DeclCXX.cpp revision 344779
1//===- DeclCXX.cpp - C++ Declaration AST Node Implementation --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the C++ related Decl classes.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/DeclCXX.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTLambda.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/ASTUnresolvedSet.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclBase.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/DeclarationName.h"
23#include "clang/AST/Expr.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/LambdaCapture.h"
26#include "clang/AST/NestedNameSpecifier.h"
27#include "clang/AST/ODRHash.h"
28#include "clang/AST/Type.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/AST/UnresolvedSet.h"
31#include "clang/Basic/Diagnostic.h"
32#include "clang/Basic/IdentifierTable.h"
33#include "clang/Basic/LLVM.h"
34#include "clang/Basic/LangOptions.h"
35#include "clang/Basic/OperatorKinds.h"
36#include "clang/Basic/PartialDiagnostic.h"
37#include "clang/Basic/SourceLocation.h"
38#include "clang/Basic/Specifiers.h"
39#include "llvm/ADT/None.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/SmallVector.h"
42#include "llvm/ADT/iterator_range.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/raw_ostream.h"
46#include <algorithm>
47#include <cassert>
48#include <cstddef>
49#include <cstdint>
50
51using namespace clang;
52
53//===----------------------------------------------------------------------===//
54// Decl Allocation/Deallocation Method Implementations
55//===----------------------------------------------------------------------===//
56
57void AccessSpecDecl::anchor() {}
58
59AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
60  return new (C, ID) AccessSpecDecl(EmptyShell());
61}
62
63void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const {
64  ExternalASTSource *Source = C.getExternalSource();
65  assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set");
66  assert(Source && "getFromExternalSource with no external source");
67
68  for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I)
69    I.setDecl(cast<NamedDecl>(Source->GetExternalDecl(
70        reinterpret_cast<uintptr_t>(I.getDecl()) >> 2)));
71  Impl.Decls.setLazy(false);
72}
73
74CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
75    : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0),
76      Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
77      Abstract(false), IsStandardLayout(true), IsCXX11StandardLayout(true),
78      HasBasesWithFields(false), HasBasesWithNonStaticDataMembers(false),
79      HasPrivateFields(false), HasProtectedFields(false),
80      HasPublicFields(false), HasMutableFields(false), HasVariantMembers(false),
81      HasOnlyCMembers(true), HasInClassInitializer(false),
82      HasUninitializedReferenceMember(false), HasUninitializedFields(false),
83      HasInheritedConstructor(false), HasInheritedAssignment(false),
84      NeedOverloadResolutionForCopyConstructor(false),
85      NeedOverloadResolutionForMoveConstructor(false),
86      NeedOverloadResolutionForMoveAssignment(false),
87      NeedOverloadResolutionForDestructor(false),
88      DefaultedCopyConstructorIsDeleted(false),
89      DefaultedMoveConstructorIsDeleted(false),
90      DefaultedMoveAssignmentIsDeleted(false),
91      DefaultedDestructorIsDeleted(false), HasTrivialSpecialMembers(SMF_All),
92      HasTrivialSpecialMembersForCall(SMF_All),
93      DeclaredNonTrivialSpecialMembers(0),
94      DeclaredNonTrivialSpecialMembersForCall(0), HasIrrelevantDestructor(true),
95      HasConstexprNonCopyMoveConstructor(false),
96      HasDefaultedDefaultConstructor(false),
97      DefaultedDefaultConstructorIsConstexpr(true),
98      HasConstexprDefaultConstructor(false),
99      HasNonLiteralTypeFieldsOrBases(false), ComputedVisibleConversions(false),
100      UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0),
101      ImplicitCopyConstructorCanHaveConstParamForVBase(true),
102      ImplicitCopyConstructorCanHaveConstParamForNonVBase(true),
103      ImplicitCopyAssignmentHasConstParam(true),
104      HasDeclaredCopyConstructorWithConstParam(false),
105      HasDeclaredCopyAssignmentWithConstParam(false), IsLambda(false),
106      IsParsingBaseSpecifiers(false), HasODRHash(false), Definition(D) {}
107
108CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const {
109  return Bases.get(Definition->getASTContext().getExternalSource());
110}
111
112CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const {
113  return VBases.get(Definition->getASTContext().getExternalSource());
114}
115
116CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C,
117                             DeclContext *DC, SourceLocation StartLoc,
118                             SourceLocation IdLoc, IdentifierInfo *Id,
119                             CXXRecordDecl *PrevDecl)
120    : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl),
121      DefinitionData(PrevDecl ? PrevDecl->DefinitionData
122                              : nullptr) {}
123
124CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
125                                     DeclContext *DC, SourceLocation StartLoc,
126                                     SourceLocation IdLoc, IdentifierInfo *Id,
127                                     CXXRecordDecl *PrevDecl,
128                                     bool DelayTypeCreation) {
129  auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc, IdLoc, Id,
130                                      PrevDecl);
131  R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
132
133  // FIXME: DelayTypeCreation seems like such a hack
134  if (!DelayTypeCreation)
135    C.getTypeDeclType(R, PrevDecl);
136  return R;
137}
138
139CXXRecordDecl *
140CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC,
141                            TypeSourceInfo *Info, SourceLocation Loc,
142                            bool Dependent, bool IsGeneric,
143                            LambdaCaptureDefault CaptureDefault) {
144  auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TTK_Class, C, DC, Loc, Loc,
145                                      nullptr, nullptr);
146  R->setBeingDefined(true);
147  R->DefinitionData =
148      new (C) struct LambdaDefinitionData(R, Info, Dependent, IsGeneric,
149                                          CaptureDefault);
150  R->setMayHaveOutOfDateDef(false);
151  R->setImplicit(true);
152  C.getTypeDeclType(R, /*PrevDecl=*/nullptr);
153  return R;
154}
155
156CXXRecordDecl *
157CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
158  auto *R = new (C, ID) CXXRecordDecl(
159      CXXRecord, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(),
160      nullptr, nullptr);
161  R->setMayHaveOutOfDateDef(false);
162  return R;
163}
164
165/// Determine whether a class has a repeated base class. This is intended for
166/// use when determining if a class is standard-layout, so makes no attempt to
167/// handle virtual bases.
168static bool hasRepeatedBaseClass(const CXXRecordDecl *StartRD) {
169  llvm::SmallPtrSet<const CXXRecordDecl*, 8> SeenBaseTypes;
170  SmallVector<const CXXRecordDecl*, 8> WorkList = {StartRD};
171  while (!WorkList.empty()) {
172    const CXXRecordDecl *RD = WorkList.pop_back_val();
173    for (const CXXBaseSpecifier &BaseSpec : RD->bases()) {
174      if (const CXXRecordDecl *B = BaseSpec.getType()->getAsCXXRecordDecl()) {
175        if (!SeenBaseTypes.insert(B).second)
176          return true;
177        WorkList.push_back(B);
178      }
179    }
180  }
181  return false;
182}
183
184void
185CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
186                        unsigned NumBases) {
187  ASTContext &C = getASTContext();
188
189  if (!data().Bases.isOffset() && data().NumBases > 0)
190    C.Deallocate(data().getBases());
191
192  if (NumBases) {
193    if (!C.getLangOpts().CPlusPlus17) {
194      // C++ [dcl.init.aggr]p1:
195      //   An aggregate is [...] a class with [...] no base classes [...].
196      data().Aggregate = false;
197    }
198
199    // C++ [class]p4:
200    //   A POD-struct is an aggregate class...
201    data().PlainOldData = false;
202  }
203
204  // The set of seen virtual base types.
205  llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
206
207  // The virtual bases of this class.
208  SmallVector<const CXXBaseSpecifier *, 8> VBases;
209
210  data().Bases = new(C) CXXBaseSpecifier [NumBases];
211  data().NumBases = NumBases;
212  for (unsigned i = 0; i < NumBases; ++i) {
213    data().getBases()[i] = *Bases[i];
214    // Keep track of inherited vbases for this base class.
215    const CXXBaseSpecifier *Base = Bases[i];
216    QualType BaseType = Base->getType();
217    // Skip dependent types; we can't do any checking on them now.
218    if (BaseType->isDependentType())
219      continue;
220    auto *BaseClassDecl =
221        cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
222
223    // C++2a [class]p7:
224    //   A standard-layout class is a class that:
225    //    [...]
226    //    -- has all non-static data members and bit-fields in the class and
227    //       its base classes first declared in the same class
228    if (BaseClassDecl->data().HasBasesWithFields ||
229        !BaseClassDecl->field_empty()) {
230      if (data().HasBasesWithFields)
231        // Two bases have members or bit-fields: not standard-layout.
232        data().IsStandardLayout = false;
233      data().HasBasesWithFields = true;
234    }
235
236    // C++11 [class]p7:
237    //   A standard-layout class is a class that:
238    //     -- [...] has [...] at most one base class with non-static data
239    //        members
240    if (BaseClassDecl->data().HasBasesWithNonStaticDataMembers ||
241        BaseClassDecl->hasDirectFields()) {
242      if (data().HasBasesWithNonStaticDataMembers)
243        data().IsCXX11StandardLayout = false;
244      data().HasBasesWithNonStaticDataMembers = true;
245    }
246
247    if (!BaseClassDecl->isEmpty()) {
248      // C++14 [meta.unary.prop]p4:
249      //   T is a class type [...] with [...] no base class B for which
250      //   is_empty<B>::value is false.
251      data().Empty = false;
252    }
253
254    // C++1z [dcl.init.agg]p1:
255    //   An aggregate is a class with [...] no private or protected base classes
256    if (Base->getAccessSpecifier() != AS_public)
257      data().Aggregate = false;
258
259    // C++ [class.virtual]p1:
260    //   A class that declares or inherits a virtual function is called a
261    //   polymorphic class.
262    if (BaseClassDecl->isPolymorphic()) {
263      data().Polymorphic = true;
264
265      //   An aggregate is a class with [...] no virtual functions.
266      data().Aggregate = false;
267    }
268
269    // C++0x [class]p7:
270    //   A standard-layout class is a class that: [...]
271    //    -- has no non-standard-layout base classes
272    if (!BaseClassDecl->isStandardLayout())
273      data().IsStandardLayout = false;
274    if (!BaseClassDecl->isCXX11StandardLayout())
275      data().IsCXX11StandardLayout = false;
276
277    // Record if this base is the first non-literal field or base.
278    if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C))
279      data().HasNonLiteralTypeFieldsOrBases = true;
280
281    // Now go through all virtual bases of this base and add them.
282    for (const auto &VBase : BaseClassDecl->vbases()) {
283      // Add this base if it's not already in the list.
284      if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType())).second) {
285        VBases.push_back(&VBase);
286
287        // C++11 [class.copy]p8:
288        //   The implicitly-declared copy constructor for a class X will have
289        //   the form 'X::X(const X&)' if each [...] virtual base class B of X
290        //   has a copy constructor whose first parameter is of type
291        //   'const B&' or 'const volatile B&' [...]
292        if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl())
293          if (!VBaseDecl->hasCopyConstructorWithConstParam())
294            data().ImplicitCopyConstructorCanHaveConstParamForVBase = false;
295
296        // C++1z [dcl.init.agg]p1:
297        //   An aggregate is a class with [...] no virtual base classes
298        data().Aggregate = false;
299      }
300    }
301
302    if (Base->isVirtual()) {
303      // Add this base if it's not already in the list.
304      if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)).second)
305        VBases.push_back(Base);
306
307      // C++14 [meta.unary.prop] is_empty:
308      //   T is a class type, but not a union type, with ... no virtual base
309      //   classes
310      data().Empty = false;
311
312      // C++1z [dcl.init.agg]p1:
313      //   An aggregate is a class with [...] no virtual base classes
314      data().Aggregate = false;
315
316      // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
317      //   A [default constructor, copy/move constructor, or copy/move assignment
318      //   operator for a class X] is trivial [...] if:
319      //    -- class X has [...] no virtual base classes
320      data().HasTrivialSpecialMembers &= SMF_Destructor;
321      data().HasTrivialSpecialMembersForCall &= SMF_Destructor;
322
323      // C++0x [class]p7:
324      //   A standard-layout class is a class that: [...]
325      //    -- has [...] no virtual base classes
326      data().IsStandardLayout = false;
327      data().IsCXX11StandardLayout = false;
328
329      // C++11 [dcl.constexpr]p4:
330      //   In the definition of a constexpr constructor [...]
331      //    -- the class shall not have any virtual base classes
332      data().DefaultedDefaultConstructorIsConstexpr = false;
333
334      // C++1z [class.copy]p8:
335      //   The implicitly-declared copy constructor for a class X will have
336      //   the form 'X::X(const X&)' if each potentially constructed subobject
337      //   has a copy constructor whose first parameter is of type
338      //   'const B&' or 'const volatile B&' [...]
339      if (!BaseClassDecl->hasCopyConstructorWithConstParam())
340        data().ImplicitCopyConstructorCanHaveConstParamForVBase = false;
341    } else {
342      // C++ [class.ctor]p5:
343      //   A default constructor is trivial [...] if:
344      //    -- all the direct base classes of its class have trivial default
345      //       constructors.
346      if (!BaseClassDecl->hasTrivialDefaultConstructor())
347        data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
348
349      // C++0x [class.copy]p13:
350      //   A copy/move constructor for class X is trivial if [...]
351      //    [...]
352      //    -- the constructor selected to copy/move each direct base class
353      //       subobject is trivial, and
354      if (!BaseClassDecl->hasTrivialCopyConstructor())
355        data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
356
357      if (!BaseClassDecl->hasTrivialCopyConstructorForCall())
358        data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor;
359
360      // If the base class doesn't have a simple move constructor, we'll eagerly
361      // declare it and perform overload resolution to determine which function
362      // it actually calls. If it does have a simple move constructor, this
363      // check is correct.
364      if (!BaseClassDecl->hasTrivialMoveConstructor())
365        data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
366
367      if (!BaseClassDecl->hasTrivialMoveConstructorForCall())
368        data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor;
369
370      // C++0x [class.copy]p27:
371      //   A copy/move assignment operator for class X is trivial if [...]
372      //    [...]
