DeclCXX.cpp revision 327952
1//===- DeclCXX.cpp - C++ Declaration AST Node Implementation --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the C++ related Decl classes.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/DeclCXX.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTLambda.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/ASTUnresolvedSet.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclBase.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/DeclarationName.h"
23#include "clang/AST/Expr.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/LambdaCapture.h"
26#include "clang/AST/NestedNameSpecifier.h"
27#include "clang/AST/ODRHash.h"
28#include "clang/AST/Type.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/AST/UnresolvedSet.h"
31#include "clang/Basic/Diagnostic.h"
32#include "clang/Basic/IdentifierTable.h"
33#include "clang/Basic/LLVM.h"
34#include "clang/Basic/LangOptions.h"
35#include "clang/Basic/OperatorKinds.h"
36#include "clang/Basic/PartialDiagnostic.h"
37#include "clang/Basic/SourceLocation.h"
38#include "clang/Basic/Specifiers.h"
39#include "llvm/ADT/None.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/SmallVector.h"
42#include "llvm/ADT/iterator_range.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/raw_ostream.h"
46#include <algorithm>
47#include <cassert>
48#include <cstddef>
49#include <cstdint>
50
51using namespace clang;
52
53//===----------------------------------------------------------------------===//
54// Decl Allocation/Deallocation Method Implementations
55//===----------------------------------------------------------------------===//
56
57void AccessSpecDecl::anchor() {}
58
59AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
60  return new (C, ID) AccessSpecDecl(EmptyShell());
61}
62
63void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const {
64  ExternalASTSource *Source = C.getExternalSource();
65  assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set");
66  assert(Source && "getFromExternalSource with no external source");
67
68  for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I)
69    I.setDecl(cast<NamedDecl>(Source->GetExternalDecl(
70        reinterpret_cast<uintptr_t>(I.getDecl()) >> 2)));
71  Impl.Decls.setLazy(false);
72}
73
74CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
75    : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0),
76      Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
77      Abstract(false), IsStandardLayout(true), HasNoNonEmptyBases(true),
78      HasPrivateFields(false), HasProtectedFields(false),
79      HasPublicFields(false), HasMutableFields(false), HasVariantMembers(false),
80      HasOnlyCMembers(true), HasInClassInitializer(false),
81      HasUninitializedReferenceMember(false), HasUninitializedFields(false),
82      HasInheritedConstructor(false), HasInheritedAssignment(false),
83      NeedOverloadResolutionForCopyConstructor(false),
84      NeedOverloadResolutionForMoveConstructor(false),
85      NeedOverloadResolutionForMoveAssignment(false),
86      NeedOverloadResolutionForDestructor(false),
87      DefaultedCopyConstructorIsDeleted(false),
88      DefaultedMoveConstructorIsDeleted(false),
89      DefaultedMoveAssignmentIsDeleted(false),
90      DefaultedDestructorIsDeleted(false), HasTrivialSpecialMembers(SMF_All),
91      DeclaredNonTrivialSpecialMembers(0), HasIrrelevantDestructor(true),
92      HasConstexprNonCopyMoveConstructor(false),
93      HasDefaultedDefaultConstructor(false),
94      CanPassInRegisters(true),
95      DefaultedDefaultConstructorIsConstexpr(true),
96      HasConstexprDefaultConstructor(false),
97      HasNonLiteralTypeFieldsOrBases(false), ComputedVisibleConversions(false),
98      UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0),
99      ImplicitCopyConstructorCanHaveConstParamForVBase(true),
100      ImplicitCopyConstructorCanHaveConstParamForNonVBase(true),
101      ImplicitCopyAssignmentHasConstParam(true),
102      HasDeclaredCopyConstructorWithConstParam(false),
103      HasDeclaredCopyAssignmentWithConstParam(false), IsLambda(false),
104      IsParsingBaseSpecifiers(false), HasODRHash(false), Definition(D) {}
105
106CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const {
107  return Bases.get(Definition->getASTContext().getExternalSource());
108}
109
110CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const {
111  return VBases.get(Definition->getASTContext().getExternalSource());
112}
113
114CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C,
115                             DeclContext *DC, SourceLocation StartLoc,
116                             SourceLocation IdLoc, IdentifierInfo *Id,
117                             CXXRecordDecl *PrevDecl)
118    : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl),
119      DefinitionData(PrevDecl ? PrevDecl->DefinitionData
120                              : nullptr) {}
121
122CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
123                                     DeclContext *DC, SourceLocation StartLoc,
124                                     SourceLocation IdLoc, IdentifierInfo *Id,
125                                     CXXRecordDecl *PrevDecl,
126                                     bool DelayTypeCreation) {
127  CXXRecordDecl *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc,
128                                               IdLoc, Id, PrevDecl);
129  R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
130
131  // FIXME: DelayTypeCreation seems like such a hack
132  if (!DelayTypeCreation)
133    C.getTypeDeclType(R, PrevDecl);
134  return R;
135}
136
137CXXRecordDecl *
138CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC,
139                            TypeSourceInfo *Info, SourceLocation Loc,
140                            bool Dependent, bool IsGeneric,
141                            LambdaCaptureDefault CaptureDefault) {
142  CXXRecordDecl *R =
143      new (C, DC) CXXRecordDecl(CXXRecord, TTK_Class, C, DC, Loc, Loc,
144                                nullptr, nullptr);
145  R->IsBeingDefined = true;
146  R->DefinitionData =
147      new (C) struct LambdaDefinitionData(R, Info, Dependent, IsGeneric,
148                                          CaptureDefault);
149  R->MayHaveOutOfDateDef = false;
150  R->setImplicit(true);
151  C.getTypeDeclType(R, /*PrevDecl=*/nullptr);
152  return R;
153}
154
155CXXRecordDecl *
156CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
157  CXXRecordDecl *R = new (C, ID) CXXRecordDecl(
158      CXXRecord, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(),
159      nullptr, nullptr);
160  R->MayHaveOutOfDateDef = false;
161  return R;
162}
163
164void
165CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
166                        unsigned NumBases) {
167  ASTContext &C = getASTContext();
168
169  if (!data().Bases.isOffset() && data().NumBases > 0)
170    C.Deallocate(data().getBases());
171
172  if (NumBases) {
173    if (!C.getLangOpts().CPlusPlus17) {
174      // C++ [dcl.init.aggr]p1:
175      //   An aggregate is [...] a class with [...] no base classes [...].
176      data().Aggregate = false;
177    }
178
179    // C++ [class]p4:
180    //   A POD-struct is an aggregate class...
181    data().PlainOldData = false;
182  }
183
184  // The set of seen virtual base types.
185  llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
186
187  // The virtual bases of this class.
188  SmallVector<const CXXBaseSpecifier *, 8> VBases;
189
190  data().Bases = new(C) CXXBaseSpecifier [NumBases];
191  data().NumBases = NumBases;
192  for (unsigned i = 0; i < NumBases; ++i) {
193    data().getBases()[i] = *Bases[i];
194    // Keep track of inherited vbases for this base class.
195    const CXXBaseSpecifier *Base = Bases[i];
196    QualType BaseType = Base->getType();
197    // Skip dependent types; we can't do any checking on them now.
198    if (BaseType->isDependentType())
199      continue;
200    CXXRecordDecl *BaseClassDecl
201      = cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
202
203    if (!BaseClassDecl->isEmpty()) {
204      if (!data().Empty) {
205        // C++0x [class]p7:
206        //   A standard-layout class is a class that:
207        //    [...]
208        //    -- either has no non-static data members in the most derived
209        //       class and at most one base class with non-static data members,
210        //       or has no base classes with non-static data members, and
211        // If this is the second non-empty base, then neither of these two
212        // clauses can be true.
213        data().IsStandardLayout = false;
214      }
215
216      // C++14 [meta.unary.prop]p4:
217      //   T is a class type [...] with [...] no base class B for which
218      //   is_empty<B>::value is false.
219      data().Empty = false;
220      data().HasNoNonEmptyBases = false;
221    }
222
223    // C++1z [dcl.init.agg]p1:
224    //   An aggregate is a class with [...] no private or protected base classes
225    if (Base->getAccessSpecifier() != AS_public)
226      data().Aggregate = false;
227
228    // C++ [class.virtual]p1:
229    //   A class that declares or inherits a virtual function is called a
230    //   polymorphic class.
231    if (BaseClassDecl->isPolymorphic())
232      data().Polymorphic = true;
233
234    // C++0x [class]p7:
235    //   A standard-layout class is a class that: [...]
236    //    -- has no non-standard-layout base classes
237    if (!BaseClassDecl->isStandardLayout())
238      data().IsStandardLayout = false;
239
240    // Record if this base is the first non-literal field or base.
241    if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C))
242      data().HasNonLiteralTypeFieldsOrBases = true;
243
244    // Now go through all virtual bases of this base and add them.
245    for (const auto &VBase : BaseClassDecl->vbases()) {
246      // Add this base if it's not already in the list.
247      if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType())).second) {
248        VBases.push_back(&VBase);
249
250        // C++11 [class.copy]p8:
251        //   The implicitly-declared copy constructor for a class X will have
252        //   the form 'X::X(const X&)' if each [...] virtual base class B of X
253        //   has a copy constructor whose first parameter is of type
254        //   'const B&' or 'const volatile B&' [...]
255        if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl())
256          if (!VBaseDecl->hasCopyConstructorWithConstParam())
257            data().ImplicitCopyConstructorCanHaveConstParamForVBase = false;
258
259        // C++1z [dcl.init.agg]p1:
260        //   An aggregate is a class with [...] no virtual base classes
261        data().Aggregate = false;
262      }
263    }
264
265    if (Base->isVirtual()) {
266      // Add this base if it's not already in the list.
267      if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)).second)
268        VBases.push_back(Base);
269
270      // C++14 [meta.unary.prop] is_empty:
271      //   T is a class type, but not a union type, with ... no virtual base
272      //   classes
273      data().Empty = false;
274
275      // C++1z [dcl.init.agg]p1:
276      //   An aggregate is a class with [...] no virtual base classes
277      data().Aggregate = false;
278
279      // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
280      //   A [default constructor, copy/move constructor, or copy/move assignment
281      //   operator for a class X] is trivial [...] if:
282      //    -- class X has [...] no virtual base classes
283      data().HasTrivialSpecialMembers &= SMF_Destructor;
284
285      // C++0x [class]p7:
286      //   A standard-layout class is a class that: [...]
287      //    -- has [...] no virtual base classes
288      data().IsStandardLayout = false;
289
290      // C++11 [dcl.constexpr]p4:
291      //   In the definition of a constexpr constructor [...]
292      //    -- the class shall not have any virtual base classes
293      data().DefaultedDefaultConstructorIsConstexpr = false;
294
295      // C++1z [class.copy]p8:
296      //   The implicitly-declared copy constructor for a class X will have
297      //   the form 'X::X(const X&)' if each potentially constructed subobject
298      //   has a copy constructor whose first parameter is of type
299      //   'const B&' or 'const volatile B&' [...]
300      if (!BaseClassDecl->hasCopyConstructorWithConstParam())
301        data().ImplicitCopyConstructorCanHaveConstParamForVBase = false;
302    } else {
303      // C++ [class.ctor]p5:
304      //   A default constructor is trivial [...] if:
305      //    -- all the direct base classes of its class have trivial default
306      //       constructors.
307      if (!BaseClassDecl->hasTrivialDefaultConstructor())
308        data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
309
310      // C++0x [class.copy]p13:
311      //   A copy/move constructor for class X is trivial if [...]
312      //    [...]
313      //    -- the constructor selected to copy/move each direct base class
314      //       subobject is trivial, and
315      if (!BaseClassDecl->hasTrivialCopyConstructor())
316        data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
317      // If the base class doesn't have a simple move constructor, we'll eagerly
318      // declare it and perform overload resolution to determine which function
319      // it actually calls. If it does have a simple move constructor, this
320      // check is correct.
321      if (!BaseClassDecl->hasTrivialMoveConstructor())
322        data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
323
324      // C++0x [class.copy]p27:
325      //   A copy/move assignment operator for class X is trivial if [...]
326      //    [...]
327      //    -- the assignment operator selected to copy/move each direct base
328      //       class subobject is trivial, and
329      if (!BaseClassDecl->hasTrivialCopyAssignment())
330        data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
331      // If the base class doesn't have a simple move assignment, we'll eagerly
332      // declare it and perform overload resolution to determine which function
333      // it actually calls. If it does have a simple move assignment, this
334      // check is correct.
335      if (!BaseClassDecl->hasTrivialMoveAssignment())
336        data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
337
338      // C++11 [class.ctor]p6:
339      //   If that user-written default constructor would satisfy the
340      //   requirements of a constexpr constructor, the implicitly-defined
341      //   default constructor is constexpr.
