code to emit Aggregate Expr nodes as LLVM code.
11193326Sed//
12193326Sed//===----------------------------------------------------------------------===//
13193326Sed
14193326Sed#include "CodeGenFunction.h"
15249423Sdim#include "CGObjCRuntime.h"
16193326Sed#include "CodeGenModule.h"
17193326Sed#include "clang/AST/ASTContext.h"
18193326Sed#include "clang/AST/DeclCXX.h"
19234353Sdim#include "clang/AST/DeclTemplate.h"
20193326Sed#include "clang/AST/StmtVisitor.h"
21249423Sdim#include "llvm/IR/Constants.h"
22249423Sdim#include "llvm/IR/Function.h"
23249423Sdim#include "llvm/IR/GlobalVariable.h"
24249423Sdim#include "llvm/IR/Intrinsics.h"
25193326Sedusing namespace clang;
26193326Sedusing namespace CodeGen;
27193326Sed
28193326Sed//===----------------------------------------------------------------------===//
29193326Sed//                        Aggregate Expression Emitter
30193326Sed//===----------------------------------------------------------------------===//
31193326Sed
32249423Sdimllvm::Value *AggValueSlot::getPaddedAtomicAddr() const {
33249423Sdim  assert(isValueOfAtomic());
34249423Sdim  llvm::GEPOperator *op = cast<llvm::GEPOperator>(getAddr());
35249423Sdim  assert(op->getNumIndices() == 2);
36249423Sdim  assert(op->hasAllZeroIndices());
37249423Sdim  return op->getPointerOperand();
38249423Sdim}
39249423Sdim
40193326Sednamespace  {
41199990Srdivackyclass AggExprEmitter : public StmtVisitor<AggExprEmitter> {
42193326Sed  CodeGenFunction &CGF;
43193326Sed  CGBuilderTy &Builder;
44218893Sdim  AggValueSlot Dest;
45208600Srdivacky
46226633Sdim  /// We want to use 'dest' as the return slot except under two
47226633Sdim  /// conditions:
48226633Sdim  ///   - The destination slot requires garbage collection, so we
49226633Sdim  ///     need to use the GC API.
50226633Sdim  ///   - The destination slot is potentially aliased.
51226633Sdim  bool shouldUseDestForReturnSlot() const {
52226633Sdim    return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
53226633Sdim  }
54226633Sdim
55208600Srdivacky  ReturnValueSlot getReturnValueSlot() const {
56226633Sdim    if (!shouldUseDestForReturnSlot())
57226633Sdim      return ReturnValueSlot();
58208600Srdivacky
59218893Sdim    return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
60208600Srdivacky  }
61208600Srdivacky
62218893Sdim  AggValueSlot EnsureSlot(QualType T) {
63218893Sdim    if (!Dest.isIgnored()) return Dest;
64218893Sdim    return CGF.CreateAggTemp(T, "agg.tmp.ensured");
65218893Sdim  }
66239462Sdim  void EnsureDest(QualType T) {
67239462Sdim    if (!Dest.isIgnored()) return;
68239462Sdim    Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
69239462Sdim  }
70218893Sdim
71193326Sedpublic:
72239462Sdim  AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest)
73239462Sdim    : CGF(cgf), Builder(CGF.Builder), Dest(Dest) {
74193326Sed  }
75193326Sed
76193326Sed  //===--------------------------------------------------------------------===//
77193326Sed  //                               Utilities
78193326Sed  //===--------------------------------------------------------------------===//
79193326Sed
80193326Sed  /// EmitAggLoadOfLValue - Given an expression with aggregate type that
81193326Sed  /// represents a value lvalue, this method emits the address of the lvalue,
82193326Sed  /// then loads the result into DestPtr.
83193326Sed  void EmitAggLoadOfLValue(const Expr *E);
84193326Sed
85193326Sed  /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
86239462Sdim  void EmitFinalDestCopy(QualType type, const LValue &src);
87239462Sdim  void EmitFinalDestCopy(QualType type, RValue src,
88239462Sdim                         CharUnits srcAlignment = CharUnits::Zero());
89239462Sdim  void EmitCopy(QualType type, const AggValueSlot &dest,
90239462Sdim                const AggValueSlot &src);
91193326Sed
92226633Sdim  void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
93208600Srdivacky
94234353Sdim  void EmitStdInitializerList(llvm::Value *DestPtr, InitListExpr *InitList);
95234353Sdim  void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
96234353Sdim                     QualType elementType, InitListExpr *E);
97234353Sdim
98226633Sdim  AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
99234353Sdim    if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
100226633Sdim      return AggValueSlot::NeedsGCBarriers;
101226633Sdim    return AggValueSlot::DoesNotNeedGCBarriers;
102226633Sdim  }
103226633Sdim
104208600Srdivacky  bool TypeRequiresGCollection(QualType T);
105208600Srdivacky
106193326Sed  //===--------------------------------------------------------------------===//
107193326Sed  //                            Visitor Methods
108193326Sed  //===--------------------------------------------------------------------===//
109198092Srdivacky
110193326Sed  void VisitStmt(Stmt *S) {
111193326Sed    CGF.ErrorUnsupported(S, "aggregate expression");
112193326Sed  }
113193326Sed  void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
114221345Sdim  void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
115221345Sdim    Visit(GE->getResultExpr());
116221345Sdim  }
117193326Sed  void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
118224145Sdim  void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
119224145Sdim    return Visit(E->getReplacement());
120224145Sdim  }
121193326Sed
122193326Sed  // l-values.
123234353Sdim  void VisitDeclRefExpr(DeclRefExpr *E) {
124234353Sdim    // For aggregates, we should always be able to emit the variable
125234353Sdim    // as an l-value unless it's a reference.  This is due to the fact
126234353Sdim    // that we can't actually ever see a normal l2r conversion on an
127234353Sdim    // aggregate in C++, and in C there's no language standard
128234353Sdim    // actively preventing us from listing variables in the captures
129234353Sdim    // list of a block.
130234353Sdim    if (E->getDecl()->getType()->isReferenceType()) {
131234353Sdim      if (CodeGenFunction::ConstantEmission result
132234353Sdim            = CGF.tryEmitAsConstant(E)) {
133239462Sdim        EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E));
134234353Sdim        return;
135234353Sdim      }
136234353Sdim    }
137234353Sdim
138234353Sdim    EmitAggLoadOfLValue(E);
139234353Sdim  }
140234353Sdim
141193326Sed  void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
142193326Sed  void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
143193326Sed  void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
144224145Sdim  void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
145193326Sed  void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
146193326Sed    EmitAggLoadOfLValue(E);
147193326Sed  }
148193326Sed  void VisitPredefinedExpr(const PredefinedExpr *E) {
149198092Srdivacky    EmitAggLoadOfLValue(E);
150193326Sed  }
151198092Srdivacky
152193326Sed  // Operators.
153198092Srdivacky  void VisitCastExpr(CastExpr *E);
154193326Sed  void VisitCallExpr(const CallExpr *E);
155193326Sed  void VisitStmtExpr(const StmtExpr *E);
156193326Sed  void VisitBinaryOperator(const BinaryOperator *BO);
157198398Srdivacky  void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
158193326Sed  void VisitBinAssign(const BinaryOperator *E);
159193326Sed  void VisitBinComma(const BinaryOperator *E);
160193326Sed
161193326Sed  void VisitObjCMessageExpr(ObjCMessageExpr *E);
162193326Sed  void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
163193326Sed    EmitAggLoadOfLValue(E);
164193326Sed  }
165198092Srdivacky
166218893Sdim  void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
167198092Srdivacky  void VisitChooseExpr(const ChooseExpr *CE);
168193326Sed  void VisitInitListExpr(InitListExpr *E);
169201361Srdivacky  void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
170193326Sed  void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
171193326Sed    Visit(DAE->getExpr());
172193326Sed  }
173251662Sdim  void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
174251662Sdim    CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
175251662Sdim    Visit(DIE->getExpr());
176251662Sdim  }
177193326Sed  void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
178193326Sed  void VisitCXXConstructExpr(const CXXConstructExpr *E);
179234353Sdim  void VisitLambdaExpr(LambdaExpr *E);
180218893Sdim  void VisitExprWithCleanups(ExprWithCleanups *E);
181210299Sed  void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
182199482Srdivacky  void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
183224145Sdim  void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
184218893Sdim  void VisitOpaqueValueExpr(OpaqueValueExpr *E);
185218893Sdim
186234353Sdim  void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
187234353Sdim    if (E->isGLValue()) {
188234353Sdim      LValue LV = CGF.EmitPseudoObjectLValue(E);
189239462Sdim      return EmitFinalDestCopy(E->getType(), LV);
190234353Sdim    }
191234353Sdim
192234353Sdim    CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
193234353Sdim  }
194234353Sdim
195193326Sed  void VisitVAArgExpr(VAArgExpr *E);
196193326Sed
197224145Sdim  void EmitInitializationToLValue(Expr *E, LValue Address);
198224145Sdim  void EmitNullInitializationToLValue(LValue Address);
199193326Sed  //  case Expr::ChooseExprClass:
200200583Srdivacky  void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
201226633Sdim  void VisitAtomicExpr(AtomicExpr *E) {
202226633Sdim    CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr());
203226633Sdim  }
204193326Sed};
205249423Sdim
206249423Sdim/// A helper class for emitting expressions into the value sub-object
207249423Sdim/// of a padded atomic type.
