ThreadSafety.cpp revision 360784
1//===- ThreadSafety.cpp ---------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// A intra-procedural analysis for thread safety (e.g. deadlocks and race
10// conditions), based off of an annotation system.
11//
12// See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html
13// for more information.
14//
15//===----------------------------------------------------------------------===//
16
17#include "clang/Analysis/Analyses/ThreadSafety.h"
18#include "clang/AST/Attr.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclGroup.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/OperationKinds.h"
25#include "clang/AST/Stmt.h"
26#include "clang/AST/StmtVisitor.h"
27#include "clang/AST/Type.h"
28#include "clang/Analysis/Analyses/PostOrderCFGView.h"
29#include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
30#include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
31#include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
32#include "clang/Analysis/Analyses/ThreadSafetyUtil.h"
33#include "clang/Analysis/AnalysisDeclContext.h"
34#include "clang/Analysis/CFG.h"
35#include "clang/Basic/Builtins.h"
36#include "clang/Basic/LLVM.h"
37#include "clang/Basic/OperatorKinds.h"
38#include "clang/Basic/SourceLocation.h"
39#include "clang/Basic/Specifiers.h"
40#include "llvm/ADT/ArrayRef.h"
41#include "llvm/ADT/DenseMap.h"
42#include "llvm/ADT/ImmutableMap.h"
43#include "llvm/ADT/Optional.h"
44#include "llvm/ADT/PointerIntPair.h"
45#include "llvm/ADT/STLExtras.h"
46#include "llvm/ADT/SmallVector.h"
47#include "llvm/ADT/StringRef.h"
48#include "llvm/Support/Allocator.h"
49#include "llvm/Support/Casting.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/raw_ostream.h"
52#include <algorithm>
53#include <cassert>
54#include <functional>
55#include <iterator>
56#include <memory>
57#include <string>
58#include <type_traits>
59#include <utility>
60#include <vector>
61
62using namespace clang;
63using namespace threadSafety;
64
65// Key method definition
66ThreadSafetyHandler::~ThreadSafetyHandler() = default;
67
68/// Issue a warning about an invalid lock expression
69static void warnInvalidLock(ThreadSafetyHandler &Handler,
70                            const Expr *MutexExp, const NamedDecl *D,
71                            const Expr *DeclExp, StringRef Kind) {
72  SourceLocation Loc;
73  if (DeclExp)
74    Loc = DeclExp->getExprLoc();
75
76  // FIXME: add a note about the attribute location in MutexExp or D
77  if (Loc.isValid())
78    Handler.handleInvalidLockExp(Kind, Loc);
79}
80
81namespace {
82
83/// A set of CapabilityExpr objects, which are compiled from thread safety
84/// attributes on a function.
85class CapExprSet : public SmallVector<CapabilityExpr, 4> {
86public:
87  /// Push M onto list, but discard duplicates.
88  void push_back_nodup(const CapabilityExpr &CapE) {
89    iterator It = std::find_if(begin(), end(),
90                               [=](const CapabilityExpr &CapE2) {
91      return CapE.equals(CapE2);
92    });
93    if (It == end())
94      push_back(CapE);
95  }
96};
97
98class FactManager;
99class FactSet;
100
101/// This is a helper class that stores a fact that is known at a
102/// particular point in program execution.  Currently, a fact is a capability,
103/// along with additional information, such as where it was acquired, whether
104/// it is exclusive or shared, etc.
105///
106/// FIXME: this analysis does not currently support re-entrant locking.
107class FactEntry : public CapabilityExpr {
108private:
109  /// Exclusive or shared.
110  LockKind LKind;
111
112  /// Where it was acquired.
113  SourceLocation AcquireLoc;
114
115  /// True if the lock was asserted.
116  bool Asserted;
117
118  /// True if the lock was declared.
119  bool Declared;
120
121public:
122  FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
123            bool Asrt, bool Declrd = false)
124      : CapabilityExpr(CE), LKind(LK), AcquireLoc(Loc), Asserted(Asrt),
125        Declared(Declrd) {}
126  virtual ~FactEntry() = default;
127
128  LockKind kind() const { return LKind;      }
129  SourceLocation loc() const { return AcquireLoc; }
130  bool asserted() const { return Asserted; }
131  bool declared() const { return Declared; }
132
133  void setDeclared(bool D) { Declared = D; }
134
135  virtual void
136  handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
137                                SourceLocation JoinLoc, LockErrorKind LEK,
138                                ThreadSafetyHandler &Handler) const = 0;
139  virtual void handleLock(FactSet &FSet, FactManager &FactMan,
140                          const FactEntry &entry, ThreadSafetyHandler &Handler,
141                          StringRef DiagKind) const = 0;
142  virtual void handleUnlock(FactSet &FSet, FactManager &FactMan,
143                            const CapabilityExpr &Cp, SourceLocation UnlockLoc,
144                            bool FullyRemove, ThreadSafetyHandler &Handler,
145                            StringRef DiagKind) const = 0;
146
147  // Return true if LKind >= LK, where exclusive > shared
148  bool isAtLeast(LockKind LK) const {
149    return  (LKind == LK_Exclusive) || (LK == LK_Shared);
150  }
151};
152
153using FactID = unsigned short;
154
155/// FactManager manages the memory for all facts that are created during
156/// the analysis of a single routine.
157class FactManager {
158private:
159  std::vector<std::unique_ptr<const FactEntry>> Facts;
160
161public:
162  FactID newFact(std::unique_ptr<FactEntry> Entry) {
163    Facts.push_back(std::move(Entry));
164    return static_cast<unsigned short>(Facts.size() - 1);
165  }
166
167  const FactEntry &operator[](FactID F) const { return *Facts[F]; }
168};
169
170/// A FactSet is the set of facts that are known to be true at a
171/// particular program point.  FactSets must be small, because they are
172/// frequently copied, and are thus implemented as a set of indices into a
173/// table maintained by a FactManager.  A typical FactSet only holds 1 or 2
174/// locks, so we can get away with doing a linear search for lookup.  Note
175/// that a hashtable or map is inappropriate in this case, because lookups
176/// may involve partial pattern matches, rather than exact matches.
177class FactSet {
178private:
179  using FactVec = SmallVector<FactID, 4>;
180
181  FactVec FactIDs;
182
183public:
184  using iterator = FactVec::iterator;
185  using const_iterator = FactVec::const_iterator;
186
187  iterator begin() { return FactIDs.begin(); }
188  const_iterator begin() const { return FactIDs.begin(); }
189
190  iterator end() { return FactIDs.end(); }
191  const_iterator end() const { return FactIDs.end(); }
192
193  bool isEmpty() const { return FactIDs.size() == 0; }
194
195  // Return true if the set contains only negative facts
196  bool isEmpty(FactManager &FactMan) const {
197    for (const auto FID : *this) {
198      if (!FactMan[FID].negative())
199        return false;
200    }
201    return true;
202  }
203
204  void addLockByID(FactID ID) { FactIDs.push_back(ID); }
205
206  FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) {
207    FactID F = FM.newFact(std::move(Entry));
208    FactIDs.push_back(F);
209    return F;
210  }
211
212  bool removeLock(FactManager& FM, const CapabilityExpr &CapE) {
213    unsigned n = FactIDs.size();
214    if (n == 0)
215      return false;
216
217    for (unsigned i = 0; i < n-1; ++i) {
218      if (FM[FactIDs[i]].matches(CapE)) {
219        FactIDs[i] = FactIDs[n-1];
220        FactIDs.pop_back();
221        return true;
222      }
223    }
224    if (FM[FactIDs[n-1]].matches(CapE)) {
225      FactIDs.pop_back();
226      return true;
227    }
228    return false;
229  }
230
231  iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) {
232    return std::find_if(begin(), end(), [&](FactID ID) {
233      return FM[ID].matches(CapE);
234    });
235  }
236
237  const FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const {
238    auto I = std::find_if(begin(), end(), [&](FactID ID) {
239      return FM[ID].matches(CapE);
240    });
241    return I != end() ? &FM[*I] : nullptr;
242  }
243
244  const FactEntry *findLockUniv(FactManager &FM,
245                                const CapabilityExpr &CapE) const {
246    auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
247      return FM[ID].matchesUniv(CapE);
248    });
249    return I != end() ? &FM[*I] : nullptr;
250  }
251
252  const FactEntry *findPartialMatch(FactManager &FM,
253                                    const CapabilityExpr &CapE) const {
254    auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
255      return FM[ID].partiallyMatches(CapE);
256    });
257    return I != end() ? &FM[*I] : nullptr;
258  }
259
260  bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const {
261    auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
262      return FM[ID].valueDecl() == Vd;
263    });
264    return I != end();
265  }
266};
267
268class ThreadSafetyAnalyzer;
269
270} // namespace
271
272namespace clang {
273namespace threadSafety {
274
275class BeforeSet {
276private:
277  using BeforeVect = SmallVector<const ValueDecl *, 4>;
278
279  struct BeforeInfo {
280    BeforeVect Vect;
281    int Visited = 0;
282
283    BeforeInfo() = default;
284    BeforeInfo(BeforeInfo &&) = default;
285  };
286
287  using BeforeMap =
288      llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>>;
289  using CycleMap = llvm::DenseMap<const ValueDecl *, bool>;
290
291public:
292  BeforeSet() = default;
293
294  BeforeInfo* insertAttrExprs(const ValueDecl* Vd,
295                              ThreadSafetyAnalyzer& Analyzer);
296
297  BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd,
298                                   ThreadSafetyAnalyzer &Analyzer);
299
300  void checkBeforeAfter(const ValueDecl* Vd,
301                        const FactSet& FSet,
302                        ThreadSafetyAnalyzer& Analyzer,
303                        SourceLocation Loc, StringRef CapKind);
304
305private:
306  BeforeMap BMap;
307  CycleMap CycMap;
308};
309
310} // namespace threadSafety
311} // namespace clang
312
313namespace {
314
315class LocalVariableMap;
316
317using LocalVarContext = llvm::ImmutableMap<const NamedDecl *, unsigned>;
318
319/// A side (entry or exit) of a CFG node.
320enum CFGBlockSide { CBS_Entry, CBS_Exit };
321
322/// CFGBlockInfo is a struct which contains all the information that is
323/// maintained for each block in the CFG.  See LocalVariableMap for more
324/// information about the contexts.
325struct CFGBlockInfo {
326  // Lockset held at entry to block
327  FactSet EntrySet;
328
329  // Lockset held at exit from block
330  FactSet ExitSet;
331
332  // Context held at entry to block
333  LocalVarContext EntryContext;
334
335  // Context held at exit from block
336  LocalVarContext ExitContext;
337
338  // Location of first statement in block
339  SourceLocation EntryLoc;
340
341  // Location of last statement in block.
342  SourceLocation ExitLoc;
343
344  // Used to replay contexts later
345  unsigned EntryIndex;
346
347  // Is this block reachable?
348  bool Reachable = false;
349
350  const FactSet &getSet(CFGBlockSide Side) const {
351    return Side == CBS_Entry ? EntrySet : ExitSet;
352  }
353
354  SourceLocation getLocation(CFGBlockSide Side) const {
355    return Side == CBS_Entry ? EntryLoc : ExitLoc;
356  }
357
358private:
359  CFGBlockInfo(LocalVarContext EmptyCtx)
360      : EntryContext(EmptyCtx), ExitContext(EmptyCtx) {}
361
362public:
363  static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
364};
365
366// A LocalVariableMap maintains a map from local variables to their currently
367// valid definitions.  It provides SSA-like functionality when traversing the
368// CFG.  Like SSA, each definition or assignment to a variable is assigned a
369// unique name (an integer), which acts as the SSA name for that definition.
370// The total set of names is shared among all CFG basic blocks.
371// Unlike SSA, we do not rewrite expressions to replace local variables declrefs
372// with their SSA-names.  Instead, we compute a Context for each point in the
373// code, which maps local variables to the appropriate SSA-name.  This map
374// changes with each assignment.