342      if (!BaseClassDecl->hasConstexprDefaultConstructor())
343        data().DefaultedDefaultConstructorIsConstexpr = false;
344
345      // C++1z [class.copy]p8:
346      //   The implicitly-declared copy constructor for a class X will have
347      //   the form 'X::X(const X&)' if each potentially constructed subobject
348      //   has a copy constructor whose first parameter is of type
349      //   'const B&' or 'const volatile B&' [...]
350      if (!BaseClassDecl->hasCopyConstructorWithConstParam())
351        data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false;
352    }
353
354    // C++ [class.ctor]p3:
355    //   A destructor is trivial if all the direct base classes of its class
356    //   have trivial destructors.
357    if (!BaseClassDecl->hasTrivialDestructor())
358      data().HasTrivialSpecialMembers &= ~SMF_Destructor;
359
360    if (!BaseClassDecl->hasIrrelevantDestructor())
361      data().HasIrrelevantDestructor = false;
362
363    // C++11 [class.copy]p18:
364    //   The implicitly-declared copy assignment oeprator for a class X will
365    //   have the form 'X& X::operator=(const X&)' if each direct base class B
366    //   of X has a copy assignment operator whose parameter is of type 'const
367    //   B&', 'const volatile B&', or 'B' [...]
368    if (!BaseClassDecl->hasCopyAssignmentWithConstParam())
369      data().ImplicitCopyAssignmentHasConstParam = false;
370
371    // A class has an Objective-C object member if... or any of its bases
372    // has an Objective-C object member.
373    if (BaseClassDecl->hasObjectMember())
374      setHasObjectMember(true);
375
376    if (BaseClassDecl->hasVolatileMember())
377      setHasVolatileMember(true);
378
379    // Keep track of the presence of mutable fields.
380    if (BaseClassDecl->hasMutableFields()) {
381      data().HasMutableFields = true;
382      data().NeedOverloadResolutionForCopyConstructor = true;
383    }
384
385    if (BaseClassDecl->hasUninitializedReferenceMember())
386      data().HasUninitializedReferenceMember = true;
387
388    if (!BaseClassDecl->allowConstDefaultInit())
389      data().HasUninitializedFields = true;
390
391    addedClassSubobject(BaseClassDecl);
392  }
393
394  if (VBases.empty()) {
395    data().IsParsingBaseSpecifiers = false;
396    return;
397  }
398
399  // Create base specifier for any direct or indirect virtual bases.
400  data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
401  data().NumVBases = VBases.size();
402  for (int I = 0, E = VBases.size(); I != E; ++I) {
403    QualType Type = VBases[I]->getType();
404    if (!Type->isDependentType())
405      addedClassSubobject(Type->getAsCXXRecordDecl());
406    data().getVBases()[I] = *VBases[I];
407  }
408
409  data().IsParsingBaseSpecifiers = false;
410}
411
412unsigned CXXRecordDecl::getODRHash() const {
413  assert(hasDefinition() && "ODRHash only for records with definitions");
414
415  // Previously calculated hash is stored in DefinitionData.
416  if (DefinitionData->HasODRHash)
417    return DefinitionData->ODRHash;
418
419  // Only calculate hash on first call of getODRHash per record.
420  ODRHash Hash;
421  Hash.AddCXXRecordDecl(getDefinition());
422  DefinitionData->HasODRHash = true;
423  DefinitionData->ODRHash = Hash.CalculateHash();
424
425  return DefinitionData->ODRHash;
426}
427
428void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) {
429  // C++11 [class.copy]p11:
430  //   A defaulted copy/move constructor for a class X is defined as
431  //   deleted if X has:
432  //    -- a direct or virtual base class B that cannot be copied/moved [...]
433  //    -- a non-static data member of class type M (or array thereof)
434  //       that cannot be copied or moved [...]
435  if (!Subobj->hasSimpleCopyConstructor())
436    data().NeedOverloadResolutionForCopyConstructor = true;
437  if (!Subobj->hasSimpleMoveConstructor())
438    data().NeedOverloadResolutionForMoveConstructor = true;
439
440  // C++11 [class.copy]p23:
441  //   A defaulted copy/move assignment operator for a class X is defined as
442  //   deleted if X has:
443  //    -- a direct or virtual base class B that cannot be copied/moved [...]
444  //    -- a non-static data member of class type M (or array thereof)
445  //        that cannot be copied or moved [...]
446  if (!Subobj->hasSimpleMoveAssignment())
447    data().NeedOverloadResolutionForMoveAssignment = true;
448
449  // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
450  //   A defaulted [ctor or dtor] for a class X is defined as
451  //   deleted if X has:
452  //    -- any direct or virtual base class [...] has a type with a destructor
453  //       that is deleted or inaccessible from the defaulted [ctor or dtor].
454  //    -- any non-static data member has a type with a destructor
455  //       that is deleted or inaccessible from the defaulted [ctor or dtor].
456  if (!Subobj->hasSimpleDestructor()) {
457    data().NeedOverloadResolutionForCopyConstructor = true;
458    data().NeedOverloadResolutionForMoveConstructor = true;
459    data().NeedOverloadResolutionForDestructor = true;
460  }
461}
462
463bool CXXRecordDecl::hasAnyDependentBases() const {
464  if (!isDependentContext())
465    return false;
466
467  return !forallBases([](const CXXRecordDecl *) { return true; });
468}
469
470bool CXXRecordDecl::isTriviallyCopyable() const {
471  // C++0x [class]p5:
472  //   A trivially copyable class is a class that:
473  //   -- has no non-trivial copy constructors,
474  if (hasNonTrivialCopyConstructor()) return false;
475  //   -- has no non-trivial move constructors,
476  if (hasNonTrivialMoveConstructor()) return false;
477  //   -- has no non-trivial copy assignment operators,
478  if (hasNonTrivialCopyAssignment()) return false;
479  //   -- has no non-trivial move assignment operators, and
480  if (hasNonTrivialMoveAssignment()) return false;
481  //   -- has a trivial destructor.
482  if (!hasTrivialDestructor()) return false;
483
484  return true;
485}
486
487void CXXRecordDecl::markedVirtualFunctionPure() {
488  // C++ [class.abstract]p2:
489  //   A class is abstract if it has at least one pure virtual function.
490  data().Abstract = true;
491}
492
493void CXXRecordDecl::addedMember(Decl *D) {
494  if (!D->isImplicit() &&
495      !isa<FieldDecl>(D) &&
496      !isa<IndirectFieldDecl>(D) &&
497      (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class ||
498        cast<TagDecl>(D)->getTagKind() == TTK_Interface))
499    data().HasOnlyCMembers = false;
500
501  // Ignore friends and invalid declarations.
502  if (D->getFriendObjectKind() || D->isInvalidDecl())
503    return;
504
505  FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
506  if (FunTmpl)
507    D = FunTmpl->getTemplatedDecl();
508
509  // FIXME: Pass NamedDecl* to addedMember?
510  Decl *DUnderlying = D;
511  if (auto *ND = dyn_cast<NamedDecl>(DUnderlying)) {
512    DUnderlying = ND->getUnderlyingDecl();
513    if (FunctionTemplateDecl *UnderlyingFunTmpl =
514            dyn_cast<FunctionTemplateDecl>(DUnderlying))
515      DUnderlying = UnderlyingFunTmpl->getTemplatedDecl();
516  }
517
518  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
519    if (Method->isVirtual()) {
520      // C++ [dcl.init.aggr]p1:
521      //   An aggregate is an array or a class with [...] no virtual functions.
522      data().Aggregate = false;
523
524      // C++ [class]p4:
525      //   A POD-struct is an aggregate class...
526      data().PlainOldData = false;
527
528      // C++14 [meta.unary.prop]p4:
529      //   T is a class type [...] with [...] no virtual member functions...
530      data().Empty = false;
531
532      // C++ [class.virtual]p1:
533      //   A class that declares or inherits a virtual function is called a
534      //   polymorphic class.
535      data().Polymorphic = true;
536
537      // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
538      //   A [default constructor, copy/move constructor, or copy/move
539      //   assignment operator for a class X] is trivial [...] if:
540      //    -- class X has no virtual functions [...]
541      data().HasTrivialSpecialMembers &= SMF_Destructor;
542
543      // C++0x [class]p7:
544      //   A standard-layout class is a class that: [...]
545      //    -- has no virtual functions
546      data().IsStandardLayout = false;
547    }
548  }
549
550  // Notify the listener if an implicit member was added after the definition
551  // was completed.
552  if (!isBeingDefined() && D->isImplicit())
553    if (ASTMutationListener *L = getASTMutationListener())
554      L->AddedCXXImplicitMember(data().Definition, D);
555
556  // The kind of special member this declaration is, if any.
557  unsigned SMKind = 0;
558
559  // Handle constructors.
560  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
561    if (!Constructor->isImplicit()) {
562      // Note that we have a user-declared constructor.
563      data().UserDeclaredConstructor = true;
564
565      // C++ [class]p4:
566      //   A POD-struct is an aggregate class [...]
567      // Since the POD bit is meant to be C++03 POD-ness, clear it even if the
568      // type is technically an aggregate in C++0x since it wouldn't be in 03.
569      data().PlainOldData = false;
570    }
571
572    if (Constructor->isDefaultConstructor()) {
573      SMKind |= SMF_DefaultConstructor;
574
575      if (Constructor->isUserProvided())
576        data().UserProvidedDefaultConstructor = true;
577      if (Constructor->isConstexpr())
578        data().HasConstexprDefaultConstructor = true;
579      if (Constructor->isDefaulted())
580        data().HasDefaultedDefaultConstructor = true;
581    }
582
583    if (!FunTmpl) {
584      unsigned Quals;
585      if (Constructor->isCopyConstructor(Quals)) {
586        SMKind |= SMF_CopyConstructor;
587
588        if (Quals & Qualifiers::Const)
589          data().HasDeclaredCopyConstructorWithConstParam = true;
590      } else if (Constructor->isMoveConstructor())
591        SMKind |= SMF_MoveConstructor;
592    }
593
594    // C++11 [dcl.init.aggr]p1: DR1518
595    //   An aggregate is an array or a class with no user-provided, explicit, or
596    //   inherited constructors
597    if (Constructor->isUserProvided() || Constructor->isExplicit())
598      data().Aggregate = false;
599  }
600
601  // Handle constructors, including those inherited from base classes.
602  if (CXXConstructorDecl *Constructor =
603          dyn_cast<CXXConstructorDecl>(DUnderlying)) {
604    // Record if we see any constexpr constructors which are neither copy
605    // nor move constructors.
606    // C++1z [basic.types]p10:
607    //   [...] has at least one constexpr constructor or constructor template
608    //   (possibly inherited from a base class) that is not a copy or move
609    //   constructor [...]
610    if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor())
611      data().HasConstexprNonCopyMoveConstructor = true;
612  }
613
614  // Handle destructors.
615  if (CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) {
616    SMKind |= SMF_Destructor;
617
618    if (DD->isUserProvided())
619      data().HasIrrelevantDestructor = false;
620    // If the destructor is explicitly defaulted and not trivial or not public
621    // or if the destructor is deleted, we clear HasIrrelevantDestructor in
622    // finishedDefaultedOrDeletedMember.
623
624    // C++11 [class.dtor]p5:
625    //   A destructor is trivial if [...] the destructor is not virtual.
626    if (DD->isVirtual())
627      data().HasTrivialSpecialMembers &= ~SMF_Destructor;
628  }
629
630  // Handle member functions.
631  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
632    if (Method->isCopyAssignmentOperator()) {
633      SMKind |= SMF_CopyAssignment;
634
635      const ReferenceType *ParamTy =
636        Method->getParamDecl(0)->getType()->getAs<ReferenceType>();
637      if (!ParamTy || ParamTy->getPointeeType().isConstQualified())
638        data().HasDeclaredCopyAssignmentWithConstParam = true;
639    }
640
641    if (Method->isMoveAssignmentOperator())
642      SMKind |= SMF_MoveAssignment;
643
644    // Keep the list of conversion functions up-to-date.
645    if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
646      // FIXME: We use the 'unsafe' accessor for the access specifier here,
647      // because Sema may not have set it yet. That's really just a misdesign
648      // in Sema. However, LLDB *will* have set the access specifier correctly,
649      // and adds declarations after the class is technically completed,
650      // so completeDefinition()'s overriding of the access specifiers doesn't
651      // work.
652      AccessSpecifier AS = Conversion->getAccessUnsafe();
653
654      if (Conversion->getPrimaryTemplate()) {
655        // We don't record specializations.
656      } else {
657        ASTContext &Ctx = getASTContext();
658        ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx);
659        NamedDecl *Primary =
660            FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion);
661        if (Primary->getPreviousDecl())
662          Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()),
663                              Primary, AS);
664        else
665          Conversions.addDecl(Ctx, Primary, AS);
666      }
667    }
668
669    if (SMKind) {
670      // If this is the first declaration of a special member, we no longer have
671      // an implicit trivial special member.