208249423Sdimclass ValueDestForAtomic {
209249423Sdim  AggValueSlot Dest;
210249423Sdimpublic:
211249423Sdim  ValueDestForAtomic(CodeGenFunction &CGF, AggValueSlot dest, QualType type)
212249423Sdim    : Dest(dest) {
213249423Sdim    assert(!Dest.isValueOfAtomic());
214249423Sdim    if (!Dest.isIgnored() && CGF.CGM.isPaddedAtomicType(type)) {
215249423Sdim      llvm::Value *valueAddr = CGF.Builder.CreateStructGEP(Dest.getAddr(), 0);
216249423Sdim      Dest = AggValueSlot::forAddr(valueAddr,
217249423Sdim                                   Dest.getAlignment(),
218249423Sdim                                   Dest.getQualifiers(),
219249423Sdim                                   Dest.isExternallyDestructed(),
220249423Sdim                                   Dest.requiresGCollection(),
221249423Sdim                                   Dest.isPotentiallyAliased(),
222249423Sdim                                   Dest.isZeroed(),
223249423Sdim                                   AggValueSlot::IsValueOfAtomic);
224249423Sdim    }
225249423Sdim  }
226249423Sdim
227249423Sdim  const AggValueSlot &getDest() const { return Dest; }
228249423Sdim
229249423Sdim  ~ValueDestForAtomic() {
230249423Sdim    // Kill the GEP if we made one and it didn't end up used.
231249423Sdim    if (Dest.isValueOfAtomic()) {
232249423Sdim      llvm::Instruction *addr = cast<llvm::GetElementPtrInst>(Dest.getAddr());
233249423Sdim      if (addr->use_empty()) addr->eraseFromParent();
234249423Sdim    }
235249423Sdim  }
236249423Sdim};
237193326Sed}  // end anonymous namespace.
238193326Sed
239193326Sed//===----------------------------------------------------------------------===//
240193326Sed//                                Utilities
241193326Sed//===----------------------------------------------------------------------===//
242193326Sed
243193326Sed/// EmitAggLoadOfLValue - Given an expression with aggregate type that
244193326Sed/// represents a value lvalue, this method emits the address of the lvalue,
245193326Sed/// then loads the result into DestPtr.
246193326Sedvoid AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
247193326Sed  LValue LV = CGF.EmitLValue(E);
248249423Sdim
249249423Sdim  // If the type of the l-value is atomic, then do an atomic load.
250249423Sdim  if (LV.getType()->isAtomicType()) {
251249423Sdim    ValueDestForAtomic valueDest(CGF, Dest, LV.getType());
252249423Sdim    CGF.EmitAtomicLoad(LV, valueDest.getDest());
253249423Sdim    return;
254249423Sdim  }
255249423Sdim
256239462Sdim  EmitFinalDestCopy(E->getType(), LV);
257193326Sed}
258193326Sed
259208600Srdivacky/// \brief True if the given aggregate type requires special GC API calls.
260208600Srdivackybool AggExprEmitter::TypeRequiresGCollection(QualType T) {
261208600Srdivacky  // Only record types have members that might require garbage collection.
262208600Srdivacky  const RecordType *RecordTy = T->getAs<RecordType>();
263208600Srdivacky  if (!RecordTy) return false;
264208600Srdivacky
265208600Srdivacky  // Don't mess with non-trivial C++ types.
266208600Srdivacky  RecordDecl *Record = RecordTy->getDecl();
267208600Srdivacky  if (isa<CXXRecordDecl>(Record) &&
268249423Sdim      (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
269208600Srdivacky       !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
270208600Srdivacky    return false;
271208600Srdivacky
272208600Srdivacky  // Check whether the type has an object member.
273208600Srdivacky  return Record->hasObjectMember();
274208600Srdivacky}
275208600Srdivacky
276226633Sdim/// \brief Perform the final move to DestPtr if for some reason
277226633Sdim/// getReturnValueSlot() didn't use it directly.
278208600Srdivacky///
279208600Srdivacky/// The idea is that you do something like this:
280208600Srdivacky///   RValue Result = EmitSomething(..., getReturnValueSlot());
281226633Sdim///   EmitMoveFromReturnSlot(E, Result);
282226633Sdim///
283226633Sdim/// If nothing interferes, this will cause the result to be emitted
284226633Sdim/// directly into the return value slot.  Otherwise, a final move
285226633Sdim/// will be performed.
286239462Sdimvoid AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) {
287226633Sdim  if (shouldUseDestForReturnSlot()) {
288226633Sdim    // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
289226633Sdim    // The possibility of undef rvalues complicates that a lot,
290226633Sdim    // though, so we can't really assert.
291226633Sdim    return;
292210299Sed  }
293226633Sdim
294239462Sdim  // Otherwise, copy from there to the destination.
295239462Sdim  assert(Dest.getAddr() != src.getAggregateAddr());
296239462Sdim  std::pair<CharUnits, CharUnits> typeInfo =
297234982Sdim    CGF.getContext().getTypeInfoInChars(E->getType());
298239462Sdim  EmitFinalDestCopy(E->getType(), src, typeInfo.second);
299208600Srdivacky}
300208600Srdivacky
301193326Sed/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
302239462Sdimvoid AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src,
303239462Sdim                                       CharUnits srcAlign) {
304239462Sdim  assert(src.isAggregate() && "value must be aggregate value!");
305239462Sdim  LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddr(), type, srcAlign);
306239462Sdim  EmitFinalDestCopy(type, srcLV);
307239462Sdim}
308193326Sed
309239462Sdim/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
310239462Sdimvoid AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) {
311218893Sdim  // If Dest is ignored, then we're evaluating an aggregate expression
312239462Sdim  // in a context that doesn't care about the result.  Note that loads
313239462Sdim  // from volatile l-values force the existence of a non-ignored
314239462Sdim  // destination.
315239462Sdim  if (Dest.isIgnored())
316239462Sdim    return;
317212904Sdim
318239462Sdim  AggValueSlot srcAgg =
319239462Sdim    AggValueSlot::forLValue(src, AggValueSlot::IsDestructed,
320239462Sdim                            needsGC(type), AggValueSlot::IsAliased);
321239462Sdim  EmitCopy(type, Dest, srcAgg);
322239462Sdim}
323193326Sed
324239462Sdim/// Perform a copy from the source into the destination.
325239462Sdim///
326239462Sdim/// \param type - the type of the aggregate being copied; qualifiers are
327239462Sdim///   ignored
328239462Sdimvoid AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
329239462Sdim                              const AggValueSlot &src) {
330239462Sdim  if (dest.requiresGCollection()) {
331239462Sdim    CharUnits sz = CGF.getContext().getTypeSizeInChars(type);
332239462Sdim    llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
333198092Srdivacky    CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
334239462Sdim                                                      dest.getAddr(),
335239462Sdim                                                      src.getAddr(),
336239462Sdim                                                      size);
337198092Srdivacky    return;
338198092Srdivacky  }
339239462Sdim
340193326Sed  // If the result of the assignment is used, copy the LHS there also.
341239462Sdim  // It's volatile if either side is.  Use the minimum alignment of
342239462Sdim  // the two sides.
343239462Sdim  CGF.EmitAggregateCopy(dest.getAddr(), src.getAddr(), type,
344239462Sdim                        dest.isVolatile() || src.isVolatile(),
345239462Sdim                        std::min(dest.getAlignment(), src.getAlignment()));
346193326Sed}
347193326Sed
348234353Sdimstatic QualType GetStdInitializerListElementType(QualType T) {
349234353Sdim  // Just assume that this is really std::initializer_list.
350234353Sdim  ClassTemplateSpecializationDecl *specialization =
351234353Sdim      cast<ClassTemplateSpecializationDecl>(T->castAs<RecordType>()->getDecl());
352234353Sdim  return specialization->getTemplateArgs()[0].getAsType();
353234353Sdim}
354234353Sdim
355234353Sdim/// \brief Prepare cleanup for the temporary array.
356234353Sdimstatic void EmitStdInitializerListCleanup(CodeGenFunction &CGF,
357234353Sdim                                          QualType arrayType,
358234353Sdim                                          llvm::Value *addr,
359234353Sdim                                          const InitListExpr *initList) {
360234353Sdim  QualType::DestructionKind dtorKind = arrayType.isDestructedType();
361234353Sdim  if (!dtorKind)
362234353Sdim    return; // Type doesn't need destroying.
363234353Sdim  if (dtorKind != QualType::DK_cxx_destructor) {
364234353Sdim    CGF.ErrorUnsupported(initList, "ObjC ARC type in initializer_list");
365234353Sdim    return;
366234353Sdim  }
367234353Sdim
368234353Sdim  CodeGenFunction::Destroyer *destroyer = CGF.getDestroyer(dtorKind);
369234353Sdim  CGF.pushDestroy(NormalAndEHCleanup, addr, arrayType, destroyer,
370234353Sdim                  /*EHCleanup=*/true);
371234353Sdim}
372234353Sdim
373234353Sdim/// \brief Emit the initializer for a std::initializer_list initialized with a
374234353Sdim/// real initializer list.
375234353Sdimvoid AggExprEmitter::EmitStdInitializerList(llvm::Value *destPtr,
376234353Sdim                                            InitListExpr *initList) {
377234353Sdim  // We emit an array containing the elements, then have the init list point
378234353Sdim  // at the array.
379234353Sdim  ASTContext &ctx = CGF.getContext();
380234353Sdim  unsigned numInits = initList->getNumInits();
381234353Sdim  QualType element = GetStdInitializerListElementType(initList->getType());
382234353Sdim  llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits);
383234353Sdim  QualType array = ctx.getConstantArrayType(element, size, ArrayType::Normal,0);
384234353Sdim  llvm::Type *LTy = CGF.ConvertTypeForMem(array);
385234353Sdim  llvm::AllocaInst *alloc = CGF.CreateTempAlloca(LTy);
386234353Sdim  alloc->setAlignment(ctx.getTypeAlignInChars(array).getQuantity());
387234353Sdim  alloc->setName(".initlist.");
388234353Sdim
389234353Sdim  EmitArrayInit(alloc, cast<llvm::ArrayType>(LTy), element, initList);
390234353Sdim
391234353Sdim  // FIXME: The diagnostics are somewhat out of place here.
