CGExprAgg.cpp revision 234982
1//===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Aggregate Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
16#include "CGObjCRuntime.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/StmtVisitor.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Intrinsics.h"
25using namespace clang;
26using namespace CodeGen;
27
28//===----------------------------------------------------------------------===//
29//                        Aggregate Expression Emitter
30//===----------------------------------------------------------------------===//
31
32namespace  {
33class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
34  CodeGenFunction &CGF;
35  CGBuilderTy &Builder;
36  AggValueSlot Dest;
37  bool IgnoreResult;
38
39  /// We want to use 'dest' as the return slot except under two
40  /// conditions:
41  ///   - The destination slot requires garbage collection, so we
42  ///     need to use the GC API.
43  ///   - The destination slot is potentially aliased.
44  bool shouldUseDestForReturnSlot() const {
45    return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
46  }
47
48  ReturnValueSlot getReturnValueSlot() const {
49    if (!shouldUseDestForReturnSlot())
50      return ReturnValueSlot();
51
52    return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
53  }
54
55  AggValueSlot EnsureSlot(QualType T) {
56    if (!Dest.isIgnored()) return Dest;
57    return CGF.CreateAggTemp(T, "agg.tmp.ensured");
58  }
59
60public:
61  AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
62                 bool ignore)
63    : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
64      IgnoreResult(ignore) {
65  }
66
67  //===--------------------------------------------------------------------===//
68  //                               Utilities
69  //===--------------------------------------------------------------------===//
70
71  /// EmitAggLoadOfLValue - Given an expression with aggregate type that
72  /// represents a value lvalue, this method emits the address of the lvalue,
73  /// then loads the result into DestPtr.
74  void EmitAggLoadOfLValue(const Expr *E);
75
76  /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
77  void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
78  void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false,
79                         unsigned Alignment = 0);
80
81  void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
82
83  void EmitStdInitializerList(llvm::Value *DestPtr, InitListExpr *InitList);
84  void EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
85                     QualType elementType, InitListExpr *E);
86
87  AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
88    if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
89      return AggValueSlot::NeedsGCBarriers;
90    return AggValueSlot::DoesNotNeedGCBarriers;
91  }
92
93  bool TypeRequiresGCollection(QualType T);
94
95  //===--------------------------------------------------------------------===//
96  //                            Visitor Methods
97  //===--------------------------------------------------------------------===//
98
99  void VisitStmt(Stmt *S) {
100    CGF.ErrorUnsupported(S, "aggregate expression");
101  }
102  void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
103  void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
104    Visit(GE->getResultExpr());
105  }
106  void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
107  void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
108    return Visit(E->getReplacement());
109  }
110
111  // l-values.
112  void VisitDeclRefExpr(DeclRefExpr *E) {
113    // For aggregates, we should always be able to emit the variable
114    // as an l-value unless it's a reference.  This is due to the fact
115    // that we can't actually ever see a normal l2r conversion on an
116    // aggregate in C++, and in C there's no language standard
117    // actively preventing us from listing variables in the captures
118    // list of a block.
119    if (E->getDecl()->getType()->isReferenceType()) {
120      if (CodeGenFunction::ConstantEmission result
121            = CGF.tryEmitAsConstant(E)) {
122        EmitFinalDestCopy(E, result.getReferenceLValue(CGF, E));
123        return;
124      }
125    }
126
127    EmitAggLoadOfLValue(E);
128  }
129
130  void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
131  void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
132  void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
133  void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
134  void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
135    EmitAggLoadOfLValue(E);
136  }
137  void VisitPredefinedExpr(const PredefinedExpr *E) {
138    EmitAggLoadOfLValue(E);
139  }
140
141  // Operators.
142  void VisitCastExpr(CastExpr *E);
143  void VisitCallExpr(const CallExpr *E);
144  void VisitStmtExpr(const StmtExpr *E);
145  void VisitBinaryOperator(const BinaryOperator *BO);
146  void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
147  void VisitBinAssign(const BinaryOperator *E);
148  void VisitBinComma(const BinaryOperator *E);
149
150  void VisitObjCMessageExpr(ObjCMessageExpr *E);
151  void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
152    EmitAggLoadOfLValue(E);
153  }
154
155  void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
156  void VisitChooseExpr(const ChooseExpr *CE);
157  void VisitInitListExpr(InitListExpr *E);
158  void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
159  void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
160    Visit(DAE->getExpr());
161  }
162  void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
163  void VisitCXXConstructExpr(const CXXConstructExpr *E);
164  void VisitLambdaExpr(LambdaExpr *E);
165  void VisitExprWithCleanups(ExprWithCleanups *E);
166  void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
167  void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
168  void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
169  void VisitOpaqueValueExpr(OpaqueValueExpr *E);
170
171  void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
172    if (E->isGLValue()) {
173      LValue LV = CGF.EmitPseudoObjectLValue(E);
174      return EmitFinalDestCopy(E, LV);
175    }
176
177    CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
178  }
179
180  void VisitVAArgExpr(VAArgExpr *E);
181
182  void EmitInitializationToLValue(Expr *E, LValue Address);
183  void EmitNullInitializationToLValue(LValue Address);
184  //  case Expr::ChooseExprClass:
185  void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
186  void VisitAtomicExpr(AtomicExpr *E) {
187    CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr());
188  }
189};
190}  // end anonymous namespace.
191
192//===----------------------------------------------------------------------===//
193//                                Utilities
194//===----------------------------------------------------------------------===//
195
196/// EmitAggLoadOfLValue - Given an expression with aggregate type that
197/// represents a value lvalue, this method emits the address of the lvalue,
198/// then loads the result into DestPtr.
199void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
200  LValue LV = CGF.EmitLValue(E);
201  EmitFinalDestCopy(E, LV);
202}
203
204/// \brief True if the given aggregate type requires special GC API calls.
205bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
206  // Only record types have members that might require garbage collection.
207  const RecordType *RecordTy = T->getAs<RecordType>();
208  if (!RecordTy) return false;
209
210  // Don't mess with non-trivial C++ types.
211  RecordDecl *Record = RecordTy->getDecl();
212  if (isa<CXXRecordDecl>(Record) &&
213      (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
214       !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
215    return false;
216
217  // Check whether the type has an object member.
218  return Record->hasObjectMember();
219}
220
221/// \brief Perform the final move to DestPtr if for some reason
222/// getReturnValueSlot() didn't use it directly.
223///
224/// The idea is that you do something like this:
225///   RValue Result = EmitSomething(..., getReturnValueSlot());
226///   EmitMoveFromReturnSlot(E, Result);
227///
228/// If nothing interferes, this will cause the result to be emitted
229/// directly into the return value slot.  Otherwise, a final move
230/// will be performed.
231void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue Src) {
232  if (shouldUseDestForReturnSlot()) {
233    // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
234    // The possibility of undef rvalues complicates that a lot,
235    // though, so we can't really assert.
236    return;
237  }
238
239  // Otherwise, do a final copy,
240  assert(Dest.getAddr() != Src.getAggregateAddr());
241  std::pair<CharUnits, CharUnits> TypeInfo =
242    CGF.getContext().getTypeInfoInChars(E->getType());
243  CharUnits Alignment = std::min(TypeInfo.second, Dest.getAlignment());
244  EmitFinalDestCopy(E, Src, /*Ignore*/ true, Alignment.getQuantity());
245}
246
247/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
248void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore,
249                                       unsigned Alignment) {
250  assert(Src.isAggregate() && "value must be aggregate value!");
251
252  // If Dest is ignored, then we're evaluating an aggregate expression
253  // in a context (like an expression statement) that doesn't care
254  // about the result.  C says that an lvalue-to-rvalue conversion is
255  // performed in these cases; C++ says that it is not.  In either
256  // case, we don't actually need to do anything unless the value is
257  // volatile.
258  if (Dest.isIgnored()) {
259    if (!Src.isVolatileQualified() ||
260        CGF.CGM.getLangOpts().CPlusPlus ||
261        (IgnoreResult && Ignore))
262      return;
263
264    // If the source is volatile, we must read from it; to do that, we need
265    // some place to put it.
266    Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
267  }
268
269  if (Dest.requiresGCollection()) {
270    CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
271    llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
272    llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
273    CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
274                                                      Dest.getAddr(),
275                                                      Src.getAggregateAddr(),
276                                                      SizeVal);
277    return;
278  }
279  // If the result of the assignment is used, copy the LHS there also.
280  // FIXME: Pass VolatileDest as well.  I think we also need to merge volatile
281  // from the source as well, as we can't eliminate it if either operand
282  // is volatile, unless copy has volatile for both source and destination..
283  CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
284                        Dest.isVolatile()|Src.isVolatileQualified(),
285                        Alignment);
286}
287
288/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
289void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
290  assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
291
292  CharUnits Alignment = std::min(Src.getAlignment(), Dest.getAlignment());
293  EmitFinalDestCopy(E, Src.asAggregateRValue(), Ignore, Alignment.getQuantity());
294}
295
296static QualType GetStdInitializerListElementType(QualType T) {
297  // Just assume that this is really std::initializer_list.
298  ClassTemplateSpecializationDecl *specialization =
299      cast<ClassTemplateSpecializationDecl>(T->castAs<RecordType>()->getDecl());
300  return specialization->getTemplateArgs()[0].getAsType();
301}
302
303/// \brief Prepare cleanup for the temporary array.
304static void EmitStdInitializerListCleanup(CodeGenFunction &CGF,
305                                          QualType arrayType,
306                                          llvm::Value *addr,
307                                          const InitListExpr *initList) {
308  QualType::DestructionKind dtorKind = arrayType.isDestructedType();
309  if (!dtorKind)
310    return; // Type doesn't need destroying.
311  if (dtorKind != QualType::DK_cxx_destructor) {
312    CGF.ErrorUnsupported(initList, "ObjC ARC type in initializer_list");
313    return;
314  }
315
316  CodeGenFunction::Destroyer *destroyer = CGF.getDestroyer(dtorKind);
317  CGF.pushDestroy(NormalAndEHCleanup, addr, arrayType, destroyer,
318                  /*EHCleanup=*/true);
319}
320
321/// \brief Emit the initializer for a std::initializer_list initialized with a
322/// real initializer list.
323void AggExprEmitter::EmitStdInitializerList(llvm::Value *destPtr,
324                                            InitListExpr *initList) {
325  // We emit an array containing the elements, then have the init list point
326  // at the array.
327  ASTContext &ctx = CGF.getContext();
328  unsigned numInits = initList->getNumInits();
329  QualType element = GetStdInitializerListElementType(initList->getType());
330  llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits);
331  QualType array = ctx.getConstantArrayType(element, size, ArrayType::Normal,0);
332  llvm::Type *LTy = CGF.ConvertTypeForMem(array);
333  llvm::AllocaInst *alloc = CGF.CreateTempAlloca(LTy);
334  alloc->setAlignment(ctx.getTypeAlignInChars(array).getQuantity());
335  alloc->setName(".initlist.");
336
337  EmitArrayInit(alloc, cast<llvm::ArrayType>(LTy), element, initList);
338
339  // FIXME: The diagnostics are somewhat out of place here.
340  RecordDecl *record = initList->getType()->castAs<RecordType>()->getDecl();
341  RecordDecl::field_iterator field = record->field_begin();
342  if (field == record->field_end()) {
343    CGF.ErrorUnsupported(initList, "weird std::initializer_list");
344    return;
345  }
346
347  QualType elementPtr = ctx.getPointerType(element.withConst());
348
349  // Start pointer.
