CGExprAgg.cpp revision 243830
1193326Sed//===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2193326Sed//
3193326Sed//                     The LLVM Compiler Infrastructure
4193326Sed//
5193326Sed// This file is distributed under the University of Illinois Open Source
6193326Sed// License. See LICENSE.TXT for details.
7193326Sed//
8193326Sed//===----------------------------------------------------------------------===//
9193326Sed//
10193326Sed// This contains code to emit Aggregate Expr nodes as LLVM code.
11193326Sed//
12193326Sed//===----------------------------------------------------------------------===//
13193326Sed
14193326Sed#include "CodeGenFunction.h"
15193326Sed#include "CodeGenModule.h"
16198092Srdivacky#include "CGObjCRuntime.h"
17193326Sed#include "clang/AST/ASTContext.h"
18193326Sed#include "clang/AST/DeclCXX.h"
19234353Sdim#include "clang/AST/DeclTemplate.h"
20193326Sed#include "clang/AST/StmtVisitor.h"
21193326Sed#include "llvm/Constants.h"
22193326Sed#include "llvm/Function.h"
23193326Sed#include "llvm/GlobalVariable.h"
24193326Sed#include "llvm/Intrinsics.h"
25193326Sedusing namespace clang;
26193326Sedusing namespace CodeGen;
27193326Sed
28193326Sed//===----------------------------------------------------------------------===//
29193326Sed//                        Aggregate Expression Emitter
30193326Sed//===----------------------------------------------------------------------===//
31193326Sed
32193326Sednamespace  {
33199990Srdivackyclass AggExprEmitter : public StmtVisitor<AggExprEmitter> {
34193326Sed  CodeGenFunction &CGF;
35193326Sed  CGBuilderTy &Builder;
36218893Sdim  AggValueSlot Dest;
37208600Srdivacky
38226633Sdim  /// We want to use 'dest' as the return slot except under two
39226633Sdim  /// conditions:
40226633Sdim  ///   - The destination slot requires garbage collection, so we
41226633Sdim  ///     need to use the GC API.
42226633Sdim  ///   - The destination slot is potentially aliased.
43226633Sdim  bool shouldUseDestForReturnSlot() const {
44226633Sdim    return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
45226633Sdim  }
46226633Sdim
47208600Srdivacky  ReturnValueSlot getReturnValueSlot() const {
48226633Sdim    if (!shouldUseDestForReturnSlot())
49226633Sdim      return ReturnValueSlot();
50208600Srdivacky
51218893Sdim    return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
52208600Srdivacky  }
53208600Srdivacky
54218893Sdim  AggValueSlot EnsureSlot(QualType T) {
55218893Sdim    if (!Dest.isIgnored()) return Dest;
56218893Sdim    return CGF.CreateAggTemp(T, "agg.tmp.ensured");
57218893Sdim  }
58239462Sdim  void EnsureDest(QualType T) {
59239462Sdim    if (!Dest.isIgnored()) return;
60239462Sdim    Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
61239462Sdim  }
62218893Sdim
63193326Sedpublic:
64239462Sdim  AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest)
65239462Sdim    : CGF(cgf), Builder(CGF.Builder), Dest(Dest) {
66193326Sed  }
67193326Sed
68193326Sed  //===--------------------------------------------------------------------===//
69193326Sed  //                               Utilities
70193326Sed  //===--------------------------------------------------------------------===//
71193326Sed
72193326Sed  /// EmitAggLoadOfLValue - Given an expression with aggregate type that
73193326Sed  /// represents a value lvalue, this method emits the address of the lvalue,
74193326Sed  /// then loads the result into DestPtr.
75193326Sed  void EmitAggLoadOfLValue(const Expr *E);
76193326Sed
77193326Sed  /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
78239462Sdim  void EmitFinalDestCopy(QualType type, const LValue &src);
79239462Sdim  void EmitFinalDestCopy(QualType type, RValue src,
80239462Sdim                         CharUnits srcAlignment = CharUnits::Zero());
81239462Sdim  void EmitCopy(QualType type, const AggValueSlot &dest,
82239462Sdim                const AggValueSlot &src);
83193326Sed
84226633Sdim  void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
85208600Srdivacky
86234353Sdim  void EmitStdInitializerList(llvm::Value *DestPtr, InitListExpr *InitList);
87234353Sdim  void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
88234353Sdim                     QualType elementType, InitListExpr *E);
89234353Sdim
90226633Sdim  AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
91234353Sdim    if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
92226633Sdim      return AggValueSlot::NeedsGCBarriers;
93226633Sdim    return AggValueSlot::DoesNotNeedGCBarriers;
94226633Sdim  }
95226633Sdim
96208600Srdivacky  bool TypeRequiresGCollection(QualType T);
97208600Srdivacky
98193326Sed  //===--------------------------------------------------------------------===//
99193326Sed  //                            Visitor Methods
100193326Sed  //===--------------------------------------------------------------------===//
101198092Srdivacky
102193326Sed  void VisitStmt(Stmt *S) {
103193326Sed    CGF.ErrorUnsupported(S, "aggregate expression");
104193326Sed  }
105193326Sed  void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
106221345Sdim  void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
107221345Sdim    Visit(GE->getResultExpr());
108221345Sdim  }
109193326Sed  void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
110224145Sdim  void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
111224145Sdim    return Visit(E->getReplacement());
112224145Sdim  }
113193326Sed
114193326Sed  // l-values.
115234353Sdim  void VisitDeclRefExpr(DeclRefExpr *E) {
116234353Sdim    // For aggregates, we should always be able to emit the variable
117234353Sdim    // as an l-value unless it's a reference.  This is due to the fact
118234353Sdim    // that we can't actually ever see a normal l2r conversion on an
119234353Sdim    // aggregate in C++, and in C there's no language standard
120234353Sdim    // actively preventing us from listing variables in the captures
121234353Sdim    // list of a block.
122234353Sdim    if (E->getDecl()->getType()->isReferenceType()) {
123234353Sdim      if (CodeGenFunction::ConstantEmission result
124234353Sdim            = CGF.tryEmitAsConstant(E)) {
125239462Sdim        EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E));
126234353Sdim        return;
127234353Sdim      }
128234353Sdim    }
129234353Sdim
130234353Sdim    EmitAggLoadOfLValue(E);
131234353Sdim  }
132234353Sdim
133193326Sed  void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
134193326Sed  void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
135193326Sed  void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
136224145Sdim  void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
137193326Sed  void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
138193326Sed    EmitAggLoadOfLValue(E);
139193326Sed  }
140193326Sed  void VisitPredefinedExpr(const PredefinedExpr *E) {
141198092Srdivacky    EmitAggLoadOfLValue(E);
142193326Sed  }
143198092Srdivacky
144193326Sed  // Operators.
145198092Srdivacky  void VisitCastExpr(CastExpr *E);
146193326Sed  void VisitCallExpr(const CallExpr *E);
147193326Sed  void VisitStmtExpr(const StmtExpr *E);
148193326Sed  void VisitBinaryOperator(const BinaryOperator *BO);
149198398Srdivacky  void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
150193326Sed  void VisitBinAssign(const BinaryOperator *E);
151193326Sed  void VisitBinComma(const BinaryOperator *E);
152193326Sed
153193326Sed  void VisitObjCMessageExpr(ObjCMessageExpr *E);
154193326Sed  void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
155193326Sed    EmitAggLoadOfLValue(E);
156193326Sed  }
157198092Srdivacky
158218893Sdim  void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
159198092Srdivacky  void VisitChooseExpr(const ChooseExpr *CE);
160193326Sed  void VisitInitListExpr(InitListExpr *E);
161201361Srdivacky  void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
162193326Sed  void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
163193326Sed    Visit(DAE->getExpr());
164193326Sed  }
165193326Sed  void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
166193326Sed  void VisitCXXConstructExpr(const CXXConstructExpr *E);
167234353Sdim  void VisitLambdaExpr(LambdaExpr *E);
168218893Sdim  void VisitExprWithCleanups(ExprWithCleanups *E);
169210299Sed  void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
170199482Srdivacky  void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
171224145Sdim  void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
172218893Sdim  void VisitOpaqueValueExpr(OpaqueValueExpr *E);
173218893Sdim
174234353Sdim  void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
175234353Sdim    if (E->isGLValue()) {
176234353Sdim      LValue LV = CGF.EmitPseudoObjectLValue(E);
177239462Sdim      return EmitFinalDestCopy(E->getType(), LV);
178234353Sdim    }
179234353Sdim
180234353Sdim    CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
181234353Sdim  }
182234353Sdim
183193326Sed  void VisitVAArgExpr(VAArgExpr *E);
184193326Sed
185224145Sdim  void EmitInitializationToLValue(Expr *E, LValue Address);
186224145Sdim  void EmitNullInitializationToLValue(LValue Address);
187193326Sed  //  case Expr::ChooseExprClass:
188200583Srdivacky  void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
189226633Sdim  void VisitAtomicExpr(AtomicExpr *E) {
190226633Sdim    CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr());
191226633Sdim  }
192193326Sed};
193193326Sed}  // end anonymous namespace.