375//
376// The map is computed in a single pass over the CFG.  Subsequent analyses can
377// then query the map to find the appropriate Context for a statement, and use
378// that Context to look up the definitions of variables.
379class LocalVariableMap {
380public:
381  using Context = LocalVarContext;
382
383  /// A VarDefinition consists of an expression, representing the value of the
384  /// variable, along with the context in which that expression should be
385  /// interpreted.  A reference VarDefinition does not itself contain this
386  /// information, but instead contains a pointer to a previous VarDefinition.
387  struct VarDefinition {
388  public:
389    friend class LocalVariableMap;
390
391    // The original declaration for this variable.
392    const NamedDecl *Dec;
393
394    // The expression for this variable, OR
395    const Expr *Exp = nullptr;
396
397    // Reference to another VarDefinition
398    unsigned Ref = 0;
399
400    // The map with which Exp should be interpreted.
401    Context Ctx;
402
403    bool isReference() { return !Exp; }
404
405  private:
406    // Create ordinary variable definition
407    VarDefinition(const NamedDecl *D, const Expr *E, Context C)
408        : Dec(D), Exp(E), Ctx(C) {}
409
410    // Create reference to previous definition
411    VarDefinition(const NamedDecl *D, unsigned R, Context C)
412        : Dec(D), Ref(R), Ctx(C) {}
413  };
414
415private:
416  Context::Factory ContextFactory;
417  std::vector<VarDefinition> VarDefinitions;
418  std::vector<unsigned> CtxIndices;
419  std::vector<std::pair<const Stmt *, Context>> SavedContexts;
420
421public:
422  LocalVariableMap() {
423    // index 0 is a placeholder for undefined variables (aka phi-nodes).
424    VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext()));
425  }
426
427  /// Look up a definition, within the given context.
428  const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
429    const unsigned *i = Ctx.lookup(D);
430    if (!i)
431      return nullptr;
432    assert(*i < VarDefinitions.size());
433    return &VarDefinitions[*i];
434  }
435
436  /// Look up the definition for D within the given context.  Returns
437  /// NULL if the expression is not statically known.  If successful, also
438  /// modifies Ctx to hold the context of the return Expr.
439  const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
440    const unsigned *P = Ctx.lookup(D);
441    if (!P)
442      return nullptr;
443
444    unsigned i = *P;
445    while (i > 0) {
446      if (VarDefinitions[i].Exp) {
447        Ctx = VarDefinitions[i].Ctx;
448        return VarDefinitions[i].Exp;
449      }
450      i = VarDefinitions[i].Ref;
451    }
452    return nullptr;
453  }
454
455  Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
456
457  /// Return the next context after processing S.  This function is used by
458  /// clients of the class to get the appropriate context when traversing the
459  /// CFG.  It must be called for every assignment or DeclStmt.
460  Context getNextContext(unsigned &CtxIndex, const Stmt *S, Context C) {
461    if (SavedContexts[CtxIndex+1].first == S) {
462      CtxIndex++;
463      Context Result = SavedContexts[CtxIndex].second;
464      return Result;
465    }
466    return C;
467  }
468
469  void dumpVarDefinitionName(unsigned i) {
470    if (i == 0) {
471      llvm::errs() << "Undefined";
472      return;
473    }
474    const NamedDecl *Dec = VarDefinitions[i].Dec;
475    if (!Dec) {
476      llvm::errs() << "<<NULL>>";
477      return;
478    }
479    Dec->printName(llvm::errs());
480    llvm::errs() << "." << i << " " << ((const void*) Dec);
481  }
482
483  /// Dumps an ASCII representation of the variable map to llvm::errs()
484  void dump() {
485    for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
486      const Expr *Exp = VarDefinitions[i].Exp;
487      unsigned Ref = VarDefinitions[i].Ref;
488
489      dumpVarDefinitionName(i);
490      llvm::errs() << " = ";
491      if (Exp) Exp->dump();
492      else {
493        dumpVarDefinitionName(Ref);
494        llvm::errs() << "\n";
495      }
496    }
497  }
498
499  /// Dumps an ASCII representation of a Context to llvm::errs()
500  void dumpContext(Context C) {
501    for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
502      const NamedDecl *D = I.getKey();
503      D->printName(llvm::errs());
504      const unsigned *i = C.lookup(D);
505      llvm::errs() << " -> ";
506      dumpVarDefinitionName(*i);
507      llvm::errs() << "\n";
508    }
509  }
510
511  /// Builds the variable map.
512  void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph,
513                   std::vector<CFGBlockInfo> &BlockInfo);
514
515protected:
516  friend class VarMapBuilder;
517
518  // Get the current context index
519  unsigned getContextIndex() { return SavedContexts.size()-1; }
520
521  // Save the current context for later replay
522  void saveContext(const Stmt *S, Context C) {
523    SavedContexts.push_back(std::make_pair(S, C));
524  }
525
526  // Adds a new definition to the given context, and returns a new context.
527  // This method should be called when declaring a new variable.
528  Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) {
529    assert(!Ctx.contains(D));
530    unsigned newID = VarDefinitions.size();
531    Context NewCtx = ContextFactory.add(Ctx, D, newID);
532    VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
533    return NewCtx;
534  }
535
536  // Add a new reference to an existing definition.
537  Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
538    unsigned newID = VarDefinitions.size();
539    Context NewCtx = ContextFactory.add(Ctx, D, newID);
540    VarDefinitions.push_back(VarDefinition(D, i, Ctx));
541    return NewCtx;
542  }
543
544  // Updates a definition only if that definition is already in the map.
545  // This method should be called when assigning to an existing variable.
546  Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
547    if (Ctx.contains(D)) {
548      unsigned newID = VarDefinitions.size();
549      Context NewCtx = ContextFactory.remove(Ctx, D);
550      NewCtx = ContextFactory.add(NewCtx, D, newID);
551      VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
552      return NewCtx;
553    }
554    return Ctx;
555  }
556
557  // Removes a definition from the context, but keeps the variable name
558  // as a valid variable.  The index 0 is a placeholder for cleared definitions.
559  Context clearDefinition(const NamedDecl *D, Context Ctx) {
560    Context NewCtx = Ctx;
561    if (NewCtx.contains(D)) {
562      NewCtx = ContextFactory.remove(NewCtx, D);
563      NewCtx = ContextFactory.add(NewCtx, D, 0);
564    }
565    return NewCtx;
566  }
567
568  // Remove a definition entirely frmo the context.
569  Context removeDefinition(const NamedDecl *D, Context Ctx) {
570    Context NewCtx = Ctx;
571    if (NewCtx.contains(D)) {
572      NewCtx = ContextFactory.remove(NewCtx, D);
573    }
574    return NewCtx;
575  }
576
577  Context intersectContexts(Context C1, Context C2);
578  Context createReferenceContext(Context C);
579  void intersectBackEdge(Context C1, Context C2);
580};
581
582} // namespace
583
584// This has to be defined after LocalVariableMap.
585CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
586  return CFGBlockInfo(M.getEmptyContext());
587}
588
589namespace {
590
591/// Visitor which builds a LocalVariableMap
592class VarMapBuilder : public ConstStmtVisitor<VarMapBuilder> {
593public:
594  LocalVariableMap* VMap;
595  LocalVariableMap::Context Ctx;
596
597  VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
598      : VMap(VM), Ctx(C) {}
599
600  void VisitDeclStmt(const DeclStmt *S);
601  void VisitBinaryOperator(const BinaryOperator *BO);
602};
603
604} // namespace
605
606// Add new local variables to the variable map
607void VarMapBuilder::VisitDeclStmt(const DeclStmt *S) {
608  bool modifiedCtx = false;
609  const DeclGroupRef DGrp = S->getDeclGroup();
610  for (const auto *D : DGrp) {
611    if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) {
612      const Expr *E = VD->getInit();
613
614      // Add local variables with trivial type to the variable map
615      QualType T = VD->getType();
616      if (T.isTrivialType(VD->getASTContext())) {
617        Ctx = VMap->addDefinition(VD, E, Ctx);
618        modifiedCtx = true;
619      }
620    }
621  }
622  if (modifiedCtx)
623    VMap->saveContext(S, Ctx);
624}
625
626// Update local variable definitions in variable map
627void VarMapBuilder::VisitBinaryOperator(const BinaryOperator *BO) {
628  if (!BO->isAssignmentOp())
629    return;
630
631  Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
632
633  // Update the variable map and current context.
634  if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
635    const ValueDecl *VDec = DRE->getDecl();
636    if (Ctx.lookup(VDec)) {
637      if (BO->getOpcode() == BO_Assign)
638        Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
639      else
640        // FIXME -- handle compound assignment operators
641        Ctx = VMap->clearDefinition(VDec, Ctx);
642      VMap->saveContext(BO, Ctx);
643    }
644  }
645}
646
647// Computes the intersection of two contexts.  The intersection is the
648// set of variables which have the same definition in both contexts;
649// variables with different definitions are discarded.
650LocalVariableMap::Context
651LocalVariableMap::intersectContexts(Context C1, Context C2) {
652  Context Result = C1;
653  for (const auto &P : C1) {
654    const NamedDecl *Dec = P.first;
655    const unsigned *i2 = C2.lookup(Dec);
656    if (!i2)             // variable doesn't exist on second path
657      Result = removeDefinition(Dec, Result);
658    else if (*i2 != P.second)  // variable exists, but has different definition
659      Result = clearDefinition(Dec, Result);
660  }
661  return Result;
662}
663
664// For every variable in C, create a new variable that refers to the
665// definition in C.  Return a new context that contains these new variables.
666// (We use this for a naive implementation of SSA on loop back-edges.)
667LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
668  Context Result = getEmptyContext();
669  for (const auto &P : C)
670    Result = addReference(P.first, P.second, Result);
671  return Result;
672}
673
674// This routine also takes the intersection of C1 and C2, but it does so by
675// altering the VarDefinitions.  C1 must be the result of an earlier call to
676// createReferenceContext.
677void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
678  for (const auto &P : C1) {
679    unsigned i1 = P.second;
680    VarDefinition *VDef = &VarDefinitions[i1];
681    assert(VDef->isReference());
682
683    const unsigned *i2 = C2.lookup(P.first);
684    if (!i2 || (*i2 != i1))
685      VDef->Ref = 0;    // Mark this variable as undefined
686  }
687}
688
689// Traverse the CFG in topological order, so all predecessors of a block
690// (excluding back-edges) are visited before the block itself.  At
691// each point in the code, we calculate a Context, which holds the set of
692// variable definitions which are visible at that point in execution.
693// Visible variables are mapped to their definitions using an array that
694// contains all definitions.
695//
696// At join points in the CFG, the set is computed as the intersection of
697// the incoming sets along each edge, E.g.
698//
699//                       { Context                 | VarDefinitions }
700//   int x = 0;          { x -> x1                 | x1 = 0 }
701//   int y = 0;          { x -> x1, y -> y1        | y1 = 0, x1 = 0 }
702//   if (b) x = 1;       { x -> x2, y -> y1        | x2 = 1, y1 = 0, ... }
703//   else   x = 2;       { x -> x3, y -> y1        | x3 = 2, x2 = 1, ... }
704//   ...                 { y -> y1  (x is unknown) | x3 = 2, x2 = 1, ... }
705//
706// This is essentially a simpler and more naive version of the standard SSA
707// algorithm.  Those definitions that remain in the intersection are from blocks
708// that strictly dominate the current block.  We do not bother to insert proper
709// phi nodes, because they are not used in our analysis; instead, wherever
710// a phi node would be required, we simply remove that definition from the
711// context (E.g. x above).
712//
713// The initial traversal does not capture back-edges, so those need to be
714// handled on a separate pass.  Whenever the first pass encounters an
715// incoming back edge, it duplicates the context, creating new definitions
716// that refer back to the originals.  (These correspond to places where SSA
717// might have to insert a phi node.)  On the second pass, these definitions are
718// set to NULL if the variable has changed on the back-edge (i.e. a phi
719// node was actually required.)  E.g.
