CGCall.cpp revision 360784
1//===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// These classes wrap the information about a call or function
10// definition used to handle ABI compliancy.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CGCall.h"
15#include "ABIInfo.h"
16#include "CGBlocks.h"
17#include "CGCXXABI.h"
18#include "CGCleanup.h"
19#include "CodeGenFunction.h"
20#include "CodeGenModule.h"
21#include "TargetInfo.h"
22#include "clang/AST/Attr.h"
23#include "clang/AST/Decl.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/Basic/CodeGenOptions.h"
27#include "clang/Basic/TargetBuiltins.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/CodeGen/CGFunctionInfo.h"
30#include "clang/CodeGen/SwiftCallingConv.h"
31#include "llvm/ADT/StringExtras.h"
32#include "llvm/Analysis/ValueTracking.h"
33#include "llvm/IR/Attributes.h"
34#include "llvm/IR/CallingConv.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/InlineAsm.h"
37#include "llvm/IR/IntrinsicInst.h"
38#include "llvm/IR/Intrinsics.h"
39#include "llvm/Transforms/Utils/Local.h"
40using namespace clang;
41using namespace CodeGen;
42
43/***/
44
45unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
46  switch (CC) {
47  default: return llvm::CallingConv::C;
48  case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
49  case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
50  case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
51  case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
52  case CC_Win64: return llvm::CallingConv::Win64;
53  case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
54  case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
55  case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
56  case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
57  // TODO: Add support for __pascal to LLVM.
58  case CC_X86Pascal: return llvm::CallingConv::C;
59  // TODO: Add support for __vectorcall to LLVM.
60  case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
61  case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
62  case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
63  case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
64  case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
65  case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
66  case CC_Swift: return llvm::CallingConv::Swift;
67  }
68}
69
70/// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
71/// qualification. Either or both of RD and MD may be null. A null RD indicates
72/// that there is no meaningful 'this' type, and a null MD can occur when
73/// calling a method pointer.
74CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
75                                         const CXXMethodDecl *MD) {
76  QualType RecTy;
77  if (RD)
78    RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
79  else
80    RecTy = Context.VoidTy;
81
82  if (MD)
83    RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
84  return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
85}
86
87/// Returns the canonical formal type of the given C++ method.
88static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
89  return MD->getType()->getCanonicalTypeUnqualified()
90           .getAs<FunctionProtoType>();
91}
92
93/// Returns the "extra-canonicalized" return type, which discards
94/// qualifiers on the return type.  Codegen doesn't care about them,
95/// and it makes ABI code a little easier to be able to assume that
96/// all parameter and return types are top-level unqualified.
97static CanQualType GetReturnType(QualType RetTy) {
98  return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
99}
100
101/// Arrange the argument and result information for a value of the given
102/// unprototyped freestanding function type.
103const CGFunctionInfo &
104CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
105  // When translating an unprototyped function type, always use a
106  // variadic type.
107  return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
108                                 /*instanceMethod=*/false,
109                                 /*chainCall=*/false, None,
110                                 FTNP->getExtInfo(), {}, RequiredArgs(0));
111}
112
113static void addExtParameterInfosForCall(
114         llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
115                                        const FunctionProtoType *proto,
116                                        unsigned prefixArgs,
117                                        unsigned totalArgs) {
118  assert(proto->hasExtParameterInfos());
119  assert(paramInfos.size() <= prefixArgs);
120  assert(proto->getNumParams() + prefixArgs <= totalArgs);
121
122  paramInfos.reserve(totalArgs);
123
124  // Add default infos for any prefix args that don't already have infos.
125  paramInfos.resize(prefixArgs);
126
127  // Add infos for the prototype.
128  for (const auto &ParamInfo : proto->getExtParameterInfos()) {
129    paramInfos.push_back(ParamInfo);
130    // pass_object_size params have no parameter info.
131    if (ParamInfo.hasPassObjectSize())
132      paramInfos.emplace_back();
133  }
134
135  assert(paramInfos.size() <= totalArgs &&
136         "Did we forget to insert pass_object_size args?");
137  // Add default infos for the variadic and/or suffix arguments.
138  paramInfos.resize(totalArgs);
139}
140
141/// Adds the formal parameters in FPT to the given prefix. If any parameter in
142/// FPT has pass_object_size attrs, then we'll add parameters for those, too.
143static void appendParameterTypes(const CodeGenTypes &CGT,
144                                 SmallVectorImpl<CanQualType> &prefix,
145              SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
146                                 CanQual<FunctionProtoType> FPT) {
147  // Fast path: don't touch param info if we don't need to.
148  if (!FPT->hasExtParameterInfos()) {
149    assert(paramInfos.empty() &&
150           "We have paramInfos, but the prototype doesn't?");
151    prefix.append(FPT->param_type_begin(), FPT->param_type_end());
152    return;
153  }
154
155  unsigned PrefixSize = prefix.size();
156  // In the vast majority of cases, we'll have precisely FPT->getNumParams()
157  // parameters; the only thing that can change this is the presence of
158  // pass_object_size. So, we preallocate for the common case.
159  prefix.reserve(prefix.size() + FPT->getNumParams());
160
161  auto ExtInfos = FPT->getExtParameterInfos();
162  assert(ExtInfos.size() == FPT->getNumParams());
163  for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
164    prefix.push_back(FPT->getParamType(I));
165    if (ExtInfos[I].hasPassObjectSize())
166      prefix.push_back(CGT.getContext().getSizeType());
167  }
168
169  addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
170                              prefix.size());
171}
172
173/// Arrange the LLVM function layout for a value of the given function
174/// type, on top of any implicit parameters already stored.
175static const CGFunctionInfo &
176arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
177                        SmallVectorImpl<CanQualType> &prefix,
178                        CanQual<FunctionProtoType> FTP) {
179  SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
180  RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
181  // FIXME: Kill copy.
182  appendParameterTypes(CGT, prefix, paramInfos, FTP);
183  CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
184
185  return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
186                                     /*chainCall=*/false, prefix,
187                                     FTP->getExtInfo(), paramInfos,
188                                     Required);
189}
190
191/// Arrange the argument and result information for a value of the
192/// given freestanding function type.
193const CGFunctionInfo &
194CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
195  SmallVector<CanQualType, 16> argTypes;
196  return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
197                                   FTP);
198}
199
200static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
201  // Set the appropriate calling convention for the Function.
202  if (D->hasAttr<StdCallAttr>())
203    return CC_X86StdCall;
204
205  if (D->hasAttr<FastCallAttr>())
206    return CC_X86FastCall;
207
208  if (D->hasAttr<RegCallAttr>())
209    return CC_X86RegCall;
210
211  if (D->hasAttr<ThisCallAttr>())
212    return CC_X86ThisCall;
213
214  if (D->hasAttr<VectorCallAttr>())
215    return CC_X86VectorCall;
216
217  if (D->hasAttr<PascalAttr>())
218    return CC_X86Pascal;
219
220  if (PcsAttr *PCS = D->getAttr<PcsAttr>())
221    return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
222
223  if (D->hasAttr<AArch64VectorPcsAttr>())
224    return CC_AArch64VectorCall;
225
226  if (D->hasAttr<IntelOclBiccAttr>())
227    return CC_IntelOclBicc;
228
229  if (D->hasAttr<MSABIAttr>())
230    return IsWindows ? CC_C : CC_Win64;
231
232  if (D->hasAttr<SysVABIAttr>())
233    return IsWindows ? CC_X86_64SysV : CC_C;
234
235  if (D->hasAttr<PreserveMostAttr>())
236    return CC_PreserveMost;
237
238  if (D->hasAttr<PreserveAllAttr>())
239    return CC_PreserveAll;
240
241  return CC_C;
242}
243
244/// Arrange the argument and result information for a call to an
245/// unknown C++ non-static member function of the given abstract type.
246/// (A null RD means we don't have any meaningful "this" argument type,
247///  so fall back to a generic pointer type).
248/// The member function must be an ordinary function, i.e. not a
249/// constructor or destructor.
250const CGFunctionInfo &
251CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
252                                   const FunctionProtoType *FTP,
253                                   const CXXMethodDecl *MD) {
254  SmallVector<CanQualType, 16> argTypes;
255
256  // Add the 'this' pointer.
257  argTypes.push_back(DeriveThisType(RD, MD));
258
259  return ::arrangeLLVMFunctionInfo(
260      *this, true, argTypes,
261      FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
262}
263
264/// Set calling convention for CUDA/HIP kernel.
265static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
266                                           const FunctionDecl *FD) {
267  if (FD->hasAttr<CUDAGlobalAttr>()) {
268    const FunctionType *FT = FTy->getAs<FunctionType>();
269    CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
270    FTy = FT->getCanonicalTypeUnqualified();
271  }
272}
273
274/// Arrange the argument and result information for a declaration or
275/// definition of the given C++ non-static member function.  The
276/// member function must be an ordinary function, i.e. not a
277/// constructor or destructor.
278const CGFunctionInfo &
279CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
280  assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
281  assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
282
283  CanQualType FT = GetFormalType(MD).getAs<Type>();
284  setCUDAKernelCallingConvention(FT, CGM, MD);
285  auto prototype = FT.getAs<FunctionProtoType>();
286
287  if (MD->isInstance()) {
288    // The abstract case is perfectly fine.
289    const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
290    return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
291  }
292
293  return arrangeFreeFunctionType(prototype);
294}
295
296bool CodeGenTypes::inheritingCtorHasParams(
297    const InheritedConstructor &Inherited, CXXCtorType Type) {
298  // Parameters are unnecessary if we're constructing a base class subobject
299  // and the inherited constructor lives in a virtual base.
300  return Type == Ctor_Complete ||
301         !Inherited.getShadowDecl()->constructsVirtualBase() ||
302         !Target.getCXXABI().hasConstructorVariants();
303}
304
305const CGFunctionInfo &
306CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
307  auto *MD = cast<CXXMethodDecl>(GD.getDecl());
308
309  SmallVector<CanQualType, 16> argTypes;
310  SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
311  argTypes.push_back(DeriveThisType(MD->getParent(), MD));
312
313  bool PassParams = true;
314
315  if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
316    // A base class inheriting constructor doesn't get forwarded arguments
317    // needed to construct a virtual base (or base class thereof).
318    if (auto Inherited = CD->getInheritedConstructor())
319      PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
320  }
321
322  CanQual<FunctionProtoType> FTP = GetFormalType(MD);
323
324  // Add the formal parameters.
325  if (PassParams)
326    appendParameterTypes(*this, argTypes, paramInfos, FTP);
327
328  CGCXXABI::AddedStructorArgs AddedArgs =
329      TheCXXABI.buildStructorSignature(GD, argTypes);
330  if (!paramInfos.empty()) {
331    // Note: prefix implies after the first param.
332    if (AddedArgs.Prefix)
333      paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
334                        FunctionProtoType::ExtParameterInfo{});
335    if (AddedArgs.Suffix)
336      paramInfos.append(AddedArgs.Suffix,
337                        FunctionProtoType::ExtParameterInfo{});
338  }
339
340  RequiredArgs required =
341      (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
342                                      : RequiredArgs::All);
343
344  FunctionType::ExtInfo extInfo = FTP->getExtInfo();
345  CanQualType resultType = TheCXXABI.HasThisReturn(GD)
346                               ? argTypes.front()
347                               : TheCXXABI.hasMostDerivedReturn(GD)
348                                     ? CGM.getContext().VoidPtrTy
349                                     : Context.VoidTy;
350  return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
351                                 /*chainCall=*/false, argTypes, extInfo,
352                                 paramInfos, required);
353}
354
355static SmallVector<CanQualType, 16>
356getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
357  SmallVector<CanQualType, 16> argTypes;
358  for (auto &arg : args)
359    argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
360  return argTypes;
361}
362
363static SmallVector<CanQualType, 16>
364getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
365  SmallVector<CanQualType, 16> argTypes;
366  for (auto &arg : args)
367    argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
368  return argTypes;
369}
370
371static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
372getExtParameterInfosForCall(const FunctionProtoType *proto,
373                            unsigned prefixArgs, unsigned totalArgs) {
374  llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
375  if (proto->hasExtParameterInfos()) {
376    addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
377  }
378  return result;
379}
380
381/// Arrange a call to a C++ method, passing the given arguments.
382///
383/// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
384/// parameter.
385/// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
386/// args.
387/// PassProtoArgs indicates whether `args` has args for the parameters in the
388/// given CXXConstructorDecl.
389const CGFunctionInfo &
390CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
391                                        const CXXConstructorDecl *D,
392                                        CXXCtorType CtorKind,
393                                        unsigned ExtraPrefixArgs,
394                                        unsigned ExtraSuffixArgs,
395                                        bool PassProtoArgs) {
396  // FIXME: Kill copy.
397  SmallVector<CanQualType, 16> ArgTypes;
398  for (const auto &Arg : args)
399    ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
400
401  // +1 for implicit this, which should always be args[0].
402  unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
403
404  CanQual<FunctionProtoType> FPT = GetFormalType(D);
405  RequiredArgs Required = PassProtoArgs
406                              ? RequiredArgs::forPrototypePlus(
407                                    FPT, TotalPrefixArgs + ExtraSuffixArgs)
408                              : RequiredArgs::All;
409
410  GlobalDecl GD(D, CtorKind);
411  CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
412                               ? ArgTypes.front()
413                               : TheCXXABI.hasMostDerivedReturn(GD)
414                                     ? CGM.getContext().VoidPtrTy
415                                     : Context.VoidTy;
416
417  FunctionType::ExtInfo Info = FPT->getExtInfo();
418  llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
419  // If the prototype args are elided, we should only have ABI-specific args,
420  // which never have param info.
421  if (PassProtoArgs && FPT->hasExtParameterInfos()) {
422    // ABI-specific suffix arguments are treated the same as variadic arguments.
423    addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
424                                ArgTypes.size());
425  }
426  return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
427                                 /*chainCall=*/false, ArgTypes, Info,
428                                 ParamInfos, Required);
429}
430
431/// Arrange the argument and result information for the declaration or
432/// definition of the given function.
433const CGFunctionInfo &
434CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
435  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
436    if (MD->isInstance())
437      return arrangeCXXMethodDeclaration(MD);
438
439  CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
440
441  assert(isa<FunctionType>(FTy));
442  setCUDAKernelCallingConvention(FTy, CGM, FD);
443
444  // When declaring a function without a prototype, always use a
445  // non-variadic type.
446  if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
447    return arrangeLLVMFunctionInfo(
448        noProto->getReturnType(), /*instanceMethod=*/false,
449        /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
450  }
451
452  return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
453}
454
455/// Arrange the argument and result information for the declaration or
456/// definition of an Objective-C method.
457const CGFunctionInfo &
458CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
459  // It happens that this is the same as a call with no optional
460  // arguments, except also using the formal 'self' type.
461  return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
462}
463
464/// Arrange the argument and result information for the function type
465/// through which to perform a send to the given Objective-C method,
466/// using the given receiver type.  The receiver type is not always
467/// the 'self' type of the method or even an Objective-C pointer type.
468/// This is *not* the right method for actually performing such a
469/// message send, due to the possibility of optional arguments.
470const CGFunctionInfo &
471CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
472                                              QualType receiverType) {
473  SmallVector<CanQualType, 16> argTys;
474  SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
475  argTys.push_back(Context.getCanonicalParamType(receiverType));
476  argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
477  // FIXME: Kill copy?
478  for (const auto *I : MD->parameters()) {
479    argTys.push_back(Context.getCanonicalParamType(I->getType()));
480    auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
481        I->hasAttr<NoEscapeAttr>());
482    extParamInfos.push_back(extParamInfo);
483  }
484
485  FunctionType::ExtInfo einfo;
486  bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
487  einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
488
489  if (getContext().getLangOpts().ObjCAutoRefCount &&
490      MD->hasAttr<NSReturnsRetainedAttr>())
491    einfo = einfo.withProducesResult(true);
492
493  RequiredArgs required =
494    (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
495
496  return arrangeLLVMFunctionInfo(
497      GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
498      /*chainCall=*/false, argTys, einfo, extParamInfos, required);
499}
500
501const CGFunctionInfo &
502CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
503                                                 const CallArgList &args) {
504  auto argTypes = getArgTypesForCall(Context, args);
505  FunctionType::ExtInfo einfo;
506
507  return arrangeLLVMFunctionInfo(
508      GetReturnType(returnType), /*instanceMethod=*/false,
509      /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
510}
511
512const CGFunctionInfo &
513CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
514  // FIXME: Do we need to handle ObjCMethodDecl?
515  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
516
517  if (isa<CXXConstructorDecl>(GD.getDecl()) ||
518      isa<CXXDestructorDecl>(GD.getDecl()))
519    return arrangeCXXStructorDeclaration(GD);
520
521  return arrangeFunctionDeclaration(FD);
522}
523
524/// Arrange a thunk that takes 'this' as the first parameter followed by
525/// varargs.  Return a void pointer, regardless of the actual return type.
526/// The body of the thunk will end in a musttail call to a function of the
527/// correct type, and the caller will bitcast the function to the correct
528/// prototype.
529const CGFunctionInfo &
530CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
531  assert(MD->isVirtual() && "only methods have thunks");
532  CanQual<FunctionProtoType> FTP = GetFormalType(MD);
533  CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
534  return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
535                                 /*chainCall=*/false, ArgTys,
536                                 FTP->getExtInfo(), {}, RequiredArgs(1));
537}
538
539const CGFunctionInfo &
540CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
541                                   CXXCtorType CT) {
542  assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
543
544  CanQual<FunctionProtoType> FTP = GetFormalType(CD);
545  SmallVector<CanQualType, 2> ArgTys;
546  const CXXRecordDecl *RD = CD->getParent();
547  ArgTys.push_back(DeriveThisType(RD, CD));
548  if (CT == Ctor_CopyingClosure)
549    ArgTys.push_back(*FTP->param_type_begin());
550  if (RD->getNumVBases() > 0)
551    ArgTys.push_back(Context.IntTy);
552  CallingConv CC = Context.getDefaultCallingConvention(
553      /*IsVariadic=*/false, /*IsCXXMethod=*/true);
554  return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
555                                 /*chainCall=*/false, ArgTys,
556                                 FunctionType::ExtInfo(CC), {},
557                                 RequiredArgs::All);
558}
559
560/// Arrange a call as unto a free function, except possibly with an
561/// additional number of formal parameters considered required.
562static const CGFunctionInfo &
563arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
564                            CodeGenModule &CGM,
565                            const CallArgList &args,
566                            const FunctionType *fnType,
567                            unsigned numExtraRequiredArgs,
568                            bool chainCall) {
569  assert(args.size() >= numExtraRequiredArgs);
570
571  llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
572
573  // In most cases, there are no optional arguments.
574  RequiredArgs required = RequiredArgs::All;
575
576  // If we have a variadic prototype, the required arguments are the
577  // extra prefix plus the arguments in the prototype.
578  if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
579    if (proto->isVariadic())
580      required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
581
582    if (proto->hasExtParameterInfos())
583      addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
584                                  args.size());
585
586  // If we don't have a prototype at all, but we're supposed to
587  // explicitly use the variadic convention for unprototyped calls,
588  // treat all of the arguments as required but preserve the nominal
589  // possibility of variadics.
590  } else if (CGM.getTargetCodeGenInfo()
591                .isNoProtoCallVariadic(args,
592                                       cast<FunctionNoProtoType>(fnType))) {
593    required = RequiredArgs(args.size());
594  }
595
596  // FIXME: Kill copy.