373      //    -- the assignment operator selected to copy/move each direct base
374      //       class subobject is trivial, and
375      if (!BaseClassDecl->hasTrivialCopyAssignment())
376        data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
377      // If the base class doesn't have a simple move assignment, we'll eagerly
378      // declare it and perform overload resolution to determine which function
379      // it actually calls. If it does have a simple move assignment, this
380      // check is correct.
381      if (!BaseClassDecl->hasTrivialMoveAssignment())
382        data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
383
384      // C++11 [class.ctor]p6:
385      //   If that user-written default constructor would satisfy the
386      //   requirements of a constexpr constructor, the implicitly-defined
387      //   default constructor is constexpr.
388      if (!BaseClassDecl->hasConstexprDefaultConstructor())
389        data().DefaultedDefaultConstructorIsConstexpr = false;
390
391      // C++1z [class.copy]p8:
392      //   The implicitly-declared copy constructor for a class X will have
393      //   the form 'X::X(const X&)' if each potentially constructed subobject
394      //   has a copy constructor whose first parameter is of type
395      //   'const B&' or 'const volatile B&' [...]
396      if (!BaseClassDecl->hasCopyConstructorWithConstParam())
397        data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false;
398    }
399
400    // C++ [class.ctor]p3:
401    //   A destructor is trivial if all the direct base classes of its class
402    //   have trivial destructors.
403    if (!BaseClassDecl->hasTrivialDestructor())
404      data().HasTrivialSpecialMembers &= ~SMF_Destructor;
405
406    if (!BaseClassDecl->hasTrivialDestructorForCall())
407      data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
408
409    if (!BaseClassDecl->hasIrrelevantDestructor())
410      data().HasIrrelevantDestructor = false;
411
412    // C++11 [class.copy]p18:
413    //   The implicitly-declared copy assignment oeprator for a class X will
414    //   have the form 'X& X::operator=(const X&)' if each direct base class B
415    //   of X has a copy assignment operator whose parameter is of type 'const
416    //   B&', 'const volatile B&', or 'B' [...]
417    if (!BaseClassDecl->hasCopyAssignmentWithConstParam())
418      data().ImplicitCopyAssignmentHasConstParam = false;
419
420    // A class has an Objective-C object member if... or any of its bases
421    // has an Objective-C object member.
422    if (BaseClassDecl->hasObjectMember())
423      setHasObjectMember(true);
424
425    if (BaseClassDecl->hasVolatileMember())
426      setHasVolatileMember(true);
427
428    if (BaseClassDecl->getArgPassingRestrictions() ==
429        RecordDecl::APK_CanNeverPassInRegs)
430      setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
431
432    // Keep track of the presence of mutable fields.
433    if (BaseClassDecl->hasMutableFields()) {
434      data().HasMutableFields = true;
435      data().NeedOverloadResolutionForCopyConstructor = true;
436    }
437
438    if (BaseClassDecl->hasUninitializedReferenceMember())
439      data().HasUninitializedReferenceMember = true;
440
441    if (!BaseClassDecl->allowConstDefaultInit())
442      data().HasUninitializedFields = true;
443
444    addedClassSubobject(BaseClassDecl);
445  }
446
447  // C++2a [class]p7:
448  //   A class S is a standard-layout class if it:
449  //     -- has at most one base class subobject of any given type
450  //
451  // Note that we only need to check this for classes with more than one base
452  // class. If there's only one base class, and it's standard layout, then
453  // we know there are no repeated base classes.
454  if (data().IsStandardLayout && NumBases > 1 && hasRepeatedBaseClass(this))
455    data().IsStandardLayout = false;
456
457  if (VBases.empty()) {
458    data().IsParsingBaseSpecifiers = false;
459    return;
460  }
461
462  // Create base specifier for any direct or indirect virtual bases.
463  data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
464  data().NumVBases = VBases.size();
465  for (int I = 0, E = VBases.size(); I != E; ++I) {
466    QualType Type = VBases[I]->getType();
467    if (!Type->isDependentType())
468      addedClassSubobject(Type->getAsCXXRecordDecl());
469    data().getVBases()[I] = *VBases[I];
470  }
471
472  data().IsParsingBaseSpecifiers = false;
473}
474
475unsigned CXXRecordDecl::getODRHash() const {
476  assert(hasDefinition() && "ODRHash only for records with definitions");
477
478  // Previously calculated hash is stored in DefinitionData.
479  if (DefinitionData->HasODRHash)
480    return DefinitionData->ODRHash;
481
482  // Only calculate hash on first call of getODRHash per record.
483  ODRHash Hash;
484  Hash.AddCXXRecordDecl(getDefinition());
485  DefinitionData->HasODRHash = true;
486  DefinitionData->ODRHash = Hash.CalculateHash();
487
488  return DefinitionData->ODRHash;
489}
490
491void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) {
492  // C++11 [class.copy]p11:
493  //   A defaulted copy/move constructor for a class X is defined as
494  //   deleted if X has:
495  //    -- a direct or virtual base class B that cannot be copied/moved [...]
496  //    -- a non-static data member of class type M (or array thereof)
497  //       that cannot be copied or moved [...]
498  if (!Subobj->hasSimpleCopyConstructor())
499    data().NeedOverloadResolutionForCopyConstructor = true;
500  if (!Subobj->hasSimpleMoveConstructor())
501    data().NeedOverloadResolutionForMoveConstructor = true;
502
503  // C++11 [class.copy]p23:
504  //   A defaulted copy/move assignment operator for a class X is defined as
505  //   deleted if X has:
506  //    -- a direct or virtual base class B that cannot be copied/moved [...]
507  //    -- a non-static data member of class type M (or array thereof)
508  //        that cannot be copied or moved [...]
509  if (!Subobj->hasSimpleMoveAssignment())
510    data().NeedOverloadResolutionForMoveAssignment = true;
511
512  // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
513  //   A defaulted [ctor or dtor] for a class X is defined as
514  //   deleted if X has:
515  //    -- any direct or virtual base class [...] has a type with a destructor
516  //       that is deleted or inaccessible from the defaulted [ctor or dtor].
517  //    -- any non-static data member has a type with a destructor
518  //       that is deleted or inaccessible from the defaulted [ctor or dtor].
519  if (!Subobj->hasSimpleDestructor()) {
520    data().NeedOverloadResolutionForCopyConstructor = true;
521    data().NeedOverloadResolutionForMoveConstructor = true;
522    data().NeedOverloadResolutionForDestructor = true;
523  }
524}
525
526bool CXXRecordDecl::hasAnyDependentBases() const {
527  if (!isDependentContext())
528    return false;
529
530  return !forallBases([](const CXXRecordDecl *) { return true; });
531}
532
533bool CXXRecordDecl::isTriviallyCopyable() const {
534  // C++0x [class]p5:
535  //   A trivially copyable class is a class that:
536  //   -- has no non-trivial copy constructors,
537  if (hasNonTrivialCopyConstructor()) return false;
538  //   -- has no non-trivial move constructors,
539  if (hasNonTrivialMoveConstructor()) return false;
540  //   -- has no non-trivial copy assignment operators,
541  if (hasNonTrivialCopyAssignment()) return false;
542  //   -- has no non-trivial move assignment operators, and
543  if (hasNonTrivialMoveAssignment()) return false;
544  //   -- has a trivial destructor.
545  if (!hasTrivialDestructor()) return false;
546
547  return true;
548}
549
550void CXXRecordDecl::markedVirtualFunctionPure() {
551  // C++ [class.abstract]p2:
552  //   A class is abstract if it has at least one pure virtual function.
553  data().Abstract = true;
554}
555
556bool CXXRecordDecl::hasSubobjectAtOffsetZeroOfEmptyBaseType(
557    ASTContext &Ctx, const CXXRecordDecl *XFirst) {
558  if (!getNumBases())
559    return false;
560
561  llvm::SmallPtrSet<const CXXRecordDecl*, 8> Bases;
562  llvm::SmallPtrSet<const CXXRecordDecl*, 8> M;
563  SmallVector<const CXXRecordDecl*, 8> WorkList;
564
565  // Visit a type that we have determined is an element of M(S).
566  auto Visit = [&](const CXXRecordDecl *RD) -> bool {
567    RD = RD->getCanonicalDecl();
568
569    // C++2a [class]p8:
570    //   A class S is a standard-layout class if it [...] has no element of the
571    //   set M(S) of types as a base class.
572    //
573    // If we find a subobject of an empty type, it might also be a base class,
574    // so we'll need to walk the base classes to check.
575    if (!RD->data().HasBasesWithFields) {
576      // Walk the bases the first time, stopping if we find the type. Build a
577      // set of them so we don't need to walk them again.
578      if (Bases.empty()) {
579        bool RDIsBase = !forallBases([&](const CXXRecordDecl *Base) -> bool {
580          Base = Base->getCanonicalDecl();
581          if (RD == Base)
582            return false;
583          Bases.insert(Base);
584          return true;
585        });
586        if (RDIsBase)
587          return true;
588      } else {
589        if (Bases.count(RD))
590          return true;
591      }
592    }
593
594    if (M.insert(RD).second)
595      WorkList.push_back(RD);
596    return false;
597  };
598
599  if (Visit(XFirst))
600    return true;
601
602  while (!WorkList.empty()) {
603    const CXXRecordDecl *X = WorkList.pop_back_val();
604
605    // FIXME: We don't check the bases of X. That matches the standard, but
606    // that sure looks like a wording bug.
607
608    //   -- If X is a non-union class type with a non-static data member
609    //      [recurse to] the first non-static data member of X
610    //   -- If X is a union type, [recurse to union members]
611    for (auto *FD : X->fields()) {
612      // FIXME: Should we really care about the type of the first non-static
613      // data member of a non-union if there are preceding unnamed bit-fields?
614      if (FD->isUnnamedBitfield())
615        continue;
616
617      //   -- If X is n array type, [visit the element type]
618      QualType T = Ctx.getBaseElementType(FD->getType());
619      if (auto *RD = T->getAsCXXRecordDecl())
620        if (Visit(RD))
621          return true;
622
623      if (!X->isUnion())
624        break;
625    }
626  }
627
628  return false;
629}
630
631bool CXXRecordDecl::lambdaIsDefaultConstructibleAndAssignable() const {
632  assert(isLambda() && "not a lambda");
633
634  // C++2a [expr.prim.lambda.capture]p11:
635  //   The closure type associated with a lambda-expression has no default
636  //   constructor if the lambda-expression has a lambda-capture and a
637  //   defaulted default constructor otherwise. It has a deleted copy
638  //   assignment operator if the lambda-expression has a lambda-capture and
639  //   defaulted copy and move assignment operators otherwise.
640  //
641  // C++17 [expr.prim.lambda]p21:
642  //   The closure type associated with a lambda-expression has no default
643  //   constructor and a deleted copy assignment operator.
644  if (getLambdaCaptureDefault() != LCD_None)
645    return false;
646  return getASTContext().getLangOpts().CPlusPlus2a;
647}
648
649void CXXRecordDecl::addedMember(Decl *D) {
650  if (!D->isImplicit() &&
651      !isa<FieldDecl>(D) &&
652      !isa<IndirectFieldDecl>(D) &&
653      (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class ||
654        cast<TagDecl>(D)->getTagKind() == TTK_Interface))
655    data().HasOnlyCMembers = false;
656
657  // Ignore friends and invalid declarations.
658  if (D->getFriendObjectKind() || D->isInvalidDecl())
659    return;
660
661  auto *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
662  if (FunTmpl)
663    D = FunTmpl->getTemplatedDecl();
664
665  // FIXME: Pass NamedDecl* to addedMember?
666  Decl *DUnderlying = D;
667  if (auto *ND = dyn_cast<NamedDecl>(DUnderlying)) {
668    DUnderlying = ND->getUnderlyingDecl();
669    if (auto *UnderlyingFunTmpl = dyn_cast<FunctionTemplateDecl>(DUnderlying))
670      DUnderlying = UnderlyingFunTmpl->getTemplatedDecl();
671  }
672
673  if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
674    if (Method->isVirtual()) {
675      // C++ [dcl.init.aggr]p1:
676      //   An aggregate is an array or a class with [...] no virtual functions.
677      data().Aggregate = false;
678
679      // C++ [class]p4:
680      //   A POD-struct is an aggregate class...
681      data().PlainOldData = false;
682
683      // C++14 [meta.unary.prop]p4:
684      //   T is a class type [...] with [...] no virtual member functions...
685      data().Empty = false;
686
687      // C++ [class.virtual]p1:
688      //   A class that declares or inherits a virtual function is called a
689      //   polymorphic class.
690      data().Polymorphic = true;
691
692      // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
693      //   A [default constructor, copy/move constructor, or copy/move
694      //   assignment operator for a class X] is trivial [...] if:
695      //    -- class X has no virtual functions [...]
696      data().HasTrivialSpecialMembers &= SMF_Destructor;
697      data().HasTrivialSpecialMembersForCall &= SMF_Destructor;
698
699      // C++0x [class]p7:
700      //   A standard-layout class is a class that: [...]
701      //    -- has no virtual functions
702      data().IsStandardLayout = false;
703      data().IsCXX11StandardLayout = false;
704    }
705  }
706
707  // Notify the listener if an implicit member was added after the definition
708  // was completed.
709  if (!isBeingDefined() && D->isImplicit())
710    if (ASTMutationListener *L = getASTMutationListener())
711      L->AddedCXXImplicitMember(data().Definition, D);
712
713  // The kind of special member this declaration is, if any.
714  unsigned SMKind = 0;
715
716  // Handle constructors.
717  if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
718    if (!Constructor->isImplicit()) {
719      // Note that we have a user-declared constructor.
720      data().UserDeclaredConstructor = true;
721
722      // C++ [class]p4:
723      //   A POD-struct is an aggregate class [...]
724      // Since the POD bit is meant to be C++03 POD-ness, clear it even if the
725      // type is technically an aggregate in C++0x since it wouldn't be in 03.