672      data().HasTrivialSpecialMembers &=
673        data().DeclaredSpecialMembers | ~SMKind;
674
675      if (!Method->isImplicit() && !Method->isUserProvided()) {
676        // This method is user-declared but not user-provided. We can't work out
677        // whether it's trivial yet (not until we get to the end of the class).
678        // We'll handle this method in finishedDefaultedOrDeletedMember.
679      } else if (Method->isTrivial())
680        data().HasTrivialSpecialMembers |= SMKind;
681      else
682        data().DeclaredNonTrivialSpecialMembers |= SMKind;
683
684      // Note when we have declared a declared special member, and suppress the
685      // implicit declaration of this special member.
686      data().DeclaredSpecialMembers |= SMKind;
687
688      if (!Method->isImplicit()) {
689        data().UserDeclaredSpecialMembers |= SMKind;
690
691        // C++03 [class]p4:
692        //   A POD-struct is an aggregate class that has [...] no user-defined
693        //   copy assignment operator and no user-defined destructor.
694        //
695        // Since the POD bit is meant to be C++03 POD-ness, and in C++03,
696        // aggregates could not have any constructors, clear it even for an
697        // explicitly defaulted or deleted constructor.
698        // type is technically an aggregate in C++0x since it wouldn't be in 03.
699        //
700        // Also, a user-declared move assignment operator makes a class non-POD.
701        // This is an extension in C++03.
702        data().PlainOldData = false;
703      }
704    }
705
706    return;
707  }
708
709  // Handle non-static data members.
710  if (FieldDecl *Field = dyn_cast<FieldDecl>(D)) {
711    // C++ [class.bit]p2:
712    //   A declaration for a bit-field that omits the identifier declares an
713    //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
714    //   initialized.
715    if (Field->isUnnamedBitfield())
716      return;
717
718    // C++ [dcl.init.aggr]p1:
719    //   An aggregate is an array or a class (clause 9) with [...] no
720    //   private or protected non-static data members (clause 11).
721    //
722    // A POD must be an aggregate.
723    if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
724      data().Aggregate = false;
725      data().PlainOldData = false;
726    }
727
728    // C++0x [class]p7:
729    //   A standard-layout class is a class that:
730    //    [...]
731    //    -- has the same access control for all non-static data members,
732    switch (D->getAccess()) {
733    case AS_private:    data().HasPrivateFields = true;   break;
734    case AS_protected:  data().HasProtectedFields = true; break;
735    case AS_public:     data().HasPublicFields = true;    break;
736    case AS_none:       llvm_unreachable("Invalid access specifier");
737    };
738    if ((data().HasPrivateFields + data().HasProtectedFields +
739         data().HasPublicFields) > 1)
740      data().IsStandardLayout = false;
741
742    // Keep track of the presence of mutable fields.
743    if (Field->isMutable()) {
744      data().HasMutableFields = true;
745      data().NeedOverloadResolutionForCopyConstructor = true;
746    }
747
748    // C++11 [class.union]p8, DR1460:
749    //   If X is a union, a non-static data member of X that is not an anonymous
750    //   union is a variant member of X.
751    if (isUnion() && !Field->isAnonymousStructOrUnion())
752      data().HasVariantMembers = true;
753
754    // C++0x [class]p9:
755    //   A POD struct is a class that is both a trivial class and a
756    //   standard-layout class, and has no non-static data members of type
757    //   non-POD struct, non-POD union (or array of such types).
758    //
759    // Automatic Reference Counting: the presence of a member of Objective-C pointer type
760    // that does not explicitly have no lifetime makes the class a non-POD.
761    ASTContext &Context = getASTContext();
762    QualType T = Context.getBaseElementType(Field->getType());
763    if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
764      if (T.hasNonTrivialObjCLifetime()) {
765        // Objective-C Automatic Reference Counting:
766        //   If a class has a non-static data member of Objective-C pointer
767        //   type (or array thereof), it is a non-POD type and its
768        //   default constructor (if any), copy constructor, move constructor,
769        //   copy assignment operator, move assignment operator, and destructor are
770        //   non-trivial.
771        setHasObjectMember(true);
772        struct DefinitionData &Data = data();
773        Data.PlainOldData = false;
774        Data.HasTrivialSpecialMembers = 0;
775        Data.HasIrrelevantDestructor = false;
776      } else if (!Context.getLangOpts().ObjCAutoRefCount) {
777        setHasObjectMember(true);
778      }
779    } else if (!T.isCXX98PODType(Context))
780      data().PlainOldData = false;
781
782    if (T->isReferenceType()) {
783      if (!Field->hasInClassInitializer())
784        data().HasUninitializedReferenceMember = true;
785
786      // C++0x [class]p7:
787      //   A standard-layout class is a class that:
788      //    -- has no non-static data members of type [...] reference,
789      data().IsStandardLayout = false;
790
791      // C++1z [class.copy.ctor]p10:
792      //   A defaulted copy constructor for a class X is defined as deleted if X has:
793      //    -- a non-static data member of rvalue reference type
794      if (T->isRValueReferenceType())
795        data().DefaultedCopyConstructorIsDeleted = true;
796    }
797
798    if (!Field->hasInClassInitializer() && !Field->isMutable()) {
799      if (CXXRecordDecl *FieldType = T->getAsCXXRecordDecl()) {
800        if (FieldType->hasDefinition() && !FieldType->allowConstDefaultInit())
801          data().HasUninitializedFields = true;
802      } else {
803        data().HasUninitializedFields = true;
804      }
805    }
806
807    // Record if this field is the first non-literal or volatile field or base.
808    if (!T->isLiteralType(Context) || T.isVolatileQualified())
809      data().HasNonLiteralTypeFieldsOrBases = true;
810
811    if (Field->hasInClassInitializer() ||
812        (Field->isAnonymousStructOrUnion() &&
813         Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) {
814      data().HasInClassInitializer = true;
815
816      // C++11 [class]p5:
817      //   A default constructor is trivial if [...] no non-static data member
818      //   of its class has a brace-or-equal-initializer.
819      data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
820
821      // C++11 [dcl.init.aggr]p1:
822      //   An aggregate is a [...] class with [...] no
823      //   brace-or-equal-initializers for non-static data members.
824      //
825      // This rule was removed in C++14.
826      if (!getASTContext().getLangOpts().CPlusPlus14)
827        data().Aggregate = false;
828
829      // C++11 [class]p10:
830      //   A POD struct is [...] a trivial class.
831      data().PlainOldData = false;
832    }
833
834    // C++11 [class.copy]p23:
835    //   A defaulted copy/move assignment operator for a class X is defined
836    //   as deleted if X has:
837    //    -- a non-static data member of reference type
838    if (T->isReferenceType())
839      data().DefaultedMoveAssignmentIsDeleted = true;
840
841    if (const RecordType *RecordTy = T->getAs<RecordType>()) {
842      CXXRecordDecl* FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
843      if (FieldRec->getDefinition()) {
844        addedClassSubobject(FieldRec);
845
846        // We may need to perform overload resolution to determine whether a
847        // field can be moved if it's const or volatile qualified.
848        if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) {
849          // We need to care about 'const' for the copy constructor because an
850          // implicit copy constructor might be declared with a non-const
851          // parameter.
852          data().NeedOverloadResolutionForCopyConstructor = true;
853          data().NeedOverloadResolutionForMoveConstructor = true;
854          data().NeedOverloadResolutionForMoveAssignment = true;
855        }
856
857        // C++11 [class.ctor]p5, C++11 [class.copy]p11:
858        //   A defaulted [special member] for a class X is defined as
859        //   deleted if:
860        //    -- X is a union-like class that has a variant member with a
861        //       non-trivial [corresponding special member]
862        if (isUnion()) {
863          if (FieldRec->hasNonTrivialCopyConstructor())
864            data().DefaultedCopyConstructorIsDeleted = true;
865          if (FieldRec->hasNonTrivialMoveConstructor())
866            data().DefaultedMoveConstructorIsDeleted = true;
867          if (FieldRec->hasNonTrivialMoveAssignment())
868            data().DefaultedMoveAssignmentIsDeleted = true;
869          if (FieldRec->hasNonTrivialDestructor())
870            data().DefaultedDestructorIsDeleted = true;
871        }
872
873        // For an anonymous union member, our overload resolution will perform
874        // overload resolution for its members.
875        if (Field->isAnonymousStructOrUnion()) {
876          data().NeedOverloadResolutionForCopyConstructor |=
877              FieldRec->data().NeedOverloadResolutionForCopyConstructor;
878          data().NeedOverloadResolutionForMoveConstructor |=
879              FieldRec->data().NeedOverloadResolutionForMoveConstructor;
880          data().NeedOverloadResolutionForMoveAssignment |=
881              FieldRec->data().NeedOverloadResolutionForMoveAssignment;
882          data().NeedOverloadResolutionForDestructor |=
883              FieldRec->data().NeedOverloadResolutionForDestructor;
884        }
885
886        // C++0x [class.ctor]p5:
887        //   A default constructor is trivial [...] if:
888        //    -- for all the non-static data members of its class that are of
889        //       class type (or array thereof), each such class has a trivial
890        //       default constructor.
891        if (!FieldRec->hasTrivialDefaultConstructor())
892          data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
893
894        // C++0x [class.copy]p13:
895        //   A copy/move constructor for class X is trivial if [...]
896        //    [...]
897        //    -- for each non-static data member of X that is of class type (or
898        //       an array thereof), the constructor selected to copy/move that
899        //       member is trivial;
900        if (!FieldRec->hasTrivialCopyConstructor())
901          data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
902        // If the field doesn't have a simple move constructor, we'll eagerly
903        // declare the move constructor for this class and we'll decide whether
904        // it's trivial then.
905        if (!FieldRec->hasTrivialMoveConstructor())
906          data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
907
908        // C++0x [class.copy]p27:
909        //   A copy/move assignment operator for class X is trivial if [...]
910        //    [...]
911        //    -- for each non-static data member of X that is of class type (or
912        //       an array thereof), the assignment operator selected to
913        //       copy/move that member is trivial;
914        if (!FieldRec->hasTrivialCopyAssignment())
915          data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
916        // If the field doesn't have a simple move assignment, we'll eagerly
917        // declare the move assignment for this class and we'll decide whether
918        // it's trivial then.
919        if (!FieldRec->hasTrivialMoveAssignment())
920          data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
921
922        if (!FieldRec->hasTrivialDestructor())
923          data().HasTrivialSpecialMembers &= ~SMF_Destructor;
924        if (!FieldRec->hasIrrelevantDestructor())
925          data().HasIrrelevantDestructor = false;
926        if (FieldRec->hasObjectMember())
927          setHasObjectMember(true);
928        if (FieldRec->hasVolatileMember())
929          setHasVolatileMember(true);
930
931        // C++0x [class]p7:
932        //   A standard-layout class is a class that:
933        //    -- has no non-static data members of type non-standard-layout
934        //       class (or array of such types) [...]
935        if (!FieldRec->isStandardLayout())
936          data().IsStandardLayout = false;
937
938        // C++0x [class]p7:
939        //   A standard-layout class is a class that:
940        //    [...]
941        //    -- has no base classes of the same type as the first non-static
942        //       data member.
943        // We don't want to expend bits in the state of the record decl
944        // tracking whether this is the first non-static data member so we
945        // cheat a bit and use some of the existing state: the empty bit.
946        // Virtual bases and virtual methods make a class non-empty, but they
947        // also make it non-standard-layout so we needn't check here.
948        // A non-empty base class may leave the class standard-layout, but not
949        // if we have arrived here, and have at least one non-static data
950        // member. If IsStandardLayout remains true, then the first non-static
951        // data member must come through here with Empty still true, and Empty
952        // will subsequently be set to false below.
953        if (data().IsStandardLayout && data().Empty) {
954          for (const auto &BI : bases()) {
955            if (Context.hasSameUnqualifiedType(BI.getType(), T)) {
956              data().IsStandardLayout = false;
957              break;
958            }
959          }
960        }
961
962        // Keep track of the presence of mutable fields.
963        if (FieldRec->hasMutableFields()) {
964          data().HasMutableFields = true;
965          data().NeedOverloadResolutionForCopyConstructor = true;
966        }
967
968        // C++11 [class.copy]p13:
969        //   If the implicitly-defined constructor would satisfy the
970        //   requirements of a constexpr constructor, the implicitly-defined
971        //   constructor is constexpr.