392234353Sdim  RecordDecl *record = initList->getType()->castAs<RecordType>()->getDecl();
393234353Sdim  RecordDecl::field_iterator field = record->field_begin();
394234353Sdim  if (field == record->field_end()) {
395234353Sdim    CGF.ErrorUnsupported(initList, "weird std::initializer_list");
396234353Sdim    return;
397234353Sdim  }
398234353Sdim
399234353Sdim  QualType elementPtr = ctx.getPointerType(element.withConst());
400234353Sdim
401234353Sdim  // Start pointer.
402234353Sdim  if (!ctx.hasSameType(field->getType(), elementPtr)) {
403234353Sdim    CGF.ErrorUnsupported(initList, "weird std::initializer_list");
404234353Sdim    return;
405234353Sdim  }
406234982Sdim  LValue DestLV = CGF.MakeNaturalAlignAddrLValue(destPtr, initList->getType());
407234982Sdim  LValue start = CGF.EmitLValueForFieldInitialization(DestLV, *field);
408234353Sdim  llvm::Value *arrayStart = Builder.CreateStructGEP(alloc, 0, "arraystart");
409234353Sdim  CGF.EmitStoreThroughLValue(RValue::get(arrayStart), start);
410234353Sdim  ++field;
411234353Sdim
412234353Sdim  if (field == record->field_end()) {
413234353Sdim    CGF.ErrorUnsupported(initList, "weird std::initializer_list");
414234353Sdim    return;
415234353Sdim  }
416234982Sdim  LValue endOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *field);
417234353Sdim  if (ctx.hasSameType(field->getType(), elementPtr)) {
418234353Sdim    // End pointer.
419234353Sdim    llvm::Value *arrayEnd = Builder.CreateStructGEP(alloc,numInits, "arrayend");
420234353Sdim    CGF.EmitStoreThroughLValue(RValue::get(arrayEnd), endOrLength);
421234353Sdim  } else if(ctx.hasSameType(field->getType(), ctx.getSizeType())) {
422234353Sdim    // Length.
423234353Sdim    CGF.EmitStoreThroughLValue(RValue::get(Builder.getInt(size)), endOrLength);
424234353Sdim  } else {
425234353Sdim    CGF.ErrorUnsupported(initList, "weird std::initializer_list");
426234353Sdim    return;
427234353Sdim  }
428234353Sdim
429234353Sdim  if (!Dest.isExternallyDestructed())
430234353Sdim    EmitStdInitializerListCleanup(CGF, array, alloc, initList);
431234353Sdim}
432234353Sdim
433234353Sdim/// \brief Emit initialization of an array from an initializer list.
434234353Sdimvoid AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
435234353Sdim                                   QualType elementType, InitListExpr *E) {
436234353Sdim  uint64_t NumInitElements = E->getNumInits();
437234353Sdim
438234353Sdim  uint64_t NumArrayElements = AType->getNumElements();
439234353Sdim  assert(NumInitElements <= NumArrayElements);
440234353Sdim
441234353Sdim  // DestPtr is an array*.  Construct an elementType* by drilling
442234353Sdim  // down a level.
443234353Sdim  llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
444234353Sdim  llvm::Value *indices[] = { zero, zero };
445234353Sdim  llvm::Value *begin =
446234353Sdim    Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");
447234353Sdim
448234353Sdim  // Exception safety requires us to destroy all the
449234353Sdim  // already-constructed members if an initializer throws.
450234353Sdim  // For that, we'll need an EH cleanup.
451234353Sdim  QualType::DestructionKind dtorKind = elementType.isDestructedType();
452234353Sdim  llvm::AllocaInst *endOfInit = 0;
453234353Sdim  EHScopeStack::stable_iterator cleanup;
454234353Sdim  llvm::Instruction *cleanupDominator = 0;
455234353Sdim  if (CGF.needsEHCleanup(dtorKind)) {
456234353Sdim    // In principle we could tell the cleanup where we are more
457234353Sdim    // directly, but the control flow can get so varied here that it
458234353Sdim    // would actually be quite complex.  Therefore we go through an
459234353Sdim    // alloca.
460234353Sdim    endOfInit = CGF.CreateTempAlloca(begin->getType(),
461234353Sdim                                     "arrayinit.endOfInit");
462234353Sdim    cleanupDominator = Builder.CreateStore(begin, endOfInit);
463234353Sdim    CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
464234353Sdim                                         CGF.getDestroyer(dtorKind));
465234353Sdim    cleanup = CGF.EHStack.stable_begin();
466234353Sdim
467234353Sdim  // Otherwise, remember that we didn't need a cleanup.
468234353Sdim  } else {
469234353Sdim    dtorKind = QualType::DK_none;
470234353Sdim  }
471234353Sdim
472234353Sdim  llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
473234353Sdim
474234353Sdim  // The 'current element to initialize'.  The invariants on this
475234353Sdim  // variable are complicated.  Essentially, after each iteration of
476234353Sdim  // the loop, it points to the last initialized element, except
477234353Sdim  // that it points to the beginning of the array before any
478234353Sdim  // elements have been initialized.
479234353Sdim  llvm::Value *element = begin;
480234353Sdim
481234353Sdim  // Emit the explicit initializers.
482234353Sdim  for (uint64_t i = 0; i != NumInitElements; ++i) {
483234353Sdim    // Advance to the next element.
484234353Sdim    if (i > 0) {
485234353Sdim      element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
486234353Sdim
487234353Sdim      // Tell the cleanup that it needs to destroy up to this
488234353Sdim      // element.  TODO: some of these stores can be trivially
489234353Sdim      // observed to be unnecessary.
490234353Sdim      if (endOfInit) Builder.CreateStore(element, endOfInit);
491234353Sdim    }
492234353Sdim
493234353Sdim    // If these are nested std::initializer_list inits, do them directly,
494234353Sdim    // because they are conceptually the same "location".
495234353Sdim    InitListExpr *initList = dyn_cast<InitListExpr>(E->getInit(i));
496234353Sdim    if (initList && initList->initializesStdInitializerList()) {
497234353Sdim      EmitStdInitializerList(element, initList);
498234353Sdim    } else {
499234353Sdim      LValue elementLV = CGF.MakeAddrLValue(element, elementType);
500234353Sdim      EmitInitializationToLValue(E->getInit(i), elementLV);
501234353Sdim    }
502234353Sdim  }
503234353Sdim
504234353Sdim  // Check whether there's a non-trivial array-fill expression.
505234353Sdim  // Note that this will be a CXXConstructExpr even if the element
506234353Sdim  // type is an array (or array of array, etc.) of class type.
507234353Sdim  Expr *filler = E->getArrayFiller();
508234353Sdim  bool hasTrivialFiller = true;
509234353Sdim  if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) {
510234353Sdim    assert(cons->getConstructor()->isDefaultConstructor());
511234353Sdim    hasTrivialFiller = cons->getConstructor()->isTrivial();
512234353Sdim  }
513234353Sdim
514234353Sdim  // Any remaining elements need to be zero-initialized, possibly
515234353Sdim  // using the filler expression.  We can skip this if the we're
516234353Sdim  // emitting to zeroed memory.
517234353Sdim  if (NumInitElements != NumArrayElements &&
518234353Sdim      !(Dest.isZeroed() && hasTrivialFiller &&
519234353Sdim        CGF.getTypes().isZeroInitializable(elementType))) {
520234353Sdim
521234353Sdim    // Use an actual loop.  This is basically
522234353Sdim    //   do { *array++ = filler; } while (array != end);
523234353Sdim
524234353Sdim    // Advance to the start of the rest of the array.
525234353Sdim    if (NumInitElements) {
526234353Sdim      element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
527234353Sdim      if (endOfInit) Builder.CreateStore(element, endOfInit);
528234353Sdim    }
529234353Sdim
530234353Sdim    // Compute the end of the array.
531234353Sdim    llvm::Value *end = Builder.CreateInBoundsGEP(begin,
532234353Sdim                      llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
533234353Sdim                                                 "arrayinit.end");
534234353Sdim
535234353Sdim    llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
536234353Sdim    llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
537234353Sdim
538234353Sdim    // Jump into the body.
539234353Sdim    CGF.EmitBlock(bodyBB);
540234353Sdim    llvm::PHINode *currentElement =
541234353Sdim      Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
542234353Sdim    currentElement->addIncoming(element, entryBB);
543234353Sdim
544234353Sdim    // Emit the actual filler expression.
545234353Sdim    LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
546234353Sdim    if (filler)
547234353Sdim      EmitInitializationToLValue(filler, elementLV);
548234353Sdim    else
549234353Sdim      EmitNullInitializationToLValue(elementLV);
550234353Sdim
551234353Sdim    // Move on to the next element.
552234353Sdim    llvm::Value *nextElement =
553234353Sdim      Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
554234353Sdim
555234353Sdim    // Tell the EH cleanup that we finished with the last element.
556234353Sdim    if (endOfInit) Builder.CreateStore(nextElement, endOfInit);
557234353Sdim
558234353Sdim    // Leave the loop if we're done.
559234353Sdim    llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
560234353Sdim                                             "arrayinit.done");
561234353Sdim    llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
562234353Sdim    Builder.CreateCondBr(done, endBB, bodyBB);
563234353Sdim    currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
564234353Sdim
565234353Sdim    CGF.EmitBlock(endBB);
566234353Sdim  }
567234353Sdim
568234353Sdim  // Leave the partial-array cleanup if we entered one.
569234353Sdim  if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
570234353Sdim}
571234353Sdim
572193326Sed//===----------------------------------------------------------------------===//
573193326Sed//                            Visitor Methods
574193326Sed//===----------------------------------------------------------------------===//
575193326Sed
576224145Sdimvoid AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
577224145Sdim  Visit(E->GetTemporaryExpr());
578224145Sdim}
579224145Sdim
580218893Sdimvoid AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
581239462Sdim  EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e));
582218893Sdim}
583218893Sdim
584224145Sdimvoid
585224145SdimAggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
586249423Sdim  if (Dest.isPotentiallyAliased() &&
587249423Sdim      E->getType().isPODType(CGF.getContext())) {
588224145Sdim    // For a POD type, just emit a load of the lvalue + a copy, because our
589224145Sdim    // compound literal might alias the destination.