597  SmallVector<CanQualType, 16> argTypes;
598  for (const auto &arg : args)
599    argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
600  return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
601                                     /*instanceMethod=*/false, chainCall,
602                                     argTypes, fnType->getExtInfo(), paramInfos,
603                                     required);
604}
605
606/// Figure out the rules for calling a function with the given formal
607/// type using the given arguments.  The arguments are necessary
608/// because the function might be unprototyped, in which case it's
609/// target-dependent in crazy ways.
610const CGFunctionInfo &
611CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
612                                      const FunctionType *fnType,
613                                      bool chainCall) {
614  return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
615                                     chainCall ? 1 : 0, chainCall);
616}
617
618/// A block function is essentially a free function with an
619/// extra implicit argument.
620const CGFunctionInfo &
621CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
622                                       const FunctionType *fnType) {
623  return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
624                                     /*chainCall=*/false);
625}
626
627const CGFunctionInfo &
628CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
629                                              const FunctionArgList &params) {
630  auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
631  auto argTypes = getArgTypesForDeclaration(Context, params);
632
633  return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
634                                 /*instanceMethod*/ false, /*chainCall*/ false,
635                                 argTypes, proto->getExtInfo(), paramInfos,
636                                 RequiredArgs::forPrototypePlus(proto, 1));
637}
638
639const CGFunctionInfo &
640CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
641                                         const CallArgList &args) {
642  // FIXME: Kill copy.
643  SmallVector<CanQualType, 16> argTypes;
644  for (const auto &Arg : args)
645    argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
646  return arrangeLLVMFunctionInfo(
647      GetReturnType(resultType), /*instanceMethod=*/false,
648      /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
649      /*paramInfos=*/ {}, RequiredArgs::All);
650}
651
652const CGFunctionInfo &
653CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
654                                                const FunctionArgList &args) {
655  auto argTypes = getArgTypesForDeclaration(Context, args);
656
657  return arrangeLLVMFunctionInfo(
658      GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
659      argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
660}
661
662const CGFunctionInfo &
663CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
664                                              ArrayRef<CanQualType> argTypes) {
665  return arrangeLLVMFunctionInfo(
666      resultType, /*instanceMethod=*/false, /*chainCall=*/false,
667      argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
668}
669
670/// Arrange a call to a C++ method, passing the given arguments.
671///
672/// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
673/// does not count `this`.
674const CGFunctionInfo &
675CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
676                                   const FunctionProtoType *proto,
677                                   RequiredArgs required,
678                                   unsigned numPrefixArgs) {
679  assert(numPrefixArgs + 1 <= args.size() &&
680         "Emitting a call with less args than the required prefix?");
681  // Add one to account for `this`. It's a bit awkward here, but we don't count
682  // `this` in similar places elsewhere.
683  auto paramInfos =
684    getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
685
686  // FIXME: Kill copy.
687  auto argTypes = getArgTypesForCall(Context, args);
688
689  FunctionType::ExtInfo info = proto->getExtInfo();
690  return arrangeLLVMFunctionInfo(
691      GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
692      /*chainCall=*/false, argTypes, info, paramInfos, required);
693}
694
695const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
696  return arrangeLLVMFunctionInfo(
697      getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
698      None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
699}
700
701const CGFunctionInfo &
702CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
703                          const CallArgList &args) {
704  assert(signature.arg_size() <= args.size());
705  if (signature.arg_size() == args.size())
706    return signature;
707
708  SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
709  auto sigParamInfos = signature.getExtParameterInfos();
710  if (!sigParamInfos.empty()) {
711    paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
712    paramInfos.resize(args.size());
713  }
714
715  auto argTypes = getArgTypesForCall(Context, args);
716
717  assert(signature.getRequiredArgs().allowsOptionalArgs());
718  return arrangeLLVMFunctionInfo(signature.getReturnType(),
719                                 signature.isInstanceMethod(),
720                                 signature.isChainCall(),
721                                 argTypes,
722                                 signature.getExtInfo(),
723                                 paramInfos,
724                                 signature.getRequiredArgs());
725}
726
727namespace clang {
728namespace CodeGen {
729void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
730}
731}
732
733/// Arrange the argument and result information for an abstract value
734/// of a given function type.  This is the method which all of the
735/// above functions ultimately defer to.
736const CGFunctionInfo &
737CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
738                                      bool instanceMethod,
739                                      bool chainCall,
740                                      ArrayRef<CanQualType> argTypes,
741                                      FunctionType::ExtInfo info,
742                     ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
743                                      RequiredArgs required) {
744  assert(llvm::all_of(argTypes,
745                      [](CanQualType T) { return T.isCanonicalAsParam(); }));
746
747  // Lookup or create unique function info.
748  llvm::FoldingSetNodeID ID;
749  CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
750                          required, resultType, argTypes);
751
752  void *insertPos = nullptr;
753  CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
754  if (FI)
755    return *FI;
756
757  unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
758
759  // Construct the function info.  We co-allocate the ArgInfos.
760  FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
761                              paramInfos, resultType, argTypes, required);
762  FunctionInfos.InsertNode(FI, insertPos);
763
764  bool inserted = FunctionsBeingProcessed.insert(FI).second;
765  (void)inserted;
766  assert(inserted && "Recursively being processed?");
767
768  // Compute ABI information.
769  if (CC == llvm::CallingConv::SPIR_KERNEL) {
770    // Force target independent argument handling for the host visible
771    // kernel functions.
772    computeSPIRKernelABIInfo(CGM, *FI);
773  } else if (info.getCC() == CC_Swift) {
774    swiftcall::computeABIInfo(CGM, *FI);
775  } else {
776    getABIInfo().computeInfo(*FI);
777  }
778
779  // Loop over all of the computed argument and return value info.  If any of
780  // them are direct or extend without a specified coerce type, specify the
781  // default now.
782  ABIArgInfo &retInfo = FI->getReturnInfo();
783  if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
784    retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
785
786  for (auto &I : FI->arguments())
787    if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
788      I.info.setCoerceToType(ConvertType(I.type));
789
790  bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
791  assert(erased && "Not in set?");
792
793  return *FI;
794}
795
796CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
797                                       bool instanceMethod,
798                                       bool chainCall,
799                                       const FunctionType::ExtInfo &info,
800                                       ArrayRef<ExtParameterInfo> paramInfos,
801                                       CanQualType resultType,
802                                       ArrayRef<CanQualType> argTypes,
803                                       RequiredArgs required) {
804  assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
805  assert(!required.allowsOptionalArgs() ||
806         required.getNumRequiredArgs() <= argTypes.size());
807
808  void *buffer =
809    operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
810                                  argTypes.size() + 1, paramInfos.size()));
811
812  CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
813  FI->CallingConvention = llvmCC;
814  FI->EffectiveCallingConvention = llvmCC;
815  FI->ASTCallingConvention = info.getCC();
816  FI->InstanceMethod = instanceMethod;
817  FI->ChainCall = chainCall;
818  FI->NoReturn = info.getNoReturn();
819  FI->ReturnsRetained = info.getProducesResult();
820  FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
821  FI->NoCfCheck = info.getNoCfCheck();
822  FI->Required = required;
823  FI->HasRegParm = info.getHasRegParm();
824  FI->RegParm = info.getRegParm();
825  FI->ArgStruct = nullptr;
826  FI->ArgStructAlign = 0;
827  FI->NumArgs = argTypes.size();
828  FI->HasExtParameterInfos = !paramInfos.empty();
829  FI->getArgsBuffer()[0].type = resultType;
830  for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
831    FI->getArgsBuffer()[i + 1].type = argTypes[i];
832  for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
833    FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
834  return FI;
835}
836
837/***/
838
839namespace {
840// ABIArgInfo::Expand implementation.
841
842// Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
843struct TypeExpansion {
844  enum TypeExpansionKind {
845    // Elements of constant arrays are expanded recursively.
846    TEK_ConstantArray,
847    // Record fields are expanded recursively (but if record is a union, only
848    // the field with the largest size is expanded).
849    TEK_Record,
850    // For complex types, real and imaginary parts are expanded recursively.
851    TEK_Complex,
852    // All other types are not expandable.
853    TEK_None
854  };
855
856  const TypeExpansionKind Kind;
857
858  TypeExpansion(TypeExpansionKind K) : Kind(K) {}
859  virtual ~TypeExpansion() {}
860};
861
862struct ConstantArrayExpansion : TypeExpansion {
863  QualType EltTy;
864  uint64_t NumElts;
865
866  ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
867      : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
868  static bool classof(const TypeExpansion *TE) {
869    return TE->Kind == TEK_ConstantArray;
870  }
871};
872
873struct RecordExpansion : TypeExpansion {
874  SmallVector<const CXXBaseSpecifier *, 1> Bases;
875
876  SmallVector<const FieldDecl *, 1> Fields;
877
878  RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
879                  SmallVector<const FieldDecl *, 1> &&Fields)
880      : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
881        Fields(std::move(Fields)) {}
882  static bool classof(const TypeExpansion *TE) {
883    return TE->Kind == TEK_Record;
884  }
885};
886
887struct ComplexExpansion : TypeExpansion {
888  QualType EltTy;
889
890  ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
891  static bool classof(const TypeExpansion *TE) {
892    return TE->Kind == TEK_Complex;
893  }
894};
895
896struct NoExpansion : TypeExpansion {
897  NoExpansion() : TypeExpansion(TEK_None) {}
898  static bool classof(const TypeExpansion *TE) {
899    return TE->Kind == TEK_None;
900  }
901};
902}  // namespace
903
904static std::unique_ptr<TypeExpansion>
905getTypeExpansion(QualType Ty, const ASTContext &Context) {
906  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
907    return std::make_unique<ConstantArrayExpansion>(
908        AT->getElementType(), AT->getSize().getZExtValue());
909  }
910  if (const RecordType *RT = Ty->getAs<RecordType>()) {
911    SmallVector<const CXXBaseSpecifier *, 1> Bases;
912    SmallVector<const FieldDecl *, 1> Fields;
913    const RecordDecl *RD = RT->getDecl();
914    assert(!RD->hasFlexibleArrayMember() &&
915           "Cannot expand structure with flexible array.");
916    if (RD->isUnion()) {
917      // Unions can be here only in degenerative cases - all the fields are same
918      // after flattening. Thus we have to use the "largest" field.
919      const FieldDecl *LargestFD = nullptr;
920      CharUnits UnionSize = CharUnits::Zero();
921
922      for (const auto *FD : RD->fields()) {
923        if (FD->isZeroLengthBitField(Context))
924          continue;
925        assert(!FD->isBitField() &&
926               "Cannot expand structure with bit-field members.");
927        CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
928        if (UnionSize < FieldSize) {
929          UnionSize = FieldSize;
930          LargestFD = FD;
931        }
932      }
933      if (LargestFD)
934        Fields.push_back(LargestFD);
935    } else {
936      if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
937        assert(!CXXRD->isDynamicClass() &&
938               "cannot expand vtable pointers in dynamic classes");
939        for (const CXXBaseSpecifier &BS : CXXRD->bases())
940          Bases.push_back(&BS);
941      }
942
943      for (const auto *FD : RD->fields()) {
944        if (FD->isZeroLengthBitField(Context))
945          continue;
946        assert(!FD->isBitField() &&
947               "Cannot expand structure with bit-field members.");
948        Fields.push_back(FD);
949      }
950    }
951    return std::make_unique<RecordExpansion>(std::move(Bases),
952                                              std::move(Fields));
953  }
954  if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
955    return std::make_unique<ComplexExpansion>(CT->getElementType());
956  }
957  return std::make_unique<NoExpansion>();
958}
959
960static int getExpansionSize(QualType Ty, const ASTContext &Context) {
961  auto Exp = getTypeExpansion(Ty, Context);
962  if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
963    return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
964  }
965  if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
966    int Res = 0;
967    for (auto BS : RExp->Bases)
968      Res += getExpansionSize(BS->getType(), Context);
969    for (auto FD : RExp->Fields)
970      Res += getExpansionSize(FD->getType(), Context);
971    return Res;
972  }
973  if (isa<ComplexExpansion>(Exp.get()))
974    return 2;
975  assert(isa<NoExpansion>(Exp.get()));
976  return 1;
977}
978
979void
980CodeGenTypes::getExpandedTypes(QualType Ty,
981                               SmallVectorImpl<llvm::Type *>::iterator &TI) {
982  auto Exp = getTypeExpansion(Ty, Context);
983  if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
984    for (int i = 0, n = CAExp->NumElts; i < n; i++) {
985      getExpandedTypes(CAExp->EltTy, TI);
986    }
987  } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
988    for (auto BS : RExp->Bases)
989      getExpandedTypes(BS->getType(), TI);
990    for (auto FD : RExp->Fields)
991      getExpandedTypes(FD->getType(), TI);
992  } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
993    llvm::Type *EltTy = ConvertType(CExp->EltTy);
994    *TI++ = EltTy;
995    *TI++ = EltTy;
996  } else {
997    assert(isa<NoExpansion>(Exp.get()));
998    *TI++ = ConvertType(Ty);
999  }
1000}
1001
1002static void forConstantArrayExpansion(CodeGenFunction &CGF,
1003                                      ConstantArrayExpansion *CAE,
1004                                      Address BaseAddr,
1005                                      llvm::function_ref<void(Address)> Fn) {
1006  CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1007  CharUnits EltAlign =
1008    BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1009
1010  for (int i = 0, n = CAE->NumElts; i < n; i++) {
1011    llvm::Value *EltAddr =
1012      CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
1013    Fn(Address(EltAddr, EltAlign));
1014  }
1015}
1016
1017void CodeGenFunction::ExpandTypeFromArgs(
1018    QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) {
1019  assert(LV.isSimple() &&
1020         "Unexpected non-simple lvalue during struct expansion.");
1021
1022  auto Exp = getTypeExpansion(Ty, getContext());
1023  if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1024    forConstantArrayExpansion(
1025        *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1026          LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1027          ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1028        });
1029  } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1030    Address This = LV.getAddress(*this);
1031    for (const CXXBaseSpecifier *BS : RExp->Bases) {
1032      // Perform a single step derived-to-base conversion.
1033      Address Base =
1034          GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1035                                /*NullCheckValue=*/false, SourceLocation());
1036      LValue SubLV = MakeAddrLValue(Base, BS->getType());
1037
1038      // Recurse onto bases.
1039      ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1040    }
1041    for (auto FD : RExp->Fields) {
1042      // FIXME: What are the right qualifiers here?
1043      LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1044      ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1045    }
1046  } else if (isa<ComplexExpansion>(Exp.get())) {
1047    auto realValue = *AI++;
1048    auto imagValue = *AI++;
1049    EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1050  } else {
1051    // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1052    // primitive store.
1053    assert(isa<NoExpansion>(Exp.get()));
1054    if (LV.isBitField())
1055      EmitStoreThroughLValue(RValue::get(*AI++), LV);
1056    else
1057      EmitStoreOfScalar(*AI++, LV);
1058  }
1059}
1060
1061void CodeGenFunction::ExpandTypeToArgs(
1062    QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1063    SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1064  auto Exp = getTypeExpansion(Ty, getContext());
1065  if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1066    Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1067                                   : Arg.getKnownRValue().getAggregateAddress();
1068    forConstantArrayExpansion(
1069        *this, CAExp, Addr, [&](Address EltAddr) {
1070          CallArg EltArg = CallArg(
1071              convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1072              CAExp->EltTy);
1073          ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1074                           IRCallArgPos);
1075        });
1076  } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1077    Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1078                                   : Arg.getKnownRValue().getAggregateAddress();
1079    for (const CXXBaseSpecifier *BS : RExp->Bases) {
1080      // Perform a single step derived-to-base conversion.
1081      Address Base =
1082          GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1083                                /*NullCheckValue=*/false, SourceLocation());
1084      CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1085
1086      // Recurse onto bases.
1087      ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1088                       IRCallArgPos);
1089    }
1090
1091    LValue LV = MakeAddrLValue(This, Ty);
1092    for (auto FD : RExp->Fields) {
1093      CallArg FldArg =
1094          CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1095      ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1096                       IRCallArgPos);
1097    }
1098  } else if (isa<ComplexExpansion>(Exp.get())) {
1099    ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1100    IRCallArgs[IRCallArgPos++] = CV.first;
1101    IRCallArgs[IRCallArgPos++] = CV.second;
1102  } else {
1103    assert(isa<NoExpansion>(Exp.get()));
1104    auto RV = Arg.getKnownRValue();
1105    assert(RV.isScalar() &&
1106           "Unexpected non-scalar rvalue during struct expansion.");
1107
1108    // Insert a bitcast as needed.
1109    llvm::Value *V = RV.getScalarVal();
1110    if (IRCallArgPos < IRFuncTy->getNumParams() &&
1111        V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1112      V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1113
1114    IRCallArgs[IRCallArgPos++] = V;
1115  }
1116}
1117
1118/// Create a temporary allocation for the purposes of coercion.
1119static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1120                                           CharUnits MinAlign) {
1121  // Don't use an alignment that's worse than what LLVM would prefer.
1122  auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1123  CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1124
1125  return CGF.CreateTempAlloca(Ty, Align);
1126}
1127
1128/// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1129/// accessing some number of bytes out of it, try to gep into the struct to get
1130/// at its inner goodness.  Dive as deep as possible without entering an element
1131/// with an in-memory size smaller than DstSize.
1132static Address
1133EnterStructPointerForCoercedAccess(Address SrcPtr,
1134                                   llvm::StructType *SrcSTy,
1135                                   uint64_t DstSize, CodeGenFunction &CGF) {
1136  // We can't dive into a zero-element struct.
1137  if (SrcSTy->getNumElements() == 0) return SrcPtr;
1138
1139  llvm::Type *FirstElt = SrcSTy->getElementType(0);
1140
1141  // If the first elt is at least as large as what we're looking for, or if the
1142  // first element is the same size as the whole struct, we can enter it. The
1143  // comparison must be made on the store size and not the alloca size. Using
1144  // the alloca size may overstate the size of the load.
1145  uint64_t FirstEltSize =
1146    CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1147  if (FirstEltSize < DstSize &&
1148      FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1149    return SrcPtr;
1150
1151  // GEP into the first element.
1152  SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1153
1154  // If the first element is a struct, recurse.
1155  llvm::Type *SrcTy = SrcPtr.getElementType();
1156  if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1157    return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1158
1159  return SrcPtr;
1160}
1161
1162/// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1163/// are either integers or pointers.  This does a truncation of the value if it
1164/// is too large or a zero extension if it is too small.
1165///
1166/// This behaves as if the value were coerced through memory, so on big-endian
1167/// targets the high bits are preserved in a truncation, while little-endian
1168/// targets preserve the low bits.
1169static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1170                                             llvm::Type *Ty,
1171                                             CodeGenFunction &CGF) {
1172  if (Val->getType() == Ty)
1173    return Val;
1174
1175  if (isa<llvm::PointerType>(Val->getType())) {
1176    // If this is Pointer->Pointer avoid conversion to and from int.
1177    if (isa<llvm::PointerType>(Ty))
1178      return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1179
1180    // Convert the pointer to an integer so we can play with its width.
1181    Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1182  }
1183
1184  llvm::Type *DestIntTy = Ty;
1185  if (isa<llvm::PointerType>(DestIntTy))
1186    DestIntTy = CGF.IntPtrTy;
1187
1188  if (Val->getType() != DestIntTy) {
1189    const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1190    if (DL.isBigEndian()) {
1191      // Preserve the high bits on big-endian targets.
1192      // That is what memory coercion does.