972        // C++11 [dcl.constexpr]p4:
973        //    -- every constructor involved in initializing non-static data
974        //       members [...] shall be a constexpr constructor
975        if (!Field->hasInClassInitializer() &&
976            !FieldRec->hasConstexprDefaultConstructor() && !isUnion())
977          // The standard requires any in-class initializer to be a constant
978          // expression. We consider this to be a defect.
979          data().DefaultedDefaultConstructorIsConstexpr = false;
980
981        // C++11 [class.copy]p8:
982        //   The implicitly-declared copy constructor for a class X will have
983        //   the form 'X::X(const X&)' if each potentially constructed subobject
984        //   of a class type M (or array thereof) has a copy constructor whose
985        //   first parameter is of type 'const M&' or 'const volatile M&'.
986        if (!FieldRec->hasCopyConstructorWithConstParam())
987          data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false;
988
989        // C++11 [class.copy]p18:
990        //   The implicitly-declared copy assignment oeprator for a class X will
991        //   have the form 'X& X::operator=(const X&)' if [...] for all the
992        //   non-static data members of X that are of a class type M (or array
993        //   thereof), each such class type has a copy assignment operator whose
994        //   parameter is of type 'const M&', 'const volatile M&' or 'M'.
995        if (!FieldRec->hasCopyAssignmentWithConstParam())
996          data().ImplicitCopyAssignmentHasConstParam = false;
997
998        if (FieldRec->hasUninitializedReferenceMember() &&
999            !Field->hasInClassInitializer())
1000          data().HasUninitializedReferenceMember = true;
1001
1002        // C++11 [class.union]p8, DR1460:
1003        //   a non-static data member of an anonymous union that is a member of
1004        //   X is also a variant member of X.
1005        if (FieldRec->hasVariantMembers() &&
1006            Field->isAnonymousStructOrUnion())
1007          data().HasVariantMembers = true;
1008      }
1009    } else {
1010      // Base element type of field is a non-class type.
1011      if (!T->isLiteralType(Context) ||
1012          (!Field->hasInClassInitializer() && !isUnion()))
1013        data().DefaultedDefaultConstructorIsConstexpr = false;
1014
1015      // C++11 [class.copy]p23:
1016      //   A defaulted copy/move assignment operator for a class X is defined
1017      //   as deleted if X has:
1018      //    -- a non-static data member of const non-class type (or array
1019      //       thereof)
1020      if (T.isConstQualified())
1021        data().DefaultedMoveAssignmentIsDeleted = true;
1022    }
1023
1024    // C++0x [class]p7:
1025    //   A standard-layout class is a class that:
1026    //    [...]
1027    //    -- either has no non-static data members in the most derived
1028    //       class and at most one base class with non-static data members,
1029    //       or has no base classes with non-static data members, and
1030    // At this point we know that we have a non-static data member, so the last
1031    // clause holds.
1032    if (!data().HasNoNonEmptyBases)
1033      data().IsStandardLayout = false;
1034
1035    // C++14 [meta.unary.prop]p4:
1036    //   T is a class type [...] with [...] no non-static data members other
1037    //   than bit-fields of length 0...
1038    if (data().Empty) {
1039      if (!Field->isBitField() ||
1040          (!Field->getBitWidth()->isTypeDependent() &&
1041           !Field->getBitWidth()->isValueDependent() &&
1042           Field->getBitWidthValue(Context) != 0))
1043        data().Empty = false;
1044    }
1045  }
1046
1047  // Handle using declarations of conversion functions.
1048  if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(D)) {
1049    if (Shadow->getDeclName().getNameKind()
1050          == DeclarationName::CXXConversionFunctionName) {
1051      ASTContext &Ctx = getASTContext();
1052      data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess());
1053    }
1054  }
1055
1056  if (UsingDecl *Using = dyn_cast<UsingDecl>(D)) {
1057    if (Using->getDeclName().getNameKind() ==
1058        DeclarationName::CXXConstructorName) {
1059      data().HasInheritedConstructor = true;
1060      // C++1z [dcl.init.aggr]p1:
1061      //  An aggregate is [...] a class [...] with no inherited constructors
1062      data().Aggregate = false;
1063    }
1064
1065    if (Using->getDeclName().getCXXOverloadedOperator() == OO_Equal)
1066      data().HasInheritedAssignment = true;
1067  }
1068}
1069
1070void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) {
1071  assert(!D->isImplicit() && !D->isUserProvided());
1072
1073  // The kind of special member this declaration is, if any.
1074  unsigned SMKind = 0;
1075
1076  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
1077    if (Constructor->isDefaultConstructor()) {
1078      SMKind |= SMF_DefaultConstructor;
1079      if (Constructor->isConstexpr())
1080        data().HasConstexprDefaultConstructor = true;
1081    }
1082    if (Constructor->isCopyConstructor())
1083      SMKind |= SMF_CopyConstructor;
1084    else if (Constructor->isMoveConstructor())
1085      SMKind |= SMF_MoveConstructor;
1086    else if (Constructor->isConstexpr())
1087      // We may now know that the constructor is constexpr.
1088      data().HasConstexprNonCopyMoveConstructor = true;
1089  } else if (isa<CXXDestructorDecl>(D)) {
1090    SMKind |= SMF_Destructor;
1091    if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted())
1092      data().HasIrrelevantDestructor = false;
1093  } else if (D->isCopyAssignmentOperator())
1094    SMKind |= SMF_CopyAssignment;
1095  else if (D->isMoveAssignmentOperator())
1096    SMKind |= SMF_MoveAssignment;
1097
1098  // Update which trivial / non-trivial special members we have.
1099  // addedMember will have skipped this step for this member.
1100  if (D->isTrivial())
1101    data().HasTrivialSpecialMembers |= SMKind;
1102  else
1103    data().DeclaredNonTrivialSpecialMembers |= SMKind;
1104}
1105
1106bool CXXRecordDecl::isCLike() const {
1107  if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface ||
1108      !TemplateOrInstantiation.isNull())
1109    return false;
1110  if (!hasDefinition())
1111    return true;
1112
1113  return isPOD() && data().HasOnlyCMembers;
1114}
1115
1116bool CXXRecordDecl::isGenericLambda() const {
1117  if (!isLambda()) return false;
1118  return getLambdaData().IsGenericLambda;
1119}
1120
1121CXXMethodDecl* CXXRecordDecl::getLambdaCallOperator() const {
1122  if (!isLambda()) return nullptr;
1123  DeclarationName Name =
1124    getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
1125  DeclContext::lookup_result Calls = lookup(Name);
1126
1127  assert(!Calls.empty() && "Missing lambda call operator!");
1128  assert(Calls.size() == 1 && "More than one lambda call operator!");
1129
1130  NamedDecl *CallOp = Calls.front();
1131  if (FunctionTemplateDecl *CallOpTmpl =
1132                    dyn_cast<FunctionTemplateDecl>(CallOp))
1133    return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl());
1134
1135  return cast<CXXMethodDecl>(CallOp);
1136}
1137
1138CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const {
1139  if (!isLambda()) return nullptr;
1140  DeclarationName Name =
1141    &getASTContext().Idents.get(getLambdaStaticInvokerName());
1142  DeclContext::lookup_result Invoker = lookup(Name);
1143  if (Invoker.empty()) return nullptr;
1144  assert(Invoker.size() == 1 && "More than one static invoker operator!");
1145  NamedDecl *InvokerFun = Invoker.front();
1146  if (FunctionTemplateDecl *InvokerTemplate =
1147                  dyn_cast<FunctionTemplateDecl>(InvokerFun))
1148    return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl());
1149
1150  return cast<CXXMethodDecl>(InvokerFun);
1151}
1152
1153void CXXRecordDecl::getCaptureFields(
1154       llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
1155       FieldDecl *&ThisCapture) const {
1156  Captures.clear();
1157  ThisCapture = nullptr;
1158
1159  LambdaDefinitionData &Lambda = getLambdaData();
1160  RecordDecl::field_iterator Field = field_begin();
1161  for (const LambdaCapture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures;
1162       C != CEnd; ++C, ++Field) {
1163    if (C->capturesThis())
1164      ThisCapture = *Field;
1165    else if (C->capturesVariable())
1166      Captures[C->getCapturedVar()] = *Field;
1167  }
1168  assert(Field == field_end());
1169}
1170
1171TemplateParameterList *
1172CXXRecordDecl::getGenericLambdaTemplateParameterList() const {
1173  if (!isLambda()) return nullptr;
1174  CXXMethodDecl *CallOp = getLambdaCallOperator();
1175  if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate())
1176    return Tmpl->getTemplateParameters();
1177  return nullptr;
1178}
1179
1180Decl *CXXRecordDecl::getLambdaContextDecl() const {
1181  assert(isLambda() && "Not a lambda closure type!");
1182  ExternalASTSource *Source = getParentASTContext().getExternalSource();
1183  return getLambdaData().ContextDecl.get(Source);
1184}
1185
1186static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
1187  QualType T =
1188      cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction())
1189          ->getConversionType();
1190  return Context.getCanonicalType(T);
1191}
1192
1193/// Collect the visible conversions of a base class.
1194///
1195/// \param Record a base class of the class we're considering
1196/// \param InVirtual whether this base class is a virtual base (or a base
1197///   of a virtual base)
1198/// \param Access the access along the inheritance path to this base
1199/// \param ParentHiddenTypes the conversions provided by the inheritors
1200///   of this base
1201/// \param Output the set to which to add conversions from non-virtual bases
1202/// \param VOutput the set to which to add conversions from virtual bases
1203/// \param HiddenVBaseCs the set of conversions which were hidden in a
1204///   virtual base along some inheritance path
1205static void CollectVisibleConversions(ASTContext &Context,
1206                                      CXXRecordDecl *Record,
1207                                      bool InVirtual,
1208                                      AccessSpecifier Access,
1209                  const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
1210                                      ASTUnresolvedSet &Output,
1211                                      UnresolvedSetImpl &VOutput,
1212                           llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) {
1213  // The set of types which have conversions in this class or its
1214  // subclasses.  As an optimization, we don't copy the derived set
1215  // unless it might change.
1216  const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
1217  llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
1218
1219  // Collect the direct conversions and figure out which conversions
1220  // will be hidden in the subclasses.
1221  CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1222  CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1223  if (ConvI != ConvE) {
1224    HiddenTypesBuffer = ParentHiddenTypes;
1225    HiddenTypes = &HiddenTypesBuffer;
1226
1227    for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) {
1228      CanQualType ConvType(GetConversionType(Context, I.getDecl()));
1229      bool Hidden = ParentHiddenTypes.count(ConvType);
1230      if (!Hidden)
1231        HiddenTypesBuffer.insert(ConvType);
1232
1233      // If this conversion is hidden and we're in a virtual base,
1234      // remember that it's hidden along some inheritance path.
1235      if (Hidden && InVirtual)
1236        HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
1237
1238      // If this conversion isn't hidden, add it to the appropriate output.
1239      else if (!Hidden) {
1240        AccessSpecifier IAccess
1241          = CXXRecordDecl::MergeAccess(Access, I.getAccess());
1242
1243        if (InVirtual)
1244          VOutput.addDecl(I.getDecl(), IAccess);
1245        else
1246          Output.addDecl(Context, I.getDecl(), IAccess);
1247      }
1248    }
1249  }
1250
1251  // Collect information recursively from any base classes.
1252  for (const auto &I : Record->bases()) {
1253    const RecordType *RT = I.getType()->getAs<RecordType>();
1254    if (!RT) continue;
1255
1256    AccessSpecifier BaseAccess
1257      = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier());
1258    bool BaseInVirtual = InVirtual || I.isVirtual();
1259
1260    CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
1261    CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
1262                              *HiddenTypes, Output, VOutput, HiddenVBaseCs);
1263  }
1264}
1265
1266/// Collect the visible conversions of a class.
1267///
1268/// This would be extremely straightforward if it weren't for virtual
1269/// bases.  It might be worth special-casing that, really.
1270static void CollectVisibleConversions(ASTContext &Context,
1271                                      CXXRecordDecl *Record,
1272                                      ASTUnresolvedSet &Output) {
1273  // The collection of all conversions in virtual bases that we've
1274  // found.  These will be added to the output as long as they don't
1275  // appear in the hidden-conversions set.
1276  UnresolvedSet<8> VBaseCs;
1277
1278  // The set of conversions in virtual bases that we've determined to
1279  // be hidden.
1280  llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
1281
1282  // The set of types hidden by classes derived from this one.
1283  llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
1284
1285  // Go ahead and collect the direct conversions and add them to the
1286  // hidden-types set.
1287  CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
1288  CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
1289  Output.append(Context, ConvI, ConvE);
1290  for (; ConvI != ConvE; ++ConvI)
1291    HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl()));
1292
1293  // Recursively collect conversions from base classes.