590224145Sdim    EmitAggLoadOfLValue(E);
591224145Sdim    return;
592224145Sdim  }
593224145Sdim
594224145Sdim  AggValueSlot Slot = EnsureSlot(E->getType());
595224145Sdim  CGF.EmitAggExpr(E->getInitializer(), Slot);
596224145Sdim}
597224145Sdim
598249423Sdim/// Attempt to look through various unimportant expressions to find a
599249423Sdim/// cast of the given kind.
600249423Sdimstatic Expr *findPeephole(Expr *op, CastKind kind) {
601249423Sdim  while (true) {
602249423Sdim    op = op->IgnoreParens();
603249423Sdim    if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
604249423Sdim      if (castE->getCastKind() == kind)
605249423Sdim        return castE->getSubExpr();
606249423Sdim      if (castE->getCastKind() == CK_NoOp)
607249423Sdim        continue;
608249423Sdim    }
609249423Sdim    return 0;
610249423Sdim  }
611249423Sdim}
612224145Sdim
613198092Srdivackyvoid AggExprEmitter::VisitCastExpr(CastExpr *E) {
614198092Srdivacky  switch (E->getCastKind()) {
615212904Sdim  case CK_Dynamic: {
616243830Sdim    // FIXME: Can this actually happen? We have no test coverage for it.
617208600Srdivacky    assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
618243830Sdim    LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
619243830Sdim                                      CodeGenFunction::TCK_Load);
620208600Srdivacky    // FIXME: Do we also need to handle property references here?
621208600Srdivacky    if (LV.isSimple())
622208600Srdivacky      CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
623208600Srdivacky    else
624208600Srdivacky      CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
625208600Srdivacky
626218893Sdim    if (!Dest.isIgnored())
627218893Sdim      CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
628208600Srdivacky    break;
629208600Srdivacky  }
630208600Srdivacky
631212904Sdim  case CK_ToUnion: {
632221345Sdim    if (Dest.isIgnored()) break;
633221345Sdim
634198092Srdivacky    // GCC union extension
635212904Sdim    QualType Ty = E->getSubExpr()->getType();
636212904Sdim    QualType PtrTy = CGF.getContext().getPointerType(Ty);
637218893Sdim    llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
638193401Sed                                                 CGF.ConvertType(PtrTy));
639224145Sdim    EmitInitializationToLValue(E->getSubExpr(),
640224145Sdim                               CGF.MakeAddrLValue(CastPtr, Ty));
641198092Srdivacky    break;
642193326Sed  }
643193326Sed
644212904Sdim  case CK_DerivedToBase:
645212904Sdim  case CK_BaseToDerived:
646212904Sdim  case CK_UncheckedDerivedToBase: {
647226633Sdim    llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
648208600Srdivacky                "should have been unpacked before we got here");
649208600Srdivacky  }
650208600Srdivacky
651249423Sdim  case CK_NonAtomicToAtomic:
652249423Sdim  case CK_AtomicToNonAtomic: {
653249423Sdim    bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
654249423Sdim
655249423Sdim    // Determine the atomic and value types.
656249423Sdim    QualType atomicType = E->getSubExpr()->getType();
657249423Sdim    QualType valueType = E->getType();
658249423Sdim    if (isToAtomic) std::swap(atomicType, valueType);
659249423Sdim
660249423Sdim    assert(atomicType->isAtomicType());
661249423Sdim    assert(CGF.getContext().hasSameUnqualifiedType(valueType,
662249423Sdim                          atomicType->castAs<AtomicType>()->getValueType()));
663249423Sdim
664249423Sdim    // Just recurse normally if we're ignoring the result or the
665249423Sdim    // atomic type doesn't change representation.
666249423Sdim    if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
667249423Sdim      return Visit(E->getSubExpr());
668249423Sdim    }
669249423Sdim
670249423Sdim    CastKind peepholeTarget =
671249423Sdim      (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
672249423Sdim
673249423Sdim    // These two cases are reverses of each other; try to peephole them.
674249423Sdim    if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
675249423Sdim      assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
676249423Sdim                                                     E->getType()) &&
677249423Sdim           "peephole significantly changed types?");
678249423Sdim      return Visit(op);
679249423Sdim    }
680249423Sdim
681249423Sdim    // If we're converting an r-value of non-atomic type to an r-value
682249423Sdim    // of atomic type, just make an atomic temporary, emit into that,
683249423Sdim    // and then copy the value out.  (FIXME: do we need to
684249423Sdim    // zero-initialize it first?)
685249423Sdim    if (isToAtomic) {
686249423Sdim      ValueDestForAtomic valueDest(CGF, Dest, atomicType);
687249423Sdim      CGF.EmitAggExpr(E->getSubExpr(), valueDest.getDest());
688249423Sdim      return;
689249423Sdim    }
690249423Sdim
691249423Sdim    // Otherwise, we're converting an atomic type to a non-atomic type.
692249423Sdim
693249423Sdim    // If the dest is a value-of-atomic subobject, drill back out.
694249423Sdim    if (Dest.isValueOfAtomic()) {
695249423Sdim      AggValueSlot atomicSlot =
696249423Sdim        AggValueSlot::forAddr(Dest.getPaddedAtomicAddr(),
697249423Sdim                              Dest.getAlignment(),
698249423Sdim                              Dest.getQualifiers(),
699249423Sdim                              Dest.isExternallyDestructed(),
700249423Sdim                              Dest.requiresGCollection(),
701249423Sdim                              Dest.isPotentiallyAliased(),
702249423Sdim                              Dest.isZeroed(),
703249423Sdim                              AggValueSlot::IsNotValueOfAtomic);
704249423Sdim      CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
705249423Sdim      return;
706249423Sdim    }
707249423Sdim
708249423Sdim    // Otherwise, make an atomic temporary, emit into that, and then
709249423Sdim    // copy the value out.
710249423Sdim    AggValueSlot atomicSlot =
711249423Sdim      CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
712249423Sdim    CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
713249423Sdim
714249423Sdim    llvm::Value *valueAddr =
715249423Sdim      Builder.CreateStructGEP(atomicSlot.getAddr(), 0);
716249423Sdim    RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
717249423Sdim    return EmitFinalDestCopy(valueType, rvalue);
718249423Sdim  }
719249423Sdim
720239462Sdim  case CK_LValueToRValue:
721239462Sdim    // If we're loading from a volatile type, force the destination
722239462Sdim    // into existence.
723239462Sdim    if (E->getSubExpr()->getType().isVolatileQualified()) {
724239462Sdim      EnsureDest(E->getType());
725239462Sdim      return Visit(E->getSubExpr());
726239462Sdim    }
727249423Sdim
728239462Sdim    // fallthrough
729239462Sdim
730212904Sdim  case CK_NoOp:
731212904Sdim  case CK_UserDefinedConversion:
732212904Sdim  case CK_ConstructorConversion:
733198092Srdivacky    assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
734198092Srdivacky                                                   E->getType()) &&
735198092Srdivacky           "Implicit cast types must be compatible");
736198092Srdivacky    Visit(E->getSubExpr());
737198092Srdivacky    break;
738218893Sdim
739212904Sdim  case CK_LValueBitCast:
740218893Sdim    llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
741221345Sdim
742218893Sdim  case CK_Dependent:
743218893Sdim  case CK_BitCast:
744218893Sdim  case CK_ArrayToPointerDecay:
745218893Sdim  case CK_FunctionToPointerDecay:
746218893Sdim  case CK_NullToPointer:
747218893Sdim  case CK_NullToMemberPointer:
748218893Sdim  case CK_BaseToDerivedMemberPointer:
749218893Sdim  case CK_DerivedToBaseMemberPointer:
750218893Sdim  case CK_MemberPointerToBoolean:
751234353Sdim  case CK_ReinterpretMemberPointer:
752218893Sdim  case CK_IntegralToPointer:
753218893Sdim  case CK_PointerToIntegral:
754218893Sdim  case CK_PointerToBoolean:
755218893Sdim  case CK_ToVoid:
756218893Sdim  case CK_VectorSplat:
757218893Sdim  case CK_IntegralCast:
758218893Sdim  case CK_IntegralToBoolean:
759218893Sdim  case CK_IntegralToFloating:
760218893Sdim  case CK_FloatingToIntegral:
761218893Sdim  case CK_FloatingToBoolean:
762218893Sdim  case CK_FloatingCast:
763226633Sdim  case CK_CPointerToObjCPointerCast:
764226633Sdim  case CK_BlockPointerToObjCPointerCast:
765218893Sdim  case CK_AnyPointerToBlockPointerCast:
766218893Sdim  case CK_ObjCObjectLValueCast:
767218893Sdim  case CK_FloatingRealToComplex:
768218893Sdim  case CK_FloatingComplexToReal:
769218893Sdim  case CK_FloatingComplexToBoolean:
770218893Sdim  case CK_FloatingComplexCast:
771218893Sdim  case CK_FloatingComplexToIntegralComplex:
772218893Sdim  case CK_IntegralRealToComplex:
773218893Sdim  case CK_IntegralComplexToReal:
774218893Sdim  case CK_IntegralComplexToBoolean:
775218893Sdim  case CK_IntegralComplexCast:
776218893Sdim  case CK_IntegralComplexToFloatingComplex:
777226633Sdim  case CK_ARCProduceObject:
778226633Sdim  case CK_ARCConsumeObject:
779226633Sdim  case CK_ARCReclaimReturnedObject:
780226633Sdim  case CK_ARCExtendBlockObject:
781234353Sdim  case CK_CopyAndAutoreleaseBlockObject:
782243830Sdim  case CK_BuiltinFnToFnPtr:
783249423Sdim  case CK_ZeroToOCLEvent:
784218893Sdim    llvm_unreachable("cast kind invalid for aggregate types");
785198398Srdivacky  }
786193326Sed}
787193326Sed
788193326Sedvoid AggExprEmitter::VisitCallExpr(const CallExpr *E) {
789193326Sed  if (E->getCallReturnType()->isReferenceType()) {
790193326Sed    EmitAggLoadOfLValue(E);
791193326Sed    return;
792193326Sed  }
793198092Srdivacky
794208600Srdivacky  RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
795226633Sdim  EmitMoveFromReturnSlot(E, RV);
796193326Sed}
797193326Sed
798193326Sedvoid AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
799208600Srdivacky  RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
800226633Sdim  EmitMoveFromReturnSlot(E, RV);
801193326Sed}
802193326Sed
803193326Sedvoid AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
804218893Sdim  CGF.EmitIgnoredExpr(E->getLHS());
805218893Sdim  Visit(E->getRHS());
806193326Sed}
807193326Sed
808193326Sedvoid AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
809218893Sdim  CodeGenFunction::StmtExprEvaluation eval(CGF);
810218893Sdim  CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
811193326Sed}
812193326Sed
813193326Sedvoid AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
814212904Sdim  if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
815198398Srdivacky    VisitPointerToDataMemberBinaryOperator(E);
816198398Srdivacky  else
817198398Srdivacky    CGF.ErrorUnsupported(E, "aggregate binary expression");
818193326Sed}
819193326Sed
820198398Srdivackyvoid AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
821198398Srdivacky                                                    const BinaryOperator *E) {
822198398Srdivacky  LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
823239462Sdim  EmitFinalDestCopy(E->getType(), LV);
824198398Srdivacky}
825198398Srdivacky
826239462Sdim/// Is the value of the given expression possibly a reference to or
827239462Sdim/// into a __block variable?
