CGCall.cpp revision 360661
1//===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// These classes wrap the information about a call or function
10// definition used to handle ABI compliancy.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CGCall.h"
15#include "ABIInfo.h"
16#include "CGBlocks.h"
17#include "CGCXXABI.h"
18#include "CGCleanup.h"
19#include "CodeGenFunction.h"
20#include "CodeGenModule.h"
21#include "TargetInfo.h"
22#include "clang/AST/Decl.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/Basic/CodeGenOptions.h"
26#include "clang/Basic/TargetBuiltins.h"
27#include "clang/Basic/TargetInfo.h"
28#include "clang/CodeGen/CGFunctionInfo.h"
29#include "clang/CodeGen/SwiftCallingConv.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Transforms/Utils/Local.h"
32#include "llvm/Analysis/ValueTracking.h"
33#include "llvm/IR/Attributes.h"
34#include "llvm/IR/CallingConv.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/InlineAsm.h"
37#include "llvm/IR/IntrinsicInst.h"
38#include "llvm/IR/Intrinsics.h"
39using namespace clang;
40using namespace CodeGen;
41
42/***/
43
44unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
45  switch (CC) {
46  default: return llvm::CallingConv::C;
47  case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
48  case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
49  case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
50  case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
51  case CC_Win64: return llvm::CallingConv::Win64;
52  case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
53  case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
54  case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
55  case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
56  // TODO: Add support for __pascal to LLVM.
57  case CC_X86Pascal: return llvm::CallingConv::C;
58  // TODO: Add support for __vectorcall to LLVM.
59  case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
60  case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
61  case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
62  case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
63  case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
64  case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
65  case CC_Swift: return llvm::CallingConv::Swift;
66  }
67}
68
69/// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
70/// qualification. Either or both of RD and MD may be null. A null RD indicates
71/// that there is no meaningful 'this' type, and a null MD can occur when
72/// calling a method pointer.
73CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
74                                         const CXXMethodDecl *MD) {
75  QualType RecTy;
76  if (RD)
77    RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
78  else
79    RecTy = Context.VoidTy;
80
81  if (MD)
82    RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
83  return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
84}
85
86/// Returns the canonical formal type of the given C++ method.
87static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
88  return MD->getType()->getCanonicalTypeUnqualified()
89           .getAs<FunctionProtoType>();
90}
91
92/// Returns the "extra-canonicalized" return type, which discards
93/// qualifiers on the return type.  Codegen doesn't care about them,
94/// and it makes ABI code a little easier to be able to assume that
95/// all parameter and return types are top-level unqualified.
96static CanQualType GetReturnType(QualType RetTy) {
97  return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
98}
99
100/// Arrange the argument and result information for a value of the given
101/// unprototyped freestanding function type.
102const CGFunctionInfo &
103CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
104  // When translating an unprototyped function type, always use a
105  // variadic type.
106  return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
107                                 /*instanceMethod=*/false,
108                                 /*chainCall=*/false, None,
109                                 FTNP->getExtInfo(), {}, RequiredArgs(0));
110}
111
112static void addExtParameterInfosForCall(
113         llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
114                                        const FunctionProtoType *proto,
115                                        unsigned prefixArgs,
116                                        unsigned totalArgs) {
117  assert(proto->hasExtParameterInfos());
118  assert(paramInfos.size() <= prefixArgs);
119  assert(proto->getNumParams() + prefixArgs <= totalArgs);
120
121  paramInfos.reserve(totalArgs);
122
123  // Add default infos for any prefix args that don't already have infos.
124  paramInfos.resize(prefixArgs);
125
126  // Add infos for the prototype.
127  for (const auto &ParamInfo : proto->getExtParameterInfos()) {
128    paramInfos.push_back(ParamInfo);
129    // pass_object_size params have no parameter info.
130    if (ParamInfo.hasPassObjectSize())
131      paramInfos.emplace_back();
132  }
133
134  assert(paramInfos.size() <= totalArgs &&
135         "Did we forget to insert pass_object_size args?");
136  // Add default infos for the variadic and/or suffix arguments.
137  paramInfos.resize(totalArgs);
138}
139
140/// Adds the formal parameters in FPT to the given prefix. If any parameter in
141/// FPT has pass_object_size attrs, then we'll add parameters for those, too.
142static void appendParameterTypes(const CodeGenTypes &CGT,
143                                 SmallVectorImpl<CanQualType> &prefix,
144              SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
145                                 CanQual<FunctionProtoType> FPT) {
146  // Fast path: don't touch param info if we don't need to.
147  if (!FPT->hasExtParameterInfos()) {
148    assert(paramInfos.empty() &&
149           "We have paramInfos, but the prototype doesn't?");
150    prefix.append(FPT->param_type_begin(), FPT->param_type_end());
151    return;
152  }
153
154  unsigned PrefixSize = prefix.size();
155  // In the vast majority of cases, we'll have precisely FPT->getNumParams()
156  // parameters; the only thing that can change this is the presence of
157  // pass_object_size. So, we preallocate for the common case.
158  prefix.reserve(prefix.size() + FPT->getNumParams());
159
160  auto ExtInfos = FPT->getExtParameterInfos();
161  assert(ExtInfos.size() == FPT->getNumParams());
162  for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
163    prefix.push_back(FPT->getParamType(I));
164    if (ExtInfos[I].hasPassObjectSize())
165      prefix.push_back(CGT.getContext().getSizeType());
166  }
167
168  addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
169                              prefix.size());
170}
171
172/// Arrange the LLVM function layout for a value of the given function
173/// type, on top of any implicit parameters already stored.
174static const CGFunctionInfo &
175arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
176                        SmallVectorImpl<CanQualType> &prefix,
177                        CanQual<FunctionProtoType> FTP) {
178  SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
179  RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
180  // FIXME: Kill copy.
181  appendParameterTypes(CGT, prefix, paramInfos, FTP);
182  CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
183
184  return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
185                                     /*chainCall=*/false, prefix,
186                                     FTP->getExtInfo(), paramInfos,
187                                     Required);
188}
189
190/// Arrange the argument and result information for a value of the
191/// given freestanding function type.
192const CGFunctionInfo &
193CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
194  SmallVector<CanQualType, 16> argTypes;
195  return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
196                                   FTP);
197}
198
199static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
200  // Set the appropriate calling convention for the Function.
201  if (D->hasAttr<StdCallAttr>())
202    return CC_X86StdCall;
203
204  if (D->hasAttr<FastCallAttr>())
205    return CC_X86FastCall;
206
207  if (D->hasAttr<RegCallAttr>())
208    return CC_X86RegCall;
209
210  if (D->hasAttr<ThisCallAttr>())
211    return CC_X86ThisCall;
212
213  if (D->hasAttr<VectorCallAttr>())
214    return CC_X86VectorCall;
215
216  if (D->hasAttr<PascalAttr>())
217    return CC_X86Pascal;
218
219  if (PcsAttr *PCS = D->getAttr<PcsAttr>())
220    return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
221
222  if (D->hasAttr<AArch64VectorPcsAttr>())
223    return CC_AArch64VectorCall;
224
225  if (D->hasAttr<IntelOclBiccAttr>())
226    return CC_IntelOclBicc;
227
228  if (D->hasAttr<MSABIAttr>())
229    return IsWindows ? CC_C : CC_Win64;
230
231  if (D->hasAttr<SysVABIAttr>())
232    return IsWindows ? CC_X86_64SysV : CC_C;
233
234  if (D->hasAttr<PreserveMostAttr>())
235    return CC_PreserveMost;
236
237  if (D->hasAttr<PreserveAllAttr>())
238    return CC_PreserveAll;
239
240  return CC_C;
241}
242
243/// Arrange the argument and result information for a call to an
244/// unknown C++ non-static member function of the given abstract type.
245/// (A null RD means we don't have any meaningful "this" argument type,
246///  so fall back to a generic pointer type).
247/// The member function must be an ordinary function, i.e. not a
248/// constructor or destructor.
249const CGFunctionInfo &
250CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
251                                   const FunctionProtoType *FTP,
252                                   const CXXMethodDecl *MD) {
253  SmallVector<CanQualType, 16> argTypes;
254
255  // Add the 'this' pointer.
256  argTypes.push_back(DeriveThisType(RD, MD));
257
258  return ::arrangeLLVMFunctionInfo(
259      *this, true, argTypes,
260      FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
261}
262
263/// Set calling convention for CUDA/HIP kernel.
264static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
265                                           const FunctionDecl *FD) {
266  if (FD->hasAttr<CUDAGlobalAttr>()) {
267    const FunctionType *FT = FTy->getAs<FunctionType>();
268    CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
269    FTy = FT->getCanonicalTypeUnqualified();
270  }
271}
272
273/// Arrange the argument and result information for a declaration or
274/// definition of the given C++ non-static member function.  The
275/// member function must be an ordinary function, i.e. not a
276/// constructor or destructor.
277const CGFunctionInfo &
278CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
279  assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
280  assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
281
282  CanQualType FT = GetFormalType(MD).getAs<Type>();
283  setCUDAKernelCallingConvention(FT, CGM, MD);
284  auto prototype = FT.getAs<FunctionProtoType>();
285
286  if (MD->isInstance()) {
287    // The abstract case is perfectly fine.
288    const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
289    return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
290  }
291
292  return arrangeFreeFunctionType(prototype);
293}
294
295bool CodeGenTypes::inheritingCtorHasParams(
296    const InheritedConstructor &Inherited, CXXCtorType Type) {
297  // Parameters are unnecessary if we're constructing a base class subobject
298  // and the inherited constructor lives in a virtual base.
299  return Type == Ctor_Complete ||
300         !Inherited.getShadowDecl()->constructsVirtualBase() ||
301         !Target.getCXXABI().hasConstructorVariants();
302}
303
304const CGFunctionInfo &
305CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
306  auto *MD = cast<CXXMethodDecl>(GD.getDecl());
307
308  SmallVector<CanQualType, 16> argTypes;
309  SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
310  argTypes.push_back(DeriveThisType(MD->getParent(), MD));
311
312  bool PassParams = true;
313
314  if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
315    // A base class inheriting constructor doesn't get forwarded arguments
316    // needed to construct a virtual base (or base class thereof).
317    if (auto Inherited = CD->getInheritedConstructor())
318      PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
319  }
320
321  CanQual<FunctionProtoType> FTP = GetFormalType(MD);
322
323  // Add the formal parameters.
324  if (PassParams)
325    appendParameterTypes(*this, argTypes, paramInfos, FTP);
326
327  CGCXXABI::AddedStructorArgs AddedArgs =
328      TheCXXABI.buildStructorSignature(GD, argTypes);
329  if (!paramInfos.empty()) {
330    // Note: prefix implies after the first param.
331    if (AddedArgs.Prefix)
332      paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
333                        FunctionProtoType::ExtParameterInfo{});
334    if (AddedArgs.Suffix)
335      paramInfos.append(AddedArgs.Suffix,
336                        FunctionProtoType::ExtParameterInfo{});
337  }
338
339  RequiredArgs required =
340      (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
341                                      : RequiredArgs::All);
342
343  FunctionType::ExtInfo extInfo = FTP->getExtInfo();
344  CanQualType resultType = TheCXXABI.HasThisReturn(GD)
345                               ? argTypes.front()
346                               : TheCXXABI.hasMostDerivedReturn(GD)
347                                     ? CGM.getContext().VoidPtrTy
348                                     : Context.VoidTy;
349  return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
350                                 /*chainCall=*/false, argTypes, extInfo,
351                                 paramInfos, required);
352}
353
354static SmallVector<CanQualType, 16>
355getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
356  SmallVector<CanQualType, 16> argTypes;
357  for (auto &arg : args)
358    argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
359  return argTypes;
360}
361
362static SmallVector<CanQualType, 16>
363getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
364  SmallVector<CanQualType, 16> argTypes;
365  for (auto &arg : args)
366    argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
367  return argTypes;
368}
369
370static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
371getExtParameterInfosForCall(const FunctionProtoType *proto,
372                            unsigned prefixArgs, unsigned totalArgs) {
373  llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
374  if (proto->hasExtParameterInfos()) {
375    addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
376  }
377  return result;
378}
379
380/// Arrange a call to a C++ method, passing the given arguments.
381///
382/// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
383/// parameter.
384/// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
385/// args.
386/// PassProtoArgs indicates whether `args` has args for the parameters in the
387/// given CXXConstructorDecl.
388const CGFunctionInfo &
389CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
390                                        const CXXConstructorDecl *D,
391                                        CXXCtorType CtorKind,
392                                        unsigned ExtraPrefixArgs,
393                                        unsigned ExtraSuffixArgs,
394                                        bool PassProtoArgs) {
395  // FIXME: Kill copy.
396  SmallVector<CanQualType, 16> ArgTypes;
397  for (const auto &Arg : args)
398    ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
399
400  // +1 for implicit this, which should always be args[0].
401  unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
402
403  CanQual<FunctionProtoType> FPT = GetFormalType(D);
404  RequiredArgs Required = PassProtoArgs
405                              ? RequiredArgs::forPrototypePlus(
406                                    FPT, TotalPrefixArgs + ExtraSuffixArgs)
407                              : RequiredArgs::All;
408
409  GlobalDecl GD(D, CtorKind);
410  CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
411                               ? ArgTypes.front()
412                               : TheCXXABI.hasMostDerivedReturn(GD)
413                                     ? CGM.getContext().VoidPtrTy
414                                     : Context.VoidTy;
415
416  FunctionType::ExtInfo Info = FPT->getExtInfo();
417  llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
418  // If the prototype args are elided, we should only have ABI-specific args,
419  // which never have param info.
420  if (PassProtoArgs && FPT->hasExtParameterInfos()) {
421    // ABI-specific suffix arguments are treated the same as variadic arguments.
422    addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
423                                ArgTypes.size());
424  }
425  return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
426                                 /*chainCall=*/false, ArgTypes, Info,
427                                 ParamInfos, Required);
428}
429
430/// Arrange the argument and result information for the declaration or
431/// definition of the given function.
432const CGFunctionInfo &
433CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
434  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
435    if (MD->isInstance())
436      return arrangeCXXMethodDeclaration(MD);
437
438  CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
439
440  assert(isa<FunctionType>(FTy));
441  setCUDAKernelCallingConvention(FTy, CGM, FD);
442
443  // When declaring a function without a prototype, always use a
444  // non-variadic type.
445  if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
446    return arrangeLLVMFunctionInfo(
447        noProto->getReturnType(), /*instanceMethod=*/false,
448        /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
449  }
450
451  return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
452}
453
454/// Arrange the argument and result information for the declaration or
455/// definition of an Objective-C method.
456const CGFunctionInfo &
457CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
458  // It happens that this is the same as a call with no optional
459  // arguments, except also using the formal 'self' type.
460  return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
461}
462
463/// Arrange the argument and result information for the function type
464/// through which to perform a send to the given Objective-C method,
465/// using the given receiver type.  The receiver type is not always
466/// the 'self' type of the method or even an Objective-C pointer type.
467/// This is *not* the right method for actually performing such a
468/// message send, due to the possibility of optional arguments.
469const CGFunctionInfo &
470CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
471                                              QualType receiverType) {
472  SmallVector<CanQualType, 16> argTys;
473  SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
474  argTys.push_back(Context.getCanonicalParamType(receiverType));
475  argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
476  // FIXME: Kill copy?
477  for (const auto *I : MD->parameters()) {
478    argTys.push_back(Context.getCanonicalParamType(I->getType()));
479    auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
480        I->hasAttr<NoEscapeAttr>());
481    extParamInfos.push_back(extParamInfo);
482  }
483
484  FunctionType::ExtInfo einfo;
485  bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
486  einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
487
488  if (getContext().getLangOpts().ObjCAutoRefCount &&
489      MD->hasAttr<NSReturnsRetainedAttr>())
490    einfo = einfo.withProducesResult(true);
491
492  RequiredArgs required =
493    (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
494
495  return arrangeLLVMFunctionInfo(
496      GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
497      /*chainCall=*/false, argTys, einfo, extParamInfos, required);
498}
499
500const CGFunctionInfo &
501CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
502                                                 const CallArgList &args) {
503  auto argTypes = getArgTypesForCall(Context, args);
504  FunctionType::ExtInfo einfo;
505
506  return arrangeLLVMFunctionInfo(
507      GetReturnType(returnType), /*instanceMethod=*/false,
508      /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
509}
510
511const CGFunctionInfo &
512CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
513  // FIXME: Do we need to handle ObjCMethodDecl?
514  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
515
516  if (isa<CXXConstructorDecl>(GD.getDecl()) ||
517      isa<CXXDestructorDecl>(GD.getDecl()))
518    return arrangeCXXStructorDeclaration(GD);
519
520  return arrangeFunctionDeclaration(FD);
521}
522
523/// Arrange a thunk that takes 'this' as the first parameter followed by
524/// varargs.  Return a void pointer, regardless of the actual return type.
525/// The body of the thunk will end in a musttail call to a function of the
526/// correct type, and the caller will bitcast the function to the correct
527/// prototype.
528const CGFunctionInfo &
529CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
530  assert(MD->isVirtual() && "only methods have thunks");
531  CanQual<FunctionProtoType> FTP = GetFormalType(MD);
532  CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
533  return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
534                                 /*chainCall=*/false, ArgTys,
535                                 FTP->getExtInfo(), {}, RequiredArgs(1));
536}
537
538const CGFunctionInfo &
539CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
540                                   CXXCtorType CT) {
541  assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
542
543  CanQual<FunctionProtoType> FTP = GetFormalType(CD);
544  SmallVector<CanQualType, 2> ArgTys;
545  const CXXRecordDecl *RD = CD->getParent();
546  ArgTys.push_back(DeriveThisType(RD, CD));
547  if (CT == Ctor_CopyingClosure)
548    ArgTys.push_back(*FTP->param_type_begin());
549  if (RD->getNumVBases() > 0)
550    ArgTys.push_back(Context.IntTy);
551  CallingConv CC = Context.getDefaultCallingConvention(
552      /*IsVariadic=*/false, /*IsCXXMethod=*/true);
553  return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
554                                 /*chainCall=*/false, ArgTys,
555                                 FunctionType::ExtInfo(CC), {},
556                                 RequiredArgs::All);
557}
558
559/// Arrange a call as unto a free function, except possibly with an
560/// additional number of formal parameters considered required.
561static const CGFunctionInfo &
562arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
563                            CodeGenModule &CGM,
564                            const CallArgList &args,
565                            const FunctionType *fnType,
566                            unsigned numExtraRequiredArgs,
567                            bool chainCall) {
568  assert(args.size() >= numExtraRequiredArgs);
569
570  llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
571
572  // In most cases, there are no optional arguments.
573  RequiredArgs required = RequiredArgs::All;
574
575  // If we have a variadic prototype, the required arguments are the
576  // extra prefix plus the arguments in the prototype.
577  if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
578    if (proto->isVariadic())
579      required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
580
581    if (proto->hasExtParameterInfos())
582      addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
583                                  args.size());
584
585  // If we don't have a prototype at all, but we're supposed to
586  // explicitly use the variadic convention for unprototyped calls,
587  // treat all of the arguments as required but preserve the nominal
588  // possibility of variadics.
