ASTContext.cpp revision 360784
1//===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9//  This file implements the ASTContext interface.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ASTContext.h"
14#include "CXXABI.h"
15#include "Interp/Context.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConcept.h"
18#include "clang/AST/ASTMutationListener.h"
19#include "clang/AST/ASTTypeTraits.h"
20#include "clang/AST/Attr.h"
21#include "clang/AST/AttrIterator.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/Comment.h"
24#include "clang/AST/Decl.h"
25#include "clang/AST/DeclBase.h"
26#include "clang/AST/DeclCXX.h"
27#include "clang/AST/DeclContextInternals.h"
28#include "clang/AST/DeclObjC.h"
29#include "clang/AST/DeclOpenMP.h"
30#include "clang/AST/DeclTemplate.h"
31#include "clang/AST/DeclarationName.h"
32#include "clang/AST/Expr.h"
33#include "clang/AST/ExprCXX.h"
34#include "clang/AST/ExternalASTSource.h"
35#include "clang/AST/Mangle.h"
36#include "clang/AST/MangleNumberingContext.h"
37#include "clang/AST/NestedNameSpecifier.h"
38#include "clang/AST/RawCommentList.h"
39#include "clang/AST/RecordLayout.h"
40#include "clang/AST/RecursiveASTVisitor.h"
41#include "clang/AST/Stmt.h"
42#include "clang/AST/TemplateBase.h"
43#include "clang/AST/TemplateName.h"
44#include "clang/AST/Type.h"
45#include "clang/AST/TypeLoc.h"
46#include "clang/AST/UnresolvedSet.h"
47#include "clang/AST/VTableBuilder.h"
48#include "clang/Basic/AddressSpaces.h"
49#include "clang/Basic/Builtins.h"
50#include "clang/Basic/CommentOptions.h"
51#include "clang/Basic/ExceptionSpecificationType.h"
52#include "clang/Basic/FixedPoint.h"
53#include "clang/Basic/IdentifierTable.h"
54#include "clang/Basic/LLVM.h"
55#include "clang/Basic/LangOptions.h"
56#include "clang/Basic/Linkage.h"
57#include "clang/Basic/ObjCRuntime.h"
58#include "clang/Basic/SanitizerBlacklist.h"
59#include "clang/Basic/SourceLocation.h"
60#include "clang/Basic/SourceManager.h"
61#include "clang/Basic/Specifiers.h"
62#include "clang/Basic/TargetCXXABI.h"
63#include "clang/Basic/TargetInfo.h"
64#include "clang/Basic/XRayLists.h"
65#include "llvm/ADT/APInt.h"
66#include "llvm/ADT/APSInt.h"
67#include "llvm/ADT/ArrayRef.h"
68#include "llvm/ADT/DenseMap.h"
69#include "llvm/ADT/DenseSet.h"
70#include "llvm/ADT/FoldingSet.h"
71#include "llvm/ADT/None.h"
72#include "llvm/ADT/Optional.h"
73#include "llvm/ADT/PointerUnion.h"
74#include "llvm/ADT/STLExtras.h"
75#include "llvm/ADT/SmallPtrSet.h"
76#include "llvm/ADT/SmallVector.h"
77#include "llvm/ADT/StringExtras.h"
78#include "llvm/ADT/StringRef.h"
79#include "llvm/ADT/Triple.h"
80#include "llvm/Support/Capacity.h"
81#include "llvm/Support/Casting.h"
82#include "llvm/Support/Compiler.h"
83#include "llvm/Support/ErrorHandling.h"
84#include "llvm/Support/MathExtras.h"
85#include "llvm/Support/raw_ostream.h"
86#include <algorithm>
87#include <cassert>
88#include <cstddef>
89#include <cstdint>
90#include <cstdlib>
91#include <map>
92#include <memory>
93#include <string>
94#include <tuple>
95#include <utility>
96
97using namespace clang;
98
99enum FloatingRank {
100  Float16Rank, HalfRank, FloatRank, DoubleRank, LongDoubleRank, Float128Rank
101};
102const Expr *ASTContext::traverseIgnored(const Expr *E) const {
103  return traverseIgnored(const_cast<Expr *>(E));
104}
105
106Expr *ASTContext::traverseIgnored(Expr *E) const {
107  if (!E)
108    return nullptr;
109
110  switch (Traversal) {
111  case ast_type_traits::TK_AsIs:
112    return E;
113  case ast_type_traits::TK_IgnoreImplicitCastsAndParentheses:
114    return E->IgnoreParenImpCasts();
115  case ast_type_traits::TK_IgnoreUnlessSpelledInSource:
116    return E->IgnoreUnlessSpelledInSource();
117  }
118  llvm_unreachable("Invalid Traversal type!");
119}
120
121ast_type_traits::DynTypedNode
122ASTContext::traverseIgnored(const ast_type_traits::DynTypedNode &N) const {
123  if (const auto *E = N.get<Expr>()) {
124    return ast_type_traits::DynTypedNode::create(*traverseIgnored(E));
125  }
126  return N;
127}
128
129/// \returns location that is relevant when searching for Doc comments related
130/// to \p D.
131static SourceLocation getDeclLocForCommentSearch(const Decl *D,
132                                                 SourceManager &SourceMgr) {
133  assert(D);
134
135  // User can not attach documentation to implicit declarations.
136  if (D->isImplicit())
137    return {};
138
139  // User can not attach documentation to implicit instantiations.
140  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
141    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
142      return {};
143  }
144
145  if (const auto *VD = dyn_cast<VarDecl>(D)) {
146    if (VD->isStaticDataMember() &&
147        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
148      return {};
149  }
150
151  if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) {
152    if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
153      return {};
154  }
155
156  if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
157    TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
158    if (TSK == TSK_ImplicitInstantiation ||
159        TSK == TSK_Undeclared)
160      return {};
161  }
162
163  if (const auto *ED = dyn_cast<EnumDecl>(D)) {
164    if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
165      return {};
166  }
167  if (const auto *TD = dyn_cast<TagDecl>(D)) {
168    // When tag declaration (but not definition!) is part of the
169    // decl-specifier-seq of some other declaration, it doesn't get comment
170    if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
171      return {};
172  }
173  // TODO: handle comments for function parameters properly.
174  if (isa<ParmVarDecl>(D))
175    return {};
176
177  // TODO: we could look up template parameter documentation in the template
178  // documentation.
179  if (isa<TemplateTypeParmDecl>(D) ||
180      isa<NonTypeTemplateParmDecl>(D) ||
181      isa<TemplateTemplateParmDecl>(D))
182    return {};
183
184  // Find declaration location.
185  // For Objective-C declarations we generally don't expect to have multiple
186  // declarators, thus use declaration starting location as the "declaration
187  // location".
188  // For all other declarations multiple declarators are used quite frequently,
189  // so we use the location of the identifier as the "declaration location".
190  if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
191      isa<ObjCPropertyDecl>(D) ||
192      isa<RedeclarableTemplateDecl>(D) ||
193      isa<ClassTemplateSpecializationDecl>(D) ||
194      // Allow association with Y across {} in `typedef struct X {} Y`.
195      isa<TypedefDecl>(D))
196    return D->getBeginLoc();
197  else {
198    const SourceLocation DeclLoc = D->getLocation();
199    if (DeclLoc.isMacroID()) {
200      if (isa<TypedefDecl>(D)) {
201        // If location of the typedef name is in a macro, it is because being
202        // declared via a macro. Try using declaration's starting location as
203        // the "declaration location".
204        return D->getBeginLoc();
205      } else if (const auto *TD = dyn_cast<TagDecl>(D)) {
206        // If location of the tag decl is inside a macro, but the spelling of
207        // the tag name comes from a macro argument, it looks like a special
208        // macro like NS_ENUM is being used to define the tag decl.  In that
209        // case, adjust the source location to the expansion loc so that we can
210        // attach the comment to the tag decl.
211        if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
212            TD->isCompleteDefinition())
213          return SourceMgr.getExpansionLoc(DeclLoc);
214      }
215    }
216    return DeclLoc;
217  }
218
219  return {};
220}
221
222RawComment *ASTContext::getRawCommentForDeclNoCacheImpl(
223    const Decl *D, const SourceLocation RepresentativeLocForDecl,
224    const std::map<unsigned, RawComment *> &CommentsInTheFile) const {
225  // If the declaration doesn't map directly to a location in a file, we
226  // can't find the comment.
227  if (RepresentativeLocForDecl.isInvalid() ||
228      !RepresentativeLocForDecl.isFileID())
229    return nullptr;
230
231  // If there are no comments anywhere, we won't find anything.
232  if (CommentsInTheFile.empty())
233    return nullptr;
234
235  // Decompose the location for the declaration and find the beginning of the
236  // file buffer.
237  const std::pair<FileID, unsigned> DeclLocDecomp =
238      SourceMgr.getDecomposedLoc(RepresentativeLocForDecl);
239
240  // Slow path.
241  auto OffsetCommentBehindDecl =
242      CommentsInTheFile.lower_bound(DeclLocDecomp.second);
243
244  // First check whether we have a trailing comment.
245  if (OffsetCommentBehindDecl != CommentsInTheFile.end()) {
246    RawComment *CommentBehindDecl = OffsetCommentBehindDecl->second;
247    if ((CommentBehindDecl->isDocumentation() ||
248         LangOpts.CommentOpts.ParseAllComments) &&
249        CommentBehindDecl->isTrailingComment() &&
250        (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
251         isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
252
253      // Check that Doxygen trailing comment comes after the declaration, starts
254      // on the same line and in the same file as the declaration.
255      if (SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) ==
256          Comments.getCommentBeginLine(CommentBehindDecl, DeclLocDecomp.first,
257                                       OffsetCommentBehindDecl->first)) {
258        return CommentBehindDecl;
259      }
260    }
261  }
262
263  // The comment just after the declaration was not a trailing comment.
264  // Let's look at the previous comment.
265  if (OffsetCommentBehindDecl == CommentsInTheFile.begin())
266    return nullptr;
267
268  auto OffsetCommentBeforeDecl = --OffsetCommentBehindDecl;
269  RawComment *CommentBeforeDecl = OffsetCommentBeforeDecl->second;
270
271  // Check that we actually have a non-member Doxygen comment.
272  if (!(CommentBeforeDecl->isDocumentation() ||
273        LangOpts.CommentOpts.ParseAllComments) ||
274      CommentBeforeDecl->isTrailingComment())
275    return nullptr;
276
277  // Decompose the end of the comment.
278  const unsigned CommentEndOffset =
279      Comments.getCommentEndOffset(CommentBeforeDecl);
280
281  // Get the corresponding buffer.
282  bool Invalid = false;
283  const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
284                                               &Invalid).data();
285  if (Invalid)
286    return nullptr;
287
288  // Extract text between the comment and declaration.
289  StringRef Text(Buffer + CommentEndOffset,
290                 DeclLocDecomp.second - CommentEndOffset);
291
292  // There should be no other declarations or preprocessor directives between
293  // comment and declaration.
294  if (Text.find_first_of(";{}#@") != StringRef::npos)
295    return nullptr;
296
297  return CommentBeforeDecl;
298}
299
300RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
301  const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
302
303  // If the declaration doesn't map directly to a location in a file, we
304  // can't find the comment.
305  if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
306    return nullptr;
307
308  if (ExternalSource && !CommentsLoaded) {
309    ExternalSource->ReadComments();
310    CommentsLoaded = true;
311  }
312
313  if (Comments.empty())
314    return nullptr;
315
316  const FileID File = SourceMgr.getDecomposedLoc(DeclLoc).first;
317  const auto CommentsInThisFile = Comments.getCommentsInFile(File);
318  if (!CommentsInThisFile || CommentsInThisFile->empty())
319    return nullptr;
320
321  return getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile);
322}
323
324/// If we have a 'templated' declaration for a template, adjust 'D' to
325/// refer to the actual template.
326/// If we have an implicit instantiation, adjust 'D' to refer to template.
327static const Decl &adjustDeclToTemplate(const Decl &D) {
328  if (const auto *FD = dyn_cast<FunctionDecl>(&D)) {
329    // Is this function declaration part of a function template?
330    if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
331      return *FTD;
332
333    // Nothing to do if function is not an implicit instantiation.
334    if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
335      return D;
336
337    // Function is an implicit instantiation of a function template?
338    if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
339      return *FTD;
340
341    // Function is instantiated from a member definition of a class template?
342    if (const FunctionDecl *MemberDecl =
343            FD->getInstantiatedFromMemberFunction())
344      return *MemberDecl;
345
346    return D;
347  }
348  if (const auto *VD = dyn_cast<VarDecl>(&D)) {
349    // Static data member is instantiated from a member definition of a class
350    // template?
351    if (VD->isStaticDataMember())
352      if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
353        return *MemberDecl;
354
355    return D;
356  }
357  if (const auto *CRD = dyn_cast<CXXRecordDecl>(&D)) {
358    // Is this class declaration part of a class template?
359    if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
360      return *CTD;
361
362    // Class is an implicit instantiation of a class template or partial
363    // specialization?
364    if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
365      if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
366        return D;
367      llvm::PointerUnion<ClassTemplateDecl *,
368                         ClassTemplatePartialSpecializationDecl *>
369          PU = CTSD->getSpecializedTemplateOrPartial();
370      return PU.is<ClassTemplateDecl *>()
371                 ? *static_cast<const Decl *>(PU.get<ClassTemplateDecl *>())
372                 : *static_cast<const Decl *>(
373                       PU.get<ClassTemplatePartialSpecializationDecl *>());
374    }
375
376    // Class is instantiated from a member definition of a class template?
377    if (const MemberSpecializationInfo *Info =
378            CRD->getMemberSpecializationInfo())
379      return *Info->getInstantiatedFrom();
380
381    return D;
382  }
383  if (const auto *ED = dyn_cast<EnumDecl>(&D)) {
384    // Enum is instantiated from a member definition of a class template?
385    if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
386      return *MemberDecl;
387
388    return D;
389  }
390  // FIXME: Adjust alias templates?
391  return D;
392}
393
394const RawComment *ASTContext::getRawCommentForAnyRedecl(
395                                                const Decl *D,
396                                                const Decl **OriginalDecl) const {
397  if (!D) {
398    if (OriginalDecl)
399      OriginalDecl = nullptr;
400    return nullptr;
401  }
402
403  D = &adjustDeclToTemplate(*D);
404
405  // Any comment directly attached to D?
406  {
407    auto DeclComment = DeclRawComments.find(D);
408    if (DeclComment != DeclRawComments.end()) {
409      if (OriginalDecl)
410        *OriginalDecl = D;
411      return DeclComment->second;
412    }
413  }
414
415  // Any comment attached to any redeclaration of D?
416  const Decl *CanonicalD = D->getCanonicalDecl();
417  if (!CanonicalD)
418    return nullptr;
419
420  {
421    auto RedeclComment = RedeclChainComments.find(CanonicalD);
422    if (RedeclComment != RedeclChainComments.end()) {
423      if (OriginalDecl)
424        *OriginalDecl = RedeclComment->second;
425      auto CommentAtRedecl = DeclRawComments.find(RedeclComment->second);
426      assert(CommentAtRedecl != DeclRawComments.end() &&
427             "This decl is supposed to have comment attached.");
428      return CommentAtRedecl->second;
429    }
430  }
431
432  // Any redeclarations of D that we haven't checked for comments yet?
433  // We can't use DenseMap::iterator directly since it'd get invalid.
434  auto LastCheckedRedecl = [this, CanonicalD]() -> const Decl * {
435    auto LookupRes = CommentlessRedeclChains.find(CanonicalD);
436    if (LookupRes != CommentlessRedeclChains.end())
437      return LookupRes->second;
438    return nullptr;
439  }();
440
441  for (const auto Redecl : D->redecls()) {
442    assert(Redecl);
443    // Skip all redeclarations that have been checked previously.
444    if (LastCheckedRedecl) {
445      if (LastCheckedRedecl == Redecl) {
446        LastCheckedRedecl = nullptr;
447      }
448      continue;
449    }
450    const RawComment *RedeclComment = getRawCommentForDeclNoCache(Redecl);
451    if (RedeclComment) {
452      cacheRawCommentForDecl(*Redecl, *RedeclComment);
453      if (OriginalDecl)
454        *OriginalDecl = Redecl;
455      return RedeclComment;
456    }
457    CommentlessRedeclChains[CanonicalD] = Redecl;
458  }
459
460  if (OriginalDecl)
461    *OriginalDecl = nullptr;
462  return nullptr;
463}
464
465void ASTContext::cacheRawCommentForDecl(const Decl &OriginalD,
466                                        const RawComment &Comment) const {
467  assert(Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments);
468  DeclRawComments.try_emplace(&OriginalD, &Comment);
469  const Decl *const CanonicalDecl = OriginalD.getCanonicalDecl();
470  RedeclChainComments.try_emplace(CanonicalDecl, &OriginalD);
471  CommentlessRedeclChains.erase(CanonicalDecl);
472}
473
474static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
475                   SmallVectorImpl<const NamedDecl *> &Redeclared) {
476  const DeclContext *DC = ObjCMethod->getDeclContext();
477  if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) {
478    const ObjCInterfaceDecl *ID = IMD->getClassInterface();
479    if (!ID)
480      return;
481    // Add redeclared method here.
482    for (const auto *Ext : ID->known_extensions()) {
483      if (ObjCMethodDecl *RedeclaredMethod =
484            Ext->getMethod(ObjCMethod->getSelector(),
485                                  ObjCMethod->isInstanceMethod()))
486        Redeclared.push_back(RedeclaredMethod);
487    }
488  }
489}
490
491void ASTContext::attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
492                                                 const Preprocessor *PP) {
493  if (Comments.empty() || Decls.empty())
494    return;
495
496  // See if there are any new comments that are not attached to a decl.
497  // The location doesn't have to be precise - we care only about the file.
498  const FileID File =
499      SourceMgr.getDecomposedLoc((*Decls.begin())->getLocation()).first;
500  auto CommentsInThisFile = Comments.getCommentsInFile(File);
501  if (!CommentsInThisFile || CommentsInThisFile->empty() ||
502      CommentsInThisFile->rbegin()->second->isAttached())
503    return;
504
505  // There is at least one comment not attached to a decl.
506  // Maybe it should be attached to one of Decls?
507  //
508  // Note that this way we pick up not only comments that precede the
509  // declaration, but also comments that *follow* the declaration -- thanks to
510  // the lookahead in the lexer: we've consumed the semicolon and looked
511  // ahead through comments.
512
513  for (const Decl *D : Decls) {
514    assert(D);
515    if (D->isInvalidDecl())
516      continue;
517
518    D = &adjustDeclToTemplate(*D);
519
520    const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
521
522    if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
523      continue;
524
525    if (DeclRawComments.count(D) > 0)
526      continue;
527
528    if (RawComment *const DocComment =
529            getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile)) {
530      cacheRawCommentForDecl(*D, *DocComment);
531      comments::FullComment *FC = DocComment->parse(*this, PP, D);
532      ParsedComments[D->getCanonicalDecl()] = FC;
533    }
534  }
535}
536
537comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
538                                                    const Decl *D) const {
539  auto *ThisDeclInfo = new (*this) comments::DeclInfo;
540  ThisDeclInfo->CommentDecl = D;
541  ThisDeclInfo->IsFilled = false;
542  ThisDeclInfo->fill();
543  ThisDeclInfo->CommentDecl = FC->getDecl();
544  if (!ThisDeclInfo->TemplateParameters)
545    ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
546  comments::FullComment *CFC =
547    new (*this) comments::FullComment(FC->getBlocks(),
548                                      ThisDeclInfo);
549  return CFC;
550}
551
552comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
553  const RawComment *RC = getRawCommentForDeclNoCache(D);
554  return RC ? RC->parse(*this, nullptr, D) : nullptr;
555}
556
557comments::FullComment *ASTContext::getCommentForDecl(
558                                              const Decl *D,
559                                              const Preprocessor *PP) const {
560  if (!D || D->isInvalidDecl())
561    return nullptr;
562  D = &adjustDeclToTemplate(*D);
563
564  const Decl *Canonical = D->getCanonicalDecl();
565  llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
566      ParsedComments.find(Canonical);
567
568  if (Pos != ParsedComments.end()) {
569    if (Canonical != D) {
570      comments::FullComment *FC = Pos->second;
571      comments::FullComment *CFC = cloneFullComment(FC, D);
572      return CFC;
573    }
574    return Pos->second;
575  }
576
577  const Decl *OriginalDecl = nullptr;
578
579  const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
580  if (!RC) {
581    if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
582      SmallVector<const NamedDecl*, 8> Overridden;
583      const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
584      if (OMD && OMD->isPropertyAccessor())
585        if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
586          if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
587            return cloneFullComment(FC, D);
588      if (OMD)
589        addRedeclaredMethods(OMD, Overridden);
590      getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
591      for (unsigned i = 0, e = Overridden.size(); i < e; i++)
592        if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
593          return cloneFullComment(FC, D);
594    }
595    else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
596      // Attach any tag type's documentation to its typedef if latter
597      // does not have one of its own.
598      QualType QT = TD->getUnderlyingType();
599      if (const auto *TT = QT->getAs<TagType>())
600        if (const Decl *TD = TT->getDecl())
601          if (comments::FullComment *FC = getCommentForDecl(TD, PP))
602            return cloneFullComment(FC, D);
603    }
604    else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
605      while (IC->getSuperClass()) {
606        IC = IC->getSuperClass();
607        if (comments::FullComment *FC = getCommentForDecl(IC, PP))
608          return cloneFullComment(FC, D);
609      }
610    }
611    else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) {
612      if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
613        if (comments::FullComment *FC = getCommentForDecl(IC, PP))
614          return cloneFullComment(FC, D);
615    }
616    else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
617      if (!(RD = RD->getDefinition()))
618        return nullptr;
619      // Check non-virtual bases.
