Type.cpp revision 360784
1//===- Type.cpp - Type representation and manipulation --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9//  This file implements type-related functionality.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/Type.h"
14#include "Linkage.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Attr.h"
17#include "clang/AST/CharUnits.h"
18#include "clang/AST/Decl.h"
19#include "clang/AST/DeclBase.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/Expr.h"
24#include "clang/AST/NestedNameSpecifier.h"
25#include "clang/AST/NonTrivialTypeVisitor.h"
26#include "clang/AST/PrettyPrinter.h"
27#include "clang/AST/TemplateBase.h"
28#include "clang/AST/TemplateName.h"
29#include "clang/AST/TypeVisitor.h"
30#include "clang/Basic/AddressSpaces.h"
31#include "clang/Basic/ExceptionSpecificationType.h"
32#include "clang/Basic/IdentifierTable.h"
33#include "clang/Basic/LLVM.h"
34#include "clang/Basic/LangOptions.h"
35#include "clang/Basic/Linkage.h"
36#include "clang/Basic/Specifiers.h"
37#include "clang/Basic/TargetCXXABI.h"
38#include "clang/Basic/TargetInfo.h"
39#include "clang/Basic/Visibility.h"
40#include "llvm/ADT/APInt.h"
41#include "llvm/ADT/APSInt.h"
42#include "llvm/ADT/ArrayRef.h"
43#include "llvm/ADT/FoldingSet.h"
44#include "llvm/ADT/None.h"
45#include "llvm/ADT/SmallVector.h"
46#include "llvm/Support/Casting.h"
47#include "llvm/Support/ErrorHandling.h"
48#include "llvm/Support/MathExtras.h"
49#include <algorithm>
50#include <cassert>
51#include <cstdint>
52#include <cstring>
53#include <type_traits>
54
55using namespace clang;
56
57bool Qualifiers::isStrictSupersetOf(Qualifiers Other) const {
58  return (*this != Other) &&
59    // CVR qualifiers superset
60    (((Mask & CVRMask) | (Other.Mask & CVRMask)) == (Mask & CVRMask)) &&
61    // ObjC GC qualifiers superset
62    ((getObjCGCAttr() == Other.getObjCGCAttr()) ||
63     (hasObjCGCAttr() && !Other.hasObjCGCAttr())) &&
64    // Address space superset.
65    ((getAddressSpace() == Other.getAddressSpace()) ||
66     (hasAddressSpace()&& !Other.hasAddressSpace())) &&
67    // Lifetime qualifier superset.
68    ((getObjCLifetime() == Other.getObjCLifetime()) ||
69     (hasObjCLifetime() && !Other.hasObjCLifetime()));
70}
71
72const IdentifierInfo* QualType::getBaseTypeIdentifier() const {
73  const Type* ty = getTypePtr();
74  NamedDecl *ND = nullptr;
75  if (ty->isPointerType() || ty->isReferenceType())
76    return ty->getPointeeType().getBaseTypeIdentifier();
77  else if (ty->isRecordType())
78    ND = ty->castAs<RecordType>()->getDecl();
79  else if (ty->isEnumeralType())
80    ND = ty->castAs<EnumType>()->getDecl();
81  else if (ty->getTypeClass() == Type::Typedef)
82    ND = ty->castAs<TypedefType>()->getDecl();
83  else if (ty->isArrayType())
84    return ty->castAsArrayTypeUnsafe()->
85        getElementType().getBaseTypeIdentifier();
86
87  if (ND)
88    return ND->getIdentifier();
89  return nullptr;
90}
91
92bool QualType::mayBeDynamicClass() const {
93  const auto *ClassDecl = getTypePtr()->getPointeeCXXRecordDecl();
94  return ClassDecl && ClassDecl->mayBeDynamicClass();
95}
96
97bool QualType::mayBeNotDynamicClass() const {
98  const auto *ClassDecl = getTypePtr()->getPointeeCXXRecordDecl();
99  return !ClassDecl || ClassDecl->mayBeNonDynamicClass();
100}
101
102bool QualType::isConstant(QualType T, const ASTContext &Ctx) {
103  if (T.isConstQualified())
104    return true;
105
106  if (const ArrayType *AT = Ctx.getAsArrayType(T))
107    return AT->getElementType().isConstant(Ctx);
108
109  return T.getAddressSpace() == LangAS::opencl_constant;
110}
111
112// C++ [temp.dep.type]p1:
113//   A type is dependent if it is...
114//     - an array type constructed from any dependent type or whose
115//       size is specified by a constant expression that is
116//       value-dependent,
117ArrayType::ArrayType(TypeClass tc, QualType et, QualType can,
118                     ArraySizeModifier sm, unsigned tq, const Expr *sz)
119    // Note, we need to check for DependentSizedArrayType explicitly here
120    // because we use a DependentSizedArrayType with no size expression as the
121    // type of a dependent array of unknown bound with a dependent braced
122    // initializer:
123    //
124    //   template<int ...N> int arr[] = {N...};
125    : Type(tc, can,
126           et->isDependentType() || (sz && sz->isValueDependent()) ||
127               tc == DependentSizedArray,
128           et->isInstantiationDependentType() ||
129               (sz && sz->isInstantiationDependent()) ||
130               tc == DependentSizedArray,
131           (tc == VariableArray || et->isVariablyModifiedType()),
132           et->containsUnexpandedParameterPack() ||
133               (sz && sz->containsUnexpandedParameterPack())),
134      ElementType(et) {
135  ArrayTypeBits.IndexTypeQuals = tq;
136  ArrayTypeBits.SizeModifier = sm;
137}
138
139unsigned ConstantArrayType::getNumAddressingBits(const ASTContext &Context,
140                                                 QualType ElementType,
141                                               const llvm::APInt &NumElements) {
142  uint64_t ElementSize = Context.getTypeSizeInChars(ElementType).getQuantity();
143
144  // Fast path the common cases so we can avoid the conservative computation
145  // below, which in common cases allocates "large" APSInt values, which are
146  // slow.
147
148  // If the element size is a power of 2, we can directly compute the additional
149  // number of addressing bits beyond those required for the element count.
150  if (llvm::isPowerOf2_64(ElementSize)) {
151    return NumElements.getActiveBits() + llvm::Log2_64(ElementSize);
152  }
153
154  // If both the element count and element size fit in 32-bits, we can do the
155  // computation directly in 64-bits.
156  if ((ElementSize >> 32) == 0 && NumElements.getBitWidth() <= 64 &&
157      (NumElements.getZExtValue() >> 32) == 0) {
158    uint64_t TotalSize = NumElements.getZExtValue() * ElementSize;
159    return 64 - llvm::countLeadingZeros(TotalSize);
160  }
161
162  // Otherwise, use APSInt to handle arbitrary sized values.
163  llvm::APSInt SizeExtended(NumElements, true);
164  unsigned SizeTypeBits = Context.getTypeSize(Context.getSizeType());
165  SizeExtended = SizeExtended.extend(std::max(SizeTypeBits,
166                                              SizeExtended.getBitWidth()) * 2);
167
168  llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize));
169  TotalSize *= SizeExtended;
170
171  return TotalSize.getActiveBits();
172}
173
174unsigned ConstantArrayType::getMaxSizeBits(const ASTContext &Context) {
175  unsigned Bits = Context.getTypeSize(Context.getSizeType());
176
177  // Limit the number of bits in size_t so that maximal bit size fits 64 bit
178  // integer (see PR8256).  We can do this as currently there is no hardware
179  // that supports full 64-bit virtual space.
180  if (Bits > 61)
181    Bits = 61;
182
183  return Bits;
184}
185
186void ConstantArrayType::Profile(llvm::FoldingSetNodeID &ID,
187                                const ASTContext &Context, QualType ET,
188                                const llvm::APInt &ArraySize,
189                                const Expr *SizeExpr, ArraySizeModifier SizeMod,
190                                unsigned TypeQuals) {
191  ID.AddPointer(ET.getAsOpaquePtr());
192  ID.AddInteger(ArraySize.getZExtValue());
193  ID.AddInteger(SizeMod);
194  ID.AddInteger(TypeQuals);
195  ID.AddBoolean(SizeExpr != 0);
196  if (SizeExpr)
197    SizeExpr->Profile(ID, Context, true);
198}
199
200DependentSizedArrayType::DependentSizedArrayType(const ASTContext &Context,
201                                                 QualType et, QualType can,
202                                                 Expr *e, ArraySizeModifier sm,
203                                                 unsigned tq,
204                                                 SourceRange brackets)
205    : ArrayType(DependentSizedArray, et, can, sm, tq, e),
206      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets) {}
207
208void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
209                                      const ASTContext &Context,
210                                      QualType ET,
211                                      ArraySizeModifier SizeMod,
212                                      unsigned TypeQuals,
213                                      Expr *E) {
214  ID.AddPointer(ET.getAsOpaquePtr());
215  ID.AddInteger(SizeMod);
216  ID.AddInteger(TypeQuals);
217  E->Profile(ID, Context, true);
218}
219
220DependentVectorType::DependentVectorType(
221    const ASTContext &Context, QualType ElementType, QualType CanonType,
222    Expr *SizeExpr, SourceLocation Loc, VectorType::VectorKind VecKind)
223    : Type(DependentVector, CanonType, /*Dependent=*/true,
224           /*InstantiationDependent=*/true,
225           ElementType->isVariablyModifiedType(),
226           ElementType->containsUnexpandedParameterPack() ||
227               (SizeExpr && SizeExpr->containsUnexpandedParameterPack())),
228      Context(Context), ElementType(ElementType), SizeExpr(SizeExpr), Loc(Loc) {
229  VectorTypeBits.VecKind = VecKind;
230}
231
232void DependentVectorType::Profile(llvm::FoldingSetNodeID &ID,
233                                  const ASTContext &Context,
234                                  QualType ElementType, const Expr *SizeExpr,
235                                  VectorType::VectorKind VecKind) {
236  ID.AddPointer(ElementType.getAsOpaquePtr());
237  ID.AddInteger(VecKind);
238  SizeExpr->Profile(ID, Context, true);
239}
240
241DependentSizedExtVectorType::DependentSizedExtVectorType(const
242                                                         ASTContext &Context,
243                                                         QualType ElementType,
244                                                         QualType can,
245                                                         Expr *SizeExpr,
246                                                         SourceLocation loc)
247    : Type(DependentSizedExtVector, can, /*Dependent=*/true,
248           /*InstantiationDependent=*/true,
249           ElementType->isVariablyModifiedType(),
250           (ElementType->containsUnexpandedParameterPack() ||
251            (SizeExpr && SizeExpr->containsUnexpandedParameterPack()))),
252      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
253      loc(loc) {}
254
255void
256DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
257                                     const ASTContext &Context,
258                                     QualType ElementType, Expr *SizeExpr) {
259  ID.AddPointer(ElementType.getAsOpaquePtr());
260  SizeExpr->Profile(ID, Context, true);
261}
262
263DependentAddressSpaceType::DependentAddressSpaceType(
264    const ASTContext &Context, QualType PointeeType, QualType can,
265    Expr *AddrSpaceExpr, SourceLocation loc)
266    : Type(DependentAddressSpace, can, /*Dependent=*/true,
267           /*InstantiationDependent=*/true,
268           PointeeType->isVariablyModifiedType(),
269           (PointeeType->containsUnexpandedParameterPack() ||
270            (AddrSpaceExpr &&
271             AddrSpaceExpr->containsUnexpandedParameterPack()))),
272      Context(Context), AddrSpaceExpr(AddrSpaceExpr), PointeeType(PointeeType),
273      loc(loc) {}
274
275void DependentAddressSpaceType::Profile(llvm::FoldingSetNodeID &ID,
276                                        const ASTContext &Context,
277                                        QualType PointeeType,
278                                        Expr *AddrSpaceExpr) {
279  ID.AddPointer(PointeeType.getAsOpaquePtr());
280  AddrSpaceExpr->Profile(ID, Context, true);
281}
282
283VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType,
284                       VectorKind vecKind)
285    : VectorType(Vector, vecType, nElements, canonType, vecKind) {}
286
287VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements,
288                       QualType canonType, VectorKind vecKind)
289    : Type(tc, canonType, vecType->isDependentType(),
290           vecType->isInstantiationDependentType(),
291           vecType->isVariablyModifiedType(),
292           vecType->containsUnexpandedParameterPack()),
293      ElementType(vecType) {
294  VectorTypeBits.VecKind = vecKind;
295  VectorTypeBits.NumElements = nElements;
296}
297
298/// getArrayElementTypeNoTypeQual - If this is an array type, return the
299/// element type of the array, potentially with type qualifiers missing.
300/// This method should never be used when type qualifiers are meaningful.
301const Type *Type::getArrayElementTypeNoTypeQual() const {
302  // If this is directly an array type, return it.
303  if (const auto *ATy = dyn_cast<ArrayType>(this))
304    return ATy->getElementType().getTypePtr();
305
306  // If the canonical form of this type isn't the right kind, reject it.
307  if (!isa<ArrayType>(CanonicalType))
308    return nullptr;
309
310  // If this is a typedef for an array type, strip the typedef off without
311  // losing all typedef information.
312  return cast<ArrayType>(getUnqualifiedDesugaredType())
313    ->getElementType().getTypePtr();
314}
315
316/// getDesugaredType - Return the specified type with any "sugar" removed from
317/// the type.  This takes off typedefs, typeof's etc.  If the outer level of
318/// the type is already concrete, it returns it unmodified.  This is similar
319/// to getting the canonical type, but it doesn't remove *all* typedefs.  For
320/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
321/// concrete.
322QualType QualType::getDesugaredType(QualType T, const ASTContext &Context) {
323  SplitQualType split = getSplitDesugaredType(T);
324  return Context.getQualifiedType(split.Ty, split.Quals);
325}
326
327QualType QualType::getSingleStepDesugaredTypeImpl(QualType type,
328                                                  const ASTContext &Context) {
329  SplitQualType split = type.split();
330  QualType desugar = split.Ty->getLocallyUnqualifiedSingleStepDesugaredType();
331  return Context.getQualifiedType(desugar, split.Quals);
332}
333
334// Check that no type class is polymorphic. LLVM style RTTI should be used
335// instead. If absolutely needed an exception can still be added here by
336// defining the appropriate macro (but please don't do this).
337#define TYPE(CLASS, BASE) \
338  static_assert(!std::is_polymorphic<CLASS##Type>::value, \
339                #CLASS "Type should not be polymorphic!");
340#include "clang/AST/TypeNodes.inc"
341
342// Check that no type class has a non-trival destructor. Types are
343// allocated with the BumpPtrAllocator from ASTContext and therefore
344// their destructor is not executed.
345//
346// FIXME: ConstantArrayType is not trivially destructible because of its
347// APInt member. It should be replaced in favor of ASTContext allocation.
348#define TYPE(CLASS, BASE)                                                      \
349  static_assert(std::is_trivially_destructible<CLASS##Type>::value ||          \
350                    std::is_same<CLASS##Type, ConstantArrayType>::value,       \
351                #CLASS "Type should be trivially destructible!");
352#include "clang/AST/TypeNodes.inc"
353
354QualType Type::getLocallyUnqualifiedSingleStepDesugaredType() const {
355  switch (getTypeClass()) {
356#define ABSTRACT_TYPE(Class, Parent)
357#define TYPE(Class, Parent) \
358  case Type::Class: { \
359    const auto *ty = cast<Class##Type>(this); \
360    if (!ty->isSugared()) return QualType(ty, 0); \
361    return ty->desugar(); \
362  }
363#include "clang/AST/TypeNodes.inc"
364  }
365  llvm_unreachable("bad type kind!");
366}
367
368SplitQualType QualType::getSplitDesugaredType(QualType T) {
369  QualifierCollector Qs;
370
371  QualType Cur = T;
372  while (true) {
373    const Type *CurTy = Qs.strip(Cur);
374    switch (CurTy->getTypeClass()) {
375#define ABSTRACT_TYPE(Class, Parent)
376#define TYPE(Class, Parent) \
377    case Type::Class: { \
378      const auto *Ty = cast<Class##Type>(CurTy); \
379      if (!Ty->isSugared()) \
380        return SplitQualType(Ty, Qs); \
381      Cur = Ty->desugar(); \
382      break; \
383    }
384#include "clang/AST/TypeNodes.inc"
385    }
386  }
387}
388
389SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) {
390  SplitQualType split = type.split();
391
392  // All the qualifiers we've seen so far.
393  Qualifiers quals = split.Quals;
394
395  // The last type node we saw with any nodes inside it.
396  const Type *lastTypeWithQuals = split.Ty;
397
398  while (true) {
399    QualType next;
400
401    // Do a single-step desugar, aborting the loop if the type isn't
402    // sugared.
403    switch (split.Ty->getTypeClass()) {
404#define ABSTRACT_TYPE(Class, Parent)
405#define TYPE(Class, Parent) \
406    case Type::Class: { \
407      const auto *ty = cast<Class##Type>(split.Ty); \
408      if (!ty->isSugared()) goto done; \
409      next = ty->desugar(); \
410      break; \
411    }
412#include "clang/AST/TypeNodes.inc"
413    }
414
415    // Otherwise, split the underlying type.  If that yields qualifiers,
416    // update the information.
417    split = next.split();
418    if (!split.Quals.empty()) {
419      lastTypeWithQuals = split.Ty;
420      quals.addConsistentQualifiers(split.Quals);
421    }
422  }
423
424 done:
425  return SplitQualType(lastTypeWithQuals, quals);
426}
427
428QualType QualType::IgnoreParens(QualType T) {
429  // FIXME: this seems inherently un-qualifiers-safe.
430  while (const auto *PT = T->getAs<ParenType>())
431    T = PT->getInnerType();
432  return T;
433}
434
435/// This will check for a T (which should be a Type which can act as
436/// sugar, such as a TypedefType) by removing any existing sugar until it
437/// reaches a T or a non-sugared type.
438template<typename T> static const T *getAsSugar(const Type *Cur) {
439  while (true) {
440    if (const auto *Sugar = dyn_cast<T>(Cur))
441      return Sugar;
442    switch (Cur->getTypeClass()) {
443#define ABSTRACT_TYPE(Class, Parent)
444#define TYPE(Class, Parent) \
445    case Type::Class: { \
446      const auto *Ty = cast<Class##Type>(Cur); \
447      if (!Ty->isSugared()) return 0; \
448      Cur = Ty->desugar().getTypePtr(); \
449      break; \
450    }
451#include "clang/AST/TypeNodes.inc"
452    }
453  }
454}
455
456template <> const TypedefType *Type::getAs() const {
457  return getAsSugar<TypedefType>(this);
458}
459
460template <> const TemplateSpecializationType *Type::getAs() const {
461  return getAsSugar<TemplateSpecializationType>(this);
462}
463
464template <> const AttributedType *Type::getAs() const {
465  return getAsSugar<AttributedType>(this);
466}
467
468/// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
469/// sugar off the given type.  This should produce an object of the
470/// same dynamic type as the canonical type.
471const Type *Type::getUnqualifiedDesugaredType() const {
472  const Type *Cur = this;
473
474  while (true) {
475    switch (Cur->getTypeClass()) {
476#define ABSTRACT_TYPE(Class, Parent)
477#define TYPE(Class, Parent) \
478    case Class: { \
479      const auto *Ty = cast<Class##Type>(Cur); \
480      if (!Ty->isSugared()) return Cur; \
481      Cur = Ty->desugar().getTypePtr(); \
482      break; \
483    }
484#include "clang/AST/TypeNodes.inc"
485    }
486  }
487}
488
489bool Type::isClassType() const {
490  if (const auto *RT = getAs<RecordType>())
491    return RT->getDecl()->isClass();
492  return false;
493}
494
495bool Type::isStructureType() const {
496  if (const auto *RT = getAs<RecordType>())
497    return RT->getDecl()->isStruct();
498  return false;
499}
500
501bool Type::isObjCBoxableRecordType() const {
502  if (const auto *RT = getAs<RecordType>())
503    return RT->getDecl()->hasAttr<ObjCBoxableAttr>();
504  return false;
505}
506
507bool Type::isInterfaceType() const {
508  if (const auto *RT = getAs<RecordType>())
509    return RT->getDecl()->isInterface();
510  return false;
511}
512
513bool Type::isStructureOrClassType() const {
514  if (const auto *RT = getAs<RecordType>()) {
515    RecordDecl *RD = RT->getDecl();
516    return RD->isStruct() || RD->isClass() || RD->isInterface();
517  }
518  return false;
519}
520
521bool Type::isVoidPointerType() const {
522  if (const auto *PT = getAs<PointerType>())
523    return PT->getPointeeType()->isVoidType();
524  return false;
525}
526
527bool Type::isUnionType() const {
528  if (const auto *RT = getAs<RecordType>())
529    return RT->getDecl()->isUnion();
530  return false;
531}
532
533bool Type::isComplexType() const {
534  if (const auto *CT = dyn_cast<ComplexType>(CanonicalType))
535    return CT->getElementType()->isFloatingType();
536  return false;
537}
538
539bool Type::isComplexIntegerType() const {
540  // Check for GCC complex integer extension.