589  } else if (CGM.getTargetCodeGenInfo()
590                .isNoProtoCallVariadic(args,
591                                       cast<FunctionNoProtoType>(fnType))) {
592    required = RequiredArgs(args.size());
593  }
594
595  // FIXME: Kill copy.
596  SmallVector<CanQualType, 16> argTypes;
597  for (const auto &arg : args)
598    argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
599  return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
600                                     /*instanceMethod=*/false, chainCall,
601                                     argTypes, fnType->getExtInfo(), paramInfos,
602                                     required);
603}
604
605/// Figure out the rules for calling a function with the given formal
606/// type using the given arguments.  The arguments are necessary
607/// because the function might be unprototyped, in which case it's
608/// target-dependent in crazy ways.
609const CGFunctionInfo &
610CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
611                                      const FunctionType *fnType,
612                                      bool chainCall) {
613  return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
614                                     chainCall ? 1 : 0, chainCall);
615}
616
617/// A block function is essentially a free function with an
618/// extra implicit argument.
619const CGFunctionInfo &
620CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
621                                       const FunctionType *fnType) {
622  return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
623                                     /*chainCall=*/false);
624}
625
626const CGFunctionInfo &
627CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
628                                              const FunctionArgList &params) {
629  auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
630  auto argTypes = getArgTypesForDeclaration(Context, params);
631
632  return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
633                                 /*instanceMethod*/ false, /*chainCall*/ false,
634                                 argTypes, proto->getExtInfo(), paramInfos,
635                                 RequiredArgs::forPrototypePlus(proto, 1));
636}
637
638const CGFunctionInfo &
639CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
640                                         const CallArgList &args) {
641  // FIXME: Kill copy.
642  SmallVector<CanQualType, 16> argTypes;
643  for (const auto &Arg : args)
644    argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
645  return arrangeLLVMFunctionInfo(
646      GetReturnType(resultType), /*instanceMethod=*/false,
647      /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
648      /*paramInfos=*/ {}, RequiredArgs::All);
649}
650
651const CGFunctionInfo &
652CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
653                                                const FunctionArgList &args) {
654  auto argTypes = getArgTypesForDeclaration(Context, args);
655
656  return arrangeLLVMFunctionInfo(
657      GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
658      argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
659}
660
661const CGFunctionInfo &
662CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
663                                              ArrayRef<CanQualType> argTypes) {
664  return arrangeLLVMFunctionInfo(
665      resultType, /*instanceMethod=*/false, /*chainCall=*/false,
666      argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
667}
668
669/// Arrange a call to a C++ method, passing the given arguments.
670///
671/// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
672/// does not count `this`.
673const CGFunctionInfo &
674CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
675                                   const FunctionProtoType *proto,
676                                   RequiredArgs required,
677                                   unsigned numPrefixArgs) {
678  assert(numPrefixArgs + 1 <= args.size() &&
679         "Emitting a call with less args than the required prefix?");
680  // Add one to account for `this`. It's a bit awkward here, but we don't count
681  // `this` in similar places elsewhere.
682  auto paramInfos =
683    getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
684
685  // FIXME: Kill copy.
686  auto argTypes = getArgTypesForCall(Context, args);
687
688  FunctionType::ExtInfo info = proto->getExtInfo();
689  return arrangeLLVMFunctionInfo(
690      GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
691      /*chainCall=*/false, argTypes, info, paramInfos, required);
692}
693
694const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
695  return arrangeLLVMFunctionInfo(
696      getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
697      None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
698}
699
700const CGFunctionInfo &
701CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
702                          const CallArgList &args) {
703  assert(signature.arg_size() <= args.size());
704  if (signature.arg_size() == args.size())
705    return signature;
706
707  SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
708  auto sigParamInfos = signature.getExtParameterInfos();
709  if (!sigParamInfos.empty()) {
710    paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
711    paramInfos.resize(args.size());
712  }
713
714  auto argTypes = getArgTypesForCall(Context, args);
715
716  assert(signature.getRequiredArgs().allowsOptionalArgs());
717  return arrangeLLVMFunctionInfo(signature.getReturnType(),
718                                 signature.isInstanceMethod(),
719                                 signature.isChainCall(),
720                                 argTypes,
721                                 signature.getExtInfo(),
722                                 paramInfos,
723                                 signature.getRequiredArgs());
724}
725
726namespace clang {
727namespace CodeGen {
728void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
729}
730}
731
732/// Arrange the argument and result information for an abstract value
733/// of a given function type.  This is the method which all of the
734/// above functions ultimately defer to.
735const CGFunctionInfo &
736CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
737                                      bool instanceMethod,
738                                      bool chainCall,
739                                      ArrayRef<CanQualType> argTypes,
740                                      FunctionType::ExtInfo info,
741                     ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
742                                      RequiredArgs required) {
743  assert(llvm::all_of(argTypes,
744                      [](CanQualType T) { return T.isCanonicalAsParam(); }));
745
746  // Lookup or create unique function info.
747  llvm::FoldingSetNodeID ID;
748  CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
749                          required, resultType, argTypes);
750
751  void *insertPos = nullptr;
752  CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
753  if (FI)
754    return *FI;
755
756  unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
757
758  // Construct the function info.  We co-allocate the ArgInfos.
759  FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
760                              paramInfos, resultType, argTypes, required);
761  FunctionInfos.InsertNode(FI, insertPos);
762
763  bool inserted = FunctionsBeingProcessed.insert(FI).second;
764  (void)inserted;
765  assert(inserted && "Recursively being processed?");
766
767  // Compute ABI information.
768  if (CC == llvm::CallingConv::SPIR_KERNEL) {
769    // Force target independent argument handling for the host visible
770    // kernel functions.
771    computeSPIRKernelABIInfo(CGM, *FI);
772  } else if (info.getCC() == CC_Swift) {
773    swiftcall::computeABIInfo(CGM, *FI);
774  } else {
775    getABIInfo().computeInfo(*FI);
776  }
777
778  // Loop over all of the computed argument and return value info.  If any of
779  // them are direct or extend without a specified coerce type, specify the
780  // default now.
781  ABIArgInfo &retInfo = FI->getReturnInfo();
782  if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
783    retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
784
785  for (auto &I : FI->arguments())
786    if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
787      I.info.setCoerceToType(ConvertType(I.type));
788
789  bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
790  assert(erased && "Not in set?");
791
792  return *FI;
793}
794
795CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
796                                       bool instanceMethod,
797                                       bool chainCall,
798                                       const FunctionType::ExtInfo &info,
799                                       ArrayRef<ExtParameterInfo> paramInfos,
800                                       CanQualType resultType,
801                                       ArrayRef<CanQualType> argTypes,
802                                       RequiredArgs required) {
803  assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
804  assert(!required.allowsOptionalArgs() ||
805         required.getNumRequiredArgs() <= argTypes.size());
806
807  void *buffer =
808    operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
809                                  argTypes.size() + 1, paramInfos.size()));
810
811  CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
812  FI->CallingConvention = llvmCC;
813  FI->EffectiveCallingConvention = llvmCC;
814  FI->ASTCallingConvention = info.getCC();
815  FI->InstanceMethod = instanceMethod;
816  FI->ChainCall = chainCall;
817  FI->NoReturn = info.getNoReturn();
818  FI->ReturnsRetained = info.getProducesResult();
819  FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
820  FI->NoCfCheck = info.getNoCfCheck();
821  FI->Required = required;
822  FI->HasRegParm = info.getHasRegParm();
823  FI->RegParm = info.getRegParm();
824  FI->ArgStruct = nullptr;
825  FI->ArgStructAlign = 0;
826  FI->NumArgs = argTypes.size();
827  FI->HasExtParameterInfos = !paramInfos.empty();
828  FI->getArgsBuffer()[0].type = resultType;
829  for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
830    FI->getArgsBuffer()[i + 1].type = argTypes[i];
831  for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
832    FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
833  return FI;
834}
835
836/***/
837
838namespace {
839// ABIArgInfo::Expand implementation.
840
841// Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
842struct TypeExpansion {
843  enum TypeExpansionKind {
844    // Elements of constant arrays are expanded recursively.
845    TEK_ConstantArray,
846    // Record fields are expanded recursively (but if record is a union, only
847    // the field with the largest size is expanded).
848    TEK_Record,
849    // For complex types, real and imaginary parts are expanded recursively.
850    TEK_Complex,
851    // All other types are not expandable.
852    TEK_None
853  };
854
855  const TypeExpansionKind Kind;
856
857  TypeExpansion(TypeExpansionKind K) : Kind(K) {}
858  virtual ~TypeExpansion() {}
859};
860
861struct ConstantArrayExpansion : TypeExpansion {
862  QualType EltTy;
863  uint64_t NumElts;
864
865  ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
866      : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
867  static bool classof(const TypeExpansion *TE) {
868    return TE->Kind == TEK_ConstantArray;
869  }
870};
871
872struct RecordExpansion : TypeExpansion {
873  SmallVector<const CXXBaseSpecifier *, 1> Bases;
874
875  SmallVector<const FieldDecl *, 1> Fields;
876
877  RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
878                  SmallVector<const FieldDecl *, 1> &&Fields)
879      : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
880        Fields(std::move(Fields)) {}
881  static bool classof(const TypeExpansion *TE) {
882    return TE->Kind == TEK_Record;
883  }
884};
885
886struct ComplexExpansion : TypeExpansion {
887  QualType EltTy;
888
889  ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
890  static bool classof(const TypeExpansion *TE) {
891    return TE->Kind == TEK_Complex;
892  }
893};
894
895struct NoExpansion : TypeExpansion {
896  NoExpansion() : TypeExpansion(TEK_None) {}
897  static bool classof(const TypeExpansion *TE) {
898    return TE->Kind == TEK_None;
899  }
900};
901}  // namespace
902
903static std::unique_ptr<TypeExpansion>
904getTypeExpansion(QualType Ty, const ASTContext &Context) {
905  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
906    return llvm::make_unique<ConstantArrayExpansion>(
907        AT->getElementType(), AT->getSize().getZExtValue());
908  }
909  if (const RecordType *RT = Ty->getAs<RecordType>()) {
910    SmallVector<const CXXBaseSpecifier *, 1> Bases;
911    SmallVector<const FieldDecl *, 1> Fields;
912    const RecordDecl *RD = RT->getDecl();
913    assert(!RD->hasFlexibleArrayMember() &&
914           "Cannot expand structure with flexible array.");
915    if (RD->isUnion()) {
916      // Unions can be here only in degenerative cases - all the fields are same
917      // after flattening. Thus we have to use the "largest" field.
918      const FieldDecl *LargestFD = nullptr;
919      CharUnits UnionSize = CharUnits::Zero();
920
921      for (const auto *FD : RD->fields()) {
922        if (FD->isZeroLengthBitField(Context))
923          continue;
924        assert(!FD->isBitField() &&
925               "Cannot expand structure with bit-field members.");
926        CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
927        if (UnionSize < FieldSize) {
928          UnionSize = FieldSize;
929          LargestFD = FD;
930        }
931      }
932      if (LargestFD)
933        Fields.push_back(LargestFD);
934    } else {
935      if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
936        assert(!CXXRD->isDynamicClass() &&
937               "cannot expand vtable pointers in dynamic classes");
938        for (const CXXBaseSpecifier &BS : CXXRD->bases())
939          Bases.push_back(&BS);
940      }
941
942      for (const auto *FD : RD->fields()) {
943        if (FD->isZeroLengthBitField(Context))
944          continue;
945        assert(!FD->isBitField() &&
946               "Cannot expand structure with bit-field members.");
947        Fields.push_back(FD);
948      }
949    }
950    return llvm::make_unique<RecordExpansion>(std::move(Bases),
951                                              std::move(Fields));
952  }
953  if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
954    return llvm::make_unique<ComplexExpansion>(CT->getElementType());
955  }
956  return llvm::make_unique<NoExpansion>();
957}
958
959static int getExpansionSize(QualType Ty, const ASTContext &Context) {
960  auto Exp = getTypeExpansion(Ty, Context);
961  if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
962    return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
963  }
964  if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
965    int Res = 0;
966    for (auto BS : RExp->Bases)
967      Res += getExpansionSize(BS->getType(), Context);
968    for (auto FD : RExp->Fields)
969      Res += getExpansionSize(FD->getType(), Context);
970    return Res;
971  }
972  if (isa<ComplexExpansion>(Exp.get()))
973    return 2;
974  assert(isa<NoExpansion>(Exp.get()));
975  return 1;
976}
977
978void
979CodeGenTypes::getExpandedTypes(QualType Ty,
980                               SmallVectorImpl<llvm::Type *>::iterator &TI) {
981  auto Exp = getTypeExpansion(Ty, Context);
982  if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
983    for (int i = 0, n = CAExp->NumElts; i < n; i++) {
984      getExpandedTypes(CAExp->EltTy, TI);
985    }
986  } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
987    for (auto BS : RExp->Bases)
988      getExpandedTypes(BS->getType(), TI);
989    for (auto FD : RExp->Fields)
990      getExpandedTypes(FD->getType(), TI);
991  } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
992    llvm::Type *EltTy = ConvertType(CExp->EltTy);
993    *TI++ = EltTy;
994    *TI++ = EltTy;
995  } else {
996    assert(isa<NoExpansion>(Exp.get()));
997    *TI++ = ConvertType(Ty);
998  }
999}
1000
1001static void forConstantArrayExpansion(CodeGenFunction &CGF,
1002                                      ConstantArrayExpansion *CAE,
1003                                      Address BaseAddr,
1004                                      llvm::function_ref<void(Address)> Fn) {
1005  CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1006  CharUnits EltAlign =
1007    BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1008
1009  for (int i = 0, n = CAE->NumElts; i < n; i++) {
1010    llvm::Value *EltAddr =
1011      CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
1012    Fn(Address(EltAddr, EltAlign));
1013  }
1014}
1015
1016void CodeGenFunction::ExpandTypeFromArgs(
1017    QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) {
1018  assert(LV.isSimple() &&
1019         "Unexpected non-simple lvalue during struct expansion.");
1020
1021  auto Exp = getTypeExpansion(Ty, getContext());
1022  if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1023    forConstantArrayExpansion(*this, CAExp, LV.getAddress(),
1024                              [&](Address EltAddr) {
1025      LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1026      ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1027    });
1028  } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1029    Address This = LV.getAddress();
1030    for (const CXXBaseSpecifier *BS : RExp->Bases) {
1031      // Perform a single step derived-to-base conversion.
1032      Address Base =
1033          GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1034                                /*NullCheckValue=*/false, SourceLocation());
1035      LValue SubLV = MakeAddrLValue(Base, BS->getType());
1036
1037      // Recurse onto bases.
1038      ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1039    }
1040    for (auto FD : RExp->Fields) {
1041      // FIXME: What are the right qualifiers here?
1042      LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1043      ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1044    }
1045  } else if (isa<ComplexExpansion>(Exp.get())) {
1046    auto realValue = *AI++;
1047    auto imagValue = *AI++;
1048    EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1049  } else {
1050    assert(isa<NoExpansion>(Exp.get()));
1051    EmitStoreThroughLValue(RValue::get(*AI++), LV);
1052  }
1053}
1054
1055void CodeGenFunction::ExpandTypeToArgs(
1056    QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1057    SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1058  auto Exp = getTypeExpansion(Ty, getContext());
1059  if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1060    Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
1061                                   : Arg.getKnownRValue().getAggregateAddress();
1062    forConstantArrayExpansion(
1063        *this, CAExp, Addr, [&](Address EltAddr) {
1064          CallArg EltArg = CallArg(
1065              convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1066              CAExp->EltTy);
1067          ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1068                           IRCallArgPos);
1069        });
1070  } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1071    Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
1072                                   : Arg.getKnownRValue().getAggregateAddress();
1073    for (const CXXBaseSpecifier *BS : RExp->Bases) {
1074      // Perform a single step derived-to-base conversion.
1075      Address Base =
1076          GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1077                                /*NullCheckValue=*/false, SourceLocation());
1078      CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1079
1080      // Recurse onto bases.
1081      ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1082                       IRCallArgPos);
1083    }
1084
1085    LValue LV = MakeAddrLValue(This, Ty);
1086    for (auto FD : RExp->Fields) {
1087      CallArg FldArg =
1088          CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1089      ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1090                       IRCallArgPos);
1091    }
1092  } else if (isa<ComplexExpansion>(Exp.get())) {
1093    ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1094    IRCallArgs[IRCallArgPos++] = CV.first;
1095    IRCallArgs[IRCallArgPos++] = CV.second;
1096  } else {
1097    assert(isa<NoExpansion>(Exp.get()));
1098    auto RV = Arg.getKnownRValue();
1099    assert(RV.isScalar() &&
1100           "Unexpected non-scalar rvalue during struct expansion.");
1101
1102    // Insert a bitcast as needed.
1103    llvm::Value *V = RV.getScalarVal();
1104    if (IRCallArgPos < IRFuncTy->getNumParams() &&
1105        V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1106      V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1107
1108    IRCallArgs[IRCallArgPos++] = V;
1109  }
1110}
1111
1112/// Create a temporary allocation for the purposes of coercion.
1113static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1114                                           CharUnits MinAlign) {
1115  // Don't use an alignment that's worse than what LLVM would prefer.
1116  auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1117  CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1118
1119  return CGF.CreateTempAlloca(Ty, Align);
1120}
1121
1122/// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1123/// accessing some number of bytes out of it, try to gep into the struct to get
1124/// at its inner goodness.  Dive as deep as possible without entering an element
1125/// with an in-memory size smaller than DstSize.
1126static Address
1127EnterStructPointerForCoercedAccess(Address SrcPtr,
1128                                   llvm::StructType *SrcSTy,
1129                                   uint64_t DstSize, CodeGenFunction &CGF) {
1130  // We can't dive into a zero-element struct.
1131  if (SrcSTy->getNumElements() == 0) return SrcPtr;
1132
1133  llvm::Type *FirstElt = SrcSTy->getElementType(0);
1134
1135  // If the first elt is at least as large as what we're looking for, or if the
1136  // first element is the same size as the whole struct, we can enter it. The
1137  // comparison must be made on the store size and not the alloca size. Using
1138  // the alloca size may overstate the size of the load.
1139  uint64_t FirstEltSize =
1140    CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1141  if (FirstEltSize < DstSize &&
1142      FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1143    return SrcPtr;
1144
1145  // GEP into the first element.
1146  SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1147
1148  // If the first element is a struct, recurse.
1149  llvm::Type *SrcTy = SrcPtr.getElementType();
1150  if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1151    return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1152
1153  return SrcPtr;
1154}
1155
1156/// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1157/// are either integers or pointers.  This does a truncation of the value if it
1158/// is too large or a zero extension if it is too small.
1159///
1160/// This behaves as if the value were coerced through memory, so on big-endian
1161/// targets the high bits are preserved in a truncation, while little-endian
1162/// targets preserve the low bits.
1163static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1164                                             llvm::Type *Ty,
1165                                             CodeGenFunction &CGF) {
1166  if (Val->getType() == Ty)
1167    return Val;
1168
1169  if (isa<llvm::PointerType>(Val->getType())) {
1170    // If this is Pointer->Pointer avoid conversion to and from int.