720//
721//                       { Context           | VarDefinitions }
722//   int x = 0, y = 0;   { x -> x1, y -> y1  | y1 = 0, x1 = 0 }
723//   while (b)           { x -> x2, y -> y1  | [1st:] x2=x1; [2nd:] x2=NULL; }
724//     x = x+1;          { x -> x3, y -> y1  | x3 = x2 + 1, ... }
725//   ...                 { y -> y1           | x3 = 2, x2 = 1, ... }
726void LocalVariableMap::traverseCFG(CFG *CFGraph,
727                                   const PostOrderCFGView *SortedGraph,
728                                   std::vector<CFGBlockInfo> &BlockInfo) {
729  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
730
731  CtxIndices.resize(CFGraph->getNumBlockIDs());
732
733  for (const auto *CurrBlock : *SortedGraph) {
734    unsigned CurrBlockID = CurrBlock->getBlockID();
735    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
736
737    VisitedBlocks.insert(CurrBlock);
738
739    // Calculate the entry context for the current block
740    bool HasBackEdges = false;
741    bool CtxInit = true;
742    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
743         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
744      // if *PI -> CurrBlock is a back edge, so skip it
745      if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) {
746        HasBackEdges = true;
747        continue;
748      }
749
750      unsigned PrevBlockID = (*PI)->getBlockID();
751      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
752
753      if (CtxInit) {
754        CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
755        CtxInit = false;
756      }
757      else {
758        CurrBlockInfo->EntryContext =
759          intersectContexts(CurrBlockInfo->EntryContext,
760                            PrevBlockInfo->ExitContext);
761      }
762    }
763
764    // Duplicate the context if we have back-edges, so we can call
765    // intersectBackEdges later.
766    if (HasBackEdges)
767      CurrBlockInfo->EntryContext =
768        createReferenceContext(CurrBlockInfo->EntryContext);
769
770    // Create a starting context index for the current block
771    saveContext(nullptr, CurrBlockInfo->EntryContext);
772    CurrBlockInfo->EntryIndex = getContextIndex();
773
774    // Visit all the statements in the basic block.
775    VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
776    for (const auto &BI : *CurrBlock) {
777      switch (BI.getKind()) {
778        case CFGElement::Statement: {
779          CFGStmt CS = BI.castAs<CFGStmt>();
780          VMapBuilder.Visit(CS.getStmt());
781          break;
782        }
783        default:
784          break;
785      }
786    }
787    CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
788
789    // Mark variables on back edges as "unknown" if they've been changed.
790    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
791         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
792      // if CurrBlock -> *SI is *not* a back edge
793      if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
794        continue;
795
796      CFGBlock *FirstLoopBlock = *SI;
797      Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
798      Context LoopEnd   = CurrBlockInfo->ExitContext;
799      intersectBackEdge(LoopBegin, LoopEnd);
800    }
801  }
802
803  // Put an extra entry at the end of the indexed context array
804  unsigned exitID = CFGraph->getExit().getBlockID();
805  saveContext(nullptr, BlockInfo[exitID].ExitContext);
806}
807
808/// Find the appropriate source locations to use when producing diagnostics for
809/// each block in the CFG.
810static void findBlockLocations(CFG *CFGraph,
811                               const PostOrderCFGView *SortedGraph,
812                               std::vector<CFGBlockInfo> &BlockInfo) {
813  for (const auto *CurrBlock : *SortedGraph) {
814    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
815
816    // Find the source location of the last statement in the block, if the
817    // block is not empty.
818    if (const Stmt *S = CurrBlock->getTerminatorStmt()) {
819      CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getBeginLoc();
820    } else {
821      for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
822           BE = CurrBlock->rend(); BI != BE; ++BI) {
823        // FIXME: Handle other CFGElement kinds.
824        if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
825          CurrBlockInfo->ExitLoc = CS->getStmt()->getBeginLoc();
826          break;
827        }
828      }
829    }
830
831    if (CurrBlockInfo->ExitLoc.isValid()) {
832      // This block contains at least one statement. Find the source location
833      // of the first statement in the block.
834      for (const auto &BI : *CurrBlock) {
835        // FIXME: Handle other CFGElement kinds.
836        if (Optional<CFGStmt> CS = BI.getAs<CFGStmt>()) {
837          CurrBlockInfo->EntryLoc = CS->getStmt()->getBeginLoc();
838          break;
839        }
840      }
841    } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
842               CurrBlock != &CFGraph->getExit()) {
843      // The block is empty, and has a single predecessor. Use its exit
844      // location.
845      CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
846          BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
847    }
848  }
849}
850
851namespace {
852
853class LockableFactEntry : public FactEntry {
854private:
855  /// managed by ScopedLockable object
856  bool Managed;
857
858public:
859  LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
860                    bool Mng = false, bool Asrt = false)
861      : FactEntry(CE, LK, Loc, Asrt), Managed(Mng) {}
862
863  void
864  handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
865                                SourceLocation JoinLoc, LockErrorKind LEK,
866                                ThreadSafetyHandler &Handler) const override {
867    if (!Managed && !asserted() && !negative() && !isUniversal()) {
868      Handler.handleMutexHeldEndOfScope("mutex", toString(), loc(), JoinLoc,
869                                        LEK);
870    }
871  }
872
873  void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
874                  ThreadSafetyHandler &Handler,
875                  StringRef DiagKind) const override {
876    Handler.handleDoubleLock(DiagKind, entry.toString(), loc(), entry.loc());
877  }
878
879  void handleUnlock(FactSet &FSet, FactManager &FactMan,
880                    const CapabilityExpr &Cp, SourceLocation UnlockLoc,
881                    bool FullyRemove, ThreadSafetyHandler &Handler,
882                    StringRef DiagKind) const override {
883    FSet.removeLock(FactMan, Cp);
884    if (!Cp.negative()) {
885      FSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
886                                !Cp, LK_Exclusive, UnlockLoc));
887    }
888  }
889};
890
891class ScopedLockableFactEntry : public FactEntry {
892private:
893  enum UnderlyingCapabilityKind {
894    UCK_Acquired,          ///< Any kind of acquired capability.
895    UCK_ReleasedShared,    ///< Shared capability that was released.
896    UCK_ReleasedExclusive, ///< Exclusive capability that was released.
897  };
898
899  using UnderlyingCapability =
900      llvm::PointerIntPair<const til::SExpr *, 2, UnderlyingCapabilityKind>;
901
902  SmallVector<UnderlyingCapability, 4> UnderlyingMutexes;
903
904public:
905  ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc)
906      : FactEntry(CE, LK_Exclusive, Loc, false) {}
907
908  void addExclusiveLock(const CapabilityExpr &M) {
909    UnderlyingMutexes.emplace_back(M.sexpr(), UCK_Acquired);
910  }
911
912  void addSharedLock(const CapabilityExpr &M) {
913    UnderlyingMutexes.emplace_back(M.sexpr(), UCK_Acquired);
914  }
915
916  void addExclusiveUnlock(const CapabilityExpr &M) {
917    UnderlyingMutexes.emplace_back(M.sexpr(), UCK_ReleasedExclusive);
918  }
919
920  void addSharedUnlock(const CapabilityExpr &M) {
921    UnderlyingMutexes.emplace_back(M.sexpr(), UCK_ReleasedShared);
922  }
923
924  void
925  handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
926                                SourceLocation JoinLoc, LockErrorKind LEK,
927                                ThreadSafetyHandler &Handler) const override {
928    for (const auto &UnderlyingMutex : UnderlyingMutexes) {
929      const auto *Entry = FSet.findLock(
930          FactMan, CapabilityExpr(UnderlyingMutex.getPointer(), false));
931      if ((UnderlyingMutex.getInt() == UCK_Acquired && Entry) ||
932          (UnderlyingMutex.getInt() != UCK_Acquired && !Entry)) {
933        // If this scoped lock manages another mutex, and if the underlying
934        // mutex is still/not held, then warn about the underlying mutex.
935        Handler.handleMutexHeldEndOfScope(
936            "mutex", sx::toString(UnderlyingMutex.getPointer()), loc(), JoinLoc,
937            LEK);
938      }
939    }
940  }
941
942  void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
943                  ThreadSafetyHandler &Handler,
944                  StringRef DiagKind) const override {
945    for (const auto &UnderlyingMutex : UnderlyingMutexes) {
946      CapabilityExpr UnderCp(UnderlyingMutex.getPointer(), false);
947
948      if (UnderlyingMutex.getInt() == UCK_Acquired)
949        lock(FSet, FactMan, UnderCp, entry.kind(), entry.loc(), &Handler,
950             DiagKind);
951      else
952        unlock(FSet, FactMan, UnderCp, entry.loc(), &Handler, DiagKind);
953    }
954  }
955
956  void handleUnlock(FactSet &FSet, FactManager &FactMan,
957                    const CapabilityExpr &Cp, SourceLocation UnlockLoc,
958                    bool FullyRemove, ThreadSafetyHandler &Handler,
959                    StringRef DiagKind) const override {
960    assert(!Cp.negative() && "Managing object cannot be negative.");
961    for (const auto &UnderlyingMutex : UnderlyingMutexes) {
962      CapabilityExpr UnderCp(UnderlyingMutex.getPointer(), false);
963
964      // Remove/lock the underlying mutex if it exists/is still unlocked; warn
965      // on double unlocking/locking if we're not destroying the scoped object.
966      ThreadSafetyHandler *TSHandler = FullyRemove ? nullptr : &Handler;
967      if (UnderlyingMutex.getInt() == UCK_Acquired) {
968        unlock(FSet, FactMan, UnderCp, UnlockLoc, TSHandler, DiagKind);
969      } else {
970        LockKind kind = UnderlyingMutex.getInt() == UCK_ReleasedShared
971                            ? LK_Shared
972                            : LK_Exclusive;
973        lock(FSet, FactMan, UnderCp, kind, UnlockLoc, TSHandler, DiagKind);
974      }
975    }
976    if (FullyRemove)
977      FSet.removeLock(FactMan, Cp);
978  }
979
980private:
981  void lock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
982            LockKind kind, SourceLocation loc, ThreadSafetyHandler *Handler,
983            StringRef DiagKind) const {
984    if (const FactEntry *Fact = FSet.findLock(FactMan, Cp)) {
985      if (Handler)
986        Handler->handleDoubleLock(DiagKind, Cp.toString(), Fact->loc(), loc);
987    } else {
988      FSet.removeLock(FactMan, !Cp);
989      FSet.addLock(FactMan,
990                   std::make_unique<LockableFactEntry>(Cp, kind, loc));
991    }
992  }
993
994  void unlock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
995              SourceLocation loc, ThreadSafetyHandler *Handler,
996              StringRef DiagKind) const {
997    if (FSet.findLock(FactMan, Cp)) {
998      FSet.removeLock(FactMan, Cp);
999      FSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
1000                                !Cp, LK_Exclusive, loc));
1001    } else if (Handler) {
1002      Handler->handleUnmatchedUnlock(DiagKind, Cp.toString(), loc);
1003    }
1004  }
1005};
1006
1007/// Class which implements the core thread safety analysis routines.