1193      uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1194      uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1195
1196      if (SrcSize > DstSize) {
1197        Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1198        Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1199      } else {
1200        Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1201        Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1202      }
1203    } else {
1204      // Little-endian targets preserve the low bits. No shifts required.
1205      Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1206    }
1207  }
1208
1209  if (isa<llvm::PointerType>(Ty))
1210    Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1211  return Val;
1212}
1213
1214
1215
1216/// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1217/// a pointer to an object of type \arg Ty, known to be aligned to
1218/// \arg SrcAlign bytes.
1219///
1220/// This safely handles the case when the src type is smaller than the
1221/// destination type; in this situation the values of bits which not
1222/// present in the src are undefined.
1223static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1224                                      CodeGenFunction &CGF) {
1225  llvm::Type *SrcTy = Src.getElementType();
1226
1227  // If SrcTy and Ty are the same, just do a load.
1228  if (SrcTy == Ty)
1229    return CGF.Builder.CreateLoad(Src);
1230
1231  uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1232
1233  if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1234    Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
1235    SrcTy = Src.getType()->getElementType();
1236  }
1237
1238  uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1239
1240  // If the source and destination are integer or pointer types, just do an
1241  // extension or truncation to the desired type.
1242  if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1243      (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1244    llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1245    return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1246  }
1247
1248  // If load is legal, just bitcast the src pointer.
1249  if (SrcSize >= DstSize) {
1250    // Generally SrcSize is never greater than DstSize, since this means we are
1251    // losing bits. However, this can happen in cases where the structure has
1252    // additional padding, for example due to a user specified alignment.
1253    //
1254    // FIXME: Assert that we aren't truncating non-padding bits when have access
1255    // to that information.
1256    Src = CGF.Builder.CreateBitCast(Src,
1257                                    Ty->getPointerTo(Src.getAddressSpace()));
1258    return CGF.Builder.CreateLoad(Src);
1259  }
1260
1261  // Otherwise do coercion through memory. This is stupid, but simple.
1262  Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1263  Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1264  Address SrcCasted = CGF.Builder.CreateElementBitCast(Src,CGF.Int8Ty);
1265  CGF.Builder.CreateMemCpy(Casted, SrcCasted,
1266      llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
1267      false);
1268  return CGF.Builder.CreateLoad(Tmp);
1269}
1270
1271// Function to store a first-class aggregate into memory.  We prefer to
1272// store the elements rather than the aggregate to be more friendly to
1273// fast-isel.
1274// FIXME: Do we need to recurse here?
1275static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1276                          Address Dest, bool DestIsVolatile) {
1277  // Prefer scalar stores to first-class aggregate stores.
1278  if (llvm::StructType *STy =
1279        dyn_cast<llvm::StructType>(Val->getType())) {
1280    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1281      Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i);
1282      llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1283      CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1284    }
1285  } else {
1286    CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1287  }
1288}
1289
1290/// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1291/// where the source and destination may have different types.  The
1292/// destination is known to be aligned to \arg DstAlign bytes.
1293///
1294/// This safely handles the case when the src type is larger than the
1295/// destination type; the upper bits of the src will be lost.
1296static void CreateCoercedStore(llvm::Value *Src,
1297                               Address Dst,
1298                               bool DstIsVolatile,
1299                               CodeGenFunction &CGF) {
1300  llvm::Type *SrcTy = Src->getType();
1301  llvm::Type *DstTy = Dst.getType()->getElementType();
1302  if (SrcTy == DstTy) {
1303    CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1304    return;
1305  }
1306
1307  uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1308
1309  if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1310    Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1311    DstTy = Dst.getType()->getElementType();
1312  }
1313
1314  llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1315  llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1316  if (SrcPtrTy && DstPtrTy &&
1317      SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1318    Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy);
1319    CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1320    return;
1321  }
1322
1323  // If the source and destination are integer or pointer types, just do an
1324  // extension or truncation to the desired type.
1325  if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1326      (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1327    Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1328    CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1329    return;
1330  }
1331
1332  uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1333
1334  // If store is legal, just bitcast the src pointer.
1335  if (SrcSize <= DstSize) {
1336    Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1337    BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1338  } else {
1339    // Otherwise do coercion through memory. This is stupid, but
1340    // simple.
1341
1342    // Generally SrcSize is never greater than DstSize, since this means we are
1343    // losing bits. However, this can happen in cases where the structure has
1344    // additional padding, for example due to a user specified alignment.
1345    //
1346    // FIXME: Assert that we aren't truncating non-padding bits when have access
1347    // to that information.
1348    Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1349    CGF.Builder.CreateStore(Src, Tmp);
1350    Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1351    Address DstCasted = CGF.Builder.CreateElementBitCast(Dst,CGF.Int8Ty);
1352    CGF.Builder.CreateMemCpy(DstCasted, Casted,
1353        llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1354        false);
1355  }
1356}
1357
1358static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1359                                   const ABIArgInfo &info) {
1360  if (unsigned offset = info.getDirectOffset()) {
1361    addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1362    addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1363                                             CharUnits::fromQuantity(offset));
1364    addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1365  }
1366  return addr;
1367}
1368
1369namespace {
1370
1371/// Encapsulates information about the way function arguments from
1372/// CGFunctionInfo should be passed to actual LLVM IR function.
1373class ClangToLLVMArgMapping {
1374  static const unsigned InvalidIndex = ~0U;
1375  unsigned InallocaArgNo;
1376  unsigned SRetArgNo;
1377  unsigned TotalIRArgs;
1378
1379  /// Arguments of LLVM IR function corresponding to single Clang argument.
1380  struct IRArgs {
1381    unsigned PaddingArgIndex;
1382    // Argument is expanded to IR arguments at positions
1383    // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1384    unsigned FirstArgIndex;
1385    unsigned NumberOfArgs;
1386
1387    IRArgs()
1388        : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1389          NumberOfArgs(0) {}
1390  };
1391
1392  SmallVector<IRArgs, 8> ArgInfo;
1393
1394public:
1395  ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1396                        bool OnlyRequiredArgs = false)
1397      : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1398        ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1399    construct(Context, FI, OnlyRequiredArgs);
1400  }
1401
1402  bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1403  unsigned getInallocaArgNo() const {
1404    assert(hasInallocaArg());
1405    return InallocaArgNo;
1406  }
1407
1408  bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1409  unsigned getSRetArgNo() const {
1410    assert(hasSRetArg());
1411    return SRetArgNo;
1412  }
1413
1414  unsigned totalIRArgs() const { return TotalIRArgs; }
1415
1416  bool hasPaddingArg(unsigned ArgNo) const {
1417    assert(ArgNo < ArgInfo.size());
1418    return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1419  }
1420  unsigned getPaddingArgNo(unsigned ArgNo) const {
1421    assert(hasPaddingArg(ArgNo));
1422    return ArgInfo[ArgNo].PaddingArgIndex;
1423  }
1424
1425  /// Returns index of first IR argument corresponding to ArgNo, and their
1426  /// quantity.
1427  std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1428    assert(ArgNo < ArgInfo.size());
1429    return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1430                          ArgInfo[ArgNo].NumberOfArgs);
1431  }
1432
1433private:
1434  void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1435                 bool OnlyRequiredArgs);
1436};
1437
1438void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1439                                      const CGFunctionInfo &FI,
1440                                      bool OnlyRequiredArgs) {
1441  unsigned IRArgNo = 0;
1442  bool SwapThisWithSRet = false;
1443  const ABIArgInfo &RetAI = FI.getReturnInfo();
1444
1445  if (RetAI.getKind() == ABIArgInfo::Indirect) {
1446    SwapThisWithSRet = RetAI.isSRetAfterThis();
1447    SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1448  }
1449
1450  unsigned ArgNo = 0;
1451  unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1452  for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1453       ++I, ++ArgNo) {
1454    assert(I != FI.arg_end());
1455    QualType ArgType = I->type;
1456    const ABIArgInfo &AI = I->info;
1457    // Collect data about IR arguments corresponding to Clang argument ArgNo.
1458    auto &IRArgs = ArgInfo[ArgNo];
1459
1460    if (AI.getPaddingType())
1461      IRArgs.PaddingArgIndex = IRArgNo++;
1462
1463    switch (AI.getKind()) {
1464    case ABIArgInfo::Extend:
1465    case ABIArgInfo::Direct: {
1466      // FIXME: handle sseregparm someday...
1467      llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1468      if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1469        IRArgs.NumberOfArgs = STy->getNumElements();
1470      } else {
1471        IRArgs.NumberOfArgs = 1;
1472      }
1473      break;
1474    }
1475    case ABIArgInfo::Indirect:
1476      IRArgs.NumberOfArgs = 1;
1477      break;
1478    case ABIArgInfo::Ignore:
1479    case ABIArgInfo::InAlloca:
1480      // ignore and inalloca doesn't have matching LLVM parameters.
1481      IRArgs.NumberOfArgs = 0;
1482      break;
1483    case ABIArgInfo::CoerceAndExpand:
1484      IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1485      break;
1486    case ABIArgInfo::Expand:
1487      IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1488      break;
1489    }
1490
1491    if (IRArgs.NumberOfArgs > 0) {
1492      IRArgs.FirstArgIndex = IRArgNo;
1493      IRArgNo += IRArgs.NumberOfArgs;
1494    }
1495
1496    // Skip over the sret parameter when it comes second.  We already handled it
1497    // above.
1498    if (IRArgNo == 1 && SwapThisWithSRet)
1499      IRArgNo++;
1500  }
1501  assert(ArgNo == ArgInfo.size());
1502
1503  if (FI.usesInAlloca())
1504    InallocaArgNo = IRArgNo++;
1505
1506  TotalIRArgs = IRArgNo;
1507}
1508}  // namespace
1509
1510/***/
1511
1512bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1513  const auto &RI = FI.getReturnInfo();
1514  return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1515}
1516
1517bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1518  return ReturnTypeUsesSRet(FI) &&
1519         getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1520}
1521
1522bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1523  if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1524    switch (BT->getKind()) {
1525    default:
1526      return false;
1527    case BuiltinType::Float:
1528      return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1529    case BuiltinType::Double:
1530      return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1531    case BuiltinType::LongDouble:
1532      return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1533    }
1534  }
1535
1536  return false;
1537}
1538
1539bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1540  if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1541    if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1542      if (BT->getKind() == BuiltinType::LongDouble)
1543        return getTarget().useObjCFP2RetForComplexLongDouble();
1544    }
1545  }
1546
1547  return false;
1548}
1549
1550llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1551  const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1552  return GetFunctionType(FI);
1553}
1554
1555llvm::FunctionType *
1556CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1557
1558  bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1559  (void)Inserted;
1560  assert(Inserted && "Recursively being processed?");
1561
1562  llvm::Type *resultType = nullptr;
1563  const ABIArgInfo &retAI = FI.getReturnInfo();
1564  switch (retAI.getKind()) {
1565  case ABIArgInfo::Expand:
1566    llvm_unreachable("Invalid ABI kind for return argument");
1567
1568  case ABIArgInfo::Extend:
1569  case ABIArgInfo::Direct:
1570    resultType = retAI.getCoerceToType();
1571    break;
1572
1573  case ABIArgInfo::InAlloca:
1574    if (retAI.getInAllocaSRet()) {
1575      // sret things on win32 aren't void, they return the sret pointer.
1576      QualType ret = FI.getReturnType();
1577      llvm::Type *ty = ConvertType(ret);
1578      unsigned addressSpace = Context.getTargetAddressSpace(ret);
1579      resultType = llvm::PointerType::get(ty, addressSpace);
1580    } else {
1581      resultType = llvm::Type::getVoidTy(getLLVMContext());
1582    }
1583    break;
1584
1585  case ABIArgInfo::Indirect:
1586  case ABIArgInfo::Ignore:
1587    resultType = llvm::Type::getVoidTy(getLLVMContext());
1588    break;
1589
1590  case ABIArgInfo::CoerceAndExpand:
1591    resultType = retAI.getUnpaddedCoerceAndExpandType();
1592    break;
1593  }
1594
1595  ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1596  SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1597
1598  // Add type for sret argument.
1599  if (IRFunctionArgs.hasSRetArg()) {
1600    QualType Ret = FI.getReturnType();
1601    llvm::Type *Ty = ConvertType(Ret);
1602    unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1603    ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1604        llvm::PointerType::get(Ty, AddressSpace);
1605  }
1606
1607  // Add type for inalloca argument.
1608  if (IRFunctionArgs.hasInallocaArg()) {
1609    auto ArgStruct = FI.getArgStruct();
1610    assert(ArgStruct);
1611    ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1612  }
1613
1614  // Add in all of the required arguments.
1615  unsigned ArgNo = 0;
1616  CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1617                                     ie = it + FI.getNumRequiredArgs();
1618  for (; it != ie; ++it, ++ArgNo) {
1619    const ABIArgInfo &ArgInfo = it->info;
1620
1621    // Insert a padding type to ensure proper alignment.
1622    if (IRFunctionArgs.hasPaddingArg(ArgNo))
1623      ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1624          ArgInfo.getPaddingType();
1625
1626    unsigned FirstIRArg, NumIRArgs;
1627    std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1628
1629    switch (ArgInfo.getKind()) {
1630    case ABIArgInfo::Ignore:
1631    case ABIArgInfo::InAlloca:
1632      assert(NumIRArgs == 0);
1633      break;
1634
1635    case ABIArgInfo::Indirect: {
1636      assert(NumIRArgs == 1);
1637      // indirect arguments are always on the stack, which is alloca addr space.
1638      llvm::Type *LTy = ConvertTypeForMem(it->type);
1639      ArgTypes[FirstIRArg] = LTy->getPointerTo(
1640          CGM.getDataLayout().getAllocaAddrSpace());
1641      break;
1642    }
1643
1644    case ABIArgInfo::Extend:
1645    case ABIArgInfo::Direct: {
1646      // Fast-isel and the optimizer generally like scalar values better than
1647      // FCAs, so we flatten them if this is safe to do for this argument.
1648      llvm::Type *argType = ArgInfo.getCoerceToType();
1649      llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1650      if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1651        assert(NumIRArgs == st->getNumElements());
1652        for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1653          ArgTypes[FirstIRArg + i] = st->getElementType(i);
1654      } else {
1655        assert(NumIRArgs == 1);
1656        ArgTypes[FirstIRArg] = argType;
1657      }
1658      break;
1659    }
1660
1661    case ABIArgInfo::CoerceAndExpand: {
1662      auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1663      for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1664        *ArgTypesIter++ = EltTy;
1665      }
1666      assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1667      break;
1668    }
1669
1670    case ABIArgInfo::Expand:
1671      auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1672      getExpandedTypes(it->type, ArgTypesIter);
1673      assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1674      break;
1675    }
1676  }
1677
1678  bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1679  assert(Erased && "Not in set?");
1680
1681  return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1682}
1683
1684llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1685  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1686  const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1687
1688  if (!isFuncTypeConvertible(FPT))
1689    return llvm::StructType::get(getLLVMContext());
1690
1691  return GetFunctionType(GD);
1692}
1693
1694static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1695                                               llvm::AttrBuilder &FuncAttrs,
1696                                               const FunctionProtoType *FPT) {
1697  if (!FPT)
1698    return;
1699
1700  if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1701      FPT->isNothrow())
1702    FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1703}
1704
1705void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone,
1706                                               bool AttrOnCallSite,
1707                                               llvm::AttrBuilder &FuncAttrs) {
1708  // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1709  if (!HasOptnone) {
1710    if (CodeGenOpts.OptimizeSize)
1711      FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1712    if (CodeGenOpts.OptimizeSize == 2)
1713      FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1714  }
1715
1716  if (CodeGenOpts.DisableRedZone)
1717    FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1718  if (CodeGenOpts.IndirectTlsSegRefs)
1719    FuncAttrs.addAttribute("indirect-tls-seg-refs");
1720  if (CodeGenOpts.NoImplicitFloat)
1721    FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1722
1723  if (AttrOnCallSite) {
1724    // Attributes that should go on the call site only.
1725    if (!CodeGenOpts.SimplifyLibCalls ||
1726        CodeGenOpts.isNoBuiltinFunc(Name.data()))
1727      FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1728    if (!CodeGenOpts.TrapFuncName.empty())
1729      FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1730  } else {
1731    StringRef FpKind;
1732    switch (CodeGenOpts.getFramePointer()) {
1733    case CodeGenOptions::FramePointerKind::None:
1734      FpKind = "none";
1735      break;
1736    case CodeGenOptions::FramePointerKind::NonLeaf:
1737      FpKind = "non-leaf";
1738      break;
1739    case CodeGenOptions::FramePointerKind::All:
1740      FpKind = "all";
1741      break;
1742    }
1743    FuncAttrs.addAttribute("frame-pointer", FpKind);
1744
1745    FuncAttrs.addAttribute("less-precise-fpmad",
1746                           llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1747
1748    if (CodeGenOpts.NullPointerIsValid)
1749      FuncAttrs.addAttribute("null-pointer-is-valid", "true");
1750    if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::Invalid)
1751      FuncAttrs.addAttribute("denormal-fp-math",
1752                             llvm::denormalModeName(CodeGenOpts.FPDenormalMode));
1753
1754    FuncAttrs.addAttribute("no-trapping-math",
1755                           llvm::toStringRef(CodeGenOpts.NoTrappingMath));
1756
1757    // Strict (compliant) code is the default, so only add this attribute to
1758    // indicate that we are trying to workaround a problem case.
1759    if (!CodeGenOpts.StrictFloatCastOverflow)
1760      FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1761
1762    // TODO: Are these all needed?
1763    // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1764    FuncAttrs.addAttribute("no-infs-fp-math",
1765                           llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1766    FuncAttrs.addAttribute("no-nans-fp-math",
1767                           llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1768    FuncAttrs.addAttribute("unsafe-fp-math",
1769                           llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1770    FuncAttrs.addAttribute("use-soft-float",
1771                           llvm::toStringRef(CodeGenOpts.SoftFloat));
1772    FuncAttrs.addAttribute("stack-protector-buffer-size",
1773                           llvm::utostr(CodeGenOpts.SSPBufferSize));
1774    FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1775                           llvm::toStringRef(CodeGenOpts.NoSignedZeros));
1776    FuncAttrs.addAttribute(
1777        "correctly-rounded-divide-sqrt-fp-math",
1778        llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1779
1780    if (getLangOpts().OpenCL)
1781      FuncAttrs.addAttribute("denorms-are-zero",
1782                             llvm::toStringRef(CodeGenOpts.FlushDenorm));
1783
1784    // TODO: Reciprocal estimate codegen options should apply to instructions?
1785    const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1786    if (!Recips.empty())
1787      FuncAttrs.addAttribute("reciprocal-estimates",
1788                             llvm::join(Recips, ","));
1789
1790    if (!CodeGenOpts.PreferVectorWidth.empty() &&
1791        CodeGenOpts.PreferVectorWidth != "none")
1792      FuncAttrs.addAttribute("prefer-vector-width",
1793                             CodeGenOpts.PreferVectorWidth);
1794
1795    if (CodeGenOpts.StackRealignment)
1796      FuncAttrs.addAttribute("stackrealign");
1797    if (CodeGenOpts.Backchain)
1798      FuncAttrs.addAttribute("backchain");
1799
1800    if (CodeGenOpts.SpeculativeLoadHardening)
1801      FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1802  }
1803
1804  if (getLangOpts().assumeFunctionsAreConvergent()) {
1805    // Conservatively, mark all functions and calls in CUDA and OpenCL as
1806    // convergent (meaning, they may call an intrinsically convergent op, such
1807    // as __syncthreads() / barrier(), and so can't have certain optimizations
1808    // applied around them).  LLVM will remove this attribute where it safely
1809    // can.