194193326Sed
195193326Sed//===----------------------------------------------------------------------===//
196193326Sed//                                Utilities
197193326Sed//===----------------------------------------------------------------------===//
198193326Sed
199193326Sed/// EmitAggLoadOfLValue - Given an expression with aggregate type that
200193326Sed/// represents a value lvalue, this method emits the address of the lvalue,
201193326Sed/// then loads the result into DestPtr.
202193326Sedvoid AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
203193326Sed  LValue LV = CGF.EmitLValue(E);
204239462Sdim  EmitFinalDestCopy(E->getType(), LV);
205193326Sed}
206193326Sed
207208600Srdivacky/// \brief True if the given aggregate type requires special GC API calls.
208208600Srdivackybool AggExprEmitter::TypeRequiresGCollection(QualType T) {
209208600Srdivacky  // Only record types have members that might require garbage collection.
210208600Srdivacky  const RecordType *RecordTy = T->getAs<RecordType>();
211208600Srdivacky  if (!RecordTy) return false;
212208600Srdivacky
213208600Srdivacky  // Don't mess with non-trivial C++ types.
214208600Srdivacky  RecordDecl *Record = RecordTy->getDecl();
215208600Srdivacky  if (isa<CXXRecordDecl>(Record) &&
216208600Srdivacky      (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
217208600Srdivacky       !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
218208600Srdivacky    return false;
219208600Srdivacky
220208600Srdivacky  // Check whether the type has an object member.
221208600Srdivacky  return Record->hasObjectMember();
222208600Srdivacky}
223208600Srdivacky
224226633Sdim/// \brief Perform the final move to DestPtr if for some reason
225226633Sdim/// getReturnValueSlot() didn't use it directly.
226208600Srdivacky///
227208600Srdivacky/// The idea is that you do something like this:
228208600Srdivacky///   RValue Result = EmitSomething(..., getReturnValueSlot());
229226633Sdim///   EmitMoveFromReturnSlot(E, Result);
230226633Sdim///
231226633Sdim/// If nothing interferes, this will cause the result to be emitted
232226633Sdim/// directly into the return value slot.  Otherwise, a final move
233226633Sdim/// will be performed.
234239462Sdimvoid AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) {
235226633Sdim  if (shouldUseDestForReturnSlot()) {
236226633Sdim    // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
237226633Sdim    // The possibility of undef rvalues complicates that a lot,
238226633Sdim    // though, so we can't really assert.
239226633Sdim    return;
240210299Sed  }
241226633Sdim
242239462Sdim  // Otherwise, copy from there to the destination.
243239462Sdim  assert(Dest.getAddr() != src.getAggregateAddr());
244239462Sdim  std::pair<CharUnits, CharUnits> typeInfo =
245234982Sdim    CGF.getContext().getTypeInfoInChars(E->getType());
246239462Sdim  EmitFinalDestCopy(E->getType(), src, typeInfo.second);
247208600Srdivacky}
248208600Srdivacky
249193326Sed/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
250239462Sdimvoid AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src,
251239462Sdim                                       CharUnits srcAlign) {
252239462Sdim  assert(src.isAggregate() && "value must be aggregate value!");
253239462Sdim  LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddr(), type, srcAlign);
254239462Sdim  EmitFinalDestCopy(type, srcLV);
255239462Sdim}
256193326Sed
257239462Sdim/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
258239462Sdimvoid AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) {
259218893Sdim  // If Dest is ignored, then we're evaluating an aggregate expression
260239462Sdim  // in a context that doesn't care about the result.  Note that loads
261239462Sdim  // from volatile l-values force the existence of a non-ignored
262239462Sdim  // destination.
263239462Sdim  if (Dest.isIgnored())
264239462Sdim    return;
265212904Sdim
266239462Sdim  AggValueSlot srcAgg =
267239462Sdim    AggValueSlot::forLValue(src, AggValueSlot::IsDestructed,
268239462Sdim                            needsGC(type), AggValueSlot::IsAliased);
269239462Sdim  EmitCopy(type, Dest, srcAgg);
270239462Sdim}
271193326Sed
272239462Sdim/// Perform a copy from the source into the destination.
273239462Sdim///
274239462Sdim/// \param type - the type of the aggregate being copied; qualifiers are
275239462Sdim///   ignored
276239462Sdimvoid AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
277239462Sdim                              const AggValueSlot &src) {
278239462Sdim  if (dest.requiresGCollection()) {
279239462Sdim    CharUnits sz = CGF.getContext().getTypeSizeInChars(type);
280239462Sdim    llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
281198092Srdivacky    CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
282239462Sdim                                                      dest.getAddr(),
283239462Sdim                                                      src.getAddr(),
284239462Sdim                                                      size);
285198092Srdivacky    return;
286198092Srdivacky  }
287239462Sdim
288193326Sed  // If the result of the assignment is used, copy the LHS there also.
289239462Sdim  // It's volatile if either side is.  Use the minimum alignment of
290239462Sdim  // the two sides.
291239462Sdim  CGF.EmitAggregateCopy(dest.getAddr(), src.getAddr(), type,
292239462Sdim                        dest.isVolatile() || src.isVolatile(),
293239462Sdim                        std::min(dest.getAlignment(), src.getAlignment()));
294193326Sed}
295193326Sed
296234353Sdimstatic QualType GetStdInitializerListElementType(QualType T) {
297234353Sdim  // Just assume that this is really std::initializer_list.
298234353Sdim  ClassTemplateSpecializationDecl *specialization =
299234353Sdim      cast<ClassTemplateSpecializationDecl>(T->castAs<RecordType>()->getDecl());
300234353Sdim  return specialization->getTemplateArgs()[0].getAsType();
301234353Sdim}
302234353Sdim
303234353Sdim/// \brief Prepare cleanup for the temporary array.
304234353Sdimstatic void EmitStdInitializerListCleanup(CodeGenFunction &CGF,
305234353Sdim                                          QualType arrayType,
306234353Sdim                                          llvm::Value *addr,
307234353Sdim                                          const InitListExpr *initList) {
308234353Sdim  QualType::DestructionKind dtorKind = arrayType.isDestructedType();
309234353Sdim  if (!dtorKind)
310234353Sdim    return; // Type doesn't need destroying.
311234353Sdim  if (dtorKind != QualType::DK_cxx_destructor) {
312234353Sdim    CGF.ErrorUnsupported(initList, "ObjC ARC type in initializer_list");
313234353Sdim    return;
314234353Sdim  }
315234353Sdim
316234353Sdim  CodeGenFunction::Destroyer *destroyer = CGF.getDestroyer(dtorKind);
317234353Sdim  CGF.pushDestroy(NormalAndEHCleanup, addr, arrayType, destroyer,
318234353Sdim                  /*EHCleanup=*/true);
319234353Sdim}
320234353Sdim
321234353Sdim/// \brief Emit the initializer for a std::initializer_list initialized with a
322234353Sdim/// real initializer list.
323234353Sdimvoid AggExprEmitter::EmitStdInitializerList(llvm::Value *destPtr,
324234353Sdim                                            InitListExpr *initList) {
325234353Sdim  // We emit an array containing the elements, then have the init list point
326234353Sdim  // at the array.
327234353Sdim  ASTContext &ctx = CGF.getContext();
328234353Sdim  unsigned numInits = initList->getNumInits();
329234353Sdim  QualType element = GetStdInitializerListElementType(initList->getType());
330234353Sdim  llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits);
331234353Sdim  QualType array = ctx.getConstantArrayType(element, size, ArrayType::Normal,0);
332234353Sdim  llvm::Type *LTy = CGF.ConvertTypeForMem(array);
333234353Sdim  llvm::AllocaInst *alloc = CGF.CreateTempAlloca(LTy);
334234353Sdim  alloc->setAlignment(ctx.getTypeAlignInChars(array).getQuantity());
335234353Sdim  alloc->setName(".initlist.");
336234353Sdim
337234353Sdim  EmitArrayInit(alloc, cast<llvm::ArrayType>(LTy), element, initList);
338234353Sdim
339234353Sdim  // FIXME: The diagnostics are somewhat out of place here.
340234353Sdim  RecordDecl *record = initList->getType()->castAs<RecordType>()->getDecl();
341234353Sdim  RecordDecl::field_iterator field = record->field_begin();
342234353Sdim  if (field == record->field_end()) {
343234353Sdim    CGF.ErrorUnsupported(initList, "weird std::initializer_list");
344234353Sdim    return;
345234353Sdim  }
346234353Sdim
347234353Sdim  QualType elementPtr = ctx.getPointerType(element.withConst());
348234353Sdim
349234353Sdim  // Start pointer.