1171    if (isa<llvm::PointerType>(Ty))
1172      return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1173
1174    // Convert the pointer to an integer so we can play with its width.
1175    Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1176  }
1177
1178  llvm::Type *DestIntTy = Ty;
1179  if (isa<llvm::PointerType>(DestIntTy))
1180    DestIntTy = CGF.IntPtrTy;
1181
1182  if (Val->getType() != DestIntTy) {
1183    const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1184    if (DL.isBigEndian()) {
1185      // Preserve the high bits on big-endian targets.
1186      // That is what memory coercion does.
1187      uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1188      uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1189
1190      if (SrcSize > DstSize) {
1191        Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1192        Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1193      } else {
1194        Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1195        Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1196      }
1197    } else {
1198      // Little-endian targets preserve the low bits. No shifts required.
1199      Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1200    }
1201  }
1202
1203  if (isa<llvm::PointerType>(Ty))
1204    Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1205  return Val;
1206}
1207
1208
1209
1210/// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1211/// a pointer to an object of type \arg Ty, known to be aligned to
1212/// \arg SrcAlign bytes.
1213///
1214/// This safely handles the case when the src type is smaller than the
1215/// destination type; in this situation the values of bits which not
1216/// present in the src are undefined.
1217static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1218                                      CodeGenFunction &CGF) {
1219  llvm::Type *SrcTy = Src.getElementType();
1220
1221  // If SrcTy and Ty are the same, just do a load.
1222  if (SrcTy == Ty)
1223    return CGF.Builder.CreateLoad(Src);
1224
1225  uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1226
1227  if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1228    Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
1229    SrcTy = Src.getType()->getElementType();
1230  }
1231
1232  uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1233
1234  // If the source and destination are integer or pointer types, just do an
1235  // extension or truncation to the desired type.
1236  if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1237      (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1238    llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1239    return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1240  }
1241
1242  // If load is legal, just bitcast the src pointer.
1243  if (SrcSize >= DstSize) {
1244    // Generally SrcSize is never greater than DstSize, since this means we are
1245    // losing bits. However, this can happen in cases where the structure has
1246    // additional padding, for example due to a user specified alignment.
1247    //
1248    // FIXME: Assert that we aren't truncating non-padding bits when have access
1249    // to that information.
1250    Src = CGF.Builder.CreateBitCast(Src,
1251                                    Ty->getPointerTo(Src.getAddressSpace()));
1252    return CGF.Builder.CreateLoad(Src);
1253  }
1254
1255  // Otherwise do coercion through memory. This is stupid, but simple.
1256  Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1257  Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1258  Address SrcCasted = CGF.Builder.CreateElementBitCast(Src,CGF.Int8Ty);
1259  CGF.Builder.CreateMemCpy(Casted, SrcCasted,
1260      llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
1261      false);
1262  return CGF.Builder.CreateLoad(Tmp);
1263}
1264
1265// Function to store a first-class aggregate into memory.  We prefer to
1266// store the elements rather than the aggregate to be more friendly to
1267// fast-isel.
1268// FIXME: Do we need to recurse here?
1269static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1270                          Address Dest, bool DestIsVolatile) {
1271  // Prefer scalar stores to first-class aggregate stores.
1272  if (llvm::StructType *STy =
1273        dyn_cast<llvm::StructType>(Val->getType())) {
1274    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1275      Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i);
1276      llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1277      CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1278    }
1279  } else {
1280    CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1281  }
1282}
1283
1284/// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1285/// where the source and destination may have different types.  The
1286/// destination is known to be aligned to \arg DstAlign bytes.
1287///
1288/// This safely handles the case when the src type is larger than the
1289/// destination type; the upper bits of the src will be lost.
1290static void CreateCoercedStore(llvm::Value *Src,
1291                               Address Dst,
1292                               bool DstIsVolatile,
1293                               CodeGenFunction &CGF) {
1294  llvm::Type *SrcTy = Src->getType();
1295  llvm::Type *DstTy = Dst.getType()->getElementType();
1296  if (SrcTy == DstTy) {
1297    CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1298    return;
1299  }
1300
1301  uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1302
1303  if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1304    Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1305    DstTy = Dst.getType()->getElementType();
1306  }
1307
1308  // If the source and destination are integer or pointer types, just do an
1309  // extension or truncation to the desired type.
1310  if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1311      (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1312    Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1313    CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1314    return;
1315  }
1316
1317  uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1318
1319  // If store is legal, just bitcast the src pointer.
1320  if (SrcSize <= DstSize) {
1321    Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1322    BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1323  } else {
1324    // Otherwise do coercion through memory. This is stupid, but
1325    // simple.
1326
1327    // Generally SrcSize is never greater than DstSize, since this means we are
1328    // losing bits. However, this can happen in cases where the structure has
1329    // additional padding, for example due to a user specified alignment.
1330    //
1331    // FIXME: Assert that we aren't truncating non-padding bits when have access
1332    // to that information.
1333    Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1334    CGF.Builder.CreateStore(Src, Tmp);
1335    Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1336    Address DstCasted = CGF.Builder.CreateElementBitCast(Dst,CGF.Int8Ty);
1337    CGF.Builder.CreateMemCpy(DstCasted, Casted,
1338        llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1339        false);
1340  }
1341}
1342
1343static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1344                                   const ABIArgInfo &info) {
1345  if (unsigned offset = info.getDirectOffset()) {
1346    addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1347    addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1348                                             CharUnits::fromQuantity(offset));
1349    addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1350  }
1351  return addr;
1352}
1353
1354namespace {
1355
1356/// Encapsulates information about the way function arguments from
1357/// CGFunctionInfo should be passed to actual LLVM IR function.
1358class ClangToLLVMArgMapping {
1359  static const unsigned InvalidIndex = ~0U;
1360  unsigned InallocaArgNo;
1361  unsigned SRetArgNo;
1362  unsigned TotalIRArgs;
1363
1364  /// Arguments of LLVM IR function corresponding to single Clang argument.
1365  struct IRArgs {
1366    unsigned PaddingArgIndex;
1367    // Argument is expanded to IR arguments at positions
1368    // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1369    unsigned FirstArgIndex;
1370    unsigned NumberOfArgs;
1371
1372    IRArgs()
1373        : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1374          NumberOfArgs(0) {}
1375  };
1376
1377  SmallVector<IRArgs, 8> ArgInfo;
1378
1379public:
1380  ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1381                        bool OnlyRequiredArgs = false)
1382      : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1383        ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1384    construct(Context, FI, OnlyRequiredArgs);
1385  }
1386
1387  bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1388  unsigned getInallocaArgNo() const {
1389    assert(hasInallocaArg());
1390    return InallocaArgNo;
1391  }
1392
1393  bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1394  unsigned getSRetArgNo() const {
1395    assert(hasSRetArg());
1396    return SRetArgNo;
1397  }
1398
1399  unsigned totalIRArgs() const { return TotalIRArgs; }
1400
1401  bool hasPaddingArg(unsigned ArgNo) const {
1402    assert(ArgNo < ArgInfo.size());
1403    return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1404  }
1405  unsigned getPaddingArgNo(unsigned ArgNo) const {
1406    assert(hasPaddingArg(ArgNo));
1407    return ArgInfo[ArgNo].PaddingArgIndex;
1408  }
1409
1410  /// Returns index of first IR argument corresponding to ArgNo, and their
1411  /// quantity.
1412  std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1413    assert(ArgNo < ArgInfo.size());
1414    return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1415                          ArgInfo[ArgNo].NumberOfArgs);
1416  }
1417
1418private:
1419  void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1420                 bool OnlyRequiredArgs);
1421};
1422
1423void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1424                                      const CGFunctionInfo &FI,
1425                                      bool OnlyRequiredArgs) {
1426  unsigned IRArgNo = 0;
1427  bool SwapThisWithSRet = false;
1428  const ABIArgInfo &RetAI = FI.getReturnInfo();
1429
1430  if (RetAI.getKind() == ABIArgInfo::Indirect) {
1431    SwapThisWithSRet = RetAI.isSRetAfterThis();
1432    SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1433  }
1434
1435  unsigned ArgNo = 0;
1436  unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1437  for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1438       ++I, ++ArgNo) {
1439    assert(I != FI.arg_end());
1440    QualType ArgType = I->type;
1441    const ABIArgInfo &AI = I->info;
1442    // Collect data about IR arguments corresponding to Clang argument ArgNo.
1443    auto &IRArgs = ArgInfo[ArgNo];
1444
1445    if (AI.getPaddingType())
1446      IRArgs.PaddingArgIndex = IRArgNo++;
1447
1448    switch (AI.getKind()) {
1449    case ABIArgInfo::Extend:
1450    case ABIArgInfo::Direct: {
1451      // FIXME: handle sseregparm someday...
1452      llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1453      if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1454        IRArgs.NumberOfArgs = STy->getNumElements();
1455      } else {
1456        IRArgs.NumberOfArgs = 1;
1457      }
1458      break;
1459    }
1460    case ABIArgInfo::Indirect:
1461      IRArgs.NumberOfArgs = 1;
1462      break;
1463    case ABIArgInfo::Ignore:
1464    case ABIArgInfo::InAlloca:
1465      // ignore and inalloca doesn't have matching LLVM parameters.
1466      IRArgs.NumberOfArgs = 0;
1467      break;
1468    case ABIArgInfo::CoerceAndExpand:
1469      IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1470      break;
1471    case ABIArgInfo::Expand:
1472      IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1473      break;
1474    }
1475
1476    if (IRArgs.NumberOfArgs > 0) {
1477      IRArgs.FirstArgIndex = IRArgNo;
1478      IRArgNo += IRArgs.NumberOfArgs;
1479    }
1480
1481    // Skip over the sret parameter when it comes second.  We already handled it
1482    // above.
1483    if (IRArgNo == 1 && SwapThisWithSRet)
1484      IRArgNo++;
1485  }
1486  assert(ArgNo == ArgInfo.size());
1487
1488  if (FI.usesInAlloca())
1489    InallocaArgNo = IRArgNo++;
1490
1491  TotalIRArgs = IRArgNo;
1492}
1493}  // namespace
1494
1495/***/
1496
1497bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1498  const auto &RI = FI.getReturnInfo();
1499  return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1500}
1501
1502bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1503  return ReturnTypeUsesSRet(FI) &&
1504         getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1505}
1506
1507bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1508  if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1509    switch (BT->getKind()) {
1510    default:
1511      return false;
1512    case BuiltinType::Float:
1513      return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1514    case BuiltinType::Double:
1515      return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1516    case BuiltinType::LongDouble:
1517      return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1518    }
1519  }
1520
1521  return false;
1522}
1523
1524bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1525  if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1526    if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1527      if (BT->getKind() == BuiltinType::LongDouble)
1528        return getTarget().useObjCFP2RetForComplexLongDouble();
1529    }
1530  }
1531
1532  return false;
1533}
1534
1535llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1536  const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1537  return GetFunctionType(FI);
1538}
1539
1540llvm::FunctionType *
1541CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1542
1543  bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1544  (void)Inserted;
1545  assert(Inserted && "Recursively being processed?");
1546
1547  llvm::Type *resultType = nullptr;
1548  const ABIArgInfo &retAI = FI.getReturnInfo();
1549  switch (retAI.getKind()) {
1550  case ABIArgInfo::Expand:
1551    llvm_unreachable("Invalid ABI kind for return argument");
1552
1553  case ABIArgInfo::Extend:
1554  case ABIArgInfo::Direct:
1555    resultType = retAI.getCoerceToType();
1556    break;
1557
1558  case ABIArgInfo::InAlloca:
1559    if (retAI.getInAllocaSRet()) {
1560      // sret things on win32 aren't void, they return the sret pointer.
1561      QualType ret = FI.getReturnType();
1562      llvm::Type *ty = ConvertType(ret);
1563      unsigned addressSpace = Context.getTargetAddressSpace(ret);
1564      resultType = llvm::PointerType::get(ty, addressSpace);
1565    } else {
1566      resultType = llvm::Type::getVoidTy(getLLVMContext());
1567    }
1568    break;
1569
1570  case ABIArgInfo::Indirect:
1571  case ABIArgInfo::Ignore:
1572    resultType = llvm::Type::getVoidTy(getLLVMContext());
1573    break;
1574
1575  case ABIArgInfo::CoerceAndExpand:
1576    resultType = retAI.getUnpaddedCoerceAndExpandType();
1577    break;
1578  }
1579
1580  ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1581  SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1582
1583  // Add type for sret argument.
1584  if (IRFunctionArgs.hasSRetArg()) {
1585    QualType Ret = FI.getReturnType();
1586    llvm::Type *Ty = ConvertType(Ret);
1587    unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1588    ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1589        llvm::PointerType::get(Ty, AddressSpace);
1590  }
1591
1592  // Add type for inalloca argument.
1593  if (IRFunctionArgs.hasInallocaArg()) {
1594    auto ArgStruct = FI.getArgStruct();
1595    assert(ArgStruct);
1596    ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1597  }
1598
1599  // Add in all of the required arguments.
1600  unsigned ArgNo = 0;
1601  CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1602                                     ie = it + FI.getNumRequiredArgs();
1603  for (; it != ie; ++it, ++ArgNo) {
1604    const ABIArgInfo &ArgInfo = it->info;
1605
1606    // Insert a padding type to ensure proper alignment.
1607    if (IRFunctionArgs.hasPaddingArg(ArgNo))
1608      ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1609          ArgInfo.getPaddingType();
1610
1611    unsigned FirstIRArg, NumIRArgs;
1612    std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1613
1614    switch (ArgInfo.getKind()) {
1615    case ABIArgInfo::Ignore:
1616    case ABIArgInfo::InAlloca:
1617      assert(NumIRArgs == 0);
1618      break;
1619
1620    case ABIArgInfo::Indirect: {
1621      assert(NumIRArgs == 1);
1622      // indirect arguments are always on the stack, which is alloca addr space.
1623      llvm::Type *LTy = ConvertTypeForMem(it->type);
1624      ArgTypes[FirstIRArg] = LTy->getPointerTo(
1625          CGM.getDataLayout().getAllocaAddrSpace());
1626      break;
1627    }
1628
1629    case ABIArgInfo::Extend:
1630    case ABIArgInfo::Direct: {
1631      // Fast-isel and the optimizer generally like scalar values better than
1632      // FCAs, so we flatten them if this is safe to do for this argument.
1633      llvm::Type *argType = ArgInfo.getCoerceToType();
1634      llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1635      if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1636        assert(NumIRArgs == st->getNumElements());
1637        for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1638          ArgTypes[FirstIRArg + i] = st->getElementType(i);
1639      } else {
1640        assert(NumIRArgs == 1);
1641        ArgTypes[FirstIRArg] = argType;
1642      }
1643      break;
1644    }
1645
1646    case ABIArgInfo::CoerceAndExpand: {
1647      auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1648      for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1649        *ArgTypesIter++ = EltTy;
1650      }
1651      assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1652      break;
1653    }
1654
1655    case ABIArgInfo::Expand:
1656      auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1657      getExpandedTypes(it->type, ArgTypesIter);
1658      assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1659      break;
1660    }
1661  }
1662
1663  bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1664  assert(Erased && "Not in set?");
1665
1666  return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1667}
1668
1669llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1670  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1671  const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1672
1673  if (!isFuncTypeConvertible(FPT))
1674    return llvm::StructType::get(getLLVMContext());
1675
1676  return GetFunctionType(GD);
1677}
1678
1679static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1680                                               llvm::AttrBuilder &FuncAttrs,
1681                                               const FunctionProtoType *FPT) {
1682  if (!FPT)
1683    return;
1684
1685  if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1686      FPT->isNothrow())
1687    FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1688}
1689
1690void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone,
1691                                               bool AttrOnCallSite,
1692                                               llvm::AttrBuilder &FuncAttrs) {
1693  // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1694  if (!HasOptnone) {
1695    if (CodeGenOpts.OptimizeSize)
1696      FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1697    if (CodeGenOpts.OptimizeSize == 2)
1698      FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1699  }
1700
1701  if (CodeGenOpts.DisableRedZone)
1702    FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1703  if (CodeGenOpts.IndirectTlsSegRefs)
1704    FuncAttrs.addAttribute("indirect-tls-seg-refs");
1705  if (CodeGenOpts.NoImplicitFloat)
1706    FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1707
1708  if (AttrOnCallSite) {
1709    // Attributes that should go on the call site only.
1710    if (!CodeGenOpts.SimplifyLibCalls ||
1711        CodeGenOpts.isNoBuiltinFunc(Name.data()))
1712      FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1713    if (!CodeGenOpts.TrapFuncName.empty())
1714      FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1715  } else {
1716    // Attributes that should go on the function, but not the call site.
1717    if (!CodeGenOpts.DisableFPElim) {
1718      FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1719    } else if (CodeGenOpts.OmitLeafFramePointer) {
1720      FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1721      FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1722    } else {
1723      FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1724      FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1725    }
1726
1727    FuncAttrs.addAttribute("less-precise-fpmad",
1728                           llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1729
1730    if (CodeGenOpts.NullPointerIsValid)
1731      FuncAttrs.addAttribute("null-pointer-is-valid", "true");
1732    if (!CodeGenOpts.FPDenormalMode.empty())
1733      FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode);
1734
1735    FuncAttrs.addAttribute("no-trapping-math",
1736                           llvm::toStringRef(CodeGenOpts.NoTrappingMath));
1737
1738    // Strict (compliant) code is the default, so only add this attribute to
1739    // indicate that we are trying to workaround a problem case.
1740    if (!CodeGenOpts.StrictFloatCastOverflow)
1741      FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1742
1743    // TODO: Are these all needed?
1744    // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1745    FuncAttrs.addAttribute("no-infs-fp-math",
1746                           llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1747    FuncAttrs.addAttribute("no-nans-fp-math",
1748                           llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1749    FuncAttrs.addAttribute("unsafe-fp-math",
1750                           llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1751    FuncAttrs.addAttribute("use-soft-float",
1752                           llvm::toStringRef(CodeGenOpts.SoftFloat));
1753    FuncAttrs.addAttribute("stack-protector-buffer-size",
1754                           llvm::utostr(CodeGenOpts.SSPBufferSize));
1755    FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1756                           llvm::toStringRef(CodeGenOpts.NoSignedZeros));
1757    FuncAttrs.addAttribute(
1758        "correctly-rounded-divide-sqrt-fp-math",
1759        llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1760
1761    if (getLangOpts().OpenCL)
1762      FuncAttrs.addAttribute("denorms-are-zero",
1763                             llvm::toStringRef(CodeGenOpts.FlushDenorm));
1764
1765    // TODO: Reciprocal estimate codegen options should apply to instructions?