350  if (!ctx.hasSameType(field->getType(), elementPtr)) {
351    CGF.ErrorUnsupported(initList, "weird std::initializer_list");
352    return;
353  }
354  LValue DestLV = CGF.MakeNaturalAlignAddrLValue(destPtr, initList->getType());
355  LValue start = CGF.EmitLValueForFieldInitialization(DestLV, *field);
356  llvm::Value *arrayStart = Builder.CreateStructGEP(alloc, 0, "arraystart");
357  CGF.EmitStoreThroughLValue(RValue::get(arrayStart), start);
358  ++field;
359
360  if (field == record->field_end()) {
361    CGF.ErrorUnsupported(initList, "weird std::initializer_list");
362    return;
363  }
364  LValue endOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *field);
365  if (ctx.hasSameType(field->getType(), elementPtr)) {
366    // End pointer.
367    llvm::Value *arrayEnd = Builder.CreateStructGEP(alloc,numInits, "arrayend");
368    CGF.EmitStoreThroughLValue(RValue::get(arrayEnd), endOrLength);
369  } else if(ctx.hasSameType(field->getType(), ctx.getSizeType())) {
370    // Length.
371    CGF.EmitStoreThroughLValue(RValue::get(Builder.getInt(size)), endOrLength);
372  } else {
373    CGF.ErrorUnsupported(initList, "weird std::initializer_list");
374    return;
375  }
376
377  if (!Dest.isExternallyDestructed())
378    EmitStdInitializerListCleanup(CGF, array, alloc, initList);
379}
380
381/// \brief Emit initialization of an array from an initializer list.
382void AggExprEmitter::EmitArrayInit(llvm::Value *DestPtr, llvm::ArrayType *AType,
383                                   QualType elementType, InitListExpr *E) {
384  uint64_t NumInitElements = E->getNumInits();
385
386  uint64_t NumArrayElements = AType->getNumElements();
387  assert(NumInitElements <= NumArrayElements);
388
389  // DestPtr is an array*.  Construct an elementType* by drilling
390  // down a level.
391  llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
392  llvm::Value *indices[] = { zero, zero };
393  llvm::Value *begin =
394    Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");
395
396  // Exception safety requires us to destroy all the
397  // already-constructed members if an initializer throws.
398  // For that, we'll need an EH cleanup.
399  QualType::DestructionKind dtorKind = elementType.isDestructedType();
400  llvm::AllocaInst *endOfInit = 0;
401  EHScopeStack::stable_iterator cleanup;
402  llvm::Instruction *cleanupDominator = 0;
403  if (CGF.needsEHCleanup(dtorKind)) {
404    // In principle we could tell the cleanup where we are more
405    // directly, but the control flow can get so varied here that it
406    // would actually be quite complex.  Therefore we go through an
407    // alloca.
408    endOfInit = CGF.CreateTempAlloca(begin->getType(),
409                                     "arrayinit.endOfInit");
410    cleanupDominator = Builder.CreateStore(begin, endOfInit);
411    CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
412                                         CGF.getDestroyer(dtorKind));
413    cleanup = CGF.EHStack.stable_begin();
414
415  // Otherwise, remember that we didn't need a cleanup.
416  } else {
417    dtorKind = QualType::DK_none;
418  }
419
420  llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
421
422  // The 'current element to initialize'.  The invariants on this
423  // variable are complicated.  Essentially, after each iteration of
424  // the loop, it points to the last initialized element, except
425  // that it points to the beginning of the array before any
426  // elements have been initialized.
427  llvm::Value *element = begin;
428
429  // Emit the explicit initializers.
430  for (uint64_t i = 0; i != NumInitElements; ++i) {
431    // Advance to the next element.
432    if (i > 0) {
433      element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
434
435      // Tell the cleanup that it needs to destroy up to this
436      // element.  TODO: some of these stores can be trivially
437      // observed to be unnecessary.
438      if (endOfInit) Builder.CreateStore(element, endOfInit);
439    }
440
441    // If these are nested std::initializer_list inits, do them directly,
442    // because they are conceptually the same "location".
443    InitListExpr *initList = dyn_cast<InitListExpr>(E->getInit(i));
444    if (initList && initList->initializesStdInitializerList()) {
445      EmitStdInitializerList(element, initList);
446    } else {
447      LValue elementLV = CGF.MakeAddrLValue(element, elementType);
448      EmitInitializationToLValue(E->getInit(i), elementLV);
449    }
450  }
451
452  // Check whether there's a non-trivial array-fill expression.
453  // Note that this will be a CXXConstructExpr even if the element
454  // type is an array (or array of array, etc.) of class type.
455  Expr *filler = E->getArrayFiller();
456  bool hasTrivialFiller = true;
457  if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) {
458    assert(cons->getConstructor()->isDefaultConstructor());
459    hasTrivialFiller = cons->getConstructor()->isTrivial();
460  }
461
462  // Any remaining elements need to be zero-initialized, possibly
463  // using the filler expression.  We can skip this if the we're
464  // emitting to zeroed memory.
465  if (NumInitElements != NumArrayElements &&
466      !(Dest.isZeroed() && hasTrivialFiller &&
467        CGF.getTypes().isZeroInitializable(elementType))) {
468
469    // Use an actual loop.  This is basically
470    //   do { *array++ = filler; } while (array != end);
471
472    // Advance to the start of the rest of the array.
473    if (NumInitElements) {
474      element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
475      if (endOfInit) Builder.CreateStore(element, endOfInit);
476    }
477
478    // Compute the end of the array.
479    llvm::Value *end = Builder.CreateInBoundsGEP(begin,
480                      llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
481                                                 "arrayinit.end");
482
483    llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
484    llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
485
486    // Jump into the body.