350234353Sdim  if (!ctx.hasSameType(field->getType(), elementPtr)) {
351234353Sdim    CGF.ErrorUnsupported(initList, "weird std::initializer_list");
352234353Sdim    return;
353234353Sdim  }
354234982Sdim  LValue DestLV = CGF.MakeNaturalAlignAddrLValue(destPtr, initList->getType());
355234982Sdim  LValue start = CGF.EmitLValueForFieldInitialization(DestLV, *field);
356234353Sdim  llvm::Value *arrayStart = Builder.CreateStructGEP(alloc, 0, "arraystart");
357234353Sdim  CGF.EmitStoreThroughLValue(RValue::get(arrayStart), start);
358234353Sdim  ++field;
359234353Sdim
360234353Sdim  if (field == record->field_end()) {
361234353Sdim    CGF.ErrorUnsupported(initList, "weird std::initializer_list");
362234353Sdim    return;
363234353Sdim  }
364234982Sdim  LValue endOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *field);
365234353Sdim  if (ctx.hasSameType(field->getType(), elementPtr)) {
366234353Sdim    // End pointer.
367234353Sdim    llvm::Value *arrayEnd = Builder.CreateStructGEP(alloc,numInits, "arrayend");
368234353Sdim    CGF.EmitStoreThroughLValue(RValue::get(arrayEnd), endOrLength);
369234353Sdim  } else if(ctx.hasSameType(field->getType(), ctx.getSizeType())) {
370234353Sdim    // Length.
371234353Sdim    CGF.EmitStoreThroughLValue(RValue::get(Builder.getInt(size)), endOrLength);
372234353Sdim  } else {
373234353Sdim    CGF.ErrorUnsupported(initList, "weird std::initializer_list");
374234353Sdim    return;
375234353Sdim  }
376234353Sdim
377234353Sdim  if (!Dest.isExternallyDestructed())
378234353Sdim    EmitStdInitializerListCleanup(CGF, array, alloc, initList);
379234353Sdim}
380234353Sdim
381234353Sdim/// \brief Emit initialization of an array from an initializer list.
382234353Sdimvoid AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
383234353Sdim                                   QualType elementType, InitListExpr *E) {
384234353Sdim  uint64_t NumInitElements = E->getNumInits();
385234353Sdim
386234353Sdim  uint64_t NumArrayElements = AType->getNumElements();
387234353Sdim  assert(NumInitElements <= NumArrayElements);
388234353Sdim
389234353Sdim  // DestPtr is an array*.  Construct an elementType* by drilling
390234353Sdim  // down a level.
391234353Sdim  llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
392234353Sdim  llvm::Value *indices[] = { zero, zero };
393234353Sdim  llvm::Value *begin =
394234353Sdim    Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");
395234353Sdim
396234353Sdim  // Exception safety requires us to destroy all the
397234353Sdim  // already-constructed members if an initializer throws.
398234353Sdim  // For that, we'll need an EH cleanup.
399234353Sdim  QualType::DestructionKind dtorKind = elementType.isDestructedType();
400234353Sdim  llvm::AllocaInst *endOfInit = 0;
401234353Sdim  EHScopeStack::stable_iterator cleanup;
402234353Sdim  llvm::Instruction *cleanupDominator = 0;
403234353Sdim  if (CGF.needsEHCleanup(dtorKind)) {
404234353Sdim    // In principle we could tell the cleanup where we are more
405234353Sdim    // directly, but the control flow can get so varied here that it
406234353Sdim    // would actually be quite complex.  Therefore we go through an
407234353Sdim    // alloca.
408234353Sdim    endOfInit = CGF.CreateTempAlloca(begin->getType(),
409234353Sdim                                     "arrayinit.endOfInit");
410234353Sdim    cleanupDominator = Builder.CreateStore(begin, endOfInit);
411234353Sdim    CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
412234353Sdim                                         CGF.getDestroyer(dtorKind));
413234353Sdim    cleanup = CGF.EHStack.stable_begin();
414234353Sdim
415234353Sdim  // Otherwise, remember that we didn't need a cleanup.
416234353Sdim  } else {
417234353Sdim    dtorKind = QualType::DK_none;
418234353Sdim  }
419234353Sdim
420234353Sdim  llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
421234353Sdim
422234353Sdim  // The 'current element to initialize'.  The invariants on this
423234353Sdim  // variable are complicated.  Essentially, after each iteration of
424234353Sdim  // the loop, it points to the last initialized element, except
425234353Sdim  // that it points to the beginning of the array before any
426234353Sdim  // elements have been initialized.
427234353Sdim  llvm::Value *element = begin;
428234353Sdim
429234353Sdim  // Emit the explicit initializers.
430234353Sdim  for (uint64_t i = 0; i != NumInitElements; ++i) {
431234353Sdim    // Advance to the next element.
432234353Sdim    if (i > 0) {
433234353Sdim      element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
434234353Sdim
435234353Sdim      // Tell the cleanup that it needs to destroy up to this
436234353Sdim      // element.  TODO: some of these stores can be trivially
437234353Sdim      // observed to be unnecessary.
438234353Sdim      if (endOfInit) Builder.CreateStore(element, endOfInit);
439234353Sdim    }
440234353Sdim
441234353Sdim    // If these are nested std::initializer_list inits, do them directly,
442234353Sdim    // because they are conceptually the same "location".
443234353Sdim    InitListExpr *initList = dyn_cast<InitListExpr>(E->getInit(i));
444234353Sdim    if (initList && initList->initializesStdInitializerList()) {
445234353Sdim      EmitStdInitializerList(element, initList);
446234353Sdim    } else {
447234353Sdim      LValue elementLV = CGF.MakeAddrLValue(element, elementType);
448234353Sdim      EmitInitializationToLValue(E->getInit(i), elementLV);
449234353Sdim    }
450234353Sdim  }
451234353Sdim
452234353Sdim  // Check whether there's a non-trivial array-fill expression.
453234353Sdim  // Note that this will be a CXXConstructExpr even if the element
454234353Sdim  // type is an array (or array of array, etc.) of class type.
455234353Sdim  Expr *filler = E->getArrayFiller();
456234353Sdim  bool hasTrivialFiller = true;
457234353Sdim  if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) {
458234353Sdim    assert(cons->getConstructor()->isDefaultConstructor());
459234353Sdim    hasTrivialFiller = cons->getConstructor()->isTrivial();
460234353Sdim  }
461234353Sdim
462234353Sdim  // Any remaining elements need to be zero-initialized, possibly
463234353Sdim  // using the filler expression.  We can skip this if the we're
464234353Sdim  // emitting to zeroed memory.
465234353Sdim  if (NumInitElements != NumArrayElements &&
466234353Sdim      !(Dest.isZeroed() && hasTrivialFiller &&
467234353Sdim        CGF.getTypes().isZeroInitializable(elementType))) {
468234353Sdim
469234353Sdim    // Use an actual loop.  This is basically
470234353Sdim    //   do { *array++ = filler; } while (array != end);
471234353Sdim
472234353Sdim    // Advance to the start of the rest of the array.
473234353Sdim    if (NumInitElements) {
474234353Sdim      element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
475234353Sdim      if (endOfInit) Builder.CreateStore(element, endOfInit);
476234353Sdim    }
477234353Sdim
478234353Sdim    // Compute the end of the array.
479234353Sdim    llvm::Value *end = Builder.CreateInBoundsGEP(begin,
480234353Sdim                      llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
481234353Sdim                                                 "arrayinit.end");
482234353Sdim
483234353Sdim    llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
484234353Sdim    llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
485234353Sdim
486234353Sdim    // Jump into the body.
487234353Sdim    CGF.EmitBlock(bodyBB);
488234353Sdim    llvm::PHINode *currentElement =
489234353Sdim      Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
490234353Sdim    currentElement->addIncoming(element, entryBB);
491234353Sdim
492234353Sdim    // Emit the actual filler expression.
493234353Sdim    LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
494234353Sdim    if (filler)
495234353Sdim      EmitInitializationToLValue(filler, elementLV);
496234353Sdim    else
497234353Sdim      EmitNullInitializationToLValue(elementLV);
498234353Sdim
499234353Sdim    // Move on to the next element.
500234353Sdim    llvm::Value *nextElement =
501234353Sdim      Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
502234353Sdim
503234353Sdim    // Tell the EH cleanup that we finished with the last element.
504234353Sdim    if (endOfInit) Builder.CreateStore(nextElement, endOfInit);
505234353Sdim
506234353Sdim    // Leave the loop if we're done.
507234353Sdim    llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
508234353Sdim                                             "arrayinit.done");
509234353Sdim    llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
510234353Sdim    Builder.CreateCondBr(done, endBB, bodyBB);
511234353Sdim    currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
512234353Sdim
513234353Sdim    CGF.EmitBlock(endBB);
514234353Sdim  }
515234353Sdim
516234353Sdim  // Leave the partial-array cleanup if we entered one.