1008class ThreadSafetyAnalyzer {
1009  friend class BuildLockset;
1010  friend class threadSafety::BeforeSet;
1011
1012  llvm::BumpPtrAllocator Bpa;
1013  threadSafety::til::MemRegionRef Arena;
1014  threadSafety::SExprBuilder SxBuilder;
1015
1016  ThreadSafetyHandler &Handler;
1017  const CXXMethodDecl *CurrentMethod;
1018  LocalVariableMap LocalVarMap;
1019  FactManager FactMan;
1020  std::vector<CFGBlockInfo> BlockInfo;
1021
1022  BeforeSet *GlobalBeforeSet;
1023
1024public:
1025  ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset)
1026      : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {}
1027
1028  bool inCurrentScope(const CapabilityExpr &CapE);
1029
1030  void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry,
1031               StringRef DiagKind, bool ReqAttr = false);
1032  void removeLock(FactSet &FSet, const CapabilityExpr &CapE,
1033                  SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind,
1034                  StringRef DiagKind);
1035
1036  template <typename AttrType>
1037  void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
1038                   const NamedDecl *D, VarDecl *SelfDecl = nullptr);
1039
1040  template <class AttrType>
1041  void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
1042                   const NamedDecl *D,
1043                   const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
1044                   Expr *BrE, bool Neg);
1045
1046  const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
1047                                     bool &Negate);
1048
1049  void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
1050                      const CFGBlock* PredBlock,
1051                      const CFGBlock *CurrBlock);
1052
1053  void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
1054                        SourceLocation JoinLoc,
1055                        LockErrorKind LEK1, LockErrorKind LEK2,
1056                        bool Modify=true);
1057
1058  void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
1059                        SourceLocation JoinLoc, LockErrorKind LEK1,
1060                        bool Modify=true) {
1061    intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify);
1062  }
1063
1064  void runAnalysis(AnalysisDeclContext &AC);
1065};
1066
1067} // namespace
1068
1069/// Process acquired_before and acquired_after attributes on Vd.
1070BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd,
1071    ThreadSafetyAnalyzer& Analyzer) {
1072  // Create a new entry for Vd.
1073  BeforeInfo *Info = nullptr;
1074  {
1075    // Keep InfoPtr in its own scope in case BMap is modified later and the
1076    // reference becomes invalid.
1077    std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd];
1078    if (!InfoPtr)
1079      InfoPtr.reset(new BeforeInfo());
1080    Info = InfoPtr.get();
1081  }
1082
1083  for (const auto *At : Vd->attrs()) {
1084    switch (At->getKind()) {
1085      case attr::AcquiredBefore: {
1086        const auto *A = cast<AcquiredBeforeAttr>(At);
1087
1088        // Read exprs from the attribute, and add them to BeforeVect.
1089        for (const auto *Arg : A->args()) {
1090          CapabilityExpr Cp =
1091            Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
1092          if (const ValueDecl *Cpvd = Cp.valueDecl()) {
1093            Info->Vect.push_back(Cpvd);
1094            const auto It = BMap.find(Cpvd);
1095            if (It == BMap.end())
1096              insertAttrExprs(Cpvd, Analyzer);
1097          }
1098        }
1099        break;
1100      }
1101      case attr::AcquiredAfter: {
1102        const auto *A = cast<AcquiredAfterAttr>(At);
1103
1104        // Read exprs from the attribute, and add them to BeforeVect.
1105        for (const auto *Arg : A->args()) {
1106          CapabilityExpr Cp =
1107            Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
1108          if (const ValueDecl *ArgVd = Cp.valueDecl()) {
1109            // Get entry for mutex listed in attribute
1110            BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer);
1111            ArgInfo->Vect.push_back(Vd);
1112          }
1113        }
1114        break;
1115      }
1116      default:
1117        break;
1118    }
1119  }
1120
1121  return Info;
1122}
1123
1124BeforeSet::BeforeInfo *
1125BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd,
1126                                ThreadSafetyAnalyzer &Analyzer) {
1127  auto It = BMap.find(Vd);
1128  BeforeInfo *Info = nullptr;
1129  if (It == BMap.end())
1130    Info = insertAttrExprs(Vd, Analyzer);
1131  else
1132    Info = It->second.get();
1133  assert(Info && "BMap contained nullptr?");
1134  return Info;
1135}
1136
1137/// Return true if any mutexes in FSet are in the acquired_before set of Vd.
1138void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd,
1139                                 const FactSet& FSet,
1140                                 ThreadSafetyAnalyzer& Analyzer,
1141                                 SourceLocation Loc, StringRef CapKind) {
1142  SmallVector<BeforeInfo*, 8> InfoVect;
1143
1144  // Do a depth-first traversal of Vd.
1145  // Return true if there are cycles.
1146  std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) {
1147    if (!Vd)
1148      return false;
1149
1150    BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer);
1151
1152    if (Info->Visited == 1)
1153      return true;
1154
1155    if (Info->Visited == 2)
1156      return false;
1157
1158    if (Info->Vect.empty())
1159      return false;
1160
1161    InfoVect.push_back(Info);
1162    Info->Visited = 1;
1163    for (const auto *Vdb : Info->Vect) {
1164      // Exclude mutexes in our immediate before set.
1165      if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) {
1166        StringRef L1 = StartVd->getName();
1167        StringRef L2 = Vdb->getName();
1168        Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc);
1169      }
1170      // Transitively search other before sets, and warn on cycles.
1171      if (traverse(Vdb)) {
1172        if (CycMap.find(Vd) == CycMap.end()) {
1173          CycMap.insert(std::make_pair(Vd, true));
1174          StringRef L1 = Vd->getName();
1175          Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation());
1176        }
1177      }
1178    }
1179    Info->Visited = 2;
1180    return false;
1181  };
1182
1183  traverse(StartVd);
1184
1185  for (auto *Info : InfoVect)
1186    Info->Visited = 0;
1187}
1188
1189/// Gets the value decl pointer from DeclRefExprs or MemberExprs.
1190static const ValueDecl *getValueDecl(const Expr *Exp) {
1191  if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp))
1192    return getValueDecl(CE->getSubExpr());
1193
1194  if (const auto *DR = dyn_cast<DeclRefExpr>(Exp))
1195    return DR->getDecl();
1196
1197  if (const auto *ME = dyn_cast<MemberExpr>(Exp))
1198    return ME->getMemberDecl();
1199
1200  return nullptr;
1201}
1202
1203namespace {
1204
1205template <typename Ty>
1206class has_arg_iterator_range {
1207  using yes = char[1];
1208  using no = char[2];
1209
1210  template <typename Inner>
1211  static yes& test(Inner *I, decltype(I->args()) * = nullptr);
1212
1213  template <typename>
1214  static no& test(...);
1215
1216public:
1217  static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
1218};
1219
1220} // namespace
1221
1222static StringRef ClassifyDiagnostic(const CapabilityAttr *A) {
1223  return A->getName();
1224}
1225
1226static StringRef ClassifyDiagnostic(QualType VDT) {
1227  // We need to look at the declaration of the type of the value to determine
1228  // which it is. The type should either be a record or a typedef, or a pointer
1229  // or reference thereof.
1230  if (const auto *RT = VDT->getAs<RecordType>()) {
1231    if (const auto *RD = RT->getDecl())
1232      if (const auto *CA = RD->getAttr<CapabilityAttr>())
1233        return ClassifyDiagnostic(CA);
1234  } else if (const auto *TT = VDT->getAs<TypedefType>()) {
1235    if (const auto *TD = TT->getDecl())
1236      if (const auto *CA = TD->getAttr<CapabilityAttr>())
1237        return ClassifyDiagnostic(CA);
1238  } else if (VDT->isPointerType() || VDT->isReferenceType())
1239    return ClassifyDiagnostic(VDT->getPointeeType());
1240
1241  return "mutex";
1242}
1243
1244static StringRef ClassifyDiagnostic(const ValueDecl *VD) {
1245  assert(VD && "No ValueDecl passed");
1246
1247  // The ValueDecl is the declaration of a mutex or role (hopefully).
1248  return ClassifyDiagnostic(VD->getType());
1249}
1250
1251template <typename AttrTy>
1252static typename std::enable_if<!has_arg_iterator_range<AttrTy>::value,
1253                               StringRef>::type
1254ClassifyDiagnostic(const AttrTy *A) {
1255  if (const ValueDecl *VD = getValueDecl(A->getArg()))
1256    return ClassifyDiagnostic(VD);
1257  return "mutex";
1258}
1259
1260template <typename AttrTy>
1261static typename std::enable_if<has_arg_iterator_range<AttrTy>::value,
1262                               StringRef>::type
1263ClassifyDiagnostic(const AttrTy *A) {
1264  for (const auto *Arg : A->args()) {
1265    if (const ValueDecl *VD = getValueDecl(Arg))
1266      return ClassifyDiagnostic(VD);
1267  }
1268  return "mutex";
1269}
1270
1271bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) {
1272  if (!CurrentMethod)
1273      return false;
1274  if (const auto *P = dyn_cast_or_null<til::Project>(CapE.sexpr())) {
1275    const auto *VD = P->clangDecl();
1276    if (VD)
1277      return VD->getDeclContext() == CurrentMethod->getDeclContext();
1278  }
1279  return false;
1280}
1281
1282/// Add a new lock to the lockset, warning if the lock is already there.
1283/// \param ReqAttr -- true if this is part of an initial Requires attribute.
1284void ThreadSafetyAnalyzer::addLock(FactSet &FSet,
1285                                   std::unique_ptr<FactEntry> Entry,
1286                                   StringRef DiagKind, bool ReqAttr) {
1287  if (Entry->shouldIgnore())
1288    return;
1289
1290  if (!ReqAttr && !Entry->negative()) {
1291    // look for the negative capability, and remove it from the fact set.
1292    CapabilityExpr NegC = !*Entry;
1293    const FactEntry *Nen = FSet.findLock(FactMan, NegC);
1294    if (Nen) {
1295      FSet.removeLock(FactMan, NegC);
1296    }
1297    else {
1298      if (inCurrentScope(*Entry) && !Entry->asserted())
1299        Handler.handleNegativeNotHeld(DiagKind, Entry->toString(),
1300                                      NegC.toString(), Entry->loc());
1301    }
1302  }
1303
1304  // Check before/after constraints
1305  if (Handler.issueBetaWarnings() &&
1306      !Entry->asserted() && !Entry->declared()) {
1307    GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this,
1308                                      Entry->loc(), DiagKind);
1309  }
1310
1311  // FIXME: Don't always warn when we have support for reentrant locks.
1312  if (const FactEntry *Cp = FSet.findLock(FactMan, *Entry)) {
1313    if (!Entry->asserted())
1314      Cp->handleLock(FSet, FactMan, *Entry, Handler, DiagKind);
1315  } else {
1316    FSet.addLock(FactMan, std::move(Entry));
1317  }
1318}
1319
1320/// Remove a lock from the lockset, warning if the lock is not there.
1321/// \param UnlockLoc The source location of the unlock (only used in error msg)
1322void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp,
1323                                      SourceLocation UnlockLoc,
1324                                      bool FullyRemove, LockKind ReceivedKind,
1325                                      StringRef DiagKind) {
1326  if (Cp.shouldIgnore())
1327    return;
1328
1329  const FactEntry *LDat = FSet.findLock(FactMan, Cp);
1330  if (!LDat) {
1331    Handler.handleUnmatchedUnlock(DiagKind, Cp.toString(), UnlockLoc);
1332    return;
1333  }
1334
1335  // Generic lock removal doesn't care about lock kind mismatches, but
1336  // otherwise diagnose when the lock kinds are mismatched.
1337  if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) {
1338    Handler.handleIncorrectUnlockKind(DiagKind, Cp.toString(), LDat->kind(),
1339                                      ReceivedKind, LDat->loc(), UnlockLoc);
1340  }
1341
1342  LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler,
1343                     DiagKind);
1344}
1345
1346/// Extract the list of mutexIDs from the attribute on an expression,
1347/// and push them onto Mtxs, discarding any duplicates.
1348template <typename AttrType>
1349void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1350                                       const Expr *Exp, const NamedDecl *D,
1351                                       VarDecl *SelfDecl) {
1352  if (Attr->args_size() == 0) {
1353    // The mutex held is the "this" object.
1354    CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, SelfDecl);
1355    if (Cp.isInvalid()) {
1356       warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
1357       return;
1358    }
1359    //else
1360    if (!Cp.shouldIgnore())
1361      Mtxs.push_back_nodup(Cp);
1362    return;
1363  }
1364
1365  for (const auto *Arg : Attr->args()) {
1366    CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, SelfDecl);
1367    if (Cp.isInvalid()) {
1368       warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
1369       continue;
1370    }
1371    //else
1372    if (!Cp.shouldIgnore())
1373      Mtxs.push_back_nodup(Cp);
1374  }
1375}
1376
1377/// Extract the list of mutexIDs from a trylock attribute.  If the
1378/// trylock applies to the given edge, then push them onto Mtxs, discarding
1379/// any duplicates.