620      for (const auto &I : RD->bases()) {
621        if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
622          continue;
623        QualType Ty = I.getType();
624        if (Ty.isNull())
625          continue;
626        if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
627          if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
628            continue;
629
630          if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
631            return cloneFullComment(FC, D);
632        }
633      }
634      // Check virtual bases.
635      for (const auto &I : RD->vbases()) {
636        if (I.getAccessSpecifier() != AS_public)
637          continue;
638        QualType Ty = I.getType();
639        if (Ty.isNull())
640          continue;
641        if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
642          if (!(VirtualBase= VirtualBase->getDefinition()))
643            continue;
644          if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
645            return cloneFullComment(FC, D);
646        }
647      }
648    }
649    return nullptr;
650  }
651
652  // If the RawComment was attached to other redeclaration of this Decl, we
653  // should parse the comment in context of that other Decl.  This is important
654  // because comments can contain references to parameter names which can be
655  // different across redeclarations.
656  if (D != OriginalDecl && OriginalDecl)
657    return getCommentForDecl(OriginalDecl, PP);
658
659  comments::FullComment *FC = RC->parse(*this, PP, D);
660  ParsedComments[Canonical] = FC;
661  return FC;
662}
663
664void
665ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
666                                                   const ASTContext &C,
667                                               TemplateTemplateParmDecl *Parm) {
668  ID.AddInteger(Parm->getDepth());
669  ID.AddInteger(Parm->getPosition());
670  ID.AddBoolean(Parm->isParameterPack());
671
672  TemplateParameterList *Params = Parm->getTemplateParameters();
673  ID.AddInteger(Params->size());
674  for (TemplateParameterList::const_iterator P = Params->begin(),
675                                          PEnd = Params->end();
676       P != PEnd; ++P) {
677    if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
678      ID.AddInteger(0);
679      ID.AddBoolean(TTP->isParameterPack());
680      const TypeConstraint *TC = TTP->getTypeConstraint();
681      ID.AddBoolean(TC != nullptr);
682      if (TC)
683        TC->getImmediatelyDeclaredConstraint()->Profile(ID, C,
684                                                        /*Canonical=*/true);
685      if (TTP->isExpandedParameterPack()) {
686        ID.AddBoolean(true);
687        ID.AddInteger(TTP->getNumExpansionParameters());
688      } else
689        ID.AddBoolean(false);
690      continue;
691    }
692
693    if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
694      ID.AddInteger(1);
695      ID.AddBoolean(NTTP->isParameterPack());
696      ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
697      if (NTTP->isExpandedParameterPack()) {
698        ID.AddBoolean(true);
699        ID.AddInteger(NTTP->getNumExpansionTypes());
700        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
701          QualType T = NTTP->getExpansionType(I);
702          ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
703        }
704      } else
705        ID.AddBoolean(false);
706      continue;
707    }
708
709    auto *TTP = cast<TemplateTemplateParmDecl>(*P);
710    ID.AddInteger(2);
711    Profile(ID, C, TTP);
712  }
713  Expr *RequiresClause = Parm->getTemplateParameters()->getRequiresClause();
714  ID.AddBoolean(RequiresClause != nullptr);
715  if (RequiresClause)
716    RequiresClause->Profile(ID, C, /*Canonical=*/true);
717}
718
719static Expr *
720canonicalizeImmediatelyDeclaredConstraint(const ASTContext &C, Expr *IDC,
721                                          QualType ConstrainedType) {
722  // This is a bit ugly - we need to form a new immediately-declared
723  // constraint that references the new parameter; this would ideally
724  // require semantic analysis (e.g. template<C T> struct S {}; - the
725  // converted arguments of C<T> could be an argument pack if C is
726  // declared as template<typename... T> concept C = ...).
727  // We don't have semantic analysis here so we dig deep into the
728  // ready-made constraint expr and change the thing manually.
729  ConceptSpecializationExpr *CSE;
730  if (const auto *Fold = dyn_cast<CXXFoldExpr>(IDC))
731    CSE = cast<ConceptSpecializationExpr>(Fold->getLHS());
732  else
733    CSE = cast<ConceptSpecializationExpr>(IDC);
734  ArrayRef<TemplateArgument> OldConverted = CSE->getTemplateArguments();
735  SmallVector<TemplateArgument, 3> NewConverted;
736  NewConverted.reserve(OldConverted.size());
737  if (OldConverted.front().getKind() == TemplateArgument::Pack) {
738    // The case:
739    // template<typename... T> concept C = true;
740    // template<C<int> T> struct S; -> constraint is C<{T, int}>
741    NewConverted.push_back(ConstrainedType);
742    for (auto &Arg : OldConverted.front().pack_elements().drop_front(1))
743      NewConverted.push_back(Arg);
744    TemplateArgument NewPack(NewConverted);
745
746    NewConverted.clear();
747    NewConverted.push_back(NewPack);
748    assert(OldConverted.size() == 1 &&
749           "Template parameter pack should be the last parameter");
750  } else {
751    assert(OldConverted.front().getKind() == TemplateArgument::Type &&
752           "Unexpected first argument kind for immediately-declared "
753           "constraint");
754    NewConverted.push_back(ConstrainedType);
755    for (auto &Arg : OldConverted.drop_front(1))
756      NewConverted.push_back(Arg);
757  }
758  Expr *NewIDC = ConceptSpecializationExpr::Create(
759      C, CSE->getNamedConcept(), NewConverted, nullptr,
760      CSE->isInstantiationDependent(), CSE->containsUnexpandedParameterPack());
761
762  if (auto *OrigFold = dyn_cast<CXXFoldExpr>(IDC))
763    NewIDC = new (C) CXXFoldExpr(OrigFold->getType(), SourceLocation(), NewIDC,
764                                 BinaryOperatorKind::BO_LAnd,
765                                 SourceLocation(), /*RHS=*/nullptr,
766                                 SourceLocation(), /*NumExpansions=*/None);
767  return NewIDC;
768}
769
770TemplateTemplateParmDecl *
771ASTContext::getCanonicalTemplateTemplateParmDecl(
772                                          TemplateTemplateParmDecl *TTP) const {
773  // Check if we already have a canonical template template parameter.
774  llvm::FoldingSetNodeID ID;
775  CanonicalTemplateTemplateParm::Profile(ID, *this, TTP);
776  void *InsertPos = nullptr;
777  CanonicalTemplateTemplateParm *Canonical
778    = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
779  if (Canonical)
780    return Canonical->getParam();
781
782  // Build a canonical template parameter list.
783  TemplateParameterList *Params = TTP->getTemplateParameters();
784  SmallVector<NamedDecl *, 4> CanonParams;
785  CanonParams.reserve(Params->size());
786  for (TemplateParameterList::const_iterator P = Params->begin(),
787                                          PEnd = Params->end();
788       P != PEnd; ++P) {
789    if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
790      TemplateTypeParmDecl *NewTTP = TemplateTypeParmDecl::Create(*this,
791          getTranslationUnitDecl(), SourceLocation(), SourceLocation(),
792          TTP->getDepth(), TTP->getIndex(), nullptr, false,
793          TTP->isParameterPack(), TTP->hasTypeConstraint(),
794          TTP->isExpandedParameterPack() ?
795          llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None);
796      if (const auto *TC = TTP->getTypeConstraint()) {
797        QualType ParamAsArgument(NewTTP->getTypeForDecl(), 0);
798        Expr *NewIDC = canonicalizeImmediatelyDeclaredConstraint(
799                *this, TC->getImmediatelyDeclaredConstraint(),
800                ParamAsArgument);
801        TemplateArgumentListInfo CanonArgsAsWritten;
802        if (auto *Args = TC->getTemplateArgsAsWritten())
803          for (const auto &ArgLoc : Args->arguments())
804            CanonArgsAsWritten.addArgument(
805                TemplateArgumentLoc(ArgLoc.getArgument(),
806                                    TemplateArgumentLocInfo()));
807        NewTTP->setTypeConstraint(
808            NestedNameSpecifierLoc(),
809            DeclarationNameInfo(TC->getNamedConcept()->getDeclName(),
810                                SourceLocation()), /*FoundDecl=*/nullptr,
811            // Actually canonicalizing a TemplateArgumentLoc is difficult so we
812            // simply omit the ArgsAsWritten
813            TC->getNamedConcept(), /*ArgsAsWritten=*/nullptr, NewIDC);
814      }
815      CanonParams.push_back(NewTTP);
816    } else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
817      QualType T = getCanonicalType(NTTP->getType());
818      TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
819      NonTypeTemplateParmDecl *Param;
820      if (NTTP->isExpandedParameterPack()) {
821        SmallVector<QualType, 2> ExpandedTypes;
822        SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
823        for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
824          ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
825          ExpandedTInfos.push_back(
826                                getTrivialTypeSourceInfo(ExpandedTypes.back()));
827        }
828
829        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
830                                                SourceLocation(),
831                                                SourceLocation(),
832                                                NTTP->getDepth(),
833                                                NTTP->getPosition(), nullptr,
834                                                T,
835                                                TInfo,
836                                                ExpandedTypes,
837                                                ExpandedTInfos);
838      } else {
839        Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
840                                                SourceLocation(),
841                                                SourceLocation(),
842                                                NTTP->getDepth(),
843                                                NTTP->getPosition(), nullptr,
844                                                T,
845                                                NTTP->isParameterPack(),
846                                                TInfo);
847      }
848      if (AutoType *AT = T->getContainedAutoType()) {
849        if (AT->isConstrained()) {
850          Param->setPlaceholderTypeConstraint(
851              canonicalizeImmediatelyDeclaredConstraint(
852                  *this, NTTP->getPlaceholderTypeConstraint(), T));
853        }
854      }
855      CanonParams.push_back(Param);
856
857    } else
858      CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
859                                           cast<TemplateTemplateParmDecl>(*P)));
860  }
861
862  Expr *CanonRequiresClause = nullptr;
863  if (Expr *RequiresClause = TTP->getTemplateParameters()->getRequiresClause())
864    CanonRequiresClause = RequiresClause;
865
866  TemplateTemplateParmDecl *CanonTTP
867    = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
868                                       SourceLocation(), TTP->getDepth(),
869                                       TTP->getPosition(),
870                                       TTP->isParameterPack(),
871                                       nullptr,
872                         TemplateParameterList::Create(*this, SourceLocation(),
873                                                       SourceLocation(),
874                                                       CanonParams,
875                                                       SourceLocation(),
876                                                       CanonRequiresClause));
877
878  // Get the new insert position for the node we care about.
879  Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
880  assert(!Canonical && "Shouldn't be in the map!");
881  (void)Canonical;
882
883  // Create the canonical template template parameter entry.
884  Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
885  CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
886  return CanonTTP;
887}
888
889CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
890  if (!LangOpts.CPlusPlus) return nullptr;
891
892  switch (T.getCXXABI().getKind()) {
893  case TargetCXXABI::Fuchsia:
894  case TargetCXXABI::GenericARM: // Same as Itanium at this level
895  case TargetCXXABI::iOS:
896  case TargetCXXABI::iOS64:
897  case TargetCXXABI::WatchOS:
898  case TargetCXXABI::GenericAArch64:
899  case TargetCXXABI::GenericMIPS:
900  case TargetCXXABI::GenericItanium:
901  case TargetCXXABI::WebAssembly:
902    return CreateItaniumCXXABI(*this);
903  case TargetCXXABI::Microsoft:
904    return CreateMicrosoftCXXABI(*this);
905  }
906  llvm_unreachable("Invalid CXXABI type!");
907}
908
909interp::Context &ASTContext::getInterpContext() {
910  if (!InterpContext) {
911    InterpContext.reset(new interp::Context(*this));
912  }
913  return *InterpContext.get();
914}
915
916static const LangASMap *getAddressSpaceMap(const TargetInfo &T,
917                                           const LangOptions &LOpts) {
918  if (LOpts.FakeAddressSpaceMap) {
919    // The fake address space map must have a distinct entry for each
920    // language-specific address space.
921    static const unsigned FakeAddrSpaceMap[] = {
922        0, // Default
923        1, // opencl_global
924        3, // opencl_local
925        2, // opencl_constant
926        0, // opencl_private
927        4, // opencl_generic
928        5, // cuda_device
929        6, // cuda_constant
930        7, // cuda_shared
931        8, // ptr32_sptr
932        9, // ptr32_uptr
933        10 // ptr64
934    };
935    return &FakeAddrSpaceMap;
936  } else {
937    return &T.getAddressSpaceMap();
938  }
939}
940
941static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
942                                          const LangOptions &LangOpts) {
943  switch (LangOpts.getAddressSpaceMapMangling()) {
944  case LangOptions::ASMM_Target:
945    return TI.useAddressSpaceMapMangling();
946  case LangOptions::ASMM_On:
947    return true;
948  case LangOptions::ASMM_Off:
949    return false;
950  }
951  llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
952}
953
954ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
955                       IdentifierTable &idents, SelectorTable &sels,
956                       Builtin::Context &builtins)
957    : ConstantArrayTypes(this_()), FunctionProtoTypes(this_()),
958      TemplateSpecializationTypes(this_()),
959      DependentTemplateSpecializationTypes(this_()), AutoTypes(this_()),
960      SubstTemplateTemplateParmPacks(this_()),
961      CanonTemplateTemplateParms(this_()), SourceMgr(SM), LangOpts(LOpts),
962      SanitizerBL(new SanitizerBlacklist(LangOpts.SanitizerBlacklistFiles, SM)),
963      XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles,
964                                        LangOpts.XRayNeverInstrumentFiles,
965                                        LangOpts.XRayAttrListFiles, SM)),
966      PrintingPolicy(LOpts), Idents(idents), Selectors(sels),
967      BuiltinInfo(builtins), DeclarationNames(*this), Comments(SM),
968      CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
969      CompCategories(this_()), LastSDM(nullptr, 0) {
970  TUDecl = TranslationUnitDecl::Create(*this);
971  TraversalScope = {TUDecl};
972}
973
974ASTContext::~ASTContext() {
975  // Release the DenseMaps associated with DeclContext objects.
976  // FIXME: Is this the ideal solution?
977  ReleaseDeclContextMaps();
978
979  // Call all of the deallocation functions on all of their targets.
980  for (auto &Pair : Deallocations)
981    (Pair.first)(Pair.second);
982
983  // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
984  // because they can contain DenseMaps.
985  for (llvm::DenseMap<const ObjCContainerDecl*,
986       const ASTRecordLayout*>::iterator
987       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
988    // Increment in loop to prevent using deallocated memory.
989    if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
990      R->Destroy(*this);
991
992  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
993       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
994    // Increment in loop to prevent using deallocated memory.
995    if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
996      R->Destroy(*this);
997  }
998
999  for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
1000                                                    AEnd = DeclAttrs.end();
1001       A != AEnd; ++A)
1002    A->second->~AttrVec();
1003
1004  for (const auto &Value : ModuleInitializers)
1005    Value.second->~PerModuleInitializers();
1006
1007  for (APValue *Value : APValueCleanups)
1008    Value->~APValue();
1009}
1010
1011class ASTContext::ParentMap {
1012  /// Contains parents of a node.
1013  using ParentVector = llvm::SmallVector<ast_type_traits::DynTypedNode, 2>;
1014
1015  /// Maps from a node to its parents. This is used for nodes that have
1016  /// pointer identity only, which are more common and we can save space by
1017  /// only storing a unique pointer to them.
1018  using ParentMapPointers = llvm::DenseMap<
1019      const void *,
1020      llvm::PointerUnion<const Decl *, const Stmt *,
1021                         ast_type_traits::DynTypedNode *, ParentVector *>>;
1022
1023  /// Parent map for nodes without pointer identity. We store a full
1024  /// DynTypedNode for all keys.
1025  using ParentMapOtherNodes = llvm::DenseMap<
1026      ast_type_traits::DynTypedNode,
1027      llvm::PointerUnion<const Decl *, const Stmt *,
1028                         ast_type_traits::DynTypedNode *, ParentVector *>>;
1029
1030  ParentMapPointers PointerParents;
1031  ParentMapOtherNodes OtherParents;
1032  class ASTVisitor;
1033
1034  static ast_type_traits::DynTypedNode
1035  getSingleDynTypedNodeFromParentMap(ParentMapPointers::mapped_type U) {
1036    if (const auto *D = U.dyn_cast<const Decl *>())
1037      return ast_type_traits::DynTypedNode::create(*D);
1038    if (const auto *S = U.dyn_cast<const Stmt *>())
1039      return ast_type_traits::DynTypedNode::create(*S);
1040    return *U.get<ast_type_traits::DynTypedNode *>();
1041  }
1042
1043  template <typename NodeTy, typename MapTy>
1044  static ASTContext::DynTypedNodeList getDynNodeFromMap(const NodeTy &Node,
1045                                                        const MapTy &Map) {
1046    auto I = Map.find(Node);
1047    if (I == Map.end()) {
1048      return llvm::ArrayRef<ast_type_traits::DynTypedNode>();
1049    }
1050    if (const auto *V = I->second.template dyn_cast<ParentVector *>()) {
1051      return llvm::makeArrayRef(*V);
1052    }
1053    return getSingleDynTypedNodeFromParentMap(I->second);
1054  }
1055
1056public:
1057  ParentMap(ASTContext &Ctx);
1058  ~ParentMap() {
1059    for (const auto &Entry : PointerParents) {
1060      if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
1061        delete Entry.second.get<ast_type_traits::DynTypedNode *>();
1062      } else if (Entry.second.is<ParentVector *>()) {
1063        delete Entry.second.get<ParentVector *>();
1064      }
1065    }
1066    for (const auto &Entry : OtherParents) {
1067      if (Entry.second.is<ast_type_traits::DynTypedNode *>()) {
1068        delete Entry.second.get<ast_type_traits::DynTypedNode *>();
1069      } else if (Entry.second.is<ParentVector *>()) {
1070        delete Entry.second.get<ParentVector *>();
1071      }
1072    }
1073  }
1074
1075  DynTypedNodeList getParents(const ast_type_traits::DynTypedNode &Node) {
1076    if (Node.getNodeKind().hasPointerIdentity())
1077      return getDynNodeFromMap(Node.getMemoizationData(), PointerParents);
1078    return getDynNodeFromMap(Node, OtherParents);
1079  }
1080};
1081
1082void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) {
1083  TraversalScope = TopLevelDecls;
1084  Parents.clear();
1085}
1086
1087void ASTContext::AddDeallocation(void (*Callback)(void *), void *Data) const {
1088  Deallocations.push_back({Callback, Data});
1089}
1090
1091void
1092ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
1093  ExternalSource = std::move(Source);
1094}
1095
1096void ASTContext::PrintStats() const {
1097  llvm::errs() << "\n*** AST Context Stats:\n";
1098  llvm::errs() << "  " << Types.size() << " types total.\n";
1099
1100  unsigned counts[] = {
1101#define TYPE(Name, Parent) 0,
1102#define ABSTRACT_TYPE(Name, Parent)
1103#include "clang/AST/TypeNodes.inc"
1104    0 // Extra
1105  };
1106
1107  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1108    Type *T = Types[i];
1109    counts[(unsigned)T->getTypeClass()]++;
1110  }
1111
1112  unsigned Idx = 0;
1113  unsigned TotalBytes = 0;
1114#define TYPE(Name, Parent)                                              \
1115  if (counts[Idx])                                                      \
1116    llvm::errs() << "    " << counts[Idx] << " " << #Name               \
1117                 << " types, " << sizeof(Name##Type) << " each "        \
1118                 << "(" << counts[Idx] * sizeof(Name##Type)             \
1119                 << " bytes)\n";                                        \
1120  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
1121  ++Idx;
1122#define ABSTRACT_TYPE(Name, Parent)
1123#include "clang/AST/TypeNodes.inc"
1124
1125  llvm::errs() << "Total bytes = " << TotalBytes << "\n";
1126
1127  // Implicit special member functions.
1128  llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
1129               << NumImplicitDefaultConstructors
1130               << " implicit default constructors created\n";
1131  llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
1132               << NumImplicitCopyConstructors
1133               << " implicit copy constructors created\n";
1134  if (getLangOpts().CPlusPlus)
1135    llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
1136                 << NumImplicitMoveConstructors
1137                 << " implicit move constructors created\n";
1138  llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
1139               << NumImplicitCopyAssignmentOperators
1140               << " implicit copy assignment operators created\n";
1141  if (getLangOpts().CPlusPlus)
1142    llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
1143                 << NumImplicitMoveAssignmentOperators
1144                 << " implicit move assignment operators created\n";
1145  llvm::errs() << NumImplicitDestructorsDeclared << "/"
1146               << NumImplicitDestructors
1147               << " implicit destructors created\n";
1148
1149  if (ExternalSource) {
1150    llvm::errs() << "\n";
1151    ExternalSource->PrintStats();
1152  }
1153
1154  BumpAlloc.PrintStats();
1155}
1156
1157void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
1158                                           bool NotifyListeners) {
1159  if (NotifyListeners)
1160    if (auto *Listener = getASTMutationListener())
1161      Listener->RedefinedHiddenDefinition(ND, M);
1162
1163  MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M);
1164}
1165
1166void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) {
1167  auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl()));
1168  if (It == MergedDefModules.end())
1169    return;
1170
1171  auto &Merged = It->second;
1172  llvm::DenseSet<Module*> Found;
1173  for (Module *&M : Merged)
1174    if (!Found.insert(M).second)
1175      M = nullptr;
1176  Merged.erase(std::remove(Merged.begin(), Merged.end(), nullptr), Merged.end());
1177}
1178
1179void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) {
1180  if (LazyInitializers.empty())
1181    return;
1182
1183  auto *Source = Ctx.getExternalSource();
1184  assert(Source && "lazy initializers but no external source");
1185
1186  auto LazyInits = std::move(LazyInitializers);
1187  LazyInitializers.clear();
1188
1189  for (auto ID : LazyInits)
1190    Initializers.push_back(Source->GetExternalDecl(ID));
1191
1192  assert(LazyInitializers.empty() &&
1193         "GetExternalDecl for lazy module initializer added more inits");
1194}
1195
1196void ASTContext::addModuleInitializer(Module *M, Decl *D) {
1197  // One special case: if we add a module initializer that imports another
1198  // module, and that module's only initializer is an ImportDecl, simplify.