1810    FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1811  }
1812
1813  if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1814    // Exceptions aren't supported in CUDA device code.
1815    FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1816
1817    // Respect -fcuda-flush-denormals-to-zero.
1818    if (CodeGenOpts.FlushDenorm)
1819      FuncAttrs.addAttribute("nvptx-f32ftz", "true");
1820  }
1821
1822  for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1823    StringRef Var, Value;
1824    std::tie(Var, Value) = Attr.split('=');
1825    FuncAttrs.addAttribute(Var, Value);
1826  }
1827}
1828
1829void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) {
1830  llvm::AttrBuilder FuncAttrs;
1831  ConstructDefaultFnAttrList(F.getName(), F.hasOptNone(),
1832                             /* AttrOnCallSite = */ false, FuncAttrs);
1833  F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1834}
1835
1836void CodeGenModule::ConstructAttributeList(
1837    StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1838    llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1839  llvm::AttrBuilder FuncAttrs;
1840  llvm::AttrBuilder RetAttrs;
1841
1842  CallingConv = FI.getEffectiveCallingConvention();
1843  if (FI.isNoReturn())
1844    FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1845
1846  // If we have information about the function prototype, we can learn
1847  // attributes from there.
1848  AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1849                                     CalleeInfo.getCalleeFunctionProtoType());
1850
1851  const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
1852
1853  bool HasOptnone = false;
1854  // FIXME: handle sseregparm someday...
1855  if (TargetDecl) {
1856    if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1857      FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1858    if (TargetDecl->hasAttr<NoThrowAttr>())
1859      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1860    if (TargetDecl->hasAttr<NoReturnAttr>())
1861      FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1862    if (TargetDecl->hasAttr<ColdAttr>())
1863      FuncAttrs.addAttribute(llvm::Attribute::Cold);
1864    if (TargetDecl->hasAttr<NoDuplicateAttr>())
1865      FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1866    if (TargetDecl->hasAttr<ConvergentAttr>())
1867      FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1868
1869    if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1870      AddAttributesFromFunctionProtoType(
1871          getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1872      const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1873      const bool IsVirtualCall = MD && MD->isVirtual();
1874      // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
1875      // virtual function. These attributes are not inherited by overloads.
1876      if (!(AttrOnCallSite && IsVirtualCall)) {
1877        if (Fn->isNoReturn())
1878          FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1879
1880        const auto *NBA = Fn->getAttr<NoBuiltinAttr>();
1881        bool HasWildcard = NBA && llvm::is_contained(NBA->builtinNames(), "*");
1882        if (getLangOpts().NoBuiltin || HasWildcard)
1883          FuncAttrs.addAttribute("no-builtins");
1884        else {
1885          auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
1886            SmallString<32> AttributeName;
1887            AttributeName += "no-builtin-";
1888            AttributeName += BuiltinName;
1889            FuncAttrs.addAttribute(AttributeName);
1890          };
1891          llvm::for_each(getLangOpts().NoBuiltinFuncs, AddNoBuiltinAttr);
1892          if (NBA)
1893            llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
1894        }
1895      }
1896    }
1897
1898    // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1899    if (TargetDecl->hasAttr<ConstAttr>()) {
1900      FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1901      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1902    } else if (TargetDecl->hasAttr<PureAttr>()) {
1903      FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1904      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1905    } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1906      FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1907      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1908    }
1909    if (TargetDecl->hasAttr<RestrictAttr>())
1910      RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1911    if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
1912        !CodeGenOpts.NullPointerIsValid)
1913      RetAttrs.addAttribute(llvm::Attribute::NonNull);
1914    if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
1915      FuncAttrs.addAttribute("no_caller_saved_registers");
1916    if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
1917      FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
1918
1919    HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1920    if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1921      Optional<unsigned> NumElemsParam;
1922      if (AllocSize->getNumElemsParam().isValid())
1923        NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
1924      FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
1925                                 NumElemsParam);
1926    }
1927  }
1928
1929  ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
1930
1931  // This must run after constructing the default function attribute list
1932  // to ensure that the speculative load hardening attribute is removed
1933  // in the case where the -mspeculative-load-hardening flag was passed.
1934  if (TargetDecl) {
1935    if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
1936      FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
1937    if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
1938      FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1939  }
1940
1941  if (CodeGenOpts.EnableSegmentedStacks &&
1942      !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1943    FuncAttrs.addAttribute("split-stack");
1944
1945  // Add NonLazyBind attribute to function declarations when -fno-plt
1946  // is used.
1947  if (TargetDecl && CodeGenOpts.NoPLT) {
1948    if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1949      if (!Fn->isDefined() && !AttrOnCallSite) {
1950        FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
1951      }
1952    }
1953  }
1954
1955  if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) {
1956    if (getLangOpts().OpenCLVersion <= 120) {
1957      // OpenCL v1.2 Work groups are always uniform
1958      FuncAttrs.addAttribute("uniform-work-group-size", "true");
1959    } else {
1960      // OpenCL v2.0 Work groups may be whether uniform or not.
1961      // '-cl-uniform-work-group-size' compile option gets a hint
1962      // to the compiler that the global work-size be a multiple of
1963      // the work-group size specified to clEnqueueNDRangeKernel
1964      // (i.e. work groups are uniform).
1965      FuncAttrs.addAttribute("uniform-work-group-size",
1966                             llvm::toStringRef(CodeGenOpts.UniformWGSize));
1967    }
1968  }
1969
1970  if (!AttrOnCallSite) {
1971    bool DisableTailCalls = false;
1972
1973    if (CodeGenOpts.DisableTailCalls)
1974      DisableTailCalls = true;
1975    else if (TargetDecl) {
1976      if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
1977          TargetDecl->hasAttr<AnyX86InterruptAttr>())
1978        DisableTailCalls = true;
1979      else if (CodeGenOpts.NoEscapingBlockTailCalls) {
1980        if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
1981          if (!BD->doesNotEscape())
1982            DisableTailCalls = true;
1983      }
1984    }
1985
1986    FuncAttrs.addAttribute("disable-tail-calls",
1987                           llvm::toStringRef(DisableTailCalls));
1988    GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
1989  }
1990
1991  ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1992
1993  QualType RetTy = FI.getReturnType();
1994  const ABIArgInfo &RetAI = FI.getReturnInfo();
1995  switch (RetAI.getKind()) {
1996  case ABIArgInfo::Extend:
1997    if (RetAI.isSignExt())
1998      RetAttrs.addAttribute(llvm::Attribute::SExt);
1999    else
2000      RetAttrs.addAttribute(llvm::Attribute::ZExt);
2001    LLVM_FALLTHROUGH;
2002  case ABIArgInfo::Direct:
2003    if (RetAI.getInReg())
2004      RetAttrs.addAttribute(llvm::Attribute::InReg);
2005    break;
2006  case ABIArgInfo::Ignore:
2007    break;
2008
2009  case ABIArgInfo::InAlloca:
2010  case ABIArgInfo::Indirect: {
2011    // inalloca and sret disable readnone and readonly
2012    FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2013      .removeAttribute(llvm::Attribute::ReadNone);
2014    break;
2015  }
2016
2017  case ABIArgInfo::CoerceAndExpand:
2018    break;
2019
2020  case ABIArgInfo::Expand:
2021    llvm_unreachable("Invalid ABI kind for return argument");
2022  }
2023
2024  if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2025    QualType PTy = RefTy->getPointeeType();
2026    if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2027      RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
2028                                        .getQuantity());
2029    else if (getContext().getTargetAddressSpace(PTy) == 0 &&
2030             !CodeGenOpts.NullPointerIsValid)
2031      RetAttrs.addAttribute(llvm::Attribute::NonNull);
2032  }
2033
2034  bool hasUsedSRet = false;
2035  SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2036
2037  // Attach attributes to sret.
2038  if (IRFunctionArgs.hasSRetArg()) {
2039    llvm::AttrBuilder SRETAttrs;
2040    SRETAttrs.addAttribute(llvm::Attribute::StructRet);
2041    hasUsedSRet = true;
2042    if (RetAI.getInReg())
2043      SRETAttrs.addAttribute(llvm::Attribute::InReg);
2044    ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2045        llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2046  }
2047
2048  // Attach attributes to inalloca argument.
2049  if (IRFunctionArgs.hasInallocaArg()) {
2050    llvm::AttrBuilder Attrs;
2051    Attrs.addAttribute(llvm::Attribute::InAlloca);
2052    ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2053        llvm::AttributeSet::get(getLLVMContext(), Attrs);
2054  }
2055
2056  unsigned ArgNo = 0;
2057  for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2058                                          E = FI.arg_end();
2059       I != E; ++I, ++ArgNo) {
2060    QualType ParamType = I->type;
2061    const ABIArgInfo &AI = I->info;
2062    llvm::AttrBuilder Attrs;
2063
2064    // Add attribute for padding argument, if necessary.
2065    if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2066      if (AI.getPaddingInReg()) {
2067        ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2068            llvm::AttributeSet::get(
2069                getLLVMContext(),
2070                llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2071      }
2072    }
2073
2074    // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2075    // have the corresponding parameter variable.  It doesn't make
2076    // sense to do it here because parameters are so messed up.
2077    switch (AI.getKind()) {
2078    case ABIArgInfo::Extend:
2079      if (AI.isSignExt())
2080        Attrs.addAttribute(llvm::Attribute::SExt);
2081      else
2082        Attrs.addAttribute(llvm::Attribute::ZExt);
2083      LLVM_FALLTHROUGH;
2084    case ABIArgInfo::Direct:
2085      if (ArgNo == 0 && FI.isChainCall())
2086        Attrs.addAttribute(llvm::Attribute::Nest);
2087      else if (AI.getInReg())
2088        Attrs.addAttribute(llvm::Attribute::InReg);
2089      break;
2090
2091    case ABIArgInfo::Indirect: {
2092      if (AI.getInReg())
2093        Attrs.addAttribute(llvm::Attribute::InReg);
2094
2095      if (AI.getIndirectByVal())
2096        Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2097
2098      CharUnits Align = AI.getIndirectAlign();
2099
2100      // In a byval argument, it is important that the required
2101      // alignment of the type is honored, as LLVM might be creating a
2102      // *new* stack object, and needs to know what alignment to give
2103      // it. (Sometimes it can deduce a sensible alignment on its own,
2104      // but not if clang decides it must emit a packed struct, or the
2105      // user specifies increased alignment requirements.)
2106      //
2107      // This is different from indirect *not* byval, where the object
2108      // exists already, and the align attribute is purely
2109      // informative.
2110      assert(!Align.isZero());
2111
2112      // For now, only add this when we have a byval argument.
2113      // TODO: be less lazy about updating test cases.
2114      if (AI.getIndirectByVal())
2115        Attrs.addAlignmentAttr(Align.getQuantity());
2116
2117      // byval disables readnone and readonly.
2118      FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2119        .removeAttribute(llvm::Attribute::ReadNone);
2120      break;
2121    }
2122    case ABIArgInfo::Ignore:
2123    case ABIArgInfo::Expand:
2124    case ABIArgInfo::CoerceAndExpand:
2125      break;
2126
2127    case ABIArgInfo::InAlloca:
2128      // inalloca disables readnone and readonly.
2129      FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2130          .removeAttribute(llvm::Attribute::ReadNone);
2131      continue;
2132    }
2133
2134    if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2135      QualType PTy = RefTy->getPointeeType();
2136      if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2137        Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
2138                                       .getQuantity());
2139      else if (getContext().getTargetAddressSpace(PTy) == 0 &&
2140               !CodeGenOpts.NullPointerIsValid)
2141        Attrs.addAttribute(llvm::Attribute::NonNull);
2142    }
2143
2144    switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2145    case ParameterABI::Ordinary:
2146      break;
2147
2148    case ParameterABI::SwiftIndirectResult: {
2149      // Add 'sret' if we haven't already used it for something, but
2150      // only if the result is void.
2151      if (!hasUsedSRet && RetTy->isVoidType()) {
2152        Attrs.addAttribute(llvm::Attribute::StructRet);
2153        hasUsedSRet = true;
2154      }
2155
2156      // Add 'noalias' in either case.
2157      Attrs.addAttribute(llvm::Attribute::NoAlias);
2158
2159      // Add 'dereferenceable' and 'alignment'.
2160      auto PTy = ParamType->getPointeeType();
2161      if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2162        auto info = getContext().getTypeInfoInChars(PTy);
2163        Attrs.addDereferenceableAttr(info.first.getQuantity());
2164        Attrs.addAttribute(llvm::Attribute::getWithAlignment(
2165            getLLVMContext(), info.second.getAsAlign()));
2166      }
2167      break;
2168    }
2169
2170    case ParameterABI::SwiftErrorResult:
2171      Attrs.addAttribute(llvm::Attribute::SwiftError);
2172      break;
2173
2174    case ParameterABI::SwiftContext:
2175      Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2176      break;
2177    }
2178
2179    if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2180      Attrs.addAttribute(llvm::Attribute::NoCapture);
2181
2182    if (Attrs.hasAttributes()) {
2183      unsigned FirstIRArg, NumIRArgs;
2184      std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2185      for (unsigned i = 0; i < NumIRArgs; i++)
2186        ArgAttrs[FirstIRArg + i] =
2187            llvm::AttributeSet::get(getLLVMContext(), Attrs);
2188    }
2189  }
2190  assert(ArgNo == FI.arg_size());
2191
2192  AttrList = llvm::AttributeList::get(
2193      getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2194      llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2195}
2196
2197/// An argument came in as a promoted argument; demote it back to its
2198/// declared type.
2199static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2200                                         const VarDecl *var,
2201                                         llvm::Value *value) {
2202  llvm::Type *varType = CGF.ConvertType(var->getType());
2203
2204  // This can happen with promotions that actually don't change the
2205  // underlying type, like the enum promotions.
2206  if (value->getType() == varType) return value;
2207
2208  assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2209         && "unexpected promotion type");
2210
2211  if (isa<llvm::IntegerType>(varType))
2212    return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2213
2214  return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2215}
2216
2217/// Returns the attribute (either parameter attribute, or function
2218/// attribute), which declares argument ArgNo to be non-null.
2219static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2220                                         QualType ArgType, unsigned ArgNo) {
2221  // FIXME: __attribute__((nonnull)) can also be applied to:
2222  //   - references to pointers, where the pointee is known to be
2223  //     nonnull (apparently a Clang extension)
2224  //   - transparent unions containing pointers
2225  // In the former case, LLVM IR cannot represent the constraint. In
2226  // the latter case, we have no guarantee that the transparent union
2227  // is in fact passed as a pointer.
2228  if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2229    return nullptr;
2230  // First, check attribute on parameter itself.
2231  if (PVD) {
2232    if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2233      return ParmNNAttr;
2234  }
2235  // Check function attributes.
2236  if (!FD)
2237    return nullptr;
2238  for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2239    if (NNAttr->isNonNull(ArgNo))
2240      return NNAttr;
2241  }
2242  return nullptr;
2243}
2244
2245namespace {
2246  struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2247    Address Temp;
2248    Address Arg;
2249    CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2250    void Emit(CodeGenFunction &CGF, Flags flags) override {
2251      llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2252      CGF.Builder.CreateStore(errorValue, Arg);
2253    }
2254  };
2255}
2256
2257void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2258                                         llvm::Function *Fn,
2259                                         const FunctionArgList &Args) {
2260  if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2261    // Naked functions don't have prologues.
2262    return;
2263
2264  // If this is an implicit-return-zero function, go ahead and
2265  // initialize the return value.  TODO: it might be nice to have
2266  // a more general mechanism for this that didn't require synthesized
2267  // return statements.
2268  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2269    if (FD->hasImplicitReturnZero()) {
2270      QualType RetTy = FD->getReturnType().getUnqualifiedType();
2271      llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2272      llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2273      Builder.CreateStore(Zero, ReturnValue);
2274    }
2275  }
2276
2277  // FIXME: We no longer need the types from FunctionArgList; lift up and
2278  // simplify.
2279
2280  ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2281  // Flattened function arguments.
2282  SmallVector<llvm::Value *, 16> FnArgs;
2283  FnArgs.reserve(IRFunctionArgs.totalIRArgs());
2284  for (auto &Arg : Fn->args()) {
2285    FnArgs.push_back(&Arg);
2286  }
2287  assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
2288
2289  // If we're using inalloca, all the memory arguments are GEPs off of the last
2290  // parameter, which is a pointer to the complete memory area.
2291  Address ArgStruct = Address::invalid();
2292  if (IRFunctionArgs.hasInallocaArg()) {
2293    ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
2294                        FI.getArgStructAlignment());
2295
2296    assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2297  }
2298
2299  // Name the struct return parameter.
2300  if (IRFunctionArgs.hasSRetArg()) {
2301    auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]);
2302    AI->setName("agg.result");
2303    AI->addAttr(llvm::Attribute::NoAlias);
2304  }
2305
2306  // Track if we received the parameter as a pointer (indirect, byval, or
2307  // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2308  // into a local alloca for us.
2309  SmallVector<ParamValue, 16> ArgVals;
2310  ArgVals.reserve(Args.size());
2311
2312  // Create a pointer value for every parameter declaration.  This usually
2313  // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2314  // any cleanups or do anything that might unwind.  We do that separately, so
2315  // we can push the cleanups in the correct order for the ABI.
2316  assert(FI.arg_size() == Args.size() &&
2317         "Mismatch between function signature & arguments.");
2318  unsigned ArgNo = 0;
2319  CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2320  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2321       i != e; ++i, ++info_it, ++ArgNo) {
2322    const VarDecl *Arg = *i;
2323    const ABIArgInfo &ArgI = info_it->info;
2324
2325    bool isPromoted =
2326      isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2327    // We are converting from ABIArgInfo type to VarDecl type directly, unless
2328    // the parameter is promoted. In this case we convert to
2329    // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2330    QualType Ty = isPromoted ? info_it->type : Arg->getType();
2331    assert(hasScalarEvaluationKind(Ty) ==
2332           hasScalarEvaluationKind(Arg->getType()));
2333
2334    unsigned FirstIRArg, NumIRArgs;
2335    std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2336
2337    switch (ArgI.getKind()) {
2338    case ABIArgInfo::InAlloca: {
2339      assert(NumIRArgs == 0);
2340      auto FieldIndex = ArgI.getInAllocaFieldIndex();
2341      Address V =
2342          Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2343      ArgVals.push_back(ParamValue::forIndirect(V));
2344      break;
2345    }
2346
2347    case ABIArgInfo::Indirect: {
2348      assert(NumIRArgs == 1);
2349      Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
2350
2351      if (!hasScalarEvaluationKind(Ty)) {
2352        // Aggregates and complex variables are accessed by reference.  All we
2353        // need to do is realign the value, if requested.
2354        Address V = ParamAddr;
2355        if (ArgI.getIndirectRealign()) {
2356          Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2357
2358          // Copy from the incoming argument pointer to the temporary with the
2359          // appropriate alignment.
2360          //
2361          // FIXME: We should have a common utility for generating an aggregate
2362          // copy.
2363          CharUnits Size = getContext().getTypeSizeInChars(Ty);
2364          auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
2365          Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
2366          Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
2367          Builder.CreateMemCpy(Dst, Src, SizeVal, false);
2368          V = AlignedTemp;
2369        }
2370        ArgVals.push_back(ParamValue::forIndirect(V));
2371      } else {
2372        // Load scalar value from indirect argument.