541  return getAsComplexIntegerType();
542}
543
544bool Type::isScopedEnumeralType() const {
545  if (const auto *ET = getAs<EnumType>())
546    return ET->getDecl()->isScoped();
547  return false;
548}
549
550const ComplexType *Type::getAsComplexIntegerType() const {
551  if (const auto *Complex = getAs<ComplexType>())
552    if (Complex->getElementType()->isIntegerType())
553      return Complex;
554  return nullptr;
555}
556
557QualType Type::getPointeeType() const {
558  if (const auto *PT = getAs<PointerType>())
559    return PT->getPointeeType();
560  if (const auto *OPT = getAs<ObjCObjectPointerType>())
561    return OPT->getPointeeType();
562  if (const auto *BPT = getAs<BlockPointerType>())
563    return BPT->getPointeeType();
564  if (const auto *RT = getAs<ReferenceType>())
565    return RT->getPointeeType();
566  if (const auto *MPT = getAs<MemberPointerType>())
567    return MPT->getPointeeType();
568  if (const auto *DT = getAs<DecayedType>())
569    return DT->getPointeeType();
570  return {};
571}
572
573const RecordType *Type::getAsStructureType() const {
574  // If this is directly a structure type, return it.
575  if (const auto *RT = dyn_cast<RecordType>(this)) {
576    if (RT->getDecl()->isStruct())
577      return RT;
578  }
579
580  // If the canonical form of this type isn't the right kind, reject it.
581  if (const auto *RT = dyn_cast<RecordType>(CanonicalType)) {
582    if (!RT->getDecl()->isStruct())
583      return nullptr;
584
585    // If this is a typedef for a structure type, strip the typedef off without
586    // losing all typedef information.
587    return cast<RecordType>(getUnqualifiedDesugaredType());
588  }
589  return nullptr;
590}
591
592const RecordType *Type::getAsUnionType() const {
593  // If this is directly a union type, return it.
594  if (const auto *RT = dyn_cast<RecordType>(this)) {
595    if (RT->getDecl()->isUnion())
596      return RT;
597  }
598
599  // If the canonical form of this type isn't the right kind, reject it.
600  if (const auto *RT = dyn_cast<RecordType>(CanonicalType)) {
601    if (!RT->getDecl()->isUnion())
602      return nullptr;
603
604    // If this is a typedef for a union type, strip the typedef off without
605    // losing all typedef information.
606    return cast<RecordType>(getUnqualifiedDesugaredType());
607  }
608
609  return nullptr;
610}
611
612bool Type::isObjCIdOrObjectKindOfType(const ASTContext &ctx,
613                                      const ObjCObjectType *&bound) const {
614  bound = nullptr;
615
616  const auto *OPT = getAs<ObjCObjectPointerType>();
617  if (!OPT)
618    return false;
619
620  // Easy case: id.
621  if (OPT->isObjCIdType())
622    return true;
623
624  // If it's not a __kindof type, reject it now.
625  if (!OPT->isKindOfType())
626    return false;
627
628  // If it's Class or qualified Class, it's not an object type.
629  if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType())
630    return false;
631
632  // Figure out the type bound for the __kindof type.
633  bound = OPT->getObjectType()->stripObjCKindOfTypeAndQuals(ctx)
634            ->getAs<ObjCObjectType>();
635  return true;
636}
637
638bool Type::isObjCClassOrClassKindOfType() const {
639  const auto *OPT = getAs<ObjCObjectPointerType>();
640  if (!OPT)
641    return false;
642
643  // Easy case: Class.
644  if (OPT->isObjCClassType())
645    return true;
646
647  // If it's not a __kindof type, reject it now.
648  if (!OPT->isKindOfType())
649    return false;
650
651  // If it's Class or qualified Class, it's a class __kindof type.
652  return OPT->isObjCClassType() || OPT->isObjCQualifiedClassType();
653}
654
655ObjCTypeParamType::ObjCTypeParamType(const ObjCTypeParamDecl *D,
656                                     QualType can,
657                                     ArrayRef<ObjCProtocolDecl *> protocols)
658    : Type(ObjCTypeParam, can, can->isDependentType(),
659           can->isInstantiationDependentType(),
660           can->isVariablyModifiedType(),
661           /*ContainsUnexpandedParameterPack=*/false),
662      OTPDecl(const_cast<ObjCTypeParamDecl*>(D)) {
663  initialize(protocols);
664}
665
666ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base,
667                               ArrayRef<QualType> typeArgs,
668                               ArrayRef<ObjCProtocolDecl *> protocols,
669                               bool isKindOf)
670    : Type(ObjCObject, Canonical, Base->isDependentType(),
671           Base->isInstantiationDependentType(),
672           Base->isVariablyModifiedType(),
673           Base->containsUnexpandedParameterPack()),
674      BaseType(Base) {
675  ObjCObjectTypeBits.IsKindOf = isKindOf;
676
677  ObjCObjectTypeBits.NumTypeArgs = typeArgs.size();
678  assert(getTypeArgsAsWritten().size() == typeArgs.size() &&
679         "bitfield overflow in type argument count");
680  if (!typeArgs.empty())
681    memcpy(getTypeArgStorage(), typeArgs.data(),
682           typeArgs.size() * sizeof(QualType));
683
684  for (auto typeArg : typeArgs) {
685    if (typeArg->isDependentType())
686      setDependent();
687    else if (typeArg->isInstantiationDependentType())
688      setInstantiationDependent();
689
690    if (typeArg->containsUnexpandedParameterPack())
691      setContainsUnexpandedParameterPack();
692  }
693  // Initialize the protocol qualifiers. The protocol storage is known
694  // after we set number of type arguments.
695  initialize(protocols);
696}
697
698bool ObjCObjectType::isSpecialized() const {
699  // If we have type arguments written here, the type is specialized.
700  if (ObjCObjectTypeBits.NumTypeArgs > 0)
701    return true;
702
703  // Otherwise, check whether the base type is specialized.
704  if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) {
705    // Terminate when we reach an interface type.
706    if (isa<ObjCInterfaceType>(objcObject))
707      return false;
708
709    return objcObject->isSpecialized();
710  }
711
712  // Not specialized.
713  return false;
714}
715
716ArrayRef<QualType> ObjCObjectType::getTypeArgs() const {
717  // We have type arguments written on this type.
718  if (isSpecializedAsWritten())
719    return getTypeArgsAsWritten();
720
721  // Look at the base type, which might have type arguments.
722  if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) {
723    // Terminate when we reach an interface type.
724    if (isa<ObjCInterfaceType>(objcObject))
725      return {};
726
727    return objcObject->getTypeArgs();
728  }
729
730  // No type arguments.
731  return {};
732}
733
734bool ObjCObjectType::isKindOfType() const {
735  if (isKindOfTypeAsWritten())
736    return true;
737
738  // Look at the base type, which might have type arguments.
739  if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) {
740    // Terminate when we reach an interface type.
741    if (isa<ObjCInterfaceType>(objcObject))
742      return false;
743
744    return objcObject->isKindOfType();
745  }
746
747  // Not a "__kindof" type.
748  return false;
749}
750
751QualType ObjCObjectType::stripObjCKindOfTypeAndQuals(
752           const ASTContext &ctx) const {
753  if (!isKindOfType() && qual_empty())
754    return QualType(this, 0);
755
756  // Recursively strip __kindof.
757  SplitQualType splitBaseType = getBaseType().split();
758  QualType baseType(splitBaseType.Ty, 0);
759  if (const auto *baseObj = splitBaseType.Ty->getAs<ObjCObjectType>())
760    baseType = baseObj->stripObjCKindOfTypeAndQuals(ctx);
761
762  return ctx.getObjCObjectType(ctx.getQualifiedType(baseType,
763                                                    splitBaseType.Quals),
764                               getTypeArgsAsWritten(),
765                               /*protocols=*/{},
766                               /*isKindOf=*/false);
767}
768
769const ObjCObjectPointerType *ObjCObjectPointerType::stripObjCKindOfTypeAndQuals(
770                               const ASTContext &ctx) const {
771  if (!isKindOfType() && qual_empty())
772    return this;
773
774  QualType obj = getObjectType()->stripObjCKindOfTypeAndQuals(ctx);
775  return ctx.getObjCObjectPointerType(obj)->castAs<ObjCObjectPointerType>();
776}
777
778namespace {
779
780/// Visitor used to perform a simple type transformation that does not change
781/// the semantics of the type.
782template <typename Derived>
783struct SimpleTransformVisitor : public TypeVisitor<Derived, QualType> {
784  ASTContext &Ctx;
785
786  QualType recurse(QualType type) {
787    // Split out the qualifiers from the type.
788    SplitQualType splitType = type.split();
789
790    // Visit the type itself.
791    QualType result = static_cast<Derived *>(this)->Visit(splitType.Ty);
792    if (result.isNull())
793      return result;
794
795    // Reconstruct the transformed type by applying the local qualifiers
796    // from the split type.
797    return Ctx.getQualifiedType(result, splitType.Quals);
798  }
799
800public:
801  explicit SimpleTransformVisitor(ASTContext &ctx) : Ctx(ctx) {}
802
803  // None of the clients of this transformation can occur where
804  // there are dependent types, so skip dependent types.
805#define TYPE(Class, Base)
806#define DEPENDENT_TYPE(Class, Base) \
807  QualType Visit##Class##Type(const Class##Type *T) { return QualType(T, 0); }
808#include "clang/AST/TypeNodes.inc"
809
810#define TRIVIAL_TYPE_CLASS(Class) \
811  QualType Visit##Class##Type(const Class##Type *T) { return QualType(T, 0); }
812#define SUGARED_TYPE_CLASS(Class) \
813  QualType Visit##Class##Type(const Class##Type *T) { \
814    if (!T->isSugared()) \
815      return QualType(T, 0); \
816    QualType desugaredType = recurse(T->desugar()); \
817    if (desugaredType.isNull()) \
818      return {}; \
819    if (desugaredType.getAsOpaquePtr() == T->desugar().getAsOpaquePtr()) \
820      return QualType(T, 0); \
821    return desugaredType; \
822  }
823
824  TRIVIAL_TYPE_CLASS(Builtin)
825
826  QualType VisitComplexType(const ComplexType *T) {
827    QualType elementType = recurse(T->getElementType());
828    if (elementType.isNull())
829      return {};
830
831    if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
832      return QualType(T, 0);
833
834    return Ctx.getComplexType(elementType);
835  }
836
837  QualType VisitPointerType(const PointerType *T) {
838    QualType pointeeType = recurse(T->getPointeeType());
839    if (pointeeType.isNull())
840      return {};
841
842    if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr())
843      return QualType(T, 0);
844
845    return Ctx.getPointerType(pointeeType);
846  }
847
848  QualType VisitBlockPointerType(const BlockPointerType *T) {
849    QualType pointeeType = recurse(T->getPointeeType());
850    if (pointeeType.isNull())
851      return {};
852
853    if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr())
854      return QualType(T, 0);
855
856    return Ctx.getBlockPointerType(pointeeType);
857  }
858
859  QualType VisitLValueReferenceType(const LValueReferenceType *T) {
860    QualType pointeeType = recurse(T->getPointeeTypeAsWritten());
861    if (pointeeType.isNull())
862      return {};
863
864    if (pointeeType.getAsOpaquePtr()
865          == T->getPointeeTypeAsWritten().getAsOpaquePtr())
866      return QualType(T, 0);
867
868    return Ctx.getLValueReferenceType(pointeeType, T->isSpelledAsLValue());
869  }
870
871  QualType VisitRValueReferenceType(const RValueReferenceType *T) {
872    QualType pointeeType = recurse(T->getPointeeTypeAsWritten());
873    if (pointeeType.isNull())
874      return {};
875
876    if (pointeeType.getAsOpaquePtr()
877          == T->getPointeeTypeAsWritten().getAsOpaquePtr())
878      return QualType(T, 0);
879
880    return Ctx.getRValueReferenceType(pointeeType);
881  }
882
883  QualType VisitMemberPointerType(const MemberPointerType *T) {
884    QualType pointeeType = recurse(T->getPointeeType());
885    if (pointeeType.isNull())
886      return {};
887
888    if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr())
889      return QualType(T, 0);
890
891    return Ctx.getMemberPointerType(pointeeType, T->getClass());
892  }
893
894  QualType VisitConstantArrayType(const ConstantArrayType *T) {
895    QualType elementType = recurse(T->getElementType());
896    if (elementType.isNull())
897      return {};
898
899    if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
900      return QualType(T, 0);
901
902    return Ctx.getConstantArrayType(elementType, T->getSize(), T->getSizeExpr(),
903                                    T->getSizeModifier(),
904                                    T->getIndexTypeCVRQualifiers());
905  }
906
907  QualType VisitVariableArrayType(const VariableArrayType *T) {
908    QualType elementType = recurse(T->getElementType());
909    if (elementType.isNull())
910      return {};
911
912    if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
913      return QualType(T, 0);
914
915    return Ctx.getVariableArrayType(elementType, T->getSizeExpr(),
916                                    T->getSizeModifier(),
917                                    T->getIndexTypeCVRQualifiers(),
918                                    T->getBracketsRange());
919  }
920
921  QualType VisitIncompleteArrayType(const IncompleteArrayType *T) {
922    QualType elementType = recurse(T->getElementType());
923    if (elementType.isNull())
924      return {};
925
926    if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
927      return QualType(T, 0);
928
929    return Ctx.getIncompleteArrayType(elementType, T->getSizeModifier(),
930                                      T->getIndexTypeCVRQualifiers());
931  }
932
933  QualType VisitVectorType(const VectorType *T) {
934    QualType elementType = recurse(T->getElementType());
935    if (elementType.isNull())
936      return {};
937
938    if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
939      return QualType(T, 0);
940
941    return Ctx.getVectorType(elementType, T->getNumElements(),
942                             T->getVectorKind());
943  }
944
945  QualType VisitExtVectorType(const ExtVectorType *T) {
946    QualType elementType = recurse(T->getElementType());
947    if (elementType.isNull())
948      return {};
949
950    if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
951      return QualType(T, 0);
952
953    return Ctx.getExtVectorType(elementType, T->getNumElements());
954  }
955
956  QualType VisitFunctionNoProtoType(const FunctionNoProtoType *T) {
957    QualType returnType = recurse(T->getReturnType());
958    if (returnType.isNull())
959      return {};
960
961    if (returnType.getAsOpaquePtr() == T->getReturnType().getAsOpaquePtr())
962      return QualType(T, 0);
963
964    return Ctx.getFunctionNoProtoType(returnType, T->getExtInfo());
965  }
966
967  QualType VisitFunctionProtoType(const FunctionProtoType *T) {
968    QualType returnType = recurse(T->getReturnType());
969    if (returnType.isNull())
970      return {};
971
972    // Transform parameter types.
973    SmallVector<QualType, 4> paramTypes;
974    bool paramChanged = false;
975    for (auto paramType : T->getParamTypes()) {
976      QualType newParamType = recurse(paramType);
977      if (newParamType.isNull())
978        return {};
979
980      if (newParamType.getAsOpaquePtr() != paramType.getAsOpaquePtr())
981        paramChanged = true;
982
983      paramTypes.push_back(newParamType);
984    }
985
986    // Transform extended info.
987    FunctionProtoType::ExtProtoInfo info = T->getExtProtoInfo();
988    bool exceptionChanged = false;
989    if (info.ExceptionSpec.Type == EST_Dynamic) {
990      SmallVector<QualType, 4> exceptionTypes;
991      for (auto exceptionType : info.ExceptionSpec.Exceptions) {
992        QualType newExceptionType = recurse(exceptionType);
993        if (newExceptionType.isNull())
994          return {};
995
996        if (newExceptionType.getAsOpaquePtr() != exceptionType.getAsOpaquePtr())
997          exceptionChanged = true;
998
999        exceptionTypes.push_back(newExceptionType);
1000      }
1001
1002      if (exceptionChanged) {
1003        info.ExceptionSpec.Exceptions =
1004            llvm::makeArrayRef(exceptionTypes).copy(Ctx);
1005      }
1006    }
1007
1008    if (returnType.getAsOpaquePtr() == T->getReturnType().getAsOpaquePtr() &&
1009        !paramChanged && !exceptionChanged)
1010      return QualType(T, 0);
1011
1012    return Ctx.getFunctionType(returnType, paramTypes, info);
1013  }
1014
1015  QualType VisitParenType(const ParenType *T) {
1016    QualType innerType = recurse(T->getInnerType());
1017    if (innerType.isNull())
1018      return {};
1019
1020    if (innerType.getAsOpaquePtr() == T->getInnerType().getAsOpaquePtr())
1021      return QualType(T, 0);
1022
1023    return Ctx.getParenType(innerType);
1024  }
1025
1026  SUGARED_TYPE_CLASS(Typedef)
1027  SUGARED_TYPE_CLASS(ObjCTypeParam)
1028  SUGARED_TYPE_CLASS(MacroQualified)
1029
1030  QualType VisitAdjustedType(const AdjustedType *T) {
1031    QualType originalType = recurse(T->getOriginalType());
1032    if (originalType.isNull())
1033      return {};
1034
1035    QualType adjustedType = recurse(T->getAdjustedType());
1036    if (adjustedType.isNull())
1037      return {};
1038
1039    if (originalType.getAsOpaquePtr()
1040          == T->getOriginalType().getAsOpaquePtr() &&
1041        adjustedType.getAsOpaquePtr() == T->getAdjustedType().getAsOpaquePtr())
1042      return QualType(T, 0);
1043
1044    return Ctx.getAdjustedType(originalType, adjustedType);
1045  }
1046
1047  QualType VisitDecayedType(const DecayedType *T) {
1048    QualType originalType = recurse(T->getOriginalType());
1049    if (originalType.isNull())
1050      return {};
1051
1052    if (originalType.getAsOpaquePtr()
1053          == T->getOriginalType().getAsOpaquePtr())
1054      return QualType(T, 0);
1055
1056    return Ctx.getDecayedType(originalType);
1057  }
1058
1059  SUGARED_TYPE_CLASS(TypeOfExpr)
1060  SUGARED_TYPE_CLASS(TypeOf)
1061  SUGARED_TYPE_CLASS(Decltype)
1062  SUGARED_TYPE_CLASS(UnaryTransform)
1063  TRIVIAL_TYPE_CLASS(Record)
1064  TRIVIAL_TYPE_CLASS(Enum)
1065
1066  // FIXME: Non-trivial to implement, but important for C++
1067  SUGARED_TYPE_CLASS(Elaborated)
1068
1069  QualType VisitAttributedType(const AttributedType *T) {
1070    QualType modifiedType = recurse(T->getModifiedType());
1071    if (modifiedType.isNull())
1072      return {};
1073
1074    QualType equivalentType = recurse(T->getEquivalentType());
1075    if (equivalentType.isNull())
1076      return {};
1077
1078    if (modifiedType.getAsOpaquePtr()
1079          == T->getModifiedType().getAsOpaquePtr() &&
1080        equivalentType.getAsOpaquePtr()
1081          == T->getEquivalentType().getAsOpaquePtr())
1082      return QualType(T, 0);
1083
1084    return Ctx.getAttributedType(T->getAttrKind(), modifiedType,
1085                                 equivalentType);
1086  }
1087
1088  QualType VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
1089    QualType replacementType = recurse(T->getReplacementType());
1090    if (replacementType.isNull())
1091      return {};
1092
1093    if (replacementType.getAsOpaquePtr()
1094          == T->getReplacementType().getAsOpaquePtr())
1095      return QualType(T, 0);
1096
1097    return Ctx.getSubstTemplateTypeParmType(T->getReplacedParameter(),
1098                                            replacementType);
1099  }
1100
1101  // FIXME: Non-trivial to implement, but important for C++
1102  SUGARED_TYPE_CLASS(TemplateSpecialization)
1103
1104  QualType VisitAutoType(const AutoType *T) {
1105    if (!T->isDeduced())
1106      return QualType(T, 0);
1107
1108    QualType deducedType = recurse(T->getDeducedType());
1109    if (deducedType.isNull())
1110      return {};
1111
1112    if (deducedType.getAsOpaquePtr()
1113          == T->getDeducedType().getAsOpaquePtr())
1114      return QualType(T, 0);
1115
1116    return Ctx.getAutoType(deducedType, T->getKeyword(),
1117                           T->isDependentType(), /*IsPack=*/false,
1118                           T->getTypeConstraintConcept(),
1119                           T->getTypeConstraintArguments());
1120  }
1121
1122  // FIXME: Non-trivial to implement, but important for C++
1123  SUGARED_TYPE_CLASS(PackExpansion)
1124
1125  QualType VisitObjCObjectType(const ObjCObjectType *T) {
1126    QualType baseType = recurse(T->getBaseType());
1127    if (baseType.isNull())
1128      return {};
1129
1130    // Transform type arguments.