828239462Sdimstatic bool isBlockVarRef(const Expr *E) {
829239462Sdim  // Make sure we look through parens.
830239462Sdim  E = E->IgnoreParens();
831239462Sdim
832239462Sdim  // Check for a direct reference to a __block variable.
833239462Sdim  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
834239462Sdim    const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
835239462Sdim    return (var && var->hasAttr<BlocksAttr>());
836239462Sdim  }
837239462Sdim
838239462Sdim  // More complicated stuff.
839239462Sdim
840239462Sdim  // Binary operators.
841239462Sdim  if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
842239462Sdim    // For an assignment or pointer-to-member operation, just care
843239462Sdim    // about the LHS.
844239462Sdim    if (op->isAssignmentOp() || op->isPtrMemOp())
845239462Sdim      return isBlockVarRef(op->getLHS());
846239462Sdim
847239462Sdim    // For a comma, just care about the RHS.
848239462Sdim    if (op->getOpcode() == BO_Comma)
849239462Sdim      return isBlockVarRef(op->getRHS());
850239462Sdim
851239462Sdim    // FIXME: pointer arithmetic?
852239462Sdim    return false;
853239462Sdim
854239462Sdim  // Check both sides of a conditional operator.
855239462Sdim  } else if (const AbstractConditionalOperator *op
856239462Sdim               = dyn_cast<AbstractConditionalOperator>(E)) {
857239462Sdim    return isBlockVarRef(op->getTrueExpr())
858239462Sdim        || isBlockVarRef(op->getFalseExpr());
859239462Sdim
860239462Sdim  // OVEs are required to support BinaryConditionalOperators.
861239462Sdim  } else if (const OpaqueValueExpr *op
862239462Sdim               = dyn_cast<OpaqueValueExpr>(E)) {
863239462Sdim    if (const Expr *src = op->getSourceExpr())
864239462Sdim      return isBlockVarRef(src);
865239462Sdim
866239462Sdim  // Casts are necessary to get things like (*(int*)&var) = foo().
867239462Sdim  // We don't really care about the kind of cast here, except
868239462Sdim  // we don't want to look through l2r casts, because it's okay
869239462Sdim  // to get the *value* in a __block variable.
870239462Sdim  } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
871239462Sdim    if (cast->getCastKind() == CK_LValueToRValue)
872239462Sdim      return false;
873239462Sdim    return isBlockVarRef(cast->getSubExpr());
874239462Sdim
875239462Sdim  // Handle unary operators.  Again, just aggressively look through
876239462Sdim  // it, ignoring the operation.
877239462Sdim  } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
878239462Sdim    return isBlockVarRef(uop->getSubExpr());
879239462Sdim
880239462Sdim  // Look into the base of a field access.
881239462Sdim  } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
882239462Sdim    return isBlockVarRef(mem->getBase());
883239462Sdim
884239462Sdim  // Look into the base of a subscript.
885239462Sdim  } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
886239462Sdim    return isBlockVarRef(sub->getBase());
887239462Sdim  }
888239462Sdim
889239462Sdim  return false;
890239462Sdim}
891239462Sdim
892193326Sedvoid AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
893193326Sed  // For an assignment to work, the value on the right has
894193326Sed  // to be compatible with the value on the left.
895193326Sed  assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
896193326Sed                                                 E->getRHS()->getType())
897193326Sed         && "Invalid assignment");
898218893Sdim
899239462Sdim  // If the LHS might be a __block variable, and the RHS can
900239462Sdim  // potentially cause a block copy, we need to evaluate the RHS first
901239462Sdim  // so that the assignment goes the right place.
902239462Sdim  // This is pretty semantically fragile.
903239462Sdim  if (isBlockVarRef(E->getLHS()) &&
904239462Sdim      E->getRHS()->HasSideEffects(CGF.getContext())) {
905239462Sdim    // Ensure that we have a destination, and evaluate the RHS into that.
906239462Sdim    EnsureDest(E->getRHS()->getType());
907239462Sdim    Visit(E->getRHS());
908239462Sdim
909239462Sdim    // Now emit the LHS and copy into it.
910243830Sdim    LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
911239462Sdim
912249423Sdim    // That copy is an atomic copy if the LHS is atomic.
913249423Sdim    if (LHS.getType()->isAtomicType()) {
914249423Sdim      CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
915249423Sdim      return;
916249423Sdim    }
917249423Sdim
918239462Sdim    EmitCopy(E->getLHS()->getType(),
919239462Sdim             AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
920239462Sdim                                     needsGC(E->getLHS()->getType()),
921239462Sdim                                     AggValueSlot::IsAliased),
922239462Sdim             Dest);
923239462Sdim    return;
924239462Sdim  }
925221345Sdim
926193326Sed  LValue LHS = CGF.EmitLValue(E->getLHS());
927193326Sed
928249423Sdim  // If we have an atomic type, evaluate into the destination and then
929249423Sdim  // do an atomic copy.
930249423Sdim  if (LHS.getType()->isAtomicType()) {
931249423Sdim    EnsureDest(E->getRHS()->getType());
932249423Sdim    Visit(E->getRHS());
933249423Sdim    CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
934249423Sdim    return;
935249423Sdim  }
936249423Sdim
937234353Sdim  // Codegen the RHS so that it stores directly into the LHS.
938234353Sdim  AggValueSlot LHSSlot =
939234353Sdim    AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
940234353Sdim                            needsGC(E->getLHS()->getType()),
941234353Sdim                            AggValueSlot::IsAliased);
942249423Sdim  // A non-volatile aggregate destination might have volatile member.
943249423Sdim  if (!LHSSlot.isVolatile() &&
944249423Sdim      CGF.hasVolatileMember(E->getLHS()->getType()))
945249423Sdim    LHSSlot.setVolatile(true);
946249423Sdim
947239462Sdim  CGF.EmitAggExpr(E->getRHS(), LHSSlot);
948239462Sdim
949239462Sdim  // Copy into the destination if the assignment isn't ignored.
950239462Sdim  EmitFinalDestCopy(E->getType(), LHS);
951193326Sed}
952193326Sed
953218893Sdimvoid AggExprEmitter::
954218893SdimVisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
955193326Sed  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
956193326Sed  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
957193326Sed  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
958198092Srdivacky
959218893Sdim  // Bind the common expression if necessary.
960218893Sdim  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
961218893Sdim
962218893Sdim  CodeGenFunction::ConditionalEvaluation eval(CGF);
963201361Srdivacky  CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
964198092Srdivacky
965218893Sdim  // Save whether the destination's lifetime is externally managed.
966226633Sdim  bool isExternallyDestructed = Dest.isExternallyDestructed();
967218893Sdim
968218893Sdim  eval.begin(CGF);
969193326Sed  CGF.EmitBlock(LHSBlock);
970218893Sdim  Visit(E->getTrueExpr());
971218893Sdim  eval.end(CGF);
972198092Srdivacky
973218893Sdim  assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
974218893Sdim  CGF.Builder.CreateBr(ContBlock);
975193326Sed
976218893Sdim  // If the result of an agg expression is unused, then the emission
977218893Sdim  // of the LHS might need to create a destination slot.  That's fine
978218893Sdim  // with us, and we can safely emit the RHS into the same slot, but
979226633Sdim  // we shouldn't claim that it's already being destructed.
980226633Sdim  Dest.setExternallyDestructed(isExternallyDestructed);
981198092Srdivacky
982218893Sdim  eval.begin(CGF);
983193326Sed  CGF.EmitBlock(RHSBlock);
984218893Sdim  Visit(E->getFalseExpr());
985218893Sdim  eval.end(CGF);
986198092Srdivacky
987193326Sed  CGF.EmitBlock(ContBlock);
988193326Sed}
989193326Sed
990198092Srdivackyvoid AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
991198092Srdivacky  Visit(CE->getChosenSubExpr(CGF.getContext()));
992198092Srdivacky}
993198092Srdivacky
994193326Sedvoid AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
995193326Sed  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
996193326Sed  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
997193326Sed
998193326Sed  if (!ArgPtr) {
999193326Sed    CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1000193326Sed    return;
1001193326Sed  }
1002193326Sed
1003239462Sdim  EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
1004193326Sed}
1005193326Sed
1006193326Sedvoid AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1007218893Sdim  // Ensure that we have a slot, but if we already do, remember
1008226633Sdim  // whether it was externally destructed.