2373        llvm::Value *V =
2374            EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2375
2376        if (isPromoted)
2377          V = emitArgumentDemotion(*this, Arg, V);
2378        ArgVals.push_back(ParamValue::forDirect(V));
2379      }
2380      break;
2381    }
2382
2383    case ABIArgInfo::Extend:
2384    case ABIArgInfo::Direct: {
2385
2386      // If we have the trivial case, handle it with no muss and fuss.
2387      if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2388          ArgI.getCoerceToType() == ConvertType(Ty) &&
2389          ArgI.getDirectOffset() == 0) {
2390        assert(NumIRArgs == 1);
2391        llvm::Value *V = FnArgs[FirstIRArg];
2392        auto AI = cast<llvm::Argument>(V);
2393
2394        if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2395          if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2396                             PVD->getFunctionScopeIndex()) &&
2397              !CGM.getCodeGenOpts().NullPointerIsValid)
2398            AI->addAttr(llvm::Attribute::NonNull);
2399
2400          QualType OTy = PVD->getOriginalType();
2401          if (const auto *ArrTy =
2402              getContext().getAsConstantArrayType(OTy)) {
2403            // A C99 array parameter declaration with the static keyword also
2404            // indicates dereferenceability, and if the size is constant we can
2405            // use the dereferenceable attribute (which requires the size in
2406            // bytes).
2407            if (ArrTy->getSizeModifier() == ArrayType::Static) {
2408              QualType ETy = ArrTy->getElementType();
2409              uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2410              if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2411                  ArrSize) {
2412                llvm::AttrBuilder Attrs;
2413                Attrs.addDereferenceableAttr(
2414                  getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
2415                AI->addAttrs(Attrs);
2416              } else if (getContext().getTargetAddressSpace(ETy) == 0 &&
2417                         !CGM.getCodeGenOpts().NullPointerIsValid) {
2418                AI->addAttr(llvm::Attribute::NonNull);
2419              }
2420            }
2421          } else if (const auto *ArrTy =
2422                     getContext().getAsVariableArrayType(OTy)) {
2423            // For C99 VLAs with the static keyword, we don't know the size so
2424            // we can't use the dereferenceable attribute, but in addrspace(0)
2425            // we know that it must be nonnull.
2426            if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
2427                !getContext().getTargetAddressSpace(ArrTy->getElementType()) &&
2428                !CGM.getCodeGenOpts().NullPointerIsValid)
2429              AI->addAttr(llvm::Attribute::NonNull);
2430          }
2431
2432          const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2433          if (!AVAttr)
2434            if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2435              AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2436          if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2437            // If alignment-assumption sanitizer is enabled, we do *not* add
2438            // alignment attribute here, but emit normal alignment assumption,
2439            // so the UBSAN check could function.
2440            llvm::Value *AlignmentValue =
2441              EmitScalarExpr(AVAttr->getAlignment());
2442            llvm::ConstantInt *AlignmentCI =
2443              cast<llvm::ConstantInt>(AlignmentValue);
2444            unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(),
2445                                          +llvm::Value::MaximumAlignment);
2446            AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2447          }
2448        }
2449
2450        if (Arg->getType().isRestrictQualified())
2451          AI->addAttr(llvm::Attribute::NoAlias);
2452
2453        // LLVM expects swifterror parameters to be used in very restricted
2454        // ways.  Copy the value into a less-restricted temporary.
2455        if (FI.getExtParameterInfo(ArgNo).getABI()
2456              == ParameterABI::SwiftErrorResult) {
2457          QualType pointeeTy = Ty->getPointeeType();
2458          assert(pointeeTy->isPointerType());
2459          Address temp =
2460            CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2461          Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2462          llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2463          Builder.CreateStore(incomingErrorValue, temp);
2464          V = temp.getPointer();
2465
2466          // Push a cleanup to copy the value back at the end of the function.
2467          // The convention does not guarantee that the value will be written
2468          // back if the function exits with an unwind exception.
2469          EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2470        }
2471
2472        // Ensure the argument is the correct type.
2473        if (V->getType() != ArgI.getCoerceToType())
2474          V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2475
2476        if (isPromoted)
2477          V = emitArgumentDemotion(*this, Arg, V);
2478
2479        // Because of merging of function types from multiple decls it is
2480        // possible for the type of an argument to not match the corresponding
2481        // type in the function type. Since we are codegening the callee
2482        // in here, add a cast to the argument type.
2483        llvm::Type *LTy = ConvertType(Arg->getType());
2484        if (V->getType() != LTy)
2485          V = Builder.CreateBitCast(V, LTy);
2486
2487        ArgVals.push_back(ParamValue::forDirect(V));
2488        break;
2489      }
2490
2491      Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2492                                     Arg->getName());
2493
2494      // Pointer to store into.
2495      Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2496
2497      // Fast-isel and the optimizer generally like scalar values better than
2498      // FCAs, so we flatten them if this is safe to do for this argument.
2499      llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2500      if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2501          STy->getNumElements() > 1) {
2502        uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2503        llvm::Type *DstTy = Ptr.getElementType();
2504        uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2505
2506        Address AddrToStoreInto = Address::invalid();
2507        if (SrcSize <= DstSize) {
2508          AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2509        } else {
2510          AddrToStoreInto =
2511            CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2512        }
2513
2514        assert(STy->getNumElements() == NumIRArgs);
2515        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2516          auto AI = FnArgs[FirstIRArg + i];
2517          AI->setName(Arg->getName() + ".coerce" + Twine(i));
2518          Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
2519          Builder.CreateStore(AI, EltPtr);
2520        }
2521
2522        if (SrcSize > DstSize) {
2523          Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2524        }
2525
2526      } else {
2527        // Simple case, just do a coerced store of the argument into the alloca.
2528        assert(NumIRArgs == 1);
2529        auto AI = FnArgs[FirstIRArg];
2530        AI->setName(Arg->getName() + ".coerce");
2531        CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
2532      }
2533
2534      // Match to what EmitParmDecl is expecting for this type.
2535      if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2536        llvm::Value *V =
2537            EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2538        if (isPromoted)
2539          V = emitArgumentDemotion(*this, Arg, V);
2540        ArgVals.push_back(ParamValue::forDirect(V));
2541      } else {
2542        ArgVals.push_back(ParamValue::forIndirect(Alloca));
2543      }
2544      break;
2545    }
2546
2547    case ABIArgInfo::CoerceAndExpand: {
2548      // Reconstruct into a temporary.
2549      Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2550      ArgVals.push_back(ParamValue::forIndirect(alloca));
2551
2552      auto coercionType = ArgI.getCoerceAndExpandType();
2553      alloca = Builder.CreateElementBitCast(alloca, coercionType);
2554
2555      unsigned argIndex = FirstIRArg;
2556      for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2557        llvm::Type *eltType = coercionType->getElementType(i);
2558        if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2559          continue;
2560
2561        auto eltAddr = Builder.CreateStructGEP(alloca, i);
2562        auto elt = FnArgs[argIndex++];
2563        Builder.CreateStore(elt, eltAddr);
2564      }
2565      assert(argIndex == FirstIRArg + NumIRArgs);
2566      break;
2567    }
2568
2569    case ABIArgInfo::Expand: {
2570      // If this structure was expanded into multiple arguments then
2571      // we need to create a temporary and reconstruct it from the
2572      // arguments.
2573      Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2574      LValue LV = MakeAddrLValue(Alloca, Ty);
2575      ArgVals.push_back(ParamValue::forIndirect(Alloca));
2576
2577      auto FnArgIter = FnArgs.begin() + FirstIRArg;
2578      ExpandTypeFromArgs(Ty, LV, FnArgIter);
2579      assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2580      for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2581        auto AI = FnArgs[FirstIRArg + i];
2582        AI->setName(Arg->getName() + "." + Twine(i));
2583      }
2584      break;
2585    }
2586
2587    case ABIArgInfo::Ignore:
2588      assert(NumIRArgs == 0);
2589      // Initialize the local variable appropriately.
2590      if (!hasScalarEvaluationKind(Ty)) {
2591        ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2592      } else {
2593        llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2594        ArgVals.push_back(ParamValue::forDirect(U));
2595      }
2596      break;
2597    }
2598  }
2599
2600  if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2601    for (int I = Args.size() - 1; I >= 0; --I)
2602      EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2603  } else {
2604    for (unsigned I = 0, E = Args.size(); I != E; ++I)
2605      EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2606  }
2607}
2608
2609static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2610  while (insn->use_empty()) {
2611    llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2612    if (!bitcast) return;
2613
2614    // This is "safe" because we would have used a ConstantExpr otherwise.
2615    insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2616    bitcast->eraseFromParent();
2617  }
2618}
2619
2620/// Try to emit a fused autorelease of a return result.
2621static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2622                                                    llvm::Value *result) {
2623  // We must be immediately followed the cast.
2624  llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2625  if (BB->empty()) return nullptr;
2626  if (&BB->back() != result) return nullptr;
2627
2628  llvm::Type *resultType = result->getType();
2629
2630  // result is in a BasicBlock and is therefore an Instruction.
2631  llvm::Instruction *generator = cast<llvm::Instruction>(result);
2632
2633  SmallVector<llvm::Instruction *, 4> InstsToKill;
2634
2635  // Look for:
2636  //  %generator = bitcast %type1* %generator2 to %type2*
2637  while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2638    // We would have emitted this as a constant if the operand weren't
2639    // an Instruction.
2640    generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2641
2642    // Require the generator to be immediately followed by the cast.
2643    if (generator->getNextNode() != bitcast)
2644      return nullptr;
2645
2646    InstsToKill.push_back(bitcast);
2647  }
2648
2649  // Look for:
2650  //   %generator = call i8* @objc_retain(i8* %originalResult)
2651  // or
2652  //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2653  llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2654  if (!call) return nullptr;
2655
2656  bool doRetainAutorelease;
2657
2658  if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2659    doRetainAutorelease = true;
2660  } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
2661                                          .objc_retainAutoreleasedReturnValue) {
2662    doRetainAutorelease = false;
2663
2664    // If we emitted an assembly marker for this call (and the
2665    // ARCEntrypoints field should have been set if so), go looking
2666    // for that call.  If we can't find it, we can't do this
2667    // optimization.  But it should always be the immediately previous
2668    // instruction, unless we needed bitcasts around the call.
2669    if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2670      llvm::Instruction *prev = call->getPrevNode();
2671      assert(prev);
2672      if (isa<llvm::BitCastInst>(prev)) {
2673        prev = prev->getPrevNode();
2674        assert(prev);
2675      }
2676      assert(isa<llvm::CallInst>(prev));
2677      assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2678               CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2679      InstsToKill.push_back(prev);
2680    }
2681  } else {
2682    return nullptr;
2683  }
2684
2685  result = call->getArgOperand(0);
2686  InstsToKill.push_back(call);
2687
2688  // Keep killing bitcasts, for sanity.  Note that we no longer care
2689  // about precise ordering as long as there's exactly one use.
2690  while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2691    if (!bitcast->hasOneUse()) break;
2692    InstsToKill.push_back(bitcast);
2693    result = bitcast->getOperand(0);
2694  }
2695
2696  // Delete all the unnecessary instructions, from latest to earliest.
2697  for (auto *I : InstsToKill)
2698    I->eraseFromParent();
2699
2700  // Do the fused retain/autorelease if we were asked to.
2701  if (doRetainAutorelease)
2702    result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2703
2704  // Cast back to the result type.
2705  return CGF.Builder.CreateBitCast(result, resultType);
2706}
2707
2708/// If this is a +1 of the value of an immutable 'self', remove it.
2709static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2710                                          llvm::Value *result) {
2711  // This is only applicable to a method with an immutable 'self'.
2712  const ObjCMethodDecl *method =
2713    dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2714  if (!method) return nullptr;
2715  const VarDecl *self = method->getSelfDecl();
2716  if (!self->getType().isConstQualified()) return nullptr;
2717
2718  // Look for a retain call.
2719  llvm::CallInst *retainCall =
2720    dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2721  if (!retainCall ||
2722      retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
2723    return nullptr;
2724
2725  // Look for an ordinary load of 'self'.
2726  llvm::Value *retainedValue = retainCall->getArgOperand(0);
2727  llvm::LoadInst *load =
2728    dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2729  if (!load || load->isAtomic() || load->isVolatile() ||
2730      load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2731    return nullptr;
2732
2733  // Okay!  Burn it all down.  This relies for correctness on the
2734  // assumption that the retain is emitted as part of the return and
2735  // that thereafter everything is used "linearly".
2736  llvm::Type *resultType = result->getType();
2737  eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2738  assert(retainCall->use_empty());
2739  retainCall->eraseFromParent();
2740  eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2741
2742  return CGF.Builder.CreateBitCast(load, resultType);
2743}
2744
2745/// Emit an ARC autorelease of the result of a function.
2746///
2747/// \return the value to actually return from the function
2748static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2749                                            llvm::Value *result) {
2750  // If we're returning 'self', kill the initial retain.  This is a
2751  // heuristic attempt to "encourage correctness" in the really unfortunate
2752  // case where we have a return of self during a dealloc and we desperately
2753  // need to avoid the possible autorelease.
2754  if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2755    return self;
2756
2757  // At -O0, try to emit a fused retain/autorelease.
2758  if (CGF.shouldUseFusedARCCalls())
2759    if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2760      return fused;
2761
2762  return CGF.EmitARCAutoreleaseReturnValue(result);
2763}
2764
2765/// Heuristically search for a dominating store to the return-value slot.
2766static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2767  // Check if a User is a store which pointerOperand is the ReturnValue.
2768  // We are looking for stores to the ReturnValue, not for stores of the
2769  // ReturnValue to some other location.
2770  auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2771    auto *SI = dyn_cast<llvm::StoreInst>(U);
2772    if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2773      return nullptr;
2774    // These aren't actually possible for non-coerced returns, and we
2775    // only care about non-coerced returns on this code path.
2776    assert(!SI->isAtomic() && !SI->isVolatile());
2777    return SI;
2778  };
2779  // If there are multiple uses of the return-value slot, just check
2780  // for something immediately preceding the IP.  Sometimes this can
2781  // happen with how we generate implicit-returns; it can also happen
2782  // with noreturn cleanups.
2783  if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2784    llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2785    if (IP->empty()) return nullptr;
2786    llvm::Instruction *I = &IP->back();
2787
2788    // Skip lifetime markers
2789    for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2790                                            IE = IP->rend();
2791         II != IE; ++II) {
2792      if (llvm::IntrinsicInst *Intrinsic =
2793              dyn_cast<llvm::IntrinsicInst>(&*II)) {
2794        if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2795          const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2796          ++II;
2797          if (II == IE)
2798            break;
2799          if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2800            continue;
2801        }
2802      }
2803      I = &*II;
2804      break;
2805    }
2806
2807    return GetStoreIfValid(I);
2808  }
2809
2810  llvm::StoreInst *store =
2811      GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2812  if (!store) return nullptr;
2813
2814  // Now do a first-and-dirty dominance check: just walk up the
2815  // single-predecessors chain from the current insertion point.
2816  llvm::BasicBlock *StoreBB = store->getParent();
2817  llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2818  while (IP != StoreBB) {
2819    if (!(IP = IP->getSinglePredecessor()))
2820      return nullptr;
2821  }
2822
2823  // Okay, the store's basic block dominates the insertion point; we
2824  // can do our thing.
2825  return store;
2826}
2827
2828void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2829                                         bool EmitRetDbgLoc,
2830                                         SourceLocation EndLoc) {
2831  if (FI.isNoReturn()) {
2832    // Noreturn functions don't return.
2833    EmitUnreachable(EndLoc);
2834    return;
2835  }
2836
2837  if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2838    // Naked functions don't have epilogues.
2839    Builder.CreateUnreachable();
2840    return;
2841  }
2842
2843  // Functions with no result always return void.
2844  if (!ReturnValue.isValid()) {
2845    Builder.CreateRetVoid();
2846    return;
2847  }
2848
2849  llvm::DebugLoc RetDbgLoc;
2850  llvm::Value *RV = nullptr;
2851  QualType RetTy = FI.getReturnType();
2852  const ABIArgInfo &RetAI = FI.getReturnInfo();
2853
2854  switch (RetAI.getKind()) {
2855  case ABIArgInfo::InAlloca:
2856    // Aggregrates get evaluated directly into the destination.  Sometimes we
2857    // need to return the sret value in a register, though.
2858    assert(hasAggregateEvaluationKind(RetTy));
2859    if (RetAI.getInAllocaSRet()) {
2860      llvm::Function::arg_iterator EI = CurFn->arg_end();
2861      --EI;
2862      llvm::Value *ArgStruct = &*EI;
2863      llvm::Value *SRet = Builder.CreateStructGEP(
2864          nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2865      RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2866    }
2867    break;
2868
2869  case ABIArgInfo::Indirect: {
2870    auto AI = CurFn->arg_begin();
2871    if (RetAI.isSRetAfterThis())
2872      ++AI;
2873    switch (getEvaluationKind(RetTy)) {
2874    case TEK_Complex: {
2875      ComplexPairTy RT =
2876        EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2877      EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
2878                         /*isInit*/ true);
2879      break;
2880    }
2881    case TEK_Aggregate:
2882      // Do nothing; aggregrates get evaluated directly into the destination.
2883      break;
2884    case TEK_Scalar:
2885      EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2886                        MakeNaturalAlignAddrLValue(&*AI, RetTy),
2887                        /*isInit*/ true);
2888      break;
2889    }
2890    break;
2891  }
2892
2893  case ABIArgInfo::Extend:
2894  case ABIArgInfo::Direct:
2895    if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2896        RetAI.getDirectOffset() == 0) {
2897      // The internal return value temp always will have pointer-to-return-type
2898      // type, just do a load.
2899
2900      // If there is a dominating store to ReturnValue, we can elide
2901      // the load, zap the store, and usually zap the alloca.
2902      if (llvm::StoreInst *SI =
2903              findDominatingStoreToReturnValue(*this)) {
2904        // Reuse the debug location from the store unless there is
2905        // cleanup code to be emitted between the store and return
2906        // instruction.
2907        if (EmitRetDbgLoc && !AutoreleaseResult)
2908          RetDbgLoc = SI->getDebugLoc();
2909        // Get the stored value and nuke the now-dead store.
2910        RV = SI->getValueOperand();
2911        SI->eraseFromParent();
2912
2913      // Otherwise, we have to do a simple load.
2914      } else {
2915        RV = Builder.CreateLoad(ReturnValue);
2916      }
2917    } else {
2918      // If the value is offset in memory, apply the offset now.
2919      Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2920
2921      RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2922    }
2923
2924    // In ARC, end functions that return a retainable type with a call
2925    // to objc_autoreleaseReturnValue.
2926    if (AutoreleaseResult) {
2927#ifndef NDEBUG
2928      // Type::isObjCRetainabletype has to be called on a QualType that hasn't
2929      // been stripped of the typedefs, so we cannot use RetTy here. Get the
2930      // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
2931      // CurCodeDecl or BlockInfo.
2932      QualType RT;
2933
2934      if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
2935        RT = FD->getReturnType();
2936      else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
2937        RT = MD->getReturnType();
2938      else if (isa<BlockDecl>(CurCodeDecl))
2939        RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
2940      else
2941        llvm_unreachable("Unexpected function/method type");
2942
2943      assert(getLangOpts().ObjCAutoRefCount &&
2944             !FI.isReturnsRetained() &&
2945             RT->isObjCRetainableType());
2946#endif
2947      RV = emitAutoreleaseOfResult(*this, RV);
2948    }
2949
2950    break;
2951
2952  case ABIArgInfo::Ignore:
2953    break;
2954
2955  case ABIArgInfo::CoerceAndExpand: {
2956    auto coercionType = RetAI.getCoerceAndExpandType();
2957
2958    // Load all of the coerced elements out into results.