1131    bool typeArgChanged = false;
1132    SmallVector<QualType, 4> typeArgs;
1133    for (auto typeArg : T->getTypeArgsAsWritten()) {
1134      QualType newTypeArg = recurse(typeArg);
1135      if (newTypeArg.isNull())
1136        return {};
1137
1138      if (newTypeArg.getAsOpaquePtr() != typeArg.getAsOpaquePtr())
1139        typeArgChanged = true;
1140
1141      typeArgs.push_back(newTypeArg);
1142    }
1143
1144    if (baseType.getAsOpaquePtr() == T->getBaseType().getAsOpaquePtr() &&
1145        !typeArgChanged)
1146      return QualType(T, 0);
1147
1148    return Ctx.getObjCObjectType(baseType, typeArgs,
1149                                 llvm::makeArrayRef(T->qual_begin(),
1150                                                    T->getNumProtocols()),
1151                                 T->isKindOfTypeAsWritten());
1152  }
1153
1154  TRIVIAL_TYPE_CLASS(ObjCInterface)
1155
1156  QualType VisitObjCObjectPointerType(const ObjCObjectPointerType *T) {
1157    QualType pointeeType = recurse(T->getPointeeType());
1158    if (pointeeType.isNull())
1159      return {};
1160
1161    if (pointeeType.getAsOpaquePtr()
1162          == T->getPointeeType().getAsOpaquePtr())
1163      return QualType(T, 0);
1164
1165    return Ctx.getObjCObjectPointerType(pointeeType);
1166  }
1167
1168  QualType VisitAtomicType(const AtomicType *T) {
1169    QualType valueType = recurse(T->getValueType());
1170    if (valueType.isNull())
1171      return {};
1172
1173    if (valueType.getAsOpaquePtr()
1174          == T->getValueType().getAsOpaquePtr())
1175      return QualType(T, 0);
1176
1177    return Ctx.getAtomicType(valueType);
1178  }
1179
1180#undef TRIVIAL_TYPE_CLASS
1181#undef SUGARED_TYPE_CLASS
1182};
1183
1184struct SubstObjCTypeArgsVisitor
1185    : public SimpleTransformVisitor<SubstObjCTypeArgsVisitor> {
1186  using BaseType = SimpleTransformVisitor<SubstObjCTypeArgsVisitor>;
1187
1188  ArrayRef<QualType> TypeArgs;
1189  ObjCSubstitutionContext SubstContext;
1190
1191  SubstObjCTypeArgsVisitor(ASTContext &ctx, ArrayRef<QualType> typeArgs,
1192                           ObjCSubstitutionContext context)
1193      : BaseType(ctx), TypeArgs(typeArgs), SubstContext(context) {}
1194
1195  QualType VisitObjCTypeParamType(const ObjCTypeParamType *OTPTy) {
1196    // Replace an Objective-C type parameter reference with the corresponding
1197    // type argument.
1198    ObjCTypeParamDecl *typeParam = OTPTy->getDecl();
1199    // If we have type arguments, use them.
1200    if (!TypeArgs.empty()) {
1201      QualType argType = TypeArgs[typeParam->getIndex()];
1202      if (OTPTy->qual_empty())
1203        return argType;
1204
1205      // Apply protocol lists if exists.
1206      bool hasError;
1207      SmallVector<ObjCProtocolDecl *, 8> protocolsVec;
1208      protocolsVec.append(OTPTy->qual_begin(), OTPTy->qual_end());
1209      ArrayRef<ObjCProtocolDecl *> protocolsToApply = protocolsVec;
1210      return Ctx.applyObjCProtocolQualifiers(
1211          argType, protocolsToApply, hasError, true/*allowOnPointerType*/);
1212    }
1213
1214    switch (SubstContext) {
1215    case ObjCSubstitutionContext::Ordinary:
1216    case ObjCSubstitutionContext::Parameter:
1217    case ObjCSubstitutionContext::Superclass:
1218      // Substitute the bound.
1219      return typeParam->getUnderlyingType();
1220
1221    case ObjCSubstitutionContext::Result:
1222    case ObjCSubstitutionContext::Property: {
1223      // Substitute the __kindof form of the underlying type.
1224      const auto *objPtr =
1225          typeParam->getUnderlyingType()->castAs<ObjCObjectPointerType>();
1226
1227      // __kindof types, id, and Class don't need an additional
1228      // __kindof.
1229      if (objPtr->isKindOfType() || objPtr->isObjCIdOrClassType())
1230        return typeParam->getUnderlyingType();
1231
1232      // Add __kindof.
1233      const auto *obj = objPtr->getObjectType();
1234      QualType resultTy = Ctx.getObjCObjectType(
1235          obj->getBaseType(), obj->getTypeArgsAsWritten(), obj->getProtocols(),
1236          /*isKindOf=*/true);
1237
1238      // Rebuild object pointer type.
1239      return Ctx.getObjCObjectPointerType(resultTy);
1240    }
1241    }
1242    llvm_unreachable("Unexpected ObjCSubstitutionContext!");
1243  }
1244
1245  QualType VisitFunctionType(const FunctionType *funcType) {
1246    // If we have a function type, update the substitution context
1247    // appropriately.
1248
1249    //Substitute result type.
1250    QualType returnType = funcType->getReturnType().substObjCTypeArgs(
1251        Ctx, TypeArgs, ObjCSubstitutionContext::Result);
1252    if (returnType.isNull())
1253      return {};
1254
1255    // Handle non-prototyped functions, which only substitute into the result
1256    // type.
1257    if (isa<FunctionNoProtoType>(funcType)) {
1258      // If the return type was unchanged, do nothing.
1259      if (returnType.getAsOpaquePtr() ==
1260          funcType->getReturnType().getAsOpaquePtr())
1261        return BaseType::VisitFunctionType(funcType);
1262
1263      // Otherwise, build a new type.
1264      return Ctx.getFunctionNoProtoType(returnType, funcType->getExtInfo());
1265    }
1266
1267    const auto *funcProtoType = cast<FunctionProtoType>(funcType);
1268
1269    // Transform parameter types.
1270    SmallVector<QualType, 4> paramTypes;
1271    bool paramChanged = false;
1272    for (auto paramType : funcProtoType->getParamTypes()) {
1273      QualType newParamType = paramType.substObjCTypeArgs(
1274          Ctx, TypeArgs, ObjCSubstitutionContext::Parameter);
1275      if (newParamType.isNull())
1276        return {};
1277
1278      if (newParamType.getAsOpaquePtr() != paramType.getAsOpaquePtr())
1279        paramChanged = true;
1280
1281      paramTypes.push_back(newParamType);
1282    }
1283
1284    // Transform extended info.
1285    FunctionProtoType::ExtProtoInfo info = funcProtoType->getExtProtoInfo();
1286    bool exceptionChanged = false;
1287    if (info.ExceptionSpec.Type == EST_Dynamic) {
1288      SmallVector<QualType, 4> exceptionTypes;
1289      for (auto exceptionType : info.ExceptionSpec.Exceptions) {
1290        QualType newExceptionType = exceptionType.substObjCTypeArgs(
1291            Ctx, TypeArgs, ObjCSubstitutionContext::Ordinary);
1292        if (newExceptionType.isNull())
1293          return {};
1294
1295        if (newExceptionType.getAsOpaquePtr() != exceptionType.getAsOpaquePtr())
1296          exceptionChanged = true;
1297
1298        exceptionTypes.push_back(newExceptionType);
1299      }
1300
1301      if (exceptionChanged) {
1302        info.ExceptionSpec.Exceptions =
1303            llvm::makeArrayRef(exceptionTypes).copy(Ctx);
1304      }
1305    }
1306
1307    if (returnType.getAsOpaquePtr() ==
1308            funcProtoType->getReturnType().getAsOpaquePtr() &&
1309        !paramChanged && !exceptionChanged)
1310      return BaseType::VisitFunctionType(funcType);
1311
1312    return Ctx.getFunctionType(returnType, paramTypes, info);
1313  }
1314
1315  QualType VisitObjCObjectType(const ObjCObjectType *objcObjectType) {
1316    // Substitute into the type arguments of a specialized Objective-C object
1317    // type.
1318    if (objcObjectType->isSpecializedAsWritten()) {
1319      SmallVector<QualType, 4> newTypeArgs;
1320      bool anyChanged = false;
1321      for (auto typeArg : objcObjectType->getTypeArgsAsWritten()) {
1322        QualType newTypeArg = typeArg.substObjCTypeArgs(
1323            Ctx, TypeArgs, ObjCSubstitutionContext::Ordinary);
1324        if (newTypeArg.isNull())
1325          return {};
1326
1327        if (newTypeArg.getAsOpaquePtr() != typeArg.getAsOpaquePtr()) {
1328          // If we're substituting based on an unspecialized context type,
1329          // produce an unspecialized type.
1330          ArrayRef<ObjCProtocolDecl *> protocols(
1331              objcObjectType->qual_begin(), objcObjectType->getNumProtocols());
1332          if (TypeArgs.empty() &&
1333              SubstContext != ObjCSubstitutionContext::Superclass) {
1334            return Ctx.getObjCObjectType(
1335                objcObjectType->getBaseType(), {}, protocols,
1336                objcObjectType->isKindOfTypeAsWritten());
1337          }
1338
1339          anyChanged = true;
1340        }
1341
1342        newTypeArgs.push_back(newTypeArg);
1343      }
1344
1345      if (anyChanged) {
1346        ArrayRef<ObjCProtocolDecl *> protocols(
1347            objcObjectType->qual_begin(), objcObjectType->getNumProtocols());
1348        return Ctx.getObjCObjectType(objcObjectType->getBaseType(), newTypeArgs,
1349                                     protocols,
1350                                     objcObjectType->isKindOfTypeAsWritten());
1351      }
1352    }
1353
1354    return BaseType::VisitObjCObjectType(objcObjectType);
1355  }
1356
1357  QualType VisitAttributedType(const AttributedType *attrType) {
1358    QualType newType = BaseType::VisitAttributedType(attrType);
1359    if (newType.isNull())
1360      return {};
1361
1362    const auto *newAttrType = dyn_cast<AttributedType>(newType.getTypePtr());
1363    if (!newAttrType || newAttrType->getAttrKind() != attr::ObjCKindOf)
1364      return newType;
1365
1366    // Find out if it's an Objective-C object or object pointer type;
1367    QualType newEquivType = newAttrType->getEquivalentType();
1368    const ObjCObjectPointerType *ptrType =
1369        newEquivType->getAs<ObjCObjectPointerType>();
1370    const ObjCObjectType *objType = ptrType
1371                                        ? ptrType->getObjectType()
1372                                        : newEquivType->getAs<ObjCObjectType>();
1373    if (!objType)
1374      return newType;
1375
1376    // Rebuild the "equivalent" type, which pushes __kindof down into
1377    // the object type.
1378    newEquivType = Ctx.getObjCObjectType(
1379        objType->getBaseType(), objType->getTypeArgsAsWritten(),
1380        objType->getProtocols(),
1381        // There is no need to apply kindof on an unqualified id type.
1382        /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
1383
1384    // If we started with an object pointer type, rebuild it.
1385    if (ptrType)
1386      newEquivType = Ctx.getObjCObjectPointerType(newEquivType);
1387
1388    // Rebuild the attributed type.
1389    return Ctx.getAttributedType(newAttrType->getAttrKind(),
1390                                 newAttrType->getModifiedType(), newEquivType);
1391  }
1392};
1393
1394struct StripObjCKindOfTypeVisitor
1395    : public SimpleTransformVisitor<StripObjCKindOfTypeVisitor> {
1396  using BaseType = SimpleTransformVisitor<StripObjCKindOfTypeVisitor>;
1397
1398  explicit StripObjCKindOfTypeVisitor(ASTContext &ctx) : BaseType(ctx) {}
1399
1400  QualType VisitObjCObjectType(const ObjCObjectType *objType) {
1401    if (!objType->isKindOfType())
1402      return BaseType::VisitObjCObjectType(objType);
1403
1404    QualType baseType = objType->getBaseType().stripObjCKindOfType(Ctx);
1405    return Ctx.getObjCObjectType(baseType, objType->getTypeArgsAsWritten(),
1406                                 objType->getProtocols(),
1407                                 /*isKindOf=*/false);
1408  }
1409};
1410
1411} // namespace
1412
1413/// Substitute the given type arguments for Objective-C type
1414/// parameters within the given type, recursively.
1415QualType QualType::substObjCTypeArgs(ASTContext &ctx,
1416                                     ArrayRef<QualType> typeArgs,
1417                                     ObjCSubstitutionContext context) const {
1418  SubstObjCTypeArgsVisitor visitor(ctx, typeArgs, context);
1419  return visitor.recurse(*this);
1420}
1421
1422QualType QualType::substObjCMemberType(QualType objectType,
1423                                       const DeclContext *dc,
1424                                       ObjCSubstitutionContext context) const {
1425  if (auto subs = objectType->getObjCSubstitutions(dc))
1426    return substObjCTypeArgs(dc->getParentASTContext(), *subs, context);
1427
1428  return *this;
1429}
1430
1431QualType QualType::stripObjCKindOfType(const ASTContext &constCtx) const {
1432  // FIXME: Because ASTContext::getAttributedType() is non-const.
1433  auto &ctx = const_cast<ASTContext &>(constCtx);
1434  StripObjCKindOfTypeVisitor visitor(ctx);
1435  return visitor.recurse(*this);
1436}
1437
1438QualType QualType::getAtomicUnqualifiedType() const {
1439  if (const auto AT = getTypePtr()->getAs<AtomicType>())
1440    return AT->getValueType().getUnqualifiedType();
1441  return getUnqualifiedType();
1442}
1443
1444Optional<ArrayRef<QualType>> Type::getObjCSubstitutions(
1445                               const DeclContext *dc) const {
1446  // Look through method scopes.
1447  if (const auto method = dyn_cast<ObjCMethodDecl>(dc))
1448    dc = method->getDeclContext();
1449
1450  // Find the class or category in which the type we're substituting
1451  // was declared.
1452  const auto *dcClassDecl = dyn_cast<ObjCInterfaceDecl>(dc);
1453  const ObjCCategoryDecl *dcCategoryDecl = nullptr;
1454  ObjCTypeParamList *dcTypeParams = nullptr;
1455  if (dcClassDecl) {
1456    // If the class does not have any type parameters, there's no
1457    // substitution to do.
1458    dcTypeParams = dcClassDecl->getTypeParamList();
1459    if (!dcTypeParams)
1460      return None;
1461  } else {
1462    // If we are in neither a class nor a category, there's no
1463    // substitution to perform.
1464    dcCategoryDecl = dyn_cast<ObjCCategoryDecl>(dc);
1465    if (!dcCategoryDecl)
1466      return None;
1467
1468    // If the category does not have any type parameters, there's no
1469    // substitution to do.
1470    dcTypeParams = dcCategoryDecl->getTypeParamList();
1471    if (!dcTypeParams)
1472      return None;
1473
1474    dcClassDecl = dcCategoryDecl->getClassInterface();
1475    if (!dcClassDecl)
1476      return None;
1477  }
1478  assert(dcTypeParams && "No substitutions to perform");
1479  assert(dcClassDecl && "No class context");
1480
1481  // Find the underlying object type.
1482  const ObjCObjectType *objectType;
1483  if (const auto *objectPointerType = getAs<ObjCObjectPointerType>()) {
1484    objectType = objectPointerType->getObjectType();
1485  } else if (getAs<BlockPointerType>()) {
1486    ASTContext &ctx = dc->getParentASTContext();
1487    objectType = ctx.getObjCObjectType(ctx.ObjCBuiltinIdTy, {}, {})
1488                   ->castAs<ObjCObjectType>();
1489  } else {
1490    objectType = getAs<ObjCObjectType>();
1491  }
1492
1493  /// Extract the class from the receiver object type.
1494  ObjCInterfaceDecl *curClassDecl = objectType ? objectType->getInterface()
1495                                               : nullptr;
1496  if (!curClassDecl) {
1497    // If we don't have a context type (e.g., this is "id" or some
1498    // variant thereof), substitute the bounds.
1499    return llvm::ArrayRef<QualType>();
1500  }
1501
1502  // Follow the superclass chain until we've mapped the receiver type
1503  // to the same class as the context.
1504  while (curClassDecl != dcClassDecl) {
1505    // Map to the superclass type.
1506    QualType superType = objectType->getSuperClassType();
1507    if (superType.isNull()) {
1508      objectType = nullptr;
1509      break;
1510    }
1511
1512    objectType = superType->castAs<ObjCObjectType>();
1513    curClassDecl = objectType->getInterface();
1514  }
1515
1516  // If we don't have a receiver type, or the receiver type does not
1517  // have type arguments, substitute in the defaults.
1518  if (!objectType || objectType->isUnspecialized()) {
1519    return llvm::ArrayRef<QualType>();
1520  }
1521
1522  // The receiver type has the type arguments we want.
1523  return objectType->getTypeArgs();
1524}
1525
1526bool Type::acceptsObjCTypeParams() const {
1527  if (auto *IfaceT = getAsObjCInterfaceType()) {
1528    if (auto *ID = IfaceT->getInterface()) {
1529      if (ID->getTypeParamList())
1530        return true;
1531    }
1532  }
1533
1534  return false;
1535}
1536
1537void ObjCObjectType::computeSuperClassTypeSlow() const {
1538  // Retrieve the class declaration for this type. If there isn't one
1539  // (e.g., this is some variant of "id" or "Class"), then there is no
1540  // superclass type.
1541  ObjCInterfaceDecl *classDecl = getInterface();
1542  if (!classDecl) {
1543    CachedSuperClassType.setInt(true);
1544    return;
1545  }
1546
1547  // Extract the superclass type.
1548  const ObjCObjectType *superClassObjTy = classDecl->getSuperClassType();
1549  if (!superClassObjTy) {
1550    CachedSuperClassType.setInt(true);
1551    return;
1552  }
1553
1554  ObjCInterfaceDecl *superClassDecl = superClassObjTy->getInterface();
1555  if (!superClassDecl) {
1556    CachedSuperClassType.setInt(true);
1557    return;
1558  }
1559
1560  // If the superclass doesn't have type parameters, then there is no
1561  // substitution to perform.
1562  QualType superClassType(superClassObjTy, 0);
1563  ObjCTypeParamList *superClassTypeParams = superClassDecl->getTypeParamList();
1564  if (!superClassTypeParams) {
1565    CachedSuperClassType.setPointerAndInt(
1566      superClassType->castAs<ObjCObjectType>(), true);
1567    return;
1568  }
1569
1570  // If the superclass reference is unspecialized, return it.
1571  if (superClassObjTy->isUnspecialized()) {
1572    CachedSuperClassType.setPointerAndInt(superClassObjTy, true);
1573    return;
1574  }
1575
1576  // If the subclass is not parameterized, there aren't any type
1577  // parameters in the superclass reference to substitute.