1766    const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1767    if (!Recips.empty())
1768      FuncAttrs.addAttribute("reciprocal-estimates",
1769                             llvm::join(Recips, ","));
1770
1771    if (!CodeGenOpts.PreferVectorWidth.empty() &&
1772        CodeGenOpts.PreferVectorWidth != "none")
1773      FuncAttrs.addAttribute("prefer-vector-width",
1774                             CodeGenOpts.PreferVectorWidth);
1775
1776    if (CodeGenOpts.StackRealignment)
1777      FuncAttrs.addAttribute("stackrealign");
1778    if (CodeGenOpts.Backchain)
1779      FuncAttrs.addAttribute("backchain");
1780
1781    if (CodeGenOpts.SpeculativeLoadHardening)
1782      FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1783  }
1784
1785  if (getLangOpts().assumeFunctionsAreConvergent()) {
1786    // Conservatively, mark all functions and calls in CUDA and OpenCL as
1787    // convergent (meaning, they may call an intrinsically convergent op, such
1788    // as __syncthreads() / barrier(), and so can't have certain optimizations
1789    // applied around them).  LLVM will remove this attribute where it safely
1790    // can.
1791    FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1792  }
1793
1794  if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1795    // Exceptions aren't supported in CUDA device code.
1796    FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1797
1798    // Respect -fcuda-flush-denormals-to-zero.
1799    if (CodeGenOpts.FlushDenorm)
1800      FuncAttrs.addAttribute("nvptx-f32ftz", "true");
1801  }
1802
1803  for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1804    StringRef Var, Value;
1805    std::tie(Var, Value) = Attr.split('=');
1806    FuncAttrs.addAttribute(Var, Value);
1807  }
1808}
1809
1810void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) {
1811  llvm::AttrBuilder FuncAttrs;
1812  ConstructDefaultFnAttrList(F.getName(), F.hasOptNone(),
1813                             /* AttrOnCallSite = */ false, FuncAttrs);
1814  F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1815}
1816
1817void CodeGenModule::ConstructAttributeList(
1818    StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1819    llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1820  llvm::AttrBuilder FuncAttrs;
1821  llvm::AttrBuilder RetAttrs;
1822
1823  CallingConv = FI.getEffectiveCallingConvention();
1824  if (FI.isNoReturn())
1825    FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1826
1827  // If we have information about the function prototype, we can learn
1828  // attributes from there.
1829  AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1830                                     CalleeInfo.getCalleeFunctionProtoType());
1831
1832  const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
1833
1834  bool HasOptnone = false;
1835  // FIXME: handle sseregparm someday...
1836  if (TargetDecl) {
1837    if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1838      FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1839    if (TargetDecl->hasAttr<NoThrowAttr>())
1840      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1841    if (TargetDecl->hasAttr<NoReturnAttr>())
1842      FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1843    if (TargetDecl->hasAttr<ColdAttr>())
1844      FuncAttrs.addAttribute(llvm::Attribute::Cold);
1845    if (TargetDecl->hasAttr<NoDuplicateAttr>())
1846      FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1847    if (TargetDecl->hasAttr<ConvergentAttr>())
1848      FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1849
1850    if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1851      AddAttributesFromFunctionProtoType(
1852          getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1853      // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1854      // These attributes are not inherited by overloads.
1855      const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1856      if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1857        FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1858    }
1859
1860    // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1861    if (TargetDecl->hasAttr<ConstAttr>()) {
1862      FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1863      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1864    } else if (TargetDecl->hasAttr<PureAttr>()) {
1865      FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1866      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1867    } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1868      FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1869      FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1870    }
1871    if (TargetDecl->hasAttr<RestrictAttr>())
1872      RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1873    if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
1874        !CodeGenOpts.NullPointerIsValid)
1875      RetAttrs.addAttribute(llvm::Attribute::NonNull);
1876    if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
1877      FuncAttrs.addAttribute("no_caller_saved_registers");
1878    if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
1879      FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
1880
1881    HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1882    if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1883      Optional<unsigned> NumElemsParam;
1884      if (AllocSize->getNumElemsParam().isValid())
1885        NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
1886      FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
1887                                 NumElemsParam);
1888    }
1889  }
1890
1891  ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
1892
1893  // This must run after constructing the default function attribute list
1894  // to ensure that the speculative load hardening attribute is removed
1895  // in the case where the -mspeculative-load-hardening flag was passed.
1896  if (TargetDecl) {
1897    if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
1898      FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
1899    if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
1900      FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1901  }
1902
1903  if (CodeGenOpts.EnableSegmentedStacks &&
1904      !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1905    FuncAttrs.addAttribute("split-stack");
1906
1907  // Add NonLazyBind attribute to function declarations when -fno-plt
1908  // is used.
1909  if (TargetDecl && CodeGenOpts.NoPLT) {
1910    if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1911      if (!Fn->isDefined() && !AttrOnCallSite) {
1912        FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
1913      }
1914    }
1915  }
1916
1917  if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) {
1918    if (getLangOpts().OpenCLVersion <= 120) {
1919      // OpenCL v1.2 Work groups are always uniform
1920      FuncAttrs.addAttribute("uniform-work-group-size", "true");
1921    } else {
1922      // OpenCL v2.0 Work groups may be whether uniform or not.
1923      // '-cl-uniform-work-group-size' compile option gets a hint
1924      // to the compiler that the global work-size be a multiple of
1925      // the work-group size specified to clEnqueueNDRangeKernel
1926      // (i.e. work groups are uniform).
1927      FuncAttrs.addAttribute("uniform-work-group-size",
1928                             llvm::toStringRef(CodeGenOpts.UniformWGSize));
1929    }
1930  }
1931
1932  if (!AttrOnCallSite) {
1933    bool DisableTailCalls = false;
1934
1935    if (CodeGenOpts.DisableTailCalls)
1936      DisableTailCalls = true;
1937    else if (TargetDecl) {
1938      if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
1939          TargetDecl->hasAttr<AnyX86InterruptAttr>())
1940        DisableTailCalls = true;
1941      else if (CodeGenOpts.NoEscapingBlockTailCalls) {
1942        if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
1943          if (!BD->doesNotEscape())
1944            DisableTailCalls = true;
1945      }
1946    }
1947
1948    FuncAttrs.addAttribute("disable-tail-calls",
1949                           llvm::toStringRef(DisableTailCalls));
1950    GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
1951  }
1952
1953  ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1954
1955  QualType RetTy = FI.getReturnType();
1956  const ABIArgInfo &RetAI = FI.getReturnInfo();
1957  switch (RetAI.getKind()) {
1958  case ABIArgInfo::Extend:
1959    if (RetAI.isSignExt())
1960      RetAttrs.addAttribute(llvm::Attribute::SExt);
1961    else
1962      RetAttrs.addAttribute(llvm::Attribute::ZExt);
1963    LLVM_FALLTHROUGH;
1964  case ABIArgInfo::Direct:
1965    if (RetAI.getInReg())
1966      RetAttrs.addAttribute(llvm::Attribute::InReg);
1967    break;
1968  case ABIArgInfo::Ignore:
1969    break;
1970
1971  case ABIArgInfo::InAlloca:
1972  case ABIArgInfo::Indirect: {
1973    // inalloca and sret disable readnone and readonly
1974    FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1975      .removeAttribute(llvm::Attribute::ReadNone);
1976    break;
1977  }
1978
1979  case ABIArgInfo::CoerceAndExpand:
1980    break;
1981
1982  case ABIArgInfo::Expand:
1983    llvm_unreachable("Invalid ABI kind for return argument");
1984  }
1985
1986  if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1987    QualType PTy = RefTy->getPointeeType();
1988    if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1989      RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1990                                        .getQuantity());
1991    else if (getContext().getTargetAddressSpace(PTy) == 0 &&
1992             !CodeGenOpts.NullPointerIsValid)
1993      RetAttrs.addAttribute(llvm::Attribute::NonNull);
1994  }
1995
1996  bool hasUsedSRet = false;
1997  SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
1998
1999  // Attach attributes to sret.
2000  if (IRFunctionArgs.hasSRetArg()) {
2001    llvm::AttrBuilder SRETAttrs;
2002    SRETAttrs.addAttribute(llvm::Attribute::StructRet);
2003    hasUsedSRet = true;
2004    if (RetAI.getInReg())
2005      SRETAttrs.addAttribute(llvm::Attribute::InReg);
2006    ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2007        llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2008  }
2009
2010  // Attach attributes to inalloca argument.
2011  if (IRFunctionArgs.hasInallocaArg()) {
2012    llvm::AttrBuilder Attrs;
2013    Attrs.addAttribute(llvm::Attribute::InAlloca);
2014    ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2015        llvm::AttributeSet::get(getLLVMContext(), Attrs);
2016  }
2017
2018  unsigned ArgNo = 0;
2019  for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2020                                          E = FI.arg_end();
2021       I != E; ++I, ++ArgNo) {
2022    QualType ParamType = I->type;
2023    const ABIArgInfo &AI = I->info;
2024    llvm::AttrBuilder Attrs;
2025
2026    // Add attribute for padding argument, if necessary.
2027    if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2028      if (AI.getPaddingInReg()) {
2029        ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2030            llvm::AttributeSet::get(
2031                getLLVMContext(),
2032                llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2033      }
2034    }
2035
2036    // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2037    // have the corresponding parameter variable.  It doesn't make
2038    // sense to do it here because parameters are so messed up.
2039    switch (AI.getKind()) {
2040    case ABIArgInfo::Extend:
2041      if (AI.isSignExt())
2042        Attrs.addAttribute(llvm::Attribute::SExt);
2043      else
2044        Attrs.addAttribute(llvm::Attribute::ZExt);
2045      LLVM_FALLTHROUGH;
2046    case ABIArgInfo::Direct:
2047      if (ArgNo == 0 && FI.isChainCall())
2048        Attrs.addAttribute(llvm::Attribute::Nest);
2049      else if (AI.getInReg())
2050        Attrs.addAttribute(llvm::Attribute::InReg);
2051      break;
2052
2053    case ABIArgInfo::Indirect: {
2054      if (AI.getInReg())
2055        Attrs.addAttribute(llvm::Attribute::InReg);
2056
2057      if (AI.getIndirectByVal())
2058        Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2059
2060      CharUnits Align = AI.getIndirectAlign();
2061
2062      // In a byval argument, it is important that the required
2063      // alignment of the type is honored, as LLVM might be creating a
2064      // *new* stack object, and needs to know what alignment to give
2065      // it. (Sometimes it can deduce a sensible alignment on its own,
2066      // but not if clang decides it must emit a packed struct, or the
2067      // user specifies increased alignment requirements.)
2068      //
2069      // This is different from indirect *not* byval, where the object
2070      // exists already, and the align attribute is purely
2071      // informative.
2072      assert(!Align.isZero());
2073
2074      // For now, only add this when we have a byval argument.
2075      // TODO: be less lazy about updating test cases.
2076      if (AI.getIndirectByVal())
2077        Attrs.addAlignmentAttr(Align.getQuantity());
2078
2079      // byval disables readnone and readonly.
2080      FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2081        .removeAttribute(llvm::Attribute::ReadNone);
2082      break;
2083    }
2084    case ABIArgInfo::Ignore:
2085    case ABIArgInfo::Expand:
2086    case ABIArgInfo::CoerceAndExpand:
2087      break;
2088
2089    case ABIArgInfo::InAlloca:
2090      // inalloca disables readnone and readonly.
2091      FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2092          .removeAttribute(llvm::Attribute::ReadNone);
2093      continue;
2094    }
2095
2096    if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2097      QualType PTy = RefTy->getPointeeType();
2098      if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2099        Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
2100                                       .getQuantity());
2101      else if (getContext().getTargetAddressSpace(PTy) == 0 &&
2102               !CodeGenOpts.NullPointerIsValid)
2103        Attrs.addAttribute(llvm::Attribute::NonNull);
2104    }
2105
2106    switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2107    case ParameterABI::Ordinary:
2108      break;
2109
2110    case ParameterABI::SwiftIndirectResult: {
2111      // Add 'sret' if we haven't already used it for something, but
2112      // only if the result is void.
2113      if (!hasUsedSRet && RetTy->isVoidType()) {
2114        Attrs.addAttribute(llvm::Attribute::StructRet);
2115        hasUsedSRet = true;
2116      }
2117
2118      // Add 'noalias' in either case.
2119      Attrs.addAttribute(llvm::Attribute::NoAlias);
2120
2121      // Add 'dereferenceable' and 'alignment'.
2122      auto PTy = ParamType->getPointeeType();
2123      if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2124        auto info = getContext().getTypeInfoInChars(PTy);
2125        Attrs.addDereferenceableAttr(info.first.getQuantity());
2126        Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(),
2127                                                 info.second.getQuantity()));
2128      }
2129      break;
2130    }
2131
2132    case ParameterABI::SwiftErrorResult:
2133      Attrs.addAttribute(llvm::Attribute::SwiftError);
2134      break;
2135
2136    case ParameterABI::SwiftContext:
2137      Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2138      break;
2139    }
2140
2141    if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2142      Attrs.addAttribute(llvm::Attribute::NoCapture);
2143
2144    if (Attrs.hasAttributes()) {
2145      unsigned FirstIRArg, NumIRArgs;
2146      std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2147      for (unsigned i = 0; i < NumIRArgs; i++)
2148        ArgAttrs[FirstIRArg + i] =
2149            llvm::AttributeSet::get(getLLVMContext(), Attrs);
2150    }
2151  }
2152  assert(ArgNo == FI.arg_size());
2153
2154  AttrList = llvm::AttributeList::get(
2155      getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2156      llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2157}
2158
2159/// An argument came in as a promoted argument; demote it back to its
2160/// declared type.
2161static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2162                                         const VarDecl *var,
2163                                         llvm::Value *value) {
2164  llvm::Type *varType = CGF.ConvertType(var->getType());
2165
2166  // This can happen with promotions that actually don't change the
2167  // underlying type, like the enum promotions.
2168  if (value->getType() == varType) return value;
2169
2170  assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2171         && "unexpected promotion type");
2172
2173  if (isa<llvm::IntegerType>(varType))
2174    return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2175
2176  return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2177}
2178
2179/// Returns the attribute (either parameter attribute, or function
2180/// attribute), which declares argument ArgNo to be non-null.
2181static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2182                                         QualType ArgType, unsigned ArgNo) {
2183  // FIXME: __attribute__((nonnull)) can also be applied to:
2184  //   - references to pointers, where the pointee is known to be
2185  //     nonnull (apparently a Clang extension)
2186  //   - transparent unions containing pointers
2187  // In the former case, LLVM IR cannot represent the constraint. In
2188  // the latter case, we have no guarantee that the transparent union
2189  // is in fact passed as a pointer.
2190  if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2191    return nullptr;
2192  // First, check attribute on parameter itself.
2193  if (PVD) {
2194    if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2195      return ParmNNAttr;
2196  }
2197  // Check function attributes.
2198  if (!FD)
2199    return nullptr;
2200  for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2201    if (NNAttr->isNonNull(ArgNo))
2202      return NNAttr;
2203  }
2204  return nullptr;
2205}
2206
2207namespace {
2208  struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2209    Address Temp;
2210    Address Arg;
2211    CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2212    void Emit(CodeGenFunction &CGF, Flags flags) override {
2213      llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2214      CGF.Builder.CreateStore(errorValue, Arg);
2215    }
2216  };
2217}
2218
2219void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2220                                         llvm::Function *Fn,
2221                                         const FunctionArgList &Args) {
2222  if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2223    // Naked functions don't have prologues.
2224    return;
2225
2226  // If this is an implicit-return-zero function, go ahead and
2227  // initialize the return value.  TODO: it might be nice to have
2228  // a more general mechanism for this that didn't require synthesized
2229  // return statements.
2230  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2231    if (FD->hasImplicitReturnZero()) {
2232      QualType RetTy = FD->getReturnType().getUnqualifiedType();
2233      llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2234      llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2235      Builder.CreateStore(Zero, ReturnValue);
2236    }
2237  }
2238
2239  // FIXME: We no longer need the types from FunctionArgList; lift up and
2240  // simplify.
2241
2242  ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2243  // Flattened function arguments.
2244  SmallVector<llvm::Value *, 16> FnArgs;
2245  FnArgs.reserve(IRFunctionArgs.totalIRArgs());
2246  for (auto &Arg : Fn->args()) {
2247    FnArgs.push_back(&Arg);
2248  }
2249  assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
2250
2251  // If we're using inalloca, all the memory arguments are GEPs off of the last
2252  // parameter, which is a pointer to the complete memory area.
2253  Address ArgStruct = Address::invalid();
2254  if (IRFunctionArgs.hasInallocaArg()) {
2255    ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
2256                        FI.getArgStructAlignment());
2257
2258    assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2259  }
2260
2261  // Name the struct return parameter.
2262  if (IRFunctionArgs.hasSRetArg()) {
2263    auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]);
2264    AI->setName("agg.result");
2265    AI->addAttr(llvm::Attribute::NoAlias);
2266  }
2267
2268  // Track if we received the parameter as a pointer (indirect, byval, or
2269  // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2270  // into a local alloca for us.
2271  SmallVector<ParamValue, 16> ArgVals;
2272  ArgVals.reserve(Args.size());
2273
2274  // Create a pointer value for every parameter declaration.  This usually
2275  // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2276  // any cleanups or do anything that might unwind.  We do that separately, so
2277  // we can push the cleanups in the correct order for the ABI.
2278  assert(FI.arg_size() == Args.size() &&
2279         "Mismatch between function signature & arguments.");
2280  unsigned ArgNo = 0;
2281  CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2282  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2283       i != e; ++i, ++info_it, ++ArgNo) {
2284    const VarDecl *Arg = *i;
2285    const ABIArgInfo &ArgI = info_it->info;
2286
2287    bool isPromoted =
2288      isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2289    // We are converting from ABIArgInfo type to VarDecl type directly, unless
2290    // the parameter is promoted. In this case we convert to
2291    // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2292    QualType Ty = isPromoted ? info_it->type : Arg->getType();
2293    assert(hasScalarEvaluationKind(Ty) ==
2294           hasScalarEvaluationKind(Arg->getType()));
2295
2296    unsigned FirstIRArg, NumIRArgs;
2297    std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2298
2299    switch (ArgI.getKind()) {
2300    case ABIArgInfo::InAlloca: {
2301      assert(NumIRArgs == 0);
2302      auto FieldIndex = ArgI.getInAllocaFieldIndex();
2303      Address V =
2304          Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2305      ArgVals.push_back(ParamValue::forIndirect(V));
2306      break;
2307    }
2308
2309    case ABIArgInfo::Indirect: {
2310      assert(NumIRArgs == 1);
2311      Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
2312
2313      if (!hasScalarEvaluationKind(Ty)) {
2314        // Aggregates and complex variables are accessed by reference.  All we
2315        // need to do is realign the value, if requested.
2316        Address V = ParamAddr;
2317        if (ArgI.getIndirectRealign()) {
2318          Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2319
2320          // Copy from the incoming argument pointer to the temporary with the
2321          // appropriate alignment.
2322          //
2323          // FIXME: We should have a common utility for generating an aggregate
2324          // copy.
2325          CharUnits Size = getContext().getTypeSizeInChars(Ty);
2326          auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
2327          Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
2328          Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
2329          Builder.CreateMemCpy(Dst, Src, SizeVal, false);
2330          V = AlignedTemp;
2331        }
2332        ArgVals.push_back(ParamValue::forIndirect(V));
2333      } else {
2334        // Load scalar value from indirect argument.
2335        llvm::Value *V =
2336            EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2337
2338        if (isPromoted)
2339          V = emitArgumentDemotion(*this, Arg, V);
2340        ArgVals.push_back(ParamValue::forDirect(V));
2341      }
2342      break;
2343    }
2344
2345    case ABIArgInfo::Extend:
2346    case ABIArgInfo::Direct: {
2347
2348      // If we have the trivial case, handle it with no muss and fuss.