1294  for (const auto &I : Record->bases()) {
1295    const RecordType *RT = I.getType()->getAs<RecordType>();
1296    if (!RT) continue;
1297
1298    CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
1299                              I.isVirtual(), I.getAccessSpecifier(),
1300                              HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
1301  }
1302
1303  // Add any unhidden conversions provided by virtual bases.
1304  for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
1305         I != E; ++I) {
1306    if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
1307      Output.addDecl(Context, I.getDecl(), I.getAccess());
1308  }
1309}
1310
1311/// getVisibleConversionFunctions - get all conversion functions visible
1312/// in current class; including conversion function templates.
1313llvm::iterator_range<CXXRecordDecl::conversion_iterator>
1314CXXRecordDecl::getVisibleConversionFunctions() {
1315  ASTContext &Ctx = getASTContext();
1316
1317  ASTUnresolvedSet *Set;
1318  if (bases_begin() == bases_end()) {
1319    // If root class, all conversions are visible.
1320    Set = &data().Conversions.get(Ctx);
1321  } else {
1322    Set = &data().VisibleConversions.get(Ctx);
1323    // If visible conversion list is not evaluated, evaluate it.
1324    if (!data().ComputedVisibleConversions) {
1325      CollectVisibleConversions(Ctx, this, *Set);
1326      data().ComputedVisibleConversions = true;
1327    }
1328  }
1329  return llvm::make_range(Set->begin(), Set->end());
1330}
1331
1332void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
1333  // This operation is O(N) but extremely rare.  Sema only uses it to
1334  // remove UsingShadowDecls in a class that were followed by a direct
1335  // declaration, e.g.:
1336  //   class A : B {
1337  //     using B::operator int;
1338  //     operator int();
1339  //   };
1340  // This is uncommon by itself and even more uncommon in conjunction
1341  // with sufficiently large numbers of directly-declared conversions
1342  // that asymptotic behavior matters.
1343
1344  ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext());
1345  for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
1346    if (Convs[I].getDecl() == ConvDecl) {
1347      Convs.erase(I);
1348      assert(std::find(Convs.begin(), Convs.end(), ConvDecl) == Convs.end()
1349             && "conversion was found multiple times in unresolved set");
1350      return;
1351    }
1352  }
1353
1354  llvm_unreachable("conversion not found in set!");
1355}
1356
1357CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
1358  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1359    return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
1360
1361  return nullptr;
1362}
1363
1364MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const {
1365  return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
1366}
1367
1368void
1369CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
1370                                             TemplateSpecializationKind TSK) {
1371  assert(TemplateOrInstantiation.isNull() &&
1372         "Previous template or instantiation?");
1373  assert(!isa<ClassTemplatePartialSpecializationDecl>(this));
1374  TemplateOrInstantiation
1375    = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
1376}
1377
1378ClassTemplateDecl *CXXRecordDecl::getDescribedClassTemplate() const {
1379  return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl *>();
1380}
1381
1382void CXXRecordDecl::setDescribedClassTemplate(ClassTemplateDecl *Template) {
1383  TemplateOrInstantiation = Template;
1384}
1385
1386TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
1387  if (const ClassTemplateSpecializationDecl *Spec
1388        = dyn_cast<ClassTemplateSpecializationDecl>(this))
1389    return Spec->getSpecializationKind();
1390
1391  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
1392    return MSInfo->getTemplateSpecializationKind();
1393
1394  return TSK_Undeclared;
1395}
1396
1397void
1398CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
1399  if (ClassTemplateSpecializationDecl *Spec
1400      = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1401    Spec->setSpecializationKind(TSK);
1402    return;
1403  }
1404
1405  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1406    MSInfo->setTemplateSpecializationKind(TSK);
1407    return;
1408  }
1409
1410  llvm_unreachable("Not a class template or member class specialization");
1411}
1412
1413const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const {
1414  auto GetDefinitionOrSelf =
1415      [](const CXXRecordDecl *D) -> const CXXRecordDecl * {
1416    if (auto *Def = D->getDefinition())
1417      return Def;
1418    return D;
1419  };
1420
1421  // If it's a class template specialization, find the template or partial
1422  // specialization from which it was instantiated.
1423  if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
1424    auto From = TD->getInstantiatedFrom();
1425    if (auto *CTD = From.dyn_cast<ClassTemplateDecl *>()) {
1426      while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) {
1427        if (NewCTD->isMemberSpecialization())
1428          break;
1429        CTD = NewCTD;
1430      }
1431      return GetDefinitionOrSelf(CTD->getTemplatedDecl());
1432    }
1433    if (auto *CTPSD =
1434            From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
1435      while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) {
1436        if (NewCTPSD->isMemberSpecialization())
1437          break;
1438        CTPSD = NewCTPSD;
1439      }
1440      return GetDefinitionOrSelf(CTPSD);
1441    }
1442  }
1443
1444  if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
1445    if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
1446      const CXXRecordDecl *RD = this;
1447      while (auto *NewRD = RD->getInstantiatedFromMemberClass())
1448        RD = NewRD;
1449      return GetDefinitionOrSelf(RD);
1450    }
1451  }
1452
1453  assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) &&
1454         "couldn't find pattern for class template instantiation");
1455  return nullptr;
1456}
1457
1458CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
1459  ASTContext &Context = getASTContext();
1460  QualType ClassType = Context.getTypeDeclType(this);
1461
1462  DeclarationName Name
1463    = Context.DeclarationNames.getCXXDestructorName(
1464                                          Context.getCanonicalType(ClassType));
1465
1466  DeclContext::lookup_result R = lookup(Name);
1467
1468  return R.empty() ? nullptr : dyn_cast<CXXDestructorDecl>(R.front());
1469}
1470
1471bool CXXRecordDecl::isAnyDestructorNoReturn() const {
1472  // Destructor is noreturn.
1473  if (const CXXDestructorDecl *Destructor = getDestructor())
1474    if (Destructor->isNoReturn())
1475      return true;
1476
1477  // Check base classes destructor for noreturn.
1478  for (const auto &Base : bases())
1479    if (const CXXRecordDecl *RD = Base.getType()->getAsCXXRecordDecl())
1480      if (RD->isAnyDestructorNoReturn())
1481        return true;
1482
1483  // Check fields for noreturn.
1484  for (const auto *Field : fields())
1485    if (const CXXRecordDecl *RD =
1486            Field->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl())
1487      if (RD->isAnyDestructorNoReturn())
1488        return true;
1489
1490  // All destructors are not noreturn.
1491  return false;
1492}
1493
1494static bool isDeclContextInNamespace(const DeclContext *DC) {
1495  while (!DC->isTranslationUnit()) {
1496    if (DC->isNamespace())
1497      return true;
1498    DC = DC->getParent();
1499  }
1500  return false;
1501}
1502
1503bool CXXRecordDecl::isInterfaceLike() const {
1504  assert(hasDefinition() && "checking for interface-like without a definition");
1505  // All __interfaces are inheritently interface-like.
1506  if (isInterface())
1507    return true;
1508
1509  // Interface-like types cannot have a user declared constructor, destructor,
1510  // friends, VBases, conversion functions, or fields.  Additionally, lambdas
1511  // cannot be interface types.
1512  if (isLambda() || hasUserDeclaredConstructor() ||
1513      hasUserDeclaredDestructor() || !field_empty() || hasFriends() ||
1514      getNumVBases() > 0 || conversion_end() - conversion_begin() > 0)
1515    return false;
1516
1517  // No interface-like type can have a method with a definition.
1518  for (const auto *const Method : methods())
1519    if (Method->isDefined() && !Method->isImplicit())
1520      return false;
1521
1522  // Check "Special" types.
1523  const auto *Uuid = getAttr<UuidAttr>();
1524  // MS SDK declares IUnknown/IDispatch both in the root of a TU, or in an
1525  // extern C++ block directly in the TU.  These are only valid if in one
1526  // of these two situations.
1527  if (Uuid && isStruct() && !getDeclContext()->isExternCContext() &&
1528      !isDeclContextInNamespace(getDeclContext()) &&
1529      ((getName() == "IUnknown" &&
1530        Uuid->getGuid() == "00000000-0000-0000-C000-000000000046") ||
1531       (getName() == "IDispatch" &&
1532        Uuid->getGuid() == "00020400-0000-0000-C000-000000000046"))) {
1533    if (getNumBases() > 0)
1534      return false;
1535    return true;
1536  }
1537
1538  // FIXME: Any access specifiers is supposed to make this no longer interface
1539  // like.
1540
1541  // If this isn't a 'special' type, it must have a single interface-like base.
1542  if (getNumBases() != 1)
1543    return false;
1544
1545  const auto BaseSpec = *bases_begin();
1546  if (BaseSpec.isVirtual() || BaseSpec.getAccessSpecifier() != AS_public)
1547    return false;
1548  const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl();
1549  if (Base->isInterface() || !Base->isInterfaceLike())
1550    return false;
1551  return true;
1552}
1553
1554void CXXRecordDecl::completeDefinition() {
1555  completeDefinition(nullptr);
1556}
1557
1558void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
1559  RecordDecl::completeDefinition();
1560
1561  // If the class may be abstract (but hasn't been marked as such), check for
1562  // any pure final overriders.
1563  if (mayBeAbstract()) {
1564    CXXFinalOverriderMap MyFinalOverriders;
1565    if (!FinalOverriders) {
1566      getFinalOverriders(MyFinalOverriders);
1567      FinalOverriders = &MyFinalOverriders;
1568    }
1569
1570    bool Done = false;
1571    for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
1572                                     MEnd = FinalOverriders->end();
1573         M != MEnd && !Done; ++M) {
1574      for (OverridingMethods::iterator SO = M->second.begin(),
1575                                    SOEnd = M->second.end();
1576           SO != SOEnd && !Done; ++SO) {
1577        assert(SO->second.size() > 0 &&
1578               "All virtual functions have overridding virtual functions");
1579
1580        // C++ [class.abstract]p4:
1581        //   A class is abstract if it contains or inherits at least one
1582        //   pure virtual function for which the final overrider is pure
1583        //   virtual.
1584        if (SO->second.front().Method->isPure()) {
1585          data().Abstract = true;
1586          Done = true;
1587          break;
1588        }
1589      }
1590    }
1591  }
1592
1593  // Set access bits correctly on the directly-declared conversions.
1594  for (conversion_iterator I = conversion_begin(), E = conversion_end();
1595       I != E; ++I)
1596    I.setAccess((*I)->getAccess());
1597}
1598
1599bool CXXRecordDecl::mayBeAbstract() const {
1600  if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
1601      isDependentContext())
1602    return false;
1603
1604  for (const auto &B : bases()) {
1605    CXXRecordDecl *BaseDecl
1606      = cast<CXXRecordDecl>(B.getType()->getAs<RecordType>()->getDecl());
1607    if (BaseDecl->isAbstract())
1608      return true;
1609  }
1610
1611  return false;
1612}
1613
1614void CXXDeductionGuideDecl::anchor() {}
1615
1616CXXDeductionGuideDecl *CXXDeductionGuideDecl::Create(
1617    ASTContext &C, DeclContext *DC, SourceLocation StartLoc, bool IsExplicit,
1618    const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
1619    SourceLocation EndLocation) {
1620  return new (C, DC) CXXDeductionGuideDecl(C, DC, StartLoc, IsExplicit,
1621                                           NameInfo, T, TInfo, EndLocation);
1622}
1623
1624CXXDeductionGuideDecl *CXXDeductionGuideDecl::CreateDeserialized(ASTContext &C,
1625                                                                 unsigned ID) {
1626  return new (C, ID) CXXDeductionGuideDecl(C, nullptr, SourceLocation(), false,
1627                                           DeclarationNameInfo(), QualType(),
1628                                           nullptr, SourceLocation());
1629}
1630
1631void CXXMethodDecl::anchor() {}
1632
1633bool CXXMethodDecl::isStatic() const {
1634  const CXXMethodDecl *MD = getCanonicalDecl();
1635
1636  if (MD->getStorageClass() == SC_Static)
1637    return true;
1638
1639  OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator();
1640  return isStaticOverloadedOperator(OOK);
1641}
1642
1643static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD,
1644                                 const CXXMethodDecl *BaseMD) {
1645  for (const CXXMethodDecl *MD : DerivedMD->overridden_methods()) {
1646    if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl())
1647      return true;
1648    if (recursivelyOverrides(MD, BaseMD))
1649      return true;
1650  }
1651  return false;
1652}
1653
1654CXXMethodDecl *
1655CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD,
1656                                             bool MayBeBase) {
1657  if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl())
1658    return this;
1659
1660  // Lookup doesn't work for destructors, so handle them separately.