726      data().PlainOldData = false;
727    }
728
729    if (Constructor->isDefaultConstructor()) {
730      SMKind |= SMF_DefaultConstructor;
731
732      if (Constructor->isUserProvided())
733        data().UserProvidedDefaultConstructor = true;
734      if (Constructor->isConstexpr())
735        data().HasConstexprDefaultConstructor = true;
736      if (Constructor->isDefaulted())
737        data().HasDefaultedDefaultConstructor = true;
738    }
739
740    if (!FunTmpl) {
741      unsigned Quals;
742      if (Constructor->isCopyConstructor(Quals)) {
743        SMKind |= SMF_CopyConstructor;
744
745        if (Quals & Qualifiers::Const)
746          data().HasDeclaredCopyConstructorWithConstParam = true;
747      } else if (Constructor->isMoveConstructor())
748        SMKind |= SMF_MoveConstructor;
749    }
750
751    // C++11 [dcl.init.aggr]p1: DR1518
752    //   An aggregate is an array or a class with no user-provided [or]
753    //   explicit [...] constructors
754    // C++20 [dcl.init.aggr]p1:
755    //   An aggregate is an array or a class with no user-declared [...]
756    //   constructors
757    if (getASTContext().getLangOpts().CPlusPlus2a
758            ? !Constructor->isImplicit()
759            : (Constructor->isUserProvided() || Constructor->isExplicit()))
760      data().Aggregate = false;
761  }
762
763  // Handle constructors, including those inherited from base classes.
764  if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(DUnderlying)) {
765    // Record if we see any constexpr constructors which are neither copy
766    // nor move constructors.
767    // C++1z [basic.types]p10:
768    //   [...] has at least one constexpr constructor or constructor template
769    //   (possibly inherited from a base class) that is not a copy or move
770    //   constructor [...]
771    if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor())
772      data().HasConstexprNonCopyMoveConstructor = true;
773  }
774
775  // Handle destructors.
776  if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) {
777    SMKind |= SMF_Destructor;
778
779    if (DD->isUserProvided())
780      data().HasIrrelevantDestructor = false;
781    // If the destructor is explicitly defaulted and not trivial or not public
782    // or if the destructor is deleted, we clear HasIrrelevantDestructor in
783    // finishedDefaultedOrDeletedMember.
784
785    // C++11 [class.dtor]p5:
786    //   A destructor is trivial if [...] the destructor is not virtual.
787    if (DD->isVirtual()) {
788      data().HasTrivialSpecialMembers &= ~SMF_Destructor;
789      data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
790    }
791  }
792
793  // Handle member functions.
794  if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
795    if (Method->isCopyAssignmentOperator()) {
796      SMKind |= SMF_CopyAssignment;
797
798      const auto *ParamTy =
799          Method->getParamDecl(0)->getType()->getAs<ReferenceType>();
800      if (!ParamTy || ParamTy->getPointeeType().isConstQualified())
801        data().HasDeclaredCopyAssignmentWithConstParam = true;
802    }
803
804    if (Method->isMoveAssignmentOperator())
805      SMKind |= SMF_MoveAssignment;
806
807    // Keep the list of conversion functions up-to-date.
808    if (auto *Conversion = dyn_cast<CXXConversionDecl>(D)) {
809      // FIXME: We use the 'unsafe' accessor for the access specifier here,
810      // because Sema may not have set it yet. That's really just a misdesign
811      // in Sema. However, LLDB *will* have set the access specifier correctly,
812      // and adds declarations after the class is technically completed,
813      // so completeDefinition()'s overriding of the access specifiers doesn't
814      // work.
815      AccessSpecifier AS = Conversion->getAccessUnsafe();
816
817      if (Conversion->getPrimaryTemplate()) {
818        // We don't record specializations.
819      } else {
820        ASTContext &Ctx = getASTContext();
821        ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx);
822        NamedDecl *Primary =
823            FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion);
824        if (Primary->getPreviousDecl())
825          Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()),
826                              Primary, AS);
827        else
828          Conversions.addDecl(Ctx, Primary, AS);
829      }
830    }
831
832    if (SMKind) {
833      // If this is the first declaration of a special member, we no longer have
834      // an implicit trivial special member.
835      data().HasTrivialSpecialMembers &=
836          data().DeclaredSpecialMembers | ~SMKind;
837      data().HasTrivialSpecialMembersForCall &=
838          data().DeclaredSpecialMembers | ~SMKind;
839
840      if (!Method->isImplicit() && !Method->isUserProvided()) {
841        // This method is user-declared but not user-provided. We can't work out
842        // whether it's trivial yet (not until we get to the end of the class).
843        // We'll handle this method in finishedDefaultedOrDeletedMember.
844      } else if (Method->isTrivial()) {
845        data().HasTrivialSpecialMembers |= SMKind;
846        data().HasTrivialSpecialMembersForCall |= SMKind;
847      } else if (Method->isTrivialForCall()) {
848        data().HasTrivialSpecialMembersForCall |= SMKind;
849        data().DeclaredNonTrivialSpecialMembers |= SMKind;
850      } else {
851        data().DeclaredNonTrivialSpecialMembers |= SMKind;
852        // If this is a user-provided function, do not set
853        // DeclaredNonTrivialSpecialMembersForCall here since we don't know
854        // yet whether the method would be considered non-trivial for the
855        // purpose of calls (attribute "trivial_abi" can be dropped from the
856        // class later, which can change the special method's triviality).
857        if (!Method->isUserProvided())
858          data().DeclaredNonTrivialSpecialMembersForCall |= SMKind;
859      }
860
861      // Note when we have declared a declared special member, and suppress the
862      // implicit declaration of this special member.
863      data().DeclaredSpecialMembers |= SMKind;
864
865      if (!Method->isImplicit()) {
866        data().UserDeclaredSpecialMembers |= SMKind;
867
868        // C++03 [class]p4:
869        //   A POD-struct is an aggregate class that has [...] no user-defined
870        //   copy assignment operator and no user-defined destructor.
871        //
872        // Since the POD bit is meant to be C++03 POD-ness, and in C++03,
873        // aggregates could not have any constructors, clear it even for an
874        // explicitly defaulted or deleted constructor.
875        // type is technically an aggregate in C++0x since it wouldn't be in 03.
876        //
877        // Also, a user-declared move assignment operator makes a class non-POD.
878        // This is an extension in C++03.
879        data().PlainOldData = false;
880      }
881    }
882
883    return;
884  }
885
886  // Handle non-static data members.
887  if (const auto *Field = dyn_cast<FieldDecl>(D)) {
888    ASTContext &Context = getASTContext();
889
890    // C++2a [class]p7:
891    //   A standard-layout class is a class that:
892    //    [...]
893    //    -- has all non-static data members and bit-fields in the class and
894    //       its base classes first declared in the same class
895    if (data().HasBasesWithFields)
896      data().IsStandardLayout = false;
897
898    // C++ [class.bit]p2:
899    //   A declaration for a bit-field that omits the identifier declares an
900    //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
901    //   initialized.
902    if (Field->isUnnamedBitfield()) {
903      // C++ [meta.unary.prop]p4: [LWG2358]
904      //   T is a class type [...] with [...] no unnamed bit-fields of non-zero
905      //   length
906      if (data().Empty && !Field->isZeroLengthBitField(Context) &&
907          Context.getLangOpts().getClangABICompat() >
908              LangOptions::ClangABI::Ver6)
909        data().Empty = false;
910      return;
911    }
912
913    // C++11 [class]p7:
914    //   A standard-layout class is a class that:
915    //    -- either has no non-static data members in the most derived class
916    //       [...] or has no base classes with non-static data members
917    if (data().HasBasesWithNonStaticDataMembers)
918      data().IsCXX11StandardLayout = false;
919
920    // C++ [dcl.init.aggr]p1:
921    //   An aggregate is an array or a class (clause 9) with [...] no
922    //   private or protected non-static data members (clause 11).
923    //
924    // A POD must be an aggregate.
925    if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
926      data().Aggregate = false;
927      data().PlainOldData = false;
928    }
929
930    // Track whether this is the first field. We use this when checking
931    // whether the class is standard-layout below.
932    bool IsFirstField = !data().HasPrivateFields &&
933                        !data().HasProtectedFields && !data().HasPublicFields;
934
935    // C++0x [class]p7:
936    //   A standard-layout class is a class that:
937    //    [...]
938    //    -- has the same access control for all non-static data members,
939    switch (D->getAccess()) {
940    case AS_private:    data().HasPrivateFields = true;   break;
941    case AS_protected:  data().HasProtectedFields = true; break;
942    case AS_public:     data().HasPublicFields = true;    break;
943    case AS_none:       llvm_unreachable("Invalid access specifier");
944    };
945    if ((data().HasPrivateFields + data().HasProtectedFields +
946         data().HasPublicFields) > 1) {
947      data().IsStandardLayout = false;
948      data().IsCXX11StandardLayout = false;
949    }
950
951    // Keep track of the presence of mutable fields.
952    if (Field->isMutable()) {
953      data().HasMutableFields = true;
954      data().NeedOverloadResolutionForCopyConstructor = true;
955    }
956
957    // C++11 [class.union]p8, DR1460:
958    //   If X is a union, a non-static data member of X that is not an anonymous
959    //   union is a variant member of X.
960    if (isUnion() && !Field->isAnonymousStructOrUnion())
961      data().HasVariantMembers = true;
962
963    // C++0x [class]p9:
964    //   A POD struct is a class that is both a trivial class and a
965    //   standard-layout class, and has no non-static data members of type
966    //   non-POD struct, non-POD union (or array of such types).
967    //
968    // Automatic Reference Counting: the presence of a member of Objective-C pointer type
969    // that does not explicitly have no lifetime makes the class a non-POD.
970    QualType T = Context.getBaseElementType(Field->getType());
971    if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
972      if (T.hasNonTrivialObjCLifetime()) {
973        // Objective-C Automatic Reference Counting:
974        //   If a class has a non-static data member of Objective-C pointer
975        //   type (or array thereof), it is a non-POD type and its
976        //   default constructor (if any), copy constructor, move constructor,
977        //   copy assignment operator, move assignment operator, and destructor are
978        //   non-trivial.
979        setHasObjectMember(true);
980        struct DefinitionData &Data = data();
981        Data.PlainOldData = false;
982        Data.HasTrivialSpecialMembers = 0;
983
984        // __strong or __weak fields do not make special functions non-trivial
985        // for the purpose of calls.
986        Qualifiers::ObjCLifetime LT = T.getQualifiers().getObjCLifetime();
987        if (LT != Qualifiers::OCL_Strong && LT != Qualifiers::OCL_Weak)
988          data().HasTrivialSpecialMembersForCall = 0;
989
990        // Structs with __weak fields should never be passed directly.
991        if (LT == Qualifiers::OCL_Weak)
992          setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
993
994        Data.HasIrrelevantDestructor = false;
995      } else if (!Context.getLangOpts().ObjCAutoRefCount) {
996        setHasObjectMember(true);
997      }
998    } else if (!T.isCXX98PODType(Context))
999      data().PlainOldData = false;
1000
1001    if (T->isReferenceType()) {
1002      if (!Field->hasInClassInitializer())
1003        data().HasUninitializedReferenceMember = true;
1004
1005      // C++0x [class]p7:
1006      //   A standard-layout class is a class that:
1007      //    -- has no non-static data members of type [...] reference,
1008      data().IsStandardLayout = false;
1009      data().IsCXX11StandardLayout = false;
1010
1011      // C++1z [class.copy.ctor]p10:
1012      //   A defaulted copy constructor for a class X is defined as deleted if X has:
1013      //    -- a non-static data member of rvalue reference type
1014      if (T->isRValueReferenceType())
1015        data().DefaultedCopyConstructorIsDeleted = true;
1016    }
1017
1018    if (!Field->hasInClassInitializer() && !Field->isMutable()) {
1019      if (CXXRecordDecl *FieldType = T->getAsCXXRecordDecl()) {
1020        if (FieldType->hasDefinition() && !FieldType->allowConstDefaultInit())
1021          data().HasUninitializedFields = true;
1022      } else {
1023        data().HasUninitializedFields = true;
1024      }
1025    }
1026
1027    // Record if this field is the first non-literal or volatile field or base.
1028    if (!T->isLiteralType(Context) || T.isVolatileQualified())
1029      data().HasNonLiteralTypeFieldsOrBases = true;
1030
1031    if (Field->hasInClassInitializer() ||
1032        (Field->isAnonymousStructOrUnion() &&
1033         Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) {
1034      data().HasInClassInitializer = true;
1035
1036      // C++11 [class]p5:
1037      //   A default constructor is trivial if [...] no non-static data member
1038      //   of its class has a brace-or-equal-initializer.
1039      data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
1040
1041      // C++11 [dcl.init.aggr]p1:
1042      //   An aggregate is a [...] class with [...] no
1043      //   brace-or-equal-initializers for non-static data members.
1044      //
1045      // This rule was removed in C++14.
1046      if (!getASTContext().getLangOpts().CPlusPlus14)
1047        data().Aggregate = false;
1048
1049      // C++11 [class]p10:
1050      //   A POD struct is [...] a trivial class.
1051      data().PlainOldData = false;
1052    }
1053
1054    // C++11 [class.copy]p23:
1055    //   A defaulted copy/move assignment operator for a class X is defined
1056    //   as deleted if X has:
1057    //    -- a non-static data member of reference type
1058    if (T->isReferenceType())
1059      data().DefaultedMoveAssignmentIsDeleted = true;
1060
1061    if (const auto *RecordTy = T->getAs<RecordType>()) {
1062      auto *FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
1063      if (FieldRec->getDefinition()) {
1064        addedClassSubobject(FieldRec);
1065
1066        // We may need to perform overload resolution to determine whether a
1067        // field can be moved if it's const or volatile qualified.
1068        if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) {
1069          // We need to care about 'const' for the copy constructor because an
1070          // implicit copy constructor might be declared with a non-const
1071          // parameter.
1072          data().NeedOverloadResolutionForCopyConstructor = true;
1073          data().NeedOverloadResolutionForMoveConstructor = true;
1074          data().NeedOverloadResolutionForMoveAssignment = true;
1075        }
1076
1077        // C++11 [class.ctor]p5, C++11 [class.copy]p11:
1078        //   A defaulted [special member] for a class X is defined as
1079        //   deleted if:
1080        //    -- X is a union-like class that has a variant member with a
1081        //       non-trivial [corresponding special member]
1082        if (isUnion()) {
1083          if (FieldRec->hasNonTrivialCopyConstructor())
1084            data().DefaultedCopyConstructorIsDeleted = true;
1085          if (FieldRec->hasNonTrivialMoveConstructor())
1086            data().DefaultedMoveConstructorIsDeleted = true;
1087          if (FieldRec->hasNonTrivialMoveAssignment())
1088            data().DefaultedMoveAssignmentIsDeleted = true;
1089          if (FieldRec->hasNonTrivialDestructor())
1090            data().DefaultedDestructorIsDeleted = true;
1091        }
1092
1093        // For an anonymous union member, our overload resolution will perform
1094        // overload resolution for its members.