1199  if (const auto *ID = dyn_cast<ImportDecl>(D)) {
1200    auto It = ModuleInitializers.find(ID->getImportedModule());
1201
1202    // Maybe the ImportDecl does nothing at all. (Common case.)
1203    if (It == ModuleInitializers.end())
1204      return;
1205
1206    // Maybe the ImportDecl only imports another ImportDecl.
1207    auto &Imported = *It->second;
1208    if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) {
1209      Imported.resolve(*this);
1210      auto *OnlyDecl = Imported.Initializers.front();
1211      if (isa<ImportDecl>(OnlyDecl))
1212        D = OnlyDecl;
1213    }
1214  }
1215
1216  auto *&Inits = ModuleInitializers[M];
1217  if (!Inits)
1218    Inits = new (*this) PerModuleInitializers;
1219  Inits->Initializers.push_back(D);
1220}
1221
1222void ASTContext::addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs) {
1223  auto *&Inits = ModuleInitializers[M];
1224  if (!Inits)
1225    Inits = new (*this) PerModuleInitializers;
1226  Inits->LazyInitializers.insert(Inits->LazyInitializers.end(),
1227                                 IDs.begin(), IDs.end());
1228}
1229
1230ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) {
1231  auto It = ModuleInitializers.find(M);
1232  if (It == ModuleInitializers.end())
1233    return None;
1234
1235  auto *Inits = It->second;
1236  Inits->resolve(*this);
1237  return Inits->Initializers;
1238}
1239
1240ExternCContextDecl *ASTContext::getExternCContextDecl() const {
1241  if (!ExternCContext)
1242    ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
1243
1244  return ExternCContext;
1245}
1246
1247BuiltinTemplateDecl *
1248ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1249                                     const IdentifierInfo *II) const {
1250  auto *BuiltinTemplate = BuiltinTemplateDecl::Create(*this, TUDecl, II, BTK);
1251  BuiltinTemplate->setImplicit();
1252  TUDecl->addDecl(BuiltinTemplate);
1253
1254  return BuiltinTemplate;
1255}
1256
1257BuiltinTemplateDecl *
1258ASTContext::getMakeIntegerSeqDecl() const {
1259  if (!MakeIntegerSeqDecl)
1260    MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq,
1261                                                  getMakeIntegerSeqName());
1262  return MakeIntegerSeqDecl;
1263}
1264
1265BuiltinTemplateDecl *
1266ASTContext::getTypePackElementDecl() const {
1267  if (!TypePackElementDecl)
1268    TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element,
1269                                                   getTypePackElementName());
1270  return TypePackElementDecl;
1271}
1272
1273RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
1274                                            RecordDecl::TagKind TK) const {
1275  SourceLocation Loc;
1276  RecordDecl *NewDecl;
1277  if (getLangOpts().CPlusPlus)
1278    NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
1279                                    Loc, &Idents.get(Name));
1280  else
1281    NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
1282                                 &Idents.get(Name));
1283  NewDecl->setImplicit();
1284  NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
1285      const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
1286  return NewDecl;
1287}
1288
1289TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
1290                                              StringRef Name) const {
1291  TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
1292  TypedefDecl *NewDecl = TypedefDecl::Create(
1293      const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
1294      SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
1295  NewDecl->setImplicit();
1296  return NewDecl;
1297}
1298
1299TypedefDecl *ASTContext::getInt128Decl() const {
1300  if (!Int128Decl)
1301    Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
1302  return Int128Decl;
1303}
1304
1305TypedefDecl *ASTContext::getUInt128Decl() const {
1306  if (!UInt128Decl)
1307    UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
1308  return UInt128Decl;
1309}
1310
1311void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
1312  auto *Ty = new (*this, TypeAlignment) BuiltinType(K);
1313  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
1314  Types.push_back(Ty);
1315}
1316
1317void ASTContext::InitBuiltinTypes(const TargetInfo &Target,
1318                                  const TargetInfo *AuxTarget) {
1319  assert((!this->Target || this->Target == &Target) &&
1320         "Incorrect target reinitialization");
1321  assert(VoidTy.isNull() && "Context reinitialized?");
1322
1323  this->Target = &Target;
1324  this->AuxTarget = AuxTarget;
1325
1326  ABI.reset(createCXXABI(Target));
1327  AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
1328  AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
1329
1330  // C99 6.2.5p19.
1331  InitBuiltinType(VoidTy,              BuiltinType::Void);
1332
1333  // C99 6.2.5p2.
1334  InitBuiltinType(BoolTy,              BuiltinType::Bool);
1335  // C99 6.2.5p3.
1336  if (LangOpts.CharIsSigned)
1337    InitBuiltinType(CharTy,            BuiltinType::Char_S);
1338  else
1339    InitBuiltinType(CharTy,            BuiltinType::Char_U);
1340  // C99 6.2.5p4.
1341  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
1342  InitBuiltinType(ShortTy,             BuiltinType::Short);
1343  InitBuiltinType(IntTy,               BuiltinType::Int);
1344  InitBuiltinType(LongTy,              BuiltinType::Long);
1345  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
1346
1347  // C99 6.2.5p6.
1348  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
1349  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
1350  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
1351  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
1352  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
1353
1354  // C99 6.2.5p10.
1355  InitBuiltinType(FloatTy,             BuiltinType::Float);
1356  InitBuiltinType(DoubleTy,            BuiltinType::Double);
1357  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
1358
1359  // GNU extension, __float128 for IEEE quadruple precision
1360  InitBuiltinType(Float128Ty,          BuiltinType::Float128);
1361
1362  // C11 extension ISO/IEC TS 18661-3
1363  InitBuiltinType(Float16Ty,           BuiltinType::Float16);
1364
1365  // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1366  InitBuiltinType(ShortAccumTy,            BuiltinType::ShortAccum);
1367  InitBuiltinType(AccumTy,                 BuiltinType::Accum);
1368  InitBuiltinType(LongAccumTy,             BuiltinType::LongAccum);
1369  InitBuiltinType(UnsignedShortAccumTy,    BuiltinType::UShortAccum);
1370  InitBuiltinType(UnsignedAccumTy,         BuiltinType::UAccum);
1371  InitBuiltinType(UnsignedLongAccumTy,     BuiltinType::ULongAccum);
1372  InitBuiltinType(ShortFractTy,            BuiltinType::ShortFract);
1373  InitBuiltinType(FractTy,                 BuiltinType::Fract);
1374  InitBuiltinType(LongFractTy,             BuiltinType::LongFract);
1375  InitBuiltinType(UnsignedShortFractTy,    BuiltinType::UShortFract);
1376  InitBuiltinType(UnsignedFractTy,         BuiltinType::UFract);
1377  InitBuiltinType(UnsignedLongFractTy,     BuiltinType::ULongFract);
1378  InitBuiltinType(SatShortAccumTy,         BuiltinType::SatShortAccum);
1379  InitBuiltinType(SatAccumTy,              BuiltinType::SatAccum);
1380  InitBuiltinType(SatLongAccumTy,          BuiltinType::SatLongAccum);
1381  InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum);
1382  InitBuiltinType(SatUnsignedAccumTy,      BuiltinType::SatUAccum);
1383  InitBuiltinType(SatUnsignedLongAccumTy,  BuiltinType::SatULongAccum);
1384  InitBuiltinType(SatShortFractTy,         BuiltinType::SatShortFract);
1385  InitBuiltinType(SatFractTy,              BuiltinType::SatFract);
1386  InitBuiltinType(SatLongFractTy,          BuiltinType::SatLongFract);
1387  InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract);
1388  InitBuiltinType(SatUnsignedFractTy,      BuiltinType::SatUFract);
1389  InitBuiltinType(SatUnsignedLongFractTy,  BuiltinType::SatULongFract);
1390
1391  // GNU extension, 128-bit integers.
1392  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
1393  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
1394
1395  // C++ 3.9.1p5
1396  if (TargetInfo::isTypeSigned(Target.getWCharType()))
1397    InitBuiltinType(WCharTy,           BuiltinType::WChar_S);
1398  else  // -fshort-wchar makes wchar_t be unsigned.
1399    InitBuiltinType(WCharTy,           BuiltinType::WChar_U);
1400  if (LangOpts.CPlusPlus && LangOpts.WChar)
1401    WideCharTy = WCharTy;
1402  else {
1403    // C99 (or C++ using -fno-wchar).
1404    WideCharTy = getFromTargetType(Target.getWCharType());
1405  }
1406
1407  WIntTy = getFromTargetType(Target.getWIntType());
1408
1409  // C++20 (proposed)
1410  InitBuiltinType(Char8Ty,              BuiltinType::Char8);
1411
1412  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1413    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
1414  else // C99
1415    Char16Ty = getFromTargetType(Target.getChar16Type());
1416
1417  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1418    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
1419  else // C99
1420    Char32Ty = getFromTargetType(Target.getChar32Type());
1421
1422  // Placeholder type for type-dependent expressions whose type is
1423  // completely unknown. No code should ever check a type against
1424  // DependentTy and users should never see it; however, it is here to
1425  // help diagnose failures to properly check for type-dependent
1426  // expressions.
1427  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
1428
1429  // Placeholder type for functions.
1430  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
1431
1432  // Placeholder type for bound members.
1433  InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember);
1434
1435  // Placeholder type for pseudo-objects.
1436  InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject);
1437
1438  // "any" type; useful for debugger-like clients.
1439  InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny);
1440
1441  // Placeholder type for unbridged ARC casts.
1442  InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast);
1443
1444  // Placeholder type for builtin functions.
1445  InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn);
1446
1447  // Placeholder type for OMP array sections.
1448  if (LangOpts.OpenMP)
1449    InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
1450
1451  // C99 6.2.5p11.
1452  FloatComplexTy      = getComplexType(FloatTy);
1453  DoubleComplexTy     = getComplexType(DoubleTy);
1454  LongDoubleComplexTy = getComplexType(LongDoubleTy);
1455  Float128ComplexTy   = getComplexType(Float128Ty);
1456
1457  // Builtin types for 'id', 'Class', and 'SEL'.
1458  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1459  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1460  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1461
1462  if (LangOpts.OpenCL) {
1463#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1464    InitBuiltinType(SingletonId, BuiltinType::Id);
1465#include "clang/Basic/OpenCLImageTypes.def"
1466
1467    InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1468    InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1469    InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent);
1470    InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue);
1471    InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID);
1472
1473#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1474    InitBuiltinType(Id##Ty, BuiltinType::Id);
1475#include "clang/Basic/OpenCLExtensionTypes.def"
1476  }
1477
1478  if (Target.hasAArch64SVETypes()) {
1479#define SVE_TYPE(Name, Id, SingletonId) \
1480    InitBuiltinType(SingletonId, BuiltinType::Id);
1481#include "clang/Basic/AArch64SVEACLETypes.def"
1482  }
1483
1484  // Builtin type for __objc_yes and __objc_no
1485  ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1486                       SignedCharTy : BoolTy);
1487
1488  ObjCConstantStringType = QualType();
1489
1490  ObjCSuperType = QualType();
1491
1492  // void * type
1493  if (LangOpts.OpenCLVersion >= 200) {
1494    auto Q = VoidTy.getQualifiers();
1495    Q.setAddressSpace(LangAS::opencl_generic);
1496    VoidPtrTy = getPointerType(getCanonicalType(
1497        getQualifiedType(VoidTy.getUnqualifiedType(), Q)));
1498  } else {
1499    VoidPtrTy = getPointerType(VoidTy);
1500  }
1501
1502  // nullptr type (C++0x 2.14.7)
1503  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
1504
1505  // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1506  InitBuiltinType(HalfTy, BuiltinType::Half);
1507
1508  // Builtin type used to help define __builtin_va_list.
1509  VaListTagDecl = nullptr;
1510}
1511
1512DiagnosticsEngine &ASTContext::getDiagnostics() const {
1513  return SourceMgr.getDiagnostics();
1514}
1515
1516AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1517  AttrVec *&Result = DeclAttrs[D];
1518  if (!Result) {
1519    void *Mem = Allocate(sizeof(AttrVec));
1520    Result = new (Mem) AttrVec;
1521  }
1522
1523  return *Result;
1524}
1525
1526/// Erase the attributes corresponding to the given declaration.
1527void ASTContext::eraseDeclAttrs(const Decl *D) {
1528  llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1529  if (Pos != DeclAttrs.end()) {
1530    Pos->second->~AttrVec();
1531    DeclAttrs.erase(Pos);
1532  }
1533}
1534
1535// FIXME: Remove ?
1536MemberSpecializationInfo *
1537ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1538  assert(Var->isStaticDataMember() && "Not a static data member");
1539  return getTemplateOrSpecializationInfo(Var)
1540      .dyn_cast<MemberSpecializationInfo *>();
1541}
1542
1543ASTContext::TemplateOrSpecializationInfo
1544ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1545  llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1546      TemplateOrInstantiation.find(Var);
1547  if (Pos == TemplateOrInstantiation.end())
1548    return {};
1549
1550  return Pos->second;
1551}
1552
1553void
1554ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1555                                                TemplateSpecializationKind TSK,
1556                                          SourceLocation PointOfInstantiation) {
1557  assert(Inst->isStaticDataMember() && "Not a static data member");
1558  assert(Tmpl->isStaticDataMember() && "Not a static data member");
1559  setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1560                                            Tmpl, TSK, PointOfInstantiation));
1561}
1562
1563void
1564ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1565                                            TemplateOrSpecializationInfo TSI) {
1566  assert(!TemplateOrInstantiation[Inst] &&
1567         "Already noted what the variable was instantiated from");
1568  TemplateOrInstantiation[Inst] = TSI;
1569}
1570
1571NamedDecl *
1572ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) {
1573  auto Pos = InstantiatedFromUsingDecl.find(UUD);
1574  if (Pos == InstantiatedFromUsingDecl.end())
1575    return nullptr;
1576
1577  return Pos->second;
1578}
1579
1580void
1581ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) {
1582  assert((isa<UsingDecl>(Pattern) ||
1583          isa<UnresolvedUsingValueDecl>(Pattern) ||
1584          isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
1585         "pattern decl is not a using decl");
1586  assert((isa<UsingDecl>(Inst) ||
1587          isa<UnresolvedUsingValueDecl>(Inst) ||
1588          isa<UnresolvedUsingTypenameDecl>(Inst)) &&
1589         "instantiation did not produce a using decl");
1590  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
1591  InstantiatedFromUsingDecl[Inst] = Pattern;
1592}
1593
1594UsingShadowDecl *
1595ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1596  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1597    = InstantiatedFromUsingShadowDecl.find(Inst);
1598  if (Pos == InstantiatedFromUsingShadowDecl.end())
1599    return nullptr;
1600
1601  return Pos->second;
1602}
1603
1604void
1605ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1606                                               UsingShadowDecl *Pattern) {
1607  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
1608  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1609}
1610
1611FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1612  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1613    = InstantiatedFromUnnamedFieldDecl.find(Field);
1614  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1615    return nullptr;
1616
1617  return Pos->second;
1618}
1619
1620void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1621                                                     FieldDecl *Tmpl) {
1622  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
1623  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
1624  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
1625         "Already noted what unnamed field was instantiated from");
1626
1627  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1628}
1629
1630ASTContext::overridden_cxx_method_iterator
1631ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1632  return overridden_methods(Method).begin();
1633}
1634
1635ASTContext::overridden_cxx_method_iterator
1636ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1637  return overridden_methods(Method).end();
1638}
1639
1640unsigned
1641ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1642  auto Range = overridden_methods(Method);
1643  return Range.end() - Range.begin();
1644}
1645
1646ASTContext::overridden_method_range
1647ASTContext::overridden_methods(const CXXMethodDecl *Method) const {
1648  llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos =
1649      OverriddenMethods.find(Method->getCanonicalDecl());
1650  if (Pos == OverriddenMethods.end())
1651    return overridden_method_range(nullptr, nullptr);
1652  return overridden_method_range(Pos->second.begin(), Pos->second.end());
1653}
1654
1655void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1656                                     const CXXMethodDecl *Overridden) {
1657  assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
1658  OverriddenMethods[Method].push_back(Overridden);
1659}
1660
1661void ASTContext::getOverriddenMethods(
1662                      const NamedDecl *D,
1663                      SmallVectorImpl<const NamedDecl *> &Overridden) const {
1664  assert(D);
1665
1666  if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1667    Overridden.append(overridden_methods_begin(CXXMethod),
1668                      overridden_methods_end(CXXMethod));
1669    return;
1670  }
1671
1672  const auto *Method = dyn_cast<ObjCMethodDecl>(D);
1673  if (!Method)
1674    return;
1675
1676  SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1677  Method->getOverriddenMethods(OverDecls);
1678  Overridden.append(OverDecls.begin(), OverDecls.end());
1679}
1680
1681void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1682  assert(!Import->NextLocalImport && "Import declaration already in the chain");
1683  assert(!Import->isFromASTFile() && "Non-local import declaration");
1684  if (!FirstLocalImport) {
1685    FirstLocalImport = Import;
1686    LastLocalImport = Import;
1687    return;
1688  }
1689
1690  LastLocalImport->NextLocalImport = Import;
1691  LastLocalImport = Import;
1692}
1693
1694//===----------------------------------------------------------------------===//
1695//                         Type Sizing and Analysis
1696//===----------------------------------------------------------------------===//
1697
1698/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1699/// scalar floating point type.
1700const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1701  switch (T->castAs<BuiltinType>()->getKind()) {
1702  default:
1703    llvm_unreachable("Not a floating point type!");
1704  case BuiltinType::Float16:
1705  case BuiltinType::Half:
1706    return Target->getHalfFormat();
1707  case BuiltinType::Float:      return Target->getFloatFormat();
1708  case BuiltinType::Double:     return Target->getDoubleFormat();
1709  case BuiltinType::LongDouble:
1710    if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
1711      return AuxTarget->getLongDoubleFormat();
1712    return Target->getLongDoubleFormat();
1713  case BuiltinType::Float128:
1714    if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
1715      return AuxTarget->getFloat128Format();
1716    return Target->getFloat128Format();
1717  }
1718}
1719
1720CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1721  unsigned Align = Target->getCharWidth();
1722
1723  bool UseAlignAttrOnly = false;
1724  if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1725    Align = AlignFromAttr;
1726
1727    // __attribute__((aligned)) can increase or decrease alignment
1728    // *except* on a struct or struct member, where it only increases
1729    // alignment unless 'packed' is also specified.
1730    //
1731    // It is an error for alignas to decrease alignment, so we can
1732    // ignore that possibility;  Sema should diagnose it.
1733    if (isa<FieldDecl>(D)) {
1734      UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1735        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1736    } else {
1737      UseAlignAttrOnly = true;
1738    }
1739  }
1740  else if (isa<FieldDecl>(D))
1741      UseAlignAttrOnly =
1742        D->hasAttr<PackedAttr>() ||
1743        cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1744
1745  // If we're using the align attribute only, just ignore everything
1746  // else about the declaration and its type.
1747  if (UseAlignAttrOnly) {
1748    // do nothing
1749  } else if (const auto *VD = dyn_cast<ValueDecl>(D)) {
1750    QualType T = VD->getType();
1751    if (const auto *RT = T->getAs<ReferenceType>()) {
1752      if (ForAlignof)
1753        T = RT->getPointeeType();
1754      else
1755        T = getPointerType(RT->getPointeeType());
1756    }
1757    QualType BaseT = getBaseElementType(T);
1758    if (T->isFunctionType())
1759      Align = getTypeInfoImpl(T.getTypePtr()).Align;
1760    else if (!BaseT->isIncompleteType()) {
1761      // Adjust alignments of declarations with array type by the
1762      // large-array alignment on the target.
1763      if (const ArrayType *arrayType = getAsArrayType(T)) {
1764        unsigned MinWidth = Target->getLargeArrayMinWidth();
1765        if (!ForAlignof && MinWidth) {
1766          if (isa<VariableArrayType>(arrayType))
1767            Align = std::max(Align, Target->getLargeArrayAlign());
1768          else if (isa<ConstantArrayType>(arrayType) &&
1769                   MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1770            Align = std::max(Align, Target->getLargeArrayAlign());
1771        }
1772      }
1773      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1774      if (BaseT.getQualifiers().hasUnaligned())
1775        Align = Target->getCharWidth();
1776      if (const auto *VD = dyn_cast<VarDecl>(D)) {
1777        if (VD->hasGlobalStorage() && !ForAlignof) {
1778          uint64_t TypeSize = getTypeSize(T.getTypePtr());
1779          Align = std::max(Align, getTargetInfo().getMinGlobalAlign(TypeSize));
1780        }
1781      }
1782    }
1783
1784    // Fields can be subject to extra alignment constraints, like if
1785    // the field is packed, the struct is packed, or the struct has a
1786    // a max-field-alignment constraint (#pragma pack).  So calculate
1787    // the actual alignment of the field within the struct, and then
1788    // (as we're expected to) constrain that by the alignment of the type.