1009226633Sdim  bool wasExternallyDestructed = Dest.isExternallyDestructed();
1010239462Sdim  EnsureDest(E->getType());
1011198092Srdivacky
1012226633Sdim  // We're going to push a destructor if there isn't already one.
1013226633Sdim  Dest.setExternallyDestructed();
1014226633Sdim
1015218893Sdim  Visit(E->getSubExpr());
1016193326Sed
1017226633Sdim  // Push that destructor we promised.
1018226633Sdim  if (!wasExternallyDestructed)
1019234353Sdim    CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr());
1020193326Sed}
1021193326Sed
1022193326Sedvoid
1023193326SedAggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1024218893Sdim  AggValueSlot Slot = EnsureSlot(E->getType());
1025218893Sdim  CGF.EmitCXXConstructExpr(E, Slot);
1026193326Sed}
1027193326Sed
1028234353Sdimvoid
1029234353SdimAggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1030234353Sdim  AggValueSlot Slot = EnsureSlot(E->getType());
1031234353Sdim  CGF.EmitLambdaExpr(E, Slot);
1032234353Sdim}
1033234353Sdim
1034218893Sdimvoid AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1035234353Sdim  CGF.enterFullExpression(E);
1036234353Sdim  CodeGenFunction::RunCleanupsScope cleanups(CGF);
1037234353Sdim  Visit(E->getSubExpr());
1038193326Sed}
1039193326Sed
1040210299Sedvoid AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1041218893Sdim  QualType T = E->getType();
1042218893Sdim  AggValueSlot Slot = EnsureSlot(T);
1043224145Sdim  EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
1044198398Srdivacky}
1045198398Srdivacky
1046201361Srdivackyvoid AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1047218893Sdim  QualType T = E->getType();
1048218893Sdim  AggValueSlot Slot = EnsureSlot(T);
1049224145Sdim  EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
1050218893Sdim}
1051201361Srdivacky
1052218893Sdim/// isSimpleZero - If emitting this value will obviously just cause a store of
1053218893Sdim/// zero to memory, return true.  This can return false if uncertain, so it just
1054218893Sdim/// handles simple cases.
1055218893Sdimstatic bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1056221345Sdim  E = E->IgnoreParens();
1057221345Sdim
1058218893Sdim  // 0
1059218893Sdim  if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1060218893Sdim    return IL->getValue() == 0;
1061218893Sdim  // +0.0
1062218893Sdim  if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1063218893Sdim    return FL->getValue().isPosZero();
1064218893Sdim  // int()
1065218893Sdim  if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1066218893Sdim      CGF.getTypes().isZeroInitializable(E->getType()))
1067218893Sdim    return true;
1068218893Sdim  // (int*)0 - Null pointer expressions.
1069218893Sdim  if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1070218893Sdim    return ICE->getCastKind() == CK_NullToPointer;
1071218893Sdim  // '\0'
1072218893Sdim  if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1073218893Sdim    return CL->getValue() == 0;
1074218893Sdim
1075218893Sdim  // Otherwise, hard case: conservatively return false.
1076218893Sdim  return false;
1077201361Srdivacky}
1078201361Srdivacky
1079218893Sdim
1080203955Srdivackyvoid
1081224145SdimAggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
1082224145Sdim  QualType type = LV.getType();
1083193326Sed  // FIXME: Ignore result?
1084193326Sed  // FIXME: Are initializers affected by volatile?
1085218893Sdim  if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1086218893Sdim    // Storing "i32 0" to a zero'd memory location is a noop.
1087249423Sdim    return;
1088249423Sdim  } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1089249423Sdim    return EmitNullInitializationToLValue(LV);
1090224145Sdim  } else if (type->isReferenceType()) {
1091210299Sed    RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
1092249423Sdim    return CGF.EmitStoreThroughLValue(RV, LV);
1093249423Sdim  }
1094249423Sdim
1095249423Sdim  switch (CGF.getEvaluationKind(type)) {
1096249423Sdim  case TEK_Complex:
1097249423Sdim    CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1098249423Sdim    return;
1099249423Sdim  case TEK_Aggregate:
1100226633Sdim    CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
1101226633Sdim                                               AggValueSlot::IsDestructed,
1102226633Sdim                                      AggValueSlot::DoesNotNeedGCBarriers,
1103226633Sdim                                               AggValueSlot::IsNotAliased,
1104224145Sdim                                               Dest.isZeroed()));
1105249423Sdim    return;
1106249423Sdim  case TEK_Scalar:
1107249423Sdim    if (LV.isSimple()) {
1108249423Sdim      CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false);
1109249423Sdim    } else {
1110249423Sdim      CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1111249423Sdim    }
1112249423Sdim    return;
1113193326Sed  }
1114249423Sdim  llvm_unreachable("bad evaluation kind");
1115193326Sed}
1116193326Sed
1117224145Sdimvoid AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1118224145Sdim  QualType type = lv.getType();
1119224145Sdim
1120218893Sdim  // If the destination slot is already zeroed out before the aggregate is
1121218893Sdim  // copied into it, we don't have to emit any zeros here.
1122224145Sdim  if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1123218893Sdim    return;
1124218893Sdim
1125249423Sdim  if (CGF.hasScalarEvaluationKind(type)) {
1126249423Sdim    // For non-aggregates, we can store the appropriate null constant.
1127249423Sdim    llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1128234353Sdim    // Note that the following is not equivalent to
1129234353Sdim    // EmitStoreThroughBitfieldLValue for ARC types.
1130234353Sdim    if (lv.isBitField()) {
1131234353Sdim      CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1132234353Sdim    } else {
1133234353Sdim      assert(lv.isSimple());
1134234353Sdim      CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1135234353Sdim    }
1136193326Sed  } else {
1137193326Sed    // There's a potential optimization opportunity in combining
1138193326Sed    // memsets; that would be easy for arrays, but relatively
1139193326Sed    // difficult for structures with the current code.
1140224145Sdim    CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
1141193326Sed  }
1142193326Sed}
1143193326Sed
1144193326Sedvoid AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1145193326Sed#if 0
1146200583Srdivacky  // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1147200583Srdivacky  // (Length of globals? Chunks of zeroed-out space?).
1148193326Sed  //
1149193326Sed  // If we can, prefer a copy from a global; this is a lot less code for long
1150193326Sed  // globals, and it's easier for the current optimizers to analyze.
1151200583Srdivacky  if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1152193326Sed    llvm::GlobalVariable* GV =
1153200583Srdivacky    new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1154200583Srdivacky                             llvm::GlobalValue::InternalLinkage, C, "");
1155239462Sdim    EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1156193326Sed    return;
1157193326Sed  }
1158193326Sed#endif
1159218893Sdim  if (E->hadArrayRangeDesignator())
1160193326Sed    CGF.ErrorUnsupported(E, "GNU array range designator extension");
1161193326Sed
1162234353Sdim  if (E->initializesStdInitializerList()) {
1163234353Sdim    EmitStdInitializerList(Dest.getAddr(), E);
1164234353Sdim    return;
1165234353Sdim  }
1166218893Sdim
1167234982Sdim  AggValueSlot Dest = EnsureSlot(E->getType());
1168234982Sdim  LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(),
1169234982Sdim                                     Dest.getAlignment());
1170234353Sdim
1171193326Sed  // Handle initialization of an array.
1172193326Sed  if (E->getType()->isArrayType()) {
1173234982Sdim    if (E->isStringLiteralInit())
1174234982Sdim      return Visit(E->getInit(0));
1175193326Sed
1176234353Sdim    QualType elementType =
1177234353Sdim        CGF.getContext().getAsArrayType(E->getType())->getElementType();
1178193326Sed
1179234353Sdim    llvm::PointerType *APType =
1180234982Sdim      cast<llvm::PointerType>(Dest.getAddr()->getType());
1181234353Sdim    llvm::ArrayType *AType =
1182234353Sdim      cast<llvm::ArrayType>(APType->getElementType());
1183224145Sdim
1184234982Sdim    EmitArrayInit(Dest.getAddr(), AType, elementType, E);
1185193326Sed    return;
1186193326Sed  }
1187198092Srdivacky
1188193326Sed  assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1189198092Srdivacky
1190193326Sed  // Do struct initialization; this code just sets each individual member
1191193326Sed  // to the approprate value.  This makes bitfield support automatic;
1192193326Sed  // the disadvantage is that the generated code is more difficult for
1193193326Sed  // the optimizer, especially with bitfields.
1194193326Sed  unsigned NumInitElements = E->getNumInits();
1195224145Sdim  RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1196251662Sdim
1197251662Sdim  // Prepare a 'this' for CXXDefaultInitExprs.
1198251662Sdim  CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddr());
1199251662Sdim
1200224145Sdim  if (record->isUnion()) {
1201193326Sed    // Only initialize one field of a union. The field itself is
1202193326Sed    // specified by the initializer list.
1203193326Sed    if (!E->getInitializedFieldInUnion()) {
1204193326Sed      // Empty union; we have nothing to do.
1205198092Srdivacky
1206193326Sed#ifndef NDEBUG
1207193326Sed      // Make sure that it's really an empty and not a failure of
1208193326Sed      // semantic analysis.
1209224145Sdim      for (RecordDecl::field_iterator Field = record->field_begin(),
1210224145Sdim                                   FieldEnd = record->field_end();
1211193326Sed           Field != FieldEnd; ++Field)
1212193326Sed        assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1213193326Sed#endif
1214193326Sed      return;
1215193326Sed    }
1216193326Sed
1217193326Sed    // FIXME: volatility
1218193326Sed    FieldDecl *Field = E->getInitializedFieldInUnion();
1219218893Sdim
1220234982Sdim    LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1221193326Sed    if (NumInitElements) {
1222193326Sed      // Store the initializer into the field
1223224145Sdim      EmitInitializationToLValue(E->getInit(0), FieldLoc);
1224193326Sed    } else {
1225218893Sdim      // Default-initialize to null.