1095        if (Field->isAnonymousStructOrUnion()) {
1096          data().NeedOverloadResolutionForCopyConstructor |=
1097              FieldRec->data().NeedOverloadResolutionForCopyConstructor;
1098          data().NeedOverloadResolutionForMoveConstructor |=
1099              FieldRec->data().NeedOverloadResolutionForMoveConstructor;
1100          data().NeedOverloadResolutionForMoveAssignment |=
1101              FieldRec->data().NeedOverloadResolutionForMoveAssignment;
1102          data().NeedOverloadResolutionForDestructor |=
1103              FieldRec->data().NeedOverloadResolutionForDestructor;
1104        }
1105
1106        // C++0x [class.ctor]p5:
1107        //   A default constructor is trivial [...] if:
1108        //    -- for all the non-static data members of its class that are of
1109        //       class type (or array thereof), each such class has a trivial
1110        //       default constructor.
1111        if (!FieldRec->hasTrivialDefaultConstructor())
1112          data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
1113
1114        // C++0x [class.copy]p13:
1115        //   A copy/move constructor for class X is trivial if [...]
1116        //    [...]
1117        //    -- for each non-static data member of X that is of class type (or
1118        //       an array thereof), the constructor selected to copy/move that
1119        //       member is trivial;
1120        if (!FieldRec->hasTrivialCopyConstructor())
1121          data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
1122
1123        if (!FieldRec->hasTrivialCopyConstructorForCall())
1124          data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor;
1125
1126        // If the field doesn't have a simple move constructor, we'll eagerly
1127        // declare the move constructor for this class and we'll decide whether
1128        // it's trivial then.
1129        if (!FieldRec->hasTrivialMoveConstructor())
1130          data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
1131
1132        if (!FieldRec->hasTrivialMoveConstructorForCall())
1133          data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor;
1134
1135        // C++0x [class.copy]p27:
1136        //   A copy/move assignment operator for class X is trivial if [...]
1137        //    [...]
1138        //    -- for each non-static data member of X that is of class type (or
1139        //       an array thereof), the assignment operator selected to
1140        //       copy/move that member is trivial;
1141        if (!FieldRec->hasTrivialCopyAssignment())
1142          data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
1143        // If the field doesn't have a simple move assignment, we'll eagerly
1144        // declare the move assignment for this class and we'll decide whether
1145        // it's trivial then.
1146        if (!FieldRec->hasTrivialMoveAssignment())
1147          data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
1148
1149        if (!FieldRec->hasTrivialDestructor())
1150          data().HasTrivialSpecialMembers &= ~SMF_Destructor;
1151        if (!FieldRec->hasTrivialDestructorForCall())
1152          data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
1153        if (!FieldRec->hasIrrelevantDestructor())
1154          data().HasIrrelevantDestructor = false;
1155        if (FieldRec->hasObjectMember())
1156          setHasObjectMember(true);
1157        if (FieldRec->hasVolatileMember())
1158          setHasVolatileMember(true);
1159        if (FieldRec->getArgPassingRestrictions() ==
1160            RecordDecl::APK_CanNeverPassInRegs)
1161          setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
1162
1163        // C++0x [class]p7:
1164        //   A standard-layout class is a class that:
1165        //    -- has no non-static data members of type non-standard-layout
1166        //       class (or array of such types) [...]
1167        if (!FieldRec->isStandardLayout())
1168          data().IsStandardLayout = false;
1169        if (!FieldRec->isCXX11StandardLayout())
1170          data().IsCXX11StandardLayout = false;
1171
1172        // C++2a [class]p7:
1173        //   A standard-layout class is a class that:
1174        //    [...]
1175        //    -- has no element of the set M(S) of types as a base class.
1176        if (data().IsStandardLayout && (isUnion() || IsFirstField) &&
1177            hasSubobjectAtOffsetZeroOfEmptyBaseType(Context, FieldRec))
1178          data().IsStandardLayout = false;
1179
1180        // C++11 [class]p7:
1181        //   A standard-layout class is a class that:
1182        //    -- has no base classes of the same type as the first non-static
1183        //       data member
1184        if (data().IsCXX11StandardLayout && IsFirstField) {
1185          // FIXME: We should check all base classes here, not just direct
1186          // base classes.
1187          for (const auto &BI : bases()) {
1188            if (Context.hasSameUnqualifiedType(BI.getType(), T)) {
1189              data().IsCXX11StandardLayout = false;
1190              break;
1191            }
1192          }
1193        }
1194
1195        // Keep track of the presence of mutable fields.
1196        if (FieldRec->hasMutableFields()) {
1197          data().HasMutableFields = true;
1198          data().NeedOverloadResolutionForCopyConstructor = true;
1199        }
1200
1201        // C++11 [class.copy]p13:
1202        //   If the implicitly-defined constructor would satisfy the
1203        //   requirements of a constexpr constructor, the implicitly-defined
1204        //   constructor is constexpr.
1205        // C++11 [dcl.constexpr]p4:
1206        //    -- every constructor involved in initializing non-static data
1207        //       members [...] shall be a constexpr constructor
1208        if (!Field->hasInClassInitializer() &&
1209            !FieldRec->hasConstexprDefaultConstructor() && !isUnion())
1210          // The standard requires any in-class initializer to be a constant
1211          // expression. We consider this to be a defect.
1212          data().DefaultedDefaultConstructorIsConstexpr = false;
1213
1214        // C++11 [class.copy]p8:
1215        //   The implicitly-declared copy constructor for a class X will have
1216        //   the form 'X::X(const X&)' if each potentially constructed subobject
1217        //   of a class type M (or array thereof) has a copy constructor whose
1218        //   first parameter is of type 'const M&' or 'const volatile M&'.
1219        if (!FieldRec->hasCopyConstructorWithConstParam())
1220          data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false;
1221
1222        // C++11 [class.copy]p18:
1223        //   The implicitly-declared copy assignment oeprator for a class X will
1224        //   have the form 'X& X::operator=(const X&)' if [...] for all the
1225        //   non-static data members of X that are of a class type M (or array
1226        //   thereof), each such class type has a copy assignment operator whose
1227        //   parameter is of type 'const M&', 'const volatile M&' or 'M'.
1228        if (!FieldRec->hasCopyAssignmentWithConstParam())
1229          data().ImplicitCopyAssignmentHasConstParam = false;
1230
1231        if (FieldRec->hasUninitializedReferenceMember() &&
1232            !Field->hasInClassInitializer())
1233          data().HasUninitializedReferenceMember = true;
1234
1235        // C++11 [class.union]p8, DR1460:
1236        //   a non-static data member of an anonymous union that is a member of
1237        //   X is also a variant member of X.
1238        if (FieldRec->hasVariantMembers() &&
1239            Field->isAnonymousStructOrUnion())
1240          data().HasVariantMembers = true;
1241      }
1242    } else {
1243      // Base element type of field is a non-class type.
1244      if (!T->isLiteralType(Context) ||
1245          (!Field->hasInClassInitializer() && !isUnion()))
1246        data().DefaultedDefaultConstructorIsConstexpr = false;
1247
1248      // C++11 [class.copy]p23:
1249      //   A defaulted copy/move assignment operator for a class X is defined
1250      //   as deleted if X has:
1251      //    -- a non-static data member of const non-class type (or array
1252      //       thereof)
1253      if (T.isConstQualified())
1254        data().DefaultedMoveAssignmentIsDeleted = true;
1255    }
1256
1257    // C++14 [meta.unary.prop]p4:
1258    //   T is a class type [...] with [...] no non-static data members
1259    data().Empty = false;
1260  }
1261
1262  // Handle using declarations of conversion functions.
1263  if (auto *Shadow = dyn_cast<UsingShadowDecl>(D)) {
1264    if (Shadow->getDeclName().getNameKind()
1265          == DeclarationName::CXXConversionFunctionName) {
1266      ASTContext &Ctx = getASTContext();
1267      data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess());
1268    }
1269  }
1270
1271  if (const auto *Using = dyn_cast<UsingDecl>(D)) {
1272    if (Using->getDeclName().getNameKind() ==
1273        DeclarationName::CXXConstructorName) {
1274      data().HasInheritedConstructor = true;
1275      // C++1z [dcl.init.aggr]p1:
1276      //  An aggregate is [...] a class [...] with no inherited constructors
1277      data().Aggregate = false;
1278    }
1279
1280    if (Using->getDeclName().getCXXOverloadedOperator() == OO_Equal)
1281      data().HasInheritedAssignment = true;
1282  }
1283}
1284
1285void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) {
1286  assert(!D->isImplicit() && !D->isUserProvided());
1287
1288  // The kind of special member this declaration is, if any.
1289  unsigned SMKind = 0;
1290
1291  if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
1292    if (Constructor->isDefaultConstructor()) {
1293      SMKind |= SMF_DefaultConstructor;
1294      if (Constructor->isConstexpr())
1295        data().HasConstexprDefaultConstructor = true;
1296    }
1297    if (Constructor->isCopyConstructor())
1298      SMKind |= SMF_CopyConstructor;
1299    else if (Constructor->isMoveConstructor())
1300      SMKind |= SMF_MoveConstructor;
1301    else if (Constructor->isConstexpr())
1302      // We may now know that the constructor is constexpr.
1303      data().HasConstexprNonCopyMoveConstructor = true;
1304  } else if (isa<CXXDestructorDecl>(D)) {
1305    SMKind |= SMF_Destructor;
1306    if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted())
1307      data().HasIrrelevantDestructor = false;
1308  } else if (D->isCopyAssignmentOperator())
1309    SMKind |= SMF_CopyAssignment;
1310  else if (D->isMoveAssignmentOperator())
1311    SMKind |= SMF_MoveAssignment;
1312
1313  // Update which trivial / non-trivial special members we have.
1314  // addedMember will have skipped this step for this member.
1315  if (D->isTrivial())
1316    data().HasTrivialSpecialMembers |= SMKind;
1317  else
1318    data().DeclaredNonTrivialSpecialMembers |= SMKind;
1319}
1320
1321void CXXRecordDecl::setTrivialForCallFlags(CXXMethodDecl *D) {
1322  unsigned SMKind = 0;
1323
1324  if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
1325    if (Constructor->isCopyConstructor())
1326      SMKind = SMF_CopyConstructor;
1327    else if (Constructor->isMoveConstructor())
1328      SMKind = SMF_MoveConstructor;
1329  } else if (isa<CXXDestructorDecl>(D))
1330    SMKind = SMF_Destructor;
1331
1332  if (D->isTrivialForCall())
1333    data().HasTrivialSpecialMembersForCall |= SMKind;
1334  else
1335    data().DeclaredNonTrivialSpecialMembersForCall |= SMKind;
1336}
1337
1338bool CXXRecordDecl::isCLike() const {
1339  if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface ||
1340      !TemplateOrInstantiation.isNull())
1341    return false;
1342  if (!hasDefinition())
1343    return true;
1344
1345  return isPOD() && data().HasOnlyCMembers;
1346}
1347
1348bool CXXRecordDecl::isGenericLambda() const {
1349  if (!isLambda()) return false;
1350  return getLambdaData().IsGenericLambda;
1351}
1352
1353#ifndef NDEBUG
1354static bool allLookupResultsAreTheSame(const DeclContext::lookup_result &R) {
1355  for (auto *D : R)
1356    if (!declaresSameEntity(D, R.front()))
1357      return false;
1358  return true;
1359}
1360#endif
1361
1362CXXMethodDecl* CXXRecordDecl::getLambdaCallOperator() const {
1363  if (!isLambda()) return nullptr;
1364  DeclarationName Name =
1365    getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
1366  DeclContext::lookup_result Calls = lookup(Name);
1367
1368  assert(!Calls.empty() && "Missing lambda call operator!");
1369  assert(allLookupResultsAreTheSame(Calls) &&
1370         "More than one lambda call operator!");
1371
1372  NamedDecl *CallOp = Calls.front();
1373  if (const auto *CallOpTmpl = dyn_cast<FunctionTemplateDecl>(CallOp))
1374    return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl());
1375
1376  return cast<CXXMethodDecl>(CallOp);
1377}
1378
1379CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const {
1380  if (!isLambda()) return nullptr;
1381  DeclarationName Name =
1382    &getASTContext().Idents.get(getLambdaStaticInvokerName());
1383  DeclContext::lookup_result Invoker = lookup(Name);
1384  if (Invoker.empty()) return nullptr;
1385  assert(allLookupResultsAreTheSame(Invoker) &&
1386         "More than one static invoker operator!");
1387  NamedDecl *InvokerFun = Invoker.front();
1388  if (const auto *InvokerTemplate = dyn_cast<FunctionTemplateDecl>(InvokerFun))
1389    return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl());
1390
1391  return cast<CXXMethodDecl>(InvokerFun);
1392}
1393
1394void CXXRecordDecl::getCaptureFields(
1395       llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
1396       FieldDecl *&ThisCapture) const {
1397  Captures.clear();
1398  ThisCapture = nullptr;
1399
1400  LambdaDefinitionData &Lambda = getLambdaData();
1401  RecordDecl::field_iterator Field = field_begin();
1402  for (const LambdaCapture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures;
1403       C != CEnd; ++C, ++Field) {
1404    if (C->capturesThis())
1405      ThisCapture = *Field;
1406    else if (C->capturesVariable())
1407      Captures[C->getCapturedVar()] = *Field;
1408  }
1409  assert(Field == field_end());
1410}
1411
1412TemplateParameterList *
1413CXXRecordDecl::getGenericLambdaTemplateParameterList() const {
1414  if (!isLambda()) return nullptr;
1415  CXXMethodDecl *CallOp = getLambdaCallOperator();
1416  if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate())
1417    return Tmpl->getTemplateParameters();
1418  return nullptr;
1419}
1420
1421Decl *CXXRecordDecl::getLambdaContextDecl() const {
1422  assert(isLambda() && "Not a lambda closure type!");
1423  ExternalASTSource *Source = getParentASTContext().getExternalSource();
1424  return getLambdaData().ContextDecl.get(Source);
1425}
1426
1427static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
1428  QualType T =
1429      cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction())
1430          ->getConversionType();
1431  return Context.getCanonicalType(T);
1432}
1433
1434/// Collect the visible conversions of a base class.