2349      if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2350          ArgI.getCoerceToType() == ConvertType(Ty) &&
2351          ArgI.getDirectOffset() == 0) {
2352        assert(NumIRArgs == 1);
2353        llvm::Value *V = FnArgs[FirstIRArg];
2354        auto AI = cast<llvm::Argument>(V);
2355
2356        if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2357          if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2358                             PVD->getFunctionScopeIndex()) &&
2359              !CGM.getCodeGenOpts().NullPointerIsValid)
2360            AI->addAttr(llvm::Attribute::NonNull);
2361
2362          QualType OTy = PVD->getOriginalType();
2363          if (const auto *ArrTy =
2364              getContext().getAsConstantArrayType(OTy)) {
2365            // A C99 array parameter declaration with the static keyword also
2366            // indicates dereferenceability, and if the size is constant we can
2367            // use the dereferenceable attribute (which requires the size in
2368            // bytes).
2369            if (ArrTy->getSizeModifier() == ArrayType::Static) {
2370              QualType ETy = ArrTy->getElementType();
2371              uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2372              if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2373                  ArrSize) {
2374                llvm::AttrBuilder Attrs;
2375                Attrs.addDereferenceableAttr(
2376                  getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
2377                AI->addAttrs(Attrs);
2378              } else if (getContext().getTargetAddressSpace(ETy) == 0 &&
2379                         !CGM.getCodeGenOpts().NullPointerIsValid) {
2380                AI->addAttr(llvm::Attribute::NonNull);
2381              }
2382            }
2383          } else if (const auto *ArrTy =
2384                     getContext().getAsVariableArrayType(OTy)) {
2385            // For C99 VLAs with the static keyword, we don't know the size so
2386            // we can't use the dereferenceable attribute, but in addrspace(0)
2387            // we know that it must be nonnull.
2388            if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
2389                !getContext().getTargetAddressSpace(ArrTy->getElementType()) &&
2390                !CGM.getCodeGenOpts().NullPointerIsValid)
2391              AI->addAttr(llvm::Attribute::NonNull);
2392          }
2393
2394          const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2395          if (!AVAttr)
2396            if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2397              AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2398          if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2399            // If alignment-assumption sanitizer is enabled, we do *not* add
2400            // alignment attribute here, but emit normal alignment assumption,
2401            // so the UBSAN check could function.
2402            llvm::Value *AlignmentValue =
2403              EmitScalarExpr(AVAttr->getAlignment());
2404            llvm::ConstantInt *AlignmentCI =
2405              cast<llvm::ConstantInt>(AlignmentValue);
2406            unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(),
2407                                          +llvm::Value::MaximumAlignment);
2408            AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2409          }
2410        }
2411
2412        if (Arg->getType().isRestrictQualified())
2413          AI->addAttr(llvm::Attribute::NoAlias);
2414
2415        // LLVM expects swifterror parameters to be used in very restricted
2416        // ways.  Copy the value into a less-restricted temporary.
2417        if (FI.getExtParameterInfo(ArgNo).getABI()
2418              == ParameterABI::SwiftErrorResult) {
2419          QualType pointeeTy = Ty->getPointeeType();
2420          assert(pointeeTy->isPointerType());
2421          Address temp =
2422            CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2423          Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2424          llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2425          Builder.CreateStore(incomingErrorValue, temp);
2426          V = temp.getPointer();
2427
2428          // Push a cleanup to copy the value back at the end of the function.
2429          // The convention does not guarantee that the value will be written
2430          // back if the function exits with an unwind exception.
2431          EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2432        }
2433
2434        // Ensure the argument is the correct type.
2435        if (V->getType() != ArgI.getCoerceToType())
2436          V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2437
2438        if (isPromoted)
2439          V = emitArgumentDemotion(*this, Arg, V);
2440
2441        // Because of merging of function types from multiple decls it is
2442        // possible for the type of an argument to not match the corresponding
2443        // type in the function type. Since we are codegening the callee
2444        // in here, add a cast to the argument type.
2445        llvm::Type *LTy = ConvertType(Arg->getType());
2446        if (V->getType() != LTy)
2447          V = Builder.CreateBitCast(V, LTy);
2448
2449        ArgVals.push_back(ParamValue::forDirect(V));
2450        break;
2451      }
2452
2453      Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2454                                     Arg->getName());
2455
2456      // Pointer to store into.
2457      Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2458
2459      // Fast-isel and the optimizer generally like scalar values better than
2460      // FCAs, so we flatten them if this is safe to do for this argument.
2461      llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2462      if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2463          STy->getNumElements() > 1) {
2464        uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2465        llvm::Type *DstTy = Ptr.getElementType();
2466        uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2467
2468        Address AddrToStoreInto = Address::invalid();
2469        if (SrcSize <= DstSize) {
2470          AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2471        } else {
2472          AddrToStoreInto =
2473            CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2474        }
2475
2476        assert(STy->getNumElements() == NumIRArgs);
2477        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2478          auto AI = FnArgs[FirstIRArg + i];
2479          AI->setName(Arg->getName() + ".coerce" + Twine(i));
2480          Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
2481          Builder.CreateStore(AI, EltPtr);
2482        }
2483
2484        if (SrcSize > DstSize) {
2485          Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2486        }
2487
2488      } else {
2489        // Simple case, just do a coerced store of the argument into the alloca.
2490        assert(NumIRArgs == 1);
2491        auto AI = FnArgs[FirstIRArg];
2492        AI->setName(Arg->getName() + ".coerce");
2493        CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
2494      }
2495
2496      // Match to what EmitParmDecl is expecting for this type.
2497      if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2498        llvm::Value *V =
2499            EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2500        if (isPromoted)
2501          V = emitArgumentDemotion(*this, Arg, V);
2502        ArgVals.push_back(ParamValue::forDirect(V));
2503      } else {
2504        ArgVals.push_back(ParamValue::forIndirect(Alloca));
2505      }
2506      break;
2507    }
2508
2509    case ABIArgInfo::CoerceAndExpand: {
2510      // Reconstruct into a temporary.
2511      Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2512      ArgVals.push_back(ParamValue::forIndirect(alloca));
2513
2514      auto coercionType = ArgI.getCoerceAndExpandType();
2515      alloca = Builder.CreateElementBitCast(alloca, coercionType);
2516
2517      unsigned argIndex = FirstIRArg;
2518      for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2519        llvm::Type *eltType = coercionType->getElementType(i);
2520        if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2521          continue;
2522
2523        auto eltAddr = Builder.CreateStructGEP(alloca, i);
2524        auto elt = FnArgs[argIndex++];
2525        Builder.CreateStore(elt, eltAddr);
2526      }
2527      assert(argIndex == FirstIRArg + NumIRArgs);
2528      break;
2529    }
2530
2531    case ABIArgInfo::Expand: {
2532      // If this structure was expanded into multiple arguments then
2533      // we need to create a temporary and reconstruct it from the
2534      // arguments.
2535      Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2536      LValue LV = MakeAddrLValue(Alloca, Ty);
2537      ArgVals.push_back(ParamValue::forIndirect(Alloca));
2538
2539      auto FnArgIter = FnArgs.begin() + FirstIRArg;
2540      ExpandTypeFromArgs(Ty, LV, FnArgIter);
2541      assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2542      for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2543        auto AI = FnArgs[FirstIRArg + i];
2544        AI->setName(Arg->getName() + "." + Twine(i));
2545      }
2546      break;
2547    }
2548
2549    case ABIArgInfo::Ignore:
2550      assert(NumIRArgs == 0);
2551      // Initialize the local variable appropriately.
2552      if (!hasScalarEvaluationKind(Ty)) {
2553        ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2554      } else {
2555        llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2556        ArgVals.push_back(ParamValue::forDirect(U));
2557      }
2558      break;
2559    }
2560  }
2561
2562  if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2563    for (int I = Args.size() - 1; I >= 0; --I)
2564      EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2565  } else {
2566    for (unsigned I = 0, E = Args.size(); I != E; ++I)
2567      EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2568  }
2569}
2570
2571static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2572  while (insn->use_empty()) {
2573    llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2574    if (!bitcast) return;
2575
2576    // This is "safe" because we would have used a ConstantExpr otherwise.
2577    insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2578    bitcast->eraseFromParent();
2579  }
2580}
2581
2582/// Try to emit a fused autorelease of a return result.
2583static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2584                                                    llvm::Value *result) {
2585  // We must be immediately followed the cast.
2586  llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2587  if (BB->empty()) return nullptr;
2588  if (&BB->back() != result) return nullptr;
2589
2590  llvm::Type *resultType = result->getType();
2591
2592  // result is in a BasicBlock and is therefore an Instruction.
2593  llvm::Instruction *generator = cast<llvm::Instruction>(result);
2594
2595  SmallVector<llvm::Instruction *, 4> InstsToKill;
2596
2597  // Look for:
2598  //  %generator = bitcast %type1* %generator2 to %type2*
2599  while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2600    // We would have emitted this as a constant if the operand weren't
2601    // an Instruction.
2602    generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2603
2604    // Require the generator to be immediately followed by the cast.
2605    if (generator->getNextNode() != bitcast)
2606      return nullptr;
2607
2608    InstsToKill.push_back(bitcast);
2609  }
2610
2611  // Look for:
2612  //   %generator = call i8* @objc_retain(i8* %originalResult)
2613  // or
2614  //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2615  llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2616  if (!call) return nullptr;
2617
2618  bool doRetainAutorelease;
2619
2620  if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2621    doRetainAutorelease = true;
2622  } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
2623                                          .objc_retainAutoreleasedReturnValue) {
2624    doRetainAutorelease = false;
2625
2626    // If we emitted an assembly marker for this call (and the
2627    // ARCEntrypoints field should have been set if so), go looking
2628    // for that call.  If we can't find it, we can't do this
2629    // optimization.  But it should always be the immediately previous
2630    // instruction, unless we needed bitcasts around the call.
2631    if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2632      llvm::Instruction *prev = call->getPrevNode();
2633      assert(prev);
2634      if (isa<llvm::BitCastInst>(prev)) {
2635        prev = prev->getPrevNode();
2636        assert(prev);
2637      }
2638      assert(isa<llvm::CallInst>(prev));
2639      assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2640               CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2641      InstsToKill.push_back(prev);
2642    }
2643  } else {
2644    return nullptr;
2645  }
2646
2647  result = call->getArgOperand(0);
2648  InstsToKill.push_back(call);
2649
2650  // Keep killing bitcasts, for sanity.  Note that we no longer care
2651  // about precise ordering as long as there's exactly one use.
2652  while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2653    if (!bitcast->hasOneUse()) break;
2654    InstsToKill.push_back(bitcast);
2655    result = bitcast->getOperand(0);
2656  }
2657
2658  // Delete all the unnecessary instructions, from latest to earliest.
2659  for (auto *I : InstsToKill)
2660    I->eraseFromParent();
2661
2662  // Do the fused retain/autorelease if we were asked to.
2663  if (doRetainAutorelease)
2664    result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2665
2666  // Cast back to the result type.
2667  return CGF.Builder.CreateBitCast(result, resultType);
2668}
2669
2670/// If this is a +1 of the value of an immutable 'self', remove it.
2671static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2672                                          llvm::Value *result) {
2673  // This is only applicable to a method with an immutable 'self'.
2674  const ObjCMethodDecl *method =
2675    dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2676  if (!method) return nullptr;
2677  const VarDecl *self = method->getSelfDecl();
2678  if (!self->getType().isConstQualified()) return nullptr;
2679
2680  // Look for a retain call.
2681  llvm::CallInst *retainCall =
2682    dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2683  if (!retainCall ||
2684      retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
2685    return nullptr;
2686
2687  // Look for an ordinary load of 'self'.
2688  llvm::Value *retainedValue = retainCall->getArgOperand(0);
2689  llvm::LoadInst *load =
2690    dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2691  if (!load || load->isAtomic() || load->isVolatile() ||
2692      load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2693    return nullptr;
2694
2695  // Okay!  Burn it all down.  This relies for correctness on the
2696  // assumption that the retain is emitted as part of the return and
2697  // that thereafter everything is used "linearly".
2698  llvm::Type *resultType = result->getType();
2699  eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2700  assert(retainCall->use_empty());
2701  retainCall->eraseFromParent();
2702  eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2703
2704  return CGF.Builder.CreateBitCast(load, resultType);
2705}
2706
2707/// Emit an ARC autorelease of the result of a function.
2708///
2709/// \return the value to actually return from the function
2710static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2711                                            llvm::Value *result) {
2712  // If we're returning 'self', kill the initial retain.  This is a
2713  // heuristic attempt to "encourage correctness" in the really unfortunate
2714  // case where we have a return of self during a dealloc and we desperately
2715  // need to avoid the possible autorelease.
2716  if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2717    return self;
2718
2719  // At -O0, try to emit a fused retain/autorelease.
2720  if (CGF.shouldUseFusedARCCalls())
2721    if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2722      return fused;
2723
2724  return CGF.EmitARCAutoreleaseReturnValue(result);
2725}
2726
2727/// Heuristically search for a dominating store to the return-value slot.
2728static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2729  // Check if a User is a store which pointerOperand is the ReturnValue.
2730  // We are looking for stores to the ReturnValue, not for stores of the
2731  // ReturnValue to some other location.
2732  auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2733    auto *SI = dyn_cast<llvm::StoreInst>(U);
2734    if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2735      return nullptr;
2736    // These aren't actually possible for non-coerced returns, and we
2737    // only care about non-coerced returns on this code path.
2738    assert(!SI->isAtomic() && !SI->isVolatile());
2739    return SI;
2740  };
2741  // If there are multiple uses of the return-value slot, just check
2742  // for something immediately preceding the IP.  Sometimes this can
2743  // happen with how we generate implicit-returns; it can also happen
2744  // with noreturn cleanups.
2745  if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2746    llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2747    if (IP->empty()) return nullptr;
2748    llvm::Instruction *I = &IP->back();
2749
2750    // Skip lifetime markers
2751    for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2752                                            IE = IP->rend();
2753         II != IE; ++II) {
2754      if (llvm::IntrinsicInst *Intrinsic =
2755              dyn_cast<llvm::IntrinsicInst>(&*II)) {
2756        if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2757          const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2758          ++II;
2759          if (II == IE)
2760            break;
2761          if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2762            continue;
2763        }
2764      }
2765      I = &*II;
2766      break;
2767    }
2768
2769    return GetStoreIfValid(I);
2770  }
2771
2772  llvm::StoreInst *store =
2773      GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2774  if (!store) return nullptr;
2775
2776  // Now do a first-and-dirty dominance check: just walk up the
2777  // single-predecessors chain from the current insertion point.
2778  llvm::BasicBlock *StoreBB = store->getParent();
2779  llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2780  while (IP != StoreBB) {
2781    if (!(IP = IP->getSinglePredecessor()))
2782      return nullptr;
2783  }
2784
2785  // Okay, the store's basic block dominates the insertion point; we
2786  // can do our thing.
2787  return store;
2788}
2789
2790void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2791                                         bool EmitRetDbgLoc,
2792                                         SourceLocation EndLoc) {
2793  if (FI.isNoReturn()) {
2794    // Noreturn functions don't return.
2795    EmitUnreachable(EndLoc);
2796    return;
2797  }
2798
2799  if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2800    // Naked functions don't have epilogues.
2801    Builder.CreateUnreachable();
2802    return;
2803  }
2804
2805  // Functions with no result always return void.
2806  if (!ReturnValue.isValid()) {
2807    Builder.CreateRetVoid();
2808    return;
2809  }
2810
2811  llvm::DebugLoc RetDbgLoc;
2812  llvm::Value *RV = nullptr;
2813  QualType RetTy = FI.getReturnType();
2814  const ABIArgInfo &RetAI = FI.getReturnInfo();
2815
2816  switch (RetAI.getKind()) {
2817  case ABIArgInfo::InAlloca:
2818    // Aggregrates get evaluated directly into the destination.  Sometimes we
2819    // need to return the sret value in a register, though.
2820    assert(hasAggregateEvaluationKind(RetTy));
2821    if (RetAI.getInAllocaSRet()) {
2822      llvm::Function::arg_iterator EI = CurFn->arg_end();
2823      --EI;
2824      llvm::Value *ArgStruct = &*EI;
2825      llvm::Value *SRet = Builder.CreateStructGEP(
2826          nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2827      RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2828    }
2829    break;
2830
2831  case ABIArgInfo::Indirect: {
2832    auto AI = CurFn->arg_begin();
2833    if (RetAI.isSRetAfterThis())
2834      ++AI;
2835    switch (getEvaluationKind(RetTy)) {
2836    case TEK_Complex: {
2837      ComplexPairTy RT =
2838        EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2839      EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
2840                         /*isInit*/ true);
2841      break;
2842    }
2843    case TEK_Aggregate:
2844      // Do nothing; aggregrates get evaluated directly into the destination.
2845      break;
2846    case TEK_Scalar:
2847      EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2848                        MakeNaturalAlignAddrLValue(&*AI, RetTy),
2849                        /*isInit*/ true);
2850      break;
2851    }
2852    break;
2853  }
2854
2855  case ABIArgInfo::Extend:
2856  case ABIArgInfo::Direct:
2857    if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2858        RetAI.getDirectOffset() == 0) {
2859      // The internal return value temp always will have pointer-to-return-type
2860      // type, just do a load.
2861
2862      // If there is a dominating store to ReturnValue, we can elide
2863      // the load, zap the store, and usually zap the alloca.
2864      if (llvm::StoreInst *SI =
2865              findDominatingStoreToReturnValue(*this)) {
2866        // Reuse the debug location from the store unless there is
2867        // cleanup code to be emitted between the store and return
2868        // instruction.
2869        if (EmitRetDbgLoc && !AutoreleaseResult)
2870          RetDbgLoc = SI->getDebugLoc();
2871        // Get the stored value and nuke the now-dead store.
2872        RV = SI->getValueOperand();
2873        SI->eraseFromParent();
2874
2875      // Otherwise, we have to do a simple load.
2876      } else {
2877        RV = Builder.CreateLoad(ReturnValue);
2878      }
2879    } else {
2880      // If the value is offset in memory, apply the offset now.
2881      Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2882
2883      RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2884    }
2885
2886    // In ARC, end functions that return a retainable type with a call
2887    // to objc_autoreleaseReturnValue.
2888    if (AutoreleaseResult) {
2889#ifndef NDEBUG
2890      // Type::isObjCRetainabletype has to be called on a QualType that hasn't
2891      // been stripped of the typedefs, so we cannot use RetTy here. Get the
2892      // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
2893      // CurCodeDecl or BlockInfo.