1661  if (isa<CXXDestructorDecl>(this)) {
1662    CXXMethodDecl *MD = RD->getDestructor();
1663    if (MD) {
1664      if (recursivelyOverrides(MD, this))
1665        return MD;
1666      if (MayBeBase && recursivelyOverrides(this, MD))
1667        return MD;
1668    }
1669    return nullptr;
1670  }
1671
1672  for (auto *ND : RD->lookup(getDeclName())) {
1673    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND);
1674    if (!MD)
1675      continue;
1676    if (recursivelyOverrides(MD, this))
1677      return MD;
1678    if (MayBeBase && recursivelyOverrides(this, MD))
1679      return MD;
1680  }
1681
1682  for (const auto &I : RD->bases()) {
1683    const RecordType *RT = I.getType()->getAs<RecordType>();
1684    if (!RT)
1685      continue;
1686    const CXXRecordDecl *Base = cast<CXXRecordDecl>(RT->getDecl());
1687    CXXMethodDecl *T = this->getCorrespondingMethodInClass(Base);
1688    if (T)
1689      return T;
1690  }
1691
1692  return nullptr;
1693}
1694
1695CXXMethodDecl *
1696CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
1697                      SourceLocation StartLoc,
1698                      const DeclarationNameInfo &NameInfo,
1699                      QualType T, TypeSourceInfo *TInfo,
1700                      StorageClass SC, bool isInline,
1701                      bool isConstexpr, SourceLocation EndLocation) {
1702  return new (C, RD) CXXMethodDecl(CXXMethod, C, RD, StartLoc, NameInfo,
1703                                   T, TInfo, SC, isInline, isConstexpr,
1704                                   EndLocation);
1705}
1706
1707CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1708  return new (C, ID) CXXMethodDecl(CXXMethod, C, nullptr, SourceLocation(),
1709                                   DeclarationNameInfo(), QualType(), nullptr,
1710                                   SC_None, false, false, SourceLocation());
1711}
1712
1713CXXMethodDecl *CXXMethodDecl::getDevirtualizedMethod(const Expr *Base,
1714                                                     bool IsAppleKext) {
1715  assert(isVirtual() && "this method is expected to be virtual");
1716
1717  // When building with -fapple-kext, all calls must go through the vtable since
1718  // the kernel linker can do runtime patching of vtables.
1719  if (IsAppleKext)
1720    return nullptr;
1721
1722  // If the member function is marked 'final', we know that it can't be
1723  // overridden and can therefore devirtualize it unless it's pure virtual.
1724  if (hasAttr<FinalAttr>())
1725    return isPure() ? nullptr : this;
1726
1727  // If Base is unknown, we cannot devirtualize.
1728  if (!Base)
1729    return nullptr;
1730
1731  // If the base expression (after skipping derived-to-base conversions) is a
1732  // class prvalue, then we can devirtualize.
1733  Base = Base->getBestDynamicClassTypeExpr();
1734  if (Base->isRValue() && Base->getType()->isRecordType())
1735    return this;
1736
1737  // If we don't even know what we would call, we can't devirtualize.
1738  const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
1739  if (!BestDynamicDecl)
1740    return nullptr;
1741
1742  // There may be a method corresponding to MD in a derived class.
1743  CXXMethodDecl *DevirtualizedMethod =
1744      getCorrespondingMethodInClass(BestDynamicDecl);
1745
1746  // If that method is pure virtual, we can't devirtualize. If this code is
1747  // reached, the result would be UB, not a direct call to the derived class
1748  // function, and we can't assume the derived class function is defined.
1749  if (DevirtualizedMethod->isPure())
1750    return nullptr;
1751
1752  // If that method is marked final, we can devirtualize it.
1753  if (DevirtualizedMethod->hasAttr<FinalAttr>())
1754    return DevirtualizedMethod;
1755
1756  // Similarly, if the class itself is marked 'final' it can't be overridden
1757  // and we can therefore devirtualize the member function call.
1758  if (BestDynamicDecl->hasAttr<FinalAttr>())
1759    return DevirtualizedMethod;
1760
1761  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
1762    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
1763      if (VD->getType()->isRecordType())
1764        // This is a record decl. We know the type and can devirtualize it.
1765        return DevirtualizedMethod;
1766
1767    return nullptr;
1768  }
1769
1770  // We can devirtualize calls on an object accessed by a class member access
1771  // expression, since by C++11 [basic.life]p6 we know that it can't refer to
1772  // a derived class object constructed in the same location.
1773  if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
1774    if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
1775      return VD->getType()->isRecordType() ? DevirtualizedMethod : nullptr;
1776
1777  // Likewise for calls on an object accessed by a (non-reference) pointer to
1778  // member access.
1779  if (auto *BO = dyn_cast<BinaryOperator>(Base)) {
1780    if (BO->isPtrMemOp()) {
1781      auto *MPT = BO->getRHS()->getType()->castAs<MemberPointerType>();
1782      if (MPT->getPointeeType()->isRecordType())
1783        return DevirtualizedMethod;
1784    }
1785  }
1786
1787  // We can't devirtualize the call.
1788  return nullptr;
1789}
1790
1791bool CXXMethodDecl::isUsualDeallocationFunction() const {
1792  if (getOverloadedOperator() != OO_Delete &&
1793      getOverloadedOperator() != OO_Array_Delete)
1794    return false;
1795
1796  // C++ [basic.stc.dynamic.deallocation]p2:
1797  //   A template instance is never a usual deallocation function,
1798  //   regardless of its signature.
1799  if (getPrimaryTemplate())
1800    return false;
1801
1802  // C++ [basic.stc.dynamic.deallocation]p2:
1803  //   If a class T has a member deallocation function named operator delete
1804  //   with exactly one parameter, then that function is a usual (non-placement)
1805  //   deallocation function. [...]
1806  if (getNumParams() == 1)
1807    return true;
1808  unsigned UsualParams = 1;
1809
1810  // C++ P0722:
1811  //   A destroying operator delete is a usual deallocation function if
1812  //   removing the std::destroying_delete_t parameter and changing the
1813  //   first parameter type from T* to void* results in the signature of
1814  //   a usual deallocation function.
1815  if (isDestroyingOperatorDelete())
1816    ++UsualParams;
1817
1818  // C++ <=14 [basic.stc.dynamic.deallocation]p2:
1819  //   [...] If class T does not declare such an operator delete but does
1820  //   declare a member deallocation function named operator delete with
1821  //   exactly two parameters, the second of which has type std::size_t (18.1),
1822  //   then this function is a usual deallocation function.
1823  //
1824  // C++17 says a usual deallocation function is one with the signature
1825  //   (void* [, size_t] [, std::align_val_t] [, ...])
1826  // and all such functions are usual deallocation functions. It's not clear
1827  // that allowing varargs functions was intentional.
1828  ASTContext &Context = getASTContext();
1829  if (UsualParams < getNumParams() &&
1830      Context.hasSameUnqualifiedType(getParamDecl(UsualParams)->getType(),
1831                                     Context.getSizeType()))
1832    ++UsualParams;
1833
1834  if (UsualParams < getNumParams() &&
1835      getParamDecl(UsualParams)->getType()->isAlignValT())
1836    ++UsualParams;
1837
1838  if (UsualParams != getNumParams())
1839    return false;
1840
1841  // In C++17 onwards, all potential usual deallocation functions are actual
1842  // usual deallocation functions.
1843  if (Context.getLangOpts().AlignedAllocation)
1844    return true;
1845
1846  // This function is a usual deallocation function if there are no
1847  // single-parameter deallocation functions of the same kind.
1848  DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName());
1849  for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
1850       I != E; ++I) {
1851    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I))
1852      if (FD->getNumParams() == 1)
1853        return false;
1854  }
1855
1856  return true;
1857}
1858
1859bool CXXMethodDecl::isCopyAssignmentOperator() const {
1860  // C++0x [class.copy]p17:
1861  //  A user-declared copy assignment operator X::operator= is a non-static
1862  //  non-template member function of class X with exactly one parameter of
1863  //  type X, X&, const X&, volatile X& or const volatile X&.
1864  if (/*operator=*/getOverloadedOperator() != OO_Equal ||
1865      /*non-static*/ isStatic() ||
1866      /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() ||
1867      getNumParams() != 1)
1868    return false;
1869
1870  QualType ParamType = getParamDecl(0)->getType();
1871  if (const LValueReferenceType *Ref = ParamType->getAs<LValueReferenceType>())
1872    ParamType = Ref->getPointeeType();
1873
1874  ASTContext &Context = getASTContext();
1875  QualType ClassType
1876    = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
1877  return Context.hasSameUnqualifiedType(ClassType, ParamType);
1878}
1879
1880bool CXXMethodDecl::isMoveAssignmentOperator() const {
1881  // C++0x [class.copy]p19:
1882  //  A user-declared move assignment operator X::operator= is a non-static
1883  //  non-template member function of class X with exactly one parameter of type
1884  //  X&&, const X&&, volatile X&&, or const volatile X&&.
1885  if (getOverloadedOperator() != OO_Equal || isStatic() ||
1886      getPrimaryTemplate() || getDescribedFunctionTemplate() ||
1887      getNumParams() != 1)
1888    return false;
1889
1890  QualType ParamType = getParamDecl(0)->getType();
1891  if (!isa<RValueReferenceType>(ParamType))
1892    return false;
1893  ParamType = ParamType->getPointeeType();
1894
1895  ASTContext &Context = getASTContext();
1896  QualType ClassType
1897    = Context.getCanonicalType(Context.getTypeDeclType(getParent()));
1898  return Context.hasSameUnqualifiedType(ClassType, ParamType);
1899}
1900
1901void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
1902  assert(MD->isCanonicalDecl() && "Method is not canonical!");
1903  assert(!MD->getParent()->isDependentContext() &&
1904         "Can't add an overridden method to a class template!");
1905  assert(MD->isVirtual() && "Method is not virtual!");
1906
1907  getASTContext().addOverriddenMethod(this, MD);
1908}
1909
1910CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
1911  if (isa<CXXConstructorDecl>(this)) return nullptr;
1912  return getASTContext().overridden_methods_begin(this);
1913}
1914
1915CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
1916  if (isa<CXXConstructorDecl>(this)) return nullptr;
1917  return getASTContext().overridden_methods_end(this);
1918}
1919
1920unsigned CXXMethodDecl::size_overridden_methods() const {
1921  if (isa<CXXConstructorDecl>(this)) return 0;
1922  return getASTContext().overridden_methods_size(this);
1923}
1924
1925CXXMethodDecl::overridden_method_range
1926CXXMethodDecl::overridden_methods() const {
1927  if (isa<CXXConstructorDecl>(this))
1928    return overridden_method_range(nullptr, nullptr);
1929  return getASTContext().overridden_methods(this);
1930}
1931
1932QualType CXXMethodDecl::getThisType(ASTContext &C) const {
1933  // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
1934  // If the member function is declared const, the type of this is const X*,
1935  // if the member function is declared volatile, the type of this is
1936  // volatile X*, and if the member function is declared const volatile,
1937  // the type of this is const volatile X*.
1938
1939  assert(isInstance() && "No 'this' for static methods!");
1940
1941  QualType ClassTy = C.getTypeDeclType(getParent());
1942  ClassTy = C.getQualifiedType(ClassTy,
1943                               Qualifiers::fromCVRUMask(getTypeQualifiers()));
1944  return C.getPointerType(ClassTy);
1945}
1946
1947bool CXXMethodDecl::hasInlineBody() const {
1948  // If this function is a template instantiation, look at the template from
1949  // which it was instantiated.