1578  ObjCTypeParamList *typeParams = classDecl->getTypeParamList();
1579  if (!typeParams) {
1580    CachedSuperClassType.setPointerAndInt(
1581      superClassType->castAs<ObjCObjectType>(), true);
1582    return;
1583  }
1584
1585  // If the subclass type isn't specialized, return the unspecialized
1586  // superclass.
1587  if (isUnspecialized()) {
1588    QualType unspecializedSuper
1589      = classDecl->getASTContext().getObjCInterfaceType(
1590          superClassObjTy->getInterface());
1591    CachedSuperClassType.setPointerAndInt(
1592      unspecializedSuper->castAs<ObjCObjectType>(),
1593      true);
1594    return;
1595  }
1596
1597  // Substitute the provided type arguments into the superclass type.
1598  ArrayRef<QualType> typeArgs = getTypeArgs();
1599  assert(typeArgs.size() == typeParams->size());
1600  CachedSuperClassType.setPointerAndInt(
1601    superClassType.substObjCTypeArgs(classDecl->getASTContext(), typeArgs,
1602                                     ObjCSubstitutionContext::Superclass)
1603      ->castAs<ObjCObjectType>(),
1604    true);
1605}
1606
1607const ObjCInterfaceType *ObjCObjectPointerType::getInterfaceType() const {
1608  if (auto interfaceDecl = getObjectType()->getInterface()) {
1609    return interfaceDecl->getASTContext().getObjCInterfaceType(interfaceDecl)
1610             ->castAs<ObjCInterfaceType>();
1611  }
1612
1613  return nullptr;
1614}
1615
1616QualType ObjCObjectPointerType::getSuperClassType() const {
1617  QualType superObjectType = getObjectType()->getSuperClassType();
1618  if (superObjectType.isNull())
1619    return superObjectType;
1620
1621  ASTContext &ctx = getInterfaceDecl()->getASTContext();
1622  return ctx.getObjCObjectPointerType(superObjectType);
1623}
1624
1625const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const {
1626  // There is no sugar for ObjCObjectType's, just return the canonical
1627  // type pointer if it is the right class.  There is no typedef information to
1628  // return and these cannot be Address-space qualified.
1629  if (const auto *T = getAs<ObjCObjectType>())
1630    if (T->getNumProtocols() && T->getInterface())
1631      return T;
1632  return nullptr;
1633}
1634
1635bool Type::isObjCQualifiedInterfaceType() const {
1636  return getAsObjCQualifiedInterfaceType() != nullptr;
1637}
1638
1639const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
1640  // There is no sugar for ObjCQualifiedIdType's, just return the canonical
1641  // type pointer if it is the right class.
1642  if (const auto *OPT = getAs<ObjCObjectPointerType>()) {
1643    if (OPT->isObjCQualifiedIdType())
1644      return OPT;
1645  }
1646  return nullptr;
1647}
1648
1649const ObjCObjectPointerType *Type::getAsObjCQualifiedClassType() const {
1650  // There is no sugar for ObjCQualifiedClassType's, just return the canonical
1651  // type pointer if it is the right class.
1652  if (const auto *OPT = getAs<ObjCObjectPointerType>()) {
1653    if (OPT->isObjCQualifiedClassType())
1654      return OPT;
1655  }
1656  return nullptr;
1657}
1658
1659const ObjCObjectType *Type::getAsObjCInterfaceType() const {
1660  if (const auto *OT = getAs<ObjCObjectType>()) {
1661    if (OT->getInterface())
1662      return OT;
1663  }
1664  return nullptr;
1665}
1666
1667const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
1668  if (const auto *OPT = getAs<ObjCObjectPointerType>()) {
1669    if (OPT->getInterfaceType())
1670      return OPT;
1671  }
1672  return nullptr;
1673}
1674
1675const CXXRecordDecl *Type::getPointeeCXXRecordDecl() const {
1676  QualType PointeeType;
1677  if (const auto *PT = getAs<PointerType>())
1678    PointeeType = PT->getPointeeType();
1679  else if (const auto *RT = getAs<ReferenceType>())
1680    PointeeType = RT->getPointeeType();
1681  else
1682    return nullptr;
1683
1684  if (const auto *RT = PointeeType->getAs<RecordType>())
1685    return dyn_cast<CXXRecordDecl>(RT->getDecl());
1686
1687  return nullptr;
1688}
1689
1690CXXRecordDecl *Type::getAsCXXRecordDecl() const {
1691  return dyn_cast_or_null<CXXRecordDecl>(getAsTagDecl());
1692}
1693
1694RecordDecl *Type::getAsRecordDecl() const {
1695  return dyn_cast_or_null<RecordDecl>(getAsTagDecl());
1696}
1697
1698TagDecl *Type::getAsTagDecl() const {
1699  if (const auto *TT = getAs<TagType>())
1700    return TT->getDecl();
1701  if (const auto *Injected = getAs<InjectedClassNameType>())
1702    return Injected->getDecl();
1703
1704  return nullptr;
1705}
1706
1707bool Type::hasAttr(attr::Kind AK) const {
1708  const Type *Cur = this;
1709  while (const auto *AT = Cur->getAs<AttributedType>()) {
1710    if (AT->getAttrKind() == AK)
1711      return true;
1712    Cur = AT->getEquivalentType().getTypePtr();
1713  }
1714  return false;
1715}
1716
1717namespace {
1718
1719  class GetContainedDeducedTypeVisitor :
1720    public TypeVisitor<GetContainedDeducedTypeVisitor, Type*> {
1721    bool Syntactic;
1722
1723  public:
1724    GetContainedDeducedTypeVisitor(bool Syntactic = false)
1725        : Syntactic(Syntactic) {}
1726
1727    using TypeVisitor<GetContainedDeducedTypeVisitor, Type*>::Visit;
1728
1729    Type *Visit(QualType T) {
1730      if (T.isNull())
1731        return nullptr;
1732      return Visit(T.getTypePtr());
1733    }
1734
1735    // The deduced type itself.
1736    Type *VisitDeducedType(const DeducedType *AT) {
1737      return const_cast<DeducedType*>(AT);
1738    }
1739
1740    // Only these types can contain the desired 'auto' type.
1741
1742    Type *VisitElaboratedType(const ElaboratedType *T) {
1743      return Visit(T->getNamedType());
1744    }
1745
1746    Type *VisitPointerType(const PointerType *T) {
1747      return Visit(T->getPointeeType());
1748    }
1749
1750    Type *VisitBlockPointerType(const BlockPointerType *T) {
1751      return Visit(T->getPointeeType());
1752    }
1753
1754    Type *VisitReferenceType(const ReferenceType *T) {
1755      return Visit(T->getPointeeTypeAsWritten());
1756    }
1757
1758    Type *VisitMemberPointerType(const MemberPointerType *T) {
1759      return Visit(T->getPointeeType());
1760    }
1761
1762    Type *VisitArrayType(const ArrayType *T) {
1763      return Visit(T->getElementType());
1764    }
1765
1766    Type *VisitDependentSizedExtVectorType(
1767      const DependentSizedExtVectorType *T) {
1768      return Visit(T->getElementType());
1769    }
1770
1771    Type *VisitVectorType(const VectorType *T) {
1772      return Visit(T->getElementType());
1773    }
1774
1775    Type *VisitFunctionProtoType(const FunctionProtoType *T) {
1776      if (Syntactic && T->hasTrailingReturn())
1777        return const_cast<FunctionProtoType*>(T);
1778      return VisitFunctionType(T);
1779    }
1780
1781    Type *VisitFunctionType(const FunctionType *T) {
1782      return Visit(T->getReturnType());
1783    }
1784
1785    Type *VisitParenType(const ParenType *T) {
1786      return Visit(T->getInnerType());
1787    }
1788
1789    Type *VisitAttributedType(const AttributedType *T) {
1790      return Visit(T->getModifiedType());
1791    }
1792
1793    Type *VisitMacroQualifiedType(const MacroQualifiedType *T) {
1794      return Visit(T->getUnderlyingType());
1795    }
1796
1797    Type *VisitAdjustedType(const AdjustedType *T) {
1798      return Visit(T->getOriginalType());
1799    }
1800
1801    Type *VisitPackExpansionType(const PackExpansionType *T) {
1802      return Visit(T->getPattern());
1803    }
1804  };
1805
1806} // namespace
1807
1808DeducedType *Type::getContainedDeducedType() const {
1809  return cast_or_null<DeducedType>(
1810      GetContainedDeducedTypeVisitor().Visit(this));
1811}
1812
1813bool Type::hasAutoForTrailingReturnType() const {
1814  return dyn_cast_or_null<FunctionType>(
1815      GetContainedDeducedTypeVisitor(true).Visit(this));
1816}
1817
1818bool Type::hasIntegerRepresentation() const {
1819  if (const auto *VT = dyn_cast<VectorType>(CanonicalType))
1820    return VT->getElementType()->isIntegerType();
1821  else
1822    return isIntegerType();
1823}
1824
1825/// Determine whether this type is an integral type.
1826///
1827/// This routine determines whether the given type is an integral type per
1828/// C++ [basic.fundamental]p7. Although the C standard does not define the
1829/// term "integral type", it has a similar term "integer type", and in C++
1830/// the two terms are equivalent. However, C's "integer type" includes
1831/// enumeration types, while C++'s "integer type" does not. The \c ASTContext
1832/// parameter is used to determine whether we should be following the C or
1833/// C++ rules when determining whether this type is an integral/integer type.
1834///
1835/// For cases where C permits "an integer type" and C++ permits "an integral
1836/// type", use this routine.
1837///
1838/// For cases where C permits "an integer type" and C++ permits "an integral
1839/// or enumeration type", use \c isIntegralOrEnumerationType() instead.
1840///
1841/// \param Ctx The context in which this type occurs.
1842///
1843/// \returns true if the type is considered an integral type, false otherwise.
1844bool Type::isIntegralType(const ASTContext &Ctx) const {
1845  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1846    return BT->getKind() >= BuiltinType::Bool &&
1847           BT->getKind() <= BuiltinType::Int128;
1848
1849  // Complete enum types are integral in C.
1850  if (!Ctx.getLangOpts().CPlusPlus)
1851    if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
1852      return ET->getDecl()->isComplete();
1853
1854  return false;
1855}
1856
1857bool Type::isIntegralOrUnscopedEnumerationType() const {
1858  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1859    return BT->getKind() >= BuiltinType::Bool &&
1860           BT->getKind() <= BuiltinType::Int128;
1861  return isUnscopedEnumerationType();
1862}
1863
1864bool Type::isUnscopedEnumerationType() const {
1865  if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
1866    return !ET->getDecl()->isScoped();
1867
1868  return false;
1869}
1870
1871bool Type::isCharType() const {
1872  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1873    return BT->getKind() == BuiltinType::Char_U ||
1874           BT->getKind() == BuiltinType::UChar ||
1875           BT->getKind() == BuiltinType::Char_S ||
1876           BT->getKind() == BuiltinType::SChar;
1877  return false;
1878}
1879
1880bool Type::isWideCharType() const {
1881  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1882    return BT->getKind() == BuiltinType::WChar_S ||
1883           BT->getKind() == BuiltinType::WChar_U;
1884  return false;
1885}
1886
1887bool Type::isChar8Type() const {
1888  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
1889    return BT->getKind() == BuiltinType::Char8;
1890  return false;
1891}
1892
1893bool Type::isChar16Type() const {
1894  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1895    return BT->getKind() == BuiltinType::Char16;
1896  return false;
1897}
1898
1899bool Type::isChar32Type() const {
1900  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1901    return BT->getKind() == BuiltinType::Char32;
1902  return false;
1903}
1904
1905/// Determine whether this type is any of the built-in character
1906/// types.
1907bool Type::isAnyCharacterType() const {
1908  const auto *BT = dyn_cast<BuiltinType>(CanonicalType);
1909  if (!BT) return false;
1910  switch (BT->getKind()) {
1911  default: return false;
1912  case BuiltinType::Char_U:
1913  case BuiltinType::UChar:
1914  case BuiltinType::WChar_U:
1915  case BuiltinType::Char8:
1916  case BuiltinType::Char16:
1917  case BuiltinType::Char32:
1918  case BuiltinType::Char_S:
1919  case BuiltinType::SChar:
1920  case BuiltinType::WChar_S:
1921    return true;
1922  }
1923}
1924
1925/// isSignedIntegerType - Return true if this is an integer type that is
1926/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
1927/// an enum decl which has a signed representation
1928bool Type::isSignedIntegerType() const {
1929  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
1930    return BT->getKind() >= BuiltinType::Char_S &&
1931           BT->getKind() <= BuiltinType::Int128;
1932  }
1933
1934  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
1935    // Incomplete enum types are not treated as integer types.
1936    // FIXME: In C++, enum types are never integer types.
1937    if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
1938      return ET->getDecl()->getIntegerType()->isSignedIntegerType();
1939  }
1940
1941  return false;
1942}
1943
1944bool Type::isSignedIntegerOrEnumerationType() const {
1945  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
1946    return BT->getKind() >= BuiltinType::Char_S &&
1947           BT->getKind() <= BuiltinType::Int128;
1948  }
1949
1950  if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) {
1951    if (ET->getDecl()->isComplete())
1952      return ET->getDecl()->getIntegerType()->isSignedIntegerType();
1953  }
1954
1955  return false;
1956}
1957
1958bool Type::hasSignedIntegerRepresentation() const {
1959  if (const auto *VT = dyn_cast<VectorType>(CanonicalType))
1960    return VT->getElementType()->isSignedIntegerOrEnumerationType();
1961  else
1962    return isSignedIntegerOrEnumerationType();
1963}
1964
1965/// isUnsignedIntegerType - Return true if this is an integer type that is
1966/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
1967/// decl which has an unsigned representation
1968bool Type::isUnsignedIntegerType() const {
1969  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
1970    return BT->getKind() >= BuiltinType::Bool &&
1971           BT->getKind() <= BuiltinType::UInt128;
1972  }
1973
1974  if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) {
1975    // Incomplete enum types are not treated as integer types.
1976    // FIXME: In C++, enum types are never integer types.
1977    if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
1978      return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
1979  }
1980
1981  return false;
1982}
1983
1984bool Type::isUnsignedIntegerOrEnumerationType() const {
1985  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
1986    return BT->getKind() >= BuiltinType::Bool &&
1987    BT->getKind() <= BuiltinType::UInt128;
1988  }
1989
1990  if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) {
1991    if (ET->getDecl()->isComplete())
1992      return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
1993  }
1994
1995  return false;
1996}
1997
1998bool Type::hasUnsignedIntegerRepresentation() const {
1999  if (const auto *VT = dyn_cast<VectorType>(CanonicalType))
2000    return VT->getElementType()->isUnsignedIntegerOrEnumerationType();
2001  else
2002    return isUnsignedIntegerOrEnumerationType();
2003}
2004
2005bool Type::isFloatingType() const {
2006  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
2007    return BT->getKind() >= BuiltinType::Half &&
2008           BT->getKind() <= BuiltinType::Float128;
2009  if (const auto *CT = dyn_cast<ComplexType>(CanonicalType))
2010    return CT->getElementType()->isFloatingType();
2011  return false;
2012}
2013
2014bool Type::hasFloatingRepresentation() const {
2015  if (const auto *VT = dyn_cast<VectorType>(CanonicalType))
2016    return VT->getElementType()->isFloatingType();
2017  else
2018    return isFloatingType();
2019}
2020
2021bool Type::isRealFloatingType() const {
2022  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
2023    return BT->isFloatingPoint();
2024  return false;
2025}
2026
2027bool Type::isRealType() const {
2028  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
2029    return BT->getKind() >= BuiltinType::Bool &&
2030           BT->getKind() <= BuiltinType::Float128;
2031  if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
2032      return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
2033  return false;
2034}
2035
2036bool Type::isArithmeticType() const {
2037  if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
2038    return BT->getKind() >= BuiltinType::Bool &&
2039           BT->getKind() <= BuiltinType::Float128;
2040  if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
2041    // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
2042    // If a body isn't seen by the time we get here, return false.
2043    //
2044    // C++0x: Enumerations are not arithmetic types. For now, just return
2045    // false for scoped enumerations since that will disable any
2046    // unwanted implicit conversions.
2047    return !ET->getDecl()->isScoped() && ET->getDecl()->isComplete();
2048  return isa<ComplexType>(CanonicalType);
2049}
2050
2051Type::ScalarTypeKind Type::getScalarTypeKind() const {
2052  assert(isScalarType());
2053
2054  const Type *T = CanonicalType.getTypePtr();
2055  if (const auto *BT = dyn_cast<BuiltinType>(T)) {
2056    if (BT->getKind() == BuiltinType::Bool) return STK_Bool;
2057    if (BT->getKind() == BuiltinType::NullPtr) return STK_CPointer;
2058    if (BT->isInteger()) return STK_Integral;
2059    if (BT->isFloatingPoint()) return STK_Floating;
2060    if (BT->isFixedPointType()) return STK_FixedPoint;
2061    llvm_unreachable("unknown scalar builtin type");
2062  } else if (isa<PointerType>(T)) {
2063    return STK_CPointer;
2064  } else if (isa<BlockPointerType>(T)) {
2065    return STK_BlockPointer;
2066  } else if (isa<ObjCObjectPointerType>(T)) {
2067    return STK_ObjCObjectPointer;
2068  } else if (isa<MemberPointerType>(T)) {
2069    return STK_MemberPointer;
2070  } else if (isa<EnumType>(T)) {
2071    assert(cast<EnumType>(T)->getDecl()->isComplete());
2072    return STK_Integral;
2073  } else if (const auto *CT = dyn_cast<ComplexType>(T)) {
2074    if (CT->getElementType()->isRealFloatingType())
2075      return STK_FloatingComplex;
2076    return STK_IntegralComplex;
2077  }
2078
2079  llvm_unreachable("unknown scalar type");
2080}
2081
2082/// Determines whether the type is a C++ aggregate type or C
2083/// aggregate or union type.
2084///
2085/// An aggregate type is an array or a class type (struct, union, or
2086/// class) that has no user-declared constructors, no private or
2087/// protected non-static data members, no base classes, and no virtual
2088/// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
2089/// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
2090/// includes union types.
2091bool Type::isAggregateType() const {
2092  if (const auto *Record = dyn_cast<RecordType>(CanonicalType)) {
2093    if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
2094      return ClassDecl->isAggregate();
2095
2096    return true;
2097  }
2098
2099  return isa<ArrayType>(CanonicalType);
2100}
2101
2102/// isConstantSizeType - Return true if this is not a variable sized type,
2103/// according to the rules of C99 6.7.5p3.  It is not legal to call this on
2104/// incomplete types or dependent types.
2105bool Type::isConstantSizeType() const {
2106  assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
2107  assert(!isDependentType() && "This doesn't make sense for dependent types");
2108  // The VAT must have a size, as it is known to be complete.
2109  return !isa<VariableArrayType>(CanonicalType);
2110}
2111
2112/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
2113/// - a type that can describe objects, but which lacks information needed to
2114/// determine its size.
2115bool Type::isIncompleteType(NamedDecl **Def) const {
2116  if (Def)
2117    *Def = nullptr;
2118
2119  switch (CanonicalType->getTypeClass()) {
2120  default: return false;
2121  case Builtin:
2122    // Void is the only incomplete builtin type.  Per C99 6.2.5p19, it can never
2123    // be completed.
2124    return isVoidType();
2125  case Enum: {
2126    EnumDecl *EnumD = cast<EnumType>(CanonicalType)->getDecl();
2127    if (Def)
2128      *Def = EnumD;
2129    return !EnumD->isComplete();
2130  }
2131  case Record: {
2132    // A tagged type (struct/union/enum/class) is incomplete if the decl is a
2133    // forward declaration, but not a full definition (C99 6.2.5p22).
2134    RecordDecl *Rec = cast<RecordType>(CanonicalType)->getDecl();
2135    if (Def)
2136      *Def = Rec;
2137    return !Rec->isCompleteDefinition();
2138  }
2139  case ConstantArray:
2140    // An array is incomplete if its element type is incomplete
2141    // (C++ [dcl.array]p1).
2142    // We don't handle variable arrays (they're not allowed in C++) or
2143    // dependent-sized arrays (dependent types are never treated as incomplete).