2894      QualType RT;
2895
2896      if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
2897        RT = FD->getReturnType();
2898      else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
2899        RT = MD->getReturnType();
2900      else if (isa<BlockDecl>(CurCodeDecl))
2901        RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
2902      else
2903        llvm_unreachable("Unexpected function/method type");
2904
2905      assert(getLangOpts().ObjCAutoRefCount &&
2906             !FI.isReturnsRetained() &&
2907             RT->isObjCRetainableType());
2908#endif
2909      RV = emitAutoreleaseOfResult(*this, RV);
2910    }
2911
2912    break;
2913
2914  case ABIArgInfo::Ignore:
2915    break;
2916
2917  case ABIArgInfo::CoerceAndExpand: {
2918    auto coercionType = RetAI.getCoerceAndExpandType();
2919
2920    // Load all of the coerced elements out into results.
2921    llvm::SmallVector<llvm::Value*, 4> results;
2922    Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
2923    for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2924      auto coercedEltType = coercionType->getElementType(i);
2925      if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
2926        continue;
2927
2928      auto eltAddr = Builder.CreateStructGEP(addr, i);
2929      auto elt = Builder.CreateLoad(eltAddr);
2930      results.push_back(elt);
2931    }
2932
2933    // If we have one result, it's the single direct result type.
2934    if (results.size() == 1) {
2935      RV = results[0];
2936
2937    // Otherwise, we need to make a first-class aggregate.
2938    } else {
2939      // Construct a return type that lacks padding elements.
2940      llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
2941
2942      RV = llvm::UndefValue::get(returnType);
2943      for (unsigned i = 0, e = results.size(); i != e; ++i) {
2944        RV = Builder.CreateInsertValue(RV, results[i], i);
2945      }
2946    }
2947    break;
2948  }
2949
2950  case ABIArgInfo::Expand:
2951    llvm_unreachable("Invalid ABI kind for return argument");
2952  }
2953
2954  llvm::Instruction *Ret;
2955  if (RV) {
2956    EmitReturnValueCheck(RV);
2957    Ret = Builder.CreateRet(RV);
2958  } else {
2959    Ret = Builder.CreateRetVoid();
2960  }
2961
2962  if (RetDbgLoc)
2963    Ret->setDebugLoc(std::move(RetDbgLoc));
2964}
2965
2966void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
2967  // A current decl may not be available when emitting vtable thunks.
2968  if (!CurCodeDecl)
2969    return;
2970
2971  ReturnsNonNullAttr *RetNNAttr = nullptr;
2972  if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
2973    RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
2974
2975  if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
2976    return;
2977
2978  // Prefer the returns_nonnull attribute if it's present.
2979  SourceLocation AttrLoc;
2980  SanitizerMask CheckKind;
2981  SanitizerHandler Handler;
2982  if (RetNNAttr) {
2983    assert(!requiresReturnValueNullabilityCheck() &&
2984           "Cannot check nullability and the nonnull attribute");
2985    AttrLoc = RetNNAttr->getLocation();
2986    CheckKind = SanitizerKind::ReturnsNonnullAttribute;
2987    Handler = SanitizerHandler::NonnullReturn;
2988  } else {
2989    if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
2990      if (auto *TSI = DD->getTypeSourceInfo())
2991        if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>())
2992          AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
2993    CheckKind = SanitizerKind::NullabilityReturn;
2994    Handler = SanitizerHandler::NullabilityReturn;
2995  }
2996
2997  SanitizerScope SanScope(this);
2998
2999  // Make sure the "return" source location is valid. If we're checking a
3000  // nullability annotation, make sure the preconditions for the check are met.
3001  llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3002  llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3003  llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3004  llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3005  if (requiresReturnValueNullabilityCheck())
3006    CanNullCheck =
3007        Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3008  Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3009  EmitBlock(Check);
3010
3011  // Now do the null check.
3012  llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3013  llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3014  llvm::Value *DynamicData[] = {SLocPtr};
3015  EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3016
3017  EmitBlock(NoCheck);
3018
3019#ifndef NDEBUG
3020  // The return location should not be used after the check has been emitted.
3021  ReturnLocation = Address::invalid();
3022#endif
3023}
3024
3025static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3026  const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3027  return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3028}
3029
3030static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3031                                          QualType Ty) {
3032  // FIXME: Generate IR in one pass, rather than going back and fixing up these
3033  // placeholders.
3034  llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3035  llvm::Type *IRPtrTy = IRTy->getPointerTo();
3036  llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3037
3038  // FIXME: When we generate this IR in one pass, we shouldn't need
3039  // this win32-specific alignment hack.
3040  CharUnits Align = CharUnits::fromQuantity(4);
3041  Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3042
3043  return AggValueSlot::forAddr(Address(Placeholder, Align),
3044                               Ty.getQualifiers(),
3045                               AggValueSlot::IsNotDestructed,
3046                               AggValueSlot::DoesNotNeedGCBarriers,
3047                               AggValueSlot::IsNotAliased,
3048                               AggValueSlot::DoesNotOverlap);
3049}
3050
3051void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3052                                          const VarDecl *param,
3053                                          SourceLocation loc) {
3054  // StartFunction converted the ABI-lowered parameter(s) into a
3055  // local alloca.  We need to turn that into an r-value suitable
3056  // for EmitCall.
3057  Address local = GetAddrOfLocalVar(param);
3058
3059  QualType type = param->getType();
3060
3061  if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3062    CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3063  }
3064
3065  // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3066  // but the argument needs to be the original pointer.
3067  if (type->isReferenceType()) {
3068    args.add(RValue::get(Builder.CreateLoad(local)), type);
3069
3070  // In ARC, move out of consumed arguments so that the release cleanup
3071  // entered by StartFunction doesn't cause an over-release.  This isn't
3072  // optimal -O0 code generation, but it should get cleaned up when
3073  // optimization is enabled.  This also assumes that delegate calls are
3074  // performed exactly once for a set of arguments, but that should be safe.
3075  } else if (getLangOpts().ObjCAutoRefCount &&
3076             param->hasAttr<NSConsumedAttr>() &&
3077             type->isObjCRetainableType()) {
3078    llvm::Value *ptr = Builder.CreateLoad(local);
3079    auto null =
3080      llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3081    Builder.CreateStore(null, local);
3082    args.add(RValue::get(ptr), type);
3083
3084  // For the most part, we just need to load the alloca, except that
3085  // aggregate r-values are actually pointers to temporaries.
3086  } else {
3087    args.add(convertTempToRValue(local, type, loc), type);
3088  }
3089
3090  // Deactivate the cleanup for the callee-destructed param that was pushed.
3091  if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk &&
3092      type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3093      type.isDestructedType()) {
3094    EHScopeStack::stable_iterator cleanup =
3095        CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3096    assert(cleanup.isValid() &&
3097           "cleanup for callee-destructed param not recorded");
3098    // This unreachable is a temporary marker which will be removed later.
3099    llvm::Instruction *isActive = Builder.CreateUnreachable();
3100    args.addArgCleanupDeactivation(cleanup, isActive);
3101  }
3102}
3103
3104static bool isProvablyNull(llvm::Value *addr) {
3105  return isa<llvm::ConstantPointerNull>(addr);
3106}
3107
3108/// Emit the actual writing-back of a writeback.
3109static void emitWriteback(CodeGenFunction &CGF,
3110                          const CallArgList::Writeback &writeback) {
3111  const LValue &srcLV = writeback.Source;
3112  Address srcAddr = srcLV.getAddress();
3113  assert(!isProvablyNull(srcAddr.getPointer()) &&
3114         "shouldn't have writeback for provably null argument");
3115
3116  llvm::BasicBlock *contBB = nullptr;
3117
3118  // If the argument wasn't provably non-null, we need to null check
3119  // before doing the store.
3120  bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3121                                              CGF.CGM.getDataLayout());
3122  if (!provablyNonNull) {
3123    llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3124    contBB = CGF.createBasicBlock("icr.done");
3125
3126    llvm::Value *isNull =
3127      CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3128    CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3129    CGF.EmitBlock(writebackBB);
3130  }
3131
3132  // Load the value to writeback.
3133  llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3134
3135  // Cast it back, in case we're writing an id to a Foo* or something.
3136  value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3137                                    "icr.writeback-cast");
3138
3139  // Perform the writeback.
3140
3141  // If we have a "to use" value, it's something we need to emit a use
3142  // of.  This has to be carefully threaded in: if it's done after the
3143  // release it's potentially undefined behavior (and the optimizer
3144  // will ignore it), and if it happens before the retain then the
3145  // optimizer could move the release there.
3146  if (writeback.ToUse) {
3147    assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3148
3149    // Retain the new value.  No need to block-copy here:  the block's
3150    // being passed up the stack.
3151    value = CGF.EmitARCRetainNonBlock(value);
3152
3153    // Emit the intrinsic use here.
3154    CGF.EmitARCIntrinsicUse(writeback.ToUse);
3155
3156    // Load the old value (primitively).
3157    llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3158
3159    // Put the new value in place (primitively).
3160    CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3161
3162    // Release the old value.
3163    CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3164
3165  // Otherwise, we can just do a normal lvalue store.
3166  } else {
3167    CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3168  }
3169
3170  // Jump to the continuation block.
3171  if (!provablyNonNull)
3172    CGF.EmitBlock(contBB);
3173}
3174
3175static void emitWritebacks(CodeGenFunction &CGF,
3176                           const CallArgList &args) {
3177  for (const auto &I : args.writebacks())
3178    emitWriteback(CGF, I);
3179}
3180
3181static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3182                                            const CallArgList &CallArgs) {
3183  ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3184    CallArgs.getCleanupsToDeactivate();
3185  // Iterate in reverse to increase the likelihood of popping the cleanup.
3186  for (const auto &I : llvm::reverse(Cleanups)) {
3187    CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3188    I.IsActiveIP->eraseFromParent();
3189  }
3190}
3191
3192static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3193  if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3194    if (uop->getOpcode() == UO_AddrOf)
3195      return uop->getSubExpr();
3196  return nullptr;
3197}
3198
3199/// Emit an argument that's being passed call-by-writeback.  That is,
3200/// we are passing the address of an __autoreleased temporary; it
3201/// might be copy-initialized with the current value of the given
3202/// address, but it will definitely be copied out of after the call.
3203static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3204                             const ObjCIndirectCopyRestoreExpr *CRE) {
3205  LValue srcLV;
3206
3207  // Make an optimistic effort to emit the address as an l-value.
3208  // This can fail if the argument expression is more complicated.
3209  if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3210    srcLV = CGF.EmitLValue(lvExpr);
3211
3212  // Otherwise, just emit it as a scalar.
3213  } else {
3214    Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3215
3216    QualType srcAddrType =
3217      CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3218    srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3219  }
3220  Address srcAddr = srcLV.getAddress();
3221
3222  // The dest and src types don't necessarily match in LLVM terms
3223  // because of the crazy ObjC compatibility rules.
3224
3225  llvm::PointerType *destType =
3226    cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3227
3228  // If the address is a constant null, just pass the appropriate null.
3229  if (isProvablyNull(srcAddr.getPointer())) {
3230    args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3231             CRE->getType());
3232    return;
3233  }
3234
3235  // Create the temporary.
3236  Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3237                                      CGF.getPointerAlign(),
3238                                      "icr.temp");
3239  // Loading an l-value can introduce a cleanup if the l-value is __weak,
3240  // and that cleanup will be conditional if we can't prove that the l-value
3241  // isn't null, so we need to register a dominating point so that the cleanups
3242  // system will make valid IR.
3243  CodeGenFunction::ConditionalEvaluation condEval(CGF);
3244
3245  // Zero-initialize it if we're not doing a copy-initialization.
3246  bool shouldCopy = CRE->shouldCopy();
3247  if (!shouldCopy) {
3248    llvm::Value *null =
3249      llvm::ConstantPointerNull::get(
3250        cast<llvm::PointerType>(destType->getElementType()));
3251    CGF.Builder.CreateStore(null, temp);
3252  }
3253
3254  llvm::BasicBlock *contBB = nullptr;
3255  llvm::BasicBlock *originBB = nullptr;
3256
3257  // If the address is *not* known to be non-null, we need to switch.
3258  llvm::Value *finalArgument;
3259
3260  bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3261                                              CGF.CGM.getDataLayout());
3262  if (provablyNonNull) {
3263    finalArgument = temp.getPointer();
3264  } else {
3265    llvm::Value *isNull =
3266      CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3267
3268    finalArgument = CGF.Builder.CreateSelect(isNull,
3269                                   llvm::ConstantPointerNull::get(destType),
3270                                             temp.getPointer(), "icr.argument");
3271
3272    // If we need to copy, then the load has to be conditional, which
3273    // means we need control flow.
3274    if (shouldCopy) {
3275      originBB = CGF.Builder.GetInsertBlock();
3276      contBB = CGF.createBasicBlock("icr.cont");
3277      llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3278      CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3279      CGF.EmitBlock(copyBB);
3280      condEval.begin(CGF);
3281    }
3282  }
3283
3284  llvm::Value *valueToUse = nullptr;
3285
3286  // Perform a copy if necessary.
3287  if (shouldCopy) {
3288    RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3289    assert(srcRV.isScalar());
3290
3291    llvm::Value *src = srcRV.getScalarVal();
3292    src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3293                                    "icr.cast");
3294
3295    // Use an ordinary store, not a store-to-lvalue.
3296    CGF.Builder.CreateStore(src, temp);
3297
3298    // If optimization is enabled, and the value was held in a
3299    // __strong variable, we need to tell the optimizer that this
3300    // value has to stay alive until we're doing the store back.
3301    // This is because the temporary is effectively unretained,
3302    // and so otherwise we can violate the high-level semantics.
3303    if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3304        srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3305      valueToUse = src;
3306    }
3307  }
3308
3309  // Finish the control flow if we needed it.
3310  if (shouldCopy && !provablyNonNull) {
3311    llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3312    CGF.EmitBlock(contBB);
3313
3314    // Make a phi for the value to intrinsically use.
3315    if (valueToUse) {
3316      llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3317                                                      "icr.to-use");
3318      phiToUse->addIncoming(valueToUse, copyBB);
3319      phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3320                            originBB);
3321      valueToUse = phiToUse;
3322    }
3323
3324    condEval.end(CGF);
3325  }
3326
3327  args.addWriteback(srcLV, temp, valueToUse);
3328  args.add(RValue::get(finalArgument), CRE->getType());
3329}
3330
3331void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3332  assert(!StackBase);
3333
3334  // Save the stack.
3335  llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3336  StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3337}
3338
3339void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3340  if (StackBase) {
3341    // Restore the stack after the call.
3342    llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3343    CGF.Builder.CreateCall(F, StackBase);
3344  }
3345}
3346
3347void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3348                                          SourceLocation ArgLoc,
3349                                          AbstractCallee AC,
3350                                          unsigned ParmNum) {
3351  if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3352                         SanOpts.has(SanitizerKind::NullabilityArg)))
3353    return;
3354
3355  // The param decl may be missing in a variadic function.
3356  auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3357  unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3358
3359  // Prefer the nonnull attribute if it's present.
3360  const NonNullAttr *NNAttr = nullptr;
3361  if (SanOpts.has(SanitizerKind::NonnullAttribute))
3362    NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3363
3364  bool CanCheckNullability = false;
3365  if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3366    auto Nullability = PVD->getType()->getNullability(getContext());
3367    CanCheckNullability = Nullability &&
3368                          *Nullability == NullabilityKind::NonNull &&
3369                          PVD->getTypeSourceInfo();
3370  }
3371
3372  if (!NNAttr && !CanCheckNullability)
3373    return;
3374
3375  SourceLocation AttrLoc;
3376  SanitizerMask CheckKind;
3377  SanitizerHandler Handler;
3378  if (NNAttr) {
3379    AttrLoc = NNAttr->getLocation();
3380    CheckKind = SanitizerKind::NonnullAttribute;
3381    Handler = SanitizerHandler::NonnullArg;
3382  } else {
3383    AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3384    CheckKind = SanitizerKind::NullabilityArg;
3385    Handler = SanitizerHandler::NullabilityArg;
3386  }
3387
3388  SanitizerScope SanScope(this);
3389  assert(RV.isScalar());
3390  llvm::Value *V = RV.getScalarVal();
3391  llvm::Value *Cond =
3392      Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3393  llvm::Constant *StaticData[] = {
3394      EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3395      llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3396  };
3397  EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3398}
3399
3400void CodeGenFunction::EmitCallArgs(
3401    CallArgList &Args, ArrayRef<QualType> ArgTypes,
3402    llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3403    AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3404  assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3405
3406  // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3407  // because arguments are destroyed left to right in the callee. As a special
3408  // case, there are certain language constructs that require left-to-right
3409  // evaluation, and in those cases we consider the evaluation order requirement
3410  // to trump the "destruction order is reverse construction order" guarantee.
3411  bool LeftToRight =
3412      CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3413          ? Order == EvaluationOrder::ForceLeftToRight
3414          : Order != EvaluationOrder::ForceRightToLeft;
3415
3416  auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3417                                         RValue EmittedArg) {
3418    if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3419      return;
3420    auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3421    if (PS == nullptr)
3422      return;
3423
3424    const auto &Context = getContext();
3425    auto SizeTy = Context.getSizeType();
3426    auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3427    assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
3428    llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
3429                                                     EmittedArg.getScalarVal(),
3430                                                     PS->isDynamic());
3431    Args.add(RValue::get(V), SizeTy);
3432    // If we're emitting args in reverse, be sure to do so with
3433    // pass_object_size, as well.
3434    if (!LeftToRight)
3435      std::swap(Args.back(), *(&Args.back() - 1));
3436  };
3437
3438  // Insert a stack save if we're going to need any inalloca args.
3439  bool HasInAllocaArgs = false;
3440  if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3441    for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3442         I != E && !HasInAllocaArgs; ++I)
3443      HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3444    if (HasInAllocaArgs) {
3445      assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3446      Args.allocateArgumentMemory(*this);
3447    }
3448  }
3449
3450  // Evaluate each argument in the appropriate order.
3451  size_t CallArgsStart = Args.size();
3452  for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3453    unsigned Idx = LeftToRight ? I : E - I - 1;
3454    CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3455    unsigned InitialArgSize = Args.size();
3456    // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
3457    // the argument and parameter match or the objc method is parameterized.
3458    assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
3459            getContext().hasSameUnqualifiedType((*Arg)->getType(),
3460                                                ArgTypes[Idx]) ||
3461            (isa<ObjCMethodDecl>(AC.getDecl()) &&
3462             isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
3463           "Argument and parameter types don't match");
3464    EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3465    // In particular, we depend on it being the last arg in Args, and the
3466    // objectsize bits depend on there only being one arg if !LeftToRight.
3467    assert(InitialArgSize + 1 == Args.size() &&
3468           "The code below depends on only adding one arg per EmitCallArg");
3469    (void)InitialArgSize;
3470    // Since pointer argument are never emitted as LValue, it is safe to emit
3471    // non-null argument check for r-value only.
3472    if (!Args.back().hasLValue()) {
3473      RValue RVArg = Args.back().getKnownRValue();
3474      EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
3475                          ParamsToSkip + Idx);
3476      // @llvm.objectsize should never have side-effects and shouldn't need
3477      // destruction/cleanups, so we can safely "emit" it after its arg,
3478      // regardless of right-to-leftness
3479      MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
3480    }
3481  }
3482
3483  if (!LeftToRight) {
3484    // Un-reverse the arguments we just evaluated so they match up with the LLVM
3485    // IR function.