1789    if (const auto *Field = dyn_cast<FieldDecl>(VD)) {
1790      const RecordDecl *Parent = Field->getParent();
1791      // We can only produce a sensible answer if the record is valid.
1792      if (!Parent->isInvalidDecl()) {
1793        const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1794
1795        // Start with the record's overall alignment.
1796        unsigned FieldAlign = toBits(Layout.getAlignment());
1797
1798        // Use the GCD of that and the offset within the record.
1799        uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1800        if (Offset > 0) {
1801          // Alignment is always a power of 2, so the GCD will be a power of 2,
1802          // which means we get to do this crazy thing instead of Euclid's.
1803          uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1804          if (LowBitOfOffset < FieldAlign)
1805            FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1806        }
1807
1808        Align = std::min(Align, FieldAlign);
1809      }
1810    }
1811  }
1812
1813  return toCharUnitsFromBits(Align);
1814}
1815
1816// getTypeInfoDataSizeInChars - Return the size of a type, in
1817// chars. If the type is a record, its data size is returned.  This is
1818// the size of the memcpy that's performed when assigning this type
1819// using a trivial copy/move assignment operator.
1820std::pair<CharUnits, CharUnits>
1821ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1822  std::pair<CharUnits, CharUnits> sizeAndAlign = getTypeInfoInChars(T);
1823
1824  // In C++, objects can sometimes be allocated into the tail padding
1825  // of a base-class subobject.  We decide whether that's possible
1826  // during class layout, so here we can just trust the layout results.
1827  if (getLangOpts().CPlusPlus) {
1828    if (const auto *RT = T->getAs<RecordType>()) {
1829      const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1830      sizeAndAlign.first = layout.getDataSize();
1831    }
1832  }
1833
1834  return sizeAndAlign;
1835}
1836
1837/// getConstantArrayInfoInChars - Performing the computation in CharUnits
1838/// instead of in bits prevents overflowing the uint64_t for some large arrays.
1839std::pair<CharUnits, CharUnits>
1840static getConstantArrayInfoInChars(const ASTContext &Context,
1841                                   const ConstantArrayType *CAT) {
1842  std::pair<CharUnits, CharUnits> EltInfo =
1843      Context.getTypeInfoInChars(CAT->getElementType());
1844  uint64_t Size = CAT->getSize().getZExtValue();
1845  assert((Size == 0 || static_cast<uint64_t>(EltInfo.first.getQuantity()) <=
1846              (uint64_t)(-1)/Size) &&
1847         "Overflow in array type char size evaluation");
1848  uint64_t Width = EltInfo.first.getQuantity() * Size;
1849  unsigned Align = EltInfo.second.getQuantity();
1850  if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1851      Context.getTargetInfo().getPointerWidth(0) == 64)
1852    Width = llvm::alignTo(Width, Align);
1853  return std::make_pair(CharUnits::fromQuantity(Width),
1854                        CharUnits::fromQuantity(Align));
1855}
1856
1857std::pair<CharUnits, CharUnits>
1858ASTContext::getTypeInfoInChars(const Type *T) const {
1859  if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1860    return getConstantArrayInfoInChars(*this, CAT);
1861  TypeInfo Info = getTypeInfo(T);
1862  return std::make_pair(toCharUnitsFromBits(Info.Width),
1863                        toCharUnitsFromBits(Info.Align));
1864}
1865
1866std::pair<CharUnits, CharUnits>
1867ASTContext::getTypeInfoInChars(QualType T) const {
1868  return getTypeInfoInChars(T.getTypePtr());
1869}
1870
1871bool ASTContext::isAlignmentRequired(const Type *T) const {
1872  return getTypeInfo(T).AlignIsRequired;
1873}
1874
1875bool ASTContext::isAlignmentRequired(QualType T) const {
1876  return isAlignmentRequired(T.getTypePtr());
1877}
1878
1879unsigned ASTContext::getTypeAlignIfKnown(QualType T) const {
1880  // An alignment on a typedef overrides anything else.
1881  if (const auto *TT = T->getAs<TypedefType>())
1882    if (unsigned Align = TT->getDecl()->getMaxAlignment())
1883      return Align;
1884
1885  // If we have an (array of) complete type, we're done.
1886  T = getBaseElementType(T);
1887  if (!T->isIncompleteType())
1888    return getTypeAlign(T);
1889
1890  // If we had an array type, its element type might be a typedef
1891  // type with an alignment attribute.
1892  if (const auto *TT = T->getAs<TypedefType>())
1893    if (unsigned Align = TT->getDecl()->getMaxAlignment())
1894      return Align;
1895
1896  // Otherwise, see if the declaration of the type had an attribute.
1897  if (const auto *TT = T->getAs<TagType>())
1898    return TT->getDecl()->getMaxAlignment();
1899
1900  return 0;
1901}
1902
1903TypeInfo ASTContext::getTypeInfo(const Type *T) const {
1904  TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
1905  if (I != MemoizedTypeInfo.end())
1906    return I->second;
1907
1908  // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
1909  TypeInfo TI = getTypeInfoImpl(T);
1910  MemoizedTypeInfo[T] = TI;
1911  return TI;
1912}
1913
1914/// getTypeInfoImpl - Return the size of the specified type, in bits.  This
1915/// method does not work on incomplete types.
1916///
1917/// FIXME: Pointers into different addr spaces could have different sizes and
1918/// alignment requirements: getPointerInfo should take an AddrSpace, this
1919/// should take a QualType, &c.
1920TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
1921  uint64_t Width = 0;
1922  unsigned Align = 8;
1923  bool AlignIsRequired = false;
1924  unsigned AS = 0;
1925  switch (T->getTypeClass()) {
1926#define TYPE(Class, Base)
1927#define ABSTRACT_TYPE(Class, Base)
1928#define NON_CANONICAL_TYPE(Class, Base)
1929#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1930#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)                       \
1931  case Type::Class:                                                            \
1932  assert(!T->isDependentType() && "should not see dependent types here");      \
1933  return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1934#include "clang/AST/TypeNodes.inc"
1935    llvm_unreachable("Should not see dependent types");
1936
1937  case Type::FunctionNoProto:
1938  case Type::FunctionProto:
1939    // GCC extension: alignof(function) = 32 bits
1940    Width = 0;
1941    Align = 32;
1942    break;
1943
1944  case Type::IncompleteArray:
1945  case Type::VariableArray:
1946    Width = 0;
1947    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
1948    break;
1949
1950  case Type::ConstantArray: {
1951    const auto *CAT = cast<ConstantArrayType>(T);
1952
1953    TypeInfo EltInfo = getTypeInfo(CAT->getElementType());
1954    uint64_t Size = CAT->getSize().getZExtValue();
1955    assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
1956           "Overflow in array type bit size evaluation");
1957    Width = EltInfo.Width * Size;
1958    Align = EltInfo.Align;
1959    if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1960        getTargetInfo().getPointerWidth(0) == 64)
1961      Width = llvm::alignTo(Width, Align);
1962    break;
1963  }
1964  case Type::ExtVector:
1965  case Type::Vector: {
1966    const auto *VT = cast<VectorType>(T);
1967    TypeInfo EltInfo = getTypeInfo(VT->getElementType());
1968    Width = EltInfo.Width * VT->getNumElements();
1969    Align = Width;
1970    // If the alignment is not a power of 2, round up to the next power of 2.
1971    // This happens for non-power-of-2 length vectors.
1972    if (Align & (Align-1)) {
1973      Align = llvm::NextPowerOf2(Align);
1974      Width = llvm::alignTo(Width, Align);
1975    }
1976    // Adjust the alignment based on the target max.
1977    uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
1978    if (TargetVectorAlign && TargetVectorAlign < Align)
1979      Align = TargetVectorAlign;
1980    break;
1981  }
1982
1983  case Type::Builtin:
1984    switch (cast<BuiltinType>(T)->getKind()) {
1985    default: llvm_unreachable("Unknown builtin type!");
1986    case BuiltinType::Void:
1987      // GCC extension: alignof(void) = 8 bits.
1988      Width = 0;
1989      Align = 8;
1990      break;
1991    case BuiltinType::Bool:
1992      Width = Target->getBoolWidth();
1993      Align = Target->getBoolAlign();
1994      break;
1995    case BuiltinType::Char_S:
1996    case BuiltinType::Char_U:
1997    case BuiltinType::UChar:
1998    case BuiltinType::SChar:
1999    case BuiltinType::Char8:
2000      Width = Target->getCharWidth();
2001      Align = Target->getCharAlign();
2002      break;
2003    case BuiltinType::WChar_S:
2004    case BuiltinType::WChar_U:
2005      Width = Target->getWCharWidth();
2006      Align = Target->getWCharAlign();
2007      break;
2008    case BuiltinType::Char16:
2009      Width = Target->getChar16Width();
2010      Align = Target->getChar16Align();
2011      break;
2012    case BuiltinType::Char32:
2013      Width = Target->getChar32Width();
2014      Align = Target->getChar32Align();
2015      break;
2016    case BuiltinType::UShort:
2017    case BuiltinType::Short:
2018      Width = Target->getShortWidth();
2019      Align = Target->getShortAlign();
2020      break;
2021    case BuiltinType::UInt:
2022    case BuiltinType::Int:
2023      Width = Target->getIntWidth();
2024      Align = Target->getIntAlign();
2025      break;
2026    case BuiltinType::ULong:
2027    case BuiltinType::Long:
2028      Width = Target->getLongWidth();
2029      Align = Target->getLongAlign();
2030      break;
2031    case BuiltinType::ULongLong:
2032    case BuiltinType::LongLong:
2033      Width = Target->getLongLongWidth();
2034      Align = Target->getLongLongAlign();
2035      break;
2036    case BuiltinType::Int128:
2037    case BuiltinType::UInt128:
2038      Width = 128;
2039      Align = 128; // int128_t is 128-bit aligned on all targets.
2040      break;
2041    case BuiltinType::ShortAccum:
2042    case BuiltinType::UShortAccum:
2043    case BuiltinType::SatShortAccum:
2044    case BuiltinType::SatUShortAccum:
2045      Width = Target->getShortAccumWidth();
2046      Align = Target->getShortAccumAlign();
2047      break;
2048    case BuiltinType::Accum:
2049    case BuiltinType::UAccum:
2050    case BuiltinType::SatAccum:
2051    case BuiltinType::SatUAccum:
2052      Width = Target->getAccumWidth();
2053      Align = Target->getAccumAlign();
2054      break;
2055    case BuiltinType::LongAccum:
2056    case BuiltinType::ULongAccum:
2057    case BuiltinType::SatLongAccum:
2058    case BuiltinType::SatULongAccum:
2059      Width = Target->getLongAccumWidth();
2060      Align = Target->getLongAccumAlign();
2061      break;
2062    case BuiltinType::ShortFract:
2063    case BuiltinType::UShortFract:
2064    case BuiltinType::SatShortFract:
2065    case BuiltinType::SatUShortFract:
2066      Width = Target->getShortFractWidth();
2067      Align = Target->getShortFractAlign();
2068      break;
2069    case BuiltinType::Fract:
2070    case BuiltinType::UFract:
2071    case BuiltinType::SatFract:
2072    case BuiltinType::SatUFract:
2073      Width = Target->getFractWidth();
2074      Align = Target->getFractAlign();
2075      break;
2076    case BuiltinType::LongFract:
2077    case BuiltinType::ULongFract:
2078    case BuiltinType::SatLongFract:
2079    case BuiltinType::SatULongFract:
2080      Width = Target->getLongFractWidth();
2081      Align = Target->getLongFractAlign();
2082      break;
2083    case BuiltinType::Float16:
2084    case BuiltinType::Half:
2085      if (Target->hasFloat16Type() || !getLangOpts().OpenMP ||
2086          !getLangOpts().OpenMPIsDevice) {
2087        Width = Target->getHalfWidth();
2088        Align = Target->getHalfAlign();
2089      } else {
2090        assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2091               "Expected OpenMP device compilation.");
2092        Width = AuxTarget->getHalfWidth();
2093        Align = AuxTarget->getHalfAlign();
2094      }
2095      break;
2096    case BuiltinType::Float:
2097      Width = Target->getFloatWidth();
2098      Align = Target->getFloatAlign();
2099      break;
2100    case BuiltinType::Double:
2101      Width = Target->getDoubleWidth();
2102      Align = Target->getDoubleAlign();
2103      break;
2104    case BuiltinType::LongDouble:
2105      if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2106          (Target->getLongDoubleWidth() != AuxTarget->getLongDoubleWidth() ||
2107           Target->getLongDoubleAlign() != AuxTarget->getLongDoubleAlign())) {
2108        Width = AuxTarget->getLongDoubleWidth();
2109        Align = AuxTarget->getLongDoubleAlign();
2110      } else {
2111        Width = Target->getLongDoubleWidth();
2112        Align = Target->getLongDoubleAlign();
2113      }
2114      break;
2115    case BuiltinType::Float128:
2116      if (Target->hasFloat128Type() || !getLangOpts().OpenMP ||
2117          !getLangOpts().OpenMPIsDevice) {
2118        Width = Target->getFloat128Width();
2119        Align = Target->getFloat128Align();
2120      } else {
2121        assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2122               "Expected OpenMP device compilation.");
2123        Width = AuxTarget->getFloat128Width();
2124        Align = AuxTarget->getFloat128Align();
2125      }
2126      break;
2127    case BuiltinType::NullPtr:
2128      Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
2129      Align = Target->getPointerAlign(0); //   == sizeof(void*)
2130      break;
2131    case BuiltinType::ObjCId:
2132    case BuiltinType::ObjCClass:
2133    case BuiltinType::ObjCSel:
2134      Width = Target->getPointerWidth(0);
2135      Align = Target->getPointerAlign(0);
2136      break;
2137    case BuiltinType::OCLSampler:
2138    case BuiltinType::OCLEvent:
2139    case BuiltinType::OCLClkEvent:
2140    case BuiltinType::OCLQueue:
2141    case BuiltinType::OCLReserveID:
2142#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2143    case BuiltinType::Id:
2144#include "clang/Basic/OpenCLImageTypes.def"
2145#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2146  case BuiltinType::Id:
2147#include "clang/Basic/OpenCLExtensionTypes.def"
2148      AS = getTargetAddressSpace(
2149          Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T)));
2150      Width = Target->getPointerWidth(AS);
2151      Align = Target->getPointerAlign(AS);
2152      break;
2153    // The SVE types are effectively target-specific.  The length of an
2154    // SVE_VECTOR_TYPE is only known at runtime, but it is always a multiple
2155    // of 128 bits.  There is one predicate bit for each vector byte, so the
2156    // length of an SVE_PREDICATE_TYPE is always a multiple of 16 bits.
2157    //
2158    // Because the length is only known at runtime, we use a dummy value
2159    // of 0 for the static length.  The alignment values are those defined
2160    // by the Procedure Call Standard for the Arm Architecture.
2161#define SVE_VECTOR_TYPE(Name, Id, SingletonId, ElKind, ElBits, IsSigned, IsFP)\
2162    case BuiltinType::Id: \
2163      Width = 0; \
2164      Align = 128; \
2165      break;
2166#define SVE_PREDICATE_TYPE(Name, Id, SingletonId, ElKind) \
2167    case BuiltinType::Id: \
2168      Width = 0; \
2169      Align = 16; \
2170      break;
2171#include "clang/Basic/AArch64SVEACLETypes.def"
2172    }
2173    break;
2174  case Type::ObjCObjectPointer:
2175    Width = Target->getPointerWidth(0);
2176    Align = Target->getPointerAlign(0);
2177    break;
2178  case Type::BlockPointer:
2179    AS = getTargetAddressSpace(cast<BlockPointerType>(T)->getPointeeType());
2180    Width = Target->getPointerWidth(AS);
2181    Align = Target->getPointerAlign(AS);
2182    break;
2183  case Type::LValueReference:
2184  case Type::RValueReference:
2185    // alignof and sizeof should never enter this code path here, so we go
2186    // the pointer route.
2187    AS = getTargetAddressSpace(cast<ReferenceType>(T)->getPointeeType());
2188    Width = Target->getPointerWidth(AS);
2189    Align = Target->getPointerAlign(AS);
2190    break;
2191  case Type::Pointer:
2192    AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
2193    Width = Target->getPointerWidth(AS);
2194    Align = Target->getPointerAlign(AS);
2195    break;
2196  case Type::MemberPointer: {
2197    const auto *MPT = cast<MemberPointerType>(T);
2198    CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT);
2199    Width = MPI.Width;
2200    Align = MPI.Align;
2201    break;
2202  }
2203  case Type::Complex: {
2204    // Complex types have the same alignment as their elements, but twice the
2205    // size.
2206    TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
2207    Width = EltInfo.Width * 2;
2208    Align = EltInfo.Align;
2209    break;
2210  }
2211  case Type::ObjCObject:
2212    return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
2213  case Type::Adjusted:
2214  case Type::Decayed:
2215    return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
2216  case Type::ObjCInterface: {
2217    const auto *ObjCI = cast<ObjCInterfaceType>(T);
2218    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2219    Width = toBits(Layout.getSize());
2220    Align = toBits(Layout.getAlignment());
2221    break;
2222  }
2223  case Type::Record:
2224  case Type::Enum: {
2225    const auto *TT = cast<TagType>(T);
2226
2227    if (TT->getDecl()->isInvalidDecl()) {
2228      Width = 8;
2229      Align = 8;
2230      break;
2231    }
2232
2233    if (const auto *ET = dyn_cast<EnumType>(TT)) {
2234      const EnumDecl *ED = ET->getDecl();
2235      TypeInfo Info =
2236          getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
2237      if (unsigned AttrAlign = ED->getMaxAlignment()) {
2238        Info.Align = AttrAlign;
2239        Info.AlignIsRequired = true;
2240      }
2241      return Info;
2242    }
2243
2244    const auto *RT = cast<RecordType>(TT);
2245    const RecordDecl *RD = RT->getDecl();
2246    const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2247    Width = toBits(Layout.getSize());
2248    Align = toBits(Layout.getAlignment());
2249    AlignIsRequired = RD->hasAttr<AlignedAttr>();
2250    break;
2251  }
2252
2253  case Type::SubstTemplateTypeParm:
2254    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
2255                       getReplacementType().getTypePtr());
2256
2257  case Type::Auto:
2258  case Type::DeducedTemplateSpecialization: {
2259    const auto *A = cast<DeducedType>(T);
2260    assert(!A->getDeducedType().isNull() &&
2261           "cannot request the size of an undeduced or dependent auto type");
2262    return getTypeInfo(A->getDeducedType().getTypePtr());
2263  }
2264
2265  case Type::Paren:
2266    return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
2267
2268  case Type::MacroQualified:
2269    return getTypeInfo(
2270        cast<MacroQualifiedType>(T)->getUnderlyingType().getTypePtr());
2271
2272  case Type::ObjCTypeParam:
2273    return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr());
2274
2275  case Type::Typedef: {
2276    const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
2277    TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
2278    // If the typedef has an aligned attribute on it, it overrides any computed
2279    // alignment we have.  This violates the GCC documentation (which says that
2280    // attribute(aligned) can only round up) but matches its implementation.
2281    if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
2282      Align = AttrAlign;
2283      AlignIsRequired = true;
2284    } else {
2285      Align = Info.Align;
2286      AlignIsRequired = Info.AlignIsRequired;
2287    }
2288    Width = Info.Width;
2289    break;
2290  }
2291
2292  case Type::Elaborated:
2293    return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
2294
2295  case Type::Attributed:
2296    return getTypeInfo(
2297                  cast<AttributedType>(T)->getEquivalentType().getTypePtr());
2298
2299  case Type::Atomic: {
2300    // Start with the base type information.
2301    TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
2302    Width = Info.Width;
2303    Align = Info.Align;
2304
2305    if (!Width) {
2306      // An otherwise zero-sized type should still generate an
2307      // atomic operation.
2308      Width = Target->getCharWidth();
2309      assert(Align);
2310    } else if (Width <= Target->getMaxAtomicPromoteWidth()) {
2311      // If the size of the type doesn't exceed the platform's max
2312      // atomic promotion width, make the size and alignment more
2313      // favorable to atomic operations:
2314
2315      // Round the size up to a power of 2.
2316      if (!llvm::isPowerOf2_64(Width))
2317        Width = llvm::NextPowerOf2(Width);
2318
2319      // Set the alignment equal to the size.
2320      Align = static_cast<unsigned>(Width);
2321    }
2322  }
2323  break;
2324
2325  case Type::Pipe:
2326    Width = Target->getPointerWidth(getTargetAddressSpace(LangAS::opencl_global));
2327    Align = Target->getPointerAlign(getTargetAddressSpace(LangAS::opencl_global));
2328    break;
2329  }
2330
2331  assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
2332  return TypeInfo(Width, Align, AlignIsRequired);
2333}
2334
2335unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const {
2336  UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T);
2337  if (I != MemoizedUnadjustedAlign.end())
2338    return I->second;
2339
2340  unsigned UnadjustedAlign;
2341  if (const auto *RT = T->getAs<RecordType>()) {
2342    const RecordDecl *RD = RT->getDecl();
2343    const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2344    UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2345  } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) {
2346    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2347    UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2348  } else {
2349    UnadjustedAlign = getTypeAlign(T->getUnqualifiedDesugaredType());
2350  }
2351
2352  MemoizedUnadjustedAlign[T] = UnadjustedAlign;
2353  return UnadjustedAlign;
2354}
2355
2356unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const {
2357  unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign();
2358  // Target ppc64 with QPX: simd default alignment for pointer to double is 32.