2144    return cast<ArrayType>(CanonicalType)->getElementType()
2145             ->isIncompleteType(Def);
2146  case IncompleteArray:
2147    // An array of unknown size is an incomplete type (C99 6.2.5p22).
2148    return true;
2149  case MemberPointer: {
2150    // Member pointers in the MS ABI have special behavior in
2151    // RequireCompleteType: they attach a MSInheritanceAttr to the CXXRecordDecl
2152    // to indicate which inheritance model to use.
2153    auto *MPTy = cast<MemberPointerType>(CanonicalType);
2154    const Type *ClassTy = MPTy->getClass();
2155    // Member pointers with dependent class types don't get special treatment.
2156    if (ClassTy->isDependentType())
2157      return false;
2158    const CXXRecordDecl *RD = ClassTy->getAsCXXRecordDecl();
2159    ASTContext &Context = RD->getASTContext();
2160    // Member pointers not in the MS ABI don't get special treatment.
2161    if (!Context.getTargetInfo().getCXXABI().isMicrosoft())
2162      return false;
2163    // The inheritance attribute might only be present on the most recent
2164    // CXXRecordDecl, use that one.
2165    RD = RD->getMostRecentNonInjectedDecl();
2166    // Nothing interesting to do if the inheritance attribute is already set.
2167    if (RD->hasAttr<MSInheritanceAttr>())
2168      return false;
2169    return true;
2170  }
2171  case ObjCObject:
2172    return cast<ObjCObjectType>(CanonicalType)->getBaseType()
2173             ->isIncompleteType(Def);
2174  case ObjCInterface: {
2175    // ObjC interfaces are incomplete if they are @class, not @interface.
2176    ObjCInterfaceDecl *Interface
2177      = cast<ObjCInterfaceType>(CanonicalType)->getDecl();
2178    if (Def)
2179      *Def = Interface;
2180    return !Interface->hasDefinition();
2181  }
2182  }
2183}
2184
2185bool QualType::isPODType(const ASTContext &Context) const {
2186  // C++11 has a more relaxed definition of POD.
2187  if (Context.getLangOpts().CPlusPlus11)
2188    return isCXX11PODType(Context);
2189
2190  return isCXX98PODType(Context);
2191}
2192
2193bool QualType::isCXX98PODType(const ASTContext &Context) const {
2194  // The compiler shouldn't query this for incomplete types, but the user might.
2195  // We return false for that case. Except for incomplete arrays of PODs, which
2196  // are PODs according to the standard.
2197  if (isNull())
2198    return false;
2199
2200  if ((*this)->isIncompleteArrayType())
2201    return Context.getBaseElementType(*this).isCXX98PODType(Context);
2202
2203  if ((*this)->isIncompleteType())
2204    return false;
2205
2206  if (hasNonTrivialObjCLifetime())
2207    return false;
2208
2209  QualType CanonicalType = getTypePtr()->CanonicalType;
2210  switch (CanonicalType->getTypeClass()) {
2211    // Everything not explicitly mentioned is not POD.
2212  default: return false;
2213  case Type::VariableArray:
2214  case Type::ConstantArray:
2215    // IncompleteArray is handled above.
2216    return Context.getBaseElementType(*this).isCXX98PODType(Context);
2217
2218  case Type::ObjCObjectPointer:
2219  case Type::BlockPointer:
2220  case Type::Builtin:
2221  case Type::Complex:
2222  case Type::Pointer:
2223  case Type::MemberPointer:
2224  case Type::Vector:
2225  case Type::ExtVector:
2226    return true;
2227
2228  case Type::Enum:
2229    return true;
2230
2231  case Type::Record:
2232    if (const auto *ClassDecl =
2233            dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
2234      return ClassDecl->isPOD();
2235
2236    // C struct/union is POD.
2237    return true;
2238  }
2239}
2240
2241bool QualType::isTrivialType(const ASTContext &Context) const {
2242  // The compiler shouldn't query this for incomplete types, but the user might.
2243  // We return false for that case. Except for incomplete arrays of PODs, which
2244  // are PODs according to the standard.
2245  if (isNull())
2246    return false;
2247
2248  if ((*this)->isArrayType())
2249    return Context.getBaseElementType(*this).isTrivialType(Context);
2250
2251  // Return false for incomplete types after skipping any incomplete array
2252  // types which are expressly allowed by the standard and thus our API.
2253  if ((*this)->isIncompleteType())
2254    return false;
2255
2256  if (hasNonTrivialObjCLifetime())
2257    return false;
2258
2259  QualType CanonicalType = getTypePtr()->CanonicalType;
2260  if (CanonicalType->isDependentType())
2261    return false;
2262
2263  // C++0x [basic.types]p9:
2264  //   Scalar types, trivial class types, arrays of such types, and
2265  //   cv-qualified versions of these types are collectively called trivial
2266  //   types.
2267
2268  // As an extension, Clang treats vector types as Scalar types.
2269  if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
2270    return true;
2271  if (const auto *RT = CanonicalType->getAs<RecordType>()) {
2272    if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2273      // C++11 [class]p6:
2274      //   A trivial class is a class that has a default constructor,
2275      //   has no non-trivial default constructors, and is trivially
2276      //   copyable.
2277      return ClassDecl->hasDefaultConstructor() &&
2278             !ClassDecl->hasNonTrivialDefaultConstructor() &&
2279             ClassDecl->isTriviallyCopyable();
2280    }
2281
2282    return true;
2283  }
2284
2285  // No other types can match.
2286  return false;
2287}
2288
2289bool QualType::isTriviallyCopyableType(const ASTContext &Context) const {
2290  if ((*this)->isArrayType())
2291    return Context.getBaseElementType(*this).isTriviallyCopyableType(Context);
2292
2293  if (hasNonTrivialObjCLifetime())
2294    return false;
2295
2296  // C++11 [basic.types]p9 - See Core 2094
2297  //   Scalar types, trivially copyable class types, arrays of such types, and
2298  //   cv-qualified versions of these types are collectively
2299  //   called trivially copyable types.
2300
2301  QualType CanonicalType = getCanonicalType();
2302  if (CanonicalType->isDependentType())
2303    return false;
2304
2305  // Return false for incomplete types after skipping any incomplete array types
2306  // which are expressly allowed by the standard and thus our API.
2307  if (CanonicalType->isIncompleteType())
2308    return false;
2309
2310  // As an extension, Clang treats vector types as Scalar types.
2311  if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
2312    return true;
2313
2314  if (const auto *RT = CanonicalType->getAs<RecordType>()) {
2315    if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2316      if (!ClassDecl->isTriviallyCopyable()) return false;
2317    }
2318
2319    return true;
2320  }
2321
2322  // No other types can match.
2323  return false;
2324}
2325
2326bool QualType::isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const {
2327  return !Context.getLangOpts().ObjCAutoRefCount &&
2328         Context.getLangOpts().ObjCWeak &&
2329         getObjCLifetime() != Qualifiers::OCL_Weak;
2330}
2331
2332bool QualType::hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD) {
2333  return RD->hasNonTrivialToPrimitiveDefaultInitializeCUnion();
2334}
2335
2336bool QualType::hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD) {
2337  return RD->hasNonTrivialToPrimitiveDestructCUnion();
2338}
2339
2340bool QualType::hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD) {
2341  return RD->hasNonTrivialToPrimitiveCopyCUnion();
2342}
2343
2344QualType::PrimitiveDefaultInitializeKind
2345QualType::isNonTrivialToPrimitiveDefaultInitialize() const {
2346  if (const auto *RT =
2347          getTypePtr()->getBaseElementTypeUnsafe()->getAs<RecordType>())
2348    if (RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize())
2349      return PDIK_Struct;
2350
2351  switch (getQualifiers().getObjCLifetime()) {
2352  case Qualifiers::OCL_Strong:
2353    return PDIK_ARCStrong;
2354  case Qualifiers::OCL_Weak:
2355    return PDIK_ARCWeak;
2356  default:
2357    return PDIK_Trivial;
2358  }
2359}
2360
2361QualType::PrimitiveCopyKind QualType::isNonTrivialToPrimitiveCopy() const {
2362  if (const auto *RT =
2363          getTypePtr()->getBaseElementTypeUnsafe()->getAs<RecordType>())
2364    if (RT->getDecl()->isNonTrivialToPrimitiveCopy())
2365      return PCK_Struct;
2366
2367  Qualifiers Qs = getQualifiers();
2368  switch (Qs.getObjCLifetime()) {
2369  case Qualifiers::OCL_Strong:
2370    return PCK_ARCStrong;
2371  case Qualifiers::OCL_Weak:
2372    return PCK_ARCWeak;
2373  default:
2374    return Qs.hasVolatile() ? PCK_VolatileTrivial : PCK_Trivial;
2375  }
2376}
2377
2378QualType::PrimitiveCopyKind
2379QualType::isNonTrivialToPrimitiveDestructiveMove() const {
2380  return isNonTrivialToPrimitiveCopy();
2381}
2382
2383bool Type::isLiteralType(const ASTContext &Ctx) const {
2384  if (isDependentType())
2385    return false;
2386
2387  // C++1y [basic.types]p10:
2388  //   A type is a literal type if it is:
2389  //   -- cv void; or
2390  if (Ctx.getLangOpts().CPlusPlus14 && isVoidType())
2391    return true;
2392
2393  // C++11 [basic.types]p10:
2394  //   A type is a literal type if it is:
2395  //   [...]
2396  //   -- an array of literal type other than an array of runtime bound; or
2397  if (isVariableArrayType())
2398    return false;
2399  const Type *BaseTy = getBaseElementTypeUnsafe();
2400  assert(BaseTy && "NULL element type");
2401
2402  // Return false for incomplete types after skipping any incomplete array
2403  // types; those are expressly allowed by the standard and thus our API.
2404  if (BaseTy->isIncompleteType())
2405    return false;
2406
2407  // C++11 [basic.types]p10:
2408  //   A type is a literal type if it is:
2409  //    -- a scalar type; or
2410  // As an extension, Clang treats vector types and complex types as
2411  // literal types.
2412  if (BaseTy->isScalarType() || BaseTy->isVectorType() ||
2413      BaseTy->isAnyComplexType())
2414    return true;
2415  //    -- a reference type; or
2416  if (BaseTy->isReferenceType())
2417    return true;
2418  //    -- a class type that has all of the following properties:
2419  if (const auto *RT = BaseTy->getAs<RecordType>()) {
2420    //    -- a trivial destructor,
2421    //    -- every constructor call and full-expression in the
2422    //       brace-or-equal-initializers for non-static data members (if any)
2423    //       is a constant expression,
2424    //    -- it is an aggregate type or has at least one constexpr
2425    //       constructor or constructor template that is not a copy or move
2426    //       constructor, and
2427    //    -- all non-static data members and base classes of literal types
2428    //
2429    // We resolve DR1361 by ignoring the second bullet.
2430    if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2431      return ClassDecl->isLiteral();
2432
2433    return true;
2434  }
2435
2436  // We treat _Atomic T as a literal type if T is a literal type.
2437  if (const auto *AT = BaseTy->getAs<AtomicType>())
2438    return AT->getValueType()->isLiteralType(Ctx);
2439
2440  // If this type hasn't been deduced yet, then conservatively assume that
2441  // it'll work out to be a literal type.
2442  if (isa<AutoType>(BaseTy->getCanonicalTypeInternal()))
2443    return true;
2444
2445  return false;
2446}
2447
2448bool Type::isStandardLayoutType() const {
2449  if (isDependentType())
2450    return false;
2451
2452  // C++0x [basic.types]p9:
2453  //   Scalar types, standard-layout class types, arrays of such types, and
2454  //   cv-qualified versions of these types are collectively called
2455  //   standard-layout types.
2456  const Type *BaseTy = getBaseElementTypeUnsafe();
2457  assert(BaseTy && "NULL element type");
2458
2459  // Return false for incomplete types after skipping any incomplete array
2460  // types which are expressly allowed by the standard and thus our API.
2461  if (BaseTy->isIncompleteType())
2462    return false;
2463
2464  // As an extension, Clang treats vector types as Scalar types.
2465  if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
2466  if (const auto *RT = BaseTy->getAs<RecordType>()) {
2467    if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2468      if (!ClassDecl->isStandardLayout())
2469        return false;
2470
2471    // Default to 'true' for non-C++ class types.
2472    // FIXME: This is a bit dubious, but plain C structs should trivially meet
2473    // all the requirements of standard layout classes.
2474    return true;
2475  }
2476
2477  // No other types can match.
2478  return false;
2479}
2480
2481// This is effectively the intersection of isTrivialType and
2482// isStandardLayoutType. We implement it directly to avoid redundant
2483// conversions from a type to a CXXRecordDecl.
2484bool QualType::isCXX11PODType(const ASTContext &Context) const {
2485  const Type *ty = getTypePtr();
2486  if (ty->isDependentType())
2487    return false;
2488
2489  if (hasNonTrivialObjCLifetime())
2490    return false;
2491
2492  // C++11 [basic.types]p9:
2493  //   Scalar types, POD classes, arrays of such types, and cv-qualified
2494  //   versions of these types are collectively called trivial types.
2495  const Type *BaseTy = ty->getBaseElementTypeUnsafe();
2496  assert(BaseTy && "NULL element type");
2497
2498  // Return false for incomplete types after skipping any incomplete array
2499  // types which are expressly allowed by the standard and thus our API.
2500  if (BaseTy->isIncompleteType())
2501    return false;
2502
2503  // As an extension, Clang treats vector types as Scalar types.
2504  if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
2505  if (const auto *RT = BaseTy->getAs<RecordType>()) {
2506    if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2507      // C++11 [class]p10:
2508      //   A POD struct is a non-union class that is both a trivial class [...]
2509      if (!ClassDecl->isTrivial()) return false;
2510
2511      // C++11 [class]p10:
2512      //   A POD struct is a non-union class that is both a trivial class and
2513      //   a standard-layout class [...]
2514      if (!ClassDecl->isStandardLayout()) return false;
2515
2516      // C++11 [class]p10:
2517      //   A POD struct is a non-union class that is both a trivial class and
2518      //   a standard-layout class, and has no non-static data members of type
2519      //   non-POD struct, non-POD union (or array of such types). [...]
2520      //
2521      // We don't directly query the recursive aspect as the requirements for
2522      // both standard-layout classes and trivial classes apply recursively
2523      // already.
2524    }
2525
2526    return true;
2527  }
2528
2529  // No other types can match.
2530  return false;
2531}
2532
2533bool Type::isNothrowT() const {
2534  if (const auto *RD = getAsCXXRecordDecl()) {
2535    IdentifierInfo *II = RD->getIdentifier();
2536    if (II && II->isStr("nothrow_t") && RD->isInStdNamespace())
2537      return true;
2538  }
2539  return false;
2540}
2541
2542bool Type::isAlignValT() const {
2543  if (const auto *ET = getAs<EnumType>()) {
2544    IdentifierInfo *II = ET->getDecl()->getIdentifier();
2545    if (II && II->isStr("align_val_t") && ET->getDecl()->isInStdNamespace())
2546      return true;
2547  }
2548  return false;
2549}
2550
2551bool Type::isStdByteType() const {
2552  if (const auto *ET = getAs<EnumType>()) {
2553    IdentifierInfo *II = ET->getDecl()->getIdentifier();
2554    if (II && II->isStr("byte") && ET->getDecl()->isInStdNamespace())
2555      return true;
2556  }
2557  return false;
2558}
2559
2560bool Type::isPromotableIntegerType() const {
2561  if (const auto *BT = getAs<BuiltinType>())
2562    switch (BT->getKind()) {
2563    case BuiltinType::Bool:
2564    case BuiltinType::Char_S:
2565    case BuiltinType::Char_U:
2566    case BuiltinType::SChar:
2567    case BuiltinType::UChar:
2568    case BuiltinType::Short:
2569    case BuiltinType::UShort:
2570    case BuiltinType::WChar_S:
2571    case BuiltinType::WChar_U:
2572    case BuiltinType::Char8:
2573    case BuiltinType::Char16:
2574    case BuiltinType::Char32:
2575      return true;
2576    default:
2577      return false;
2578    }
2579
2580  // Enumerated types are promotable to their compatible integer types
2581  // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
2582  if (const auto *ET = getAs<EnumType>()){
2583    if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull()
2584        || ET->getDecl()->isScoped())
2585      return false;
2586
2587    return true;
2588  }
2589
2590  return false;
2591}
2592
2593bool Type::isSpecifierType() const {
2594  // Note that this intentionally does not use the canonical type.
2595  switch (getTypeClass()) {
2596  case Builtin:
2597  case Record:
2598  case Enum:
2599  case Typedef:
2600  case Complex:
2601  case TypeOfExpr:
2602  case TypeOf:
2603  case TemplateTypeParm:
2604  case SubstTemplateTypeParm:
2605  case TemplateSpecialization:
2606  case Elaborated:
2607  case DependentName:
2608  case DependentTemplateSpecialization:
2609  case ObjCInterface:
2610  case ObjCObject:
2611  case ObjCObjectPointer: // FIXME: object pointers aren't really specifiers
2612    return true;
2613  default:
2614    return false;
2615  }
2616}
2617
2618ElaboratedTypeKeyword
2619TypeWithKeyword::getKeywordForTypeSpec(unsigned TypeSpec) {
2620  switch (TypeSpec) {
2621  default: return ETK_None;
2622  case TST_typename: return ETK_Typename;
2623  case TST_class: return ETK_Class;
2624  case TST_struct: return ETK_Struct;
2625  case TST_interface: return ETK_Interface;
2626  case TST_union: return ETK_Union;
2627  case TST_enum: return ETK_Enum;
2628  }
2629}
2630
2631TagTypeKind
2632TypeWithKeyword::getTagTypeKindForTypeSpec(unsigned TypeSpec) {
2633  switch(TypeSpec) {
2634  case TST_class: return TTK_Class;
2635  case TST_struct: return TTK_Struct;
2636  case TST_interface: return TTK_Interface;
2637  case TST_union: return TTK_Union;
2638  case TST_enum: return TTK_Enum;
2639  }
2640
2641  llvm_unreachable("Type specifier is not a tag type kind.");
2642}
2643
2644ElaboratedTypeKeyword
2645TypeWithKeyword::getKeywordForTagTypeKind(TagTypeKind Kind) {
2646  switch (Kind) {
2647  case TTK_Class: return ETK_Class;
2648  case TTK_Struct: return ETK_Struct;
2649  case TTK_Interface: return ETK_Interface;
2650  case TTK_Union: return ETK_Union;
2651  case TTK_Enum: return ETK_Enum;
2652  }
2653  llvm_unreachable("Unknown tag type kind.");
2654}
2655
2656TagTypeKind
2657TypeWithKeyword::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) {
2658  switch (Keyword) {
2659  case ETK_Class: return TTK_Class;
2660  case ETK_Struct: return TTK_Struct;
2661  case ETK_Interface: return TTK_Interface;
2662  case ETK_Union: return TTK_Union;
2663  case ETK_Enum: return TTK_Enum;
2664  case ETK_None: // Fall through.