1226224145Sdim      EmitNullInitializationToLValue(FieldLoc);
1227193326Sed    }
1228193326Sed
1229193326Sed    return;
1230193326Sed  }
1231198092Srdivacky
1232224145Sdim  // We'll need to enter cleanup scopes in case any of the member
1233224145Sdim  // initializers throw an exception.
1234226633Sdim  SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1235234353Sdim  llvm::Instruction *cleanupDominator = 0;
1236224145Sdim
1237193326Sed  // Here we iterate over the fields; this makes it simpler to both
1238193326Sed  // default-initialize fields and skip over unnamed fields.
1239224145Sdim  unsigned curInitIndex = 0;
1240224145Sdim  for (RecordDecl::field_iterator field = record->field_begin(),
1241224145Sdim                               fieldEnd = record->field_end();
1242224145Sdim       field != fieldEnd; ++field) {
1243224145Sdim    // We're done once we hit the flexible array member.
1244224145Sdim    if (field->getType()->isIncompleteArrayType())
1245193326Sed      break;
1246193326Sed
1247224145Sdim    // Always skip anonymous bitfields.
1248224145Sdim    if (field->isUnnamedBitfield())
1249193326Sed      continue;
1250193326Sed
1251224145Sdim    // We're done if we reach the end of the explicit initializers, we
1252224145Sdim    // have a zeroed object, and the rest of the fields are
1253224145Sdim    // zero-initializable.
1254224145Sdim    if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1255218893Sdim        CGF.getTypes().isZeroInitializable(E->getType()))
1256218893Sdim      break;
1257218893Sdim
1258234982Sdim
1259234982Sdim    LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, *field);
1260193326Sed    // We never generate write-barries for initialized fields.
1261224145Sdim    LV.setNonGC(true);
1262218893Sdim
1263224145Sdim    if (curInitIndex < NumInitElements) {
1264204962Srdivacky      // Store the initializer into the field.
1265224145Sdim      EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1266193326Sed    } else {
1267193326Sed      // We're out of initalizers; default-initialize to null
1268224145Sdim      EmitNullInitializationToLValue(LV);
1269193326Sed    }
1270224145Sdim
1271224145Sdim    // Push a destructor if necessary.
1272224145Sdim    // FIXME: if we have an array of structures, all explicitly
1273224145Sdim    // initialized, we can end up pushing a linear number of cleanups.
1274224145Sdim    bool pushedCleanup = false;
1275224145Sdim    if (QualType::DestructionKind dtorKind
1276224145Sdim          = field->getType().isDestructedType()) {
1277224145Sdim      assert(LV.isSimple());
1278224145Sdim      if (CGF.needsEHCleanup(dtorKind)) {
1279234353Sdim        if (!cleanupDominator)
1280234353Sdim          cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder
1281234353Sdim
1282224145Sdim        CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
1283224145Sdim                        CGF.getDestroyer(dtorKind), false);
1284224145Sdim        cleanups.push_back(CGF.EHStack.stable_begin());
1285224145Sdim        pushedCleanup = true;
1286224145Sdim      }
1287224145Sdim    }
1288218893Sdim
1289218893Sdim    // If the GEP didn't get used because of a dead zero init or something
1290218893Sdim    // else, clean it up for -O0 builds and general tidiness.
1291224145Sdim    if (!pushedCleanup && LV.isSimple())
1292218893Sdim      if (llvm::GetElementPtrInst *GEP =
1293224145Sdim            dyn_cast<llvm::GetElementPtrInst>(LV.getAddress()))
1294218893Sdim        if (GEP->use_empty())
1295218893Sdim          GEP->eraseFromParent();
1296193326Sed  }
1297224145Sdim
1298224145Sdim  // Deactivate all the partial cleanups in reverse order, which
1299224145Sdim  // generally means popping them.
1300224145Sdim  for (unsigned i = cleanups.size(); i != 0; --i)
1301234353Sdim    CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1302234353Sdim
1303234353Sdim  // Destroy the placeholder if we made one.
1304234353Sdim  if (cleanupDominator)
1305234353Sdim    cleanupDominator->eraseFromParent();
1306193326Sed}
1307193326Sed
1308193326Sed//===----------------------------------------------------------------------===//
1309193326Sed//                        Entry Points into this File
1310193326Sed//===----------------------------------------------------------------------===//
1311193326Sed
1312218893Sdim/// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1313218893Sdim/// non-zero bytes that will be stored when outputting the initializer for the
1314218893Sdim/// specified initializer expression.
1315221345Sdimstatic CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1316221345Sdim  E = E->IgnoreParens();
1317218893Sdim
1318218893Sdim  // 0 and 0.0 won't require any non-zero stores!
1319221345Sdim  if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1320218893Sdim
1321218893Sdim  // If this is an initlist expr, sum up the size of sizes of the (present)
1322218893Sdim  // elements.  If this is something weird, assume the whole thing is non-zero.
1323218893Sdim  const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1324218893Sdim  if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1325221345Sdim    return CGF.getContext().getTypeSizeInChars(E->getType());
1326218893Sdim
1327218893Sdim  // InitListExprs for structs have to be handled carefully.  If there are
1328218893Sdim  // reference members, we need to consider the size of the reference, not the
1329218893Sdim  // referencee.  InitListExprs for unions and arrays can't have references.
1330218893Sdim  if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1331218893Sdim    if (!RT->isUnionType()) {
1332218893Sdim      RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
1333221345Sdim      CharUnits NumNonZeroBytes = CharUnits::Zero();
1334218893Sdim
1335218893Sdim      unsigned ILEElement = 0;
1336218893Sdim      for (RecordDecl::field_iterator Field = SD->field_begin(),
1337218893Sdim           FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
1338218893Sdim        // We're done once we hit the flexible array member or run out of
1339218893Sdim        // InitListExpr elements.
1340218893Sdim        if (Field->getType()->isIncompleteArrayType() ||
1341218893Sdim            ILEElement == ILE->getNumInits())
1342218893Sdim          break;
1343218893Sdim        if (Field->isUnnamedBitfield())
1344218893Sdim          continue;
1345218893Sdim
1346218893Sdim        const Expr *E = ILE->getInit(ILEElement++);
1347218893Sdim
1348218893Sdim        // Reference values are always non-null and have the width of a pointer.
1349218893Sdim        if (Field->getType()->isReferenceType())
1350221345Sdim          NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1351251662Sdim              CGF.getTarget().getPointerWidth(0));
1352218893Sdim        else
1353218893Sdim          NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1354218893Sdim      }
1355218893Sdim
1356218893Sdim      return NumNonZeroBytes;
1357218893Sdim    }
1358218893Sdim  }
1359218893Sdim
1360218893Sdim
1361221345Sdim  CharUnits NumNonZeroBytes = CharUnits::Zero();
1362218893Sdim  for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1363218893Sdim    NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1364218893Sdim  return NumNonZeroBytes;
1365218893Sdim}
1366218893Sdim
1367218893Sdim/// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1368218893Sdim/// zeros in it, emit a memset and avoid storing the individual zeros.
1369218893Sdim///
1370218893Sdimstatic void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1371218893Sdim                                     CodeGenFunction &CGF) {
1372218893Sdim  // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1373218893Sdim  // volatile stores.
1374218893Sdim  if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
1375221345Sdim
1376221345Sdim  // C++ objects with a user-declared constructor don't need zero'ing.
1377243830Sdim  if (CGF.getLangOpts().CPlusPlus)
1378221345Sdim    if (const RecordType *RT = CGF.getContext()
1379221345Sdim                       .getBaseElementType(E->getType())->getAs<RecordType>()) {
1380221345Sdim      const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1381221345Sdim      if (RD->hasUserDeclaredConstructor())
1382221345Sdim        return;
1383221345Sdim    }
1384221345Sdim
1385218893Sdim  // If the type is 16-bytes or smaller, prefer individual stores over memset.
1386221345Sdim  std::pair<CharUnits, CharUnits> TypeInfo =
1387221345Sdim    CGF.getContext().getTypeInfoInChars(E->getType());
1388221345Sdim  if (TypeInfo.first <= CharUnits::fromQuantity(16))
1389218893Sdim    return;
1390218893Sdim
1391218893Sdim  // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1392218893Sdim  // we prefer to emit memset + individual stores for the rest.
1393221345Sdim  CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1394221345Sdim  if (NumNonZeroBytes*4 > TypeInfo.first)
1395218893Sdim    return;
1396218893Sdim
1397218893Sdim  // Okay, it seems like a good idea to use an initial memset, emit the call.
1398221345Sdim  llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
1399221345Sdim  CharUnits Align = TypeInfo.second;
1400218893Sdim
1401218893Sdim  llvm::Value *Loc = Slot.getAddr();
1402218893Sdim
1403234353Sdim  Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy);
1404221345Sdim  CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
1405221345Sdim                           Align.getQuantity(), false);
1406218893Sdim
1407218893Sdim  // Tell the AggExprEmitter that the slot is known zero.
1408218893Sdim  Slot.setZeroed();
1409218893Sdim}
1410218893Sdim
1411218893Sdim
1412218893Sdim
1413218893Sdim
1414193326Sed/// EmitAggExpr - Emit the computation of the specified expression of aggregate
1415193326Sed/// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1416193326Sed/// the value of the aggregate expression is not needed.  If VolatileDest is
1417193326Sed/// true, DestPtr cannot be 0.
1418239462Sdimvoid CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1419249423Sdim  assert(E && hasAggregateEvaluationKind(E->getType()) &&
1420193326Sed         "Invalid aggregate expression to emit");
1421218893Sdim  assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
1422218893Sdim         "slot has bits but no address");
1423198092Srdivacky
1424218893Sdim  // Optimize the slot if possible.