2359  if ((getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64 ||
2360       getTargetInfo().getTriple().getArch() == llvm::Triple::ppc64le) &&
2361      getTargetInfo().getABI() == "elfv1-qpx" &&
2362      T->isSpecificBuiltinType(BuiltinType::Double))
2363    SimdAlign = 256;
2364  return SimdAlign;
2365}
2366
2367/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
2368CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
2369  return CharUnits::fromQuantity(BitSize / getCharWidth());
2370}
2371
2372/// toBits - Convert a size in characters to a size in characters.
2373int64_t ASTContext::toBits(CharUnits CharSize) const {
2374  return CharSize.getQuantity() * getCharWidth();
2375}
2376
2377/// getTypeSizeInChars - Return the size of the specified type, in characters.
2378/// This method does not work on incomplete types.
2379CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
2380  return getTypeInfoInChars(T).first;
2381}
2382CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
2383  return getTypeInfoInChars(T).first;
2384}
2385
2386/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
2387/// characters. This method does not work on incomplete types.
2388CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
2389  return toCharUnitsFromBits(getTypeAlign(T));
2390}
2391CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
2392  return toCharUnitsFromBits(getTypeAlign(T));
2393}
2394
2395/// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a
2396/// type, in characters, before alignment adustments. This method does
2397/// not work on incomplete types.
2398CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const {
2399  return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2400}
2401CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const {
2402  return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2403}
2404
2405/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
2406/// type for the current target in bits.  This can be different than the ABI
2407/// alignment in cases where it is beneficial for performance to overalign
2408/// a data type.
2409unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
2410  TypeInfo TI = getTypeInfo(T);
2411  unsigned ABIAlign = TI.Align;
2412
2413  T = T->getBaseElementTypeUnsafe();
2414
2415  // The preferred alignment of member pointers is that of a pointer.
2416  if (T->isMemberPointerType())
2417    return getPreferredTypeAlign(getPointerDiffType().getTypePtr());
2418
2419  if (!Target->allowsLargerPreferedTypeAlignment())
2420    return ABIAlign;
2421
2422  // Double and long long should be naturally aligned if possible.
2423  if (const auto *CT = T->getAs<ComplexType>())
2424    T = CT->getElementType().getTypePtr();
2425  if (const auto *ET = T->getAs<EnumType>())
2426    T = ET->getDecl()->getIntegerType().getTypePtr();
2427  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
2428      T->isSpecificBuiltinType(BuiltinType::LongLong) ||
2429      T->isSpecificBuiltinType(BuiltinType::ULongLong))
2430    // Don't increase the alignment if an alignment attribute was specified on a
2431    // typedef declaration.
2432    if (!TI.AlignIsRequired)
2433      return std::max(ABIAlign, (unsigned)getTypeSize(T));
2434
2435  return ABIAlign;
2436}
2437
2438/// getTargetDefaultAlignForAttributeAligned - Return the default alignment
2439/// for __attribute__((aligned)) on this target, to be used if no alignment
2440/// value is specified.
2441unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const {
2442  return getTargetInfo().getDefaultAlignForAttributeAligned();
2443}
2444
2445/// getAlignOfGlobalVar - Return the alignment in bits that should be given
2446/// to a global variable of the specified type.
2447unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
2448  uint64_t TypeSize = getTypeSize(T.getTypePtr());
2449  return std::max(getTypeAlign(T), getTargetInfo().getMinGlobalAlign(TypeSize));
2450}
2451
2452/// getAlignOfGlobalVarInChars - Return the alignment in characters that
2453/// should be given to a global variable of the specified type.
2454CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
2455  return toCharUnitsFromBits(getAlignOfGlobalVar(T));
2456}
2457
2458CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const {
2459  CharUnits Offset = CharUnits::Zero();
2460  const ASTRecordLayout *Layout = &getASTRecordLayout(RD);
2461  while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) {
2462    Offset += Layout->getBaseClassOffset(Base);
2463    Layout = &getASTRecordLayout(Base);
2464  }
2465  return Offset;
2466}
2467
2468/// DeepCollectObjCIvars -
2469/// This routine first collects all declared, but not synthesized, ivars in
2470/// super class and then collects all ivars, including those synthesized for
2471/// current class. This routine is used for implementation of current class
2472/// when all ivars, declared and synthesized are known.
2473void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
2474                                      bool leafClass,
2475                            SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
2476  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
2477    DeepCollectObjCIvars(SuperClass, false, Ivars);
2478  if (!leafClass) {
2479    for (const auto *I : OI->ivars())
2480      Ivars.push_back(I);
2481  } else {
2482    auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
2483    for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
2484         Iv= Iv->getNextIvar())
2485      Ivars.push_back(Iv);
2486  }
2487}
2488
2489/// CollectInheritedProtocols - Collect all protocols in current class and
2490/// those inherited by it.
2491void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
2492                          llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
2493  if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2494    // We can use protocol_iterator here instead of
2495    // all_referenced_protocol_iterator since we are walking all categories.
2496    for (auto *Proto : OI->all_referenced_protocols()) {
2497      CollectInheritedProtocols(Proto, Protocols);
2498    }
2499
2500    // Categories of this Interface.
2501    for (const auto *Cat : OI->visible_categories())
2502      CollectInheritedProtocols(Cat, Protocols);
2503
2504    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
2505      while (SD) {
2506        CollectInheritedProtocols(SD, Protocols);
2507        SD = SD->getSuperClass();
2508      }
2509  } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2510    for (auto *Proto : OC->protocols()) {
2511      CollectInheritedProtocols(Proto, Protocols);
2512    }
2513  } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
2514    // Insert the protocol.
2515    if (!Protocols.insert(
2516          const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second)
2517      return;
2518
2519    for (auto *Proto : OP->protocols())
2520      CollectInheritedProtocols(Proto, Protocols);
2521  }
2522}
2523
2524static bool unionHasUniqueObjectRepresentations(const ASTContext &Context,
2525                                                const RecordDecl *RD) {
2526  assert(RD->isUnion() && "Must be union type");
2527  CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl());
2528
2529  for (const auto *Field : RD->fields()) {
2530    if (!Context.hasUniqueObjectRepresentations(Field->getType()))
2531      return false;
2532    CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType());
2533    if (FieldSize != UnionSize)
2534      return false;
2535  }
2536  return !RD->field_empty();
2537}
2538
2539static bool isStructEmpty(QualType Ty) {
2540  const RecordDecl *RD = Ty->castAs<RecordType>()->getDecl();
2541
2542  if (!RD->field_empty())
2543    return false;
2544
2545  if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD))
2546    return ClassDecl->isEmpty();
2547
2548  return true;
2549}
2550
2551static llvm::Optional<int64_t>
2552structHasUniqueObjectRepresentations(const ASTContext &Context,
2553                                     const RecordDecl *RD) {
2554  assert(!RD->isUnion() && "Must be struct/class type");
2555  const auto &Layout = Context.getASTRecordLayout(RD);
2556
2557  int64_t CurOffsetInBits = 0;
2558  if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) {
2559    if (ClassDecl->isDynamicClass())
2560      return llvm::None;
2561
2562    SmallVector<std::pair<QualType, int64_t>, 4> Bases;
2563    for (const auto &Base : ClassDecl->bases()) {
2564      // Empty types can be inherited from, and non-empty types can potentially
2565      // have tail padding, so just make sure there isn't an error.
2566      if (!isStructEmpty(Base.getType())) {
2567        llvm::Optional<int64_t> Size = structHasUniqueObjectRepresentations(
2568            Context, Base.getType()->castAs<RecordType>()->getDecl());
2569        if (!Size)
2570          return llvm::None;
2571        Bases.emplace_back(Base.getType(), Size.getValue());
2572      }
2573    }
2574
2575    llvm::sort(Bases, [&](const std::pair<QualType, int64_t> &L,
2576                          const std::pair<QualType, int64_t> &R) {
2577      return Layout.getBaseClassOffset(L.first->getAsCXXRecordDecl()) <
2578             Layout.getBaseClassOffset(R.first->getAsCXXRecordDecl());
2579    });
2580
2581    for (const auto &Base : Bases) {
2582      int64_t BaseOffset = Context.toBits(
2583          Layout.getBaseClassOffset(Base.first->getAsCXXRecordDecl()));
2584      int64_t BaseSize = Base.second;
2585      if (BaseOffset != CurOffsetInBits)
2586        return llvm::None;
2587      CurOffsetInBits = BaseOffset + BaseSize;
2588    }
2589  }
2590
2591  for (const auto *Field : RD->fields()) {
2592    if (!Field->getType()->isReferenceType() &&
2593        !Context.hasUniqueObjectRepresentations(Field->getType()))
2594      return llvm::None;
2595
2596    int64_t FieldSizeInBits =
2597        Context.toBits(Context.getTypeSizeInChars(Field->getType()));
2598    if (Field->isBitField()) {
2599      int64_t BitfieldSize = Field->getBitWidthValue(Context);
2600
2601      if (BitfieldSize > FieldSizeInBits)
2602        return llvm::None;
2603      FieldSizeInBits = BitfieldSize;
2604    }
2605
2606    int64_t FieldOffsetInBits = Context.getFieldOffset(Field);
2607
2608    if (FieldOffsetInBits != CurOffsetInBits)
2609      return llvm::None;
2610
2611    CurOffsetInBits = FieldSizeInBits + FieldOffsetInBits;
2612  }
2613
2614  return CurOffsetInBits;
2615}
2616
2617bool ASTContext::hasUniqueObjectRepresentations(QualType Ty) const {
2618  // C++17 [meta.unary.prop]:
2619  //   The predicate condition for a template specialization
2620  //   has_unique_object_representations<T> shall be
2621  //   satisfied if and only if:
2622  //     (9.1) - T is trivially copyable, and
2623  //     (9.2) - any two objects of type T with the same value have the same
2624  //     object representation, where two objects
2625  //   of array or non-union class type are considered to have the same value
2626  //   if their respective sequences of
2627  //   direct subobjects have the same values, and two objects of union type
2628  //   are considered to have the same
2629  //   value if they have the same active member and the corresponding members
2630  //   have the same value.
2631  //   The set of scalar types for which this condition holds is
2632  //   implementation-defined. [ Note: If a type has padding
2633  //   bits, the condition does not hold; otherwise, the condition holds true
2634  //   for unsigned integral types. -- end note ]
2635  assert(!Ty.isNull() && "Null QualType sent to unique object rep check");
2636
2637  // Arrays are unique only if their element type is unique.
2638  if (Ty->isArrayType())
2639    return hasUniqueObjectRepresentations(getBaseElementType(Ty));
2640
2641  // (9.1) - T is trivially copyable...
2642  if (!Ty.isTriviallyCopyableType(*this))
2643    return false;
2644
2645  // All integrals and enums are unique.
2646  if (Ty->isIntegralOrEnumerationType())
2647    return true;
2648
2649  // All other pointers are unique.
2650  if (Ty->isPointerType())
2651    return true;
2652
2653  if (Ty->isMemberPointerType()) {
2654    const auto *MPT = Ty->getAs<MemberPointerType>();
2655    return !ABI->getMemberPointerInfo(MPT).HasPadding;
2656  }
2657
2658  if (Ty->isRecordType()) {
2659    const RecordDecl *Record = Ty->castAs<RecordType>()->getDecl();
2660
2661    if (Record->isInvalidDecl())
2662      return false;
2663
2664    if (Record->isUnion())
2665      return unionHasUniqueObjectRepresentations(*this, Record);
2666
2667    Optional<int64_t> StructSize =
2668        structHasUniqueObjectRepresentations(*this, Record);
2669
2670    return StructSize &&
2671           StructSize.getValue() == static_cast<int64_t>(getTypeSize(Ty));
2672  }
2673
2674  // FIXME: More cases to handle here (list by rsmith):
2675  // vectors (careful about, eg, vector of 3 foo)
2676  // _Complex int and friends
2677  // _Atomic T
2678  // Obj-C block pointers
2679  // Obj-C object pointers
2680  // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t,
2681  // clk_event_t, queue_t, reserve_id_t)
2682  // There're also Obj-C class types and the Obj-C selector type, but I think it
2683  // makes sense for those to return false here.
2684
2685  return false;
2686}
2687
2688unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
2689  unsigned count = 0;
2690  // Count ivars declared in class extension.
2691  for (const auto *Ext : OI->known_extensions())
2692    count += Ext->ivar_size();
2693
2694  // Count ivar defined in this class's implementation.  This
2695  // includes synthesized ivars.
2696  if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
2697    count += ImplDecl->ivar_size();
2698
2699  return count;
2700}
2701
2702bool ASTContext::isSentinelNullExpr(const Expr *E) {
2703  if (!E)
2704    return false;
2705
2706  // nullptr_t is always treated as null.
2707  if (E->getType()->isNullPtrType()) return true;
2708
2709  if (E->getType()->isAnyPointerType() &&
2710      E->IgnoreParenCasts()->isNullPointerConstant(*this,
2711                                                Expr::NPC_ValueDependentIsNull))
2712    return true;
2713
2714  // Unfortunately, __null has type 'int'.
2715  if (isa<GNUNullExpr>(E)) return true;
2716
2717  return false;
2718}
2719
2720/// Get the implementation of ObjCInterfaceDecl, or nullptr if none
2721/// exists.
2722ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
2723  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2724    I = ObjCImpls.find(D);
2725  if (I != ObjCImpls.end())
2726    return cast<ObjCImplementationDecl>(I->second);
2727  return nullptr;
2728}
2729
2730/// Get the implementation of ObjCCategoryDecl, or nullptr if none
2731/// exists.
2732ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
2733  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2734    I = ObjCImpls.find(D);
2735  if (I != ObjCImpls.end())
2736    return cast<ObjCCategoryImplDecl>(I->second);
2737  return nullptr;
2738}
2739
2740/// Set the implementation of ObjCInterfaceDecl.
2741void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2742                           ObjCImplementationDecl *ImplD) {
2743  assert(IFaceD && ImplD && "Passed null params");
2744  ObjCImpls[IFaceD] = ImplD;
2745}
2746
2747/// Set the implementation of ObjCCategoryDecl.
2748void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
2749                           ObjCCategoryImplDecl *ImplD) {
2750  assert(CatD && ImplD && "Passed null params");
2751  ObjCImpls[CatD] = ImplD;
2752}
2753
2754const ObjCMethodDecl *
2755ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const {
2756  return ObjCMethodRedecls.lookup(MD);
2757}
2758
2759void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2760                                            const ObjCMethodDecl *Redecl) {
2761  assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
2762  ObjCMethodRedecls[MD] = Redecl;
2763}
2764
2765const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
2766                                              const NamedDecl *ND) const {
2767  if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
2768    return ID;
2769  if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
2770    return CD->getClassInterface();
2771  if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
2772    return IMD->getClassInterface();
2773
2774  return nullptr;
2775}
2776
2777/// Get the copy initialization expression of VarDecl, or nullptr if
2778/// none exists.
2779BlockVarCopyInit ASTContext::getBlockVarCopyInit(const VarDecl *VD) const {
2780  assert(VD && "Passed null params");
2781  assert(VD->hasAttr<BlocksAttr>() &&
2782         "getBlockVarCopyInits - not __block var");
2783  auto I = BlockVarCopyInits.find(VD);
2784  if (I != BlockVarCopyInits.end())
2785    return I->second;
2786  return {nullptr, false};
2787}
2788
2789/// Set the copy initialization expression of a block var decl.
2790void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr,
2791                                     bool CanThrow) {
2792  assert(VD && CopyExpr && "Passed null params");
2793  assert(VD->hasAttr<BlocksAttr>() &&
2794         "setBlockVarCopyInits - not __block var");
2795  BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow);
2796}
2797
2798TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
2799                                                 unsigned DataSize) const {
2800  if (!DataSize)
2801    DataSize = TypeLoc::getFullDataSizeForType(T);
2802  else
2803    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
2804           "incorrect data size provided to CreateTypeSourceInfo!");
2805
2806  auto *TInfo =
2807    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
2808  new (TInfo) TypeSourceInfo(T);
2809  return TInfo;
2810}
2811
2812TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
2813                                                     SourceLocation L) const {
2814  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
2815  DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
2816  return DI;
2817}
2818
2819const ASTRecordLayout &
2820ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
2821  return getObjCLayout(D, nullptr);
2822}
2823
2824const ASTRecordLayout &
2825ASTContext::getASTObjCImplementationLayout(
2826                                        const ObjCImplementationDecl *D) const {
2827  return getObjCLayout(D->getClassInterface(), D);
2828}
2829
2830//===----------------------------------------------------------------------===//
2831//                   Type creation/memoization methods
2832//===----------------------------------------------------------------------===//
2833
2834QualType
2835ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
2836  unsigned fastQuals = quals.getFastQualifiers();
2837  quals.removeFastQualifiers();
2838
2839  // Check if we've already instantiated this type.
2840  llvm::FoldingSetNodeID ID;
2841  ExtQuals::Profile(ID, baseType, quals);
2842  void *insertPos = nullptr;
2843  if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
2844    assert(eq->getQualifiers() == quals);
2845    return QualType(eq, fastQuals);
2846  }
2847
2848  // If the base type is not canonical, make the appropriate canonical type.
2849  QualType canon;
2850  if (!baseType->isCanonicalUnqualified()) {
2851    SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
2852    canonSplit.Quals.addConsistentQualifiers(quals);
2853    canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
2854
2855    // Re-find the insert position.
2856    (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
2857  }
2858
2859  auto *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
2860  ExtQualNodes.InsertNode(eq, insertPos);
2861  return QualType(eq, fastQuals);
2862}
2863
2864QualType ASTContext::getAddrSpaceQualType(QualType T,
2865                                          LangAS AddressSpace) const {
2866  QualType CanT = getCanonicalType(T);
2867  if (CanT.getAddressSpace() == AddressSpace)
2868    return T;
2869
2870  // If we are composing extended qualifiers together, merge together
2871  // into one ExtQuals node.
2872  QualifierCollector Quals;
2873  const Type *TypeNode = Quals.strip(T);
2874
2875  // If this type already has an address space specified, it cannot get
2876  // another one.
2877  assert(!Quals.hasAddressSpace() &&
2878         "Type cannot be in multiple addr spaces!");
2879  Quals.addAddressSpace(AddressSpace);
2880
2881  return getExtQualType(TypeNode, Quals);
2882}
2883
2884QualType ASTContext::removeAddrSpaceQualType(QualType T) const {
2885  // If we are composing extended qualifiers together, merge together
2886  // into one ExtQuals node.
2887  QualifierCollector Quals;
2888  const Type *TypeNode = Quals.strip(T);
2889
2890  // If the qualifier doesn't have an address space just return it.
2891  if (!Quals.hasAddressSpace())
2892    return T;
2893
2894  Quals.removeAddressSpace();
2895
2896  // Removal of the address space can mean there are no longer any
2897  // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts)
2898  // or required.
2899  if (Quals.hasNonFastQualifiers())
2900    return getExtQualType(TypeNode, Quals);
2901  else
2902    return QualType(TypeNode, Quals.getFastQualifiers());
2903}
2904
2905QualType ASTContext::getObjCGCQualType(QualType T,
2906                                       Qualifiers::GC GCAttr) const {
2907  QualType CanT = getCanonicalType(T);
2908  if (CanT.getObjCGCAttr() == GCAttr)
2909    return T;
2910
2911  if (const auto *ptr = T->getAs<PointerType>()) {
2912    QualType Pointee = ptr->getPointeeType();
2913    if (Pointee->isAnyPointerType()) {
2914      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
2915      return getPointerType(ResultType);
2916    }
2917  }
2918
2919  // If we are composing extended qualifiers together, merge together
2920  // into one ExtQuals node.
2921  QualifierCollector Quals;
2922  const Type *TypeNode = Quals.strip(T);
2923
2924  // If this type already has an ObjCGC specified, it cannot get
2925  // another one.
2926  assert(!Quals.hasObjCGCAttr() &&
2927         "Type cannot have multiple ObjCGCs!");
2928  Quals.addObjCGCAttr(GCAttr);
2929
2930  return getExtQualType(TypeNode, Quals);
2931}
2932
2933QualType ASTContext::removePtrSizeAddrSpace(QualType T) const {
2934  if (const PointerType *Ptr = T->getAs<PointerType>()) {
2935    QualType Pointee = Ptr->getPointeeType();
2936    if (isPtrSizeAddressSpace(Pointee.getAddressSpace())) {
2937      return getPointerType(removeAddrSpaceQualType(Pointee));
2938    }
2939  }
2940  return T;
2941}
2942
2943const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
2944                                                   FunctionType::ExtInfo Info) {
2945  if (T->getExtInfo() == Info)
2946    return T;
2947
2948  QualType Result;
2949  if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
2950    Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
2951  } else {
2952    const auto *FPT = cast<FunctionProtoType>(T);
2953    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2954    EPI.ExtInfo = Info;
2955    Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
2956  }
2957
2958  return cast<FunctionType>(Result.getTypePtr());
2959}
2960
2961void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
2962                                                 QualType ResultType) {
2963  FD = FD->getMostRecentDecl();
2964  while (true) {
2965    const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
2966    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
2967    FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
2968    if (FunctionDecl *Next = FD->getPreviousDecl())
2969      FD = Next;
2970    else
2971      break;
2972  }
2973  if (ASTMutationListener *L = getASTMutationListener())
2974    L->DeducedReturnType(FD, ResultType);
2975}
2976
2977/// Get a function type and produce the equivalent function type with the
2978/// specified exception specification. Type sugar that can be present on a
2979/// declaration of a function with an exception specification is permitted
2980/// and preserved. Other type sugar (for instance, typedefs) is not.