2665  case ETK_Typename:
2666    llvm_unreachable("Elaborated type keyword is not a tag type kind.");
2667  }
2668  llvm_unreachable("Unknown elaborated type keyword.");
2669}
2670
2671bool
2672TypeWithKeyword::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) {
2673  switch (Keyword) {
2674  case ETK_None:
2675  case ETK_Typename:
2676    return false;
2677  case ETK_Class:
2678  case ETK_Struct:
2679  case ETK_Interface:
2680  case ETK_Union:
2681  case ETK_Enum:
2682    return true;
2683  }
2684  llvm_unreachable("Unknown elaborated type keyword.");
2685}
2686
2687StringRef TypeWithKeyword::getKeywordName(ElaboratedTypeKeyword Keyword) {
2688  switch (Keyword) {
2689  case ETK_None: return {};
2690  case ETK_Typename: return "typename";
2691  case ETK_Class:  return "class";
2692  case ETK_Struct: return "struct";
2693  case ETK_Interface: return "__interface";
2694  case ETK_Union:  return "union";
2695  case ETK_Enum:   return "enum";
2696  }
2697
2698  llvm_unreachable("Unknown elaborated type keyword.");
2699}
2700
2701DependentTemplateSpecializationType::DependentTemplateSpecializationType(
2702                         ElaboratedTypeKeyword Keyword,
2703                         NestedNameSpecifier *NNS, const IdentifierInfo *Name,
2704                         ArrayRef<TemplateArgument> Args,
2705                         QualType Canon)
2706  : TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon, true, true,
2707                    /*VariablyModified=*/false,
2708                    NNS && NNS->containsUnexpandedParameterPack()),
2709    NNS(NNS), Name(Name) {
2710  DependentTemplateSpecializationTypeBits.NumArgs = Args.size();
2711  assert((!NNS || NNS->isDependent()) &&
2712         "DependentTemplateSpecializatonType requires dependent qualifier");
2713  TemplateArgument *ArgBuffer = getArgBuffer();
2714  for (const TemplateArgument &Arg : Args) {
2715    if (Arg.containsUnexpandedParameterPack())
2716      setContainsUnexpandedParameterPack();
2717
2718    new (ArgBuffer++) TemplateArgument(Arg);
2719  }
2720}
2721
2722void
2723DependentTemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
2724                                             const ASTContext &Context,
2725                                             ElaboratedTypeKeyword Keyword,
2726                                             NestedNameSpecifier *Qualifier,
2727                                             const IdentifierInfo *Name,
2728                                             ArrayRef<TemplateArgument> Args) {
2729  ID.AddInteger(Keyword);
2730  ID.AddPointer(Qualifier);
2731  ID.AddPointer(Name);
2732  for (const TemplateArgument &Arg : Args)
2733    Arg.Profile(ID, Context);
2734}
2735
2736bool Type::isElaboratedTypeSpecifier() const {
2737  ElaboratedTypeKeyword Keyword;
2738  if (const auto *Elab = dyn_cast<ElaboratedType>(this))
2739    Keyword = Elab->getKeyword();
2740  else if (const auto *DepName = dyn_cast<DependentNameType>(this))
2741    Keyword = DepName->getKeyword();
2742  else if (const auto *DepTST =
2743               dyn_cast<DependentTemplateSpecializationType>(this))
2744    Keyword = DepTST->getKeyword();
2745  else
2746    return false;
2747
2748  return TypeWithKeyword::KeywordIsTagTypeKind(Keyword);
2749}
2750
2751const char *Type::getTypeClassName() const {
2752  switch (TypeBits.TC) {
2753#define ABSTRACT_TYPE(Derived, Base)
2754#define TYPE(Derived, Base) case Derived: return #Derived;
2755#include "clang/AST/TypeNodes.inc"
2756  }
2757
2758  llvm_unreachable("Invalid type class.");
2759}
2760
2761StringRef BuiltinType::getName(const PrintingPolicy &Policy) const {
2762  switch (getKind()) {
2763  case Void:
2764    return "void";
2765  case Bool:
2766    return Policy.Bool ? "bool" : "_Bool";
2767  case Char_S:
2768    return "char";
2769  case Char_U:
2770    return "char";
2771  case SChar:
2772    return "signed char";
2773  case Short:
2774    return "short";
2775  case Int:
2776    return "int";
2777  case Long:
2778    return "long";
2779  case LongLong:
2780    return "long long";
2781  case Int128:
2782    return "__int128";
2783  case UChar:
2784    return "unsigned char";
2785  case UShort:
2786    return "unsigned short";
2787  case UInt:
2788    return "unsigned int";
2789  case ULong:
2790    return "unsigned long";
2791  case ULongLong:
2792    return "unsigned long long";
2793  case UInt128:
2794    return "unsigned __int128";
2795  case Half:
2796    return Policy.Half ? "half" : "__fp16";
2797  case Float:
2798    return "float";
2799  case Double:
2800    return "double";
2801  case LongDouble:
2802    return "long double";
2803  case ShortAccum:
2804    return "short _Accum";
2805  case Accum:
2806    return "_Accum";
2807  case LongAccum:
2808    return "long _Accum";
2809  case UShortAccum:
2810    return "unsigned short _Accum";
2811  case UAccum:
2812    return "unsigned _Accum";
2813  case ULongAccum:
2814    return "unsigned long _Accum";
2815  case BuiltinType::ShortFract:
2816    return "short _Fract";
2817  case BuiltinType::Fract:
2818    return "_Fract";
2819  case BuiltinType::LongFract:
2820    return "long _Fract";
2821  case BuiltinType::UShortFract:
2822    return "unsigned short _Fract";
2823  case BuiltinType::UFract:
2824    return "unsigned _Fract";
2825  case BuiltinType::ULongFract:
2826    return "unsigned long _Fract";
2827  case BuiltinType::SatShortAccum:
2828    return "_Sat short _Accum";
2829  case BuiltinType::SatAccum:
2830    return "_Sat _Accum";
2831  case BuiltinType::SatLongAccum:
2832    return "_Sat long _Accum";
2833  case BuiltinType::SatUShortAccum:
2834    return "_Sat unsigned short _Accum";
2835  case BuiltinType::SatUAccum:
2836    return "_Sat unsigned _Accum";
2837  case BuiltinType::SatULongAccum:
2838    return "_Sat unsigned long _Accum";
2839  case BuiltinType::SatShortFract:
2840    return "_Sat short _Fract";
2841  case BuiltinType::SatFract:
2842    return "_Sat _Fract";
2843  case BuiltinType::SatLongFract:
2844    return "_Sat long _Fract";
2845  case BuiltinType::SatUShortFract:
2846    return "_Sat unsigned short _Fract";
2847  case BuiltinType::SatUFract:
2848    return "_Sat unsigned _Fract";
2849  case BuiltinType::SatULongFract:
2850    return "_Sat unsigned long _Fract";
2851  case Float16:
2852    return "_Float16";
2853  case Float128:
2854    return "__float128";
2855  case WChar_S:
2856  case WChar_U:
2857    return Policy.MSWChar ? "__wchar_t" : "wchar_t";
2858  case Char8:
2859    return "char8_t";
2860  case Char16:
2861    return "char16_t";
2862  case Char32:
2863    return "char32_t";
2864  case NullPtr:
2865    return "nullptr_t";
2866  case Overload:
2867    return "<overloaded function type>";
2868  case BoundMember:
2869    return "<bound member function type>";
2870  case PseudoObject:
2871    return "<pseudo-object type>";
2872  case Dependent:
2873    return "<dependent type>";
2874  case UnknownAny:
2875    return "<unknown type>";
2876  case ARCUnbridgedCast:
2877    return "<ARC unbridged cast type>";
2878  case BuiltinFn:
2879    return "<builtin fn type>";
2880  case ObjCId:
2881    return "id";
2882  case ObjCClass:
2883    return "Class";
2884  case ObjCSel:
2885    return "SEL";
2886#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2887  case Id: \
2888    return "__" #Access " " #ImgType "_t";
2889#include "clang/Basic/OpenCLImageTypes.def"
2890  case OCLSampler:
2891    return "sampler_t";
2892  case OCLEvent:
2893    return "event_t";
2894  case OCLClkEvent:
2895    return "clk_event_t";
2896  case OCLQueue:
2897    return "queue_t";
2898  case OCLReserveID:
2899    return "reserve_id_t";
2900  case OMPArraySection:
2901    return "<OpenMP array section type>";
2902#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2903  case Id: \
2904    return #ExtType;
2905#include "clang/Basic/OpenCLExtensionTypes.def"
2906#define SVE_TYPE(Name, Id, SingletonId) \
2907  case Id: \
2908    return Name;
2909#include "clang/Basic/AArch64SVEACLETypes.def"
2910  }
2911
2912  llvm_unreachable("Invalid builtin type.");
2913}
2914
2915QualType QualType::getNonLValueExprType(const ASTContext &Context) const {
2916  if (const auto *RefType = getTypePtr()->getAs<ReferenceType>())
2917    return RefType->getPointeeType();
2918
2919  // C++0x [basic.lval]:
2920  //   Class prvalues can have cv-qualified types; non-class prvalues always
2921  //   have cv-unqualified types.
2922  //
2923  // See also C99 6.3.2.1p2.
2924  if (!Context.getLangOpts().CPlusPlus ||
2925      (!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType()))
2926    return getUnqualifiedType();
2927
2928  return *this;
2929}
2930
2931StringRef FunctionType::getNameForCallConv(CallingConv CC) {
2932  switch (CC) {
2933  case CC_C: return "cdecl";
2934  case CC_X86StdCall: return "stdcall";
2935  case CC_X86FastCall: return "fastcall";
2936  case CC_X86ThisCall: return "thiscall";
2937  case CC_X86Pascal: return "pascal";
2938  case CC_X86VectorCall: return "vectorcall";
2939  case CC_Win64: return "ms_abi";
2940  case CC_X86_64SysV: return "sysv_abi";
2941  case CC_X86RegCall : return "regcall";
2942  case CC_AAPCS: return "aapcs";
2943  case CC_AAPCS_VFP: return "aapcs-vfp";
2944  case CC_AArch64VectorCall: return "aarch64_vector_pcs";
2945  case CC_IntelOclBicc: return "intel_ocl_bicc";
2946  case CC_SpirFunction: return "spir_function";
2947  case CC_OpenCLKernel: return "opencl_kernel";
2948  case CC_Swift: return "swiftcall";
2949  case CC_PreserveMost: return "preserve_most";
2950  case CC_PreserveAll: return "preserve_all";
2951  }
2952
2953  llvm_unreachable("Invalid calling convention.");
2954}
2955
2956FunctionProtoType::FunctionProtoType(QualType result, ArrayRef<QualType> params,
2957                                     QualType canonical,
2958                                     const ExtProtoInfo &epi)
2959    : FunctionType(FunctionProto, result, canonical, result->isDependentType(),
2960                   result->isInstantiationDependentType(),
2961                   result->isVariablyModifiedType(),
2962                   result->containsUnexpandedParameterPack(), epi.ExtInfo) {
2963  FunctionTypeBits.FastTypeQuals = epi.TypeQuals.getFastQualifiers();
2964  FunctionTypeBits.RefQualifier = epi.RefQualifier;
2965  FunctionTypeBits.NumParams = params.size();
2966  assert(getNumParams() == params.size() && "NumParams overflow!");
2967  FunctionTypeBits.ExceptionSpecType = epi.ExceptionSpec.Type;
2968  FunctionTypeBits.HasExtParameterInfos = !!epi.ExtParameterInfos;
2969  FunctionTypeBits.Variadic = epi.Variadic;
2970  FunctionTypeBits.HasTrailingReturn = epi.HasTrailingReturn;
2971
2972  // Fill in the extra trailing bitfields if present.
2973  if (hasExtraBitfields(epi.ExceptionSpec.Type)) {
2974    auto &ExtraBits = *getTrailingObjects<FunctionTypeExtraBitfields>();
2975    ExtraBits.NumExceptionType = epi.ExceptionSpec.Exceptions.size();
2976  }
2977
2978  // Fill in the trailing argument array.
2979  auto *argSlot = getTrailingObjects<QualType>();
2980  for (unsigned i = 0; i != getNumParams(); ++i) {
2981    if (params[i]->isDependentType())
2982      setDependent();
2983    else if (params[i]->isInstantiationDependentType())
2984      setInstantiationDependent();
2985
2986    if (params[i]->containsUnexpandedParameterPack())
2987      setContainsUnexpandedParameterPack();
2988
2989    argSlot[i] = params[i];
2990  }
2991
2992  // Fill in the exception type array if present.
2993  if (getExceptionSpecType() == EST_Dynamic) {
2994    assert(hasExtraBitfields() && "missing trailing extra bitfields!");
2995    auto *exnSlot =
2996        reinterpret_cast<QualType *>(getTrailingObjects<ExceptionType>());
2997    unsigned I = 0;
2998    for (QualType ExceptionType : epi.ExceptionSpec.Exceptions) {
2999      // Note that, before C++17, a dependent exception specification does
3000      // *not* make a type dependent; it's not even part of the C++ type
3001      // system.
3002      if (ExceptionType->isInstantiationDependentType())
3003        setInstantiationDependent();
3004
3005      if (ExceptionType->containsUnexpandedParameterPack())
3006        setContainsUnexpandedParameterPack();
3007
3008      exnSlot[I++] = ExceptionType;
3009    }
3010  }
3011  // Fill in the Expr * in the exception specification if present.
3012  else if (isComputedNoexcept(getExceptionSpecType())) {
3013    assert(epi.ExceptionSpec.NoexceptExpr && "computed noexcept with no expr");
3014    assert((getExceptionSpecType() == EST_DependentNoexcept) ==
3015           epi.ExceptionSpec.NoexceptExpr->isValueDependent());
3016
3017    // Store the noexcept expression and context.
3018    *getTrailingObjects<Expr *>() = epi.ExceptionSpec.NoexceptExpr;
3019
3020    if (epi.ExceptionSpec.NoexceptExpr->isValueDependent() ||
3021        epi.ExceptionSpec.NoexceptExpr->isInstantiationDependent())
3022      setInstantiationDependent();
3023
3024    if (epi.ExceptionSpec.NoexceptExpr->containsUnexpandedParameterPack())
3025      setContainsUnexpandedParameterPack();
3026  }
3027  // Fill in the FunctionDecl * in the exception specification if present.
3028  else if (getExceptionSpecType() == EST_Uninstantiated) {
3029    // Store the function decl from which we will resolve our
3030    // exception specification.
3031    auto **slot = getTrailingObjects<FunctionDecl *>();
3032    slot[0] = epi.ExceptionSpec.SourceDecl;
3033    slot[1] = epi.ExceptionSpec.SourceTemplate;
3034    // This exception specification doesn't make the type dependent, because
3035    // it's not instantiated as part of instantiating the type.
3036  } else if (getExceptionSpecType() == EST_Unevaluated) {
3037    // Store the function decl from which we will resolve our
3038    // exception specification.
3039    auto **slot = getTrailingObjects<FunctionDecl *>();
3040    slot[0] = epi.ExceptionSpec.SourceDecl;
3041  }
3042
3043  // If this is a canonical type, and its exception specification is dependent,
3044  // then it's a dependent type. This only happens in C++17 onwards.
3045  if (isCanonicalUnqualified()) {
3046    if (getExceptionSpecType() == EST_Dynamic ||
3047        getExceptionSpecType() == EST_DependentNoexcept) {
3048      assert(hasDependentExceptionSpec() && "type should not be canonical");
3049      setDependent();
3050    }
3051  } else if (getCanonicalTypeInternal()->isDependentType()) {
3052    // Ask our canonical type whether our exception specification was dependent.
3053    setDependent();
3054  }
3055
3056  // Fill in the extra parameter info if present.
3057  if (epi.ExtParameterInfos) {
3058    auto *extParamInfos = getTrailingObjects<ExtParameterInfo>();
3059    for (unsigned i = 0; i != getNumParams(); ++i)
3060      extParamInfos[i] = epi.ExtParameterInfos[i];
3061  }
3062
3063  if (epi.TypeQuals.hasNonFastQualifiers()) {
3064    FunctionTypeBits.HasExtQuals = 1;
3065    *getTrailingObjects<Qualifiers>() = epi.TypeQuals;
3066  } else {
3067    FunctionTypeBits.HasExtQuals = 0;
3068  }
3069
3070  // Fill in the Ellipsis location info if present.
3071  if (epi.Variadic) {
3072    auto &EllipsisLoc = *getTrailingObjects<SourceLocation>();
3073    EllipsisLoc = epi.EllipsisLoc;
3074  }
3075}
3076
3077bool FunctionProtoType::hasDependentExceptionSpec() const {
3078  if (Expr *NE = getNoexceptExpr())
3079    return NE->isValueDependent();
3080  for (QualType ET : exceptions())
3081    // A pack expansion with a non-dependent pattern is still dependent,
3082    // because we don't know whether the pattern is in the exception spec
3083    // or not (that depends on whether the pack has 0 expansions).
3084    if (ET->isDependentType() || ET->getAs<PackExpansionType>())
3085      return true;
3086  return false;
3087}
3088
3089bool FunctionProtoType::hasInstantiationDependentExceptionSpec() const {
3090  if (Expr *NE = getNoexceptExpr())
3091    return NE->isInstantiationDependent();
3092  for (QualType ET : exceptions())
3093    if (ET->isInstantiationDependentType())
3094      return true;
3095  return false;
3096}
3097
3098CanThrowResult FunctionProtoType::canThrow() const {
3099  switch (getExceptionSpecType()) {
3100  case EST_Unparsed:
3101  case EST_Unevaluated:
3102  case EST_Uninstantiated:
3103    llvm_unreachable("should not call this with unresolved exception specs");
3104
3105  case EST_DynamicNone:
3106  case EST_BasicNoexcept:
3107  case EST_NoexceptTrue:
3108  case EST_NoThrow:
3109    return CT_Cannot;
3110
3111  case EST_None:
3112  case EST_MSAny:
3113  case EST_NoexceptFalse:
3114    return CT_Can;
3115
3116  case EST_Dynamic:
3117    // A dynamic exception specification is throwing unless every exception
3118    // type is an (unexpanded) pack expansion type.
3119    for (unsigned I = 0; I != getNumExceptions(); ++I)
3120      if (!getExceptionType(I)->getAs<PackExpansionType>())
3121        return CT_Can;
3122    return CT_Dependent;
3123
3124  case EST_DependentNoexcept:
3125    return CT_Dependent;
3126  }
3127
3128  llvm_unreachable("unexpected exception specification kind");
3129}
3130
3131bool FunctionProtoType::isTemplateVariadic() const {
3132  for (unsigned ArgIdx = getNumParams(); ArgIdx; --ArgIdx)
3133    if (isa<PackExpansionType>(getParamType(ArgIdx - 1)))
3134      return true;
3135
3136  return false;
3137}
3138
3139void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
3140                                const QualType *ArgTys, unsigned NumParams,
3141                                const ExtProtoInfo &epi,
3142                                const ASTContext &Context, bool Canonical) {
3143  // We have to be careful not to get ambiguous profile encodings.
3144  // Note that valid type pointers are never ambiguous with anything else.
3145  //
3146  // The encoding grammar begins:
3147  //      type type* bool int bool
3148  // If that final bool is true, then there is a section for the EH spec:
3149  //      bool type*
3150  // This is followed by an optional "consumed argument" section of the
3151  // same length as the first type sequence:
3152  //      bool*
3153  // Finally, we have the ext info and trailing return type flag:
3154  //      int bool
3155  //
3156  // There is no ambiguity between the consumed arguments and an empty EH
3157  // spec because of the leading 'bool' which unambiguously indicates
3158  // whether the following bool is the EH spec or part of the arguments.
3159
3160  ID.AddPointer(Result.getAsOpaquePtr());
3161  for (unsigned i = 0; i != NumParams; ++i)
3162    ID.AddPointer(ArgTys[i].getAsOpaquePtr());
3163  // This method is relatively performance sensitive, so as a performance
3164  // shortcut, use one AddInteger call instead of four for the next four
3165  // fields.
3166  assert(!(unsigned(epi.Variadic) & ~1) &&
3167         !(unsigned(epi.RefQualifier) & ~3) &&
3168         !(unsigned(epi.ExceptionSpec.Type) & ~15) &&
3169         "Values larger than expected.");
3170  ID.AddInteger(unsigned(epi.Variadic) +
3171                (epi.RefQualifier << 1) +
3172                (epi.ExceptionSpec.Type << 3));
3173  ID.Add(epi.TypeQuals);
3174  if (epi.ExceptionSpec.Type == EST_Dynamic) {
3175    for (QualType Ex : epi.ExceptionSpec.Exceptions)
3176      ID.AddPointer(Ex.getAsOpaquePtr());
3177  } else if (isComputedNoexcept(epi.ExceptionSpec.Type)) {
3178    epi.ExceptionSpec.NoexceptExpr->Profile(ID, Context, Canonical);
3179  } else if (epi.ExceptionSpec.Type == EST_Uninstantiated ||
3180             epi.ExceptionSpec.Type == EST_Unevaluated) {
3181    ID.AddPointer(epi.ExceptionSpec.SourceDecl->getCanonicalDecl());
3182  }
3183  if (epi.ExtParameterInfos) {
3184    for (unsigned i = 0; i != NumParams; ++i)
3185      ID.AddInteger(epi.ExtParameterInfos[i].getOpaqueValue());
3186  }
3187  epi.ExtInfo.Profile(ID);
3188  ID.AddBoolean(epi.HasTrailingReturn);
3189}
3190
3191void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID,
3192                                const ASTContext &Ctx) {
3193  Profile(ID, getReturnType(), param_type_begin(), getNumParams(),
3194          getExtProtoInfo(), Ctx, isCanonicalUnqualified());
3195}
3196
3197QualType TypedefType::desugar() const {
3198  return getDecl()->getUnderlyingType();
3199}
3200
3201QualType MacroQualifiedType::desugar() const { return getUnderlyingType(); }
3202
3203QualType MacroQualifiedType::getModifiedType() const {
3204  // Step over MacroQualifiedTypes from the same macro to find the type
3205  // ultimately qualified by the macro qualifier.