2959    llvm::SmallVector<llvm::Value*, 4> results;
2960    Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
2961    for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2962      auto coercedEltType = coercionType->getElementType(i);
2963      if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
2964        continue;
2965
2966      auto eltAddr = Builder.CreateStructGEP(addr, i);
2967      auto elt = Builder.CreateLoad(eltAddr);
2968      results.push_back(elt);
2969    }
2970
2971    // If we have one result, it's the single direct result type.
2972    if (results.size() == 1) {
2973      RV = results[0];
2974
2975    // Otherwise, we need to make a first-class aggregate.
2976    } else {
2977      // Construct a return type that lacks padding elements.
2978      llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
2979
2980      RV = llvm::UndefValue::get(returnType);
2981      for (unsigned i = 0, e = results.size(); i != e; ++i) {
2982        RV = Builder.CreateInsertValue(RV, results[i], i);
2983      }
2984    }
2985    break;
2986  }
2987
2988  case ABIArgInfo::Expand:
2989    llvm_unreachable("Invalid ABI kind for return argument");
2990  }
2991
2992  llvm::Instruction *Ret;
2993  if (RV) {
2994    EmitReturnValueCheck(RV);
2995    Ret = Builder.CreateRet(RV);
2996  } else {
2997    Ret = Builder.CreateRetVoid();
2998  }
2999
3000  if (RetDbgLoc)
3001    Ret->setDebugLoc(std::move(RetDbgLoc));
3002}
3003
3004void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3005  // A current decl may not be available when emitting vtable thunks.
3006  if (!CurCodeDecl)
3007    return;
3008
3009  ReturnsNonNullAttr *RetNNAttr = nullptr;
3010  if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3011    RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3012
3013  if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3014    return;
3015
3016  // Prefer the returns_nonnull attribute if it's present.
3017  SourceLocation AttrLoc;
3018  SanitizerMask CheckKind;
3019  SanitizerHandler Handler;
3020  if (RetNNAttr) {
3021    assert(!requiresReturnValueNullabilityCheck() &&
3022           "Cannot check nullability and the nonnull attribute");
3023    AttrLoc = RetNNAttr->getLocation();
3024    CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3025    Handler = SanitizerHandler::NonnullReturn;
3026  } else {
3027    if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3028      if (auto *TSI = DD->getTypeSourceInfo())
3029        if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>())
3030          AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3031    CheckKind = SanitizerKind::NullabilityReturn;
3032    Handler = SanitizerHandler::NullabilityReturn;
3033  }
3034
3035  SanitizerScope SanScope(this);
3036
3037  // Make sure the "return" source location is valid. If we're checking a
3038  // nullability annotation, make sure the preconditions for the check are met.
3039  llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3040  llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3041  llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3042  llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3043  if (requiresReturnValueNullabilityCheck())
3044    CanNullCheck =
3045        Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3046  Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3047  EmitBlock(Check);
3048
3049  // Now do the null check.
3050  llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3051  llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3052  llvm::Value *DynamicData[] = {SLocPtr};
3053  EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3054
3055  EmitBlock(NoCheck);
3056
3057#ifndef NDEBUG
3058  // The return location should not be used after the check has been emitted.
3059  ReturnLocation = Address::invalid();
3060#endif
3061}
3062
3063static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3064  const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3065  return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3066}
3067
3068static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3069                                          QualType Ty) {
3070  // FIXME: Generate IR in one pass, rather than going back and fixing up these
3071  // placeholders.
3072  llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3073  llvm::Type *IRPtrTy = IRTy->getPointerTo();
3074  llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3075
3076  // FIXME: When we generate this IR in one pass, we shouldn't need
3077  // this win32-specific alignment hack.
3078  CharUnits Align = CharUnits::fromQuantity(4);
3079  Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3080
3081  return AggValueSlot::forAddr(Address(Placeholder, Align),
3082                               Ty.getQualifiers(),
3083                               AggValueSlot::IsNotDestructed,
3084                               AggValueSlot::DoesNotNeedGCBarriers,
3085                               AggValueSlot::IsNotAliased,
3086                               AggValueSlot::DoesNotOverlap);
3087}
3088
3089void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3090                                          const VarDecl *param,
3091                                          SourceLocation loc) {
3092  // StartFunction converted the ABI-lowered parameter(s) into a
3093  // local alloca.  We need to turn that into an r-value suitable
3094  // for EmitCall.
3095  Address local = GetAddrOfLocalVar(param);
3096
3097  QualType type = param->getType();
3098
3099  if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3100    CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3101  }
3102
3103  // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3104  // but the argument needs to be the original pointer.
3105  if (type->isReferenceType()) {
3106    args.add(RValue::get(Builder.CreateLoad(local)), type);
3107
3108  // In ARC, move out of consumed arguments so that the release cleanup
3109  // entered by StartFunction doesn't cause an over-release.  This isn't
3110  // optimal -O0 code generation, but it should get cleaned up when
3111  // optimization is enabled.  This also assumes that delegate calls are
3112  // performed exactly once for a set of arguments, but that should be safe.
3113  } else if (getLangOpts().ObjCAutoRefCount &&
3114             param->hasAttr<NSConsumedAttr>() &&
3115             type->isObjCRetainableType()) {
3116    llvm::Value *ptr = Builder.CreateLoad(local);
3117    auto null =
3118      llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3119    Builder.CreateStore(null, local);
3120    args.add(RValue::get(ptr), type);
3121
3122  // For the most part, we just need to load the alloca, except that
3123  // aggregate r-values are actually pointers to temporaries.
3124  } else {
3125    args.add(convertTempToRValue(local, type, loc), type);
3126  }
3127
3128  // Deactivate the cleanup for the callee-destructed param that was pushed.
3129  if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk &&
3130      type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3131      param->needsDestruction(getContext())) {
3132    EHScopeStack::stable_iterator cleanup =
3133        CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3134    assert(cleanup.isValid() &&
3135           "cleanup for callee-destructed param not recorded");
3136    // This unreachable is a temporary marker which will be removed later.
3137    llvm::Instruction *isActive = Builder.CreateUnreachable();
3138    args.addArgCleanupDeactivation(cleanup, isActive);
3139  }
3140}
3141
3142static bool isProvablyNull(llvm::Value *addr) {
3143  return isa<llvm::ConstantPointerNull>(addr);
3144}
3145
3146/// Emit the actual writing-back of a writeback.
3147static void emitWriteback(CodeGenFunction &CGF,
3148                          const CallArgList::Writeback &writeback) {
3149  const LValue &srcLV = writeback.Source;
3150  Address srcAddr = srcLV.getAddress(CGF);
3151  assert(!isProvablyNull(srcAddr.getPointer()) &&
3152         "shouldn't have writeback for provably null argument");
3153
3154  llvm::BasicBlock *contBB = nullptr;
3155
3156  // If the argument wasn't provably non-null, we need to null check
3157  // before doing the store.
3158  bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3159                                              CGF.CGM.getDataLayout());
3160  if (!provablyNonNull) {
3161    llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3162    contBB = CGF.createBasicBlock("icr.done");
3163
3164    llvm::Value *isNull =
3165      CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3166    CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3167    CGF.EmitBlock(writebackBB);
3168  }
3169
3170  // Load the value to writeback.
3171  llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3172
3173  // Cast it back, in case we're writing an id to a Foo* or something.
3174  value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3175                                    "icr.writeback-cast");
3176
3177  // Perform the writeback.
3178
3179  // If we have a "to use" value, it's something we need to emit a use
3180  // of.  This has to be carefully threaded in: if it's done after the
3181  // release it's potentially undefined behavior (and the optimizer
3182  // will ignore it), and if it happens before the retain then the
3183  // optimizer could move the release there.
3184  if (writeback.ToUse) {
3185    assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3186
3187    // Retain the new value.  No need to block-copy here:  the block's
3188    // being passed up the stack.
3189    value = CGF.EmitARCRetainNonBlock(value);
3190
3191    // Emit the intrinsic use here.
3192    CGF.EmitARCIntrinsicUse(writeback.ToUse);
3193
3194    // Load the old value (primitively).
3195    llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3196
3197    // Put the new value in place (primitively).
3198    CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3199
3200    // Release the old value.
3201    CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3202
3203  // Otherwise, we can just do a normal lvalue store.
3204  } else {
3205    CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3206  }
3207
3208  // Jump to the continuation block.
3209  if (!provablyNonNull)
3210    CGF.EmitBlock(contBB);
3211}
3212
3213static void emitWritebacks(CodeGenFunction &CGF,
3214                           const CallArgList &args) {
3215  for (const auto &I : args.writebacks())
3216    emitWriteback(CGF, I);
3217}
3218
3219static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3220                                            const CallArgList &CallArgs) {
3221  ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3222    CallArgs.getCleanupsToDeactivate();
3223  // Iterate in reverse to increase the likelihood of popping the cleanup.
3224  for (const auto &I : llvm::reverse(Cleanups)) {
3225    CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3226    I.IsActiveIP->eraseFromParent();
3227  }
3228}
3229
3230static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3231  if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3232    if (uop->getOpcode() == UO_AddrOf)
3233      return uop->getSubExpr();
3234  return nullptr;
3235}
3236
3237/// Emit an argument that's being passed call-by-writeback.  That is,
3238/// we are passing the address of an __autoreleased temporary; it
3239/// might be copy-initialized with the current value of the given
3240/// address, but it will definitely be copied out of after the call.
3241static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3242                             const ObjCIndirectCopyRestoreExpr *CRE) {
3243  LValue srcLV;
3244
3245  // Make an optimistic effort to emit the address as an l-value.
3246  // This can fail if the argument expression is more complicated.
3247  if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3248    srcLV = CGF.EmitLValue(lvExpr);
3249
3250  // Otherwise, just emit it as a scalar.
3251  } else {
3252    Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3253
3254    QualType srcAddrType =
3255      CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3256    srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3257  }
3258  Address srcAddr = srcLV.getAddress(CGF);
3259
3260  // The dest and src types don't necessarily match in LLVM terms
3261  // because of the crazy ObjC compatibility rules.
3262
3263  llvm::PointerType *destType =
3264    cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3265
3266  // If the address is a constant null, just pass the appropriate null.
3267  if (isProvablyNull(srcAddr.getPointer())) {
3268    args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3269             CRE->getType());
3270    return;
3271  }
3272
3273  // Create the temporary.
3274  Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3275                                      CGF.getPointerAlign(),
3276                                      "icr.temp");
3277  // Loading an l-value can introduce a cleanup if the l-value is __weak,
3278  // and that cleanup will be conditional if we can't prove that the l-value
3279  // isn't null, so we need to register a dominating point so that the cleanups
3280  // system will make valid IR.
3281  CodeGenFunction::ConditionalEvaluation condEval(CGF);
3282
3283  // Zero-initialize it if we're not doing a copy-initialization.
3284  bool shouldCopy = CRE->shouldCopy();
3285  if (!shouldCopy) {
3286    llvm::Value *null =
3287      llvm::ConstantPointerNull::get(
3288        cast<llvm::PointerType>(destType->getElementType()));
3289    CGF.Builder.CreateStore(null, temp);
3290  }
3291
3292  llvm::BasicBlock *contBB = nullptr;
3293  llvm::BasicBlock *originBB = nullptr;
3294
3295  // If the address is *not* known to be non-null, we need to switch.
3296  llvm::Value *finalArgument;
3297
3298  bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3299                                              CGF.CGM.getDataLayout());
3300  if (provablyNonNull) {
3301    finalArgument = temp.getPointer();
3302  } else {
3303    llvm::Value *isNull =
3304      CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3305
3306    finalArgument = CGF.Builder.CreateSelect(isNull,
3307                                   llvm::ConstantPointerNull::get(destType),
3308                                             temp.getPointer(), "icr.argument");
3309
3310    // If we need to copy, then the load has to be conditional, which
3311    // means we need control flow.
3312    if (shouldCopy) {
3313      originBB = CGF.Builder.GetInsertBlock();
3314      contBB = CGF.createBasicBlock("icr.cont");
3315      llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3316      CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3317      CGF.EmitBlock(copyBB);
3318      condEval.begin(CGF);
3319    }
3320  }
3321
3322  llvm::Value *valueToUse = nullptr;
3323
3324  // Perform a copy if necessary.
3325  if (shouldCopy) {
3326    RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3327    assert(srcRV.isScalar());
3328
3329    llvm::Value *src = srcRV.getScalarVal();
3330    src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3331                                    "icr.cast");
3332
3333    // Use an ordinary store, not a store-to-lvalue.
3334    CGF.Builder.CreateStore(src, temp);
3335
3336    // If optimization is enabled, and the value was held in a
3337    // __strong variable, we need to tell the optimizer that this
3338    // value has to stay alive until we're doing the store back.
3339    // This is because the temporary is effectively unretained,
3340    // and so otherwise we can violate the high-level semantics.
3341    if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3342        srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3343      valueToUse = src;
3344    }
3345  }
3346
3347  // Finish the control flow if we needed it.
3348  if (shouldCopy && !provablyNonNull) {
3349    llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3350    CGF.EmitBlock(contBB);
3351
3352    // Make a phi for the value to intrinsically use.
3353    if (valueToUse) {
3354      llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3355                                                      "icr.to-use");
3356      phiToUse->addIncoming(valueToUse, copyBB);
3357      phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3358                            originBB);
3359      valueToUse = phiToUse;
3360    }
3361
3362    condEval.end(CGF);
3363  }
3364
3365  args.addWriteback(srcLV, temp, valueToUse);
3366  args.add(RValue::get(finalArgument), CRE->getType());
3367}
3368
3369void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3370  assert(!StackBase);
3371
3372  // Save the stack.
3373  llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3374  StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3375}
3376
3377void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3378  if (StackBase) {
3379    // Restore the stack after the call.
3380    llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3381    CGF.Builder.CreateCall(F, StackBase);
3382  }
3383}
3384
3385void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3386                                          SourceLocation ArgLoc,
3387                                          AbstractCallee AC,
3388                                          unsigned ParmNum) {
3389  if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3390                         SanOpts.has(SanitizerKind::NullabilityArg)))
3391    return;
3392
3393  // The param decl may be missing in a variadic function.
3394  auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3395  unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3396
3397  // Prefer the nonnull attribute if it's present.
3398  const NonNullAttr *NNAttr = nullptr;
3399  if (SanOpts.has(SanitizerKind::NonnullAttribute))
3400    NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3401
3402  bool CanCheckNullability = false;
3403  if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3404    auto Nullability = PVD->getType()->getNullability(getContext());
3405    CanCheckNullability = Nullability &&
3406                          *Nullability == NullabilityKind::NonNull &&
3407                          PVD->getTypeSourceInfo();
3408  }
3409
3410  if (!NNAttr && !CanCheckNullability)
3411    return;
3412
3413  SourceLocation AttrLoc;
3414  SanitizerMask CheckKind;
3415  SanitizerHandler Handler;
3416  if (NNAttr) {
3417    AttrLoc = NNAttr->getLocation();
3418    CheckKind = SanitizerKind::NonnullAttribute;
3419    Handler = SanitizerHandler::NonnullArg;
3420  } else {
3421    AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3422    CheckKind = SanitizerKind::NullabilityArg;
3423    Handler = SanitizerHandler::NullabilityArg;
3424  }
3425
3426  SanitizerScope SanScope(this);
3427  assert(RV.isScalar());
3428  llvm::Value *V = RV.getScalarVal();
3429  llvm::Value *Cond =
3430      Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3431  llvm::Constant *StaticData[] = {
3432      EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3433      llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3434  };
3435  EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3436}
3437
3438void CodeGenFunction::EmitCallArgs(
3439    CallArgList &Args, ArrayRef<QualType> ArgTypes,
3440    llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3441    AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3442  assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3443
3444  // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3445  // because arguments are destroyed left to right in the callee. As a special
3446  // case, there are certain language constructs that require left-to-right
3447  // evaluation, and in those cases we consider the evaluation order requirement
3448  // to trump the "destruction order is reverse construction order" guarantee.
3449  bool LeftToRight =
3450      CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3451          ? Order == EvaluationOrder::ForceLeftToRight
3452          : Order != EvaluationOrder::ForceRightToLeft;
3453
3454  auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3455                                         RValue EmittedArg) {
3456    if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3457      return;
3458    auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3459    if (PS == nullptr)
3460      return;
3461
3462    const auto &Context = getContext();
3463    auto SizeTy = Context.getSizeType();
3464    auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3465    assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
3466    llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
3467                                                     EmittedArg.getScalarVal(),
3468                                                     PS->isDynamic());
3469    Args.add(RValue::get(V), SizeTy);
3470    // If we're emitting args in reverse, be sure to do so with
3471    // pass_object_size, as well.
3472    if (!LeftToRight)
3473      std::swap(Args.back(), *(&Args.back() - 1));
3474  };
3475
3476  // Insert a stack save if we're going to need any inalloca args.
3477  bool HasInAllocaArgs = false;
3478  if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3479    for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3480         I != E && !HasInAllocaArgs; ++I)
3481      HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3482    if (HasInAllocaArgs) {
3483      assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3484      Args.allocateArgumentMemory(*this);
3485    }
3486  }
3487
3488  // Evaluate each argument in the appropriate order.
3489  size_t CallArgsStart = Args.size();
3490  for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3491    unsigned Idx = LeftToRight ? I : E - I - 1;
3492    CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3493    unsigned InitialArgSize = Args.size();
3494    // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
3495    // the argument and parameter match or the objc method is parameterized.
3496    assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
3497            getContext().hasSameUnqualifiedType((*Arg)->getType(),
3498                                                ArgTypes[Idx]) ||
3499            (isa<ObjCMethodDecl>(AC.getDecl()) &&
3500             isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
3501           "Argument and parameter types don't match");
3502    EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3503    // In particular, we depend on it being the last arg in Args, and the
3504    // objectsize bits depend on there only being one arg if !LeftToRight.
3505    assert(InitialArgSize + 1 == Args.size() &&
3506           "The code below depends on only adding one arg per EmitCallArg");
3507    (void)InitialArgSize;
3508    // Since pointer argument are never emitted as LValue, it is safe to emit
3509    // non-null argument check for r-value only.
3510    if (!Args.back().hasLValue()) {
3511      RValue RVArg = Args.back().getKnownRValue();
3512      EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
3513                          ParamsToSkip + Idx);
3514      // @llvm.objectsize should never have side-effects and shouldn't need
3515      // destruction/cleanups, so we can safely "emit" it after its arg,
3516      // regardless of right-to-leftness
3517      MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
3518    }
3519  }
3520
3521  if (!LeftToRight) {
3522    // Un-reverse the arguments we just evaluated so they match up with the LLVM
3523    // IR function.