1950  const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
1951  if (!CheckFn)
1952    CheckFn = this;
1953
1954  const FunctionDecl *fn;
1955  return CheckFn->isDefined(fn) && !fn->isOutOfLine() &&
1956         (fn->doesThisDeclarationHaveABody() || fn->willHaveBody());
1957}
1958
1959bool CXXMethodDecl::isLambdaStaticInvoker() const {
1960  const CXXRecordDecl *P = getParent();
1961  if (P->isLambda()) {
1962    if (const CXXMethodDecl *StaticInvoker = P->getLambdaStaticInvoker()) {
1963      if (StaticInvoker == this) return true;
1964      if (P->isGenericLambda() && this->isFunctionTemplateSpecialization())
1965        return StaticInvoker == this->getPrimaryTemplate()->getTemplatedDecl();
1966    }
1967  }
1968  return false;
1969}
1970
1971CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1972                                       TypeSourceInfo *TInfo, bool IsVirtual,
1973                                       SourceLocation L, Expr *Init,
1974                                       SourceLocation R,
1975                                       SourceLocation EllipsisLoc)
1976    : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init),
1977      LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual),
1978      IsWritten(false), SourceOrder(0) {}
1979
1980CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1981                                       FieldDecl *Member,
1982                                       SourceLocation MemberLoc,
1983                                       SourceLocation L, Expr *Init,
1984                                       SourceLocation R)
1985    : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1986      LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
1987      IsWritten(false), SourceOrder(0) {}
1988
1989CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1990                                       IndirectFieldDecl *Member,
1991                                       SourceLocation MemberLoc,
1992                                       SourceLocation L, Expr *Init,
1993                                       SourceLocation R)
1994    : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
1995      LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
1996      IsWritten(false), SourceOrder(0) {}
1997
1998CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
1999                                       TypeSourceInfo *TInfo,
2000                                       SourceLocation L, Expr *Init,
2001                                       SourceLocation R)
2002    : Initializee(TInfo), Init(Init), LParenLoc(L), RParenLoc(R),
2003      IsDelegating(true), IsVirtual(false), IsWritten(false), SourceOrder(0) {}
2004
2005TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
2006  if (isBaseInitializer())
2007    return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
2008  else
2009    return TypeLoc();
2010}
2011
2012const Type *CXXCtorInitializer::getBaseClass() const {
2013  if (isBaseInitializer())
2014    return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
2015  else
2016    return nullptr;
2017}
2018
2019SourceLocation CXXCtorInitializer::getSourceLocation() const {
2020  if (isInClassMemberInitializer())
2021    return getAnyMember()->getLocation();
2022
2023  if (isAnyMemberInitializer())
2024    return getMemberLocation();
2025
2026  if (TypeSourceInfo *TSInfo = Initializee.get<TypeSourceInfo*>())
2027    return TSInfo->getTypeLoc().getLocalSourceRange().getBegin();
2028
2029  return SourceLocation();
2030}
2031
2032SourceRange CXXCtorInitializer::getSourceRange() const {
2033  if (isInClassMemberInitializer()) {
2034    FieldDecl *D = getAnyMember();
2035    if (Expr *I = D->getInClassInitializer())
2036      return I->getSourceRange();
2037    return SourceRange();
2038  }
2039
2040  return SourceRange(getSourceLocation(), getRParenLoc());
2041}
2042
2043void CXXConstructorDecl::anchor() {}
2044
2045CXXConstructorDecl *CXXConstructorDecl::CreateDeserialized(ASTContext &C,
2046                                                           unsigned ID,
2047                                                           bool Inherited) {
2048  unsigned Extra = additionalSizeToAlloc<InheritedConstructor>(Inherited);
2049  auto *Result = new (C, ID, Extra) CXXConstructorDecl(
2050      C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
2051      false, false, false, false, InheritedConstructor());
2052  Result->IsInheritingConstructor = Inherited;
2053  return Result;
2054}
2055
2056CXXConstructorDecl *
2057CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
2058                           SourceLocation StartLoc,
2059                           const DeclarationNameInfo &NameInfo,
2060                           QualType T, TypeSourceInfo *TInfo,
2061                           bool isExplicit, bool isInline,
2062                           bool isImplicitlyDeclared, bool isConstexpr,
2063                           InheritedConstructor Inherited) {
2064  assert(NameInfo.getName().getNameKind()
2065         == DeclarationName::CXXConstructorName &&
2066         "Name must refer to a constructor");
2067  unsigned Extra =
2068      additionalSizeToAlloc<InheritedConstructor>(Inherited ? 1 : 0);
2069  return new (C, RD, Extra) CXXConstructorDecl(
2070      C, RD, StartLoc, NameInfo, T, TInfo, isExplicit, isInline,
2071      isImplicitlyDeclared, isConstexpr, Inherited);
2072}
2073
2074CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const {
2075  return CtorInitializers.get(getASTContext().getExternalSource());
2076}
2077
2078CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const {
2079  assert(isDelegatingConstructor() && "Not a delegating constructor!");
2080  Expr *E = (*init_begin())->getInit()->IgnoreImplicit();
2081  if (CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(E))
2082    return Construct->getConstructor();
2083
2084  return nullptr;
2085}
2086
2087bool CXXConstructorDecl::isDefaultConstructor() const {
2088  // C++ [class.ctor]p5:
2089  //   A default constructor for a class X is a constructor of class
2090  //   X that can be called without an argument.
2091  return (getNumParams() == 0) ||
2092         (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
2093}
2094
2095bool
2096CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
2097  return isCopyOrMoveConstructor(TypeQuals) &&
2098         getParamDecl(0)->getType()->isLValueReferenceType();
2099}
2100
2101bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
2102  return isCopyOrMoveConstructor(TypeQuals) &&
2103    getParamDecl(0)->getType()->isRValueReferenceType();
2104}
2105
2106/// \brief Determine whether this is a copy or move constructor.
2107bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
2108  // C++ [class.copy]p2:
2109  //   A non-template constructor for class X is a copy constructor
2110  //   if its first parameter is of type X&, const X&, volatile X& or
2111  //   const volatile X&, and either there are no other parameters
2112  //   or else all other parameters have default arguments (8.3.6).
2113  // C++0x [class.copy]p3:
2114  //   A non-template constructor for class X is a move constructor if its
2115  //   first parameter is of type X&&, const X&&, volatile X&&, or
2116  //   const volatile X&&, and either there are no other parameters or else
2117  //   all other parameters have default arguments.
2118  if ((getNumParams() < 1) ||
2119      (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
2120      (getPrimaryTemplate() != nullptr) ||
2121      (getDescribedFunctionTemplate() != nullptr))
2122    return false;
2123
2124  const ParmVarDecl *Param = getParamDecl(0);
2125
2126  // Do we have a reference type?
2127  const ReferenceType *ParamRefType = Param->getType()->getAs<ReferenceType>();
2128  if (!ParamRefType)
2129    return false;
2130
2131  // Is it a reference to our class type?
2132  ASTContext &Context = getASTContext();
2133
2134  CanQualType PointeeType
2135    = Context.getCanonicalType(ParamRefType->getPointeeType());
2136  CanQualType ClassTy
2137    = Context.getCanonicalType(Context.getTagDeclType(getParent()));
2138  if (PointeeType.getUnqualifiedType() != ClassTy)
2139    return false;
2140
2141  // FIXME: other qualifiers?
2142
2143  // We have a copy or move constructor.
2144  TypeQuals = PointeeType.getCVRQualifiers();
2145  return true;
2146}
2147
2148bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
2149  // C++ [class.conv.ctor]p1:
2150  //   A constructor declared without the function-specifier explicit
2151  //   that can be called with a single parameter specifies a
2152  //   conversion from the type of its first parameter to the type of
2153  //   its class. Such a constructor is called a converting
2154  //   constructor.
2155  if (isExplicit() && !AllowExplicit)
2156    return false;
2157
2158  return (getNumParams() == 0 &&
2159          getType()->getAs<FunctionProtoType>()->isVariadic()) ||
2160         (getNumParams() == 1) ||
2161         (getNumParams() > 1 &&
2162          (getParamDecl(1)->hasDefaultArg() ||
2163           getParamDecl(1)->isParameterPack()));
2164}
2165
2166bool CXXConstructorDecl::isSpecializationCopyingObject() const {
2167  if ((getNumParams() < 1) ||
2168      (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
2169      (getDescribedFunctionTemplate() != nullptr))
2170    return false;
2171
2172  const ParmVarDecl *Param = getParamDecl(0);
2173
2174  ASTContext &Context = getASTContext();
2175  CanQualType ParamType = Context.getCanonicalType(Param->getType());
2176
2177  // Is it the same as our our class type?
2178  CanQualType ClassTy
2179    = Context.getCanonicalType(Context.getTagDeclType(getParent()));
2180  if (ParamType.getUnqualifiedType() != ClassTy)
2181    return false;
2182
2183  return true;
2184}
2185
2186void CXXDestructorDecl::anchor() {}
2187
2188CXXDestructorDecl *
2189CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2190  return new (C, ID)
2191      CXXDestructorDecl(C, nullptr, SourceLocation(), DeclarationNameInfo(),
2192                        QualType(), nullptr, false, false);
2193}
2194
2195CXXDestructorDecl *
2196CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
2197                          SourceLocation StartLoc,
2198                          const DeclarationNameInfo &NameInfo,
2199                          QualType T, TypeSourceInfo *TInfo,
2200                          bool isInline, bool isImplicitlyDeclared) {
2201  assert(NameInfo.getName().getNameKind()
2202         == DeclarationName::CXXDestructorName &&
2203         "Name must refer to a destructor");
2204  return new (C, RD) CXXDestructorDecl(C, RD, StartLoc, NameInfo, T, TInfo,
2205                                       isInline, isImplicitlyDeclared);
2206}
2207
2208void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD, Expr *ThisArg) {
2209  auto *First = cast<CXXDestructorDecl>(getFirstDecl());
2210  if (OD && !First->OperatorDelete) {
2211    First->OperatorDelete = OD;
2212    First->OperatorDeleteThisArg = ThisArg;
2213    if (auto *L = getASTMutationListener())
2214      L->ResolvedOperatorDelete(First, OD, ThisArg);
2215  }
2216}
2217
2218void CXXConversionDecl::anchor() {}
2219
2220CXXConversionDecl *
2221CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2222  return new (C, ID) CXXConversionDecl(C, nullptr, SourceLocation(),
2223                                       DeclarationNameInfo(), QualType(),
2224                                       nullptr, false, false, false,
2225                                       SourceLocation());
2226}
2227
2228CXXConversionDecl *
2229CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
2230                          SourceLocation StartLoc,
2231                          const DeclarationNameInfo &NameInfo,
2232                          QualType T, TypeSourceInfo *TInfo,
2233                          bool isInline, bool isExplicit,
2234                          bool isConstexpr, SourceLocation EndLocation) {
2235  assert(NameInfo.getName().getNameKind()
2236         == DeclarationName::CXXConversionFunctionName &&
2237         "Name must refer to a conversion function");
2238  return new (C, RD) CXXConversionDecl(C, RD, StartLoc, NameInfo, T, TInfo,
2239                                       isInline, isExplicit, isConstexpr,
2240                                       EndLocation);
2241}
2242
2243bool CXXConversionDecl::isLambdaToBlockPointerConversion() const {
2244  return isImplicit() && getParent()->isLambda() &&
2245         getConversionType()->isBlockPointerType();
2246}
2247
2248void LinkageSpecDecl::anchor() {}
2249
2250LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
2251                                         DeclContext *DC,
2252                                         SourceLocation ExternLoc,
2253                                         SourceLocation LangLoc,
2254                                         LanguageIDs Lang,
2255                                         bool HasBraces) {
2256  return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces);
2257}
2258
2259LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C,
2260                                                     unsigned ID) {
2261  return new (C, ID) LinkageSpecDecl(nullptr, SourceLocation(),
2262                                     SourceLocation(), lang_c, false);
2263}
2264
2265void UsingDirectiveDecl::anchor() {}
2266
2267UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
2268                                               SourceLocation L,
2269                                               SourceLocation NamespaceLoc,
2270                                           NestedNameSpecifierLoc QualifierLoc,
2271                                               SourceLocation IdentLoc,
2272                                               NamedDecl *Used,
2273                                               DeclContext *CommonAncestor) {
2274  if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used))
2275    Used = NS->getOriginalNamespace();
2276  return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
2277                                        IdentLoc, Used, CommonAncestor);
2278}
2279
2280UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C,
2281                                                           unsigned ID) {
2282  return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(),
2283                                        SourceLocation(),
2284                                        NestedNameSpecifierLoc(),
2285                                        SourceLocation(), nullptr, nullptr);
2286}
2287
2288NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
2289  if (NamespaceAliasDecl *NA =
2290        dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
2291    return NA->getNamespace();
2292  return cast_or_null<NamespaceDecl>(NominatedNamespace);
2293}
2294
2295NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
2296                             SourceLocation StartLoc, SourceLocation IdLoc,
2297                             IdentifierInfo *Id, NamespaceDecl *PrevDecl)
2298    : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace),
2299      redeclarable_base(C), LocStart(StartLoc),
2300      AnonOrFirstNamespaceAndInline(nullptr, Inline) {
2301  setPreviousDecl(PrevDecl);
2302
2303  if (PrevDecl)
2304    AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace());
2305}
2306
2307NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
2308                                     bool Inline, SourceLocation StartLoc,
2309                                     SourceLocation IdLoc, IdentifierInfo *Id,
2310                                     NamespaceDecl *PrevDecl) {
2311  return new (C, DC) NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id,
2312                                   PrevDecl);
2313}
2314
2315NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2316  return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(),
2317                                   SourceLocation(), nullptr, nullptr);
2318}
2319
2320NamespaceDecl *NamespaceDecl::getOriginalNamespace() {
2321  if (isFirstDecl())
2322    return this;
2323
2324  return AnonOrFirstNamespaceAndInline.getPointer();
2325}
2326
2327const NamespaceDecl *NamespaceDecl::getOriginalNamespace() const {
2328  if (isFirstDecl())
2329    return this;
2330
2331  return AnonOrFirstNamespaceAndInline.getPointer();
2332}
2333
2334bool NamespaceDecl::isOriginalNamespace() const { return isFirstDecl(); }
2335
2336NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() {
2337  return getNextRedeclaration();
2338}
2339
2340NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() {
2341  return getPreviousDecl();
2342}
2343
2344NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() {
2345  return getMostRecentDecl();
2346}
2347
2348void NamespaceAliasDecl::anchor() {}
2349
2350NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() {
2351  return getNextRedeclaration();
2352}
2353
2354NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() {
2355  return getPreviousDecl();
2356}
2357
2358NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() {
2359  return getMostRecentDecl();
2360}
2361
2362NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
2363                                               SourceLocation UsingLoc,
2364                                               SourceLocation AliasLoc,
2365                                               IdentifierInfo *Alias,
2366                                           NestedNameSpecifierLoc QualifierLoc,
2367                                               SourceLocation IdentLoc,
2368                                               NamedDecl *Namespace) {
2369  // FIXME: Preserve the aliased namespace as written.