1425218893Sdim  CheckAggExprForMemSetUse(Slot, E, *this);
1426218893Sdim
1427239462Sdim  AggExprEmitter(*this, Slot).Visit(const_cast<Expr*>(E));
1428193326Sed}
1429193326Sed
1430203955SrdivackyLValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1431249423Sdim  assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1432203955Srdivacky  llvm::Value *Temp = CreateMemTemp(E->getType());
1433212904Sdim  LValue LV = MakeAddrLValue(Temp, E->getType());
1434226633Sdim  EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1435226633Sdim                                         AggValueSlot::DoesNotNeedGCBarriers,
1436226633Sdim                                         AggValueSlot::IsNotAliased));
1437212904Sdim  return LV;
1438203955Srdivacky}
1439203955Srdivacky
1440193326Sedvoid CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
1441193326Sed                                        llvm::Value *SrcPtr, QualType Ty,
1442239462Sdim                                        bool isVolatile,
1443243830Sdim                                        CharUnits alignment,
1444243830Sdim                                        bool isAssignment) {
1445193326Sed  assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1446198092Srdivacky
1447243830Sdim  if (getLangOpts().CPlusPlus) {
1448207619Srdivacky    if (const RecordType *RT = Ty->getAs<RecordType>()) {
1449208600Srdivacky      CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1450208600Srdivacky      assert((Record->hasTrivialCopyConstructor() ||
1451226633Sdim              Record->hasTrivialCopyAssignment() ||
1452226633Sdim              Record->hasTrivialMoveConstructor() ||
1453226633Sdim              Record->hasTrivialMoveAssignment()) &&
1454249423Sdim             "Trying to aggregate-copy a type without a trivial copy/move "
1455208600Srdivacky             "constructor or assignment operator");
1456208600Srdivacky      // Ignore empty classes in C++.
1457208600Srdivacky      if (Record->isEmpty())
1458207619Srdivacky        return;
1459207619Srdivacky    }
1460207619Srdivacky  }
1461207619Srdivacky
1462193326Sed  // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1463193326Sed  // C99 6.5.16.1p3, which states "If the value being stored in an object is
1464193326Sed  // read from another object that overlaps in anyway the storage of the first
1465193326Sed  // object, then the overlap shall be exact and the two objects shall have
1466193326Sed  // qualified or unqualified versions of a compatible type."
1467193326Sed  //
1468193326Sed  // memcpy is not defined if the source and destination pointers are exactly
1469193326Sed  // equal, but other compilers do this optimization, and almost every memcpy
1470193326Sed  // implementation handles this case safely.  If there is a libc that does not
1471193326Sed  // safely handle this, we can add a target hook.
1472198092Srdivacky
1473243830Sdim  // Get data size and alignment info for this aggregate. If this is an
1474243830Sdim  // assignment don't copy the tail padding. Otherwise copying it is fine.
1475243830Sdim  std::pair<CharUnits, CharUnits> TypeInfo;
1476243830Sdim  if (isAssignment)
1477243830Sdim    TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1478243830Sdim  else
1479243830Sdim    TypeInfo = getContext().getTypeInfoInChars(Ty);
1480198092Srdivacky
1481239462Sdim  if (alignment.isZero())
1482239462Sdim    alignment = TypeInfo.second;
1483234353Sdim
1484193326Sed  // FIXME: Handle variable sized types.
1485198092Srdivacky
1486193326Sed  // FIXME: If we have a volatile struct, the optimizer can remove what might
1487193326Sed  // appear to be `extra' memory ops:
1488193326Sed  //
1489193326Sed  // volatile struct { int i; } a, b;
1490193326Sed  //
1491193326Sed  // int main() {
1492193326Sed  //   a = b;
1493193326Sed  //   a = b;
1494193326Sed  // }
1495193326Sed  //
1496206275Srdivacky  // we need to use a different call here.  We use isVolatile to indicate when
1497193326Sed  // either the source or the destination is volatile.
1498206275Srdivacky
1499226633Sdim  llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
1500226633Sdim  llvm::Type *DBP =
1501218893Sdim    llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
1502226633Sdim  DestPtr = Builder.CreateBitCast(DestPtr, DBP);
1503206275Srdivacky
1504226633Sdim  llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
1505226633Sdim  llvm::Type *SBP =
1506218893Sdim    llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
1507226633Sdim  SrcPtr = Builder.CreateBitCast(SrcPtr, SBP);
1508206275Srdivacky
1509224145Sdim  // Don't do any of the memmove_collectable tests if GC isn't set.
1510234353Sdim  if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
1511224145Sdim    // fall through
1512224145Sdim  } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1513210299Sed    RecordDecl *Record = RecordTy->getDecl();
1514210299Sed    if (Record->hasObjectMember()) {
1515221345Sdim      CharUnits size = TypeInfo.first;
1516226633Sdim      llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1517221345Sdim      llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
1518210299Sed      CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1519210299Sed                                                    SizeVal);
1520210299Sed      return;
1521210299Sed    }
1522224145Sdim  } else if (Ty->isArrayType()) {
1523210299Sed    QualType BaseType = getContext().getBaseElementType(Ty);
1524210299Sed    if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1525210299Sed      if (RecordTy->getDecl()->hasObjectMember()) {
1526221345Sdim        CharUnits size = TypeInfo.first;
1527226633Sdim        llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1528221345Sdim        llvm::Value *SizeVal =
1529221345Sdim          llvm::ConstantInt::get(SizeTy, size.getQuantity());
1530210299Sed        CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1531210299Sed                                                      SizeVal);
1532210299Sed        return;
1533210299Sed      }
1534210299Sed    }
1535210299Sed  }
1536243830Sdim
1537243830Sdim  // Determine the metadata to describe the position of any padding in this
1538243830Sdim  // memcpy, as well as the TBAA tags for the members of the struct, in case
1539243830Sdim  // the optimizer wishes to expand it in to scalar memory operations.
1540243830Sdim  llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty);
1541210299Sed
1542218893Sdim  Builder.CreateMemCpy(DestPtr, SrcPtr,
1543221345Sdim                       llvm::ConstantInt::get(IntPtrTy,
1544221345Sdim                                              TypeInfo.first.getQuantity()),
1545243830Sdim                       alignment.getQuantity(), isVolatile,
1546243830Sdim                       /*TBAATag=*/0, TBAAStructTag);
1547193326Sed}
1548234353Sdim
1549234353Sdimvoid CodeGenFunction::MaybeEmitStdInitializerListCleanup(llvm::Value *loc,
1550234353Sdim                                                         const Expr *init) {
1551234353Sdim  const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(init);
1552234353Sdim  if (cleanups)
1553234353Sdim    init = cleanups->getSubExpr();
1554234353Sdim
1555234353Sdim  if (isa<InitListExpr>(init) &&
1556234353Sdim      cast<InitListExpr>(init)->initializesStdInitializerList()) {
1557234353Sdim    // We initialized this std::initializer_list with an initializer list.
1558234353Sdim    // A backing array was created. Push a cleanup for it.
1559234353Sdim    EmitStdInitializerListCleanup(loc, cast<InitListExpr>(init));
1560234353Sdim  }
1561234353Sdim}
1562234353Sdim
1563234353Sdimstatic void EmitRecursiveStdInitializerListCleanup(CodeGenFunction &CGF,
1564234353Sdim                                                   llvm::Value *arrayStart,
1565234353Sdim                                                   const InitListExpr *init) {
1566234353Sdim  // Check if there are any recursive cleanups to do, i.e. if we have
1567234353Sdim  //   std::initializer_list<std::initializer_list<obj>> list = {{obj()}};
1568234353Sdim  // then we need to destroy the inner array as well.
1569234353Sdim  for (unsigned i = 0, e = init->getNumInits(); i != e; ++i) {
1570234353Sdim    const InitListExpr *subInit = dyn_cast<InitListExpr>(init->getInit(i));
1571234353Sdim    if (!subInit || !subInit->initializesStdInitializerList())
1572234353Sdim      continue;
1573234353Sdim
1574234353Sdim    // This one needs to be destroyed. Get the address of the std::init_list.
1575234353Sdim    llvm::Value *offset = llvm::ConstantInt::get(CGF.SizeTy, i);
1576234353Sdim    llvm::Value *loc = CGF.Builder.CreateInBoundsGEP(arrayStart, offset,
1577234353Sdim                                                 "std.initlist");
1578234353Sdim    CGF.EmitStdInitializerListCleanup(loc, subInit);
1579234353Sdim  }
1580234353Sdim}
1581234353Sdim
1582234353Sdimvoid CodeGenFunction::EmitStdInitializerListCleanup(llvm::Value *loc,
1583234353Sdim                                                    const InitListExpr *init) {
1584234353Sdim  ASTContext &ctx = getContext();
1585234353Sdim  QualType element = GetStdInitializerListElementType(init->getType());
1586234353Sdim  unsigned numInits = init->getNumInits();
1587234353Sdim  llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits);
1588234353Sdim  QualType array =ctx.getConstantArrayType(element, size, ArrayType::Normal, 0);
1589234353Sdim  QualType arrayPtr = ctx.getPointerType(array);
1590234353Sdim  llvm::Type *arrayPtrType = ConvertType(arrayPtr);
1591234353Sdim
1592234353Sdim  // lvalue is the location of a std::initializer_list, which as its first
1593234353Sdim  // element has a pointer to the array we want to destroy.
1594234353Sdim  llvm::Value *startPointer = Builder.CreateStructGEP(loc, 0, "startPointer");
1595234353Sdim  llvm::Value *startAddress = Builder.CreateLoad(startPointer, "startAddress");
1596234353Sdim
1597234353Sdim  ::EmitRecursiveStdInitializerListCleanup(*this, startAddress, init);
1598234353Sdim
1599234353Sdim  llvm::Value *arrayAddress =
1600234353Sdim      Builder.CreateBitCast(startAddress, arrayPtrType, "arrayAddress");
1601234353Sdim  ::EmitStdInitializerListCleanup(*this, array, arrayAddress, init);
1602234353Sdim}
1603