3524    std::reverse(Args.begin() + CallArgsStart, Args.end());
3525  }
3526}
3527
3528namespace {
3529
3530struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3531  DestroyUnpassedArg(Address Addr, QualType Ty)
3532      : Addr(Addr), Ty(Ty) {}
3533
3534  Address Addr;
3535  QualType Ty;
3536
3537  void Emit(CodeGenFunction &CGF, Flags flags) override {
3538    QualType::DestructionKind DtorKind = Ty.isDestructedType();
3539    if (DtorKind == QualType::DK_cxx_destructor) {
3540      const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3541      assert(!Dtor->isTrivial());
3542      CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3543                                /*Delegating=*/false, Addr, Ty);
3544    } else {
3545      CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
3546    }
3547  }
3548};
3549
3550struct DisableDebugLocationUpdates {
3551  CodeGenFunction &CGF;
3552  bool disabledDebugInfo;
3553  DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3554    if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3555      CGF.disableDebugInfo();
3556  }
3557  ~DisableDebugLocationUpdates() {
3558    if (disabledDebugInfo)
3559      CGF.enableDebugInfo();
3560  }
3561};
3562
3563} // end anonymous namespace
3564
3565RValue CallArg::getRValue(CodeGenFunction &CGF) const {
3566  if (!HasLV)
3567    return RV;
3568  LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
3569  CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
3570                        LV.isVolatile());
3571  IsUsed = true;
3572  return RValue::getAggregate(Copy.getAddress(CGF));
3573}
3574
3575void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
3576  LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
3577  if (!HasLV && RV.isScalar())
3578    CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
3579  else if (!HasLV && RV.isComplex())
3580    CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
3581  else {
3582    auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
3583    LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
3584    // We assume that call args are never copied into subobjects.
3585    CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
3586                          HasLV ? LV.isVolatileQualified()
3587                                : RV.isVolatileQualified());
3588  }
3589  IsUsed = true;
3590}
3591
3592void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3593                                  QualType type) {
3594  DisableDebugLocationUpdates Dis(*this, E);
3595  if (const ObjCIndirectCopyRestoreExpr *CRE
3596        = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3597    assert(getLangOpts().ObjCAutoRefCount);
3598    return emitWritebackArg(*this, args, CRE);
3599  }
3600
3601  assert(type->isReferenceType() == E->isGLValue() &&
3602         "reference binding to unmaterialized r-value!");
3603
3604  if (E->isGLValue()) {
3605    assert(E->getObjectKind() == OK_Ordinary);
3606    return args.add(EmitReferenceBindingToExpr(E), type);
3607  }
3608
3609  bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3610
3611  // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3612  // However, we still have to push an EH-only cleanup in case we unwind before
3613  // we make it to the call.
3614  if (HasAggregateEvalKind &&
3615      type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
3616    // If we're using inalloca, use the argument memory.  Otherwise, use a
3617    // temporary.
3618    AggValueSlot Slot;
3619    if (args.isUsingInAlloca())
3620      Slot = createPlaceholderSlot(*this, type);
3621    else
3622      Slot = CreateAggTemp(type, "agg.tmp");
3623
3624    bool DestroyedInCallee = true, NeedsEHCleanup = true;
3625    if (const auto *RD = type->getAsCXXRecordDecl())
3626      DestroyedInCallee = RD->hasNonTrivialDestructor();
3627    else
3628      NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
3629
3630    if (DestroyedInCallee)
3631      Slot.setExternallyDestructed();
3632
3633    EmitAggExpr(E, Slot);
3634    RValue RV = Slot.asRValue();
3635    args.add(RV, type);
3636
3637    if (DestroyedInCallee && NeedsEHCleanup) {
3638      // Create a no-op GEP between the placeholder and the cleanup so we can
3639      // RAUW it successfully.  It also serves as a marker of the first
3640      // instruction where the cleanup is active.
3641      pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3642                                              type);
3643      // This unreachable is a temporary marker which will be removed later.
3644      llvm::Instruction *IsActive = Builder.CreateUnreachable();
3645      args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3646    }
3647    return;
3648  }
3649
3650  if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
3651      cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
3652    LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
3653    assert(L.isSimple());
3654    args.addUncopiedAggregate(L, type);
3655    return;
3656  }
3657
3658  args.add(EmitAnyExprToTemp(E), type);
3659}
3660
3661QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
3662  // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
3663  // implicitly widens null pointer constants that are arguments to varargs
3664  // functions to pointer-sized ints.
3665  if (!getTarget().getTriple().isOSWindows())
3666    return Arg->getType();
3667
3668  if (Arg->getType()->isIntegerType() &&
3669      getContext().getTypeSize(Arg->getType()) <
3670          getContext().getTargetInfo().getPointerWidth(0) &&
3671      Arg->isNullPointerConstant(getContext(),
3672                                 Expr::NPC_ValueDependentIsNotNull)) {
3673    return getContext().getIntPtrType();
3674  }
3675
3676  return Arg->getType();
3677}
3678
3679// In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3680// optimizer it can aggressively ignore unwind edges.
3681void
3682CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3683  if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3684      !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3685    Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
3686                      CGM.getNoObjCARCExceptionsMetadata());
3687}
3688
3689/// Emits a call to the given no-arguments nounwind runtime function.
3690llvm::CallInst *
3691CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3692                                         const llvm::Twine &name) {
3693  return EmitNounwindRuntimeCall(callee, None, name);
3694}
3695
3696/// Emits a call to the given nounwind runtime function.
3697llvm::CallInst *
3698CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3699                                         ArrayRef<llvm::Value *> args,
3700                                         const llvm::Twine &name) {
3701  llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
3702  call->setDoesNotThrow();
3703  return call;
3704}
3705
3706/// Emits a simple call (never an invoke) to the given no-arguments
3707/// runtime function.
3708llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
3709                                                 const llvm::Twine &name) {
3710  return EmitRuntimeCall(callee, None, name);
3711}
3712
3713// Calls which may throw must have operand bundles indicating which funclet
3714// they are nested within.
3715SmallVector<llvm::OperandBundleDef, 1>
3716CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
3717  SmallVector<llvm::OperandBundleDef, 1> BundleList;
3718  // There is no need for a funclet operand bundle if we aren't inside a
3719  // funclet.
3720  if (!CurrentFuncletPad)
3721    return BundleList;
3722
3723  // Skip intrinsics which cannot throw.
3724  auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
3725  if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
3726    return BundleList;
3727
3728  BundleList.emplace_back("funclet", CurrentFuncletPad);
3729  return BundleList;
3730}
3731
3732/// Emits a simple call (never an invoke) to the given runtime function.
3733llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
3734                                                 ArrayRef<llvm::Value *> args,
3735                                                 const llvm::Twine &name) {
3736  llvm::CallInst *call = Builder.CreateCall(
3737      callee, args, getBundlesForFunclet(callee.getCallee()), name);
3738  call->setCallingConv(getRuntimeCC());
3739  return call;
3740}
3741
3742/// Emits a call or invoke to the given noreturn runtime function.
3743void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
3744    llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
3745  SmallVector<llvm::OperandBundleDef, 1> BundleList =
3746      getBundlesForFunclet(callee.getCallee());
3747
3748  if (getInvokeDest()) {
3749    llvm::InvokeInst *invoke =
3750      Builder.CreateInvoke(callee,
3751                           getUnreachableBlock(),
3752                           getInvokeDest(),
3753                           args,
3754                           BundleList);
3755    invoke->setDoesNotReturn();
3756    invoke->setCallingConv(getRuntimeCC());
3757  } else {
3758    llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
3759    call->setDoesNotReturn();
3760    call->setCallingConv(getRuntimeCC());
3761    Builder.CreateUnreachable();
3762  }
3763}
3764
3765/// Emits a call or invoke instruction to the given nullary runtime function.
3766llvm::CallBase *
3767CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3768                                         const Twine &name) {
3769  return EmitRuntimeCallOrInvoke(callee, None, name);
3770}
3771
3772/// Emits a call or invoke instruction to the given runtime function.
3773llvm::CallBase *
3774CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3775                                         ArrayRef<llvm::Value *> args,
3776                                         const Twine &name) {
3777  llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
3778  call->setCallingConv(getRuntimeCC());
3779  return call;
3780}
3781
3782/// Emits a call or invoke instruction to the given function, depending
3783/// on the current state of the EH stack.
3784llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
3785                                                  ArrayRef<llvm::Value *> Args,
3786                                                  const Twine &Name) {
3787  llvm::BasicBlock *InvokeDest = getInvokeDest();
3788  SmallVector<llvm::OperandBundleDef, 1> BundleList =
3789      getBundlesForFunclet(Callee.getCallee());
3790
3791  llvm::CallBase *Inst;
3792  if (!InvokeDest)
3793    Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
3794  else {
3795    llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3796    Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
3797                                Name);
3798    EmitBlock(ContBB);
3799  }
3800
3801  // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3802  // optimizer it can aggressively ignore unwind edges.
3803  if (CGM.getLangOpts().ObjCAutoRefCount)
3804    AddObjCARCExceptionMetadata(Inst);
3805
3806  return Inst;
3807}
3808
3809void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3810                                                  llvm::Value *New) {
3811  DeferredReplacements.push_back(std::make_pair(Old, New));
3812}
3813
3814RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3815                                 const CGCallee &Callee,
3816                                 ReturnValueSlot ReturnValue,
3817                                 const CallArgList &CallArgs,
3818                                 llvm::CallBase **callOrInvoke,
3819                                 SourceLocation Loc) {
3820  // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3821
3822  assert(Callee.isOrdinary() || Callee.isVirtual());
3823
3824  // Handle struct-return functions by passing a pointer to the
3825  // location that we would like to return into.
3826  QualType RetTy = CallInfo.getReturnType();
3827  const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3828
3829  llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
3830
3831  const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
3832  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
3833    // We can only guarantee that a function is called from the correct
3834    // context/function based on the appropriate target attributes,
3835    // so only check in the case where we have both always_inline and target
3836    // since otherwise we could be making a conditional call after a check for
3837    // the proper cpu features (and it won't cause code generation issues due to
3838    // function based code generation).
3839    if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
3840        TargetDecl->hasAttr<TargetAttr>())
3841      checkTargetFeatures(Loc, FD);
3842
3843#ifndef NDEBUG
3844  if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
3845    // For an inalloca varargs function, we don't expect CallInfo to match the
3846    // function pointer's type, because the inalloca struct a will have extra
3847    // fields in it for the varargs parameters.  Code later in this function
3848    // bitcasts the function pointer to the type derived from CallInfo.
3849    //
3850    // In other cases, we assert that the types match up (until pointers stop
3851    // having pointee types).
3852    llvm::Type *TypeFromVal;
3853    if (Callee.isVirtual())
3854      TypeFromVal = Callee.getVirtualFunctionType();
3855    else
3856      TypeFromVal =
3857          Callee.getFunctionPointer()->getType()->getPointerElementType();
3858    assert(IRFuncTy == TypeFromVal);
3859  }
3860#endif
3861
3862  // 1. Set up the arguments.
3863
3864  // If we're using inalloca, insert the allocation after the stack save.
3865  // FIXME: Do this earlier rather than hacking it in here!
3866  Address ArgMemory = Address::invalid();
3867  if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3868    const llvm::DataLayout &DL = CGM.getDataLayout();
3869    llvm::Instruction *IP = CallArgs.getStackBase();
3870    llvm::AllocaInst *AI;
3871    if (IP) {
3872      IP = IP->getNextNode();
3873      AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
3874                                "argmem", IP);
3875    } else {
3876      AI = CreateTempAlloca(ArgStruct, "argmem");
3877    }
3878    auto Align = CallInfo.getArgStructAlignment();
3879    AI->setAlignment(Align.getAsAlign());
3880    AI->setUsedWithInAlloca(true);
3881    assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3882    ArgMemory = Address(AI, Align);
3883  }
3884
3885  ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3886  SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3887
3888  // If the call returns a temporary with struct return, create a temporary
3889  // alloca to hold the result, unless one is given to us.
3890  Address SRetPtr = Address::invalid();
3891  Address SRetAlloca = Address::invalid();
3892  llvm::Value *UnusedReturnSizePtr = nullptr;
3893  if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
3894    if (!ReturnValue.isNull()) {
3895      SRetPtr = ReturnValue.getValue();
3896    } else {
3897      SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
3898      if (HaveInsertPoint() && ReturnValue.isUnused()) {
3899        uint64_t size =
3900            CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3901        UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
3902      }
3903    }
3904    if (IRFunctionArgs.hasSRetArg()) {
3905      IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
3906    } else if (RetAI.isInAlloca()) {
3907      Address Addr =
3908          Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
3909      Builder.CreateStore(SRetPtr.getPointer(), Addr);
3910    }
3911  }
3912
3913  Address swiftErrorTemp = Address::invalid();
3914  Address swiftErrorArg = Address::invalid();
3915
3916  // When passing arguments using temporary allocas, we need to add the
3917  // appropriate lifetime markers. This vector keeps track of all the lifetime
3918  // markers that need to be ended right after the call.
3919  SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
3920
3921  // Translate all of the arguments as necessary to match the IR lowering.
3922  assert(CallInfo.arg_size() == CallArgs.size() &&
3923         "Mismatch between function signature & arguments.");
3924  unsigned ArgNo = 0;
3925  CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3926  for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3927       I != E; ++I, ++info_it, ++ArgNo) {
3928    const ABIArgInfo &ArgInfo = info_it->info;
3929
3930    // Insert a padding argument to ensure proper alignment.
3931    if (IRFunctionArgs.hasPaddingArg(ArgNo))
3932      IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3933          llvm::UndefValue::get(ArgInfo.getPaddingType());
3934
3935    unsigned FirstIRArg, NumIRArgs;
3936    std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3937
3938    switch (ArgInfo.getKind()) {
3939    case ABIArgInfo::InAlloca: {
3940      assert(NumIRArgs == 0);
3941      assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3942      if (I->isAggregate()) {
3943        // Replace the placeholder with the appropriate argument slot GEP.
3944        Address Addr = I->hasLValue()
3945                           ? I->getKnownLValue().getAddress(*this)
3946                           : I->getKnownRValue().getAggregateAddress();
3947        llvm::Instruction *Placeholder =
3948            cast<llvm::Instruction>(Addr.getPointer());
3949        CGBuilderTy::InsertPoint IP = Builder.saveIP();
3950        Builder.SetInsertPoint(Placeholder);
3951        Addr =
3952            Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
3953        Builder.restoreIP(IP);
3954        deferPlaceholderReplacement(Placeholder, Addr.getPointer());
3955      } else {
3956        // Store the RValue into the argument struct.
3957        Address Addr =
3958            Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
3959        unsigned AS = Addr.getType()->getPointerAddressSpace();
3960        llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3961        // There are some cases where a trivial bitcast is not avoidable.  The
3962        // definition of a type later in a translation unit may change it's type
3963        // from {}* to (%struct.foo*)*.
3964        if (Addr.getType() != MemType)
3965          Addr = Builder.CreateBitCast(Addr, MemType);
3966        I->copyInto(*this, Addr);
3967      }
3968      break;
3969    }
3970
3971    case ABIArgInfo::Indirect: {
3972      assert(NumIRArgs == 1);
3973      if (!I->isAggregate()) {
3974        // Make a temporary alloca to pass the argument.
3975        Address Addr = CreateMemTempWithoutCast(
3976            I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
3977        IRCallArgs[FirstIRArg] = Addr.getPointer();
3978
3979        I->copyInto(*this, Addr);
3980      } else {
3981        // We want to avoid creating an unnecessary temporary+copy here;
3982        // however, we need one in three cases:
3983        // 1. If the argument is not byval, and we are required to copy the
3984        //    source.  (This case doesn't occur on any common architecture.)
3985        // 2. If the argument is byval, RV is not sufficiently aligned, and
3986        //    we cannot force it to be sufficiently aligned.
3987        // 3. If the argument is byval, but RV is not located in default
3988        //    or alloca address space.
3989        Address Addr = I->hasLValue()
3990                           ? I->getKnownLValue().getAddress(*this)
3991                           : I->getKnownRValue().getAggregateAddress();
3992        llvm::Value *V = Addr.getPointer();
3993        CharUnits Align = ArgInfo.getIndirectAlign();
3994        const llvm::DataLayout *TD = &CGM.getDataLayout();
3995
3996        assert((FirstIRArg >= IRFuncTy->getNumParams() ||
3997                IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
3998                    TD->getAllocaAddrSpace()) &&
3999               "indirect argument must be in alloca address space");
4000
4001        bool NeedCopy = false;
4002
4003        if (Addr.getAlignment() < Align &&
4004            llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) <
4005                Align.getQuantity()) {
4006          NeedCopy = true;
4007        } else if (I->hasLValue()) {
4008          auto LV = I->getKnownLValue();
4009          auto AS = LV.getAddressSpace();
4010
4011          if (!ArgInfo.getIndirectByVal() ||
4012              (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
4013            NeedCopy = true;
4014          }
4015          if (!getLangOpts().OpenCL) {
4016            if ((ArgInfo.getIndirectByVal() &&
4017                (AS != LangAS::Default &&
4018                 AS != CGM.getASTAllocaAddressSpace()))) {
4019              NeedCopy = true;
4020            }
4021          }
4022          // For OpenCL even if RV is located in default or alloca address space
4023          // we don't want to perform address space cast for it.
4024          else if ((ArgInfo.getIndirectByVal() &&
4025                    Addr.getType()->getAddressSpace() != IRFuncTy->
4026                      getParamType(FirstIRArg)->getPointerAddressSpace())) {
4027            NeedCopy = true;
4028          }
4029        }
4030
4031        if (NeedCopy) {
4032          // Create an aligned temporary, and copy to it.
4033          Address AI = CreateMemTempWithoutCast(
4034              I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4035          IRCallArgs[FirstIRArg] = AI.getPointer();
4036
4037          // Emit lifetime markers for the temporary alloca.
4038          uint64_t ByvalTempElementSize =
4039              CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
4040          llvm::Value *LifetimeSize =
4041              EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
4042
4043          // Add cleanup code to emit the end lifetime marker after the call.
4044          if (LifetimeSize) // In case we disabled lifetime markers.
4045            CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
4046
4047          // Generate the copy.
4048          I->copyInto(*this, AI);
4049        } else {
4050          // Skip the extra memcpy call.
4051          auto *T = V->getType()->getPointerElementType()->getPointerTo(
4052              CGM.getDataLayout().getAllocaAddrSpace());
4053          IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4054              *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4055              true);
4056        }
4057      }
4058      break;
4059    }
4060
4061    case ABIArgInfo::Ignore:
4062      assert(NumIRArgs == 0);
4063      break;
4064
4065    case ABIArgInfo::Extend:
4066    case ABIArgInfo::Direct: {
4067      if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4068          ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4069          ArgInfo.getDirectOffset() == 0) {
4070        assert(NumIRArgs == 1);
4071        llvm::Value *V;
4072        if (!I->isAggregate())
4073          V = I->getKnownRValue().getScalarVal();
4074        else
4075          V = Builder.CreateLoad(
4076              I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4077                             : I->getKnownRValue().getAggregateAddress());
4078
4079        // Implement swifterror by copying into a new swifterror argument.
4080        // We'll write back in the normal path out of the call.
4081        if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4082              == ParameterABI::SwiftErrorResult) {
4083          assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4084
4085          QualType pointeeTy = I->Ty->getPointeeType();
4086          swiftErrorArg =
4087            Address(V, getContext().getTypeAlignInChars(pointeeTy));
4088
4089          swiftErrorTemp =
4090            CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4091          V = swiftErrorTemp.getPointer();
4092          cast<llvm::AllocaInst>(V)->setSwiftError(true);
4093
4094          llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4095          Builder.CreateStore(errorValue, swiftErrorTemp);
4096        }
4097
4098        // We might have to widen integers, but we should never truncate.
4099        if (ArgInfo.getCoerceToType() != V->getType() &&
4100            V->getType()->isIntegerTy())
4101          V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4102
4103        // If the argument doesn't match, perform a bitcast to coerce it.  This
4104        // can happen due to trivial type mismatches.