487    CGF.EmitBlock(bodyBB);
488    llvm::PHINode *currentElement =
489      Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
490    currentElement->addIncoming(element, entryBB);
491
492    // Emit the actual filler expression.
493    LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
494    if (filler)
495      EmitInitializationToLValue(filler, elementLV);
496    else
497      EmitNullInitializationToLValue(elementLV);
498
499    // Move on to the next element.
500    llvm::Value *nextElement =
501      Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
502
503    // Tell the EH cleanup that we finished with the last element.
504    if (endOfInit) Builder.CreateStore(nextElement, endOfInit);
505
506    // Leave the loop if we're done.
507    llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
508                                             "arrayinit.done");
509    llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
510    Builder.CreateCondBr(done, endBB, bodyBB);
511    currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
512
513    CGF.EmitBlock(endBB);
514  }
515
516  // Leave the partial-array cleanup if we entered one.
517  if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
518}
519
520//===----------------------------------------------------------------------===//
521//                            Visitor Methods
522//===----------------------------------------------------------------------===//
523
524void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
525  Visit(E->GetTemporaryExpr());
526}
527
528void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
529  EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e));
530}
531
532void
533AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
534  if (E->getType().isPODType(CGF.getContext())) {
535    // For a POD type, just emit a load of the lvalue + a copy, because our
536    // compound literal might alias the destination.
537    // FIXME: This is a band-aid; the real problem appears to be in our handling
538    // of assignments, where we store directly into the LHS without checking
539    // whether anything in the RHS aliases.
540    EmitAggLoadOfLValue(E);
541    return;
542  }
543
544  AggValueSlot Slot = EnsureSlot(E->getType());
545  CGF.EmitAggExpr(E->getInitializer(), Slot);
546}
547
548
549void AggExprEmitter::VisitCastExpr(CastExpr *E) {
550  switch (E->getCastKind()) {
551  case CK_Dynamic: {
552    assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
553    LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
554    // FIXME: Do we also need to handle property references here?
555    if (LV.isSimple())
556      CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
557    else
558      CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
559
560    if (!Dest.isIgnored())
561      CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
562    break;
563  }
564
565  case CK_ToUnion: {
566    if (Dest.isIgnored()) break;
567
568    // GCC union extension
569    QualType Ty = E->getSubExpr()->getType();
570    QualType PtrTy = CGF.getContext().getPointerType(Ty);
571    llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
572                                                 CGF.ConvertType(PtrTy));
573    EmitInitializationToLValue(E->getSubExpr(),
574                               CGF.MakeAddrLValue(CastPtr, Ty));
575    break;
576  }
577
578  case CK_DerivedToBase:
579  case CK_BaseToDerived:
580  case CK_UncheckedDerivedToBase: {
581    llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
582                "should have been unpacked before we got here");
583  }
584
585  case CK_LValueToRValue: // hope for downstream optimization
586  case CK_NoOp:
587  case CK_AtomicToNonAtomic:
588  case CK_NonAtomicToAtomic:
589  case CK_UserDefinedConversion:
590  case CK_ConstructorConversion:
591    assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
592                                                   E->getType()) &&
593           "Implicit cast types must be compatible");
594    Visit(E->getSubExpr());
595    break;
596
597  case CK_LValueBitCast:
598    llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
599
600  case CK_Dependent:
601  case CK_BitCast:
602  case CK_ArrayToPointerDecay:
603  case CK_FunctionToPointerDecay:
604  case CK_NullToPointer:
605  case CK_NullToMemberPointer:
606  case CK_BaseToDerivedMemberPointer:
607  case CK_DerivedToBaseMemberPointer:
608  case CK_MemberPointerToBoolean:
609  case CK_ReinterpretMemberPointer:
610  case CK_IntegralToPointer:
611  case CK_PointerToIntegral:
612  case CK_PointerToBoolean:
613  case CK_ToVoid:
614  case CK_VectorSplat:
615  case CK_IntegralCast:
616  case CK_IntegralToBoolean:
617  case CK_IntegralToFloating:
618  case CK_FloatingToIntegral:
619  case CK_FloatingToBoolean:
620  case CK_FloatingCast:
621  case CK_CPointerToObjCPointerCast:
622  case CK_BlockPointerToObjCPointerCast:
623  case CK_AnyPointerToBlockPointerCast:
624  case CK_ObjCObjectLValueCast:
625  case CK_FloatingRealToComplex:
626  case CK_FloatingComplexToReal:
627  case CK_FloatingComplexToBoolean:
628  case CK_FloatingComplexCast:
629  case CK_FloatingComplexToIntegralComplex:
630  case CK_IntegralRealToComplex:
631  case CK_IntegralComplexToReal:
632  case CK_IntegralComplexToBoolean:
633  case CK_IntegralComplexCast:
634  case CK_IntegralComplexToFloatingComplex:
635  case CK_ARCProduceObject:
636  case CK_ARCConsumeObject:
637  case CK_ARCReclaimReturnedObject:
638  case CK_ARCExtendBlockObject:
639  case CK_CopyAndAutoreleaseBlockObject:
640    llvm_unreachable("cast kind invalid for aggregate types");
641  }
642}
643
644void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
645  if (E->getCallReturnType()->isReferenceType()) {
646    EmitAggLoadOfLValue(E);
647    return;
648  }
649
650  RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
651  EmitMoveFromReturnSlot(E, RV);
652}
653
654void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
655  RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
656  EmitMoveFromReturnSlot(E, RV);
657}
658
659void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
660  CGF.EmitIgnoredExpr(E->getLHS());
661  Visit(E->getRHS());
662}
663
664void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
665  CodeGenFunction::StmtExprEvaluation eval(CGF);
666  CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
667}
668
669void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
670  if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
671    VisitPointerToDataMemberBinaryOperator(E);
672  else
673    CGF.ErrorUnsupported(E, "aggregate binary expression");
674}
675
676void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
677                                                    const BinaryOperator *E) {
678  LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
679  EmitFinalDestCopy(E, LV);
680}
681
682void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
683  // For an assignment to work, the value on the right has
684  // to be compatible with the value on the left.