1435///
1436/// \param Record a base class of the class we're considering
1437/// \param InVirtual whether this base class is a virtual base (or a base
1438///   of a virtual base)
1439/// \param Access the access along the inheritance path to this base
1440/// \param ParentHiddenTypes the conversions provided by the inheritors
1441///   of this base
1442/// \param Output the set to which to add conversions from non-virtual bases
1443/// \param VOutput the set to which to add conversions from virtual bases
1444/// \param HiddenVBaseCs the set of conversions which were hidden in a
1445///   virtual base along some inheritance path
1446static void CollectVisibleConversions(ASTContext &Context,
1447                                      CXXRecordDecl *Record,
1448                                      bool InVirtual,
1449                                      AccessSpecifier Access,
1450                  const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
1451                                      ASTUnresolvedSet &Output,
1452                                      UnresolvedSetImpl &VOutput,
1453                           llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) {
1454  // The set of types which have conversions in this class or its
1455  // subclasses.  As an optimization, we don't copy the derived set
1456  // unless it might change.
1457  const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
1458  llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
1459
1460  // Collect the direct conversions and figure out which conversions
1461  // will be hidden in the subclasses.
1462  CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1463  CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1464  if (ConvI != ConvE) {
1465    HiddenTypesBuffer = ParentHiddenTypes;
1466    HiddenTypes = &HiddenTypesBuffer;
1467
1468    for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) {
1469      CanQualType ConvType(GetConversionType(Context, I.getDecl()));
1470      bool Hidden = ParentHiddenTypes.count(ConvType);
1471      if (!Hidden)
1472        HiddenTypesBuffer.insert(ConvType);
1473
1474      // If this conversion is hidden and we're in a virtual base,
1475      // remember that it's hidden along some inheritance path.
1476      if (Hidden && InVirtual)
1477        HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
1478
1479      // If this conversion isn't hidden, add it to the appropriate output.
1480      else if (!Hidden) {
1481        AccessSpecifier IAccess
1482          = CXXRecordDecl::MergeAccess(Access, I.getAccess());
1483
1484        if (InVirtual)
1485          VOutput.addDecl(I.getDecl(), IAccess);
1486        else
1487          Output.addDecl(Context, I.getDecl(), IAccess);
1488      }
1489    }
1490  }
1491
1492  // Collect information recursively from any base classes.
1493  for (const auto &I : Record->bases()) {
1494    const RecordType *RT = I.getType()->getAs<RecordType>();
1495    if (!RT) continue;
1496
1497    AccessSpecifier BaseAccess
1498      = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier());
1499    bool BaseInVirtual = InVirtual || I.isVirtual();
1500
1501    auto *Base = cast<CXXRecordDecl>(RT->getDecl());
1502    CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
1503                              *HiddenTypes, Output, VOutput, HiddenVBaseCs);
1504  }
1505}
1506
1507/// Collect the visible conversions of a class.
1508///
1509/// This would be extremely straightforward if it weren't for virtual
1510/// bases.  It might be worth special-casing that, really.
1511static void CollectVisibleConversions(ASTContext &Context,
1512                                      CXXRecordDecl *Record,
1513                                      ASTUnresolvedSet &Output) {
1514  // The collection of all conversions in virtual bases that we've
1515  // found.  These will be added to the output as long as they don't
1516  // appear in the hidden-conversions set.
1517  UnresolvedSet<8> VBaseCs;
1518
1519  // The set of conversions in virtual bases that we've determined to
1520  // be hidden.
1521  llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
1522
1523  // The set of types hidden by classes derived from this one.
1524  llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
1525
1526  // Go ahead and collect the direct conversions and add them to the
1527  // hidden-types set.
1528  CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1529  CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1530  Output.append(Context, ConvI, ConvE);
1531  for (; ConvI != ConvE; ++ConvI)
1532    HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl()));
1533
1534  // Recursively collect conversions from base classes.
1535  for (const auto &I : Record->bases()) {
1536    const RecordType *RT = I.getType()->getAs<RecordType>();
1537    if (!RT) continue;
1538
1539    CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
1540                              I.isVirtual(), I.getAccessSpecifier(),
1541                              HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
1542  }
1543
1544  // Add any unhidden conversions provided by virtual bases.
1545  for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
1546         I != E; ++I) {
1547    if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
1548      Output.addDecl(Context, I.getDecl(), I.getAccess());
1549  }
1550}
1551
1552/// getVisibleConversionFunctions - get all conversion functions visible
1553/// in current class; including conversion function templates.
1554llvm::iterator_range<CXXRecordDecl::conversion_iterator>
1555CXXRecordDecl::getVisibleConversionFunctions() {
1556  ASTContext &Ctx = getASTContext();
1557
1558  ASTUnresolvedSet *Set;
1559  if (bases_begin() == bases_end()) {
1560    // If root class, all conversions are visible.
1561    Set = &data().Conversions.get(Ctx);
1562  } else {
1563    Set = &data().VisibleConversions.get(Ctx);
1564    // If visible conversion list is not evaluated, evaluate it.
1565    if (!data().ComputedVisibleConversions) {
1566      CollectVisibleConversions(Ctx, this, *Set);
1567      data().ComputedVisibleConversions = true;
1568    }
1569  }
1570  return llvm::make_range(Set->begin(), Set->end());
1571}
1572
1573void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
1574  // This operation is O(N) but extremely rare.  Sema only uses it to
1575  // remove UsingShadowDecls in a class that were followed by a direct
1576  // declaration, e.g.:
1577  //   class A : B {
1578  //     using B::operator int;
1579  //     operator int();
1580  //   };
1581  // This is uncommon by itself and even more uncommon in conjunction
1582  // with sufficiently large numbers of directly-declared conversions
1583  // that asymptotic behavior matters.
1584
1585  ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext());
1586  for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
1587    if (Convs[I].getDecl() == ConvDecl) {
1588      Convs.erase(I);
1589      assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end()
1590             && "conversion was found multiple times in unresolved set");
1591      return;
1592    }
1593  }
1594
1595  llvm_unreachable("conversion not found in set!");
1596}
1597
1598CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
1599  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1600    return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
1601
1602  return nullptr;
1603}
1604
1605MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const {
1606  return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
1607}
1608
1609void
1610CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
1611                                             TemplateSpecializationKind TSK) {
1612  assert(TemplateOrInstantiation.isNull() &&
1613         "Previous template or instantiation?");
1614  assert(!isa<ClassTemplatePartialSpecializationDecl>(this));
1615  TemplateOrInstantiation
1616    = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
1617}
1618
1619ClassTemplateDecl *CXXRecordDecl::getDescribedClassTemplate() const {
1620  return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl *>();
1621}
1622
1623void CXXRecordDecl::setDescribedClassTemplate(ClassTemplateDecl *Template) {
1624  TemplateOrInstantiation = Template;
1625}
1626
1627TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
1628  if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this))
1629    return Spec->getSpecializationKind();
1630
1631  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1632    return MSInfo->getTemplateSpecializationKind();
1633
1634  return TSK_Undeclared;
1635}
1636
1637void
1638CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
1639  if (auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1640    Spec->setSpecializationKind(TSK);
1641    return;
1642  }
1643
1644  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1645    MSInfo->setTemplateSpecializationKind(TSK);
1646    return;
1647  }
1648
1649  llvm_unreachable("Not a class template or member class specialization");
1650}
1651
1652const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const {
1653  auto GetDefinitionOrSelf =
1654      [](const CXXRecordDecl *D) -> const CXXRecordDecl * {
1655    if (auto *Def = D->getDefinition())
1656      return Def;
1657    return D;
1658  };
1659
1660  // If it's a class template specialization, find the template or partial
1661  // specialization from which it was instantiated.
1662  if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1663    auto From = TD->getInstantiatedFrom();
1664    if (auto *CTD = From.dyn_cast<ClassTemplateDecl *>()) {
1665      while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) {
1666        if (NewCTD->isMemberSpecialization())
1667          break;
1668        CTD = NewCTD;
1669      }
1670      return GetDefinitionOrSelf(CTD->getTemplatedDecl());
1671    }
1672    if (auto *CTPSD =
1673            From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
1674      while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) {
1675        if (NewCTPSD->isMemberSpecialization())
1676          break;
1677        CTPSD = NewCTPSD;
1678      }
1679      return GetDefinitionOrSelf(CTPSD);
1680    }
1681  }
1682
1683  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1684    if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
1685      const CXXRecordDecl *RD = this;
1686      while (auto *NewRD = RD->getInstantiatedFromMemberClass())
1687        RD = NewRD;
1688      return GetDefinitionOrSelf(RD);
1689    }
1690  }
1691
1692  assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) &&
1693         "couldn't find pattern for class template instantiation");
1694  return nullptr;
1695}
1696
1697CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
1698  ASTContext &Context = getASTContext();
1699  QualType ClassType = Context.getTypeDeclType(this);
1700
1701  DeclarationName Name
1702    = Context.DeclarationNames.getCXXDestructorName(
1703                                          Context.getCanonicalType(ClassType));
1704
1705  DeclContext::lookup_result R = lookup(Name);
1706
1707  return R.empty() ? nullptr : dyn_cast<CXXDestructorDecl>(R.front());
1708}
1709
1710bool CXXRecordDecl::isAnyDestructorNoReturn() const {
1711  // Destructor is noreturn.
1712  if (const CXXDestructorDecl *Destructor = getDestructor())
1713    if (Destructor->isNoReturn())
1714      return true;
1715
1716  // Check base classes destructor for noreturn.
1717  for (const auto &Base : bases())
1718    if (const CXXRecordDecl *RD = Base.getType()->getAsCXXRecordDecl())
1719      if (RD->isAnyDestructorNoReturn())
1720        return true;
1721
1722  // Check fields for noreturn.
1723  for (const auto *Field : fields())
1724    if (const CXXRecordDecl *RD =
1725            Field->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl())
1726      if (RD->isAnyDestructorNoReturn())
1727        return true;
1728
1729  // All destructors are not noreturn.
1730  return false;
1731}
1732
1733static bool isDeclContextInNamespace(const DeclContext *DC) {
1734  while (!DC->isTranslationUnit()) {
1735    if (DC->isNamespace())
1736      return true;
1737    DC = DC->getParent();
1738  }
1739  return false;
1740}
1741
1742bool CXXRecordDecl::isInterfaceLike() const {
1743  assert(hasDefinition() && "checking for interface-like without a definition");
1744  // All __interfaces are inheritently interface-like.
1745  if (isInterface())
1746    return true;
1747
1748  // Interface-like types cannot have a user declared constructor, destructor,
1749  // friends, VBases, conversion functions, or fields.  Additionally, lambdas
1750  // cannot be interface types.
1751  if (isLambda() || hasUserDeclaredConstructor() ||
1752      hasUserDeclaredDestructor() || !field_empty() || hasFriends() ||
1753      getNumVBases() > 0 || conversion_end() - conversion_begin() > 0)
1754    return false;
1755
1756  // No interface-like type can have a method with a definition.
1757  for (const auto *const Method : methods())
1758    if (Method->isDefined() && !Method->isImplicit())
1759      return false;
1760
1761  // Check "Special" types.
1762  const auto *Uuid = getAttr<UuidAttr>();
1763  // MS SDK declares IUnknown/IDispatch both in the root of a TU, or in an
1764  // extern C++ block directly in the TU.  These are only valid if in one
1765  // of these two situations.
1766  if (Uuid && isStruct() && !getDeclContext()->isExternCContext() &&
1767      !isDeclContextInNamespace(getDeclContext()) &&
1768      ((getName() == "IUnknown" &&
1769        Uuid->getGuid() == "00000000-0000-0000-C000-000000000046") ||
1770       (getName() == "IDispatch" &&
1771        Uuid->getGuid() == "00020400-0000-0000-C000-000000000046"))) {
1772    if (getNumBases() > 0)
1773      return false;
1774    return true;
1775  }
1776
1777  // FIXME: Any access specifiers is supposed to make this no longer interface
1778  // like.
1779
1780  // If this isn't a 'special' type, it must have a single interface-like base.
1781  if (getNumBases() != 1)
1782    return false;
1783
1784  const auto BaseSpec = *bases_begin();
1785  if (BaseSpec.isVirtual() || BaseSpec.getAccessSpecifier() != AS_public)
1786    return false;
1787  const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl();
1788  if (Base->isInterface() || !Base->isInterfaceLike())
1789    return false;
1790  return true;
1791}
1792
1793void CXXRecordDecl::completeDefinition() {
1794  completeDefinition(nullptr);
1795}
1796
1797void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
1798  RecordDecl::completeDefinition();
1799
1800  // If the class may be abstract (but hasn't been marked as such), check for
1801  // any pure final overriders.
1802  if (mayBeAbstract()) {
1803    CXXFinalOverriderMap MyFinalOverriders;
1804    if (!FinalOverriders) {
1805      getFinalOverriders(MyFinalOverriders);
1806      FinalOverriders = &MyFinalOverriders;
1807    }
1808
1809    bool Done = false;
1810    for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
1811                                     MEnd = FinalOverriders->end();
1812         M != MEnd && !Done; ++M) {
1813      for (OverridingMethods::iterator SO = M->second.begin(),
1814                                    SOEnd = M->second.end();
1815           SO != SOEnd && !Done; ++SO) {
1816        assert(SO->second.size() > 0 &&
1817               "All virtual functions have overriding virtual functions");
1818
1819        // C++ [class.abstract]p4:
1820        //   A class is abstract if it contains or inherits at least one
1821        //   pure virtual function for which the final overrider is pure
1822        //   virtual.
1823        if (SO->second.front().Method->isPure()) {
1824          data().Abstract = true;
1825          Done = true;
1826          break;
1827        }
1828      }
1829    }
1830  }
1831
1832  // Set access bits correctly on the directly-declared conversions.