4105        if (FirstIRArg < IRFuncTy->getNumParams() &&
4106            V->getType() != IRFuncTy->getParamType(FirstIRArg))
4107          V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4108
4109        IRCallArgs[FirstIRArg] = V;
4110        break;
4111      }
4112
4113      // FIXME: Avoid the conversion through memory if possible.
4114      Address Src = Address::invalid();
4115      if (!I->isAggregate()) {
4116        Src = CreateMemTemp(I->Ty, "coerce");
4117        I->copyInto(*this, Src);
4118      } else {
4119        Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4120                             : I->getKnownRValue().getAggregateAddress();
4121      }
4122
4123      // If the value is offset in memory, apply the offset now.
4124      Src = emitAddressAtOffset(*this, Src, ArgInfo);
4125
4126      // Fast-isel and the optimizer generally like scalar values better than
4127      // FCAs, so we flatten them if this is safe to do for this argument.
4128      llvm::StructType *STy =
4129            dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4130      if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4131        llvm::Type *SrcTy = Src.getType()->getElementType();
4132        uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4133        uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4134
4135        // If the source type is smaller than the destination type of the
4136        // coerce-to logic, copy the source value into a temp alloca the size
4137        // of the destination type to allow loading all of it. The bits past
4138        // the source value are left undef.
4139        if (SrcSize < DstSize) {
4140          Address TempAlloca
4141            = CreateTempAlloca(STy, Src.getAlignment(),
4142                               Src.getName() + ".coerce");
4143          Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4144          Src = TempAlloca;
4145        } else {
4146          Src = Builder.CreateBitCast(Src,
4147                                      STy->getPointerTo(Src.getAddressSpace()));
4148        }
4149
4150        assert(NumIRArgs == STy->getNumElements());
4151        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4152          Address EltPtr = Builder.CreateStructGEP(Src, i);
4153          llvm::Value *LI = Builder.CreateLoad(EltPtr);
4154          IRCallArgs[FirstIRArg + i] = LI;
4155        }
4156      } else {
4157        // In the simple case, just pass the coerced loaded value.
4158        assert(NumIRArgs == 1);
4159        IRCallArgs[FirstIRArg] =
4160          CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4161      }
4162
4163      break;
4164    }
4165
4166    case ABIArgInfo::CoerceAndExpand: {
4167      auto coercionType = ArgInfo.getCoerceAndExpandType();
4168      auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4169
4170      llvm::Value *tempSize = nullptr;
4171      Address addr = Address::invalid();
4172      Address AllocaAddr = Address::invalid();
4173      if (I->isAggregate()) {
4174        addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4175                              : I->getKnownRValue().getAggregateAddress();
4176
4177      } else {
4178        RValue RV = I->getKnownRValue();
4179        assert(RV.isScalar()); // complex should always just be direct
4180
4181        llvm::Type *scalarType = RV.getScalarVal()->getType();
4182        auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4183        auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4184
4185        // Materialize to a temporary.
4186        addr = CreateTempAlloca(
4187            RV.getScalarVal()->getType(),
4188            CharUnits::fromQuantity(std::max(
4189                (unsigned)layout->getAlignment().value(), scalarAlign)),
4190            "tmp",
4191            /*ArraySize=*/nullptr, &AllocaAddr);
4192        tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
4193
4194        Builder.CreateStore(RV.getScalarVal(), addr);
4195      }
4196
4197      addr = Builder.CreateElementBitCast(addr, coercionType);
4198
4199      unsigned IRArgPos = FirstIRArg;
4200      for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4201        llvm::Type *eltType = coercionType->getElementType(i);
4202        if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4203        Address eltAddr = Builder.CreateStructGEP(addr, i);
4204        llvm::Value *elt = Builder.CreateLoad(eltAddr);
4205        IRCallArgs[IRArgPos++] = elt;
4206      }
4207      assert(IRArgPos == FirstIRArg + NumIRArgs);
4208
4209      if (tempSize) {
4210        EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
4211      }
4212
4213      break;
4214    }
4215
4216    case ABIArgInfo::Expand:
4217      unsigned IRArgPos = FirstIRArg;
4218      ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
4219      assert(IRArgPos == FirstIRArg + NumIRArgs);
4220      break;
4221    }
4222  }
4223
4224  const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
4225  llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
4226
4227  // If we're using inalloca, set up that argument.
4228  if (ArgMemory.isValid()) {
4229    llvm::Value *Arg = ArgMemory.getPointer();
4230    if (CallInfo.isVariadic()) {
4231      // When passing non-POD arguments by value to variadic functions, we will
4232      // end up with a variadic prototype and an inalloca call site.  In such
4233      // cases, we can't do any parameter mismatch checks.  Give up and bitcast
4234      // the callee.
4235      unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4236      CalleePtr =
4237          Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
4238    } else {
4239      llvm::Type *LastParamTy =
4240          IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4241      if (Arg->getType() != LastParamTy) {
4242#ifndef NDEBUG
4243        // Assert that these structs have equivalent element types.
4244        llvm::StructType *FullTy = CallInfo.getArgStruct();
4245        llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4246            cast<llvm::PointerType>(LastParamTy)->getElementType());
4247        assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4248        for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4249                                                DE = DeclaredTy->element_end(),
4250                                                FI = FullTy->element_begin();
4251             DI != DE; ++DI, ++FI)
4252          assert(*DI == *FI);
4253#endif
4254        Arg = Builder.CreateBitCast(Arg, LastParamTy);
4255      }
4256    }
4257    assert(IRFunctionArgs.hasInallocaArg());
4258    IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4259  }
4260
4261  // 2. Prepare the function pointer.
4262
4263  // If the callee is a bitcast of a non-variadic function to have a
4264  // variadic function pointer type, check to see if we can remove the
4265  // bitcast.  This comes up with unprototyped functions.
4266  //
4267  // This makes the IR nicer, but more importantly it ensures that we
4268  // can inline the function at -O0 if it is marked always_inline.
4269  auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
4270                                   llvm::Value *Ptr) -> llvm::Function * {
4271    if (!CalleeFT->isVarArg())
4272      return nullptr;
4273
4274    // Get underlying value if it's a bitcast
4275    if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
4276      if (CE->getOpcode() == llvm::Instruction::BitCast)
4277        Ptr = CE->getOperand(0);
4278    }
4279
4280    llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
4281    if (!OrigFn)
4282      return nullptr;
4283
4284    llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4285
4286    // If the original type is variadic, or if any of the component types
4287    // disagree, we cannot remove the cast.
4288    if (OrigFT->isVarArg() ||
4289        OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4290        OrigFT->getReturnType() != CalleeFT->getReturnType())
4291      return nullptr;
4292
4293    for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4294      if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4295        return nullptr;
4296
4297    return OrigFn;
4298  };
4299
4300  if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
4301    CalleePtr = OrigFn;
4302    IRFuncTy = OrigFn->getFunctionType();
4303  }
4304
4305  // 3. Perform the actual call.
4306
4307  // Deactivate any cleanups that we're supposed to do immediately before
4308  // the call.
4309  if (!CallArgs.getCleanupsToDeactivate().empty())
4310    deactivateArgCleanupsBeforeCall(*this, CallArgs);
4311
4312  // Assert that the arguments we computed match up.  The IR verifier
4313  // will catch this, but this is a common enough source of problems
4314  // during IRGen changes that it's way better for debugging to catch
4315  // it ourselves here.
4316#ifndef NDEBUG
4317  assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4318  for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4319    // Inalloca argument can have different type.
4320    if (IRFunctionArgs.hasInallocaArg() &&
4321        i == IRFunctionArgs.getInallocaArgNo())
4322      continue;
4323    if (i < IRFuncTy->getNumParams())
4324      assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4325  }
4326#endif
4327
4328  // Update the largest vector width if any arguments have vector types.
4329  for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4330    if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
4331      LargestVectorWidth = std::max((uint64_t)LargestVectorWidth,
4332                                   VT->getPrimitiveSizeInBits().getFixedSize());
4333  }
4334
4335  // Compute the calling convention and attributes.
4336  unsigned CallingConv;
4337  llvm::AttributeList Attrs;
4338  CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
4339                             Callee.getAbstractInfo(), Attrs, CallingConv,
4340                             /*AttrOnCallSite=*/true);
4341
4342  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
4343    if (FD->usesFPIntrin())
4344      // All calls within a strictfp function are marked strictfp
4345      Attrs =
4346        Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4347                           llvm::Attribute::StrictFP);
4348
4349  // Apply some call-site-specific attributes.
4350  // TODO: work this into building the attribute set.
4351
4352  // Apply always_inline to all calls within flatten functions.
4353  // FIXME: should this really take priority over __try, below?
4354  if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4355      !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
4356    Attrs =
4357        Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4358                           llvm::Attribute::AlwaysInline);
4359  }
4360
4361  // Disable inlining inside SEH __try blocks.
4362  if (isSEHTryScope()) {
4363    Attrs =
4364        Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4365                           llvm::Attribute::NoInline);
4366  }
4367
4368  // Decide whether to use a call or an invoke.
4369  bool CannotThrow;
4370  if (currentFunctionUsesSEHTry()) {
4371    // SEH cares about asynchronous exceptions, so everything can "throw."
4372    CannotThrow = false;
4373  } else if (isCleanupPadScope() &&
4374             EHPersonality::get(*this).isMSVCXXPersonality()) {
4375    // The MSVC++ personality will implicitly terminate the program if an
4376    // exception is thrown during a cleanup outside of a try/catch.
4377    // We don't need to model anything in IR to get this behavior.
4378    CannotThrow = true;
4379  } else {
4380    // Otherwise, nounwind call sites will never throw.
4381    CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex,
4382                                     llvm::Attribute::NoUnwind);
4383  }
4384
4385  // If we made a temporary, be sure to clean up after ourselves. Note that we
4386  // can't depend on being inside of an ExprWithCleanups, so we need to manually
4387  // pop this cleanup later on. Being eager about this is OK, since this
4388  // temporary is 'invisible' outside of the callee.
4389  if (UnusedReturnSizePtr)
4390    pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
4391                                         UnusedReturnSizePtr);
4392
4393  llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4394
4395  SmallVector<llvm::OperandBundleDef, 1> BundleList =
4396      getBundlesForFunclet(CalleePtr);
4397
4398  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
4399    if (FD->usesFPIntrin())
4400      // All calls within a strictfp function are marked strictfp
4401      Attrs =
4402        Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4403                           llvm::Attribute::StrictFP);
4404
4405  // Emit the actual call/invoke instruction.
4406  llvm::CallBase *CI;
4407  if (!InvokeDest) {
4408    CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
4409  } else {
4410    llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4411    CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
4412                              BundleList);
4413    EmitBlock(Cont);
4414  }
4415  if (callOrInvoke)
4416    *callOrInvoke = CI;
4417
4418  // If this is within a function that has the guard(nocf) attribute and is an
4419  // indirect call, add the "guard_nocf" attribute to this call to indicate that
4420  // Control Flow Guard checks should not be added, even if the call is inlined.
4421  if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
4422    if (const auto *A = FD->getAttr<CFGuardAttr>()) {
4423      if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
4424        Attrs = Attrs.addAttribute(
4425            getLLVMContext(), llvm::AttributeList::FunctionIndex, "guard_nocf");
4426    }
4427  }
4428
4429  // Apply the attributes and calling convention.
4430  CI->setAttributes(Attrs);
4431  CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4432
4433  // Apply various metadata.
4434
4435  if (!CI->getType()->isVoidTy())
4436    CI->setName("call");
4437
4438  // Update largest vector width from the return type.
4439  if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
4440    LargestVectorWidth = std::max((uint64_t)LargestVectorWidth,
4441                                  VT->getPrimitiveSizeInBits().getFixedSize());
4442
4443  // Insert instrumentation or attach profile metadata at indirect call sites.
4444  // For more details, see the comment before the definition of
4445  // IPVK_IndirectCallTarget in InstrProfData.inc.
4446  if (!CI->getCalledFunction())
4447    PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4448                     CI, CalleePtr);
4449
4450  // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4451  // optimizer it can aggressively ignore unwind edges.
4452  if (CGM.getLangOpts().ObjCAutoRefCount)
4453    AddObjCARCExceptionMetadata(CI);
4454
4455  // Suppress tail calls if requested.
4456  if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4457    if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4458      Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4459  }
4460
4461  // Add metadata for calls to MSAllocator functions
4462  if (getDebugInfo() && TargetDecl &&
4463      TargetDecl->hasAttr<MSAllocatorAttr>())
4464    getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy, Loc);
4465
4466  // 4. Finish the call.
4467
4468  // If the call doesn't return, finish the basic block and clear the
4469  // insertion point; this allows the rest of IRGen to discard
4470  // unreachable code.
4471  if (CI->doesNotReturn()) {
4472    if (UnusedReturnSizePtr)
4473      PopCleanupBlock();
4474
4475    // Strip away the noreturn attribute to better diagnose unreachable UB.
4476    if (SanOpts.has(SanitizerKind::Unreachable)) {
4477      // Also remove from function since CallBase::hasFnAttr additionally checks
4478      // attributes of the called function.
4479      if (auto *F = CI->getCalledFunction())
4480        F->removeFnAttr(llvm::Attribute::NoReturn);
4481      CI->removeAttribute(llvm::AttributeList::FunctionIndex,
4482                          llvm::Attribute::NoReturn);
4483
4484      // Avoid incompatibility with ASan which relies on the `noreturn`
4485      // attribute to insert handler calls.
4486      if (SanOpts.hasOneOf(SanitizerKind::Address |
4487                           SanitizerKind::KernelAddress)) {
4488        SanitizerScope SanScope(this);
4489        llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
4490        Builder.SetInsertPoint(CI);
4491        auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
4492        llvm::FunctionCallee Fn =
4493            CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
4494        EmitNounwindRuntimeCall(Fn);
4495      }
4496    }
4497
4498    EmitUnreachable(Loc);
4499    Builder.ClearInsertionPoint();
4500
4501    // FIXME: For now, emit a dummy basic block because expr emitters in
4502    // generally are not ready to handle emitting expressions at unreachable
4503    // points.
4504    EnsureInsertPoint();
4505
4506    // Return a reasonable RValue.
4507    return GetUndefRValue(RetTy);
4508  }
4509
4510  // Perform the swifterror writeback.
4511  if (swiftErrorTemp.isValid()) {
4512    llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
4513    Builder.CreateStore(errorResult, swiftErrorArg);
4514  }
4515
4516  // Emit any call-associated writebacks immediately.  Arguably this
4517  // should happen after any return-value munging.
4518  if (CallArgs.hasWritebacks())
4519    emitWritebacks(*this, CallArgs);
4520
4521  // The stack cleanup for inalloca arguments has to run out of the normal
4522  // lexical order, so deactivate it and run it manually here.
4523  CallArgs.freeArgumentMemory(*this);
4524
4525  // Extract the return value.
4526  RValue Ret = [&] {
4527    switch (RetAI.getKind()) {
4528    case ABIArgInfo::CoerceAndExpand: {
4529      auto coercionType = RetAI.getCoerceAndExpandType();
4530
4531      Address addr = SRetPtr;
4532      addr = Builder.CreateElementBitCast(addr, coercionType);
4533
4534      assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
4535      bool requiresExtract = isa<llvm::StructType>(CI->getType());
4536
4537      unsigned unpaddedIndex = 0;
4538      for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4539        llvm::Type *eltType = coercionType->getElementType(i);
4540        if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4541        Address eltAddr = Builder.CreateStructGEP(addr, i);
4542        llvm::Value *elt = CI;
4543        if (requiresExtract)
4544          elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
4545        else
4546          assert(unpaddedIndex == 0);
4547        Builder.CreateStore(elt, eltAddr);
4548      }
4549      // FALLTHROUGH
4550      LLVM_FALLTHROUGH;
4551    }
4552
4553    case ABIArgInfo::InAlloca:
4554    case ABIArgInfo::Indirect: {
4555      RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
4556      if (UnusedReturnSizePtr)
4557        PopCleanupBlock();
4558      return ret;
4559    }
4560
4561    case ABIArgInfo::Ignore:
4562      // If we are ignoring an argument that had a result, make sure to
4563      // construct the appropriate return value for our caller.
4564      return GetUndefRValue(RetTy);
4565
4566    case ABIArgInfo::Extend:
4567    case ABIArgInfo::Direct: {
4568      llvm::Type *RetIRTy = ConvertType(RetTy);
4569      if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
4570        switch (getEvaluationKind(RetTy)) {
4571        case TEK_Complex: {
4572          llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
4573          llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
4574          return RValue::getComplex(std::make_pair(Real, Imag));
4575        }
4576        case TEK_Aggregate: {
4577          Address DestPtr = ReturnValue.getValue();
4578          bool DestIsVolatile = ReturnValue.isVolatile();
4579
4580          if (!DestPtr.isValid()) {
4581            DestPtr = CreateMemTemp(RetTy, "agg.tmp");
4582            DestIsVolatile = false;
4583          }
4584          BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
4585          return RValue::getAggregate(DestPtr);
4586        }
4587        case TEK_Scalar: {
4588          // If the argument doesn't match, perform a bitcast to coerce it.  This
4589          // can happen due to trivial type mismatches.
4590          llvm::Value *V = CI;
4591          if (V->getType() != RetIRTy)
4592            V = Builder.CreateBitCast(V, RetIRTy);
4593          return RValue::get(V);
4594        }
4595        }
4596        llvm_unreachable("bad evaluation kind");
4597      }
4598
4599      Address DestPtr = ReturnValue.getValue();
4600      bool DestIsVolatile = ReturnValue.isVolatile();
4601
4602      if (!DestPtr.isValid()) {
4603        DestPtr = CreateMemTemp(RetTy, "coerce");
4604        DestIsVolatile = false;
4605      }
4606
4607      // If the value is offset in memory, apply the offset now.
4608      Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
4609      CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
4610
4611      return convertTempToRValue(DestPtr, RetTy, SourceLocation());
4612    }
4613
4614    case ABIArgInfo::Expand:
4615      llvm_unreachable("Invalid ABI kind for return argument");
4616    }
4617
4618    llvm_unreachable("Unhandled ABIArgInfo::Kind");
4619  } ();
4620
4621  // Emit the assume_aligned check on the return value.
4622  if (Ret.isScalar() && TargetDecl) {
4623    if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
4624      llvm::Value *OffsetValue = nullptr;
4625      if (const auto *Offset = AA->getOffset())
4626        OffsetValue = EmitScalarExpr(Offset);
4627
4628      llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
4629      llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
4630      EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(),
4631                              AlignmentCI, OffsetValue);
4632    } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) {
4633      llvm::Value *AlignmentVal = CallArgs[AA->getParamIndex().getLLVMIndex()]
4634                                      .getRValue(*this)
4635                                      .getScalarVal();
4636      EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(),
4637                              AlignmentVal);
4638    }
4639  }
4640
4641  // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
4642  // we can't use the full cleanup mechanism.
4643  for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
4644    LifetimeEnd.Emit(*this, /*Flags=*/{});
4645
4646  return Ret;
4647}
4648
4649CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
4650  if (isVirtual()) {
4651    const CallExpr *CE = getVirtualCallExpr();
4652    return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
4653        CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
4654        CE ? CE->getBeginLoc() : SourceLocation());
4655  }
4656
4657  return *this;
4658}
4659
4660/* VarArg handling */
4661
4662Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
4663  VAListAddr = VE->isMicrosoftABI()
4664                 ? EmitMSVAListRef(VE->getSubExpr())
4665                 : EmitVAListRef(VE->getSubExpr());
4666  QualType Ty = VE->getType();
4667  if (VE->isMicrosoftABI())
4668    return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
4669  return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
4670}
4671