685  assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
686                                                 E->getRHS()->getType())
687         && "Invalid assignment");
688
689  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS()))
690    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
691      if (VD->hasAttr<BlocksAttr>() &&
692          E->getRHS()->HasSideEffects(CGF.getContext())) {
693        // When __block variable on LHS, the RHS must be evaluated first
694        // as it may change the 'forwarding' field via call to Block_copy.
695        LValue RHS = CGF.EmitLValue(E->getRHS());
696        LValue LHS = CGF.EmitLValue(E->getLHS());
697        Dest = AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
698                                       needsGC(E->getLHS()->getType()),
699                                       AggValueSlot::IsAliased);
700        EmitFinalDestCopy(E, RHS, true);
701        return;
702      }
703
704  LValue LHS = CGF.EmitLValue(E->getLHS());
705
706  // Codegen the RHS so that it stores directly into the LHS.
707  AggValueSlot LHSSlot =
708    AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
709                            needsGC(E->getLHS()->getType()),
710                            AggValueSlot::IsAliased);
711  CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
712  EmitFinalDestCopy(E, LHS, true);
713}
714
715void AggExprEmitter::
716VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
717  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
718  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
719  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
720
721  // Bind the common expression if necessary.
722  CodeGenFunction::OpaqueValueMapping binding(CGF, E);
723
724  CodeGenFunction::ConditionalEvaluation eval(CGF);
725  CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
726
727  // Save whether the destination's lifetime is externally managed.
728  bool isExternallyDestructed = Dest.isExternallyDestructed();
729
730  eval.begin(CGF);
731  CGF.EmitBlock(LHSBlock);
732  Visit(E->getTrueExpr());
733  eval.end(CGF);
734
735  assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
736  CGF.Builder.CreateBr(ContBlock);
737
738  // If the result of an agg expression is unused, then the emission
739  // of the LHS might need to create a destination slot.  That's fine
740  // with us, and we can safely emit the RHS into the same slot, but
741  // we shouldn't claim that it's already being destructed.
742  Dest.setExternallyDestructed(isExternallyDestructed);
743
744  eval.begin(CGF);
745  CGF.EmitBlock(RHSBlock);
746  Visit(E->getFalseExpr());
747  eval.end(CGF);
748
749  CGF.EmitBlock(ContBlock);
750}
751
752void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
753  Visit(CE->getChosenSubExpr(CGF.getContext()));
754}
755
756void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
757  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
758  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
759
760  if (!ArgPtr) {
761    CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
762    return;
763  }
764
765  EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
766}
767
768void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
769  // Ensure that we have a slot, but if we already do, remember
770  // whether it was externally destructed.
771  bool wasExternallyDestructed = Dest.isExternallyDestructed();
772  Dest = EnsureSlot(E->getType());
773
774  // We're going to push a destructor if there isn't already one.
775  Dest.setExternallyDestructed();
776
777  Visit(E->getSubExpr());
778
779  // Push that destructor we promised.
780  if (!wasExternallyDestructed)
781    CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr());
782}
783
784void
785AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
786  AggValueSlot Slot = EnsureSlot(E->getType());
787  CGF.EmitCXXConstructExpr(E, Slot);
788}
789
790void
791AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
792  AggValueSlot Slot = EnsureSlot(E->getType());
793  CGF.EmitLambdaExpr(E, Slot);
794}
795
796void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
797  CGF.enterFullExpression(E);
798  CodeGenFunction::RunCleanupsScope cleanups(CGF);
799  Visit(E->getSubExpr());
800}
801
802void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
803  QualType T = E->getType();
804  AggValueSlot Slot = EnsureSlot(T);
805  EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
806}
807
808void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
809  QualType T = E->getType();
810  AggValueSlot Slot = EnsureSlot(T);
811  EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
812}
813
814/// isSimpleZero - If emitting this value will obviously just cause a store of
815/// zero to memory, return true.  This can return false if uncertain, so it just
816/// handles simple cases.
817static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
818  E = E->IgnoreParens();
819
820  // 0
821  if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
822    return IL->getValue() == 0;
823  // +0.0
824  if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
825    return FL->getValue().isPosZero();
826  // int()
827  if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
828      CGF.getTypes().isZeroInitializable(E->getType()))
829    return true;
830  // (int*)0 - Null pointer expressions.
831  if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
832    return ICE->getCastKind() == CK_NullToPointer;
833  // '\0'
834  if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
835    return CL->getValue() == 0;
836
837  // Otherwise, hard case: conservatively return false.
838  return false;
839}
840
841
842void
843AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
844  QualType type = LV.getType();
845  // FIXME: Ignore result?
846  // FIXME: Are initializers affected by volatile?
847  if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
848    // Storing "i32 0" to a zero'd memory location is a noop.
849  } else if (isa<ImplicitValueInitExpr>(E)) {
850    EmitNullInitializationToLValue(LV);
851  } else if (type->isReferenceType()) {
852    RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
853    CGF.EmitStoreThroughLValue(RV, LV);
854  } else if (type->isAnyComplexType()) {
855    CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
856  } else if (CGF.hasAggregateLLVMType(type)) {
857    CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
858                                               AggValueSlot::IsDestructed,
859                                      AggValueSlot::DoesNotNeedGCBarriers,
860                                               AggValueSlot::IsNotAliased,
861                                               Dest.isZeroed()));
862  } else if (LV.isSimple()) {
863    CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false);
864  } else {
865    CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
866  }
867}
868
869void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
870  QualType type = lv.getType();
871
872  // If the destination slot is already zeroed out before the aggregate is
873  // copied into it, we don't have to emit any zeros here.