1833  for (conversion_iterator I = conversion_begin(), E = conversion_end();
1834       I != E; ++I)
1835    I.setAccess((*I)->getAccess());
1836}
1837
1838bool CXXRecordDecl::mayBeAbstract() const {
1839  if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
1840      isDependentContext())
1841    return false;
1842
1843  for (const auto &B : bases()) {
1844    const auto *BaseDecl =
1845        cast<CXXRecordDecl>(B.getType()->getAs<RecordType>()->getDecl());
1846    if (BaseDecl->isAbstract())
1847      return true;
1848  }
1849
1850  return false;
1851}
1852
1853void CXXDeductionGuideDecl::anchor() {}
1854
1855CXXDeductionGuideDecl *CXXDeductionGuideDecl::Create(
1856    ASTContext &C, DeclContext *DC, SourceLocation StartLoc, bool IsExplicit,
1857    const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
1858    SourceLocation EndLocation) {
1859  return new (C, DC) CXXDeductionGuideDecl(C, DC, StartLoc, IsExplicit,
1860                                           NameInfo, T, TInfo, EndLocation);
1861}
1862
1863CXXDeductionGuideDecl *CXXDeductionGuideDecl::CreateDeserialized(ASTContext &C,
1864                                                                 unsigned ID) {
1865  return new (C, ID) CXXDeductionGuideDecl(C, nullptr, SourceLocation(), false,
1866                                           DeclarationNameInfo(), QualType(),
1867                                           nullptr, SourceLocation());
1868}
1869
1870void CXXMethodDecl::anchor() {}
1871
1872bool CXXMethodDecl::isStatic() const {
1873  const CXXMethodDecl *MD = getCanonicalDecl();
1874
1875  if (MD->getStorageClass() == SC_Static)
1876    return true;
1877
1878  OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator();
1879  return isStaticOverloadedOperator(OOK);
1880}
1881
1882static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD,
1883                                 const CXXMethodDecl *BaseMD) {
1884  for (const CXXMethodDecl *MD : DerivedMD->overridden_methods()) {
1885    if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl())
1886      return true;
1887    if (recursivelyOverrides(MD, BaseMD))
1888      return true;
1889  }
1890  return false;
1891}
1892
1893CXXMethodDecl *
1894CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD,
1895                                             bool MayBeBase) {
1896  if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl())
1897    return this;
1898
1899  // Lookup doesn't work for destructors, so handle them separately.
1900  if (isa<CXXDestructorDecl>(this)) {
1901    CXXMethodDecl *MD = RD->getDestructor();
1902    if (MD) {
1903      if (recursivelyOverrides(MD, this))
1904        return MD;
1905      if (MayBeBase && recursivelyOverrides(this, MD))
1906        return MD;
1907    }
1908    return nullptr;
1909  }
1910
1911  for (auto *ND : RD->lookup(getDeclName())) {
1912    auto *MD = dyn_cast<CXXMethodDecl>(ND);
1913    if (!MD)
1914      continue;
1915    if (recursivelyOverrides(MD, this))
1916      return MD;
1917    if (MayBeBase && recursivelyOverrides(this, MD))
1918      return MD;
1919  }
1920
1921  for (const auto &I : RD->bases()) {
1922    const RecordType *RT = I.getType()->getAs<RecordType>();
1923    if (!RT)
1924      continue;
1925    const auto *Base = cast<CXXRecordDecl>(RT->getDecl());
1926    CXXMethodDecl *T = this->getCorrespondingMethodInClass(Base);
1927    if (T)
1928      return T;
1929  }
1930
1931  return nullptr;
1932}
1933
1934CXXMethodDecl *
1935CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1936                      SourceLocation StartLoc,
1937                      const DeclarationNameInfo &NameInfo,
1938                      QualType T, TypeSourceInfo *TInfo,
1939                      StorageClass SC, bool isInline,
1940                      bool isConstexpr, SourceLocation EndLocation) {
1941  return new (C, RD) CXXMethodDecl(CXXMethod, C, RD, StartLoc, NameInfo,
1942                                   T, TInfo, SC, isInline, isConstexpr,
1943                                   EndLocation);
1944}
1945
1946CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1947  return new (C, ID) CXXMethodDecl(CXXMethod, C, nullptr, SourceLocation(),
1948                                   DeclarationNameInfo(), QualType(), nullptr,
1949                                   SC_None, false, false, SourceLocation());
1950}
1951
1952CXXMethodDecl *CXXMethodDecl::getDevirtualizedMethod(const Expr *Base,
1953                                                     bool IsAppleKext) {
1954  assert(isVirtual() && "this method is expected to be virtual");
1955
1956  // When building with -fapple-kext, all calls must go through the vtable since
1957  // the kernel linker can do runtime patching of vtables.
1958  if (IsAppleKext)
1959    return nullptr;
1960
1961  // If the member function is marked 'final', we know that it can't be
1962  // overridden and can therefore devirtualize it unless it's pure virtual.
1963  if (hasAttr<FinalAttr>())
1964    return isPure() ? nullptr : this;
1965
1966  // If Base is unknown, we cannot devirtualize.
1967  if (!Base)
1968    return nullptr;
1969
1970  // If the base expression (after skipping derived-to-base conversions) is a
1971  // class prvalue, then we can devirtualize.
1972  Base = Base->getBestDynamicClassTypeExpr();
1973  if (Base->isRValue() && Base->getType()->isRecordType())
1974    return this;
1975
1976  // If we don't even know what we would call, we can't devirtualize.
1977  const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
1978  if (!BestDynamicDecl)
1979    return nullptr;
1980
1981  // There may be a method corresponding to MD in a derived class.
1982  CXXMethodDecl *DevirtualizedMethod =
1983      getCorrespondingMethodInClass(BestDynamicDecl);
1984
1985  // If that method is pure virtual, we can't devirtualize. If this code is
1986  // reached, the result would be UB, not a direct call to the derived class
1987  // function, and we can't assume the derived class function is defined.
1988  if (DevirtualizedMethod->isPure())
1989    return nullptr;
1990
1991  // If that method is marked final, we can devirtualize it.
1992  if (DevirtualizedMethod->hasAttr<FinalAttr>())
1993    return DevirtualizedMethod;
1994
1995  // Similarly, if the class itself is marked 'final' it can't be overridden
1996  // and we can therefore devirtualize the member function call.
1997  if (BestDynamicDecl->hasAttr<FinalAttr>())
1998    return DevirtualizedMethod;
1999
2000  if (const auto *DRE = dyn_cast<DeclRefExpr>(Base)) {
2001    if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2002      if (VD->getType()->isRecordType())
2003        // This is a record decl. We know the type and can devirtualize it.
2004        return DevirtualizedMethod;
2005
2006    return nullptr;
2007  }
2008
2009  // We can devirtualize calls on an object accessed by a class member access
2010  // expression, since by C++11 [basic.life]p6 we know that it can't refer to
2011  // a derived class object constructed in the same location.
2012  if (const auto *ME = dyn_cast<MemberExpr>(Base)) {
2013    const ValueDecl *VD = ME->getMemberDecl();
2014    return VD->getType()->isRecordType() ? DevirtualizedMethod : nullptr;
2015  }
2016
2017  // Likewise for calls on an object accessed by a (non-reference) pointer to
2018  // member access.
2019  if (auto *BO = dyn_cast<BinaryOperator>(Base)) {
2020    if (BO->isPtrMemOp()) {
2021      auto *MPT = BO->getRHS()->getType()->castAs<MemberPointerType>();
2022      if (MPT->getPointeeType()->isRecordType())
2023        return DevirtualizedMethod;
2024    }
2025  }
2026
2027  // We can't devirtualize the call.
2028  return nullptr;
2029}
2030
2031bool CXXMethodDecl::isUsualDeallocationFunction(
2032    SmallVectorImpl<const FunctionDecl *> &PreventedBy) const {
2033  assert(PreventedBy.empty() && "PreventedBy is expected to be empty");
2034  if (getOverloadedOperator() != OO_Delete &&
2035      getOverloadedOperator() != OO_Array_Delete)
2036    return false;
2037
2038  // C++ [basic.stc.dynamic.deallocation]p2:
2039  //   A template instance is never a usual deallocation function,
2040  //   regardless of its signature.
2041  if (getPrimaryTemplate())
2042    return false;
2043
2044  // C++ [basic.stc.dynamic.deallocation]p2:
2045  //   If a class T has a member deallocation function named operator delete
2046  //   with exactly one parameter, then that function is a usual (non-placement)
2047  //   deallocation function. [...]
2048  if (getNumParams() == 1)
2049    return true;
2050  unsigned UsualParams = 1;
2051
2052  // C++ P0722:
2053  //   A destroying operator delete is a usual deallocation function if
2054  //   removing the std::destroying_delete_t parameter and changing the
2055  //   first parameter type from T* to void* results in the signature of
2056  //   a usual deallocation function.
2057  if (isDestroyingOperatorDelete())
2058    ++UsualParams;
2059
2060  // C++ <=14 [basic.stc.dynamic.deallocation]p2:
2061  //   [...] If class T does not declare such an operator delete but does
2062  //   declare a member deallocation function named operator delete with
2063  //   exactly two parameters, the second of which has type std::size_t (18.1),
2064  //   then this function is a usual deallocation function.
2065  //
2066  // C++17 says a usual deallocation function is one with the signature
2067  //   (void* [, size_t] [, std::align_val_t] [, ...])
2068  // and all such functions are usual deallocation functions. It's not clear
2069  // that allowing varargs functions was intentional.
2070  ASTContext &Context = getASTContext();
2071  if (UsualParams < getNumParams() &&
2072      Context.hasSameUnqualifiedType(getParamDecl(UsualParams)->getType(),
2073                                     Context.getSizeType()))
2074    ++UsualParams;
2075
2076  if (UsualParams < getNumParams() &&
2077      getParamDecl(UsualParams)->getType()->isAlignValT())
2078    ++UsualParams;
2079
2080  if (UsualParams != getNumParams())
2081    return false;
2082
2083  // In C++17 onwards, all potential usual deallocation functions are actual
2084  // usual deallocation functions.
2085  if (Context.getLangOpts().AlignedAllocation)
2086    return true;
2087
2088  // This function is a usual deallocation function if there are no
2089  // single-parameter deallocation functions of the same kind.
2090  DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName());
2091  bool Result = true;
2092  for (const auto *D : R) {
2093    if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2094      if (FD->getNumParams() == 1) {
2095        PreventedBy.push_back(FD);
2096        Result = false;
2097      }
2098    }
2099  }
2100  return Result;
2101}
2102
2103bool CXXMethodDecl::isCopyAssignmentOperator() const {
2104  // C++0x [class.copy]p17:
2105  //  A user-declared copy assignment operator X::operator= is a non-static
2106  //  non-template member function of class X with exactly one parameter of
2107  //  type X, X&, const X&, volatile X& or const volatile X&.
2108  if (/*operator=*/getOverloadedOperator() != OO_Equal ||
2109      /*non-static*/ isStatic() ||
2110      /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() ||
2111      getNumParams() != 1)
2112    return false;
2113
2114  QualType ParamType = getParamDecl(0)->getType();
2115  if (const auto *Ref = ParamType->getAs<LValueReferenceType>())
2116    ParamType = Ref->getPointeeType();
2117
2118  ASTContext &Context = getASTContext();
2119  QualType ClassType
2120    = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
2121  return Context.hasSameUnqualifiedType(ClassType, ParamType);
2122}
2123
2124bool CXXMethodDecl::isMoveAssignmentOperator() const {
2125  // C++0x [class.copy]p19:
2126  //  A user-declared move assignment operator X::operator= is a non-static
2127  //  non-template member function of class X with exactly one parameter of type
2128  //  X&&, const X&&, volatile X&&, or const volatile X&&.
2129  if (getOverloadedOperator() != OO_Equal || isStatic() ||
2130      getPrimaryTemplate() || getDescribedFunctionTemplate() ||
2131      getNumParams() != 1)
2132    return false;
2133
2134  QualType ParamType = getParamDecl(0)->getType();
2135  if (!isa<RValueReferenceType>(ParamType))
2136    return false;
2137  ParamType = ParamType->getPointeeType();
2138
2139  ASTContext &Context = getASTContext();
2140  QualType ClassType
2141    = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
2142  return Context.hasSameUnqualifiedType(ClassType, ParamType);
2143}
2144
2145void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
2146  assert(MD->isCanonicalDecl() && "Method is not canonical!");
2147  assert(!MD->getParent()->isDependentContext() &&
2148         "Can't add an overridden method to a class template!");
2149  assert(MD->isVirtual() && "Method is not virtual!");
2150
2151  getASTContext().addOverriddenMethod(this, MD);
2152}
2153
2154CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
2155  if (isa<CXXConstructorDecl>(this)) return nullptr;
2156  return getASTContext().overridden_methods_begin(this);
2157}
2158
2159CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
2160  if (isa<CXXConstructorDecl>(this)) return nullptr;
2161  return getASTContext().overridden_methods_end(this);
2162}
2163
2164unsigned CXXMethodDecl::size_overridden_methods() const {
2165  if (isa<CXXConstructorDecl>(this)) return 0;
2166  return getASTContext().overridden_methods_size(this);
2167}
2168
2169CXXMethodDecl::overridden_method_range
2170CXXMethodDecl::overridden_methods() const {
2171  if (isa<CXXConstructorDecl>(this))
2172    return overridden_method_range(nullptr, nullptr);
2173  return getASTContext().overridden_methods(this);
2174}
2175
2176QualType CXXMethodDecl::getThisType(const FunctionProtoType *FPT,
2177                                    const CXXRecordDecl *Decl) {
2178  ASTContext &C = Decl->getASTContext();
2179  QualType ClassTy = C.getTypeDeclType(Decl);
2180  ClassTy = C.getQualifiedType(ClassTy, FPT->getTypeQuals());
2181  return C.getPointerType(ClassTy);
2182}
2183
2184QualType CXXMethodDecl::getThisType() const {
2185  // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
2186  // If the member function is declared const, the type of this is const X*,
2187  // if the member function is declared volatile, the type of this is
2188  // volatile X*, and if the member function is declared const volatile,
2189  // the type of this is const volatile X*.