517234353Sdim  if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
518234353Sdim}
519234353Sdim
520193326Sed//===----------------------------------------------------------------------===//
521193326Sed//                            Visitor Methods
522193326Sed//===----------------------------------------------------------------------===//
523193326Sed
524224145Sdimvoid AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
525224145Sdim  Visit(E->GetTemporaryExpr());
526224145Sdim}
527224145Sdim
528218893Sdimvoid AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
529239462Sdim  EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e));
530218893Sdim}
531218893Sdim
532224145Sdimvoid
533224145SdimAggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
534224145Sdim  if (E->getType().isPODType(CGF.getContext())) {
535224145Sdim    // For a POD type, just emit a load of the lvalue + a copy, because our
536224145Sdim    // compound literal might alias the destination.
537224145Sdim    // FIXME: This is a band-aid; the real problem appears to be in our handling
538224145Sdim    // of assignments, where we store directly into the LHS without checking
539224145Sdim    // whether anything in the RHS aliases.
540224145Sdim    EmitAggLoadOfLValue(E);
541224145Sdim    return;
542224145Sdim  }
543224145Sdim
544224145Sdim  AggValueSlot Slot = EnsureSlot(E->getType());
545224145Sdim  CGF.EmitAggExpr(E->getInitializer(), Slot);
546224145Sdim}
547224145Sdim
548224145Sdim
549198092Srdivackyvoid AggExprEmitter::VisitCastExpr(CastExpr *E) {
550198092Srdivacky  switch (E->getCastKind()) {
551212904Sdim  case CK_Dynamic: {
552243830Sdim    // FIXME: Can this actually happen? We have no test coverage for it.
553208600Srdivacky    assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
554243830Sdim    LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
555243830Sdim                                      CodeGenFunction::TCK_Load);
556208600Srdivacky    // FIXME: Do we also need to handle property references here?
557208600Srdivacky    if (LV.isSimple())
558208600Srdivacky      CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
559208600Srdivacky    else
560208600Srdivacky      CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
561208600Srdivacky
562218893Sdim    if (!Dest.isIgnored())
563218893Sdim      CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
564208600Srdivacky    break;
565208600Srdivacky  }
566208600Srdivacky
567212904Sdim  case CK_ToUnion: {
568221345Sdim    if (Dest.isIgnored()) break;
569221345Sdim
570198092Srdivacky    // GCC union extension
571212904Sdim    QualType Ty = E->getSubExpr()->getType();
572212904Sdim    QualType PtrTy = CGF.getContext().getPointerType(Ty);
573218893Sdim    llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
574193401Sed                                                 CGF.ConvertType(PtrTy));
575224145Sdim    EmitInitializationToLValue(E->getSubExpr(),
576224145Sdim                               CGF.MakeAddrLValue(CastPtr, Ty));
577198092Srdivacky    break;
578193326Sed  }
579193326Sed
580212904Sdim  case CK_DerivedToBase:
581212904Sdim  case CK_BaseToDerived:
582212904Sdim  case CK_UncheckedDerivedToBase: {
583226633Sdim    llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
584208600Srdivacky                "should have been unpacked before we got here");
585208600Srdivacky  }
586208600Srdivacky
587239462Sdim  case CK_LValueToRValue:
588239462Sdim    // If we're loading from a volatile type, force the destination
589239462Sdim    // into existence.
590239462Sdim    if (E->getSubExpr()->getType().isVolatileQualified()) {
591239462Sdim      EnsureDest(E->getType());
592239462Sdim      return Visit(E->getSubExpr());
593239462Sdim    }
594239462Sdim    // fallthrough
595239462Sdim
596212904Sdim  case CK_NoOp:
597234353Sdim  case CK_AtomicToNonAtomic:
598234353Sdim  case CK_NonAtomicToAtomic:
599212904Sdim  case CK_UserDefinedConversion:
600212904Sdim  case CK_ConstructorConversion:
601198092Srdivacky    assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
602198092Srdivacky                                                   E->getType()) &&
603198092Srdivacky           "Implicit cast types must be compatible");
604198092Srdivacky    Visit(E->getSubExpr());
605198092Srdivacky    break;
606218893Sdim
607212904Sdim  case CK_LValueBitCast:
608218893Sdim    llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
609221345Sdim
610218893Sdim  case CK_Dependent:
611218893Sdim  case CK_BitCast:
612218893Sdim  case CK_ArrayToPointerDecay:
613218893Sdim  case CK_FunctionToPointerDecay:
614218893Sdim  case CK_NullToPointer:
615218893Sdim  case CK_NullToMemberPointer:
616218893Sdim  case CK_BaseToDerivedMemberPointer:
617218893Sdim  case CK_DerivedToBaseMemberPointer:
618218893Sdim  case CK_MemberPointerToBoolean:
619234353Sdim  case CK_ReinterpretMemberPointer:
620218893Sdim  case CK_IntegralToPointer:
621218893Sdim  case CK_PointerToIntegral:
622218893Sdim  case CK_PointerToBoolean:
623218893Sdim  case CK_ToVoid:
624218893Sdim  case CK_VectorSplat:
625218893Sdim  case CK_IntegralCast:
626218893Sdim  case CK_IntegralToBoolean:
627218893Sdim  case CK_IntegralToFloating:
628218893Sdim  case CK_FloatingToIntegral:
629218893Sdim  case CK_FloatingToBoolean:
630218893Sdim  case CK_FloatingCast:
631226633Sdim  case CK_CPointerToObjCPointerCast:
632226633Sdim  case CK_BlockPointerToObjCPointerCast:
633218893Sdim  case CK_AnyPointerToBlockPointerCast:
634218893Sdim  case CK_ObjCObjectLValueCast:
635218893Sdim  case CK_FloatingRealToComplex:
636218893Sdim  case CK_FloatingComplexToReal:
637218893Sdim  case CK_FloatingComplexToBoolean:
638218893Sdim  case CK_FloatingComplexCast:
639218893Sdim  case CK_FloatingComplexToIntegralComplex:
640218893Sdim  case CK_IntegralRealToComplex:
641218893Sdim  case CK_IntegralComplexToReal:
642218893Sdim  case CK_IntegralComplexToBoolean:
643218893Sdim  case CK_IntegralComplexCast:
644218893Sdim  case CK_IntegralComplexToFloatingComplex:
645226633Sdim  case CK_ARCProduceObject:
646226633Sdim  case CK_ARCConsumeObject:
647226633Sdim  case CK_ARCReclaimReturnedObject:
648226633Sdim  case CK_ARCExtendBlockObject:
649234353Sdim  case CK_CopyAndAutoreleaseBlockObject:
650243830Sdim  case CK_BuiltinFnToFnPtr:
651218893Sdim    llvm_unreachable("cast kind invalid for aggregate types");
652198398Srdivacky  }
653193326Sed}
654193326Sed
655193326Sedvoid AggExprEmitter::VisitCallExpr(const CallExpr *E) {
656193326Sed  if (E->getCallReturnType()->isReferenceType()) {
657193326Sed    EmitAggLoadOfLValue(E);
658193326Sed    return;
659193326Sed  }
660198092Srdivacky
661208600Srdivacky  RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
662226633Sdim  EmitMoveFromReturnSlot(E, RV);
663193326Sed}
664193326Sed
665193326Sedvoid AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
666208600Srdivacky  RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
667226633Sdim  EmitMoveFromReturnSlot(E, RV);
668193326Sed}
669193326Sed
670193326Sedvoid AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
671218893Sdim  CGF.EmitIgnoredExpr(E->getLHS());
672218893Sdim  Visit(E->getRHS());
673193326Sed}
674193326Sed
675193326Sedvoid AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
676218893Sdim  CodeGenFunction::StmtExprEvaluation eval(CGF);
677218893Sdim  CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
678193326Sed}
679193326Sed
680193326Sedvoid AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
681212904Sdim  if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
682198398Srdivacky    VisitPointerToDataMemberBinaryOperator(E);
683198398Srdivacky  else
684198398Srdivacky    CGF.ErrorUnsupported(E, "aggregate binary expression");
685193326Sed}
686193326Sed
687198398Srdivackyvoid AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
688198398Srdivacky                                                    const BinaryOperator *E) {
689198398Srdivacky  LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
690239462Sdim  EmitFinalDestCopy(E->getType(), LV);
691198398Srdivacky}
692198398Srdivacky
693239462Sdim/// Is the value of the given expression possibly a reference to or
694239462Sdim/// into a __block variable?
695239462Sdimstatic bool isBlockVarRef(const Expr *E) {
696239462Sdim  // Make sure we look through parens.
697239462Sdim  E = E->IgnoreParens();
698239462Sdim
699239462Sdim  // Check for a direct reference to a __block variable.
700239462Sdim  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
701239462Sdim    const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
702239462Sdim    return (var && var->hasAttr<BlocksAttr>());
703239462Sdim  }
704239462Sdim
705239462Sdim  // More complicated stuff.
706239462Sdim
707239462Sdim  // Binary operators.
708239462Sdim  if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
709239462Sdim    // For an assignment or pointer-to-member operation, just care
710239462Sdim    // about the LHS.