3206  QualType Inner = cast<AttributedType>(getUnderlyingType())->getModifiedType();
3207  while (auto *InnerMQT = dyn_cast<MacroQualifiedType>(Inner)) {
3208    if (InnerMQT->getMacroIdentifier() != getMacroIdentifier())
3209      break;
3210    Inner = InnerMQT->getModifiedType();
3211  }
3212  return Inner;
3213}
3214
3215TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
3216    : Type(TypeOfExpr, can, E->isTypeDependent(),
3217           E->isInstantiationDependent(),
3218           E->getType()->isVariablyModifiedType(),
3219           E->containsUnexpandedParameterPack()),
3220      TOExpr(E) {}
3221
3222bool TypeOfExprType::isSugared() const {
3223  return !TOExpr->isTypeDependent();
3224}
3225
3226QualType TypeOfExprType::desugar() const {
3227  if (isSugared())
3228    return getUnderlyingExpr()->getType();
3229
3230  return QualType(this, 0);
3231}
3232
3233void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
3234                                      const ASTContext &Context, Expr *E) {
3235  E->Profile(ID, Context, true);
3236}
3237
3238DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
3239  // C++11 [temp.type]p2: "If an expression e involves a template parameter,
3240  // decltype(e) denotes a unique dependent type." Hence a decltype type is
3241  // type-dependent even if its expression is only instantiation-dependent.
3242    : Type(Decltype, can, E->isInstantiationDependent(),
3243           E->isInstantiationDependent(),
3244           E->getType()->isVariablyModifiedType(),
3245           E->containsUnexpandedParameterPack()),
3246      E(E), UnderlyingType(underlyingType) {}
3247
3248bool DecltypeType::isSugared() const { return !E->isInstantiationDependent(); }
3249
3250QualType DecltypeType::desugar() const {
3251  if (isSugared())
3252    return getUnderlyingType();
3253
3254  return QualType(this, 0);
3255}
3256
3257DependentDecltypeType::DependentDecltypeType(const ASTContext &Context, Expr *E)
3258    : DecltypeType(E, Context.DependentTy), Context(Context) {}
3259
3260void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
3261                                    const ASTContext &Context, Expr *E) {
3262  E->Profile(ID, Context, true);
3263}
3264
3265UnaryTransformType::UnaryTransformType(QualType BaseType,
3266                                       QualType UnderlyingType,
3267                                       UTTKind UKind,
3268                                       QualType CanonicalType)
3269    : Type(UnaryTransform, CanonicalType, BaseType->isDependentType(),
3270           BaseType->isInstantiationDependentType(),
3271           BaseType->isVariablyModifiedType(),
3272           BaseType->containsUnexpandedParameterPack()),
3273      BaseType(BaseType), UnderlyingType(UnderlyingType), UKind(UKind) {}
3274
3275DependentUnaryTransformType::DependentUnaryTransformType(const ASTContext &C,
3276                                                         QualType BaseType,
3277                                                         UTTKind UKind)
3278     : UnaryTransformType(BaseType, C.DependentTy, UKind, QualType()) {}
3279
3280TagType::TagType(TypeClass TC, const TagDecl *D, QualType can)
3281    : Type(TC, can, D->isDependentType(),
3282           /*InstantiationDependent=*/D->isDependentType(),
3283           /*VariablyModified=*/false,
3284           /*ContainsUnexpandedParameterPack=*/false),
3285      decl(const_cast<TagDecl*>(D)) {}
3286
3287static TagDecl *getInterestingTagDecl(TagDecl *decl) {
3288  for (auto I : decl->redecls()) {
3289    if (I->isCompleteDefinition() || I->isBeingDefined())
3290      return I;
3291  }
3292  // If there's no definition (not even in progress), return what we have.
3293  return decl;
3294}
3295
3296TagDecl *TagType::getDecl() const {
3297  return getInterestingTagDecl(decl);
3298}
3299
3300bool TagType::isBeingDefined() const {
3301  return getDecl()->isBeingDefined();
3302}
3303
3304bool RecordType::hasConstFields() const {
3305  std::vector<const RecordType*> RecordTypeList;
3306  RecordTypeList.push_back(this);
3307  unsigned NextToCheckIndex = 0;
3308
3309  while (RecordTypeList.size() > NextToCheckIndex) {
3310    for (FieldDecl *FD :
3311         RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
3312      QualType FieldTy = FD->getType();
3313      if (FieldTy.isConstQualified())
3314        return true;
3315      FieldTy = FieldTy.getCanonicalType();
3316      if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
3317        if (llvm::find(RecordTypeList, FieldRecTy) == RecordTypeList.end())
3318          RecordTypeList.push_back(FieldRecTy);
3319      }
3320    }
3321    ++NextToCheckIndex;
3322  }
3323  return false;
3324}
3325
3326bool AttributedType::isQualifier() const {
3327  // FIXME: Generate this with TableGen.
3328  switch (getAttrKind()) {
3329  // These are type qualifiers in the traditional C sense: they annotate
3330  // something about a specific value/variable of a type.  (They aren't
3331  // always part of the canonical type, though.)
3332  case attr::ObjCGC:
3333  case attr::ObjCOwnership:
3334  case attr::ObjCInertUnsafeUnretained:
3335  case attr::TypeNonNull:
3336  case attr::TypeNullable:
3337  case attr::TypeNullUnspecified:
3338  case attr::LifetimeBound:
3339  case attr::AddressSpace:
3340    return true;
3341
3342  // All other type attributes aren't qualifiers; they rewrite the modified
3343  // type to be a semantically different type.
3344  default:
3345    return false;
3346  }
3347}
3348
3349bool AttributedType::isMSTypeSpec() const {
3350  // FIXME: Generate this with TableGen?
3351  switch (getAttrKind()) {
3352  default: return false;
3353  case attr::Ptr32:
3354  case attr::Ptr64:
3355  case attr::SPtr:
3356  case attr::UPtr:
3357    return true;
3358  }
3359  llvm_unreachable("invalid attr kind");
3360}
3361
3362bool AttributedType::isCallingConv() const {
3363  // FIXME: Generate this with TableGen.
3364  switch (getAttrKind()) {
3365  default: return false;
3366  case attr::Pcs:
3367  case attr::CDecl:
3368  case attr::FastCall:
3369  case attr::StdCall:
3370  case attr::ThisCall:
3371  case attr::RegCall:
3372  case attr::SwiftCall:
3373  case attr::VectorCall:
3374  case attr::AArch64VectorPcs:
3375  case attr::Pascal:
3376  case attr::MSABI:
3377  case attr::SysVABI:
3378  case attr::IntelOclBicc:
3379  case attr::PreserveMost:
3380  case attr::PreserveAll:
3381    return true;
3382  }
3383  llvm_unreachable("invalid attr kind");
3384}
3385
3386CXXRecordDecl *InjectedClassNameType::getDecl() const {
3387  return cast<CXXRecordDecl>(getInterestingTagDecl(Decl));
3388}
3389
3390IdentifierInfo *TemplateTypeParmType::getIdentifier() const {
3391  return isCanonicalUnqualified() ? nullptr : getDecl()->getIdentifier();
3392}
3393
3394SubstTemplateTypeParmPackType::
3395SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
3396                              QualType Canon,
3397                              const TemplateArgument &ArgPack)
3398    : Type(SubstTemplateTypeParmPack, Canon, true, true, false, true),
3399      Replaced(Param), Arguments(ArgPack.pack_begin()) {
3400  SubstTemplateTypeParmPackTypeBits.NumArgs = ArgPack.pack_size();
3401}
3402
3403TemplateArgument SubstTemplateTypeParmPackType::getArgumentPack() const {
3404  return TemplateArgument(llvm::makeArrayRef(Arguments, getNumArgs()));
3405}
3406
3407void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) {
3408  Profile(ID, getReplacedParameter(), getArgumentPack());
3409}
3410
3411void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID,
3412                                           const TemplateTypeParmType *Replaced,
3413                                            const TemplateArgument &ArgPack) {
3414  ID.AddPointer(Replaced);
3415  ID.AddInteger(ArgPack.pack_size());
3416  for (const auto &P : ArgPack.pack_elements())
3417    ID.AddPointer(P.getAsType().getAsOpaquePtr());
3418}
3419
3420bool TemplateSpecializationType::
3421anyDependentTemplateArguments(const TemplateArgumentListInfo &Args,
3422                              bool &InstantiationDependent) {
3423  return anyDependentTemplateArguments(Args.arguments(),
3424                                       InstantiationDependent);
3425}
3426
3427bool TemplateSpecializationType::
3428anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
3429                              bool &InstantiationDependent) {
3430  for (const TemplateArgumentLoc &ArgLoc : Args) {
3431    if (ArgLoc.getArgument().isDependent()) {
3432      InstantiationDependent = true;
3433      return true;
3434    }
3435
3436    if (ArgLoc.getArgument().isInstantiationDependent())
3437      InstantiationDependent = true;
3438  }
3439  return false;
3440}
3441
3442TemplateSpecializationType::
3443TemplateSpecializationType(TemplateName T,
3444                           ArrayRef<TemplateArgument> Args,
3445                           QualType Canon, QualType AliasedType)
3446  : Type(TemplateSpecialization,
3447         Canon.isNull()? QualType(this, 0) : Canon,
3448         Canon.isNull()? true : Canon->isDependentType(),
3449         Canon.isNull()? true : Canon->isInstantiationDependentType(),
3450         false,
3451         T.containsUnexpandedParameterPack()), Template(T) {
3452  TemplateSpecializationTypeBits.NumArgs = Args.size();
3453  TemplateSpecializationTypeBits.TypeAlias = !AliasedType.isNull();
3454
3455  assert(!T.getAsDependentTemplateName() &&
3456         "Use DependentTemplateSpecializationType for dependent template-name");
3457  assert((T.getKind() == TemplateName::Template ||
3458          T.getKind() == TemplateName::SubstTemplateTemplateParm ||
3459          T.getKind() == TemplateName::SubstTemplateTemplateParmPack) &&
3460         "Unexpected template name for TemplateSpecializationType");
3461
3462  auto *TemplateArgs = reinterpret_cast<TemplateArgument *>(this + 1);
3463  for (const TemplateArgument &Arg : Args) {
3464    // Update instantiation-dependent and variably-modified bits.
3465    // If the canonical type exists and is non-dependent, the template
3466    // specialization type can be non-dependent even if one of the type
3467    // arguments is. Given:
3468    //   template<typename T> using U = int;
3469    // U<T> is always non-dependent, irrespective of the type T.
3470    // However, U<Ts> contains an unexpanded parameter pack, even though
3471    // its expansion (and thus its desugared type) doesn't.
3472    if (Arg.isInstantiationDependent())
3473      setInstantiationDependent();
3474    if (Arg.getKind() == TemplateArgument::Type &&
3475        Arg.getAsType()->isVariablyModifiedType())
3476      setVariablyModified();
3477    if (Arg.containsUnexpandedParameterPack())
3478      setContainsUnexpandedParameterPack();
3479    new (TemplateArgs++) TemplateArgument(Arg);
3480  }
3481
3482  // Store the aliased type if this is a type alias template specialization.
3483  if (isTypeAlias()) {
3484    auto *Begin = reinterpret_cast<TemplateArgument *>(this + 1);
3485    *reinterpret_cast<QualType*>(Begin + getNumArgs()) = AliasedType;
3486  }
3487}
3488
3489void
3490TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
3491                                    TemplateName T,
3492                                    ArrayRef<TemplateArgument> Args,
3493                                    const ASTContext &Context) {
3494  T.Profile(ID);
3495  for (const TemplateArgument &Arg : Args)
3496    Arg.Profile(ID, Context);
3497}
3498
3499QualType
3500QualifierCollector::apply(const ASTContext &Context, QualType QT) const {
3501  if (!hasNonFastQualifiers())
3502    return QT.withFastQualifiers(getFastQualifiers());
3503
3504  return Context.getQualifiedType(QT, *this);
3505}
3506
3507QualType
3508QualifierCollector::apply(const ASTContext &Context, const Type *T) const {
3509  if (!hasNonFastQualifiers())
3510    return QualType(T, getFastQualifiers());
3511
3512  return Context.getQualifiedType(T, *this);
3513}
3514
3515void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID,
3516                                 QualType BaseType,
3517                                 ArrayRef<QualType> typeArgs,
3518                                 ArrayRef<ObjCProtocolDecl *> protocols,
3519                                 bool isKindOf) {
3520  ID.AddPointer(BaseType.getAsOpaquePtr());
3521  ID.AddInteger(typeArgs.size());
3522  for (auto typeArg : typeArgs)
3523    ID.AddPointer(typeArg.getAsOpaquePtr());
3524  ID.AddInteger(protocols.size());
3525  for (auto proto : protocols)
3526    ID.AddPointer(proto);
3527  ID.AddBoolean(isKindOf);
3528}
3529
3530void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) {
3531  Profile(ID, getBaseType(), getTypeArgsAsWritten(),
3532          llvm::makeArrayRef(qual_begin(), getNumProtocols()),
3533          isKindOfTypeAsWritten());
3534}
3535
3536void ObjCTypeParamType::Profile(llvm::FoldingSetNodeID &ID,
3537                                const ObjCTypeParamDecl *OTPDecl,
3538                                ArrayRef<ObjCProtocolDecl *> protocols) {
3539  ID.AddPointer(OTPDecl);
3540  ID.AddInteger(protocols.size());
3541  for (auto proto : protocols)
3542    ID.AddPointer(proto);
3543}
3544
3545void ObjCTypeParamType::Profile(llvm::FoldingSetNodeID &ID) {
3546  Profile(ID, getDecl(),
3547          llvm::makeArrayRef(qual_begin(), getNumProtocols()));
3548}
3549
3550namespace {
3551
3552/// The cached properties of a type.
3553class CachedProperties {
3554  Linkage L;
3555  bool local;
3556
3557public:
3558  CachedProperties(Linkage L, bool local) : L(L), local(local) {}
3559
3560  Linkage getLinkage() const { return L; }
3561  bool hasLocalOrUnnamedType() const { return local; }
3562
3563  friend CachedProperties merge(CachedProperties L, CachedProperties R) {
3564    Linkage MergedLinkage = minLinkage(L.L, R.L);
3565    return CachedProperties(MergedLinkage,
3566                         L.hasLocalOrUnnamedType() | R.hasLocalOrUnnamedType());
3567  }
3568};
3569
3570} // namespace
3571
3572static CachedProperties computeCachedProperties(const Type *T);
3573
3574namespace clang {
3575
3576/// The type-property cache.  This is templated so as to be
3577/// instantiated at an internal type to prevent unnecessary symbol
3578/// leakage.
3579template <class Private> class TypePropertyCache {
3580public:
3581  static CachedProperties get(QualType T) {
3582    return get(T.getTypePtr());
3583  }
3584
3585  static CachedProperties get(const Type *T) {
3586    ensure(T);
3587    return CachedProperties(T->TypeBits.getLinkage(),
3588                            T->TypeBits.hasLocalOrUnnamedType());
3589  }
3590
3591  static void ensure(const Type *T) {
3592    // If the cache is valid, we're okay.
3593    if (T->TypeBits.isCacheValid()) return;
3594
3595    // If this type is non-canonical, ask its canonical type for the
3596    // relevant information.
3597    if (!T->isCanonicalUnqualified()) {
3598      const Type *CT = T->getCanonicalTypeInternal().getTypePtr();
3599      ensure(CT);
3600      T->TypeBits.CacheValid = true;
3601      T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage;
3602      T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed;
3603      return;
3604    }
3605
3606    // Compute the cached properties and then set the cache.
3607    CachedProperties Result = computeCachedProperties(T);
3608    T->TypeBits.CacheValid = true;
3609    T->TypeBits.CachedLinkage = Result.getLinkage();
3610    T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType();
3611  }
3612};
3613
3614} // namespace clang
3615
3616// Instantiate the friend template at a private class.  In a
3617// reasonable implementation, these symbols will be internal.
3618// It is terrible that this is the best way to accomplish this.
3619namespace {
3620
3621class Private {};
3622
3623} // namespace
3624
3625using Cache = TypePropertyCache<Private>;
3626
3627static CachedProperties computeCachedProperties(const Type *T) {
3628  switch (T->getTypeClass()) {
3629#define TYPE(Class,Base)
3630#define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
3631#include "clang/AST/TypeNodes.inc"
3632    llvm_unreachable("didn't expect a non-canonical type here");
3633
3634#define TYPE(Class,Base)
3635#define DEPENDENT_TYPE(Class,Base) case Type::Class:
3636#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
3637#include "clang/AST/TypeNodes.inc"
3638    // Treat instantiation-dependent types as external.
3639    if (!T->isInstantiationDependentType()) T->dump();
3640    assert(T->isInstantiationDependentType());
3641    return CachedProperties(ExternalLinkage, false);
3642
3643  case Type::Auto:
3644  case Type::DeducedTemplateSpecialization:
3645    // Give non-deduced 'auto' types external linkage. We should only see them
3646    // here in error recovery.
3647    return CachedProperties(ExternalLinkage, false);
3648
3649  case Type::Builtin:
3650    // C++ [basic.link]p8:
3651    //   A type is said to have linkage if and only if:
3652    //     - it is a fundamental type (3.9.1); or
3653    return CachedProperties(ExternalLinkage, false);
3654
3655  case Type::Record:
3656  case Type::Enum: {
3657    const TagDecl *Tag = cast<TagType>(T)->getDecl();
3658
3659    // C++ [basic.link]p8:
3660    //     - it is a class or enumeration type that is named (or has a name
3661    //       for linkage purposes (7.1.3)) and the name has linkage; or
3662    //     -  it is a specialization of a class template (14); or
3663    Linkage L = Tag->getLinkageInternal();
3664    bool IsLocalOrUnnamed =
3665      Tag->getDeclContext()->isFunctionOrMethod() ||
3666      !Tag->hasNameForLinkage();
3667    return CachedProperties(L, IsLocalOrUnnamed);
3668  }
3669
3670    // C++ [basic.link]p8:
3671    //   - it is a compound type (3.9.2) other than a class or enumeration,
3672    //     compounded exclusively from types that have linkage; or
3673  case Type::Complex:
3674    return Cache::get(cast<ComplexType>(T)->getElementType());
3675  case Type::Pointer:
3676    return Cache::get(cast<PointerType>(T)->getPointeeType());
3677  case Type::BlockPointer:
3678    return Cache::get(cast<BlockPointerType>(T)->getPointeeType());
3679  case Type::LValueReference:
3680  case Type::RValueReference:
3681    return Cache::get(cast<ReferenceType>(T)->getPointeeType());
3682  case Type::MemberPointer: {
3683    const auto *MPT = cast<MemberPointerType>(T);
3684    return merge(Cache::get(MPT->getClass()),
3685                 Cache::get(MPT->getPointeeType()));
3686  }
3687  case Type::ConstantArray:
3688  case Type::IncompleteArray:
3689  case Type::VariableArray:
3690    return Cache::get(cast<ArrayType>(T)->getElementType());
3691  case Type::Vector:
3692  case Type::ExtVector:
3693    return Cache::get(cast<VectorType>(T)->getElementType());
3694  case Type::FunctionNoProto:
3695    return Cache::get(cast<FunctionType>(T)->getReturnType());
3696  case Type::FunctionProto: {
3697    const auto *FPT = cast<FunctionProtoType>(T);
3698    CachedProperties result = Cache::get(FPT->getReturnType());
3699    for (const auto &ai : FPT->param_types())
3700      result = merge(result, Cache::get(ai));
3701    return result;
3702  }
3703  case Type::ObjCInterface: {
3704    Linkage L = cast<ObjCInterfaceType>(T)->getDecl()->getLinkageInternal();
3705    return CachedProperties(L, false);
3706  }
3707  case Type::ObjCObject:
3708    return Cache::get(cast<ObjCObjectType>(T)->getBaseType());
3709  case Type::ObjCObjectPointer:
3710    return Cache::get(cast<ObjCObjectPointerType>(T)->getPointeeType());
3711  case Type::Atomic:
3712    return Cache::get(cast<AtomicType>(T)->getValueType());
3713  case Type::Pipe:
3714    return Cache::get(cast<PipeType>(T)->getElementType());
3715  }
3716
3717  llvm_unreachable("unhandled type class");
3718}
3719
3720/// Determine the linkage of this type.