2190  assert(isInstance() && "No 'this' for static methods!");
2191
2192  return CXXMethodDecl::getThisType(getType()->getAs<FunctionProtoType>(),
2193                                    getParent());
2194}
2195
2196bool CXXMethodDecl::hasInlineBody() const {
2197  // If this function is a template instantiation, look at the template from
2198  // which it was instantiated.
2199  const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
2200  if (!CheckFn)
2201    CheckFn = this;
2202
2203  const FunctionDecl *fn;
2204  return CheckFn->isDefined(fn) && !fn->isOutOfLine() &&
2205         (fn->doesThisDeclarationHaveABody() || fn->willHaveBody());
2206}
2207
2208bool CXXMethodDecl::isLambdaStaticInvoker() const {
2209  const CXXRecordDecl *P = getParent();
2210  if (P->isLambda()) {
2211    if (const CXXMethodDecl *StaticInvoker = P->getLambdaStaticInvoker()) {
2212      if (StaticInvoker == this) return true;
2213      if (P->isGenericLambda() && this->isFunctionTemplateSpecialization())
2214        return StaticInvoker == this->getPrimaryTemplate()->getTemplatedDecl();
2215    }
2216  }
2217  return false;
2218}
2219
2220CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2221                                       TypeSourceInfo *TInfo, bool IsVirtual,
2222                                       SourceLocation L, Expr *Init,
2223                                       SourceLocation R,
2224                                       SourceLocation EllipsisLoc)
2225    : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init),
2226      LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual),
2227      IsWritten(false), SourceOrder(0) {}
2228
2229CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2230                                       FieldDecl *Member,
2231                                       SourceLocation MemberLoc,
2232                                       SourceLocation L, Expr *Init,
2233                                       SourceLocation R)
2234    : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
2235      LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
2236      IsWritten(false), SourceOrder(0) {}
2237
2238CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2239                                       IndirectFieldDecl *Member,
2240                                       SourceLocation MemberLoc,
2241                                       SourceLocation L, Expr *Init,
2242                                       SourceLocation R)
2243    : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
2244      LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
2245      IsWritten(false), SourceOrder(0) {}
2246
2247CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
2248                                       TypeSourceInfo *TInfo,
2249                                       SourceLocation L, Expr *Init,
2250                                       SourceLocation R)
2251    : Initializee(TInfo), Init(Init), LParenLoc(L), RParenLoc(R),
2252      IsDelegating(true), IsVirtual(false), IsWritten(false), SourceOrder(0) {}
2253
2254int64_t CXXCtorInitializer::getID(const ASTContext &Context) const {
2255  return Context.getAllocator()
2256                .identifyKnownAlignedObject<CXXCtorInitializer>(this);
2257}
2258
2259TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
2260  if (isBaseInitializer())
2261    return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
2262  else
2263    return {};
2264}
2265
2266const Type *CXXCtorInitializer::getBaseClass() const {
2267  if (isBaseInitializer())
2268    return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
2269  else
2270    return nullptr;
2271}
2272
2273SourceLocation CXXCtorInitializer::getSourceLocation() const {
2274  if (isInClassMemberInitializer())
2275    return getAnyMember()->getLocation();
2276
2277  if (isAnyMemberInitializer())
2278    return getMemberLocation();
2279
2280  if (const auto *TSInfo = Initializee.get<TypeSourceInfo *>())
2281    return TSInfo->getTypeLoc().getLocalSourceRange().getBegin();
2282
2283  return {};
2284}
2285
2286SourceRange CXXCtorInitializer::getSourceRange() const {
2287  if (isInClassMemberInitializer()) {
2288    FieldDecl *D = getAnyMember();
2289    if (Expr *I = D->getInClassInitializer())
2290      return I->getSourceRange();
2291    return {};
2292  }
2293
2294  return SourceRange(getSourceLocation(), getRParenLoc());
2295}
2296
2297CXXConstructorDecl::CXXConstructorDecl(
2298    ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
2299    const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
2300    bool isExplicitSpecified, bool isInline, bool isImplicitlyDeclared,
2301    bool isConstexpr, InheritedConstructor Inherited)
2302    : CXXMethodDecl(CXXConstructor, C, RD, StartLoc, NameInfo, T, TInfo,
2303                    SC_None, isInline, isConstexpr, SourceLocation()) {
2304  setNumCtorInitializers(0);
2305  setInheritingConstructor(static_cast<bool>(Inherited));
2306  setImplicit(isImplicitlyDeclared);
2307  if (Inherited)
2308    *getTrailingObjects<InheritedConstructor>() = Inherited;
2309  setExplicitSpecified(isExplicitSpecified);
2310}
2311
2312void CXXConstructorDecl::anchor() {}
2313
2314CXXConstructorDecl *CXXConstructorDecl::CreateDeserialized(ASTContext &C,
2315                                                           unsigned ID,
2316                                                           bool Inherited) {
2317  unsigned Extra = additionalSizeToAlloc<InheritedConstructor>(Inherited);
2318  auto *Result = new (C, ID, Extra) CXXConstructorDecl(
2319      C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
2320      false, false, false, false, InheritedConstructor());
2321  Result->setInheritingConstructor(Inherited);
2322  return Result;
2323}
2324
2325CXXConstructorDecl *
2326CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
2327                           SourceLocation StartLoc,
2328                           const DeclarationNameInfo &NameInfo,
2329                           QualType T, TypeSourceInfo *TInfo,
2330                           bool isExplicit, bool isInline,
2331                           bool isImplicitlyDeclared, bool isConstexpr,
2332                           InheritedConstructor Inherited) {
2333  assert(NameInfo.getName().getNameKind()
2334         == DeclarationName::CXXConstructorName &&
2335         "Name must refer to a constructor");
2336  unsigned Extra =
2337      additionalSizeToAlloc<InheritedConstructor>(Inherited ? 1 : 0);
2338  return new (C, RD, Extra) CXXConstructorDecl(
2339      C, RD, StartLoc, NameInfo, T, TInfo, isExplicit, isInline,
2340      isImplicitlyDeclared, isConstexpr, Inherited);
2341}
2342
2343CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const {
2344  return CtorInitializers.get(getASTContext().getExternalSource());
2345}
2346
2347CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const {
2348  assert(isDelegatingConstructor() && "Not a delegating constructor!");
2349  Expr *E = (*init_begin())->getInit()->IgnoreImplicit();
2350  if (const auto *Construct = dyn_cast<CXXConstructExpr>(E))
2351    return Construct->getConstructor();
2352
2353  return nullptr;
2354}
2355
2356bool CXXConstructorDecl::isDefaultConstructor() const {
2357  // C++ [class.ctor]p5:
2358  //   A default constructor for a class X is a constructor of class
2359  //   X that can be called without an argument.
2360  return (getNumParams() == 0) ||
2361         (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
2362}
2363
2364bool
2365CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
2366  return isCopyOrMoveConstructor(TypeQuals) &&
2367         getParamDecl(0)->getType()->isLValueReferenceType();
2368}
2369
2370bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
2371  return isCopyOrMoveConstructor(TypeQuals) &&
2372    getParamDecl(0)->getType()->isRValueReferenceType();
2373}
2374
2375/// Determine whether this is a copy or move constructor.
2376bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
2377  // C++ [class.copy]p2:
2378  //   A non-template constructor for class X is a copy constructor
2379  //   if its first parameter is of type X&, const X&, volatile X& or
2380  //   const volatile X&, and either there are no other parameters
2381  //   or else all other parameters have default arguments (8.3.6).
2382  // C++0x [class.copy]p3:
2383  //   A non-template constructor for class X is a move constructor if its
2384  //   first parameter is of type X&&, const X&&, volatile X&&, or
2385  //   const volatile X&&, and either there are no other parameters or else
2386  //   all other parameters have default arguments.
2387  if ((getNumParams() < 1) ||
2388      (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
2389      (getPrimaryTemplate() != nullptr) ||
2390      (getDescribedFunctionTemplate() != nullptr))
2391    return false;
2392
2393  const ParmVarDecl *Param = getParamDecl(0);
2394
2395  // Do we have a reference type?
2396  const auto *ParamRefType = Param->getType()->getAs<ReferenceType>();
2397  if (!ParamRefType)
2398    return false;
2399
2400  // Is it a reference to our class type?
2401  ASTContext &Context = getASTContext();
2402
2403  CanQualType PointeeType
2404    = Context.getCanonicalType(ParamRefType->getPointeeType());
2405  CanQualType ClassTy
2406    = Context.getCanonicalType(Context.getTagDeclType(getParent()));
2407  if (PointeeType.getUnqualifiedType() != ClassTy)
2408    return false;
2409
2410  // FIXME: other qualifiers?
2411
2412  // We have a copy or move constructor.
2413  TypeQuals = PointeeType.getCVRQualifiers();
2414  return true;
2415}
2416
2417bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
2418  // C++ [class.conv.ctor]p1:
2419  //   A constructor declared without the function-specifier explicit
2420  //   that can be called with a single parameter specifies a
2421  //   conversion from the type of its first parameter to the type of
2422  //   its class. Such a constructor is called a converting
2423  //   constructor.
2424  if (isExplicit() && !AllowExplicit)
2425    return false;
2426
2427  return (getNumParams() == 0 &&
2428          getType()->getAs<FunctionProtoType>()->isVariadic()) ||
2429         (getNumParams() == 1) ||
2430         (getNumParams() > 1 &&
2431          (getParamDecl(1)->hasDefaultArg() ||
2432           getParamDecl(1)->isParameterPack()));
2433}
2434
2435bool CXXConstructorDecl::isSpecializationCopyingObject() const {
2436  if ((getNumParams() < 1) ||
2437      (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
2438      (getDescribedFunctionTemplate() != nullptr))
2439    return false;
2440
2441  const ParmVarDecl *Param = getParamDecl(0);
2442
2443  ASTContext &Context = getASTContext();
2444  CanQualType ParamType = Context.getCanonicalType(Param->getType());
2445
2446  // Is it the same as our class type?
2447  CanQualType ClassTy
2448    = Context.getCanonicalType(Context.getTagDeclType(getParent()));
2449  if (ParamType.getUnqualifiedType() != ClassTy)
2450    return false;
2451
2452  return true;
2453}
2454
2455void CXXDestructorDecl::anchor() {}
2456
2457CXXDestructorDecl *
2458CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2459  return new (C, ID)
2460      CXXDestructorDecl(C, nullptr, SourceLocation(), DeclarationNameInfo(),
2461                        QualType(), nullptr, false, false);
2462}
2463
2464CXXDestructorDecl *
2465CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
2466                          SourceLocation StartLoc,
2467                          const DeclarationNameInfo &NameInfo,
2468                          QualType T, TypeSourceInfo *TInfo,
2469                          bool isInline, bool isImplicitlyDeclared) {
2470  assert(NameInfo.getName().getNameKind()
2471         == DeclarationName::CXXDestructorName &&
2472         "Name must refer to a destructor");
2473  return new (C, RD) CXXDestructorDecl(C, RD, StartLoc, NameInfo, T, TInfo,
2474                                       isInline, isImplicitlyDeclared);
2475}
2476
2477void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD, Expr *ThisArg) {
2478  auto *First = cast<CXXDestructorDecl>(getFirstDecl());
2479  if (OD && !First->OperatorDelete) {
2480    First->OperatorDelete = OD;
2481    First->OperatorDeleteThisArg = ThisArg;
2482    if (auto *L = getASTMutationListener())
2483      L->ResolvedOperatorDelete(First, OD, ThisArg);
2484  }
2485}
2486
2487void CXXConversionDecl::anchor() {}
2488
2489CXXConversionDecl *
2490CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2491  return new (C, ID) CXXConversionDecl(C, nullptr, SourceLocation(),
2492                                       DeclarationNameInfo(), QualType(),
2493                                       nullptr, false, false, false,
2494                                       SourceLocation());
2495}
2496
2497CXXConversionDecl *
2498CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
2499                          SourceLocation StartLoc,
2500                          const DeclarationNameInfo &NameInfo,
2501                          QualType T, TypeSourceInfo *TInfo,
2502                          bool isInline, bool isExplicit,
2503                          bool isConstexpr, SourceLocation EndLocation) {
2504  assert(NameInfo.getName().getNameKind()
2505         == DeclarationName::CXXConversionFunctionName &&
2506         "Name must refer to a conversion function");
2507  return new (C, RD) CXXConversionDecl(C, RD, StartLoc, NameInfo, T, TInfo,
2508                                       isInline, isExplicit, isConstexpr,
2509                                       EndLocation);
2510}
2511
2512bool CXXConversionDecl::isLambdaToBlockPointerConversion() const {
2513  return isImplicit() && getParent()->isLambda() &&
2514         getConversionType()->isBlockPointerType();
2515}
2516
2517LinkageSpecDecl::LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
2518                                 SourceLocation LangLoc, LanguageIDs lang,
2519                                 bool HasBraces)
2520    : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec),
2521      ExternLoc(ExternLoc), RBraceLoc(SourceLocation()) {
2522  setLanguage(lang);
2523  LinkageSpecDeclBits.HasBraces = HasBraces;
2524}
2525
2526void LinkageSpecDecl::anchor() {}
2527
2528LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
2529                                         DeclContext *DC,
2530                                         SourceLocation ExternLoc,
2531                                         SourceLocation LangLoc,
2532                                         LanguageIDs Lang,
2533                                         bool HasBraces) {
2534  return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces);
2535}
2536
2537LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C,
2538                                                     unsigned ID) {
2539  return new (C, ID) LinkageSpecDecl(nullptr, SourceLocation(),
2540                                     SourceLocation(), lang_c, false);
2541}
2542
2543void UsingDirectiveDecl::anchor() {}
2544
2545UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
2546                                               SourceLocation L,
2547                                               SourceLocation NamespaceLoc,
2548                                           NestedNameSpecifierLoc QualifierLoc,
2549                                               SourceLocation IdentLoc,
2550                                               NamedDecl *Used,
2551                                               DeclContext *CommonAncestor) {
2552  if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Used))
2553    Used = NS->getOriginalNamespace();
2554  return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
2555                                        IdentLoc, Used, CommonAncestor);
2556}
2557
2558UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C,
2559                                                           unsigned ID) {
2560  return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(),
2561                                        SourceLocation(),
2562                                        NestedNameSpecifierLoc(),
2563                                        SourceLocation(), nullptr, nullptr);
2564}
2565
2566NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
2567  if (auto *NA = dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
2568    return NA->getNamespace();
2569  return cast_or_null<NamespaceDecl>(NominatedNamespace);
2570}
2571
2572NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
2573                             SourceLocation StartLoc, SourceLocation IdLoc,
2574                             IdentifierInfo *Id, NamespaceDecl *PrevDecl)
2575    : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace),
2576      redeclarable_base(C), LocStart(StartLoc),
2577      AnonOrFirstNamespaceAndInline(nullptr, Inline) {
2578  setPreviousDecl(PrevDecl);
2579
2580  if (PrevDecl)
2581    AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace());
2582}
2583
2584NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
2585                                     bool Inline, SourceLocation StartLoc,
2586                                     SourceLocation IdLoc, IdentifierInfo *Id,
2587                                     NamespaceDecl *PrevDecl) {
2588  return new (C, DC) NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id,
2589                                   PrevDecl);
2590}
2591
2592NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2593  return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(),
2594                                   SourceLocation(), nullptr, nullptr);
2595}
2596
2597NamespaceDecl *NamespaceDecl::getOriginalNamespace() {
2598  if (isFirstDecl())
2599    return this;
2600
2601  return AnonOrFirstNamespaceAndInline.getPointer();
2602}
2603
2604const NamespaceDecl *NamespaceDecl::getOriginalNamespace() const {
2605  if (isFirstDecl())
2606    return this;
2607
2608  return AnonOrFirstNamespaceAndInline.getPointer();
2609}
2610
2611bool NamespaceDecl::isOriginalNamespace() const { return isFirstDecl(); }
2612
2613NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() {
2614  return getNextRedeclaration();
2615}
2616
2617NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() {
2618  return getPreviousDecl();
2619}
2620
2621NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() {
2622  return getMostRecentDecl();
2623}
2624
2625void NamespaceAliasDecl::anchor() {}
2626
2627NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() {
2628  return getNextRedeclaration();
2629}
2630
2631NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() {
2632  return getPreviousDecl();
2633}
2634
2635NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() {
2636  return getMostRecentDecl();
2637}
2638
2639NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
2640                                               SourceLocation UsingLoc,
2641                                               SourceLocation AliasLoc,
2642                                               IdentifierInfo *Alias,
2643                                           NestedNameSpecifierLoc QualifierLoc,
2644                                               SourceLocation IdentLoc,
2645                                               NamedDecl *Namespace) {
2646  // FIXME: Preserve the aliased namespace as written.