874  if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
875    return;
876
877  if (!CGF.hasAggregateLLVMType(type)) {
878    // For non-aggregates, we can store zero.
879    llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type));
880    // Note that the following is not equivalent to
881    // EmitStoreThroughBitfieldLValue for ARC types.
882    if (lv.isBitField()) {
883      CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
884    } else {
885      assert(lv.isSimple());
886      CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
887    }
888  } else {
889    // There's a potential optimization opportunity in combining
890    // memsets; that would be easy for arrays, but relatively
891    // difficult for structures with the current code.
892    CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
893  }
894}
895
896void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
897#if 0
898  // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
899  // (Length of globals? Chunks of zeroed-out space?).
900  //
901  // If we can, prefer a copy from a global; this is a lot less code for long
902  // globals, and it's easier for the current optimizers to analyze.
903  if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
904    llvm::GlobalVariable* GV =
905    new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
906                             llvm::GlobalValue::InternalLinkage, C, "");
907    EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
908    return;
909  }
910#endif
911  if (E->hadArrayRangeDesignator())
912    CGF.ErrorUnsupported(E, "GNU array range designator extension");
913
914  if (E->initializesStdInitializerList()) {
915    EmitStdInitializerList(Dest.getAddr(), E);
916    return;
917  }
918
919  AggValueSlot Dest = EnsureSlot(E->getType());
920  LValue DestLV = CGF.MakeAddrLValue(Dest.getAddr(), E->getType(),
921                                     Dest.getAlignment());
922
923  // Handle initialization of an array.
924  if (E->getType()->isArrayType()) {
925    if (E->isStringLiteralInit())
926      return Visit(E->getInit(0));
927
928    QualType elementType =
929        CGF.getContext().getAsArrayType(E->getType())->getElementType();
930
931    llvm::PointerType *APType =
932      cast<llvm::PointerType>(Dest.getAddr()->getType());
933    llvm::ArrayType *AType =
934      cast<llvm::ArrayType>(APType->getElementType());
935
936    EmitArrayInit(Dest.getAddr(), AType, elementType, E);
937    return;
938  }
939
940  assert(E->getType()->isRecordType() && "Only support structs/unions here!");
941
942  // Do struct initialization; this code just sets each individual member
943  // to the approprate value.  This makes bitfield support automatic;
944  // the disadvantage is that the generated code is more difficult for
945  // the optimizer, especially with bitfields.
946  unsigned NumInitElements = E->getNumInits();
947  RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
948
949  if (record->isUnion()) {
950    // Only initialize one field of a union. The field itself is
951    // specified by the initializer list.
952    if (!E->getInitializedFieldInUnion()) {
953      // Empty union; we have nothing to do.
954
955#ifndef NDEBUG
956      // Make sure that it's really an empty and not a failure of
957      // semantic analysis.
958      for (RecordDecl::field_iterator Field = record->field_begin(),
959                                   FieldEnd = record->field_end();
960           Field != FieldEnd; ++Field)
961        assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
962#endif
963      return;
964    }
965
966    // FIXME: volatility
967    FieldDecl *Field = E->getInitializedFieldInUnion();
968
969    LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
970    if (NumInitElements) {
971      // Store the initializer into the field
972      EmitInitializationToLValue(E->getInit(0), FieldLoc);
973    } else {
974      // Default-initialize to null.
975      EmitNullInitializationToLValue(FieldLoc);
976    }
977
978    return;
979  }
980
981  // We'll need to enter cleanup scopes in case any of the member
982  // initializers throw an exception.
983  SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
984  llvm::Instruction *cleanupDominator = 0;
985
986  // Here we iterate over the fields; this makes it simpler to both
987  // default-initialize fields and skip over unnamed fields.
988  unsigned curInitIndex = 0;
989  for (RecordDecl::field_iterator field = record->field_begin(),
990                               fieldEnd = record->field_end();
991       field != fieldEnd; ++field) {
992    // We're done once we hit the flexible array member.
993    if (field->getType()->isIncompleteArrayType())
994      break;
995
996    // Always skip anonymous bitfields.
997    if (field->isUnnamedBitfield())
998      continue;
999
1000    // We're done if we reach the end of the explicit initializers, we
1001    // have a zeroed object, and the rest of the fields are
1002    // zero-initializable.
1003    if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1004        CGF.getTypes().isZeroInitializable(E->getType()))
1005      break;
1006
1007
1008    LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, *field);
1009    // We never generate write-barries for initialized fields.
1010    LV.setNonGC(true);
1011
1012    if (curInitIndex < NumInitElements) {
1013      // Store the initializer into the field.
1014      EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1015    } else {
1016      // We're out of initalizers; default-initialize to null
1017      EmitNullInitializationToLValue(LV);
1018    }
1019
1020    // Push a destructor if necessary.
1021    // FIXME: if we have an array of structures, all explicitly
1022    // initialized, we can end up pushing a linear number of cleanups.
1023    bool pushedCleanup = false;
1024    if (QualType::DestructionKind dtorKind
1025          = field->getType().isDestructedType()) {
1026      assert(LV.isSimple());
1027      if (CGF.needsEHCleanup(dtorKind)) {
1028        if (!cleanupDominator)
1029          cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder
1030
1031        CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
1032                        CGF.getDestroyer(dtorKind), false);
1033        cleanups.push_back(CGF.EHStack.stable_begin());
1034        pushedCleanup = true;
1035      }
1036    }
1037
1038    // If the GEP didn't get used because of a dead zero init or something
1039    // else, clean it up for -O0 builds and general tidiness.