3486    std::reverse(Args.begin() + CallArgsStart, Args.end());
3487  }
3488}
3489
3490namespace {
3491
3492struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3493  DestroyUnpassedArg(Address Addr, QualType Ty)
3494      : Addr(Addr), Ty(Ty) {}
3495
3496  Address Addr;
3497  QualType Ty;
3498
3499  void Emit(CodeGenFunction &CGF, Flags flags) override {
3500    QualType::DestructionKind DtorKind = Ty.isDestructedType();
3501    if (DtorKind == QualType::DK_cxx_destructor) {
3502      const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3503      assert(!Dtor->isTrivial());
3504      CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3505                                /*Delegating=*/false, Addr, Ty);
3506    } else {
3507      CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
3508    }
3509  }
3510};
3511
3512struct DisableDebugLocationUpdates {
3513  CodeGenFunction &CGF;
3514  bool disabledDebugInfo;
3515  DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3516    if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3517      CGF.disableDebugInfo();
3518  }
3519  ~DisableDebugLocationUpdates() {
3520    if (disabledDebugInfo)
3521      CGF.enableDebugInfo();
3522  }
3523};
3524
3525} // end anonymous namespace
3526
3527RValue CallArg::getRValue(CodeGenFunction &CGF) const {
3528  if (!HasLV)
3529    return RV;
3530  LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
3531  CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
3532                        LV.isVolatile());
3533  IsUsed = true;
3534  return RValue::getAggregate(Copy.getAddress());
3535}
3536
3537void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
3538  LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
3539  if (!HasLV && RV.isScalar())
3540    CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
3541  else if (!HasLV && RV.isComplex())
3542    CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
3543  else {
3544    auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress();
3545    LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
3546    // We assume that call args are never copied into subobjects.
3547    CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
3548                          HasLV ? LV.isVolatileQualified()
3549                                : RV.isVolatileQualified());
3550  }
3551  IsUsed = true;
3552}
3553
3554void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3555                                  QualType type) {
3556  DisableDebugLocationUpdates Dis(*this, E);
3557  if (const ObjCIndirectCopyRestoreExpr *CRE
3558        = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3559    assert(getLangOpts().ObjCAutoRefCount);
3560    return emitWritebackArg(*this, args, CRE);
3561  }
3562
3563  assert(type->isReferenceType() == E->isGLValue() &&
3564         "reference binding to unmaterialized r-value!");
3565
3566  if (E->isGLValue()) {
3567    assert(E->getObjectKind() == OK_Ordinary);
3568    return args.add(EmitReferenceBindingToExpr(E), type);
3569  }
3570
3571  bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3572
3573  // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3574  // However, we still have to push an EH-only cleanup in case we unwind before
3575  // we make it to the call.
3576  if (HasAggregateEvalKind &&
3577      type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
3578    // If we're using inalloca, use the argument memory.  Otherwise, use a
3579    // temporary.
3580    AggValueSlot Slot;
3581    if (args.isUsingInAlloca())
3582      Slot = createPlaceholderSlot(*this, type);
3583    else
3584      Slot = CreateAggTemp(type, "agg.tmp");
3585
3586    bool DestroyedInCallee = true, NeedsEHCleanup = true;
3587    if (const auto *RD = type->getAsCXXRecordDecl())
3588      DestroyedInCallee = RD->hasNonTrivialDestructor();
3589    else
3590      NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
3591
3592    if (DestroyedInCallee)
3593      Slot.setExternallyDestructed();
3594
3595    EmitAggExpr(E, Slot);
3596    RValue RV = Slot.asRValue();
3597    args.add(RV, type);
3598
3599    if (DestroyedInCallee && NeedsEHCleanup) {
3600      // Create a no-op GEP between the placeholder and the cleanup so we can
3601      // RAUW it successfully.  It also serves as a marker of the first
3602      // instruction where the cleanup is active.
3603      pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3604                                              type);
3605      // This unreachable is a temporary marker which will be removed later.
3606      llvm::Instruction *IsActive = Builder.CreateUnreachable();
3607      args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3608    }
3609    return;
3610  }
3611
3612  if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
3613      cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
3614    LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
3615    assert(L.isSimple());
3616    args.addUncopiedAggregate(L, type);
3617    return;
3618  }
3619
3620  args.add(EmitAnyExprToTemp(E), type);
3621}
3622
3623QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
3624  // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
3625  // implicitly widens null pointer constants that are arguments to varargs
3626  // functions to pointer-sized ints.
3627  if (!getTarget().getTriple().isOSWindows())
3628    return Arg->getType();
3629
3630  if (Arg->getType()->isIntegerType() &&
3631      getContext().getTypeSize(Arg->getType()) <
3632          getContext().getTargetInfo().getPointerWidth(0) &&
3633      Arg->isNullPointerConstant(getContext(),
3634                                 Expr::NPC_ValueDependentIsNotNull)) {
3635    return getContext().getIntPtrType();
3636  }
3637
3638  return Arg->getType();
3639}
3640
3641// In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3642// optimizer it can aggressively ignore unwind edges.
3643void
3644CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3645  if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3646      !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3647    Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
3648                      CGM.getNoObjCARCExceptionsMetadata());
3649}
3650
3651/// Emits a call to the given no-arguments nounwind runtime function.
3652llvm::CallInst *
3653CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3654                                         const llvm::Twine &name) {
3655  return EmitNounwindRuntimeCall(callee, None, name);
3656}
3657
3658/// Emits a call to the given nounwind runtime function.
3659llvm::CallInst *
3660CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3661                                         ArrayRef<llvm::Value *> args,
3662                                         const llvm::Twine &name) {
3663  llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
3664  call->setDoesNotThrow();
3665  return call;
3666}
3667
3668/// Emits a simple call (never an invoke) to the given no-arguments
3669/// runtime function.
3670llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
3671                                                 const llvm::Twine &name) {
3672  return EmitRuntimeCall(callee, None, name);
3673}
3674
3675// Calls which may throw must have operand bundles indicating which funclet
3676// they are nested within.
3677SmallVector<llvm::OperandBundleDef, 1>
3678CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
3679  SmallVector<llvm::OperandBundleDef, 1> BundleList;
3680  // There is no need for a funclet operand bundle if we aren't inside a
3681  // funclet.
3682  if (!CurrentFuncletPad)
3683    return BundleList;
3684
3685  // Skip intrinsics which cannot throw.
3686  auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
3687  if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
3688    return BundleList;
3689
3690  BundleList.emplace_back("funclet", CurrentFuncletPad);
3691  return BundleList;
3692}
3693
3694/// Emits a simple call (never an invoke) to the given runtime function.
3695llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
3696                                                 ArrayRef<llvm::Value *> args,
3697                                                 const llvm::Twine &name) {
3698  llvm::CallInst *call = Builder.CreateCall(
3699      callee, args, getBundlesForFunclet(callee.getCallee()), name);
3700  call->setCallingConv(getRuntimeCC());
3701  return call;
3702}
3703
3704/// Emits a call or invoke to the given noreturn runtime function.
3705void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
3706    llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
3707  SmallVector<llvm::OperandBundleDef, 1> BundleList =
3708      getBundlesForFunclet(callee.getCallee());
3709
3710  if (getInvokeDest()) {
3711    llvm::InvokeInst *invoke =
3712      Builder.CreateInvoke(callee,
3713                           getUnreachableBlock(),
3714                           getInvokeDest(),
3715                           args,
3716                           BundleList);
3717    invoke->setDoesNotReturn();
3718    invoke->setCallingConv(getRuntimeCC());
3719  } else {
3720    llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
3721    call->setDoesNotReturn();
3722    call->setCallingConv(getRuntimeCC());
3723    Builder.CreateUnreachable();
3724  }
3725}
3726
3727/// Emits a call or invoke instruction to the given nullary runtime function.
3728llvm::CallBase *
3729CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3730                                         const Twine &name) {
3731  return EmitRuntimeCallOrInvoke(callee, None, name);
3732}
3733
3734/// Emits a call or invoke instruction to the given runtime function.
3735llvm::CallBase *
3736CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3737                                         ArrayRef<llvm::Value *> args,
3738                                         const Twine &name) {
3739  llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
3740  call->setCallingConv(getRuntimeCC());
3741  return call;
3742}
3743
3744/// Emits a call or invoke instruction to the given function, depending
3745/// on the current state of the EH stack.
3746llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
3747                                                  ArrayRef<llvm::Value *> Args,
3748                                                  const Twine &Name) {
3749  llvm::BasicBlock *InvokeDest = getInvokeDest();
3750  SmallVector<llvm::OperandBundleDef, 1> BundleList =
3751      getBundlesForFunclet(Callee.getCallee());
3752
3753  llvm::CallBase *Inst;
3754  if (!InvokeDest)
3755    Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
3756  else {
3757    llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3758    Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
3759                                Name);
3760    EmitBlock(ContBB);
3761  }
3762
3763  // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3764  // optimizer it can aggressively ignore unwind edges.
3765  if (CGM.getLangOpts().ObjCAutoRefCount)
3766    AddObjCARCExceptionMetadata(Inst);
3767
3768  return Inst;
3769}
3770
3771void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3772                                                  llvm::Value *New) {
3773  DeferredReplacements.push_back(std::make_pair(Old, New));
3774}
3775
3776RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3777                                 const CGCallee &Callee,
3778                                 ReturnValueSlot ReturnValue,
3779                                 const CallArgList &CallArgs,
3780                                 llvm::CallBase **callOrInvoke,
3781                                 SourceLocation Loc) {
3782  // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3783
3784  assert(Callee.isOrdinary() || Callee.isVirtual());
3785
3786  // Handle struct-return functions by passing a pointer to the
3787  // location that we would like to return into.
3788  QualType RetTy = CallInfo.getReturnType();
3789  const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3790
3791  llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
3792
3793  const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
3794  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
3795    // We can only guarantee that a function is called from the correct
3796    // context/function based on the appropriate target attributes,
3797    // so only check in the case where we have both always_inline and target
3798    // since otherwise we could be making a conditional call after a check for
3799    // the proper cpu features (and it won't cause code generation issues due to
3800    // function based code generation).
3801    if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
3802        TargetDecl->hasAttr<TargetAttr>())
3803      checkTargetFeatures(Loc, FD);
3804
3805#ifndef NDEBUG
3806  if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
3807    // For an inalloca varargs function, we don't expect CallInfo to match the
3808    // function pointer's type, because the inalloca struct a will have extra
3809    // fields in it for the varargs parameters.  Code later in this function
3810    // bitcasts the function pointer to the type derived from CallInfo.
3811    //
3812    // In other cases, we assert that the types match up (until pointers stop
3813    // having pointee types).
3814    llvm::Type *TypeFromVal;
3815    if (Callee.isVirtual())
3816      TypeFromVal = Callee.getVirtualFunctionType();
3817    else
3818      TypeFromVal =
3819          Callee.getFunctionPointer()->getType()->getPointerElementType();
3820    assert(IRFuncTy == TypeFromVal);
3821  }
3822#endif
3823
3824  // 1. Set up the arguments.
3825
3826  // If we're using inalloca, insert the allocation after the stack save.
3827  // FIXME: Do this earlier rather than hacking it in here!
3828  Address ArgMemory = Address::invalid();
3829  if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3830    const llvm::DataLayout &DL = CGM.getDataLayout();
3831    llvm::Instruction *IP = CallArgs.getStackBase();
3832    llvm::AllocaInst *AI;
3833    if (IP) {
3834      IP = IP->getNextNode();
3835      AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
3836                                "argmem", IP);
3837    } else {
3838      AI = CreateTempAlloca(ArgStruct, "argmem");
3839    }
3840    auto Align = CallInfo.getArgStructAlignment();
3841    AI->setAlignment(Align.getQuantity());
3842    AI->setUsedWithInAlloca(true);
3843    assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3844    ArgMemory = Address(AI, Align);
3845  }
3846
3847  ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3848  SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3849
3850  // If the call returns a temporary with struct return, create a temporary
3851  // alloca to hold the result, unless one is given to us.
3852  Address SRetPtr = Address::invalid();
3853  Address SRetAlloca = Address::invalid();
3854  llvm::Value *UnusedReturnSizePtr = nullptr;
3855  if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
3856    if (!ReturnValue.isNull()) {
3857      SRetPtr = ReturnValue.getValue();
3858    } else {
3859      SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
3860      if (HaveInsertPoint() && ReturnValue.isUnused()) {
3861        uint64_t size =
3862            CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3863        UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
3864      }
3865    }
3866    if (IRFunctionArgs.hasSRetArg()) {
3867      IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
3868    } else if (RetAI.isInAlloca()) {
3869      Address Addr =
3870          Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
3871      Builder.CreateStore(SRetPtr.getPointer(), Addr);
3872    }
3873  }
3874
3875  Address swiftErrorTemp = Address::invalid();
3876  Address swiftErrorArg = Address::invalid();
3877
3878  // Translate all of the arguments as necessary to match the IR lowering.
3879  assert(CallInfo.arg_size() == CallArgs.size() &&
3880         "Mismatch between function signature & arguments.");
3881  unsigned ArgNo = 0;
3882  CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3883  for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3884       I != E; ++I, ++info_it, ++ArgNo) {
3885    const ABIArgInfo &ArgInfo = info_it->info;
3886
3887    // Insert a padding argument to ensure proper alignment.
3888    if (IRFunctionArgs.hasPaddingArg(ArgNo))
3889      IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3890          llvm::UndefValue::get(ArgInfo.getPaddingType());
3891
3892    unsigned FirstIRArg, NumIRArgs;
3893    std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3894
3895    switch (ArgInfo.getKind()) {
3896    case ABIArgInfo::InAlloca: {
3897      assert(NumIRArgs == 0);
3898      assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3899      if (I->isAggregate()) {
3900        // Replace the placeholder with the appropriate argument slot GEP.
3901        Address Addr = I->hasLValue()
3902                           ? I->getKnownLValue().getAddress()
3903                           : I->getKnownRValue().getAggregateAddress();
3904        llvm::Instruction *Placeholder =
3905            cast<llvm::Instruction>(Addr.getPointer());
3906        CGBuilderTy::InsertPoint IP = Builder.saveIP();
3907        Builder.SetInsertPoint(Placeholder);
3908        Addr =
3909            Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
3910        Builder.restoreIP(IP);
3911        deferPlaceholderReplacement(Placeholder, Addr.getPointer());
3912      } else {
3913        // Store the RValue into the argument struct.
3914        Address Addr =
3915            Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
3916        unsigned AS = Addr.getType()->getPointerAddressSpace();
3917        llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3918        // There are some cases where a trivial bitcast is not avoidable.  The
3919        // definition of a type later in a translation unit may change it's type
3920        // from {}* to (%struct.foo*)*.
3921        if (Addr.getType() != MemType)
3922          Addr = Builder.CreateBitCast(Addr, MemType);
3923        I->copyInto(*this, Addr);
3924      }
3925      break;
3926    }
3927
3928    case ABIArgInfo::Indirect: {
3929      assert(NumIRArgs == 1);
3930      if (!I->isAggregate()) {
3931        // Make a temporary alloca to pass the argument.
3932        Address Addr = CreateMemTempWithoutCast(
3933            I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
3934        IRCallArgs[FirstIRArg] = Addr.getPointer();
3935
3936        I->copyInto(*this, Addr);
3937      } else {
3938        // We want to avoid creating an unnecessary temporary+copy here;
3939        // however, we need one in three cases:
3940        // 1. If the argument is not byval, and we are required to copy the
3941        //    source.  (This case doesn't occur on any common architecture.)
3942        // 2. If the argument is byval, RV is not sufficiently aligned, and
3943        //    we cannot force it to be sufficiently aligned.
3944        // 3. If the argument is byval, but RV is not located in default
3945        //    or alloca address space.
3946        Address Addr = I->hasLValue()
3947                           ? I->getKnownLValue().getAddress()
3948                           : I->getKnownRValue().getAggregateAddress();
3949        llvm::Value *V = Addr.getPointer();
3950        CharUnits Align = ArgInfo.getIndirectAlign();
3951        const llvm::DataLayout *TD = &CGM.getDataLayout();
3952
3953        assert((FirstIRArg >= IRFuncTy->getNumParams() ||
3954                IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
3955                    TD->getAllocaAddrSpace()) &&
3956               "indirect argument must be in alloca address space");
3957
3958        bool NeedCopy = false;
3959
3960        if (Addr.getAlignment() < Align &&
3961            llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) <
3962                Align.getQuantity()) {
3963          NeedCopy = true;
3964        } else if (I->hasLValue()) {
3965          auto LV = I->getKnownLValue();
3966          auto AS = LV.getAddressSpace();
3967
3968          if ((!ArgInfo.getIndirectByVal() &&
3969               (LV.getAlignment() >=
3970                getContext().getTypeAlignInChars(I->Ty)))) {
3971            NeedCopy = true;
3972          }
3973          if (!getLangOpts().OpenCL) {
3974            if ((ArgInfo.getIndirectByVal() &&
3975                (AS != LangAS::Default &&
3976                 AS != CGM.getASTAllocaAddressSpace()))) {
3977              NeedCopy = true;
3978            }
3979          }
3980          // For OpenCL even if RV is located in default or alloca address space
3981          // we don't want to perform address space cast for it.
3982          else if ((ArgInfo.getIndirectByVal() &&
3983                    Addr.getType()->getAddressSpace() != IRFuncTy->
3984                      getParamType(FirstIRArg)->getPointerAddressSpace())) {
3985            NeedCopy = true;
3986          }
3987        }
3988
3989        if (NeedCopy) {
3990          // Create an aligned temporary, and copy to it.
3991          Address AI = CreateMemTempWithoutCast(
3992              I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
3993          IRCallArgs[FirstIRArg] = AI.getPointer();
3994          I->copyInto(*this, AI);
3995        } else {
3996          // Skip the extra memcpy call.
3997          auto *T = V->getType()->getPointerElementType()->getPointerTo(
3998              CGM.getDataLayout().getAllocaAddrSpace());
3999          IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4000              *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4001              true);
4002        }
4003      }
4004      break;
4005    }
4006
4007    case ABIArgInfo::Ignore:
4008      assert(NumIRArgs == 0);
4009      break;
4010
4011    case ABIArgInfo::Extend:
4012    case ABIArgInfo::Direct: {
4013      if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4014          ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4015          ArgInfo.getDirectOffset() == 0) {
4016        assert(NumIRArgs == 1);
4017        llvm::Value *V;
4018        if (!I->isAggregate())
4019          V = I->getKnownRValue().getScalarVal();
4020        else
4021          V = Builder.CreateLoad(
4022              I->hasLValue() ? I->getKnownLValue().getAddress()
4023                             : I->getKnownRValue().getAggregateAddress());
4024
4025        // Implement swifterror by copying into a new swifterror argument.
4026        // We'll write back in the normal path out of the call.
4027        if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4028              == ParameterABI::SwiftErrorResult) {
4029          assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4030
4031          QualType pointeeTy = I->Ty->getPointeeType();
4032          swiftErrorArg =
4033            Address(V, getContext().getTypeAlignInChars(pointeeTy));
4034
4035          swiftErrorTemp =
4036            CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4037          V = swiftErrorTemp.getPointer();
4038          cast<llvm::AllocaInst>(V)->setSwiftError(true);
4039
4040          llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4041          Builder.CreateStore(errorValue, swiftErrorTemp);
4042        }
4043
4044        // We might have to widen integers, but we should never truncate.