2647  if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
2648    Namespace = NS->getOriginalNamespace();
2649  return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias,
2650                                        QualifierLoc, IdentLoc, Namespace);
2651}
2652
2653NamespaceAliasDecl *
2654NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2655  return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(),
2656                                        SourceLocation(), nullptr,
2657                                        NestedNameSpecifierLoc(),
2658                                        SourceLocation(), nullptr);
2659}
2660
2661void UsingShadowDecl::anchor() {}
2662
2663UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC,
2664                                 SourceLocation Loc, UsingDecl *Using,
2665                                 NamedDecl *Target)
2666    : NamedDecl(K, DC, Loc, Using ? Using->getDeclName() : DeclarationName()),
2667      redeclarable_base(C), UsingOrNextShadow(cast<NamedDecl>(Using)) {
2668  if (Target)
2669    setTargetDecl(Target);
2670  setImplicit();
2671}
2672
2673UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, EmptyShell Empty)
2674    : NamedDecl(K, nullptr, SourceLocation(), DeclarationName()),
2675      redeclarable_base(C) {}
2676
2677UsingShadowDecl *
2678UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2679  return new (C, ID) UsingShadowDecl(UsingShadow, C, EmptyShell());
2680}
2681
2682UsingDecl *UsingShadowDecl::getUsingDecl() const {
2683  const UsingShadowDecl *Shadow = this;
2684  while (const auto *NextShadow =
2685             dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
2686    Shadow = NextShadow;
2687  return cast<UsingDecl>(Shadow->UsingOrNextShadow);
2688}
2689
2690void ConstructorUsingShadowDecl::anchor() {}
2691
2692ConstructorUsingShadowDecl *
2693ConstructorUsingShadowDecl::Create(ASTContext &C, DeclContext *DC,
2694                                   SourceLocation Loc, UsingDecl *Using,
2695                                   NamedDecl *Target, bool IsVirtual) {
2696  return new (C, DC) ConstructorUsingShadowDecl(C, DC, Loc, Using, Target,
2697                                                IsVirtual);
2698}
2699
2700ConstructorUsingShadowDecl *
2701ConstructorUsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2702  return new (C, ID) ConstructorUsingShadowDecl(C, EmptyShell());
2703}
2704
2705CXXRecordDecl *ConstructorUsingShadowDecl::getNominatedBaseClass() const {
2706  return getUsingDecl()->getQualifier()->getAsRecordDecl();
2707}
2708
2709void UsingDecl::anchor() {}
2710
2711void UsingDecl::addShadowDecl(UsingShadowDecl *S) {
2712  assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() &&
2713         "declaration already in set");
2714  assert(S->getUsingDecl() == this);
2715
2716  if (FirstUsingShadow.getPointer())
2717    S->UsingOrNextShadow = FirstUsingShadow.getPointer();
2718  FirstUsingShadow.setPointer(S);
2719}
2720
2721void UsingDecl::removeShadowDecl(UsingShadowDecl *S) {
2722  assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() &&
2723         "declaration not in set");
2724  assert(S->getUsingDecl() == this);
2725
2726  // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
2727
2728  if (FirstUsingShadow.getPointer() == S) {
2729    FirstUsingShadow.setPointer(
2730      dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow));
2731    S->UsingOrNextShadow = this;
2732    return;
2733  }
2734
2735  UsingShadowDecl *Prev = FirstUsingShadow.getPointer();
2736  while (Prev->UsingOrNextShadow != S)
2737    Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
2738  Prev->UsingOrNextShadow = S->UsingOrNextShadow;
2739  S->UsingOrNextShadow = this;
2740}
2741
2742UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
2743                             NestedNameSpecifierLoc QualifierLoc,
2744                             const DeclarationNameInfo &NameInfo,
2745                             bool HasTypename) {
2746  return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename);
2747}
2748
2749UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2750  return new (C, ID) UsingDecl(nullptr, SourceLocation(),
2751                               NestedNameSpecifierLoc(), DeclarationNameInfo(),
2752                               false);
2753}
2754
2755SourceRange UsingDecl::getSourceRange() const {
2756  SourceLocation Begin = isAccessDeclaration()
2757    ? getQualifierLoc().getBeginLoc() : UsingLocation;
2758  return SourceRange(Begin, getNameInfo().getEndLoc());
2759}
2760
2761void UsingPackDecl::anchor() {}
2762
2763UsingPackDecl *UsingPackDecl::Create(ASTContext &C, DeclContext *DC,
2764                                     NamedDecl *InstantiatedFrom,
2765                                     ArrayRef<NamedDecl *> UsingDecls) {
2766  size_t Extra = additionalSizeToAlloc<NamedDecl *>(UsingDecls.size());
2767  return new (C, DC, Extra) UsingPackDecl(DC, InstantiatedFrom, UsingDecls);
2768}
2769
2770UsingPackDecl *UsingPackDecl::CreateDeserialized(ASTContext &C, unsigned ID,
2771                                                 unsigned NumExpansions) {
2772  size_t Extra = additionalSizeToAlloc<NamedDecl *>(NumExpansions);
2773  auto *Result = new (C, ID, Extra) UsingPackDecl(nullptr, nullptr, None);
2774  Result->NumExpansions = NumExpansions;
2775  auto *Trail = Result->getTrailingObjects<NamedDecl *>();
2776  for (unsigned I = 0; I != NumExpansions; ++I)
2777    new (Trail + I) NamedDecl*(nullptr);
2778  return Result;
2779}
2780
2781void UnresolvedUsingValueDecl::anchor() {}
2782
2783UnresolvedUsingValueDecl *
2784UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
2785                                 SourceLocation UsingLoc,
2786                                 NestedNameSpecifierLoc QualifierLoc,
2787                                 const DeclarationNameInfo &NameInfo,
2788                                 SourceLocation EllipsisLoc) {
2789  return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
2790                                              QualifierLoc, NameInfo,
2791                                              EllipsisLoc);
2792}
2793
2794UnresolvedUsingValueDecl *
2795UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2796  return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(),
2797                                              SourceLocation(),
2798                                              NestedNameSpecifierLoc(),
2799                                              DeclarationNameInfo(),
2800                                              SourceLocation());
2801}
2802
2803SourceRange UnresolvedUsingValueDecl::getSourceRange() const {
2804  SourceLocation Begin = isAccessDeclaration()
2805    ? getQualifierLoc().getBeginLoc() : UsingLocation;
2806  return SourceRange(Begin, getNameInfo().getEndLoc());
2807}
2808
2809void UnresolvedUsingTypenameDecl::anchor() {}
2810
2811UnresolvedUsingTypenameDecl *
2812UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
2813                                    SourceLocation UsingLoc,
2814                                    SourceLocation TypenameLoc,
2815                                    NestedNameSpecifierLoc QualifierLoc,
2816                                    SourceLocation TargetNameLoc,
2817                                    DeclarationName TargetName,
2818                                    SourceLocation EllipsisLoc) {
2819  return new (C, DC) UnresolvedUsingTypenameDecl(
2820      DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc,
2821      TargetName.getAsIdentifierInfo(), EllipsisLoc);
2822}
2823
2824UnresolvedUsingTypenameDecl *
2825UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2826  return new (C, ID) UnresolvedUsingTypenameDecl(
2827      nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(),
2828      SourceLocation(), nullptr, SourceLocation());
2829}
2830
2831void StaticAssertDecl::anchor() {}
2832
2833StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
2834                                           SourceLocation StaticAssertLoc,
2835                                           Expr *AssertExpr,
2836                                           StringLiteral *Message,
2837                                           SourceLocation RParenLoc,
2838                                           bool Failed) {
2839  return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
2840                                      RParenLoc, Failed);
2841}
2842
2843StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C,
2844                                                       unsigned ID) {
2845  return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr,
2846                                      nullptr, SourceLocation(), false);
2847}
2848
2849void BindingDecl::anchor() {}
2850
2851BindingDecl *BindingDecl::Create(ASTContext &C, DeclContext *DC,
2852                                 SourceLocation IdLoc, IdentifierInfo *Id) {
2853  return new (C, DC) BindingDecl(DC, IdLoc, Id);
2854}
2855
2856BindingDecl *BindingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2857  return new (C, ID) BindingDecl(nullptr, SourceLocation(), nullptr);
2858}
2859
2860VarDecl *BindingDecl::getHoldingVar() const {
2861  Expr *B = getBinding();
2862  if (!B)
2863    return nullptr;
2864  auto *DRE = dyn_cast<DeclRefExpr>(B->IgnoreImplicit());
2865  if (!DRE)
2866    return nullptr;
2867
2868  auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
2869  assert(VD->isImplicit() && "holding var for binding decl not implicit");
2870  return VD;
2871}
2872
2873void DecompositionDecl::anchor() {}
2874
2875DecompositionDecl *DecompositionDecl::Create(ASTContext &C, DeclContext *DC,
2876                                             SourceLocation StartLoc,
2877                                             SourceLocation LSquareLoc,
2878                                             QualType T, TypeSourceInfo *TInfo,
2879                                             StorageClass SC,
2880                                             ArrayRef<BindingDecl *> Bindings) {
2881  size_t Extra = additionalSizeToAlloc<BindingDecl *>(Bindings.size());
2882  return new (C, DC, Extra)
2883      DecompositionDecl(C, DC, StartLoc, LSquareLoc, T, TInfo, SC, Bindings);
2884}
2885
2886DecompositionDecl *DecompositionDecl::CreateDeserialized(ASTContext &C,
2887                                                         unsigned ID,
2888                                                         unsigned NumBindings) {
2889  size_t Extra = additionalSizeToAlloc<BindingDecl *>(NumBindings);
2890  auto *Result = new (C, ID, Extra)
2891      DecompositionDecl(C, nullptr, SourceLocation(), SourceLocation(),
2892                        QualType(), nullptr, StorageClass(), None);
2893  // Set up and clean out the bindings array.
2894  Result->NumBindings = NumBindings;
2895  auto *Trail = Result->getTrailingObjects<BindingDecl *>();
2896  for (unsigned I = 0; I != NumBindings; ++I)
2897    new (Trail + I) BindingDecl*(nullptr);
2898  return Result;
2899}
2900
2901void DecompositionDecl::printName(llvm::raw_ostream &os) const {
2902  os << '[';
2903  bool Comma = false;
2904  for (const auto *B : bindings()) {
2905    if (Comma)
2906      os << ", ";
2907    B->printName(os);
2908    Comma = true;
2909  }
2910  os << ']';
2911}
2912
2913void MSPropertyDecl::anchor() {}
2914
2915MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC,
2916                                       SourceLocation L, DeclarationName N,
2917                                       QualType T, TypeSourceInfo *TInfo,
2918                                       SourceLocation StartL,
2919                                       IdentifierInfo *Getter,
2920                                       IdentifierInfo *Setter) {
2921  return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter);
2922}
2923
2924MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C,
2925                                                   unsigned ID) {
2926  return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(),
2927                                    DeclarationName(), QualType(), nullptr,
2928                                    SourceLocation(), nullptr, nullptr);
2929}
2930
2931static const char *getAccessName(AccessSpecifier AS) {
2932  switch (AS) {
2933    case AS_none:
2934      llvm_unreachable("Invalid access specifier!");
2935    case AS_public:
2936      return "public";
2937    case AS_private:
2938      return "private";
2939    case AS_protected:
2940      return "protected";
2941  }
2942  llvm_unreachable("Invalid access specifier!");
2943}
2944
2945const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
2946                                           AccessSpecifier AS) {
2947  return DB << getAccessName(AS);
2948}
2949
2950const PartialDiagnostic &clang::operator<<(const PartialDiagnostic &DB,
2951                                           AccessSpecifier AS) {
2952  return DB << getAccessName(AS);
2953}
2954