711239462Sdim    if (op->isAssignmentOp() || op->isPtrMemOp())
712239462Sdim      return isBlockVarRef(op->getLHS());
713239462Sdim
714239462Sdim    // For a comma, just care about the RHS.
715239462Sdim    if (op->getOpcode() == BO_Comma)
716239462Sdim      return isBlockVarRef(op->getRHS());
717239462Sdim
718239462Sdim    // FIXME: pointer arithmetic?
719239462Sdim    return false;
720239462Sdim
721239462Sdim  // Check both sides of a conditional operator.
722239462Sdim  } else if (const AbstractConditionalOperator *op
723239462Sdim               = dyn_cast<AbstractConditionalOperator>(E)) {
724239462Sdim    return isBlockVarRef(op->getTrueExpr())
725239462Sdim        || isBlockVarRef(op->getFalseExpr());
726239462Sdim
727239462Sdim  // OVEs are required to support BinaryConditionalOperators.
728239462Sdim  } else if (const OpaqueValueExpr *op
729239462Sdim               = dyn_cast<OpaqueValueExpr>(E)) {
730239462Sdim    if (const Expr *src = op->getSourceExpr())
731239462Sdim      return isBlockVarRef(src);
732239462Sdim
733239462Sdim  // Casts are necessary to get things like (*(int*)&var) = foo().
734239462Sdim  // We don't really care about the kind of cast here, except
735239462Sdim  // we don't want to look through l2r casts, because it's okay
736239462Sdim  // to get the *value* in a __block variable.
737239462Sdim  } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
738239462Sdim    if (cast->getCastKind() == CK_LValueToRValue)
739239462Sdim      return false;
740239462Sdim    return isBlockVarRef(cast->getSubExpr());
741239462Sdim
742239462Sdim  // Handle unary operators.  Again, just aggressively look through
743239462Sdim  // it, ignoring the operation.
744239462Sdim  } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
745239462Sdim    return isBlockVarRef(uop->getSubExpr());
746239462Sdim
747239462Sdim  // Look into the base of a field access.
748239462Sdim  } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
749239462Sdim    return isBlockVarRef(mem->getBase());
750239462Sdim
751239462Sdim  // Look into the base of a subscript.
752239462Sdim  } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
753239462Sdim    return isBlockVarRef(sub->getBase());
754239462Sdim  }
755239462Sdim
756239462Sdim  return false;
757239462Sdim}
758239462Sdim
759193326Sedvoid AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
760193326Sed  // For an assignment to work, the value on the right has
761193326Sed  // to be compatible with the value on the left.
762193326Sed  assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
763193326Sed                                                 E->getRHS()->getType())
764193326Sed         && "Invalid assignment");
765218893Sdim
766239462Sdim  // If the LHS might be a __block variable, and the RHS can
767239462Sdim  // potentially cause a block copy, we need to evaluate the RHS first
768239462Sdim  // so that the assignment goes the right place.
769239462Sdim  // This is pretty semantically fragile.
770239462Sdim  if (isBlockVarRef(E->getLHS()) &&
771239462Sdim      E->getRHS()->HasSideEffects(CGF.getContext())) {
772239462Sdim    // Ensure that we have a destination, and evaluate the RHS into that.
773239462Sdim    EnsureDest(E->getRHS()->getType());
774239462Sdim    Visit(E->getRHS());
775239462Sdim
776239462Sdim    // Now emit the LHS and copy into it.
777243830Sdim    LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
778239462Sdim
779239462Sdim    EmitCopy(E->getLHS()->getType(),
780239462Sdim             AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
781239462Sdim                                     needsGC(E->getLHS()->getType()),
782239462Sdim                                     AggValueSlot::IsAliased),
783239462Sdim             Dest);
784239462Sdim    return;
785239462Sdim  }
786221345Sdim
787193326Sed  LValue LHS = CGF.EmitLValue(E->getLHS());
788193326Sed
789234353Sdim  // Codegen the RHS so that it stores directly into the LHS.
790234353Sdim  AggValueSlot LHSSlot =
791234353Sdim    AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
792234353Sdim                            needsGC(E->getLHS()->getType()),
793234353Sdim                            AggValueSlot::IsAliased);
794239462Sdim  CGF.EmitAggExpr(E->getRHS(), LHSSlot);
795239462Sdim
796239462Sdim  // Copy into the destination if the assignment isn't ignored.
797239462Sdim  EmitFinalDestCopy(E->getType(), LHS);
798193326Sed}
799193326Sed
800218893Sdimvoid AggExprEmitter::
801218893SdimVisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
802193326Sed  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
803193326Sed  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
804193326Sed  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
805198092Srdivacky
806218893Sdim  // Bind the common expression if necessary.
807218893Sdim  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
808218893Sdim
809218893Sdim  CodeGenFunction::ConditionalEvaluation eval(CGF);
810201361Srdivacky  CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
811198092Srdivacky
812218893Sdim  // Save whether the destination's lifetime is externally managed.
813226633Sdim  bool isExternallyDestructed = Dest.isExternallyDestructed();
814218893Sdim
815218893Sdim  eval.begin(CGF);
816193326Sed  CGF.EmitBlock(LHSBlock);
817218893Sdim  Visit(E->getTrueExpr());
818218893Sdim  eval.end(CGF);
819198092Srdivacky
820218893Sdim  assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
821218893Sdim  CGF.Builder.CreateBr(ContBlock);
822193326Sed
823218893Sdim  // If the result of an agg expression is unused, then the emission
824218893Sdim  // of the LHS might need to create a destination slot.  That's fine
825218893Sdim  // with us, and we can safely emit the RHS into the same slot, but
826226633Sdim  // we shouldn't claim that it's already being destructed.
827226633Sdim  Dest.setExternallyDestructed(isExternallyDestructed);
828198092Srdivacky
829218893Sdim  eval.begin(CGF);
830193326Sed  CGF.EmitBlock(RHSBlock);
831218893Sdim  Visit(E->getFalseExpr());
832218893Sdim  eval.end(CGF);
833198092Srdivacky
834193326Sed  CGF.EmitBlock(ContBlock);
835193326Sed}
836193326Sed
837198092Srdivackyvoid AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
838198092Srdivacky  Visit(CE->getChosenSubExpr(CGF.getContext()));
839198092Srdivacky}
840198092Srdivacky
841193326Sedvoid AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
842193326Sed  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
843193326Sed  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
844193326Sed
845193326Sed  if (!ArgPtr) {
846193326Sed    CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
847193326Sed    return;
848193326Sed  }
849193326Sed
850239462Sdim  EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
851193326Sed}
852193326Sed
853193326Sedvoid AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
854218893Sdim  // Ensure that we have a slot, but if we already do, remember
855226633Sdim  // whether it was externally destructed.
856226633Sdim  bool wasExternallyDestructed = Dest.isExternallyDestructed();
857239462Sdim  EnsureDest(E->getType());
858198092Srdivacky
859226633Sdim  // We're going to push a destructor if there isn't already one.
860226633Sdim  Dest.setExternallyDestructed();
861226633Sdim
862218893Sdim  Visit(E->getSubExpr());
863193326Sed
864226633Sdim  // Push that destructor we promised.
865226633Sdim  if (!wasExternallyDestructed)
866234353Sdim    CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr());
867193326Sed}
868193326Sed
869193326Sedvoid
870193326SedAggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
871218893Sdim  AggValueSlot Slot = EnsureSlot(E->getType());
872218893Sdim  CGF.EmitCXXConstructExpr(E, Slot);
873193326Sed}
874193326Sed
875234353Sdimvoid
876234353SdimAggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
877234353Sdim  AggValueSlot Slot = EnsureSlot(E->getType());
878234353Sdim  CGF.EmitLambdaExpr(E, Slot);
879234353Sdim}
880234353Sdim
881218893Sdimvoid AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
882234353Sdim  CGF.enterFullExpression(E);
883234353Sdim  CodeGenFunction::RunCleanupsScope cleanups(CGF);
884234353Sdim  Visit(E->getSubExpr());
885193326Sed}
886193326Sed
887210299Sedvoid AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
888218893Sdim  QualType T = E->getType();
889218893Sdim  AggValueSlot Slot = EnsureSlot(T);
890224145Sdim  EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
891198398Srdivacky}
892198398Srdivacky
893201361Srdivackyvoid AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
894218893Sdim  QualType T = E->getType();
895218893Sdim  AggValueSlot Slot = EnsureSlot(T);
896224145Sdim  EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
897218893Sdim}
898201361Srdivacky
899218893Sdim/// isSimpleZero - If emitting this value will obviously just cause a store of
900218893Sdim/// zero to memory, return true.  This can return false if uncertain, so it just
901218893Sdim/// handles simple cases.