3721Linkage Type::getLinkage() const {
3722  Cache::ensure(this);
3723  return TypeBits.getLinkage();
3724}
3725
3726bool Type::hasUnnamedOrLocalType() const {
3727  Cache::ensure(this);
3728  return TypeBits.hasLocalOrUnnamedType();
3729}
3730
3731LinkageInfo LinkageComputer::computeTypeLinkageInfo(const Type *T) {
3732  switch (T->getTypeClass()) {
3733#define TYPE(Class,Base)
3734#define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
3735#include "clang/AST/TypeNodes.inc"
3736    llvm_unreachable("didn't expect a non-canonical type here");
3737
3738#define TYPE(Class,Base)
3739#define DEPENDENT_TYPE(Class,Base) case Type::Class:
3740#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
3741#include "clang/AST/TypeNodes.inc"
3742    // Treat instantiation-dependent types as external.
3743    assert(T->isInstantiationDependentType());
3744    return LinkageInfo::external();
3745
3746  case Type::Builtin:
3747    return LinkageInfo::external();
3748
3749  case Type::Auto:
3750  case Type::DeducedTemplateSpecialization:
3751    return LinkageInfo::external();
3752
3753  case Type::Record:
3754  case Type::Enum:
3755    return getDeclLinkageAndVisibility(cast<TagType>(T)->getDecl());
3756
3757  case Type::Complex:
3758    return computeTypeLinkageInfo(cast<ComplexType>(T)->getElementType());
3759  case Type::Pointer:
3760    return computeTypeLinkageInfo(cast<PointerType>(T)->getPointeeType());
3761  case Type::BlockPointer:
3762    return computeTypeLinkageInfo(cast<BlockPointerType>(T)->getPointeeType());
3763  case Type::LValueReference:
3764  case Type::RValueReference:
3765    return computeTypeLinkageInfo(cast<ReferenceType>(T)->getPointeeType());
3766  case Type::MemberPointer: {
3767    const auto *MPT = cast<MemberPointerType>(T);
3768    LinkageInfo LV = computeTypeLinkageInfo(MPT->getClass());
3769    LV.merge(computeTypeLinkageInfo(MPT->getPointeeType()));
3770    return LV;
3771  }
3772  case Type::ConstantArray:
3773  case Type::IncompleteArray:
3774  case Type::VariableArray:
3775    return computeTypeLinkageInfo(cast<ArrayType>(T)->getElementType());
3776  case Type::Vector:
3777  case Type::ExtVector:
3778    return computeTypeLinkageInfo(cast<VectorType>(T)->getElementType());
3779  case Type::FunctionNoProto:
3780    return computeTypeLinkageInfo(cast<FunctionType>(T)->getReturnType());
3781  case Type::FunctionProto: {
3782    const auto *FPT = cast<FunctionProtoType>(T);
3783    LinkageInfo LV = computeTypeLinkageInfo(FPT->getReturnType());
3784    for (const auto &ai : FPT->param_types())
3785      LV.merge(computeTypeLinkageInfo(ai));
3786    return LV;
3787  }
3788  case Type::ObjCInterface:
3789    return getDeclLinkageAndVisibility(cast<ObjCInterfaceType>(T)->getDecl());
3790  case Type::ObjCObject:
3791    return computeTypeLinkageInfo(cast<ObjCObjectType>(T)->getBaseType());
3792  case Type::ObjCObjectPointer:
3793    return computeTypeLinkageInfo(
3794        cast<ObjCObjectPointerType>(T)->getPointeeType());
3795  case Type::Atomic:
3796    return computeTypeLinkageInfo(cast<AtomicType>(T)->getValueType());
3797  case Type::Pipe:
3798    return computeTypeLinkageInfo(cast<PipeType>(T)->getElementType());
3799  }
3800
3801  llvm_unreachable("unhandled type class");
3802}
3803
3804bool Type::isLinkageValid() const {
3805  if (!TypeBits.isCacheValid())
3806    return true;
3807
3808  Linkage L = LinkageComputer{}
3809                  .computeTypeLinkageInfo(getCanonicalTypeInternal())
3810                  .getLinkage();
3811  return L == TypeBits.getLinkage();
3812}
3813
3814LinkageInfo LinkageComputer::getTypeLinkageAndVisibility(const Type *T) {
3815  if (!T->isCanonicalUnqualified())
3816    return computeTypeLinkageInfo(T->getCanonicalTypeInternal());
3817
3818  LinkageInfo LV = computeTypeLinkageInfo(T);
3819  assert(LV.getLinkage() == T->getLinkage());
3820  return LV;
3821}
3822
3823LinkageInfo Type::getLinkageAndVisibility() const {
3824  return LinkageComputer{}.getTypeLinkageAndVisibility(this);
3825}
3826
3827Optional<NullabilityKind>
3828Type::getNullability(const ASTContext &Context) const {
3829  QualType Type(this, 0);
3830  while (const auto *AT = Type->getAs<AttributedType>()) {
3831    // Check whether this is an attributed type with nullability
3832    // information.
3833    if (auto Nullability = AT->getImmediateNullability())
3834      return Nullability;
3835
3836    Type = AT->getEquivalentType();
3837  }
3838  return None;
3839}
3840
3841bool Type::canHaveNullability(bool ResultIfUnknown) const {
3842  QualType type = getCanonicalTypeInternal();
3843
3844  switch (type->getTypeClass()) {
3845  // We'll only see canonical types here.
3846#define NON_CANONICAL_TYPE(Class, Parent)       \
3847  case Type::Class:                             \
3848    llvm_unreachable("non-canonical type");
3849#define TYPE(Class, Parent)
3850#include "clang/AST/TypeNodes.inc"
3851
3852  // Pointer types.
3853  case Type::Pointer:
3854  case Type::BlockPointer:
3855  case Type::MemberPointer:
3856  case Type::ObjCObjectPointer:
3857    return true;
3858
3859  // Dependent types that could instantiate to pointer types.
3860  case Type::UnresolvedUsing:
3861  case Type::TypeOfExpr:
3862  case Type::TypeOf:
3863  case Type::Decltype:
3864  case Type::UnaryTransform:
3865  case Type::TemplateTypeParm:
3866  case Type::SubstTemplateTypeParmPack:
3867  case Type::DependentName:
3868  case Type::DependentTemplateSpecialization:
3869  case Type::Auto:
3870    return ResultIfUnknown;
3871
3872  // Dependent template specializations can instantiate to pointer
3873  // types unless they're known to be specializations of a class
3874  // template.
3875  case Type::TemplateSpecialization:
3876    if (TemplateDecl *templateDecl
3877          = cast<TemplateSpecializationType>(type.getTypePtr())
3878              ->getTemplateName().getAsTemplateDecl()) {
3879      if (isa<ClassTemplateDecl>(templateDecl))
3880        return false;
3881    }
3882    return ResultIfUnknown;
3883
3884  case Type::Builtin:
3885    switch (cast<BuiltinType>(type.getTypePtr())->getKind()) {
3886      // Signed, unsigned, and floating-point types cannot have nullability.
3887#define SIGNED_TYPE(Id, SingletonId) case BuiltinType::Id:
3888#define UNSIGNED_TYPE(Id, SingletonId) case BuiltinType::Id:
3889#define FLOATING_TYPE(Id, SingletonId) case BuiltinType::Id:
3890#define BUILTIN_TYPE(Id, SingletonId)
3891#include "clang/AST/BuiltinTypes.def"
3892      return false;
3893
3894    // Dependent types that could instantiate to a pointer type.
3895    case BuiltinType::Dependent:
3896    case BuiltinType::Overload:
3897    case BuiltinType::BoundMember:
3898    case BuiltinType::PseudoObject:
3899    case BuiltinType::UnknownAny:
3900    case BuiltinType::ARCUnbridgedCast:
3901      return ResultIfUnknown;
3902
3903    case BuiltinType::Void:
3904    case BuiltinType::ObjCId:
3905    case BuiltinType::ObjCClass:
3906    case BuiltinType::ObjCSel:
3907#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
3908    case BuiltinType::Id:
3909#include "clang/Basic/OpenCLImageTypes.def"
3910#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
3911    case BuiltinType::Id:
3912#include "clang/Basic/OpenCLExtensionTypes.def"
3913    case BuiltinType::OCLSampler:
3914    case BuiltinType::OCLEvent:
3915    case BuiltinType::OCLClkEvent:
3916    case BuiltinType::OCLQueue:
3917    case BuiltinType::OCLReserveID:
3918#define SVE_TYPE(Name, Id, SingletonId) \
3919    case BuiltinType::Id:
3920#include "clang/Basic/AArch64SVEACLETypes.def"
3921    case BuiltinType::BuiltinFn:
3922    case BuiltinType::NullPtr:
3923    case BuiltinType::OMPArraySection:
3924      return false;
3925    }
3926    llvm_unreachable("unknown builtin type");
3927
3928  // Non-pointer types.
3929  case Type::Complex:
3930  case Type::LValueReference:
3931  case Type::RValueReference:
3932  case Type::ConstantArray:
3933  case Type::IncompleteArray:
3934  case Type::VariableArray:
3935  case Type::DependentSizedArray:
3936  case Type::DependentVector:
3937  case Type::DependentSizedExtVector:
3938  case Type::Vector:
3939  case Type::ExtVector:
3940  case Type::DependentAddressSpace:
3941  case Type::FunctionProto:
3942  case Type::FunctionNoProto:
3943  case Type::Record:
3944  case Type::DeducedTemplateSpecialization:
3945  case Type::Enum:
3946  case Type::InjectedClassName:
3947  case Type::PackExpansion:
3948  case Type::ObjCObject:
3949  case Type::ObjCInterface:
3950  case Type::Atomic:
3951  case Type::Pipe:
3952    return false;
3953  }
3954  llvm_unreachable("bad type kind!");
3955}
3956
3957llvm::Optional<NullabilityKind>
3958AttributedType::getImmediateNullability() const {
3959  if (getAttrKind() == attr::TypeNonNull)
3960    return NullabilityKind::NonNull;
3961  if (getAttrKind() == attr::TypeNullable)
3962    return NullabilityKind::Nullable;
3963  if (getAttrKind() == attr::TypeNullUnspecified)
3964    return NullabilityKind::Unspecified;
3965  return None;
3966}
3967
3968Optional<NullabilityKind> AttributedType::stripOuterNullability(QualType &T) {
3969  QualType AttrTy = T;
3970  if (auto MacroTy = dyn_cast<MacroQualifiedType>(T))
3971    AttrTy = MacroTy->getUnderlyingType();
3972
3973  if (auto attributed = dyn_cast<AttributedType>(AttrTy)) {
3974    if (auto nullability = attributed->getImmediateNullability()) {
3975      T = attributed->getModifiedType();
3976      return nullability;
3977    }
3978  }
3979
3980  return None;
3981}
3982
3983bool Type::isBlockCompatibleObjCPointerType(ASTContext &ctx) const {
3984  const auto *objcPtr = getAs<ObjCObjectPointerType>();
3985  if (!objcPtr)
3986    return false;
3987
3988  if (objcPtr->isObjCIdType()) {
3989    // id is always okay.
3990    return true;
3991  }
3992
3993  // Blocks are NSObjects.
3994  if (ObjCInterfaceDecl *iface = objcPtr->getInterfaceDecl()) {
3995    if (iface->getIdentifier() != ctx.getNSObjectName())
3996      return false;
3997
3998    // Continue to check qualifiers, below.
3999  } else if (objcPtr->isObjCQualifiedIdType()) {
4000    // Continue to check qualifiers, below.
4001  } else {
4002    return false;
4003  }
4004
4005  // Check protocol qualifiers.
4006  for (ObjCProtocolDecl *proto : objcPtr->quals()) {
4007    // Blocks conform to NSObject and NSCopying.
4008    if (proto->getIdentifier() != ctx.getNSObjectName() &&
4009        proto->getIdentifier() != ctx.getNSCopyingName())
4010      return false;
4011  }
4012
4013  return true;
4014}
4015
4016Qualifiers::ObjCLifetime Type::getObjCARCImplicitLifetime() const {
4017  if (isObjCARCImplicitlyUnretainedType())
4018    return Qualifiers::OCL_ExplicitNone;
4019  return Qualifiers::OCL_Strong;
4020}
4021
4022bool Type::isObjCARCImplicitlyUnretainedType() const {
4023  assert(isObjCLifetimeType() &&
4024         "cannot query implicit lifetime for non-inferrable type");
4025
4026  const Type *canon = getCanonicalTypeInternal().getTypePtr();
4027
4028  // Walk down to the base type.  We don't care about qualifiers for this.
4029  while (const auto *array = dyn_cast<ArrayType>(canon))
4030    canon = array->getElementType().getTypePtr();
4031
4032  if (const auto *opt = dyn_cast<ObjCObjectPointerType>(canon)) {
4033    // Class and Class<Protocol> don't require retention.
4034    if (opt->getObjectType()->isObjCClass())
4035      return true;
4036  }
4037
4038  return false;
4039}
4040
4041bool Type::isObjCNSObjectType() const {
4042  const Type *cur = this;
4043  while (true) {
4044    if (const auto *typedefType = dyn_cast<TypedefType>(cur))
4045      return typedefType->getDecl()->hasAttr<ObjCNSObjectAttr>();
4046
4047    // Single-step desugar until we run out of sugar.
4048    QualType next = cur->getLocallyUnqualifiedSingleStepDesugaredType();
4049    if (next.getTypePtr() == cur) return false;
4050    cur = next.getTypePtr();
4051  }
4052}
4053
4054bool Type::isObjCIndependentClassType() const {
4055  if (const auto *typedefType = dyn_cast<TypedefType>(this))
4056    return typedefType->getDecl()->hasAttr<ObjCIndependentClassAttr>();
4057  return false;
4058}
4059
4060bool Type::isObjCRetainableType() const {
4061  return isObjCObjectPointerType() ||
4062         isBlockPointerType() ||
4063         isObjCNSObjectType();
4064}
4065
4066bool Type::isObjCIndirectLifetimeType() const {
4067  if (isObjCLifetimeType())
4068    return true;
4069  if (const auto *OPT = getAs<PointerType>())
4070    return OPT->getPointeeType()->isObjCIndirectLifetimeType();
4071  if (const auto *Ref = getAs<ReferenceType>())
4072    return Ref->getPointeeType()->isObjCIndirectLifetimeType();
4073  if (const auto *MemPtr = getAs<MemberPointerType>())
4074    return MemPtr->getPointeeType()->isObjCIndirectLifetimeType();
4075  return false;
4076}
4077
4078/// Returns true if objects of this type have lifetime semantics under
4079/// ARC.
4080bool Type::isObjCLifetimeType() const {
4081  const Type *type = this;
4082  while (const ArrayType *array = type->getAsArrayTypeUnsafe())
4083    type = array->getElementType().getTypePtr();
4084  return type->isObjCRetainableType();
4085}
4086
4087/// Determine whether the given type T is a "bridgable" Objective-C type,
4088/// which is either an Objective-C object pointer type or an
4089bool Type::isObjCARCBridgableType() const {
4090  return isObjCObjectPointerType() || isBlockPointerType();
4091}
4092
4093/// Determine whether the given type T is a "bridgeable" C type.
4094bool Type::isCARCBridgableType() const {
4095  const auto *Pointer = getAs<PointerType>();
4096  if (!Pointer)
4097    return false;
4098
4099  QualType Pointee = Pointer->getPointeeType();
4100  return Pointee->isVoidType() || Pointee->isRecordType();
4101}
4102
4103bool Type::hasSizedVLAType() const {
4104  if (!isVariablyModifiedType()) return false;
4105
4106  if (const auto *ptr = getAs<PointerType>())
4107    return ptr->getPointeeType()->hasSizedVLAType();
4108  if (const auto *ref = getAs<ReferenceType>())
4109    return ref->getPointeeType()->hasSizedVLAType();
4110  if (const ArrayType *arr = getAsArrayTypeUnsafe()) {
4111    if (isa<VariableArrayType>(arr) &&
4112        cast<VariableArrayType>(arr)->getSizeExpr())
4113      return true;
4114
4115    return arr->getElementType()->hasSizedVLAType();
4116  }
4117
4118  return false;
4119}
4120
4121QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) {
4122  switch (type.getObjCLifetime()) {
4123  case Qualifiers::OCL_None:
4124  case Qualifiers::OCL_ExplicitNone:
4125  case Qualifiers::OCL_Autoreleasing:
4126    break;
4127
4128  case Qualifiers::OCL_Strong:
4129    return DK_objc_strong_lifetime;
4130  case Qualifiers::OCL_Weak:
4131    return DK_objc_weak_lifetime;
4132  }
4133
4134  if (const auto *RT =
4135          type->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
4136    const RecordDecl *RD = RT->getDecl();
4137    if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4138      /// Check if this is a C++ object with a non-trivial destructor.
4139      if (CXXRD->hasDefinition() && !CXXRD->hasTrivialDestructor())
4140        return DK_cxx_destructor;
4141    } else {
4142      /// Check if this is a C struct that is non-trivial to destroy or an array
4143      /// that contains such a struct.
4144      if (RD->isNonTrivialToPrimitiveDestroy())
4145        return DK_nontrivial_c_struct;
4146    }
4147  }
4148
4149  return DK_none;
4150}
4151
4152CXXRecordDecl *MemberPointerType::getMostRecentCXXRecordDecl() const {
4153  return getClass()->getAsCXXRecordDecl()->getMostRecentNonInjectedDecl();
4154}
4155
4156void clang::FixedPointValueToString(SmallVectorImpl<char> &Str,
4157                                    llvm::APSInt Val, unsigned Scale) {
4158  FixedPointSemantics FXSema(Val.getBitWidth(), Scale, Val.isSigned(),
4159                             /*IsSaturated=*/false,
4160                             /*HasUnsignedPadding=*/false);
4161  APFixedPoint(Val, FXSema).toString(Str);
4162}
4163
4164AutoType::AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword,
4165                   bool IsDeducedAsDependent, bool IsDeducedAsPack,
4166                   ConceptDecl *TypeConstraintConcept,
4167                   ArrayRef<TemplateArgument> TypeConstraintArgs)
4168    : DeducedType(Auto, DeducedAsType, IsDeducedAsDependent,
4169                  IsDeducedAsDependent, IsDeducedAsPack) {
4170  AutoTypeBits.Keyword = (unsigned)Keyword;
4171  AutoTypeBits.NumArgs = TypeConstraintArgs.size();
4172  this->TypeConstraintConcept = TypeConstraintConcept;
4173  if (TypeConstraintConcept) {
4174    TemplateArgument *ArgBuffer = getArgBuffer();
4175    for (const TemplateArgument &Arg : TypeConstraintArgs) {
4176      if (Arg.containsUnexpandedParameterPack())
4177        setContainsUnexpandedParameterPack();
4178
4179      new (ArgBuffer++) TemplateArgument(Arg);
4180    }
4181  }
4182}
4183
4184void AutoType::Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4185                      QualType Deduced, AutoTypeKeyword Keyword,
4186                      bool IsDependent, ConceptDecl *CD,
4187                      ArrayRef<TemplateArgument> Arguments) {
4188  ID.AddPointer(Deduced.getAsOpaquePtr());
4189  ID.AddInteger((unsigned)Keyword);
4190  ID.AddBoolean(IsDependent);
4191  ID.AddPointer(CD);
4192  for (const TemplateArgument &Arg : Arguments)
4193    Arg.Profile(ID, Context);
4194}
4195