1380template <class AttrType>
1381void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1382                                       const Expr *Exp, const NamedDecl *D,
1383                                       const CFGBlock *PredBlock,
1384                                       const CFGBlock *CurrBlock,
1385                                       Expr *BrE, bool Neg) {
1386  // Find out which branch has the lock
1387  bool branch = false;
1388  if (const auto *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE))
1389    branch = BLE->getValue();
1390  else if (const auto *ILE = dyn_cast_or_null<IntegerLiteral>(BrE))
1391    branch = ILE->getValue().getBoolValue();
1392
1393  int branchnum = branch ? 0 : 1;
1394  if (Neg)
1395    branchnum = !branchnum;
1396
1397  // If we've taken the trylock branch, then add the lock
1398  int i = 0;
1399  for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
1400       SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
1401    if (*SI == CurrBlock && i == branchnum)
1402      getMutexIDs(Mtxs, Attr, Exp, D);
1403  }
1404}
1405
1406static bool getStaticBooleanValue(Expr *E, bool &TCond) {
1407  if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
1408    TCond = false;
1409    return true;
1410  } else if (const auto *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
1411    TCond = BLE->getValue();
1412    return true;
1413  } else if (const auto *ILE = dyn_cast<IntegerLiteral>(E)) {
1414    TCond = ILE->getValue().getBoolValue();
1415    return true;
1416  } else if (auto *CE = dyn_cast<ImplicitCastExpr>(E))
1417    return getStaticBooleanValue(CE->getSubExpr(), TCond);
1418  return false;
1419}
1420
1421// If Cond can be traced back to a function call, return the call expression.
1422// The negate variable should be called with false, and will be set to true
1423// if the function call is negated, e.g. if (!mu.tryLock(...))
1424const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
1425                                                         LocalVarContext C,
1426                                                         bool &Negate) {
1427  if (!Cond)
1428    return nullptr;
1429
1430  if (const auto *CallExp = dyn_cast<CallExpr>(Cond)) {
1431    if (CallExp->getBuiltinCallee() == Builtin::BI__builtin_expect)
1432      return getTrylockCallExpr(CallExp->getArg(0), C, Negate);
1433    return CallExp;
1434  }
1435  else if (const auto *PE = dyn_cast<ParenExpr>(Cond))
1436    return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
1437  else if (const auto *CE = dyn_cast<ImplicitCastExpr>(Cond))
1438    return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
1439  else if (const auto *FE = dyn_cast<FullExpr>(Cond))
1440    return getTrylockCallExpr(FE->getSubExpr(), C, Negate);
1441  else if (const auto *DRE = dyn_cast<DeclRefExpr>(Cond)) {
1442    const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
1443    return getTrylockCallExpr(E, C, Negate);
1444  }
1445  else if (const auto *UOP = dyn_cast<UnaryOperator>(Cond)) {
1446    if (UOP->getOpcode() == UO_LNot) {
1447      Negate = !Negate;
1448      return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
1449    }
1450    return nullptr;
1451  }
1452  else if (const auto *BOP = dyn_cast<BinaryOperator>(Cond)) {
1453    if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
1454      if (BOP->getOpcode() == BO_NE)
1455        Negate = !Negate;
1456
1457      bool TCond = false;
1458      if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
1459        if (!TCond) Negate = !Negate;
1460        return getTrylockCallExpr(BOP->getLHS(), C, Negate);
1461      }
1462      TCond = false;
1463      if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
1464        if (!TCond) Negate = !Negate;
1465        return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1466      }
1467      return nullptr;
1468    }
1469    if (BOP->getOpcode() == BO_LAnd) {
1470      // LHS must have been evaluated in a different block.
1471      return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1472    }
1473    if (BOP->getOpcode() == BO_LOr)
1474      return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1475    return nullptr;
1476  } else if (const auto *COP = dyn_cast<ConditionalOperator>(Cond)) {
1477    bool TCond, FCond;
1478    if (getStaticBooleanValue(COP->getTrueExpr(), TCond) &&
1479        getStaticBooleanValue(COP->getFalseExpr(), FCond)) {
1480      if (TCond && !FCond)
1481        return getTrylockCallExpr(COP->getCond(), C, Negate);
1482      if (!TCond && FCond) {
1483        Negate = !Negate;
1484        return getTrylockCallExpr(COP->getCond(), C, Negate);
1485      }
1486    }
1487  }
1488  return nullptr;
1489}
1490
1491/// Find the lockset that holds on the edge between PredBlock
1492/// and CurrBlock.  The edge set is the exit set of PredBlock (passed
1493/// as the ExitSet parameter) plus any trylocks, which are conditionally held.
1494void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
1495                                          const FactSet &ExitSet,
1496                                          const CFGBlock *PredBlock,
1497                                          const CFGBlock *CurrBlock) {
1498  Result = ExitSet;
1499
1500  const Stmt *Cond = PredBlock->getTerminatorCondition();
1501  // We don't acquire try-locks on ?: branches, only when its result is used.
1502  if (!Cond || isa<ConditionalOperator>(PredBlock->getTerminatorStmt()))
1503    return;
1504
1505  bool Negate = false;
1506  const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
1507  const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
1508  StringRef CapDiagKind = "mutex";
1509
1510  const auto *Exp = getTrylockCallExpr(Cond, LVarCtx, Negate);
1511  if (!Exp)
1512    return;
1513
1514  auto *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1515  if(!FunDecl || !FunDecl->hasAttrs())
1516    return;
1517
1518  CapExprSet ExclusiveLocksToAdd;
1519  CapExprSet SharedLocksToAdd;
1520
1521  // If the condition is a call to a Trylock function, then grab the attributes
1522  for (const auto *Attr : FunDecl->attrs()) {
1523    switch (Attr->getKind()) {
1524      case attr::TryAcquireCapability: {
1525        auto *A = cast<TryAcquireCapabilityAttr>(Attr);
1526        getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
1527                    Exp, FunDecl, PredBlock, CurrBlock, A->getSuccessValue(),
1528                    Negate);
1529        CapDiagKind = ClassifyDiagnostic(A);
1530        break;
1531      };
1532      case attr::ExclusiveTrylockFunction: {
1533        const auto *A = cast<ExclusiveTrylockFunctionAttr>(Attr);
1534        getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
1535                    PredBlock, CurrBlock, A->getSuccessValue(), Negate);
1536        CapDiagKind = ClassifyDiagnostic(A);
1537        break;
1538      }
1539      case attr::SharedTrylockFunction: {
1540        const auto *A = cast<SharedTrylockFunctionAttr>(Attr);
1541        getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl,
1542                    PredBlock, CurrBlock, A->getSuccessValue(), Negate);
1543        CapDiagKind = ClassifyDiagnostic(A);
1544        break;
1545      }
1546      default:
1547        break;
1548    }
1549  }
1550
1551  // Add and remove locks.
1552  SourceLocation Loc = Exp->getExprLoc();
1553  for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd)
1554    addLock(Result, std::make_unique<LockableFactEntry>(ExclusiveLockToAdd,
1555                                                         LK_Exclusive, Loc),
1556            CapDiagKind);
1557  for (const auto &SharedLockToAdd : SharedLocksToAdd)
1558    addLock(Result, std::make_unique<LockableFactEntry>(SharedLockToAdd,
1559                                                         LK_Shared, Loc),
1560            CapDiagKind);
1561}
1562
1563namespace {
1564
1565/// We use this class to visit different types of expressions in
1566/// CFGBlocks, and build up the lockset.
1567/// An expression may cause us to add or remove locks from the lockset, or else
1568/// output error messages related to missing locks.
1569/// FIXME: In future, we may be able to not inherit from a visitor.
1570class BuildLockset : public ConstStmtVisitor<BuildLockset> {
1571  friend class ThreadSafetyAnalyzer;
1572
1573  ThreadSafetyAnalyzer *Analyzer;
1574  FactSet FSet;
1575  LocalVariableMap::Context LVarCtx;
1576  unsigned CtxIndex;
1577
1578  // helper functions
1579  void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK,
1580                          Expr *MutexExp, ProtectedOperationKind POK,
1581                          StringRef DiagKind, SourceLocation Loc);
1582  void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp,
1583                       StringRef DiagKind);
1584
1585  void checkAccess(const Expr *Exp, AccessKind AK,
1586                   ProtectedOperationKind POK = POK_VarAccess);
1587  void checkPtAccess(const Expr *Exp, AccessKind AK,
1588                     ProtectedOperationKind POK = POK_VarAccess);
1589
1590  void handleCall(const Expr *Exp, const NamedDecl *D, VarDecl *VD = nullptr);
1591  void examineArguments(const FunctionDecl *FD,
1592                        CallExpr::const_arg_iterator ArgBegin,
1593                        CallExpr::const_arg_iterator ArgEnd,
1594                        bool SkipFirstParam = false);
1595
1596public:
1597  BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
1598      : ConstStmtVisitor<BuildLockset>(), Analyzer(Anlzr), FSet(Info.EntrySet),
1599        LVarCtx(Info.EntryContext), CtxIndex(Info.EntryIndex) {}
1600
1601  void VisitUnaryOperator(const UnaryOperator *UO);
1602  void VisitBinaryOperator(const BinaryOperator *BO);
1603  void VisitCastExpr(const CastExpr *CE);
1604  void VisitCallExpr(const CallExpr *Exp);
1605  void VisitCXXConstructExpr(const CXXConstructExpr *Exp);
1606  void VisitDeclStmt(const DeclStmt *S);
1607};
1608
1609} // namespace
1610
1611/// Warn if the LSet does not contain a lock sufficient to protect access
1612/// of at least the passed in AccessKind.
1613void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp,
1614                                      AccessKind AK, Expr *MutexExp,
1615                                      ProtectedOperationKind POK,
1616                                      StringRef DiagKind, SourceLocation Loc) {
1617  LockKind LK = getLockKindFromAccessKind(AK);
1618
1619  CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
1620  if (Cp.isInvalid()) {
1621    warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
1622    return;
1623  } else if (Cp.shouldIgnore()) {
1624    return;
1625  }
1626
1627  if (Cp.negative()) {
1628    // Negative capabilities act like locks excluded
1629    const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp);
1630    if (LDat) {
1631      Analyzer->Handler.handleFunExcludesLock(
1632          DiagKind, D->getNameAsString(), (!Cp).toString(), Loc);
1633      return;
1634    }
1635
1636    // If this does not refer to a negative capability in the same class,
1637    // then stop here.
1638    if (!Analyzer->inCurrentScope(Cp))
1639      return;
1640
1641    // Otherwise the negative requirement must be propagated to the caller.
1642    LDat = FSet.findLock(Analyzer->FactMan, Cp);
1643    if (!LDat) {
1644      Analyzer->Handler.handleMutexNotHeld("", D, POK, Cp.toString(),
1645                                           LK_Shared, Loc);
1646    }
1647    return;
1648  }
1649
1650  const FactEntry *LDat = FSet.findLockUniv(Analyzer->FactMan, Cp);
1651  bool NoError = true;
1652  if (!LDat) {
1653    // No exact match found.  Look for a partial match.
1654    LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp);
1655    if (LDat) {
1656      // Warn that there's no precise match.
1657      std::string PartMatchStr = LDat->toString();
1658      StringRef   PartMatchName(PartMatchStr);
1659      Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
1660                                           LK, Loc, &PartMatchName);
1661    } else {
1662      // Warn that there's no match at all.
1663      Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
1664                                           LK, Loc);
1665    }
1666    NoError = false;
1667  }
1668  // Make sure the mutex we found is the right kind.
1669  if (NoError && LDat && !LDat->isAtLeast(LK)) {
1670    Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
1671                                         LK, Loc);
1672  }
1673}
1674
1675/// Warn if the LSet contains the given lock.