902218893Sdimstatic bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
903221345Sdim  E = E->IgnoreParens();
904221345Sdim
905218893Sdim  // 0
906218893Sdim  if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
907218893Sdim    return IL->getValue() == 0;
908218893Sdim  // +0.0
909218893Sdim  if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
910218893Sdim    return FL->getValue().isPosZero();
911218893Sdim  // int()
912218893Sdim  if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
913218893Sdim      CGF.getTypes().isZeroInitializable(E->getType()))
914218893Sdim    return true;
915218893Sdim  // (int*)0 - Null pointer expressions.
916218893Sdim  if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
917218893Sdim    return ICE->getCastKind() == CK_NullToPointer;
918218893Sdim  // '\0'
919218893Sdim  if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
920218893Sdim    return CL->getValue() == 0;
921218893Sdim
922218893Sdim  // Otherwise, hard case: conservatively return false.
923218893Sdim  return false;
924201361Srdivacky}
925201361Srdivacky
926218893Sdim
927203955Srdivackyvoid
928224145SdimAggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
929224145Sdim  QualType type = LV.getType();
930193326Sed  // FIXME: Ignore result?
931193326Sed  // FIXME: Are initializers affected by volatile?
932218893Sdim  if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
933218893Sdim    // Storing "i32 0" to a zero'd memory location is a noop.
934218893Sdim  } else if (isa<ImplicitValueInitExpr>(E)) {
935224145Sdim    EmitNullInitializationToLValue(LV);
936224145Sdim  } else if (type->isReferenceType()) {
937210299Sed    RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
938224145Sdim    CGF.EmitStoreThroughLValue(RV, LV);
939224145Sdim  } else if (type->isAnyComplexType()) {
940193326Sed    CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
941224145Sdim  } else if (CGF.hasAggregateLLVMType(type)) {
942226633Sdim    CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
943226633Sdim                                               AggValueSlot::IsDestructed,
944226633Sdim                                      AggValueSlot::DoesNotNeedGCBarriers,
945226633Sdim                                               AggValueSlot::IsNotAliased,
946224145Sdim                                               Dest.isZeroed()));
947224145Sdim  } else if (LV.isSimple()) {
948224145Sdim    CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false);
949193326Sed  } else {
950224145Sdim    CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
951193326Sed  }
952193326Sed}
953193326Sed
954224145Sdimvoid AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
955224145Sdim  QualType type = lv.getType();
956224145Sdim
957218893Sdim  // If the destination slot is already zeroed out before the aggregate is
958218893Sdim  // copied into it, we don't have to emit any zeros here.
959224145Sdim  if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
960218893Sdim    return;
961218893Sdim
962224145Sdim  if (!CGF.hasAggregateLLVMType(type)) {
963234353Sdim    // For non-aggregates, we can store zero.
964224145Sdim    llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type));
965234353Sdim    // Note that the following is not equivalent to
966234353Sdim    // EmitStoreThroughBitfieldLValue for ARC types.
967234353Sdim    if (lv.isBitField()) {
968234353Sdim      CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
969234353Sdim    } else {
970234353Sdim      assert(lv.isSimple());
971234353Sdim      CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
972234353Sdim    }
973193326Sed  } else {
974193326Sed    // There's a potential optimization opportunity in combining
975193326Sed    // memsets; that would be easy for arrays, but relatively
976193326Sed    // difficult for structures with the current code.
977224145Sdim    CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
978193326Sed  }
979193326Sed}
980193326Sed
981193326Sedvoid AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
982193326Sed#if 0
983200583Srdivacky  // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
984200583Srdivacky  // (Length of globals? Chunks of zeroed-out space?).
985193326Sed  //
986193326Sed  // If we can, prefer a copy from a global; this is a lot less code for long
987193326Sed  // globals, and it's easier for the current optimizers to analyze.
988200583Srdivacky  if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
989193326Sed    llvm::GlobalVariable* GV =
990200583Srdivacky    new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
991200583Srdivacky                             llvm::GlobalValue::InternalLinkage, C, "");
992239462Sdim    EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
993193326Sed    return;
994193326Sed  }
995193326Sed#endif
996218893Sdim  if (E->hadArrayRangeDesignator())
997193326Sed    CGF.ErrorUnsupported(E, "GNU array range designator extension");
998193326Sed
999234353Sdim  if (E->initializesStdInitializerList()) {
1000234353Sdim    EmitStdInitializerList(Dest.getAddr(), E);
1001234353Sdim    return;
1002234353Sdim  }
1003218893Sdim
1004234982Sdim  AggValueSlot Dest = EnsureSlot(E->getType());
1005234982Sdim  LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(),
1006234982Sdim                                     Dest.getAlignment());
1007234353Sdim
1008193326Sed  // Handle initialization of an array.
1009193326Sed  if (E->getType()->isArrayType()) {
1010234982Sdim    if (E->isStringLiteralInit())
1011234982Sdim      return Visit(E->getInit(0));
1012193326Sed
1013234353Sdim    QualType elementType =
1014234353Sdim        CGF.getContext().getAsArrayType(E->getType())->getElementType();
1015193326Sed
1016234353Sdim    llvm::PointerType *APType =
1017234982Sdim      cast<llvm::PointerType>(Dest.getAddr()->getType());
1018234353Sdim    llvm::ArrayType *AType =
1019234353Sdim      cast<llvm::ArrayType>(APType->getElementType());
1020224145Sdim
1021234982Sdim    EmitArrayInit(Dest.getAddr(), AType, elementType, E);
1022193326Sed    return;
1023193326Sed  }
1024198092Srdivacky
1025193326Sed  assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1026198092Srdivacky
1027193326Sed  // Do struct initialization; this code just sets each individual member
1028193326Sed  // to the approprate value.  This makes bitfield support automatic;
1029193326Sed  // the disadvantage is that the generated code is more difficult for
1030193326Sed  // the optimizer, especially with bitfields.
1031193326Sed  unsigned NumInitElements = E->getNumInits();
1032224145Sdim  RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1033212904Sdim
1034224145Sdim  if (record->isUnion()) {
1035193326Sed    // Only initialize one field of a union. The field itself is
1036193326Sed    // specified by the initializer list.
1037193326Sed    if (!E->getInitializedFieldInUnion()) {
1038193326Sed      // Empty union; we have nothing to do.
1039198092Srdivacky
1040193326Sed#ifndef NDEBUG
1041193326Sed      // Make sure that it's really an empty and not a failure of
1042193326Sed      // semantic analysis.
1043224145Sdim      for (RecordDecl::field_iterator Field = record->field_begin(),
1044224145Sdim                                   FieldEnd = record->field_end();
1045193326Sed           Field != FieldEnd; ++Field)
1046193326Sed        assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1047193326Sed#endif
1048193326Sed      return;
1049193326Sed    }
1050193326Sed
1051193326Sed    // FIXME: volatility
1052193326Sed    FieldDecl *Field = E->getInitializedFieldInUnion();
1053218893Sdim
1054234982Sdim    LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1055193326Sed    if (NumInitElements) {
1056193326Sed      // Store the initializer into the field
1057224145Sdim      EmitInitializationToLValue(E->getInit(0), FieldLoc);
1058193326Sed    } else {
1059218893Sdim      // Default-initialize to null.
1060224145Sdim      EmitNullInitializationToLValue(FieldLoc);
1061193326Sed    }
1062193326Sed
1063193326Sed    return;
1064193326Sed  }
1065198092Srdivacky
1066224145Sdim  // We'll need to enter cleanup scopes in case any of the member
1067224145Sdim  // initializers throw an exception.
1068226633Sdim  SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1069234353Sdim  llvm::Instruction *cleanupDominator = 0;
1070224145Sdim
1071193326Sed  // Here we iterate over the fields; this makes it simpler to both
1072193326Sed  // default-initialize fields and skip over unnamed fields.
1073224145Sdim  unsigned curInitIndex = 0;
1074224145Sdim  for (RecordDecl::field_iterator field = record->field_begin(),
1075224145Sdim                               fieldEnd = record->field_end();
1076224145Sdim       field != fieldEnd; ++field) {
1077224145Sdim    // We're done once we hit the flexible array member.
1078224145Sdim    if (field->getType()->isIncompleteArrayType())
1079193326Sed      break;
1080193326Sed
1081224145Sdim    // Always skip anonymous bitfields.
1082224145Sdim    if (field->isUnnamedBitfield())
1083193326Sed      continue;
1084193326Sed
1085224145Sdim    // We're done if we reach the end of the explicit initializers, we
1086224145Sdim    // have a zeroed object, and the rest of the fields are
1087224145Sdim    // zero-initializable.
1088224145Sdim    if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1089218893Sdim        CGF.getTypes().isZeroInitializable(E->getType()))
1090218893Sdim      break;
1091218893Sdim
1092234982Sdim
1093234982Sdim    LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, *field);
1094193326Sed    // We never generate write-barries for initialized fields.
1095224145Sdim    LV.setNonGC(true);
1096218893Sdim
1097224145Sdim    if (curInitIndex < NumInitElements) {
1098204962Srdivacky      // Store the initializer into the field.