2981QualType ASTContext::getFunctionTypeWithExceptionSpec(
2982    QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) {
2983  // Might have some parens.
2984  if (const auto *PT = dyn_cast<ParenType>(Orig))
2985    return getParenType(
2986        getFunctionTypeWithExceptionSpec(PT->getInnerType(), ESI));
2987
2988  // Might be wrapped in a macro qualified type.
2989  if (const auto *MQT = dyn_cast<MacroQualifiedType>(Orig))
2990    return getMacroQualifiedType(
2991        getFunctionTypeWithExceptionSpec(MQT->getUnderlyingType(), ESI),
2992        MQT->getMacroIdentifier());
2993
2994  // Might have a calling-convention attribute.
2995  if (const auto *AT = dyn_cast<AttributedType>(Orig))
2996    return getAttributedType(
2997        AT->getAttrKind(),
2998        getFunctionTypeWithExceptionSpec(AT->getModifiedType(), ESI),
2999        getFunctionTypeWithExceptionSpec(AT->getEquivalentType(), ESI));
3000
3001  // Anything else must be a function type. Rebuild it with the new exception
3002  // specification.
3003  const auto *Proto = Orig->castAs<FunctionProtoType>();
3004  return getFunctionType(
3005      Proto->getReturnType(), Proto->getParamTypes(),
3006      Proto->getExtProtoInfo().withExceptionSpec(ESI));
3007}
3008
3009bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T,
3010                                                          QualType U) {
3011  return hasSameType(T, U) ||
3012         (getLangOpts().CPlusPlus17 &&
3013          hasSameType(getFunctionTypeWithExceptionSpec(T, EST_None),
3014                      getFunctionTypeWithExceptionSpec(U, EST_None)));
3015}
3016
3017QualType ASTContext::getFunctionTypeWithoutPtrSizes(QualType T) {
3018  if (const auto *Proto = T->getAs<FunctionProtoType>()) {
3019    QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3020    SmallVector<QualType, 16> Args(Proto->param_types());
3021    for (unsigned i = 0, n = Args.size(); i != n; ++i)
3022      Args[i] = removePtrSizeAddrSpace(Args[i]);
3023    return getFunctionType(RetTy, Args, Proto->getExtProtoInfo());
3024  }
3025
3026  if (const FunctionNoProtoType *Proto = T->getAs<FunctionNoProtoType>()) {
3027    QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3028    return getFunctionNoProtoType(RetTy, Proto->getExtInfo());
3029  }
3030
3031  return T;
3032}
3033
3034bool ASTContext::hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U) {
3035  return hasSameType(T, U) ||
3036         hasSameType(getFunctionTypeWithoutPtrSizes(T),
3037                     getFunctionTypeWithoutPtrSizes(U));
3038}
3039
3040void ASTContext::adjustExceptionSpec(
3041    FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
3042    bool AsWritten) {
3043  // Update the type.
3044  QualType Updated =
3045      getFunctionTypeWithExceptionSpec(FD->getType(), ESI);
3046  FD->setType(Updated);
3047
3048  if (!AsWritten)
3049    return;
3050
3051  // Update the type in the type source information too.
3052  if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
3053    // If the type and the type-as-written differ, we may need to update
3054    // the type-as-written too.
3055    if (TSInfo->getType() != FD->getType())
3056      Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI);
3057
3058    // FIXME: When we get proper type location information for exceptions,
3059    // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
3060    // up the TypeSourceInfo;
3061    assert(TypeLoc::getFullDataSizeForType(Updated) ==
3062               TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
3063           "TypeLoc size mismatch from updating exception specification");
3064    TSInfo->overrideType(Updated);
3065  }
3066}
3067
3068/// getComplexType - Return the uniqued reference to the type for a complex
3069/// number with the specified element type.
3070QualType ASTContext::getComplexType(QualType T) const {
3071  // Unique pointers, to guarantee there is only one pointer of a particular
3072  // structure.
3073  llvm::FoldingSetNodeID ID;
3074  ComplexType::Profile(ID, T);
3075
3076  void *InsertPos = nullptr;
3077  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
3078    return QualType(CT, 0);
3079
3080  // If the pointee type isn't canonical, this won't be a canonical type either,
3081  // so fill in the canonical type field.
3082  QualType Canonical;
3083  if (!T.isCanonical()) {
3084    Canonical = getComplexType(getCanonicalType(T));
3085
3086    // Get the new insert position for the node we care about.
3087    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
3088    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3089  }
3090  auto *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
3091  Types.push_back(New);
3092  ComplexTypes.InsertNode(New, InsertPos);
3093  return QualType(New, 0);
3094}
3095
3096/// getPointerType - Return the uniqued reference to the type for a pointer to
3097/// the specified type.
3098QualType ASTContext::getPointerType(QualType T) const {
3099  // Unique pointers, to guarantee there is only one pointer of a particular
3100  // structure.
3101  llvm::FoldingSetNodeID ID;
3102  PointerType::Profile(ID, T);
3103
3104  void *InsertPos = nullptr;
3105  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3106    return QualType(PT, 0);
3107
3108  // If the pointee type isn't canonical, this won't be a canonical type either,
3109  // so fill in the canonical type field.
3110  QualType Canonical;
3111  if (!T.isCanonical()) {
3112    Canonical = getPointerType(getCanonicalType(T));
3113
3114    // Get the new insert position for the node we care about.
3115    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3116    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3117  }
3118  auto *New = new (*this, TypeAlignment) PointerType(T, Canonical);
3119  Types.push_back(New);
3120  PointerTypes.InsertNode(New, InsertPos);
3121  return QualType(New, 0);
3122}
3123
3124QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
3125  llvm::FoldingSetNodeID ID;
3126  AdjustedType::Profile(ID, Orig, New);
3127  void *InsertPos = nullptr;
3128  AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3129  if (AT)
3130    return QualType(AT, 0);
3131
3132  QualType Canonical = getCanonicalType(New);
3133
3134  // Get the new insert position for the node we care about.
3135  AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3136  assert(!AT && "Shouldn't be in the map!");
3137
3138  AT = new (*this, TypeAlignment)
3139      AdjustedType(Type::Adjusted, Orig, New, Canonical);
3140  Types.push_back(AT);
3141  AdjustedTypes.InsertNode(AT, InsertPos);
3142  return QualType(AT, 0);
3143}
3144
3145QualType ASTContext::getDecayedType(QualType T) const {
3146  assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
3147
3148  QualType Decayed;
3149
3150  // C99 6.7.5.3p7:
3151  //   A declaration of a parameter as "array of type" shall be
3152  //   adjusted to "qualified pointer to type", where the type
3153  //   qualifiers (if any) are those specified within the [ and ] of
3154  //   the array type derivation.
3155  if (T->isArrayType())
3156    Decayed = getArrayDecayedType(T);
3157
3158  // C99 6.7.5.3p8:
3159  //   A declaration of a parameter as "function returning type"
3160  //   shall be adjusted to "pointer to function returning type", as
3161  //   in 6.3.2.1.
3162  if (T->isFunctionType())
3163    Decayed = getPointerType(T);
3164
3165  llvm::FoldingSetNodeID ID;
3166  AdjustedType::Profile(ID, T, Decayed);
3167  void *InsertPos = nullptr;
3168  AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3169  if (AT)
3170    return QualType(AT, 0);
3171
3172  QualType Canonical = getCanonicalType(Decayed);
3173
3174  // Get the new insert position for the node we care about.
3175  AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3176  assert(!AT && "Shouldn't be in the map!");
3177
3178  AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
3179  Types.push_back(AT);
3180  AdjustedTypes.InsertNode(AT, InsertPos);
3181  return QualType(AT, 0);
3182}
3183
3184/// getBlockPointerType - Return the uniqued reference to the type for
3185/// a pointer to the specified block.
3186QualType ASTContext::getBlockPointerType(QualType T) const {
3187  assert(T->isFunctionType() && "block of function types only");
3188  // Unique pointers, to guarantee there is only one block of a particular
3189  // structure.
3190  llvm::FoldingSetNodeID ID;
3191  BlockPointerType::Profile(ID, T);
3192
3193  void *InsertPos = nullptr;
3194  if (BlockPointerType *PT =
3195        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3196    return QualType(PT, 0);
3197
3198  // If the block pointee type isn't canonical, this won't be a canonical
3199  // type either so fill in the canonical type field.
3200  QualType Canonical;
3201  if (!T.isCanonical()) {
3202    Canonical = getBlockPointerType(getCanonicalType(T));
3203
3204    // Get the new insert position for the node we care about.
3205    BlockPointerType *NewIP =
3206      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3207    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3208  }
3209  auto *New = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
3210  Types.push_back(New);
3211  BlockPointerTypes.InsertNode(New, InsertPos);
3212  return QualType(New, 0);
3213}
3214
3215/// getLValueReferenceType - Return the uniqued reference to the type for an
3216/// lvalue reference to the specified type.
3217QualType
3218ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
3219  assert(getCanonicalType(T) != OverloadTy &&
3220         "Unresolved overloaded function type");
3221
3222  // Unique pointers, to guarantee there is only one pointer of a particular
3223  // structure.
3224  llvm::FoldingSetNodeID ID;
3225  ReferenceType::Profile(ID, T, SpelledAsLValue);
3226
3227  void *InsertPos = nullptr;
3228  if (LValueReferenceType *RT =
3229        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3230    return QualType(RT, 0);
3231
3232  const auto *InnerRef = T->getAs<ReferenceType>();
3233
3234  // If the referencee type isn't canonical, this won't be a canonical type
3235  // either, so fill in the canonical type field.
3236  QualType Canonical;
3237  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
3238    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3239    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
3240
3241    // Get the new insert position for the node we care about.
3242    LValueReferenceType *NewIP =
3243      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3244    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3245  }
3246
3247  auto *New = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
3248                                                             SpelledAsLValue);
3249  Types.push_back(New);
3250  LValueReferenceTypes.InsertNode(New, InsertPos);
3251
3252  return QualType(New, 0);
3253}
3254
3255/// getRValueReferenceType - Return the uniqued reference to the type for an
3256/// rvalue reference to the specified type.
3257QualType ASTContext::getRValueReferenceType(QualType T) const {
3258  // Unique pointers, to guarantee there is only one pointer of a particular
3259  // structure.
3260  llvm::FoldingSetNodeID ID;
3261  ReferenceType::Profile(ID, T, false);
3262
3263  void *InsertPos = nullptr;
3264  if (RValueReferenceType *RT =
3265        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3266    return QualType(RT, 0);
3267
3268  const auto *InnerRef = T->getAs<ReferenceType>();
3269
3270  // If the referencee type isn't canonical, this won't be a canonical type
3271  // either, so fill in the canonical type field.
3272  QualType Canonical;
3273  if (InnerRef || !T.isCanonical()) {
3274    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3275    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
3276
3277    // Get the new insert position for the node we care about.
3278    RValueReferenceType *NewIP =
3279      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3280    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3281  }
3282
3283  auto *New = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
3284  Types.push_back(New);
3285  RValueReferenceTypes.InsertNode(New, InsertPos);
3286  return QualType(New, 0);
3287}
3288
3289/// getMemberPointerType - Return the uniqued reference to the type for a
3290/// member pointer to the specified type, in the specified class.
3291QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
3292  // Unique pointers, to guarantee there is only one pointer of a particular
3293  // structure.
3294  llvm::FoldingSetNodeID ID;
3295  MemberPointerType::Profile(ID, T, Cls);
3296
3297  void *InsertPos = nullptr;
3298  if (MemberPointerType *PT =
3299      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3300    return QualType(PT, 0);
3301
3302  // If the pointee or class type isn't canonical, this won't be a canonical
3303  // type either, so fill in the canonical type field.
3304  QualType Canonical;
3305  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
3306    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
3307
3308    // Get the new insert position for the node we care about.
3309    MemberPointerType *NewIP =
3310      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3311    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3312  }
3313  auto *New = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
3314  Types.push_back(New);
3315  MemberPointerTypes.InsertNode(New, InsertPos);
3316  return QualType(New, 0);
3317}
3318
3319/// getConstantArrayType - Return the unique reference to the type for an
3320/// array of the specified element type.
3321QualType ASTContext::getConstantArrayType(QualType EltTy,
3322                                          const llvm::APInt &ArySizeIn,
3323                                          const Expr *SizeExpr,
3324                                          ArrayType::ArraySizeModifier ASM,
3325                                          unsigned IndexTypeQuals) const {
3326  assert((EltTy->isDependentType() ||
3327          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
3328         "Constant array of VLAs is illegal!");
3329
3330  // We only need the size as part of the type if it's instantiation-dependent.
3331  if (SizeExpr && !SizeExpr->isInstantiationDependent())
3332    SizeExpr = nullptr;
3333
3334  // Convert the array size into a canonical width matching the pointer size for
3335  // the target.
3336  llvm::APInt ArySize(ArySizeIn);
3337  ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth());
3338
3339  llvm::FoldingSetNodeID ID;
3340  ConstantArrayType::Profile(ID, *this, EltTy, ArySize, SizeExpr, ASM,
3341                             IndexTypeQuals);
3342
3343  void *InsertPos = nullptr;
3344  if (ConstantArrayType *ATP =
3345      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
3346    return QualType(ATP, 0);
3347
3348  // If the element type isn't canonical or has qualifiers, or the array bound
3349  // is instantiation-dependent, this won't be a canonical type either, so fill
3350  // in the canonical type field.
3351  QualType Canon;
3352  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers() || SizeExpr) {
3353    SplitQualType canonSplit = getCanonicalType(EltTy).split();
3354    Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, nullptr,
3355                                 ASM, IndexTypeQuals);
3356    Canon = getQualifiedType(Canon, canonSplit.Quals);
3357
3358    // Get the new insert position for the node we care about.
3359    ConstantArrayType *NewIP =
3360      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
3361    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3362  }
3363
3364  void *Mem = Allocate(
3365      ConstantArrayType::totalSizeToAlloc<const Expr *>(SizeExpr ? 1 : 0),
3366      TypeAlignment);
3367  auto *New = new (Mem)
3368    ConstantArrayType(EltTy, Canon, ArySize, SizeExpr, ASM, IndexTypeQuals);
3369  ConstantArrayTypes.InsertNode(New, InsertPos);
3370  Types.push_back(New);
3371  return QualType(New, 0);
3372}
3373
3374/// getVariableArrayDecayedType - Turns the given type, which may be
3375/// variably-modified, into the corresponding type with all the known
3376/// sizes replaced with [*].
3377QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
3378  // Vastly most common case.
3379  if (!type->isVariablyModifiedType()) return type;
3380
3381  QualType result;
3382
3383  SplitQualType split = type.getSplitDesugaredType();
3384  const Type *ty = split.Ty;
3385  switch (ty->getTypeClass()) {
3386#define TYPE(Class, Base)
3387#define ABSTRACT_TYPE(Class, Base)
3388#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3389#include "clang/AST/TypeNodes.inc"
3390    llvm_unreachable("didn't desugar past all non-canonical types?");
3391
3392  // These types should never be variably-modified.
3393  case Type::Builtin:
3394  case Type::Complex:
3395  case Type::Vector:
3396  case Type::DependentVector:
3397  case Type::ExtVector:
3398  case Type::DependentSizedExtVector:
3399  case Type::DependentAddressSpace:
3400  case Type::ObjCObject:
3401  case Type::ObjCInterface:
3402  case Type::ObjCObjectPointer:
3403  case Type::Record:
3404  case Type::Enum:
3405  case Type::UnresolvedUsing:
3406  case Type::TypeOfExpr:
3407  case Type::TypeOf:
3408  case Type::Decltype:
3409  case Type::UnaryTransform:
3410  case Type::DependentName:
3411  case Type::InjectedClassName:
3412  case Type::TemplateSpecialization:
3413  case Type::DependentTemplateSpecialization:
3414  case Type::TemplateTypeParm:
3415  case Type::SubstTemplateTypeParmPack:
3416  case Type::Auto:
3417  case Type::DeducedTemplateSpecialization:
3418  case Type::PackExpansion:
3419    llvm_unreachable("type should never be variably-modified");
3420
3421  // These types can be variably-modified but should never need to
3422  // further decay.
3423  case Type::FunctionNoProto:
3424  case Type::FunctionProto:
3425  case Type::BlockPointer:
3426  case Type::MemberPointer:
3427  case Type::Pipe:
3428    return type;
3429
3430  // These types can be variably-modified.  All these modifications
3431  // preserve structure except as noted by comments.
3432  // TODO: if we ever care about optimizing VLAs, there are no-op
3433  // optimizations available here.
3434  case Type::Pointer:
3435    result = getPointerType(getVariableArrayDecayedType(
3436                              cast<PointerType>(ty)->getPointeeType()));
3437    break;
3438
3439  case Type::LValueReference: {
3440    const auto *lv = cast<LValueReferenceType>(ty);
3441    result = getLValueReferenceType(
3442                 getVariableArrayDecayedType(lv->getPointeeType()),
3443                                    lv->isSpelledAsLValue());
3444    break;
3445  }
3446
3447  case Type::RValueReference: {
3448    const auto *lv = cast<RValueReferenceType>(ty);
3449    result = getRValueReferenceType(
3450                 getVariableArrayDecayedType(lv->getPointeeType()));
3451    break;
3452  }
3453
3454  case Type::Atomic: {
3455    const auto *at = cast<AtomicType>(ty);
3456    result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
3457    break;
3458  }
3459
3460  case Type::ConstantArray: {
3461    const auto *cat = cast<ConstantArrayType>(ty);
3462    result = getConstantArrayType(
3463                 getVariableArrayDecayedType(cat->getElementType()),
3464                                  cat->getSize(),
3465                                  cat->getSizeExpr(),
3466                                  cat->getSizeModifier(),
3467                                  cat->getIndexTypeCVRQualifiers());
3468    break;
3469  }
3470
3471  case Type::DependentSizedArray: {
3472    const auto *dat = cast<DependentSizedArrayType>(ty);
3473    result = getDependentSizedArrayType(
3474                 getVariableArrayDecayedType(dat->getElementType()),
3475                                        dat->getSizeExpr(),
3476                                        dat->getSizeModifier(),
3477                                        dat->getIndexTypeCVRQualifiers(),
3478                                        dat->getBracketsRange());
3479    break;
3480  }
3481
3482  // Turn incomplete types into [*] types.
3483  case Type::IncompleteArray: {
3484    const auto *iat = cast<IncompleteArrayType>(ty);
3485    result = getVariableArrayType(
3486                 getVariableArrayDecayedType(iat->getElementType()),
3487                                  /*size*/ nullptr,
3488                                  ArrayType::Normal,
3489                                  iat->getIndexTypeCVRQualifiers(),
3490                                  SourceRange());
3491    break;
3492  }
3493
3494  // Turn VLA types into [*] types.
3495  case Type::VariableArray: {
3496    const auto *vat = cast<VariableArrayType>(ty);
3497    result = getVariableArrayType(
3498                 getVariableArrayDecayedType(vat->getElementType()),
3499                                  /*size*/ nullptr,
3500                                  ArrayType::Star,
3501                                  vat->getIndexTypeCVRQualifiers(),
3502                                  vat->getBracketsRange());
3503    break;
3504  }
3505  }
3506
3507  // Apply the top-level qualifiers from the original.
3508  return getQualifiedType(result, split.Quals);
3509}
3510
3511/// getVariableArrayType - Returns a non-unique reference to the type for a
3512/// variable array of the specified element type.
3513QualType ASTContext::getVariableArrayType(QualType EltTy,
3514                                          Expr *NumElts,
3515                                          ArrayType::ArraySizeModifier ASM,
3516                                          unsigned IndexTypeQuals,
3517                                          SourceRange Brackets) const {
3518  // Since we don't unique expressions, it isn't possible to unique VLA's
3519  // that have an expression provided for their size.
3520  QualType Canon;
3521
3522  // Be sure to pull qualifiers off the element type.
3523  if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
3524    SplitQualType canonSplit = getCanonicalType(EltTy).split();
3525    Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
3526                                 IndexTypeQuals, Brackets);
3527    Canon = getQualifiedType(Canon, canonSplit.Quals);
3528  }
3529
3530  auto *New = new (*this, TypeAlignment)
3531    VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
3532
3533  VariableArrayTypes.push_back(New);
3534  Types.push_back(New);
3535  return QualType(New, 0);
3536}
3537
3538/// getDependentSizedArrayType - Returns a non-unique reference to
3539/// the type for a dependently-sized array of the specified element
3540/// type.
3541QualType ASTContext::getDependentSizedArrayType(QualType elementType,
3542                                                Expr *numElements,
3543                                                ArrayType::ArraySizeModifier ASM,
3544                                                unsigned elementTypeQuals,
3545                                                SourceRange brackets) const {
3546  assert((!numElements || numElements->isTypeDependent() ||
3547          numElements->isValueDependent()) &&
3548         "Size must be type- or value-dependent!");
3549
3550  // Dependently-sized array types that do not have a specified number
3551  // of elements will have their sizes deduced from a dependent
3552  // initializer.  We do no canonicalization here at all, which is okay
3553  // because they can't be used in most locations.
3554  if (!numElements) {
3555    auto *newType
3556      = new (*this, TypeAlignment)
3557          DependentSizedArrayType(*this, elementType, QualType(),
3558                                  numElements, ASM, elementTypeQuals,
3559                                  brackets);
3560    Types.push_back(newType);
3561    return QualType(newType, 0);
3562  }
3563
3564  // Otherwise, we actually build a new type every time, but we
3565  // also build a canonical type.