1040    if (!pushedCleanup && LV.isSimple())
1041      if (llvm::GetElementPtrInst *GEP =
1042            dyn_cast<llvm::GetElementPtrInst>(LV.getAddress()))
1043        if (GEP->use_empty())
1044          GEP->eraseFromParent();
1045  }
1046
1047  // Deactivate all the partial cleanups in reverse order, which
1048  // generally means popping them.
1049  for (unsigned i = cleanups.size(); i != 0; --i)
1050    CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1051
1052  // Destroy the placeholder if we made one.
1053  if (cleanupDominator)
1054    cleanupDominator->eraseFromParent();
1055}
1056
1057//===----------------------------------------------------------------------===//
1058//                        Entry Points into this File
1059//===----------------------------------------------------------------------===//
1060
1061/// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1062/// non-zero bytes that will be stored when outputting the initializer for the
1063/// specified initializer expression.
1064static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1065  E = E->IgnoreParens();
1066
1067  // 0 and 0.0 won't require any non-zero stores!
1068  if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1069
1070  // If this is an initlist expr, sum up the size of sizes of the (present)
1071  // elements.  If this is something weird, assume the whole thing is non-zero.
1072  const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1073  if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1074    return CGF.getContext().getTypeSizeInChars(E->getType());
1075
1076  // InitListExprs for structs have to be handled carefully.  If there are
1077  // reference members, we need to consider the size of the reference, not the
1078  // referencee.  InitListExprs for unions and arrays can't have references.
1079  if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1080    if (!RT->isUnionType()) {
1081      RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
1082      CharUnits NumNonZeroBytes = CharUnits::Zero();
1083
1084      unsigned ILEElement = 0;
1085      for (RecordDecl::field_iterator Field = SD->field_begin(),
1086           FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
1087        // We're done once we hit the flexible array member or run out of
1088        // InitListExpr elements.
1089        if (Field->getType()->isIncompleteArrayType() ||
1090            ILEElement == ILE->getNumInits())
1091          break;
1092        if (Field->isUnnamedBitfield())
1093          continue;
1094
1095        const Expr *E = ILE->getInit(ILEElement++);
1096
1097        // Reference values are always non-null and have the width of a pointer.
1098        if (Field->getType()->isReferenceType())
1099          NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1100              CGF.getContext().getTargetInfo().getPointerWidth(0));
1101        else
1102          NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1103      }
1104
1105      return NumNonZeroBytes;
1106    }
1107  }
1108
1109
1110  CharUnits NumNonZeroBytes = CharUnits::Zero();
1111  for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1112    NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1113  return NumNonZeroBytes;
1114}
1115
1116/// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1117/// zeros in it, emit a memset and avoid storing the individual zeros.
1118///
1119static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1120                                     CodeGenFunction &CGF) {
1121  // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1122  // volatile stores.
1123  if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
1124
1125  // C++ objects with a user-declared constructor don't need zero'ing.
1126  if (CGF.getContext().getLangOpts().CPlusPlus)
1127    if (const RecordType *RT = CGF.getContext()
1128                       .getBaseElementType(E->getType())->getAs<RecordType>()) {
1129      const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1130      if (RD->hasUserDeclaredConstructor())
1131        return;
1132    }
1133
1134  // If the type is 16-bytes or smaller, prefer individual stores over memset.
1135  std::pair<CharUnits, CharUnits> TypeInfo =
1136    CGF.getContext().getTypeInfoInChars(E->getType());
1137  if (TypeInfo.first <= CharUnits::fromQuantity(16))
1138    return;
1139
1140  // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1141  // we prefer to emit memset + individual stores for the rest.
1142  CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1143  if (NumNonZeroBytes*4 > TypeInfo.first)
1144    return;
1145
1146  // Okay, it seems like a good idea to use an initial memset, emit the call.
1147  llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
1148  CharUnits Align = TypeInfo.second;
1149
1150  llvm::Value *Loc = Slot.getAddr();
1151
1152  Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy);
1153  CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
1154                           Align.getQuantity(), false);
1155
1156  // Tell the AggExprEmitter that the slot is known zero.
1157  Slot.setZeroed();
1158}
1159
1160
1161
1162
1163/// EmitAggExpr - Emit the computation of the specified expression of aggregate
1164/// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1165/// the value of the aggregate expression is not needed.  If VolatileDest is
1166/// true, DestPtr cannot be 0.
1167///
1168/// \param IsInitializer - true if this evaluation is initializing an
1169/// object whose lifetime is already being managed.
1170void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
1171                                  bool IgnoreResult) {
1172  assert(E && hasAggregateLLVMType(E->getType()) &&
1173         "Invalid aggregate expression to emit");
1174  assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
1175         "slot has bits but no address");
1176
1177  // Optimize the slot if possible.
1178  CheckAggExprForMemSetUse(Slot, E, *this);
1179
1180  AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
1181}
1182
1183LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1184  assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
1185  llvm::Value *Temp = CreateMemTemp(E->getType());
1186  LValue LV = MakeAddrLValue(Temp, E->getType());
1187  EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1188                                         AggValueSlot::DoesNotNeedGCBarriers,
1189                                         AggValueSlot::IsNotAliased));
1190  return LV;
1191}
1192
1193void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
1194                                        llvm::Value *SrcPtr, QualType Ty,
1195                                        bool isVolatile, unsigned Alignment) {
1196  assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1197
1198  if (getContext().getLangOpts().CPlusPlus) {
1199    if (const RecordType *RT = Ty->getAs<RecordType>()) {
1200      CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1201      assert((Record->hasTrivialCopyConstructor() ||
1202              Record->hasTrivialCopyAssignment() ||
1203              Record->hasTrivialMoveConstructor() ||
1204              Record->hasTrivialMoveAssignment()) &&
1205             "Trying to aggregate-copy a type without a trivial copy "
1206             "constructor or assignment operator");
1207      // Ignore empty classes in C++.