1099224145Sdim      EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1100193326Sed    } else {
1101193326Sed      // We're out of initalizers; default-initialize to null
1102224145Sdim      EmitNullInitializationToLValue(LV);
1103193326Sed    }
1104224145Sdim
1105224145Sdim    // Push a destructor if necessary.
1106224145Sdim    // FIXME: if we have an array of structures, all explicitly
1107224145Sdim    // initialized, we can end up pushing a linear number of cleanups.
1108224145Sdim    bool pushedCleanup = false;
1109224145Sdim    if (QualType::DestructionKind dtorKind
1110224145Sdim          = field->getType().isDestructedType()) {
1111224145Sdim      assert(LV.isSimple());
1112224145Sdim      if (CGF.needsEHCleanup(dtorKind)) {
1113234353Sdim        if (!cleanupDominator)
1114234353Sdim          cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder
1115234353Sdim
1116224145Sdim        CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
1117224145Sdim                        CGF.getDestroyer(dtorKind), false);
1118224145Sdim        cleanups.push_back(CGF.EHStack.stable_begin());
1119224145Sdim        pushedCleanup = true;
1120224145Sdim      }
1121224145Sdim    }
1122218893Sdim
1123218893Sdim    // If the GEP didn't get used because of a dead zero init or something
1124218893Sdim    // else, clean it up for -O0 builds and general tidiness.
1125224145Sdim    if (!pushedCleanup && LV.isSimple())
1126218893Sdim      if (llvm::GetElementPtrInst *GEP =
1127224145Sdim            dyn_cast<llvm::GetElementPtrInst>(LV.getAddress()))
1128218893Sdim        if (GEP->use_empty())
1129218893Sdim          GEP->eraseFromParent();
1130193326Sed  }
1131224145Sdim
1132224145Sdim  // Deactivate all the partial cleanups in reverse order, which
1133224145Sdim  // generally means popping them.
1134224145Sdim  for (unsigned i = cleanups.size(); i != 0; --i)
1135234353Sdim    CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1136234353Sdim
1137234353Sdim  // Destroy the placeholder if we made one.
1138234353Sdim  if (cleanupDominator)
1139234353Sdim    cleanupDominator->eraseFromParent();
1140193326Sed}
1141193326Sed
1142193326Sed//===----------------------------------------------------------------------===//
1143193326Sed//                        Entry Points into this File
1144193326Sed//===----------------------------------------------------------------------===//
1145193326Sed
1146218893Sdim/// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1147218893Sdim/// non-zero bytes that will be stored when outputting the initializer for the
1148218893Sdim/// specified initializer expression.
1149221345Sdimstatic CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1150221345Sdim  E = E->IgnoreParens();
1151218893Sdim
1152218893Sdim  // 0 and 0.0 won't require any non-zero stores!
1153221345Sdim  if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1154218893Sdim
1155218893Sdim  // If this is an initlist expr, sum up the size of sizes of the (present)
1156218893Sdim  // elements.  If this is something weird, assume the whole thing is non-zero.
1157218893Sdim  const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1158218893Sdim  if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1159221345Sdim    return CGF.getContext().getTypeSizeInChars(E->getType());
1160218893Sdim
1161218893Sdim  // InitListExprs for structs have to be handled carefully.  If there are
1162218893Sdim  // reference members, we need to consider the size of the reference, not the
1163218893Sdim  // referencee.  InitListExprs for unions and arrays can't have references.
1164218893Sdim  if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1165218893Sdim    if (!RT->isUnionType()) {
1166218893Sdim      RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
1167221345Sdim      CharUnits NumNonZeroBytes = CharUnits::Zero();
1168218893Sdim
1169218893Sdim      unsigned ILEElement = 0;
1170218893Sdim      for (RecordDecl::field_iterator Field = SD->field_begin(),
1171218893Sdim           FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
1172218893Sdim        // We're done once we hit the flexible array member or run out of
1173218893Sdim        // InitListExpr elements.
1174218893Sdim        if (Field->getType()->isIncompleteArrayType() ||
1175218893Sdim            ILEElement == ILE->getNumInits())
1176218893Sdim          break;
1177218893Sdim        if (Field->isUnnamedBitfield())
1178218893Sdim          continue;
1179218893Sdim
1180218893Sdim        const Expr *E = ILE->getInit(ILEElement++);
1181218893Sdim
1182218893Sdim        // Reference values are always non-null and have the width of a pointer.
1183218893Sdim        if (Field->getType()->isReferenceType())
1184221345Sdim          NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1185226633Sdim              CGF.getContext().getTargetInfo().getPointerWidth(0));
1186218893Sdim        else
1187218893Sdim          NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1188218893Sdim      }
1189218893Sdim
1190218893Sdim      return NumNonZeroBytes;
1191218893Sdim    }
1192218893Sdim  }
1193218893Sdim
1194218893Sdim
1195221345Sdim  CharUnits NumNonZeroBytes = CharUnits::Zero();
1196218893Sdim  for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1197218893Sdim    NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1198218893Sdim  return NumNonZeroBytes;
1199218893Sdim}
1200218893Sdim
1201218893Sdim/// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1202218893Sdim/// zeros in it, emit a memset and avoid storing the individual zeros.
1203218893Sdim///
1204218893Sdimstatic void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1205218893Sdim                                     CodeGenFunction &CGF) {
1206218893Sdim  // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1207218893Sdim  // volatile stores.
1208218893Sdim  if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
1209221345Sdim
1210221345Sdim  // C++ objects with a user-declared constructor don't need zero'ing.
1211243830Sdim  if (CGF.getLangOpts().CPlusPlus)
1212221345Sdim    if (const RecordType *RT = CGF.getContext()
1213221345Sdim                       .getBaseElementType(E->getType())->getAs<RecordType>()) {
1214221345Sdim      const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1215221345Sdim      if (RD->hasUserDeclaredConstructor())
1216221345Sdim        return;
1217221345Sdim    }
1218221345Sdim
1219218893Sdim  // If the type is 16-bytes or smaller, prefer individual stores over memset.
1220221345Sdim  std::pair<CharUnits, CharUnits> TypeInfo =
1221221345Sdim    CGF.getContext().getTypeInfoInChars(E->getType());
1222221345Sdim  if (TypeInfo.first <= CharUnits::fromQuantity(16))
1223218893Sdim    return;
1224218893Sdim
1225218893Sdim  // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1226218893Sdim  // we prefer to emit memset + individual stores for the rest.
1227221345Sdim  CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1228221345Sdim  if (NumNonZeroBytes*4 > TypeInfo.first)
1229218893Sdim    return;
1230218893Sdim
1231218893Sdim  // Okay, it seems like a good idea to use an initial memset, emit the call.
1232221345Sdim  llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
1233221345Sdim  CharUnits Align = TypeInfo.second;
1234218893Sdim
1235218893Sdim  llvm::Value *Loc = Slot.getAddr();
1236218893Sdim
1237234353Sdim  Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy);
1238221345Sdim  CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
1239221345Sdim                           Align.getQuantity(), false);
1240218893Sdim
1241218893Sdim  // Tell the AggExprEmitter that the slot is known zero.
1242218893Sdim  Slot.setZeroed();
1243218893Sdim}
1244218893Sdim
1245218893Sdim
1246218893Sdim
1247218893Sdim
1248193326Sed/// EmitAggExpr - Emit the computation of the specified expression of aggregate
1249193326Sed/// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1250193326Sed/// the value of the aggregate expression is not needed.  If VolatileDest is
1251193326Sed/// true, DestPtr cannot be 0.
1252239462Sdimvoid CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1253193326Sed  assert(E && hasAggregateLLVMType(E->getType()) &&
1254193326Sed         "Invalid aggregate expression to emit");
1255218893Sdim  assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
1256218893Sdim         "slot has bits but no address");
1257198092Srdivacky
1258218893Sdim  // Optimize the slot if possible.
1259218893Sdim  CheckAggExprForMemSetUse(Slot, E, *this);
1260218893Sdim
1261239462Sdim  AggExprEmitter(*this, Slot).Visit(const_cast<Expr*>(E));
1262193326Sed}
1263193326Sed
1264203955SrdivackyLValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1265203955Srdivacky  assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
1266203955Srdivacky  llvm::Value *Temp = CreateMemTemp(E->getType());
1267212904Sdim  LValue LV = MakeAddrLValue(Temp, E->getType());
1268226633Sdim  EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1269226633Sdim                                         AggValueSlot::DoesNotNeedGCBarriers,
1270226633Sdim                                         AggValueSlot::IsNotAliased));
1271212904Sdim  return LV;
1272203955Srdivacky}
1273203955Srdivacky
1274193326Sedvoid CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
1275193326Sed                                        llvm::Value *SrcPtr, QualType Ty,
1276239462Sdim                                        bool isVolatile,
1277243830Sdim                                        CharUnits alignment,
1278243830Sdim                                        bool isAssignment) {
1279193326Sed  assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1280198092Srdivacky
1281243830Sdim  if (getLangOpts().CPlusPlus) {
1282207619Srdivacky    if (const RecordType *RT = Ty->getAs<RecordType>()) {
1283208600Srdivacky      CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1284208600Srdivacky      assert((Record->hasTrivialCopyConstructor() ||
1285226633Sdim              Record->hasTrivialCopyAssignment() ||
1286226633Sdim              Record->hasTrivialMoveConstructor() ||
1287226633Sdim              Record->hasTrivialMoveAssignment()) &&
1288208600Srdivacky             "Trying to aggregate-copy a type without a trivial copy "
1289208600Srdivacky             "constructor or assignment operator");
1290208600Srdivacky      // Ignore empty classes in C++.