3566
3567  SplitQualType canonElementType = getCanonicalType(elementType).split();
3568
3569  void *insertPos = nullptr;
3570  llvm::FoldingSetNodeID ID;
3571  DependentSizedArrayType::Profile(ID, *this,
3572                                   QualType(canonElementType.Ty, 0),
3573                                   ASM, elementTypeQuals, numElements);
3574
3575  // Look for an existing type with these properties.
3576  DependentSizedArrayType *canonTy =
3577    DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3578
3579  // If we don't have one, build one.
3580  if (!canonTy) {
3581    canonTy = new (*this, TypeAlignment)
3582      DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
3583                              QualType(), numElements, ASM, elementTypeQuals,
3584                              brackets);
3585    DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
3586    Types.push_back(canonTy);
3587  }
3588
3589  // Apply qualifiers from the element type to the array.
3590  QualType canon = getQualifiedType(QualType(canonTy,0),
3591                                    canonElementType.Quals);
3592
3593  // If we didn't need extra canonicalization for the element type or the size
3594  // expression, then just use that as our result.
3595  if (QualType(canonElementType.Ty, 0) == elementType &&
3596      canonTy->getSizeExpr() == numElements)
3597    return canon;
3598
3599  // Otherwise, we need to build a type which follows the spelling
3600  // of the element type.
3601  auto *sugaredType
3602    = new (*this, TypeAlignment)
3603        DependentSizedArrayType(*this, elementType, canon, numElements,
3604                                ASM, elementTypeQuals, brackets);
3605  Types.push_back(sugaredType);
3606  return QualType(sugaredType, 0);
3607}
3608
3609QualType ASTContext::getIncompleteArrayType(QualType elementType,
3610                                            ArrayType::ArraySizeModifier ASM,
3611                                            unsigned elementTypeQuals) const {
3612  llvm::FoldingSetNodeID ID;
3613  IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
3614
3615  void *insertPos = nullptr;
3616  if (IncompleteArrayType *iat =
3617       IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
3618    return QualType(iat, 0);
3619
3620  // If the element type isn't canonical, this won't be a canonical type
3621  // either, so fill in the canonical type field.  We also have to pull
3622  // qualifiers off the element type.
3623  QualType canon;
3624
3625  if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
3626    SplitQualType canonSplit = getCanonicalType(elementType).split();
3627    canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
3628                                   ASM, elementTypeQuals);
3629    canon = getQualifiedType(canon, canonSplit.Quals);
3630
3631    // Get the new insert position for the node we care about.
3632    IncompleteArrayType *existing =
3633      IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3634    assert(!existing && "Shouldn't be in the map!"); (void) existing;
3635  }
3636
3637  auto *newType = new (*this, TypeAlignment)
3638    IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
3639
3640  IncompleteArrayTypes.InsertNode(newType, insertPos);
3641  Types.push_back(newType);
3642  return QualType(newType, 0);
3643}
3644
3645/// getVectorType - Return the unique reference to a vector type of
3646/// the specified element type and size. VectorType must be a built-in type.
3647QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
3648                                   VectorType::VectorKind VecKind) const {
3649  assert(vecType->isBuiltinType());
3650
3651  // Check if we've already instantiated a vector of this type.
3652  llvm::FoldingSetNodeID ID;
3653  VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
3654
3655  void *InsertPos = nullptr;
3656  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
3657    return QualType(VTP, 0);
3658
3659  // If the element type isn't canonical, this won't be a canonical type either,
3660  // so fill in the canonical type field.
3661  QualType Canonical;
3662  if (!vecType.isCanonical()) {
3663    Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
3664
3665    // Get the new insert position for the node we care about.
3666    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3667    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3668  }
3669  auto *New = new (*this, TypeAlignment)
3670    VectorType(vecType, NumElts, Canonical, VecKind);
3671  VectorTypes.InsertNode(New, InsertPos);
3672  Types.push_back(New);
3673  return QualType(New, 0);
3674}
3675
3676QualType
3677ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr,
3678                                   SourceLocation AttrLoc,
3679                                   VectorType::VectorKind VecKind) const {
3680  llvm::FoldingSetNodeID ID;
3681  DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr,
3682                               VecKind);
3683  void *InsertPos = nullptr;
3684  DependentVectorType *Canon =
3685      DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3686  DependentVectorType *New;
3687
3688  if (Canon) {
3689    New = new (*this, TypeAlignment) DependentVectorType(
3690        *this, VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind);
3691  } else {
3692    QualType CanonVecTy = getCanonicalType(VecType);
3693    if (CanonVecTy == VecType) {
3694      New = new (*this, TypeAlignment) DependentVectorType(
3695          *this, VecType, QualType(), SizeExpr, AttrLoc, VecKind);
3696
3697      DependentVectorType *CanonCheck =
3698          DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3699      assert(!CanonCheck &&
3700             "Dependent-sized vector_size canonical type broken");
3701      (void)CanonCheck;
3702      DependentVectorTypes.InsertNode(New, InsertPos);
3703    } else {
3704      QualType CanonExtTy = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
3705                                                           SourceLocation());
3706      New = new (*this, TypeAlignment) DependentVectorType(
3707          *this, VecType, CanonExtTy, SizeExpr, AttrLoc, VecKind);
3708    }
3709  }
3710
3711  Types.push_back(New);
3712  return QualType(New, 0);
3713}
3714
3715/// getExtVectorType - Return the unique reference to an extended vector type of
3716/// the specified element type and size. VectorType must be a built-in type.
3717QualType
3718ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
3719  assert(vecType->isBuiltinType() || vecType->isDependentType());
3720
3721  // Check if we've already instantiated a vector of this type.
3722  llvm::FoldingSetNodeID ID;
3723  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
3724                      VectorType::GenericVector);
3725  void *InsertPos = nullptr;
3726  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
3727    return QualType(VTP, 0);
3728
3729  // If the element type isn't canonical, this won't be a canonical type either,
3730  // so fill in the canonical type field.
3731  QualType Canonical;
3732  if (!vecType.isCanonical()) {
3733    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
3734
3735    // Get the new insert position for the node we care about.
3736    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3737    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3738  }
3739  auto *New = new (*this, TypeAlignment)
3740    ExtVectorType(vecType, NumElts, Canonical);
3741  VectorTypes.InsertNode(New, InsertPos);
3742  Types.push_back(New);
3743  return QualType(New, 0);
3744}
3745
3746QualType
3747ASTContext::getDependentSizedExtVectorType(QualType vecType,
3748                                           Expr *SizeExpr,
3749                                           SourceLocation AttrLoc) const {
3750  llvm::FoldingSetNodeID ID;
3751  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
3752                                       SizeExpr);
3753
3754  void *InsertPos = nullptr;
3755  DependentSizedExtVectorType *Canon
3756    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3757  DependentSizedExtVectorType *New;
3758  if (Canon) {
3759    // We already have a canonical version of this array type; use it as
3760    // the canonical type for a newly-built type.
3761    New = new (*this, TypeAlignment)
3762      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
3763                                  SizeExpr, AttrLoc);
3764  } else {
3765    QualType CanonVecTy = getCanonicalType(vecType);
3766    if (CanonVecTy == vecType) {
3767      New = new (*this, TypeAlignment)
3768        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
3769                                    AttrLoc);
3770
3771      DependentSizedExtVectorType *CanonCheck
3772        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
3773      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
3774      (void)CanonCheck;
3775      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
3776    } else {
3777      QualType CanonExtTy = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
3778                                                           SourceLocation());
3779      New = new (*this, TypeAlignment) DependentSizedExtVectorType(
3780          *this, vecType, CanonExtTy, SizeExpr, AttrLoc);
3781    }
3782  }
3783
3784  Types.push_back(New);
3785  return QualType(New, 0);
3786}
3787
3788QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType,
3789                                                  Expr *AddrSpaceExpr,
3790                                                  SourceLocation AttrLoc) const {
3791  assert(AddrSpaceExpr->isInstantiationDependent());
3792
3793  QualType canonPointeeType = getCanonicalType(PointeeType);
3794
3795  void *insertPos = nullptr;
3796  llvm::FoldingSetNodeID ID;
3797  DependentAddressSpaceType::Profile(ID, *this, canonPointeeType,
3798                                     AddrSpaceExpr);
3799
3800  DependentAddressSpaceType *canonTy =
3801    DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos);
3802
3803  if (!canonTy) {
3804    canonTy = new (*this, TypeAlignment)
3805      DependentAddressSpaceType(*this, canonPointeeType,
3806                                QualType(), AddrSpaceExpr, AttrLoc);
3807    DependentAddressSpaceTypes.InsertNode(canonTy, insertPos);
3808    Types.push_back(canonTy);
3809  }
3810
3811  if (canonPointeeType == PointeeType &&
3812      canonTy->getAddrSpaceExpr() == AddrSpaceExpr)
3813    return QualType(canonTy, 0);
3814
3815  auto *sugaredType
3816    = new (*this, TypeAlignment)
3817        DependentAddressSpaceType(*this, PointeeType, QualType(canonTy, 0),
3818                                  AddrSpaceExpr, AttrLoc);
3819  Types.push_back(sugaredType);
3820  return QualType(sugaredType, 0);
3821}
3822
3823/// Determine whether \p T is canonical as the result type of a function.
3824static bool isCanonicalResultType(QualType T) {
3825  return T.isCanonical() &&
3826         (T.getObjCLifetime() == Qualifiers::OCL_None ||
3827          T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
3828}
3829
3830/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
3831QualType
3832ASTContext::getFunctionNoProtoType(QualType ResultTy,
3833                                   const FunctionType::ExtInfo &Info) const {
3834  // Unique functions, to guarantee there is only one function of a particular
3835  // structure.
3836  llvm::FoldingSetNodeID ID;
3837  FunctionNoProtoType::Profile(ID, ResultTy, Info);
3838
3839  void *InsertPos = nullptr;
3840  if (FunctionNoProtoType *FT =
3841        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
3842    return QualType(FT, 0);
3843
3844  QualType Canonical;
3845  if (!isCanonicalResultType(ResultTy)) {
3846    Canonical =
3847      getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info);
3848
3849    // Get the new insert position for the node we care about.
3850    FunctionNoProtoType *NewIP =
3851      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
3852    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
3853  }
3854
3855  auto *New = new (*this, TypeAlignment)
3856    FunctionNoProtoType(ResultTy, Canonical, Info);
3857  Types.push_back(New);
3858  FunctionNoProtoTypes.InsertNode(New, InsertPos);
3859  return QualType(New, 0);
3860}
3861
3862CanQualType
3863ASTContext::getCanonicalFunctionResultType(QualType ResultType) const {
3864  CanQualType CanResultType = getCanonicalType(ResultType);
3865
3866  // Canonical result types do not have ARC lifetime qualifiers.
3867  if (CanResultType.getQualifiers().hasObjCLifetime()) {
3868    Qualifiers Qs = CanResultType.getQualifiers();
3869    Qs.removeObjCLifetime();
3870    return CanQualType::CreateUnsafe(
3871             getQualifiedType(CanResultType.getUnqualifiedType(), Qs));
3872  }
3873
3874  return CanResultType;
3875}
3876
3877static bool isCanonicalExceptionSpecification(
3878    const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) {
3879  if (ESI.Type == EST_None)
3880    return true;
3881  if (!NoexceptInType)
3882    return false;
3883
3884  // C++17 onwards: exception specification is part of the type, as a simple
3885  // boolean "can this function type throw".
3886  if (ESI.Type == EST_BasicNoexcept)
3887    return true;
3888
3889  // A noexcept(expr) specification is (possibly) canonical if expr is
3890  // value-dependent.
3891  if (ESI.Type == EST_DependentNoexcept)
3892    return true;
3893
3894  // A dynamic exception specification is canonical if it only contains pack
3895  // expansions (so we can't tell whether it's non-throwing) and all its
3896  // contained types are canonical.
3897  if (ESI.Type == EST_Dynamic) {
3898    bool AnyPackExpansions = false;
3899    for (QualType ET : ESI.Exceptions) {
3900      if (!ET.isCanonical())
3901        return false;
3902      if (ET->getAs<PackExpansionType>())
3903        AnyPackExpansions = true;
3904    }
3905    return AnyPackExpansions;
3906  }
3907
3908  return false;
3909}
3910
3911QualType ASTContext::getFunctionTypeInternal(
3912    QualType ResultTy, ArrayRef<QualType> ArgArray,
3913    const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const {
3914  size_t NumArgs = ArgArray.size();
3915
3916  // Unique functions, to guarantee there is only one function of a particular
3917  // structure.
3918  llvm::FoldingSetNodeID ID;
3919  FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
3920                             *this, true);
3921
3922  QualType Canonical;
3923  bool Unique = false;
3924
3925  void *InsertPos = nullptr;
3926  if (FunctionProtoType *FPT =
3927        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) {
3928    QualType Existing = QualType(FPT, 0);
3929
3930    // If we find a pre-existing equivalent FunctionProtoType, we can just reuse
3931    // it so long as our exception specification doesn't contain a dependent
3932    // noexcept expression, or we're just looking for a canonical type.
3933    // Otherwise, we're going to need to create a type
3934    // sugar node to hold the concrete expression.
3935    if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) ||
3936        EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr())
3937      return Existing;
3938
3939    // We need a new type sugar node for this one, to hold the new noexcept
3940    // expression. We do no canonicalization here, but that's OK since we don't
3941    // expect to see the same noexcept expression much more than once.
3942    Canonical = getCanonicalType(Existing);
3943    Unique = true;
3944  }
3945
3946  bool NoexceptInType = getLangOpts().CPlusPlus17;
3947  bool IsCanonicalExceptionSpec =
3948      isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType);
3949
3950  // Determine whether the type being created is already canonical or not.
3951  bool isCanonical = !Unique && IsCanonicalExceptionSpec &&
3952                     isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn;
3953  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
3954    if (!ArgArray[i].isCanonicalAsParam())
3955      isCanonical = false;
3956
3957  if (OnlyWantCanonical)
3958    assert(isCanonical &&
3959           "given non-canonical parameters constructing canonical type");
3960
3961  // If this type isn't canonical, get the canonical version of it if we don't
3962  // already have it. The exception spec is only partially part of the
3963  // canonical type, and only in C++17 onwards.
3964  if (!isCanonical && Canonical.isNull()) {
3965    SmallVector<QualType, 16> CanonicalArgs;
3966    CanonicalArgs.reserve(NumArgs);
3967    for (unsigned i = 0; i != NumArgs; ++i)
3968      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
3969
3970    llvm::SmallVector<QualType, 8> ExceptionTypeStorage;
3971    FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
3972    CanonicalEPI.HasTrailingReturn = false;
3973
3974    if (IsCanonicalExceptionSpec) {
3975      // Exception spec is already OK.
3976    } else if (NoexceptInType) {
3977      switch (EPI.ExceptionSpec.Type) {
3978      case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated:
3979        // We don't know yet. It shouldn't matter what we pick here; no-one
3980        // should ever look at this.
3981        LLVM_FALLTHROUGH;
3982      case EST_None: case EST_MSAny: case EST_NoexceptFalse:
3983        CanonicalEPI.ExceptionSpec.Type = EST_None;
3984        break;
3985
3986        // A dynamic exception specification is almost always "not noexcept",
3987        // with the exception that a pack expansion might expand to no types.
3988      case EST_Dynamic: {
3989        bool AnyPacks = false;
3990        for (QualType ET : EPI.ExceptionSpec.Exceptions) {
3991          if (ET->getAs<PackExpansionType>())
3992            AnyPacks = true;
3993          ExceptionTypeStorage.push_back(getCanonicalType(ET));
3994        }
3995        if (!AnyPacks)
3996          CanonicalEPI.ExceptionSpec.Type = EST_None;
3997        else {
3998          CanonicalEPI.ExceptionSpec.Type = EST_Dynamic;
3999          CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage;
4000        }
4001        break;
4002      }
4003
4004      case EST_DynamicNone:
4005      case EST_BasicNoexcept:
4006      case EST_NoexceptTrue:
4007      case EST_NoThrow:
4008        CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept;
4009        break;
4010
4011      case EST_DependentNoexcept:
4012        llvm_unreachable("dependent noexcept is already canonical");
4013      }
4014    } else {
4015      CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
4016    }
4017
4018    // Adjust the canonical function result type.
4019    CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy);
4020    Canonical =
4021        getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true);
4022
4023    // Get the new insert position for the node we care about.
4024    FunctionProtoType *NewIP =
4025      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
4026    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
4027  }
4028
4029  // Compute the needed size to hold this FunctionProtoType and the
4030  // various trailing objects.
4031  auto ESH = FunctionProtoType::getExceptionSpecSize(
4032      EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size());
4033  size_t Size = FunctionProtoType::totalSizeToAlloc<
4034      QualType, SourceLocation, FunctionType::FunctionTypeExtraBitfields,
4035      FunctionType::ExceptionType, Expr *, FunctionDecl *,
4036      FunctionProtoType::ExtParameterInfo, Qualifiers>(
4037      NumArgs, EPI.Variadic,
4038      FunctionProtoType::hasExtraBitfields(EPI.ExceptionSpec.Type),
4039      ESH.NumExceptionType, ESH.NumExprPtr, ESH.NumFunctionDeclPtr,
4040      EPI.ExtParameterInfos ? NumArgs : 0,
4041      EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0);
4042
4043  auto *FTP = (FunctionProtoType *)Allocate(Size, TypeAlignment);
4044  FunctionProtoType::ExtProtoInfo newEPI = EPI;
4045  new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
4046  Types.push_back(FTP);
4047  if (!Unique)
4048    FunctionProtoTypes.InsertNode(FTP, InsertPos);
4049  return QualType(FTP, 0);
4050}
4051
4052QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const {
4053  llvm::FoldingSetNodeID ID;
4054  PipeType::Profile(ID, T, ReadOnly);
4055
4056  void *InsertPos = nullptr;
4057  if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos))
4058    return QualType(PT, 0);
4059
4060  // If the pipe element type isn't canonical, this won't be a canonical type
4061  // either, so fill in the canonical type field.
4062  QualType Canonical;
4063  if (!T.isCanonical()) {
4064    Canonical = getPipeType(getCanonicalType(T), ReadOnly);
4065
4066    // Get the new insert position for the node we care about.
4067    PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos);
4068    assert(!NewIP && "Shouldn't be in the map!");
4069    (void)NewIP;
4070  }
4071  auto *New = new (*this, TypeAlignment) PipeType(T, Canonical, ReadOnly);
4072  Types.push_back(New);
4073  PipeTypes.InsertNode(New, InsertPos);
4074  return QualType(New, 0);
4075}
4076
4077QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const {
4078  // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
4079  return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant)
4080                         : Ty;
4081}
4082
4083QualType ASTContext::getReadPipeType(QualType T) const {
4084  return getPipeType(T, true);
4085}
4086
4087QualType ASTContext::getWritePipeType(QualType T) const {
4088  return getPipeType(T, false);
4089}
4090
4091#ifndef NDEBUG
4092static bool NeedsInjectedClassNameType(const RecordDecl *D) {
4093  if (!isa<CXXRecordDecl>(D)) return false;
4094  const auto *RD = cast<CXXRecordDecl>(D);
4095  if (isa<ClassTemplatePartialSpecializationDecl>(RD))
4096    return true;
4097  if (RD->getDescribedClassTemplate() &&
4098      !isa<ClassTemplateSpecializationDecl>(RD))
4099    return true;
4100  return false;
4101}
4102#endif
4103
4104/// getInjectedClassNameType - Return the unique reference to the
4105/// injected class name type for the specified templated declaration.
4106QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
4107                                              QualType TST) const {
4108  assert(NeedsInjectedClassNameType(Decl));
4109  if (Decl->TypeForDecl) {
4110    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4111  } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
4112    assert(PrevDecl->TypeForDecl && "previous declaration has no type");
4113    Decl->TypeForDecl = PrevDecl->TypeForDecl;
4114    assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
4115  } else {
4116    Type *newType =
4117      new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
4118    Decl->TypeForDecl = newType;
4119    Types.push_back(newType);
4120  }
4121  return QualType(Decl->TypeForDecl, 0);
4122}
4123
4124/// getTypeDeclType - Return the unique reference to the type for the
4125/// specified type declaration.
4126QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
4127  assert(Decl && "Passed null for Decl param");
4128  assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
4129
4130  if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Decl))
4131    return getTypedefType(Typedef);
4132
4133  assert(!isa<TemplateTypeParmDecl>(Decl) &&
4134         "Template type parameter types are always available.");
4135
4136  if (const auto *Record = dyn_cast<RecordDecl>(Decl)) {
4137    assert(Record->isFirstDecl() && "struct/union has previous declaration");
4138    assert(!NeedsInjectedClassNameType(Record));
4139    return getRecordType(Record);
4140  } else if (const auto *Enum = dyn_cast<EnumDecl>(Decl)) {
4141    assert(Enum->isFirstDecl() && "enum has previous declaration");
4142    return getEnumType(Enum);
4143  } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
4144    Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
4145    Decl->TypeForDecl = newType;
4146    Types.push_back(newType);
4147  } else
4148    llvm_unreachable("TypeDecl without a type?");
4149
4150  return QualType(Decl->TypeForDecl, 0);
4151}
4152
4153/// getTypedefType - Return the unique reference to the type for the
4154/// specified typedef name decl.