1676void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp,
1677                                   Expr *MutexExp, StringRef DiagKind) {
1678  CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
1679  if (Cp.isInvalid()) {
1680    warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
1681    return;
1682  } else if (Cp.shouldIgnore()) {
1683    return;
1684  }
1685
1686  const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, Cp);
1687  if (LDat) {
1688    Analyzer->Handler.handleFunExcludesLock(
1689        DiagKind, D->getNameAsString(), Cp.toString(), Exp->getExprLoc());
1690  }
1691}
1692
1693/// Checks guarded_by and pt_guarded_by attributes.
1694/// Whenever we identify an access (read or write) to a DeclRefExpr that is
1695/// marked with guarded_by, we must ensure the appropriate mutexes are held.
1696/// Similarly, we check if the access is to an expression that dereferences
1697/// a pointer marked with pt_guarded_by.
1698void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK,
1699                               ProtectedOperationKind POK) {
1700  Exp = Exp->IgnoreImplicit()->IgnoreParenCasts();
1701
1702  SourceLocation Loc = Exp->getExprLoc();
1703
1704  // Local variables of reference type cannot be re-assigned;
1705  // map them to their initializer.
1706  while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) {
1707    const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl());
1708    if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) {
1709      if (const auto *E = VD->getInit()) {
1710        // Guard against self-initialization. e.g., int &i = i;
1711        if (E == Exp)
1712          break;
1713        Exp = E;
1714        continue;
1715      }
1716    }
1717    break;
1718  }
1719
1720  if (const auto *UO = dyn_cast<UnaryOperator>(Exp)) {
1721    // For dereferences
1722    if (UO->getOpcode() == UO_Deref)
1723      checkPtAccess(UO->getSubExpr(), AK, POK);
1724    return;
1725  }
1726
1727  if (const auto *AE = dyn_cast<ArraySubscriptExpr>(Exp)) {
1728    checkPtAccess(AE->getLHS(), AK, POK);
1729    return;
1730  }
1731
1732  if (const auto *ME = dyn_cast<MemberExpr>(Exp)) {
1733    if (ME->isArrow())
1734      checkPtAccess(ME->getBase(), AK, POK);
1735    else
1736      checkAccess(ME->getBase(), AK, POK);
1737  }
1738
1739  const ValueDecl *D = getValueDecl(Exp);
1740  if (!D || !D->hasAttrs())
1741    return;
1742
1743  if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) {
1744    Analyzer->Handler.handleNoMutexHeld("mutex", D, POK, AK, Loc);
1745  }
1746
1747  for (const auto *I : D->specific_attrs<GuardedByAttr>())
1748    warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK,
1749                       ClassifyDiagnostic(I), Loc);
1750}
1751
1752/// Checks pt_guarded_by and pt_guarded_var attributes.
1753/// POK is the same  operationKind that was passed to checkAccess.
1754void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK,
1755                                 ProtectedOperationKind POK) {
1756  while (true) {
1757    if (const auto *PE = dyn_cast<ParenExpr>(Exp)) {
1758      Exp = PE->getSubExpr();
1759      continue;
1760    }
1761    if (const auto *CE = dyn_cast<CastExpr>(Exp)) {
1762      if (CE->getCastKind() == CK_ArrayToPointerDecay) {
1763        // If it's an actual array, and not a pointer, then it's elements
1764        // are protected by GUARDED_BY, not PT_GUARDED_BY;
1765        checkAccess(CE->getSubExpr(), AK, POK);
1766        return;
1767      }
1768      Exp = CE->getSubExpr();
1769      continue;
1770    }
1771    break;
1772  }
1773
1774  // Pass by reference warnings are under a different flag.
1775  ProtectedOperationKind PtPOK = POK_VarDereference;
1776  if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef;
1777
1778  const ValueDecl *D = getValueDecl(Exp);
1779  if (!D || !D->hasAttrs())
1780    return;
1781
1782  if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan))
1783    Analyzer->Handler.handleNoMutexHeld("mutex", D, PtPOK, AK,
1784                                        Exp->getExprLoc());
1785
1786  for (auto const *I : D->specific_attrs<PtGuardedByAttr>())
1787    warnIfMutexNotHeld(D, Exp, AK, I->getArg(), PtPOK,
1788                       ClassifyDiagnostic(I), Exp->getExprLoc());
1789}
1790
1791/// Process a function call, method call, constructor call,
1792/// or destructor call.  This involves looking at the attributes on the
1793/// corresponding function/method/constructor/destructor, issuing warnings,
1794/// and updating the locksets accordingly.
1795///
1796/// FIXME: For classes annotated with one of the guarded annotations, we need
1797/// to treat const method calls as reads and non-const method calls as writes,
1798/// and check that the appropriate locks are held. Non-const method calls with
1799/// the same signature as const method calls can be also treated as reads.
1800///
1801void BuildLockset::handleCall(const Expr *Exp, const NamedDecl *D,
1802                              VarDecl *VD) {
1803  SourceLocation Loc = Exp->getExprLoc();
1804  CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd;
1805  CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove;
1806  CapExprSet ScopedExclusiveReqs, ScopedSharedReqs;
1807  StringRef CapDiagKind = "mutex";
1808
1809  // Figure out if we're constructing an object of scoped lockable class
1810  bool isScopedVar = false;
1811  if (VD) {
1812    if (const auto *CD = dyn_cast<const CXXConstructorDecl>(D)) {
1813      const CXXRecordDecl* PD = CD->getParent();
1814      if (PD && PD->hasAttr<ScopedLockableAttr>())
1815        isScopedVar = true;
1816    }
1817  }
1818
1819  for(const Attr *At : D->attrs()) {
1820    switch (At->getKind()) {
1821      // When we encounter a lock function, we need to add the lock to our
1822      // lockset.
1823      case attr::AcquireCapability: {
1824        const auto *A = cast<AcquireCapabilityAttr>(At);
1825        Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd
1826                                            : ExclusiveLocksToAdd,
1827                              A, Exp, D, VD);
1828
1829        CapDiagKind = ClassifyDiagnostic(A);
1830        break;
1831      }
1832
1833      // An assert will add a lock to the lockset, but will not generate
1834      // a warning if it is already there, and will not generate a warning
1835      // if it is not removed.
1836      case attr::AssertExclusiveLock: {
1837        const auto *A = cast<AssertExclusiveLockAttr>(At);
1838
1839        CapExprSet AssertLocks;
1840        Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
1841        for (const auto &AssertLock : AssertLocks)
1842          Analyzer->addLock(FSet,
1843                            std::make_unique<LockableFactEntry>(
1844                                AssertLock, LK_Exclusive, Loc, false, true),
1845                            ClassifyDiagnostic(A));
1846        break;
1847      }
1848      case attr::AssertSharedLock: {
1849        const auto *A = cast<AssertSharedLockAttr>(At);
1850
1851        CapExprSet AssertLocks;
1852        Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
1853        for (const auto &AssertLock : AssertLocks)
1854          Analyzer->addLock(FSet,
1855                            std::make_unique<LockableFactEntry>(
1856                                AssertLock, LK_Shared, Loc, false, true),
1857                            ClassifyDiagnostic(A));
1858        break;
1859      }
1860
1861      case attr::AssertCapability: {
1862        const auto *A = cast<AssertCapabilityAttr>(At);
1863        CapExprSet AssertLocks;
1864        Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
1865        for (const auto &AssertLock : AssertLocks)
1866          Analyzer->addLock(FSet,
1867                            std::make_unique<LockableFactEntry>(
1868                                AssertLock,
1869                                A->isShared() ? LK_Shared : LK_Exclusive, Loc,
1870                                false, true),
1871                            ClassifyDiagnostic(A));
1872        break;
1873      }
1874
1875      // When we encounter an unlock function, we need to remove unlocked
1876      // mutexes from the lockset, and flag a warning if they are not there.
1877      case attr::ReleaseCapability: {
1878        const auto *A = cast<ReleaseCapabilityAttr>(At);
1879        if (A->isGeneric())
1880          Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, VD);
1881        else if (A->isShared())
1882          Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, VD);
1883        else
1884          Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, VD);
1885
1886        CapDiagKind = ClassifyDiagnostic(A);
1887        break;
1888      }
1889
1890      case attr::RequiresCapability: {
1891        const auto *A = cast<RequiresCapabilityAttr>(At);
1892        for (auto *Arg : A->args()) {
1893          warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg,
1894                             POK_FunctionCall, ClassifyDiagnostic(A),
1895                             Exp->getExprLoc());
1896          // use for adopting a lock
1897          if (isScopedVar) {
1898            Analyzer->getMutexIDs(A->isShared() ? ScopedSharedReqs
1899                                                : ScopedExclusiveReqs,
1900                                  A, Exp, D, VD);
1901          }
1902        }
1903        break;
1904      }
1905
1906      case attr::LocksExcluded: {
1907        const auto *A = cast<LocksExcludedAttr>(At);
1908        for (auto *Arg : A->args())
1909          warnIfMutexHeld(D, Exp, Arg, ClassifyDiagnostic(A));
1910        break;
1911      }
1912
1913      // Ignore attributes unrelated to thread-safety
1914      default:
1915        break;
1916    }
1917  }
1918
1919  // Remove locks first to allow lock upgrading/downgrading.
1920  // FIXME -- should only fully remove if the attribute refers to 'this'.
1921  bool Dtor = isa<CXXDestructorDecl>(D);
1922  for (const auto &M : ExclusiveLocksToRemove)
1923    Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive, CapDiagKind);
1924  for (const auto &M : SharedLocksToRemove)
1925    Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared, CapDiagKind);
1926  for (const auto &M : GenericLocksToRemove)
1927    Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic, CapDiagKind);
1928
1929  // Add locks.
1930  for (const auto &M : ExclusiveLocksToAdd)
1931    Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>(
1932                                M, LK_Exclusive, Loc, isScopedVar),
1933                      CapDiagKind);
1934  for (const auto &M : SharedLocksToAdd)
1935    Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>(
1936                                M, LK_Shared, Loc, isScopedVar),
1937                      CapDiagKind);
1938
1939  if (isScopedVar) {
1940    // Add the managing object as a dummy mutex, mapped to the underlying mutex.
1941    SourceLocation MLoc = VD->getLocation();
1942    DeclRefExpr DRE(VD->getASTContext(), VD, false, VD->getType(), VK_LValue,
1943                    VD->getLocation());
1944    // FIXME: does this store a pointer to DRE?
1945    CapabilityExpr Scp = Analyzer->SxBuilder.translateAttrExpr(&DRE, nullptr);
1946
1947    auto ScopedEntry = std::make_unique<ScopedLockableFactEntry>(Scp, MLoc);
1948    for (const auto &M : ExclusiveLocksToAdd)
1949      ScopedEntry->addExclusiveLock(M);
1950    for (const auto &M : ScopedExclusiveReqs)
1951      ScopedEntry->addExclusiveLock(M);
1952    for (const auto &M : SharedLocksToAdd)
1953      ScopedEntry->addSharedLock(M);
1954    for (const auto &M : ScopedSharedReqs)
1955      ScopedEntry->addSharedLock(M);
1956    for (const auto &M : ExclusiveLocksToRemove)
1957      ScopedEntry->addExclusiveUnlock(M);
1958    for (const auto &M : SharedLocksToRemove)
1959      ScopedEntry->addSharedUnlock(M);
1960    Analyzer->addLock(FSet, std::move(ScopedEntry), CapDiagKind);
1961  }
1962}
1963
1964/// For unary operations which read and write a variable, we need to
1965/// check whether we hold any required mutexes. Reads are checked in
1966/// VisitCastExpr.
1967void BuildLockset::VisitUnaryOperator(const UnaryOperator *UO) {
1968  switch (UO->getOpcode()) {
1969    case UO_PostDec:
1970    case UO_PostInc:
1971    case UO_PreDec:
1972    case UO_PreInc:
1973      checkAccess(UO->getSubExpr(), AK_Written);
1974      break;
1975    default:
1976      break;
1977  }
1978}
1979
1980/// For binary operations which assign to a variable (writes), we need to check
1981/// whether we hold any required mutexes.