4045        if (ArgInfo.getCoerceToType() != V->getType() &&
4046            V->getType()->isIntegerTy())
4047          V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4048
4049        // If the argument doesn't match, perform a bitcast to coerce it.  This
4050        // can happen due to trivial type mismatches.
4051        if (FirstIRArg < IRFuncTy->getNumParams() &&
4052            V->getType() != IRFuncTy->getParamType(FirstIRArg))
4053          V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4054
4055        IRCallArgs[FirstIRArg] = V;
4056        break;
4057      }
4058
4059      // FIXME: Avoid the conversion through memory if possible.
4060      Address Src = Address::invalid();
4061      if (!I->isAggregate()) {
4062        Src = CreateMemTemp(I->Ty, "coerce");
4063        I->copyInto(*this, Src);
4064      } else {
4065        Src = I->hasLValue() ? I->getKnownLValue().getAddress()
4066                             : I->getKnownRValue().getAggregateAddress();
4067      }
4068
4069      // If the value is offset in memory, apply the offset now.
4070      Src = emitAddressAtOffset(*this, Src, ArgInfo);
4071
4072      // Fast-isel and the optimizer generally like scalar values better than
4073      // FCAs, so we flatten them if this is safe to do for this argument.
4074      llvm::StructType *STy =
4075            dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4076      if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4077        llvm::Type *SrcTy = Src.getType()->getElementType();
4078        uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4079        uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4080
4081        // If the source type is smaller than the destination type of the
4082        // coerce-to logic, copy the source value into a temp alloca the size
4083        // of the destination type to allow loading all of it. The bits past
4084        // the source value are left undef.
4085        if (SrcSize < DstSize) {
4086          Address TempAlloca
4087            = CreateTempAlloca(STy, Src.getAlignment(),
4088                               Src.getName() + ".coerce");
4089          Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4090          Src = TempAlloca;
4091        } else {
4092          Src = Builder.CreateBitCast(Src,
4093                                      STy->getPointerTo(Src.getAddressSpace()));
4094        }
4095
4096        assert(NumIRArgs == STy->getNumElements());
4097        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4098          Address EltPtr = Builder.CreateStructGEP(Src, i);
4099          llvm::Value *LI = Builder.CreateLoad(EltPtr);
4100          IRCallArgs[FirstIRArg + i] = LI;
4101        }
4102      } else {
4103        // In the simple case, just pass the coerced loaded value.
4104        assert(NumIRArgs == 1);
4105        IRCallArgs[FirstIRArg] =
4106          CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4107      }
4108
4109      break;
4110    }
4111
4112    case ABIArgInfo::CoerceAndExpand: {
4113      auto coercionType = ArgInfo.getCoerceAndExpandType();
4114      auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4115
4116      llvm::Value *tempSize = nullptr;
4117      Address addr = Address::invalid();
4118      Address AllocaAddr = Address::invalid();
4119      if (I->isAggregate()) {
4120        addr = I->hasLValue() ? I->getKnownLValue().getAddress()
4121                              : I->getKnownRValue().getAggregateAddress();
4122
4123      } else {
4124        RValue RV = I->getKnownRValue();
4125        assert(RV.isScalar()); // complex should always just be direct
4126
4127        llvm::Type *scalarType = RV.getScalarVal()->getType();
4128        auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4129        auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4130
4131        // Materialize to a temporary.
4132        addr = CreateTempAlloca(RV.getScalarVal()->getType(),
4133                                CharUnits::fromQuantity(std::max(
4134                                    layout->getAlignment(), scalarAlign)),
4135                                "tmp",
4136                                /*ArraySize=*/nullptr, &AllocaAddr);
4137        tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
4138
4139        Builder.CreateStore(RV.getScalarVal(), addr);
4140      }
4141
4142      addr = Builder.CreateElementBitCast(addr, coercionType);
4143
4144      unsigned IRArgPos = FirstIRArg;
4145      for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4146        llvm::Type *eltType = coercionType->getElementType(i);
4147        if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4148        Address eltAddr = Builder.CreateStructGEP(addr, i);
4149        llvm::Value *elt = Builder.CreateLoad(eltAddr);
4150        IRCallArgs[IRArgPos++] = elt;
4151      }
4152      assert(IRArgPos == FirstIRArg + NumIRArgs);
4153
4154      if (tempSize) {
4155        EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
4156      }
4157
4158      break;
4159    }
4160
4161    case ABIArgInfo::Expand:
4162      unsigned IRArgPos = FirstIRArg;
4163      ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
4164      assert(IRArgPos == FirstIRArg + NumIRArgs);
4165      break;
4166    }
4167  }
4168
4169  const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
4170  llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
4171
4172  // If we're using inalloca, set up that argument.
4173  if (ArgMemory.isValid()) {
4174    llvm::Value *Arg = ArgMemory.getPointer();
4175    if (CallInfo.isVariadic()) {
4176      // When passing non-POD arguments by value to variadic functions, we will
4177      // end up with a variadic prototype and an inalloca call site.  In such
4178      // cases, we can't do any parameter mismatch checks.  Give up and bitcast
4179      // the callee.
4180      unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4181      CalleePtr =
4182          Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
4183    } else {
4184      llvm::Type *LastParamTy =
4185          IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4186      if (Arg->getType() != LastParamTy) {
4187#ifndef NDEBUG
4188        // Assert that these structs have equivalent element types.
4189        llvm::StructType *FullTy = CallInfo.getArgStruct();
4190        llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4191            cast<llvm::PointerType>(LastParamTy)->getElementType());
4192        assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4193        for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4194                                                DE = DeclaredTy->element_end(),
4195                                                FI = FullTy->element_begin();
4196             DI != DE; ++DI, ++FI)
4197          assert(*DI == *FI);
4198#endif
4199        Arg = Builder.CreateBitCast(Arg, LastParamTy);
4200      }
4201    }
4202    assert(IRFunctionArgs.hasInallocaArg());
4203    IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4204  }
4205
4206  // 2. Prepare the function pointer.
4207
4208  // If the callee is a bitcast of a non-variadic function to have a
4209  // variadic function pointer type, check to see if we can remove the
4210  // bitcast.  This comes up with unprototyped functions.
4211  //
4212  // This makes the IR nicer, but more importantly it ensures that we
4213  // can inline the function at -O0 if it is marked always_inline.
4214  auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
4215                                   llvm::Value *Ptr) -> llvm::Function * {
4216    if (!CalleeFT->isVarArg())
4217      return nullptr;
4218
4219    // Get underlying value if it's a bitcast
4220    if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
4221      if (CE->getOpcode() == llvm::Instruction::BitCast)
4222        Ptr = CE->getOperand(0);
4223    }
4224
4225    llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
4226    if (!OrigFn)
4227      return nullptr;
4228
4229    llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4230
4231    // If the original type is variadic, or if any of the component types
4232    // disagree, we cannot remove the cast.
4233    if (OrigFT->isVarArg() ||
4234        OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4235        OrigFT->getReturnType() != CalleeFT->getReturnType())
4236      return nullptr;
4237
4238    for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4239      if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4240        return nullptr;
4241
4242    return OrigFn;
4243  };
4244
4245  if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
4246    CalleePtr = OrigFn;
4247    IRFuncTy = OrigFn->getFunctionType();
4248  }
4249
4250  // 3. Perform the actual call.
4251
4252  // Deactivate any cleanups that we're supposed to do immediately before
4253  // the call.
4254  if (!CallArgs.getCleanupsToDeactivate().empty())
4255    deactivateArgCleanupsBeforeCall(*this, CallArgs);
4256
4257  // Assert that the arguments we computed match up.  The IR verifier
4258  // will catch this, but this is a common enough source of problems
4259  // during IRGen changes that it's way better for debugging to catch
4260  // it ourselves here.
4261#ifndef NDEBUG
4262  assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4263  for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4264    // Inalloca argument can have different type.
4265    if (IRFunctionArgs.hasInallocaArg() &&
4266        i == IRFunctionArgs.getInallocaArgNo())
4267      continue;
4268    if (i < IRFuncTy->getNumParams())
4269      assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4270  }
4271#endif
4272
4273  // Update the largest vector width if any arguments have vector types.
4274  for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4275    if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
4276      LargestVectorWidth = std::max(LargestVectorWidth,
4277                                    VT->getPrimitiveSizeInBits());
4278  }
4279
4280  // Compute the calling convention and attributes.
4281  unsigned CallingConv;
4282  llvm::AttributeList Attrs;
4283  CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
4284                             Callee.getAbstractInfo(), Attrs, CallingConv,
4285                             /*AttrOnCallSite=*/true);
4286
4287  // Apply some call-site-specific attributes.
4288  // TODO: work this into building the attribute set.
4289
4290  // Apply always_inline to all calls within flatten functions.
4291  // FIXME: should this really take priority over __try, below?
4292  if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4293      !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
4294    Attrs =
4295        Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4296                           llvm::Attribute::AlwaysInline);
4297  }
4298
4299  // Disable inlining inside SEH __try blocks.
4300  if (isSEHTryScope()) {
4301    Attrs =
4302        Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4303                           llvm::Attribute::NoInline);
4304  }
4305
4306  // Decide whether to use a call or an invoke.
4307  bool CannotThrow;
4308  if (currentFunctionUsesSEHTry()) {
4309    // SEH cares about asynchronous exceptions, so everything can "throw."
4310    CannotThrow = false;
4311  } else if (isCleanupPadScope() &&
4312             EHPersonality::get(*this).isMSVCXXPersonality()) {
4313    // The MSVC++ personality will implicitly terminate the program if an
4314    // exception is thrown during a cleanup outside of a try/catch.
4315    // We don't need to model anything in IR to get this behavior.
4316    CannotThrow = true;
4317  } else {
4318    // Otherwise, nounwind call sites will never throw.
4319    CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex,
4320                                     llvm::Attribute::NoUnwind);
4321  }
4322
4323  // If we made a temporary, be sure to clean up after ourselves. Note that we
4324  // can't depend on being inside of an ExprWithCleanups, so we need to manually
4325  // pop this cleanup later on. Being eager about this is OK, since this
4326  // temporary is 'invisible' outside of the callee.
4327  if (UnusedReturnSizePtr)
4328    pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
4329                                         UnusedReturnSizePtr);
4330
4331  llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4332
4333  SmallVector<llvm::OperandBundleDef, 1> BundleList =
4334      getBundlesForFunclet(CalleePtr);
4335
4336  // Emit the actual call/invoke instruction.
4337  llvm::CallBase *CI;
4338  if (!InvokeDest) {
4339    CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
4340  } else {
4341    llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4342    CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
4343                              BundleList);
4344    EmitBlock(Cont);
4345  }
4346  if (callOrInvoke)
4347    *callOrInvoke = CI;
4348
4349  // Apply the attributes and calling convention.
4350  CI->setAttributes(Attrs);
4351  CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4352
4353  // Apply various metadata.
4354
4355  if (!CI->getType()->isVoidTy())
4356    CI->setName("call");
4357
4358  // Update largest vector width from the return type.
4359  if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
4360    LargestVectorWidth = std::max(LargestVectorWidth,
4361                                  VT->getPrimitiveSizeInBits());
4362
4363  // Insert instrumentation or attach profile metadata at indirect call sites.
4364  // For more details, see the comment before the definition of
4365  // IPVK_IndirectCallTarget in InstrProfData.inc.
4366  if (!CI->getCalledFunction())
4367    PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4368                     CI, CalleePtr);
4369
4370  // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4371  // optimizer it can aggressively ignore unwind edges.
4372  if (CGM.getLangOpts().ObjCAutoRefCount)
4373    AddObjCARCExceptionMetadata(CI);
4374
4375  // Suppress tail calls if requested.
4376  if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4377    if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4378      Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4379  }
4380
4381  // Add metadata for calls to MSAllocator functions
4382  if (getDebugInfo() && TargetDecl &&
4383      TargetDecl->hasAttr<MSAllocatorAttr>())
4384    getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy, Loc);
4385
4386  // 4. Finish the call.
4387
4388  // If the call doesn't return, finish the basic block and clear the
4389  // insertion point; this allows the rest of IRGen to discard
4390  // unreachable code.
4391  if (CI->doesNotReturn()) {
4392    if (UnusedReturnSizePtr)
4393      PopCleanupBlock();
4394
4395    // Strip away the noreturn attribute to better diagnose unreachable UB.
4396    if (SanOpts.has(SanitizerKind::Unreachable)) {
4397      // Also remove from function since CallBase::hasFnAttr additionally checks
4398      // attributes of the called function.
4399      if (auto *F = CI->getCalledFunction())
4400        F->removeFnAttr(llvm::Attribute::NoReturn);
4401      CI->removeAttribute(llvm::AttributeList::FunctionIndex,
4402                          llvm::Attribute::NoReturn);
4403
4404      // Avoid incompatibility with ASan which relies on the `noreturn`
4405      // attribute to insert handler calls.
4406      if (SanOpts.hasOneOf(SanitizerKind::Address |
4407                           SanitizerKind::KernelAddress)) {
4408        SanitizerScope SanScope(this);
4409        llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
4410        Builder.SetInsertPoint(CI);
4411        auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
4412        llvm::FunctionCallee Fn =
4413            CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
4414        EmitNounwindRuntimeCall(Fn);
4415      }
4416    }
4417
4418    EmitUnreachable(Loc);
4419    Builder.ClearInsertionPoint();
4420
4421    // FIXME: For now, emit a dummy basic block because expr emitters in
4422    // generally are not ready to handle emitting expressions at unreachable
4423    // points.
4424    EnsureInsertPoint();
4425
4426    // Return a reasonable RValue.
4427    return GetUndefRValue(RetTy);
4428  }
4429
4430  // Perform the swifterror writeback.
4431  if (swiftErrorTemp.isValid()) {
4432    llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
4433    Builder.CreateStore(errorResult, swiftErrorArg);
4434  }
4435
4436  // Emit any call-associated writebacks immediately.  Arguably this
4437  // should happen after any return-value munging.
4438  if (CallArgs.hasWritebacks())
4439    emitWritebacks(*this, CallArgs);
4440
4441  // The stack cleanup for inalloca arguments has to run out of the normal
4442  // lexical order, so deactivate it and run it manually here.
4443  CallArgs.freeArgumentMemory(*this);
4444
4445  // Extract the return value.
4446  RValue Ret = [&] {
4447    switch (RetAI.getKind()) {
4448    case ABIArgInfo::CoerceAndExpand: {
4449      auto coercionType = RetAI.getCoerceAndExpandType();
4450
4451      Address addr = SRetPtr;
4452      addr = Builder.CreateElementBitCast(addr, coercionType);
4453
4454      assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
4455      bool requiresExtract = isa<llvm::StructType>(CI->getType());
4456
4457      unsigned unpaddedIndex = 0;
4458      for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4459        llvm::Type *eltType = coercionType->getElementType(i);
4460        if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4461        Address eltAddr = Builder.CreateStructGEP(addr, i);
4462        llvm::Value *elt = CI;
4463        if (requiresExtract)
4464          elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
4465        else
4466          assert(unpaddedIndex == 0);
4467        Builder.CreateStore(elt, eltAddr);
4468      }
4469      // FALLTHROUGH
4470      LLVM_FALLTHROUGH;
4471    }
4472
4473    case ABIArgInfo::InAlloca:
4474    case ABIArgInfo::Indirect: {
4475      RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
4476      if (UnusedReturnSizePtr)
4477        PopCleanupBlock();
4478      return ret;
4479    }
4480
4481    case ABIArgInfo::Ignore:
4482      // If we are ignoring an argument that had a result, make sure to
4483      // construct the appropriate return value for our caller.
4484      return GetUndefRValue(RetTy);
4485
4486    case ABIArgInfo::Extend:
4487    case ABIArgInfo::Direct: {
4488      llvm::Type *RetIRTy = ConvertType(RetTy);
4489      if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
4490        switch (getEvaluationKind(RetTy)) {
4491        case TEK_Complex: {
4492          llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
4493          llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
4494          return RValue::getComplex(std::make_pair(Real, Imag));
4495        }
4496        case TEK_Aggregate: {
4497          Address DestPtr = ReturnValue.getValue();
4498          bool DestIsVolatile = ReturnValue.isVolatile();
4499
4500          if (!DestPtr.isValid()) {
4501            DestPtr = CreateMemTemp(RetTy, "agg.tmp");
4502            DestIsVolatile = false;
4503          }
4504          BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
4505          return RValue::getAggregate(DestPtr);
4506        }
4507        case TEK_Scalar: {
4508          // If the argument doesn't match, perform a bitcast to coerce it.  This
4509          // can happen due to trivial type mismatches.
4510          llvm::Value *V = CI;
4511          if (V->getType() != RetIRTy)
4512            V = Builder.CreateBitCast(V, RetIRTy);
4513          return RValue::get(V);
4514        }
4515        }
4516        llvm_unreachable("bad evaluation kind");
4517      }
4518
4519      Address DestPtr = ReturnValue.getValue();
4520      bool DestIsVolatile = ReturnValue.isVolatile();
4521
4522      if (!DestPtr.isValid()) {
4523        DestPtr = CreateMemTemp(RetTy, "coerce");
4524        DestIsVolatile = false;
4525      }
4526
4527      // If the value is offset in memory, apply the offset now.
4528      Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
4529      CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
4530
4531      return convertTempToRValue(DestPtr, RetTy, SourceLocation());
4532    }
4533
4534    case ABIArgInfo::Expand:
4535      llvm_unreachable("Invalid ABI kind for return argument");
4536    }
4537
4538    llvm_unreachable("Unhandled ABIArgInfo::Kind");
4539  } ();
4540
4541  // Emit the assume_aligned check on the return value.
4542  if (Ret.isScalar() && TargetDecl) {
4543    if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
4544      llvm::Value *OffsetValue = nullptr;
4545      if (const auto *Offset = AA->getOffset())
4546        OffsetValue = EmitScalarExpr(Offset);
4547
4548      llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
4549      llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
4550      EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(),
4551                              AlignmentCI, OffsetValue);
4552    } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) {
4553      llvm::Value *AlignmentVal = CallArgs[AA->getParamIndex().getLLVMIndex()]
4554                                      .getRValue(*this)
4555                                      .getScalarVal();
4556      EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(),
4557                              AlignmentVal);
4558    }
4559  }
4560
4561  return Ret;
4562}
4563
4564CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
4565  if (isVirtual()) {
4566    const CallExpr *CE = getVirtualCallExpr();
4567    return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
4568        CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
4569        CE ? CE->getBeginLoc() : SourceLocation());
4570  }
4571
4572  return *this;
4573}
4574
4575/* VarArg handling */
4576
4577Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
4578  VAListAddr = VE->isMicrosoftABI()
4579                 ? EmitMSVAListRef(VE->getSubExpr())
4580                 : EmitVAListRef(VE->getSubExpr());
4581  QualType Ty = VE->getType();
4582  if (VE->isMicrosoftABI())
4583    return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
4584  return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
4585}
4586