2370  if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
2371    Namespace = NS->getOriginalNamespace();
2372  return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias,
2373                                        QualifierLoc, IdentLoc, Namespace);
2374}
2375
2376NamespaceAliasDecl *
2377NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2378  return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(),
2379                                        SourceLocation(), nullptr,
2380                                        NestedNameSpecifierLoc(),
2381                                        SourceLocation(), nullptr);
2382}
2383
2384void UsingShadowDecl::anchor() {}
2385
2386UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC,
2387                                 SourceLocation Loc, UsingDecl *Using,
2388                                 NamedDecl *Target)
2389    : NamedDecl(K, DC, Loc, Using ? Using->getDeclName() : DeclarationName()),
2390      redeclarable_base(C), Underlying(Target),
2391      UsingOrNextShadow(cast<NamedDecl>(Using)) {
2392  if (Target)
2393    IdentifierNamespace = Target->getIdentifierNamespace();
2394  setImplicit();
2395}
2396
2397UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, EmptyShell Empty)
2398    : NamedDecl(K, nullptr, SourceLocation(), DeclarationName()),
2399      redeclarable_base(C) {}
2400
2401UsingShadowDecl *
2402UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2403  return new (C, ID) UsingShadowDecl(UsingShadow, C, EmptyShell());
2404}
2405
2406UsingDecl *UsingShadowDecl::getUsingDecl() const {
2407  const UsingShadowDecl *Shadow = this;
2408  while (const UsingShadowDecl *NextShadow =
2409         dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
2410    Shadow = NextShadow;
2411  return cast<UsingDecl>(Shadow->UsingOrNextShadow);
2412}
2413
2414void ConstructorUsingShadowDecl::anchor() {}
2415
2416ConstructorUsingShadowDecl *
2417ConstructorUsingShadowDecl::Create(ASTContext &C, DeclContext *DC,
2418                                   SourceLocation Loc, UsingDecl *Using,
2419                                   NamedDecl *Target, bool IsVirtual) {
2420  return new (C, DC) ConstructorUsingShadowDecl(C, DC, Loc, Using, Target,
2421                                                IsVirtual);
2422}
2423
2424ConstructorUsingShadowDecl *
2425ConstructorUsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2426  return new (C, ID) ConstructorUsingShadowDecl(C, EmptyShell());
2427}
2428
2429CXXRecordDecl *ConstructorUsingShadowDecl::getNominatedBaseClass() const {
2430  return getUsingDecl()->getQualifier()->getAsRecordDecl();
2431}
2432
2433void UsingDecl::anchor() {}
2434
2435void UsingDecl::addShadowDecl(UsingShadowDecl *S) {
2436  assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() &&
2437         "declaration already in set");
2438  assert(S->getUsingDecl() == this);
2439
2440  if (FirstUsingShadow.getPointer())
2441    S->UsingOrNextShadow = FirstUsingShadow.getPointer();
2442  FirstUsingShadow.setPointer(S);
2443}
2444
2445void UsingDecl::removeShadowDecl(UsingShadowDecl *S) {
2446  assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() &&
2447         "declaration not in set");
2448  assert(S->getUsingDecl() == this);
2449
2450  // Remove S from the shadow decl chain. This is O(n) but hopefully rare.
2451
2452  if (FirstUsingShadow.getPointer() == S) {
2453    FirstUsingShadow.setPointer(
2454      dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow));
2455    S->UsingOrNextShadow = this;
2456    return;
2457  }
2458
2459  UsingShadowDecl *Prev = FirstUsingShadow.getPointer();
2460  while (Prev->UsingOrNextShadow != S)
2461    Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
2462  Prev->UsingOrNextShadow = S->UsingOrNextShadow;
2463  S->UsingOrNextShadow = this;
2464}
2465
2466UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
2467                             NestedNameSpecifierLoc QualifierLoc,
2468                             const DeclarationNameInfo &NameInfo,
2469                             bool HasTypename) {
2470  return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename);
2471}
2472
2473UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2474  return new (C, ID) UsingDecl(nullptr, SourceLocation(),
2475                               NestedNameSpecifierLoc(), DeclarationNameInfo(),
2476                               false);
2477}
2478
2479SourceRange UsingDecl::getSourceRange() const {
2480  SourceLocation Begin = isAccessDeclaration()
2481    ? getQualifierLoc().getBeginLoc() : UsingLocation;
2482  return SourceRange(Begin, getNameInfo().getEndLoc());
2483}
2484
2485void UsingPackDecl::anchor() {}
2486
2487UsingPackDecl *UsingPackDecl::Create(ASTContext &C, DeclContext *DC,
2488                                     NamedDecl *InstantiatedFrom,
2489                                     ArrayRef<NamedDecl *> UsingDecls) {
2490  size_t Extra = additionalSizeToAlloc<NamedDecl *>(UsingDecls.size());
2491  return new (C, DC, Extra) UsingPackDecl(DC, InstantiatedFrom, UsingDecls);
2492}
2493
2494UsingPackDecl *UsingPackDecl::CreateDeserialized(ASTContext &C, unsigned ID,
2495                                                 unsigned NumExpansions) {
2496  size_t Extra = additionalSizeToAlloc<NamedDecl *>(NumExpansions);
2497  auto *Result = new (C, ID, Extra) UsingPackDecl(nullptr, nullptr, None);
2498  Result->NumExpansions = NumExpansions;
2499  auto *Trail = Result->getTrailingObjects<NamedDecl *>();
2500  for (unsigned I = 0; I != NumExpansions; ++I)
2501    new (Trail + I) NamedDecl*(nullptr);
2502  return Result;
2503}
2504
2505void UnresolvedUsingValueDecl::anchor() {}
2506
2507UnresolvedUsingValueDecl *
2508UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
2509                                 SourceLocation UsingLoc,
2510                                 NestedNameSpecifierLoc QualifierLoc,
2511                                 const DeclarationNameInfo &NameInfo,
2512                                 SourceLocation EllipsisLoc) {
2513  return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
2514                                              QualifierLoc, NameInfo,
2515                                              EllipsisLoc);
2516}
2517
2518UnresolvedUsingValueDecl *
2519UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2520  return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(),
2521                                              SourceLocation(),
2522                                              NestedNameSpecifierLoc(),
2523                                              DeclarationNameInfo(),
2524                                              SourceLocation());
2525}
2526
2527SourceRange UnresolvedUsingValueDecl::getSourceRange() const {
2528  SourceLocation Begin = isAccessDeclaration()
2529    ? getQualifierLoc().getBeginLoc() : UsingLocation;
2530  return SourceRange(Begin, getNameInfo().getEndLoc());
2531}
2532
2533void UnresolvedUsingTypenameDecl::anchor() {}
2534
2535UnresolvedUsingTypenameDecl *
2536UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
2537                                    SourceLocation UsingLoc,
2538                                    SourceLocation TypenameLoc,
2539                                    NestedNameSpecifierLoc QualifierLoc,
2540                                    SourceLocation TargetNameLoc,
2541                                    DeclarationName TargetName,
2542                                    SourceLocation EllipsisLoc) {
2543  return new (C, DC) UnresolvedUsingTypenameDecl(
2544      DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc,
2545      TargetName.getAsIdentifierInfo(), EllipsisLoc);
2546}
2547
2548UnresolvedUsingTypenameDecl *
2549UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2550  return new (C, ID) UnresolvedUsingTypenameDecl(
2551      nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(),
2552      SourceLocation(), nullptr, SourceLocation());
2553}
2554
2555void StaticAssertDecl::anchor() {}
2556
2557StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
2558                                           SourceLocation StaticAssertLoc,
2559                                           Expr *AssertExpr,
2560                                           StringLiteral *Message,
2561                                           SourceLocation RParenLoc,
2562                                           bool Failed) {
2563  return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
2564                                      RParenLoc, Failed);
2565}
2566
2567StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C,
2568                                                       unsigned ID) {
2569  return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr,
2570                                      nullptr, SourceLocation(), false);
2571}
2572
2573void BindingDecl::anchor() {}
2574
2575BindingDecl *BindingDecl::Create(ASTContext &C, DeclContext *DC,
2576                                 SourceLocation IdLoc, IdentifierInfo *Id) {
2577  return new (C, DC) BindingDecl(DC, IdLoc, Id);
2578}
2579
2580BindingDecl *BindingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2581  return new (C, ID) BindingDecl(nullptr, SourceLocation(), nullptr);
2582}
2583
2584VarDecl *BindingDecl::getHoldingVar() const {
2585  Expr *B = getBinding();
2586  if (!B)
2587    return nullptr;
2588  auto *DRE = dyn_cast<DeclRefExpr>(B->IgnoreImplicit());
2589  if (!DRE)
2590    return nullptr;
2591
2592  auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
2593  assert(VD->isImplicit() && "holding var for binding decl not implicit");
2594  return VD;
2595}
2596
2597void DecompositionDecl::anchor() {}
2598
2599DecompositionDecl *DecompositionDecl::Create(ASTContext &C, DeclContext *DC,
2600                                             SourceLocation StartLoc,
2601                                             SourceLocation LSquareLoc,
2602                                             QualType T, TypeSourceInfo *TInfo,
2603                                             StorageClass SC,
2604                                             ArrayRef<BindingDecl *> Bindings) {
2605  size_t Extra = additionalSizeToAlloc<BindingDecl *>(Bindings.size());
2606  return new (C, DC, Extra)
2607      DecompositionDecl(C, DC, StartLoc, LSquareLoc, T, TInfo, SC, Bindings);
2608}
2609
2610DecompositionDecl *DecompositionDecl::CreateDeserialized(ASTContext &C,
2611                                                         unsigned ID,
2612                                                         unsigned NumBindings) {
2613  size_t Extra = additionalSizeToAlloc<BindingDecl *>(NumBindings);
2614  auto *Result = new (C, ID, Extra)
2615      DecompositionDecl(C, nullptr, SourceLocation(), SourceLocation(),
2616                        QualType(), nullptr, StorageClass(), None);
2617  // Set up and clean out the bindings array.
2618  Result->NumBindings = NumBindings;
2619  auto *Trail = Result->getTrailingObjects<BindingDecl *>();
2620  for (unsigned I = 0; I != NumBindings; ++I)
2621    new (Trail + I) BindingDecl*(nullptr);
2622  return Result;
2623}
2624
2625void DecompositionDecl::printName(llvm::raw_ostream &os) const {
2626  os << '[';
2627  bool Comma = false;
2628  for (auto *B : bindings()) {
2629    if (Comma)
2630      os << ", ";
2631    B->printName(os);
2632    Comma = true;
2633  }
2634  os << ']';
2635}
2636
2637MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC,
2638                                       SourceLocation L, DeclarationName N,
2639                                       QualType T, TypeSourceInfo *TInfo,
2640                                       SourceLocation StartL,
2641                                       IdentifierInfo *Getter,
2642                                       IdentifierInfo *Setter) {
2643  return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter);
2644}
2645
2646MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C,
2647                                                   unsigned ID) {
2648  return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(),
2649                                    DeclarationName(), QualType(), nullptr,
2650                                    SourceLocation(), nullptr, nullptr);
2651}
2652
2653static const char *getAccessName(AccessSpecifier AS) {
2654  switch (AS) {
2655    case AS_none:
2656      llvm_unreachable("Invalid access specifier!");
2657    case AS_public:
2658      return "public";
2659    case AS_private:
2660      return "private";
2661    case AS_protected:
2662      return "protected";
2663  }
2664  llvm_unreachable("Invalid access specifier!");
2665}
2666
2667const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
2668                                           AccessSpecifier AS) {
2669  return DB << getAccessName(AS);
2670}
2671
2672const PartialDiagnostic &clang::operator<<(const PartialDiagnostic &DB,
2673                                           AccessSpecifier AS) {
2674  return DB << getAccessName(AS);
2675}
2676