1982/// FIXME: Deal with non-primitive types.
1983void BuildLockset::VisitBinaryOperator(const BinaryOperator *BO) {
1984  if (!BO->isAssignmentOp())
1985    return;
1986
1987  // adjust the context
1988  LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
1989
1990  checkAccess(BO->getLHS(), AK_Written);
1991}
1992
1993/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
1994/// need to ensure we hold any required mutexes.
1995/// FIXME: Deal with non-primitive types.
1996void BuildLockset::VisitCastExpr(const CastExpr *CE) {
1997  if (CE->getCastKind() != CK_LValueToRValue)
1998    return;
1999  checkAccess(CE->getSubExpr(), AK_Read);
2000}
2001
2002void BuildLockset::examineArguments(const FunctionDecl *FD,
2003                                    CallExpr::const_arg_iterator ArgBegin,
2004                                    CallExpr::const_arg_iterator ArgEnd,
2005                                    bool SkipFirstParam) {
2006  // Currently we can't do anything if we don't know the function declaration.
2007  if (!FD)
2008    return;
2009
2010  // NO_THREAD_SAFETY_ANALYSIS does double duty here.  Normally it
2011  // only turns off checking within the body of a function, but we also
2012  // use it to turn off checking in arguments to the function.  This
2013  // could result in some false negatives, but the alternative is to
2014  // create yet another attribute.
2015  if (FD->hasAttr<NoThreadSafetyAnalysisAttr>())
2016    return;
2017
2018  const ArrayRef<ParmVarDecl *> Params = FD->parameters();
2019  auto Param = Params.begin();
2020  if (SkipFirstParam)
2021    ++Param;
2022
2023  // There can be default arguments, so we stop when one iterator is at end().
2024  for (auto Arg = ArgBegin; Param != Params.end() && Arg != ArgEnd;
2025       ++Param, ++Arg) {
2026    QualType Qt = (*Param)->getType();
2027    if (Qt->isReferenceType())
2028      checkAccess(*Arg, AK_Read, POK_PassByRef);
2029  }
2030}
2031
2032void BuildLockset::VisitCallExpr(const CallExpr *Exp) {
2033  if (const auto *CE = dyn_cast<CXXMemberCallExpr>(Exp)) {
2034    const auto *ME = dyn_cast<MemberExpr>(CE->getCallee());
2035    // ME can be null when calling a method pointer
2036    const CXXMethodDecl *MD = CE->getMethodDecl();
2037
2038    if (ME && MD) {
2039      if (ME->isArrow()) {
2040        if (MD->isConst())
2041          checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
2042        else // FIXME -- should be AK_Written
2043          checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
2044      } else {
2045        if (MD->isConst())
2046          checkAccess(CE->getImplicitObjectArgument(), AK_Read);
2047        else     // FIXME -- should be AK_Written
2048          checkAccess(CE->getImplicitObjectArgument(), AK_Read);
2049      }
2050    }
2051
2052    examineArguments(CE->getDirectCallee(), CE->arg_begin(), CE->arg_end());
2053  } else if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) {
2054    auto OEop = OE->getOperator();
2055    switch (OEop) {
2056      case OO_Equal: {
2057        const Expr *Target = OE->getArg(0);
2058        const Expr *Source = OE->getArg(1);
2059        checkAccess(Target, AK_Written);
2060        checkAccess(Source, AK_Read);
2061        break;
2062      }
2063      case OO_Star:
2064      case OO_Arrow:
2065      case OO_Subscript:
2066        if (!(OEop == OO_Star && OE->getNumArgs() > 1)) {
2067          // Grrr.  operator* can be multiplication...
2068          checkPtAccess(OE->getArg(0), AK_Read);
2069        }
2070        LLVM_FALLTHROUGH;
2071      default: {
2072        // TODO: get rid of this, and rely on pass-by-ref instead.
2073        const Expr *Obj = OE->getArg(0);
2074        checkAccess(Obj, AK_Read);
2075        // Check the remaining arguments. For method operators, the first
2076        // argument is the implicit self argument, and doesn't appear in the
2077        // FunctionDecl, but for non-methods it does.
2078        const FunctionDecl *FD = OE->getDirectCallee();
2079        examineArguments(FD, std::next(OE->arg_begin()), OE->arg_end(),
2080                         /*SkipFirstParam*/ !isa<CXXMethodDecl>(FD));
2081        break;
2082      }
2083    }
2084  } else {
2085    examineArguments(Exp->getDirectCallee(), Exp->arg_begin(), Exp->arg_end());
2086  }
2087
2088  auto *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
2089  if(!D || !D->hasAttrs())
2090    return;
2091  handleCall(Exp, D);
2092}
2093
2094void BuildLockset::VisitCXXConstructExpr(const CXXConstructExpr *Exp) {
2095  const CXXConstructorDecl *D = Exp->getConstructor();
2096  if (D && D->isCopyConstructor()) {
2097    const Expr* Source = Exp->getArg(0);
2098    checkAccess(Source, AK_Read);
2099  } else {
2100    examineArguments(D, Exp->arg_begin(), Exp->arg_end());
2101  }
2102}
2103
2104static CXXConstructorDecl *
2105findConstructorForByValueReturn(const CXXRecordDecl *RD) {
2106  // Prefer a move constructor over a copy constructor. If there's more than
2107  // one copy constructor or more than one move constructor, we arbitrarily
2108  // pick the first declared such constructor rather than trying to guess which
2109  // one is more appropriate.
2110  CXXConstructorDecl *CopyCtor = nullptr;
2111  for (auto *Ctor : RD->ctors()) {
2112    if (Ctor->isDeleted())
2113      continue;
2114    if (Ctor->isMoveConstructor())
2115      return Ctor;
2116    if (!CopyCtor && Ctor->isCopyConstructor())
2117      CopyCtor = Ctor;
2118  }
2119  return CopyCtor;
2120}
2121
2122static Expr *buildFakeCtorCall(CXXConstructorDecl *CD, ArrayRef<Expr *> Args,
2123                               SourceLocation Loc) {
2124  ASTContext &Ctx = CD->getASTContext();
2125  return CXXConstructExpr::Create(Ctx, Ctx.getRecordType(CD->getParent()), Loc,
2126                                  CD, true, Args, false, false, false, false,
2127                                  CXXConstructExpr::CK_Complete,
2128                                  SourceRange(Loc, Loc));
2129}
2130
2131void BuildLockset::VisitDeclStmt(const DeclStmt *S) {
2132  // adjust the context
2133  LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
2134
2135  for (auto *D : S->getDeclGroup()) {
2136    if (auto *VD = dyn_cast_or_null<VarDecl>(D)) {
2137      Expr *E = VD->getInit();
2138      if (!E)
2139        continue;
2140      E = E->IgnoreParens();
2141
2142      // handle constructors that involve temporaries
2143      if (auto *EWC = dyn_cast<ExprWithCleanups>(E))
2144        E = EWC->getSubExpr();
2145      if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
2146        if (ICE->getCastKind() == CK_NoOp)
2147          E = ICE->getSubExpr();
2148      if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E))
2149        E = BTE->getSubExpr();
2150
2151      if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) {
2152        const auto *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
2153        if (!CtorD || !CtorD->hasAttrs())
2154          continue;
2155        handleCall(E, CtorD, VD);
2156      } else if (isa<CallExpr>(E) && E->isRValue()) {
2157        // If the object is initialized by a function call that returns a
2158        // scoped lockable by value, use the attributes on the copy or move
2159        // constructor to figure out what effect that should have on the
2160        // lockset.
2161        // FIXME: Is this really the best way to handle this situation?
2162        auto *RD = E->getType()->getAsCXXRecordDecl();
2163        if (!RD || !RD->hasAttr<ScopedLockableAttr>())
2164          continue;
2165        CXXConstructorDecl *CtorD = findConstructorForByValueReturn(RD);
2166        if (!CtorD || !CtorD->hasAttrs())
2167          continue;
2168        handleCall(buildFakeCtorCall(CtorD, {E}, E->getBeginLoc()), CtorD, VD);
2169      }
2170    }
2171  }
2172}
2173
2174/// Compute the intersection of two locksets and issue warnings for any
2175/// locks in the symmetric difference.
2176///
2177/// This function is used at a merge point in the CFG when comparing the lockset
2178/// of each branch being merged. For example, given the following sequence:
2179/// A; if () then B; else C; D; we need to check that the lockset after B and C
2180/// are the same. In the event of a difference, we use the intersection of these
2181/// two locksets at the start of D.
2182///
2183/// \param FSet1 The first lockset.
2184/// \param FSet2 The second lockset.
2185/// \param JoinLoc The location of the join point for error reporting
2186/// \param LEK1 The error message to report if a mutex is missing from LSet1
2187/// \param LEK2 The error message to report if a mutex is missing from Lset2
2188void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1,
2189                                            const FactSet &FSet2,
2190                                            SourceLocation JoinLoc,
2191                                            LockErrorKind LEK1,
2192                                            LockErrorKind LEK2,
2193                                            bool Modify) {
2194  FactSet FSet1Orig = FSet1;
2195
2196  // Find locks in FSet2 that conflict or are not in FSet1, and warn.
2197  for (const auto &Fact : FSet2) {
2198    const FactEntry *LDat1 = nullptr;
2199    const FactEntry *LDat2 = &FactMan[Fact];
2200    FactSet::iterator Iter1  = FSet1.findLockIter(FactMan, *LDat2);
2201    if (Iter1 != FSet1.end()) LDat1 = &FactMan[*Iter1];
2202
2203    if (LDat1) {
2204      if (LDat1->kind() != LDat2->kind()) {
2205        Handler.handleExclusiveAndShared("mutex", LDat2->toString(),
2206                                         LDat2->loc(), LDat1->loc());
2207        if (Modify && LDat1->kind() != LK_Exclusive) {
2208          // Take the exclusive lock, which is the one in FSet2.
2209          *Iter1 = Fact;
2210        }
2211      }
2212      else if (Modify && LDat1->asserted() && !LDat2->asserted()) {
2213        // The non-asserted lock in FSet2 is the one we want to track.
2214        *Iter1 = Fact;
2215      }
2216    } else {
2217      LDat2->handleRemovalFromIntersection(FSet2, FactMan, JoinLoc, LEK1,
2218                                           Handler);
2219    }
2220  }
2221
2222  // Find locks in FSet1 that are not in FSet2, and remove them.
2223  for (const auto &Fact : FSet1Orig) {
2224    const FactEntry *LDat1 = &FactMan[Fact];
2225    const FactEntry *LDat2 = FSet2.findLock(FactMan, *LDat1);
2226
2227    if (!LDat2) {
2228      LDat1->handleRemovalFromIntersection(FSet1Orig, FactMan, JoinLoc, LEK2,
2229                                           Handler);
2230      if (Modify)
2231        FSet1.removeLock(FactMan, *LDat1);
2232    }
2233  }
2234}
2235
2236// Return true if block B never continues to its successors.
2237static bool neverReturns(const CFGBlock *B) {
2238  if (B->hasNoReturnElement())
2239    return true;
2240  if (B->empty())
2241    return false;
2242
2243  CFGElement Last = B->back();
2244  if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) {
2245    if (isa<CXXThrowExpr>(S->getStmt()))
2246      return true;
2247  }
2248  return false;
2249}
2250
2251/// Check a function's CFG for thread-safety violations.
2252///
2253/// We traverse the blocks in the CFG, compute the set of mutexes that are held
2254/// at the end of each block, and issue warnings for thread safety violations.
2255/// Each block in the CFG is traversed exactly once.
2256void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
2257  // TODO: this whole function needs be rewritten as a visitor for CFGWalker.
2258  // For now, we just use the walker to set things up.