1291208600Srdivacky      if (Record->isEmpty())
1292207619Srdivacky        return;
1293207619Srdivacky    }
1294207619Srdivacky  }
1295207619Srdivacky
1296193326Sed  // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1297193326Sed  // C99 6.5.16.1p3, which states "If the value being stored in an object is
1298193326Sed  // read from another object that overlaps in anyway the storage of the first
1299193326Sed  // object, then the overlap shall be exact and the two objects shall have
1300193326Sed  // qualified or unqualified versions of a compatible type."
1301193326Sed  //
1302193326Sed  // memcpy is not defined if the source and destination pointers are exactly
1303193326Sed  // equal, but other compilers do this optimization, and almost every memcpy
1304193326Sed  // implementation handles this case safely.  If there is a libc that does not
1305193326Sed  // safely handle this, we can add a target hook.
1306198092Srdivacky
1307243830Sdim  // Get data size and alignment info for this aggregate. If this is an
1308243830Sdim  // assignment don't copy the tail padding. Otherwise copying it is fine.
1309243830Sdim  std::pair<CharUnits, CharUnits> TypeInfo;
1310243830Sdim  if (isAssignment)
1311243830Sdim    TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1312243830Sdim  else
1313243830Sdim    TypeInfo = getContext().getTypeInfoInChars(Ty);
1314198092Srdivacky
1315239462Sdim  if (alignment.isZero())
1316239462Sdim    alignment = TypeInfo.second;
1317234353Sdim
1318193326Sed  // FIXME: Handle variable sized types.
1319198092Srdivacky
1320193326Sed  // FIXME: If we have a volatile struct, the optimizer can remove what might
1321193326Sed  // appear to be `extra' memory ops:
1322193326Sed  //
1323193326Sed  // volatile struct { int i; } a, b;
1324193326Sed  //
1325193326Sed  // int main() {
1326193326Sed  //   a = b;
1327193326Sed  //   a = b;
1328193326Sed  // }
1329193326Sed  //
1330206275Srdivacky  // we need to use a different call here.  We use isVolatile to indicate when
1331193326Sed  // either the source or the destination is volatile.
1332206275Srdivacky
1333226633Sdim  llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
1334226633Sdim  llvm::Type *DBP =
1335218893Sdim    llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
1336226633Sdim  DestPtr = Builder.CreateBitCast(DestPtr, DBP);
1337206275Srdivacky
1338226633Sdim  llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
1339226633Sdim  llvm::Type *SBP =
1340218893Sdim    llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
1341226633Sdim  SrcPtr = Builder.CreateBitCast(SrcPtr, SBP);
1342206275Srdivacky
1343224145Sdim  // Don't do any of the memmove_collectable tests if GC isn't set.
1344234353Sdim  if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
1345224145Sdim    // fall through
1346224145Sdim  } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1347210299Sed    RecordDecl *Record = RecordTy->getDecl();
1348210299Sed    if (Record->hasObjectMember()) {
1349221345Sdim      CharUnits size = TypeInfo.first;
1350226633Sdim      llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1351221345Sdim      llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
1352210299Sed      CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1353210299Sed                                                    SizeVal);
1354210299Sed      return;
1355210299Sed    }
1356224145Sdim  } else if (Ty->isArrayType()) {
1357210299Sed    QualType BaseType = getContext().getBaseElementType(Ty);
1358210299Sed    if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1359210299Sed      if (RecordTy->getDecl()->hasObjectMember()) {
1360221345Sdim        CharUnits size = TypeInfo.first;
1361226633Sdim        llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1362221345Sdim        llvm::Value *SizeVal =
1363221345Sdim          llvm::ConstantInt::get(SizeTy, size.getQuantity());
1364210299Sed        CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1365210299Sed                                                      SizeVal);
1366210299Sed        return;
1367210299Sed      }
1368210299Sed    }
1369210299Sed  }
1370243830Sdim
1371243830Sdim  // Determine the metadata to describe the position of any padding in this
1372243830Sdim  // memcpy, as well as the TBAA tags for the members of the struct, in case
1373243830Sdim  // the optimizer wishes to expand it in to scalar memory operations.
1374243830Sdim  llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty);
1375210299Sed
1376218893Sdim  Builder.CreateMemCpy(DestPtr, SrcPtr,
1377221345Sdim                       llvm::ConstantInt::get(IntPtrTy,
1378221345Sdim                                              TypeInfo.first.getQuantity()),
1379243830Sdim                       alignment.getQuantity(), isVolatile,
1380243830Sdim                       /*TBAATag=*/0, TBAAStructTag);
1381193326Sed}
1382234353Sdim
1383234353Sdimvoid CodeGenFunction::MaybeEmitStdInitializerListCleanup(llvm::Value *loc,
1384234353Sdim                                                         const Expr *init) {
1385234353Sdim  const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(init);
1386234353Sdim  if (cleanups)
1387234353Sdim    init = cleanups->getSubExpr();
1388234353Sdim
1389234353Sdim  if (isa<InitListExpr>(init) &&
1390234353Sdim      cast<InitListExpr>(init)->initializesStdInitializerList()) {
1391234353Sdim    // We initialized this std::initializer_list with an initializer list.
1392234353Sdim    // A backing array was created. Push a cleanup for it.
1393234353Sdim    EmitStdInitializerListCleanup(loc, cast<InitListExpr>(init));
1394234353Sdim  }
1395234353Sdim}
1396234353Sdim
1397234353Sdimstatic void EmitRecursiveStdInitializerListCleanup(CodeGenFunction &CGF,
1398234353Sdim                                                   llvm::Value *arrayStart,
1399234353Sdim                                                   const InitListExpr *init) {
1400234353Sdim  // Check if there are any recursive cleanups to do, i.e. if we have
1401234353Sdim  //   std::initializer_list<std::initializer_list<obj>> list = {{obj()}};
1402234353Sdim  // then we need to destroy the inner array as well.
1403234353Sdim  for (unsigned i = 0, e = init->getNumInits(); i != e; ++i) {
1404234353Sdim    const InitListExpr *subInit = dyn_cast<InitListExpr>(init->getInit(i));
1405234353Sdim    if (!subInit || !subInit->initializesStdInitializerList())
1406234353Sdim      continue;
1407234353Sdim
1408234353Sdim    // This one needs to be destroyed. Get the address of the std::init_list.
1409234353Sdim    llvm::Value *offset = llvm::ConstantInt::get(CGF.SizeTy, i);
1410234353Sdim    llvm::Value *loc = CGF.Builder.CreateInBoundsGEP(arrayStart, offset,
1411234353Sdim                                                 "std.initlist");
1412234353Sdim    CGF.EmitStdInitializerListCleanup(loc, subInit);
1413234353Sdim  }
1414234353Sdim}
1415234353Sdim
1416234353Sdimvoid CodeGenFunction::EmitStdInitializerListCleanup(llvm::Value *loc,
1417234353Sdim                                                    const InitListExpr *init) {
1418234353Sdim  ASTContext &ctx = getContext();
1419234353Sdim  QualType element = GetStdInitializerListElementType(init->getType());
1420234353Sdim  unsigned numInits = init->getNumInits();
1421234353Sdim  llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits);
1422234353Sdim  QualType array =ctx.getConstantArrayType(element, size, ArrayType::Normal, 0);
1423234353Sdim  QualType arrayPtr = ctx.getPointerType(array);
1424234353Sdim  llvm::Type *arrayPtrType = ConvertType(arrayPtr);
1425234353Sdim
1426234353Sdim  // lvalue is the location of a std::initializer_list, which as its first
1427234353Sdim  // element has a pointer to the array we want to destroy.
1428234353Sdim  llvm::Value *startPointer = Builder.CreateStructGEP(loc, 0, "startPointer");
1429234353Sdim  llvm::Value *startAddress = Builder.CreateLoad(startPointer, "startAddress");
1430234353Sdim
1431234353Sdim  ::EmitRecursiveStdInitializerListCleanup(*this, startAddress, init);
1432234353Sdim
1433234353Sdim  llvm::Value *arrayAddress =
1434234353Sdim      Builder.CreateBitCast(startAddress, arrayPtrType, "arrayAddress");
1435234353Sdim  ::EmitStdInitializerListCleanup(*this, array, arrayAddress, init);
1436234353Sdim}
1437