1208      if (Record->isEmpty())
1209        return;
1210    }
1211  }
1212
1213  // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1214  // C99 6.5.16.1p3, which states "If the value being stored in an object is
1215  // read from another object that overlaps in anyway the storage of the first
1216  // object, then the overlap shall be exact and the two objects shall have
1217  // qualified or unqualified versions of a compatible type."
1218  //
1219  // memcpy is not defined if the source and destination pointers are exactly
1220  // equal, but other compilers do this optimization, and almost every memcpy
1221  // implementation handles this case safely.  If there is a libc that does not
1222  // safely handle this, we can add a target hook.
1223
1224  // Get size and alignment info for this aggregate.
1225  std::pair<CharUnits, CharUnits> TypeInfo =
1226    getContext().getTypeInfoInChars(Ty);
1227
1228  if (!Alignment)
1229    Alignment = TypeInfo.second.getQuantity();
1230
1231  // FIXME: Handle variable sized types.
1232
1233  // FIXME: If we have a volatile struct, the optimizer can remove what might
1234  // appear to be `extra' memory ops:
1235  //
1236  // volatile struct { int i; } a, b;
1237  //
1238  // int main() {
1239  //   a = b;
1240  //   a = b;
1241  // }
1242  //
1243  // we need to use a different call here.  We use isVolatile to indicate when
1244  // either the source or the destination is volatile.
1245
1246  llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
1247  llvm::Type *DBP =
1248    llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
1249  DestPtr = Builder.CreateBitCast(DestPtr, DBP);
1250
1251  llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
1252  llvm::Type *SBP =
1253    llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
1254  SrcPtr = Builder.CreateBitCast(SrcPtr, SBP);
1255
1256  // Don't do any of the memmove_collectable tests if GC isn't set.
1257  if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
1258    // fall through
1259  } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1260    RecordDecl *Record = RecordTy->getDecl();
1261    if (Record->hasObjectMember()) {
1262      CharUnits size = TypeInfo.first;
1263      llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1264      llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
1265      CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1266                                                    SizeVal);
1267      return;
1268    }
1269  } else if (Ty->isArrayType()) {
1270    QualType BaseType = getContext().getBaseElementType(Ty);
1271    if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1272      if (RecordTy->getDecl()->hasObjectMember()) {
1273        CharUnits size = TypeInfo.first;
1274        llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
1275        llvm::Value *SizeVal =
1276          llvm::ConstantInt::get(SizeTy, size.getQuantity());
1277        CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1278                                                      SizeVal);
1279        return;
1280      }
1281    }
1282  }
1283
1284  Builder.CreateMemCpy(DestPtr, SrcPtr,
1285                       llvm::ConstantInt::get(IntPtrTy,
1286                                              TypeInfo.first.getQuantity()),
1287                       Alignment, isVolatile);
1288}
1289
1290void CodeGenFunction::MaybeEmitStdInitializerListCleanup(llvm::Value *loc,
1291                                                         const Expr *init) {
1292  const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(init);
1293  if (cleanups)
1294    init = cleanups->getSubExpr();
1295
1296  if (isa<InitListExpr>(init) &&
1297      cast<InitListExpr>(init)->initializesStdInitializerList()) {
1298    // We initialized this std::initializer_list with an initializer list.
1299    // A backing array was created. Push a cleanup for it.
1300    EmitStdInitializerListCleanup(loc, cast<InitListExpr>(init));
1301  }
1302}
1303
1304static void EmitRecursiveStdInitializerListCleanup(CodeGenFunction &CGF,
1305                                                   llvm::Value *arrayStart,
1306                                                   const InitListExpr *init) {
1307  // Check if there are any recursive cleanups to do, i.e. if we have
1308  //   std::initializer_list<std::initializer_list<obj>> list = {{obj()}};
1309  // then we need to destroy the inner array as well.
1310  for (unsigned i = 0, e = init->getNumInits(); i != e; ++i) {
1311    const InitListExpr *subInit = dyn_cast<InitListExpr>(init->getInit(i));
1312    if (!subInit || !subInit->initializesStdInitializerList())
1313      continue;
1314
1315    // This one needs to be destroyed. Get the address of the std::init_list.
1316    llvm::Value *offset = llvm::ConstantInt::get(CGF.SizeTy, i);
1317    llvm::Value *loc = CGF.Builder.CreateInBoundsGEP(arrayStart, offset,
1318                                                 "std.initlist");
1319    CGF.EmitStdInitializerListCleanup(loc, subInit);
1320  }
1321}
1322
1323void CodeGenFunction::EmitStdInitializerListCleanup(llvm::Value *loc,
1324                                                    const InitListExpr *init) {
1325  ASTContext &ctx = getContext();
1326  QualType element = GetStdInitializerListElementType(init->getType());
1327  unsigned numInits = init->getNumInits();
1328  llvm::APInt size(ctx.getTypeSize(ctx.getSizeType()), numInits);
1329  QualType array =ctx.getConstantArrayType(element, size, ArrayType::Normal, 0);
1330  QualType arrayPtr = ctx.getPointerType(array);
1331  llvm::Type *arrayPtrType = ConvertType(arrayPtr);
1332
1333  // lvalue is the location of a std::initializer_list, which as its first
1334  // element has a pointer to the array we want to destroy.
1335  llvm::Value *startPointer = Builder.CreateStructGEP(loc, 0, "startPointer");
1336  llvm::Value *startAddress = Builder.CreateLoad(startPointer, "startAddress");
1337
1338  ::EmitRecursiveStdInitializerListCleanup(*this, startAddress, init);
1339
1340  llvm::Value *arrayAddress =
1341      Builder.CreateBitCast(startAddress, arrayPtrType, "arrayAddress");
1342  ::EmitStdInitializerListCleanup(*this, array, arrayAddress, init);
1343}
1344