2259  threadSafety::CFGWalker walker;
2260  if (!walker.init(AC))
2261    return;
2262
2263  // AC.dumpCFG(true);
2264  // threadSafety::printSCFG(walker);
2265
2266  CFG *CFGraph = walker.getGraph();
2267  const NamedDecl *D = walker.getDecl();
2268  const auto *CurrentFunction = dyn_cast<FunctionDecl>(D);
2269  CurrentMethod = dyn_cast<CXXMethodDecl>(D);
2270
2271  if (D->hasAttr<NoThreadSafetyAnalysisAttr>())
2272    return;
2273
2274  // FIXME: Do something a bit more intelligent inside constructor and
2275  // destructor code.  Constructors and destructors must assume unique access
2276  // to 'this', so checks on member variable access is disabled, but we should
2277  // still enable checks on other objects.
2278  if (isa<CXXConstructorDecl>(D))
2279    return;  // Don't check inside constructors.
2280  if (isa<CXXDestructorDecl>(D))
2281    return;  // Don't check inside destructors.
2282
2283  Handler.enterFunction(CurrentFunction);
2284
2285  BlockInfo.resize(CFGraph->getNumBlockIDs(),
2286    CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
2287
2288  // We need to explore the CFG via a "topological" ordering.
2289  // That way, we will be guaranteed to have information about required
2290  // predecessor locksets when exploring a new block.
2291  const PostOrderCFGView *SortedGraph = walker.getSortedGraph();
2292  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
2293
2294  // Mark entry block as reachable
2295  BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true;
2296
2297  // Compute SSA names for local variables
2298  LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
2299
2300  // Fill in source locations for all CFGBlocks.
2301  findBlockLocations(CFGraph, SortedGraph, BlockInfo);
2302
2303  CapExprSet ExclusiveLocksAcquired;
2304  CapExprSet SharedLocksAcquired;
2305  CapExprSet LocksReleased;
2306
2307  // Add locks from exclusive_locks_required and shared_locks_required
2308  // to initial lockset. Also turn off checking for lock and unlock functions.
2309  // FIXME: is there a more intelligent way to check lock/unlock functions?
2310  if (!SortedGraph->empty() && D->hasAttrs()) {
2311    const CFGBlock *FirstBlock = *SortedGraph->begin();
2312    FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
2313
2314    CapExprSet ExclusiveLocksToAdd;
2315    CapExprSet SharedLocksToAdd;
2316    StringRef CapDiagKind = "mutex";
2317
2318    SourceLocation Loc = D->getLocation();
2319    for (const auto *Attr : D->attrs()) {
2320      Loc = Attr->getLocation();
2321      if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) {
2322        getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
2323                    nullptr, D);
2324        CapDiagKind = ClassifyDiagnostic(A);
2325      } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) {
2326        // UNLOCK_FUNCTION() is used to hide the underlying lock implementation.
2327        // We must ignore such methods.
2328        if (A->args_size() == 0)
2329          return;
2330        getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
2331                    nullptr, D);
2332        getMutexIDs(LocksReleased, A, nullptr, D);
2333        CapDiagKind = ClassifyDiagnostic(A);
2334      } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) {
2335        if (A->args_size() == 0)
2336          return;
2337        getMutexIDs(A->isShared() ? SharedLocksAcquired
2338                                  : ExclusiveLocksAcquired,
2339                    A, nullptr, D);
2340        CapDiagKind = ClassifyDiagnostic(A);
2341      } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
2342        // Don't try to check trylock functions for now.
2343        return;
2344      } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
2345        // Don't try to check trylock functions for now.
2346        return;
2347      } else if (isa<TryAcquireCapabilityAttr>(Attr)) {
2348        // Don't try to check trylock functions for now.
2349        return;
2350      }
2351    }
2352
2353    // FIXME -- Loc can be wrong here.
2354    for (const auto &Mu : ExclusiveLocksToAdd) {
2355      auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc);
2356      Entry->setDeclared(true);
2357      addLock(InitialLockset, std::move(Entry), CapDiagKind, true);
2358    }
2359    for (const auto &Mu : SharedLocksToAdd) {
2360      auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc);
2361      Entry->setDeclared(true);
2362      addLock(InitialLockset, std::move(Entry), CapDiagKind, true);
2363    }
2364  }
2365
2366  for (const auto *CurrBlock : *SortedGraph) {
2367    unsigned CurrBlockID = CurrBlock->getBlockID();
2368    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
2369
2370    // Use the default initial lockset in case there are no predecessors.
2371    VisitedBlocks.insert(CurrBlock);
2372
2373    // Iterate through the predecessor blocks and warn if the lockset for all
2374    // predecessors is not the same. We take the entry lockset of the current
2375    // block to be the intersection of all previous locksets.
2376    // FIXME: By keeping the intersection, we may output more errors in future
2377    // for a lock which is not in the intersection, but was in the union. We
2378    // may want to also keep the union in future. As an example, let's say
2379    // the intersection contains Mutex L, and the union contains L and M.
2380    // Later we unlock M. At this point, we would output an error because we
2381    // never locked M; although the real error is probably that we forgot to
2382    // lock M on all code paths. Conversely, let's say that later we lock M.
2383    // In this case, we should compare against the intersection instead of the
2384    // union because the real error is probably that we forgot to unlock M on
2385    // all code paths.
2386    bool LocksetInitialized = false;
2387    SmallVector<CFGBlock *, 8> SpecialBlocks;
2388    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
2389         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
2390      // if *PI -> CurrBlock is a back edge
2391      if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI))
2392        continue;
2393
2394      unsigned PrevBlockID = (*PI)->getBlockID();
2395      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2396
2397      // Ignore edges from blocks that can't return.
2398      if (neverReturns(*PI) || !PrevBlockInfo->Reachable)
2399        continue;
2400
2401      // Okay, we can reach this block from the entry.
2402      CurrBlockInfo->Reachable = true;
2403
2404      // If the previous block ended in a 'continue' or 'break' statement, then
2405      // a difference in locksets is probably due to a bug in that block, rather
2406      // than in some other predecessor. In that case, keep the other
2407      // predecessor's lockset.
2408      if (const Stmt *Terminator = (*PI)->getTerminatorStmt()) {
2409        if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
2410          SpecialBlocks.push_back(*PI);
2411          continue;
2412        }
2413      }
2414
2415      FactSet PrevLockset;
2416      getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
2417
2418      if (!LocksetInitialized) {
2419        CurrBlockInfo->EntrySet = PrevLockset;
2420        LocksetInitialized = true;
2421      } else {
2422        intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
2423                         CurrBlockInfo->EntryLoc,
2424                         LEK_LockedSomePredecessors);
2425      }
2426    }
2427
2428    // Skip rest of block if it's not reachable.
2429    if (!CurrBlockInfo->Reachable)
2430      continue;
2431
2432    // Process continue and break blocks. Assume that the lockset for the
2433    // resulting block is unaffected by any discrepancies in them.
2434    for (const auto *PrevBlock : SpecialBlocks) {
2435      unsigned PrevBlockID = PrevBlock->getBlockID();
2436      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2437
2438      if (!LocksetInitialized) {
2439        CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
2440        LocksetInitialized = true;
2441      } else {
2442        // Determine whether this edge is a loop terminator for diagnostic
2443        // purposes. FIXME: A 'break' statement might be a loop terminator, but
2444        // it might also be part of a switch. Also, a subsequent destructor
2445        // might add to the lockset, in which case the real issue might be a
2446        // double lock on the other path.
2447        const Stmt *Terminator = PrevBlock->getTerminatorStmt();
2448        bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
2449
2450        FactSet PrevLockset;
2451        getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet,
2452                       PrevBlock, CurrBlock);
2453
2454        // Do not update EntrySet.
2455        intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
2456                         PrevBlockInfo->ExitLoc,
2457                         IsLoop ? LEK_LockedSomeLoopIterations
2458                                : LEK_LockedSomePredecessors,
2459                         false);
2460      }
2461    }
2462
2463    BuildLockset LocksetBuilder(this, *CurrBlockInfo);
2464
2465    // Visit all the statements in the basic block.
2466    for (const auto &BI : *CurrBlock) {
2467      switch (BI.getKind()) {
2468        case CFGElement::Statement: {
2469          CFGStmt CS = BI.castAs<CFGStmt>();
2470          LocksetBuilder.Visit(CS.getStmt());
2471          break;
2472        }
2473        // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
2474        case CFGElement::AutomaticObjectDtor: {
2475          CFGAutomaticObjDtor AD = BI.castAs<CFGAutomaticObjDtor>();
2476          const auto *DD = AD.getDestructorDecl(AC.getASTContext());
2477          if (!DD->hasAttrs())
2478            break;
2479
2480          // Create a dummy expression,
2481          auto *VD = const_cast<VarDecl *>(AD.getVarDecl());
2482          DeclRefExpr DRE(VD->getASTContext(), VD, false,
2483                          VD->getType().getNonReferenceType(), VK_LValue,
2484                          AD.getTriggerStmt()->getEndLoc());
2485          LocksetBuilder.handleCall(&DRE, DD);
2486          break;
2487        }
2488        default:
2489          break;
2490      }
2491    }
2492    CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
2493
2494    // For every back edge from CurrBlock (the end of the loop) to another block
2495    // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
2496    // the one held at the beginning of FirstLoopBlock. We can look up the
2497    // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
2498    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
2499         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
2500      // if CurrBlock -> *SI is *not* a back edge
2501      if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
2502        continue;
2503
2504      CFGBlock *FirstLoopBlock = *SI;
2505      CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
2506      CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
2507      intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet,
2508                       PreLoop->EntryLoc,
2509                       LEK_LockedSomeLoopIterations,
2510                       false);
2511    }
2512  }
2513
2514  CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
2515  CFGBlockInfo *Final   = &BlockInfo[CFGraph->getExit().getBlockID()];
2516
2517  // Skip the final check if the exit block is unreachable.
2518  if (!Final->Reachable)
2519    return;
2520
2521  // By default, we expect all locks held on entry to be held on exit.
2522  FactSet ExpectedExitSet = Initial->EntrySet;
2523
2524  // Adjust the expected exit set by adding or removing locks, as declared
2525  // by *-LOCK_FUNCTION and UNLOCK_FUNCTION.  The intersect below will then
2526  // issue the appropriate warning.
2527  // FIXME: the location here is not quite right.
2528  for (const auto &Lock : ExclusiveLocksAcquired)
2529    ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
2530                                         Lock, LK_Exclusive, D->getLocation()));
2531  for (const auto &Lock : SharedLocksAcquired)
2532    ExpectedExitSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
2533                                         Lock, LK_Shared, D->getLocation()));
2534  for (const auto &Lock : LocksReleased)
2535    ExpectedExitSet.removeLock(FactMan, Lock);
2536
2537  // FIXME: Should we call this function for all blocks which exit the function?
2538  intersectAndWarn(ExpectedExitSet, Final->ExitSet,
2539                   Final->ExitLoc,
2540                   LEK_LockedAtEndOfFunction,
2541                   LEK_NotLockedAtEndOfFunction,
2542                   false);
2543
2544  Handler.leaveFunction(CurrentFunction);
2545}
2546
2547/// Check a function's CFG for thread-safety violations.
2548///
2549/// We traverse the blocks in the CFG, compute the set of mutexes that are held
2550/// at the end of each block, and issue warnings for thread safety violations.
2551/// Each block in the CFG is traversed exactly once.
2552void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC,
2553                                           ThreadSafetyHandler &Handler,
2554                                           BeforeSet **BSet) {
2555  if (!*BSet)
2556    *BSet = new BeforeSet;
2557  ThreadSafetyAnalyzer Analyzer(Handler, *BSet);
2558  Analyzer.runAnalysis(AC);
2559}
2560
2561void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; }
2562
2563/// Helper function that returns a LockKind required for the given level
2564/// of access.
2565LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) {
2566  switch (AK) {
2567    case AK_Read :
2568      return LK_Shared;
2569    case AK_Written :
2570      return LK_Exclusive;
2571  }
2572  llvm_unreachable("Unknown AccessKind");
2573}
2574