4155QualType
4156ASTContext::getTypedefType(const TypedefNameDecl *Decl,
4157                           QualType Canonical) const {
4158  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4159
4160  if (Canonical.isNull())
4161    Canonical = getCanonicalType(Decl->getUnderlyingType());
4162  auto *newType = new (*this, TypeAlignment)
4163    TypedefType(Type::Typedef, Decl, Canonical);
4164  Decl->TypeForDecl = newType;
4165  Types.push_back(newType);
4166  return QualType(newType, 0);
4167}
4168
4169QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
4170  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4171
4172  if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
4173    if (PrevDecl->TypeForDecl)
4174      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4175
4176  auto *newType = new (*this, TypeAlignment) RecordType(Decl);
4177  Decl->TypeForDecl = newType;
4178  Types.push_back(newType);
4179  return QualType(newType, 0);
4180}
4181
4182QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
4183  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4184
4185  if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
4186    if (PrevDecl->TypeForDecl)
4187      return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4188
4189  auto *newType = new (*this, TypeAlignment) EnumType(Decl);
4190  Decl->TypeForDecl = newType;
4191  Types.push_back(newType);
4192  return QualType(newType, 0);
4193}
4194
4195QualType ASTContext::getAttributedType(attr::Kind attrKind,
4196                                       QualType modifiedType,
4197                                       QualType equivalentType) {
4198  llvm::FoldingSetNodeID id;
4199  AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
4200
4201  void *insertPos = nullptr;
4202  AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
4203  if (type) return QualType(type, 0);
4204
4205  QualType canon = getCanonicalType(equivalentType);
4206  type = new (*this, TypeAlignment)
4207      AttributedType(canon, attrKind, modifiedType, equivalentType);
4208
4209  Types.push_back(type);
4210  AttributedTypes.InsertNode(type, insertPos);
4211
4212  return QualType(type, 0);
4213}
4214
4215/// Retrieve a substitution-result type.
4216QualType
4217ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
4218                                         QualType Replacement) const {
4219  assert(Replacement.isCanonical()
4220         && "replacement types must always be canonical");
4221
4222  llvm::FoldingSetNodeID ID;
4223  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
4224  void *InsertPos = nullptr;
4225  SubstTemplateTypeParmType *SubstParm
4226    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4227
4228  if (!SubstParm) {
4229    SubstParm = new (*this, TypeAlignment)
4230      SubstTemplateTypeParmType(Parm, Replacement);
4231    Types.push_back(SubstParm);
4232    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
4233  }
4234
4235  return QualType(SubstParm, 0);
4236}
4237
4238/// Retrieve a
4239QualType ASTContext::getSubstTemplateTypeParmPackType(
4240                                          const TemplateTypeParmType *Parm,
4241                                              const TemplateArgument &ArgPack) {
4242#ifndef NDEBUG
4243  for (const auto &P : ArgPack.pack_elements()) {
4244    assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type");
4245    assert(P.getAsType().isCanonical() && "Pack contains non-canonical type");
4246  }
4247#endif
4248
4249  llvm::FoldingSetNodeID ID;
4250  SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
4251  void *InsertPos = nullptr;
4252  if (SubstTemplateTypeParmPackType *SubstParm
4253        = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
4254    return QualType(SubstParm, 0);
4255
4256  QualType Canon;
4257  if (!Parm->isCanonicalUnqualified()) {
4258    Canon = getCanonicalType(QualType(Parm, 0));
4259    Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
4260                                             ArgPack);
4261    SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
4262  }
4263
4264  auto *SubstParm
4265    = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
4266                                                               ArgPack);
4267  Types.push_back(SubstParm);
4268  SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos);
4269  return QualType(SubstParm, 0);
4270}
4271
4272/// Retrieve the template type parameter type for a template
4273/// parameter or parameter pack with the given depth, index, and (optionally)
4274/// name.
4275QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
4276                                             bool ParameterPack,
4277                                             TemplateTypeParmDecl *TTPDecl) const {
4278  llvm::FoldingSetNodeID ID;
4279  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
4280  void *InsertPos = nullptr;
4281  TemplateTypeParmType *TypeParm
4282    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4283
4284  if (TypeParm)
4285    return QualType(TypeParm, 0);
4286
4287  if (TTPDecl) {
4288    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
4289    TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
4290
4291    TemplateTypeParmType *TypeCheck
4292      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4293    assert(!TypeCheck && "Template type parameter canonical type broken");
4294    (void)TypeCheck;
4295  } else
4296    TypeParm = new (*this, TypeAlignment)
4297      TemplateTypeParmType(Depth, Index, ParameterPack);
4298
4299  Types.push_back(TypeParm);
4300  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
4301
4302  return QualType(TypeParm, 0);
4303}
4304
4305TypeSourceInfo *
4306ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
4307                                              SourceLocation NameLoc,
4308                                        const TemplateArgumentListInfo &Args,
4309                                              QualType Underlying) const {
4310  assert(!Name.getAsDependentTemplateName() &&
4311         "No dependent template names here!");
4312  QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
4313
4314  TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
4315  TemplateSpecializationTypeLoc TL =
4316      DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
4317  TL.setTemplateKeywordLoc(SourceLocation());
4318  TL.setTemplateNameLoc(NameLoc);
4319  TL.setLAngleLoc(Args.getLAngleLoc());
4320  TL.setRAngleLoc(Args.getRAngleLoc());
4321  for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
4322    TL.setArgLocInfo(i, Args[i].getLocInfo());
4323  return DI;
4324}
4325
4326QualType
4327ASTContext::getTemplateSpecializationType(TemplateName Template,
4328                                          const TemplateArgumentListInfo &Args,
4329                                          QualType Underlying) const {
4330  assert(!Template.getAsDependentTemplateName() &&
4331         "No dependent template names here!");
4332
4333  SmallVector<TemplateArgument, 4> ArgVec;
4334  ArgVec.reserve(Args.size());
4335  for (const TemplateArgumentLoc &Arg : Args.arguments())
4336    ArgVec.push_back(Arg.getArgument());
4337
4338  return getTemplateSpecializationType(Template, ArgVec, Underlying);
4339}
4340
4341#ifndef NDEBUG
4342static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) {
4343  for (const TemplateArgument &Arg : Args)
4344    if (Arg.isPackExpansion())
4345      return true;
4346
4347  return true;
4348}
4349#endif
4350
4351QualType
4352ASTContext::getTemplateSpecializationType(TemplateName Template,
4353                                          ArrayRef<TemplateArgument> Args,
4354                                          QualType Underlying) const {
4355  assert(!Template.getAsDependentTemplateName() &&
4356         "No dependent template names here!");
4357  // Look through qualified template names.
4358  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4359    Template = TemplateName(QTN->getTemplateDecl());
4360
4361  bool IsTypeAlias =
4362    Template.getAsTemplateDecl() &&
4363    isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
4364  QualType CanonType;
4365  if (!Underlying.isNull())
4366    CanonType = getCanonicalType(Underlying);
4367  else {
4368    // We can get here with an alias template when the specialization contains
4369    // a pack expansion that does not match up with a parameter pack.
4370    assert((!IsTypeAlias || hasAnyPackExpansions(Args)) &&
4371           "Caller must compute aliased type");
4372    IsTypeAlias = false;
4373    CanonType = getCanonicalTemplateSpecializationType(Template, Args);
4374  }
4375
4376  // Allocate the (non-canonical) template specialization type, but don't
4377  // try to unique it: these types typically have location information that
4378  // we don't unique and don't want to lose.
4379  void *Mem = Allocate(sizeof(TemplateSpecializationType) +
4380                       sizeof(TemplateArgument) * Args.size() +
4381                       (IsTypeAlias? sizeof(QualType) : 0),
4382                       TypeAlignment);
4383  auto *Spec
4384    = new (Mem) TemplateSpecializationType(Template, Args, CanonType,
4385                                         IsTypeAlias ? Underlying : QualType());
4386
4387  Types.push_back(Spec);
4388  return QualType(Spec, 0);
4389}
4390
4391QualType ASTContext::getCanonicalTemplateSpecializationType(
4392    TemplateName Template, ArrayRef<TemplateArgument> Args) const {
4393  assert(!Template.getAsDependentTemplateName() &&
4394         "No dependent template names here!");
4395
4396  // Look through qualified template names.
4397  if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
4398    Template = TemplateName(QTN->getTemplateDecl());
4399
4400  // Build the canonical template specialization type.
4401  TemplateName CanonTemplate = getCanonicalTemplateName(Template);
4402  SmallVector<TemplateArgument, 4> CanonArgs;
4403  unsigned NumArgs = Args.size();
4404  CanonArgs.reserve(NumArgs);
4405  for (const TemplateArgument &Arg : Args)
4406    CanonArgs.push_back(getCanonicalTemplateArgument(Arg));
4407
4408  // Determine whether this canonical template specialization type already
4409  // exists.
4410  llvm::FoldingSetNodeID ID;
4411  TemplateSpecializationType::Profile(ID, CanonTemplate,
4412                                      CanonArgs, *this);
4413
4414  void *InsertPos = nullptr;
4415  TemplateSpecializationType *Spec
4416    = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4417
4418  if (!Spec) {
4419    // Allocate a new canonical template specialization type.
4420    void *Mem = Allocate((sizeof(TemplateSpecializationType) +
4421                          sizeof(TemplateArgument) * NumArgs),
4422                         TypeAlignment);
4423    Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
4424                                                CanonArgs,
4425                                                QualType(), QualType());
4426    Types.push_back(Spec);
4427    TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
4428  }
4429
4430  assert(Spec->isDependentType() &&
4431         "Non-dependent template-id type must have a canonical type");
4432  return QualType(Spec, 0);
4433}
4434
4435QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
4436                                       NestedNameSpecifier *NNS,
4437                                       QualType NamedType,
4438                                       TagDecl *OwnedTagDecl) const {
4439  llvm::FoldingSetNodeID ID;
4440  ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl);
4441
4442  void *InsertPos = nullptr;
4443  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
4444  if (T)
4445    return QualType(T, 0);
4446
4447  QualType Canon = NamedType;
4448  if (!Canon.isCanonical()) {
4449    Canon = getCanonicalType(NamedType);
4450    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
4451    assert(!CheckT && "Elaborated canonical type broken");
4452    (void)CheckT;
4453  }
4454
4455  void *Mem = Allocate(ElaboratedType::totalSizeToAlloc<TagDecl *>(!!OwnedTagDecl),
4456                       TypeAlignment);
4457  T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl);
4458
4459  Types.push_back(T);
4460  ElaboratedTypes.InsertNode(T, InsertPos);
4461  return QualType(T, 0);
4462}
4463
4464QualType
4465ASTContext::getParenType(QualType InnerType) const {
4466  llvm::FoldingSetNodeID ID;
4467  ParenType::Profile(ID, InnerType);
4468
4469  void *InsertPos = nullptr;
4470  ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
4471  if (T)
4472    return QualType(T, 0);
4473
4474  QualType Canon = InnerType;
4475  if (!Canon.isCanonical()) {
4476    Canon = getCanonicalType(InnerType);
4477    ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
4478    assert(!CheckT && "Paren canonical type broken");
4479    (void)CheckT;
4480  }
4481
4482  T = new (*this, TypeAlignment) ParenType(InnerType, Canon);
4483  Types.push_back(T);
4484  ParenTypes.InsertNode(T, InsertPos);
4485  return QualType(T, 0);
4486}
4487
4488QualType
4489ASTContext::getMacroQualifiedType(QualType UnderlyingTy,
4490                                  const IdentifierInfo *MacroII) const {
4491  QualType Canon = UnderlyingTy;
4492  if (!Canon.isCanonical())
4493    Canon = getCanonicalType(UnderlyingTy);
4494
4495  auto *newType = new (*this, TypeAlignment)
4496      MacroQualifiedType(UnderlyingTy, Canon, MacroII);
4497  Types.push_back(newType);
4498  return QualType(newType, 0);
4499}
4500
4501QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
4502                                          NestedNameSpecifier *NNS,
4503                                          const IdentifierInfo *Name,
4504                                          QualType Canon) const {
4505  if (Canon.isNull()) {
4506    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4507    if (CanonNNS != NNS)
4508      Canon = getDependentNameType(Keyword, CanonNNS, Name);
4509  }
4510
4511  llvm::FoldingSetNodeID ID;
4512  DependentNameType::Profile(ID, Keyword, NNS, Name);
4513
4514  void *InsertPos = nullptr;
4515  DependentNameType *T
4516    = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
4517  if (T)
4518    return QualType(T, 0);
4519
4520  T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon);
4521  Types.push_back(T);
4522  DependentNameTypes.InsertNode(T, InsertPos);
4523  return QualType(T, 0);
4524}
4525
4526QualType
4527ASTContext::getDependentTemplateSpecializationType(
4528                                 ElaboratedTypeKeyword Keyword,
4529                                 NestedNameSpecifier *NNS,
4530                                 const IdentifierInfo *Name,
4531                                 const TemplateArgumentListInfo &Args) const {
4532  // TODO: avoid this copy
4533  SmallVector<TemplateArgument, 16> ArgCopy;
4534  for (unsigned I = 0, E = Args.size(); I != E; ++I)
4535    ArgCopy.push_back(Args[I].getArgument());
4536  return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy);
4537}
4538
4539QualType
4540ASTContext::getDependentTemplateSpecializationType(
4541                                 ElaboratedTypeKeyword Keyword,
4542                                 NestedNameSpecifier *NNS,
4543                                 const IdentifierInfo *Name,
4544                                 ArrayRef<TemplateArgument> Args) const {
4545  assert((!NNS || NNS->isDependent()) &&
4546         "nested-name-specifier must be dependent");
4547
4548  llvm::FoldingSetNodeID ID;
4549  DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
4550                                               Name, Args);
4551
4552  void *InsertPos = nullptr;
4553  DependentTemplateSpecializationType *T
4554    = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4555  if (T)
4556    return QualType(T, 0);
4557
4558  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
4559
4560  ElaboratedTypeKeyword CanonKeyword = Keyword;
4561  if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
4562
4563  bool AnyNonCanonArgs = false;
4564  unsigned NumArgs = Args.size();
4565  SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
4566  for (unsigned I = 0; I != NumArgs; ++I) {
4567    CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
4568    if (!CanonArgs[I].structurallyEquals(Args[I]))
4569      AnyNonCanonArgs = true;
4570  }
4571
4572  QualType Canon;
4573  if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
4574    Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
4575                                                   Name,
4576                                                   CanonArgs);
4577
4578    // Find the insert position again.
4579    DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
4580  }
4581
4582  void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
4583                        sizeof(TemplateArgument) * NumArgs),
4584                       TypeAlignment);
4585  T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
4586                                                    Name, Args, Canon);
4587  Types.push_back(T);
4588  DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
4589  return QualType(T, 0);
4590}
4591
4592TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) {
4593  TemplateArgument Arg;
4594  if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
4595    QualType ArgType = getTypeDeclType(TTP);
4596    if (TTP->isParameterPack())
4597      ArgType = getPackExpansionType(ArgType, None);
4598
4599    Arg = TemplateArgument(ArgType);
4600  } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
4601    Expr *E = new (*this) DeclRefExpr(
4602        *this, NTTP, /*enclosing*/ false,
4603        NTTP->getType().getNonLValueExprType(*this),
4604        Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation());
4605
4606    if (NTTP->isParameterPack())
4607      E = new (*this) PackExpansionExpr(DependentTy, E, NTTP->getLocation(),
4608                                        None);
4609    Arg = TemplateArgument(E);
4610  } else {
4611    auto *TTP = cast<TemplateTemplateParmDecl>(Param);
4612    if (TTP->isParameterPack())
4613      Arg = TemplateArgument(TemplateName(TTP), Optional<unsigned>());
4614    else
4615      Arg = TemplateArgument(TemplateName(TTP));
4616  }
4617
4618  if (Param->isTemplateParameterPack())
4619    Arg = TemplateArgument::CreatePackCopy(*this, Arg);
4620
4621  return Arg;
4622}
4623
4624void
4625ASTContext::getInjectedTemplateArgs(const TemplateParameterList *Params,
4626                                    SmallVectorImpl<TemplateArgument> &Args) {
4627  Args.reserve(Args.size() + Params->size());
4628
4629  for (NamedDecl *Param : *Params)
4630    Args.push_back(getInjectedTemplateArg(Param));
4631}
4632
4633QualType ASTContext::getPackExpansionType(QualType Pattern,
4634                                          Optional<unsigned> NumExpansions) {
4635  llvm::FoldingSetNodeID ID;
4636  PackExpansionType::Profile(ID, Pattern, NumExpansions);
4637
4638  // A deduced type can deduce to a pack, eg
4639  //   auto ...x = some_pack;
4640  // That declaration isn't (yet) valid, but is created as part of building an
4641  // init-capture pack:
4642  //   [...x = some_pack] {}
4643  assert((Pattern->containsUnexpandedParameterPack() ||
4644          Pattern->getContainedDeducedType()) &&
4645         "Pack expansions must expand one or more parameter packs");
4646  void *InsertPos = nullptr;
4647  PackExpansionType *T
4648    = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
4649  if (T)
4650    return QualType(T, 0);
4651
4652  QualType Canon;
4653  if (!Pattern.isCanonical()) {
4654    Canon = getCanonicalType(Pattern);
4655    // The canonical type might not contain an unexpanded parameter pack, if it
4656    // contains an alias template specialization which ignores one of its
4657    // parameters.
4658    if (Canon->containsUnexpandedParameterPack()) {
4659      Canon = getPackExpansionType(Canon, NumExpansions);
4660
4661      // Find the insert position again, in case we inserted an element into
4662      // PackExpansionTypes and invalidated our insert position.
4663      PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
4664    }
4665  }
4666
4667  T = new (*this, TypeAlignment)
4668      PackExpansionType(Pattern, Canon, NumExpansions);
4669  Types.push_back(T);
4670  PackExpansionTypes.InsertNode(T, InsertPos);
4671  return QualType(T, 0);
4672}
4673
4674/// CmpProtocolNames - Comparison predicate for sorting protocols
4675/// alphabetically.
4676static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
4677                            ObjCProtocolDecl *const *RHS) {
4678  return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
4679}
4680
4681static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) {
4682  if (Protocols.empty()) return true;
4683
4684  if (Protocols[0]->getCanonicalDecl() != Protocols[0])
4685    return false;
4686
4687  for (unsigned i = 1; i != Protocols.size(); ++i)
4688    if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
4689        Protocols[i]->getCanonicalDecl() != Protocols[i])
4690      return false;
4691  return true;
4692}
4693
4694static void
4695SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) {
4696  // Sort protocols, keyed by name.
4697  llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames);
4698
4699  // Canonicalize.
4700  for (ObjCProtocolDecl *&P : Protocols)
4701    P = P->getCanonicalDecl();
4702
4703  // Remove duplicates.
4704  auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end());
4705  Protocols.erase(ProtocolsEnd, Protocols.end());
4706}
4707
4708QualType ASTContext::getObjCObjectType(QualType BaseType,
4709                                       ObjCProtocolDecl * const *Protocols,
4710                                       unsigned NumProtocols) const {
4711  return getObjCObjectType(BaseType, {},
4712                           llvm::makeArrayRef(Protocols, NumProtocols),
4713                           /*isKindOf=*/false);
4714}
4715
4716QualType ASTContext::getObjCObjectType(
4717           QualType baseType,
4718           ArrayRef<QualType> typeArgs,
4719           ArrayRef<ObjCProtocolDecl *> protocols,
4720           bool isKindOf) const {
4721  // If the base type is an interface and there aren't any protocols or
4722  // type arguments to add, then the interface type will do just fine.
4723  if (typeArgs.empty() && protocols.empty() && !isKindOf &&
4724      isa<ObjCInterfaceType>(baseType))
4725    return baseType;
4726
4727  // Look in the folding set for an existing type.
4728  llvm::FoldingSetNodeID ID;
4729  ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf);
4730  void *InsertPos = nullptr;
4731  if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
4732    return QualType(QT, 0);
4733
4734  // Determine the type arguments to be used for canonicalization,
4735  // which may be explicitly specified here or written on the base
4736  // type.
4737  ArrayRef<QualType> effectiveTypeArgs = typeArgs;
4738  if (effectiveTypeArgs.empty()) {
4739    if (const auto *baseObject = baseType->getAs<ObjCObjectType>())
4740      effectiveTypeArgs = baseObject->getTypeArgs();
4741  }
4742
4743  // Build the canonical type, which has the canonical base type and a
4744  // sorted-and-uniqued list of protocols and the type arguments
4745  // canonicalized.
4746  QualType canonical;
4747  bool typeArgsAreCanonical = std::all_of(effectiveTypeArgs.begin(),
4748                                          effectiveTypeArgs.end(),
4749                                          [&](QualType type) {
4750                                            return type.isCanonical();
4751                                          });
4752  bool protocolsSorted = areSortedAndUniqued(protocols);
4753  if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) {
4754    // Determine the canonical type arguments.
4755    ArrayRef<QualType> canonTypeArgs;
4756    SmallVector<QualType, 4> canonTypeArgsVec;
4757    if (!typeArgsAreCanonical) {
4758      canonTypeArgsVec.reserve(effectiveTypeArgs.size());
4759      for (auto typeArg : effectiveTypeArgs)
4760        canonTypeArgsVec.push_back(getCanonicalType(typeArg));
4761      canonTypeArgs = canonTypeArgsVec;
4762    } else {
4763      canonTypeArgs = effectiveTypeArgs;
4764    }
4765
4766    ArrayRef<ObjCProtocolDecl *> canonProtocols;
4767    SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec;
4768    if (!protocolsSorted) {
4769      canonProtocolsVec.append(protocols.begin(), protocols.end());
4770      SortAndUniqueProtocols(canonProtocolsVec);
4771      canonProtocols = canonProtocolsVec;
4772    } else {
4773      canonProtocols = protocols;
4774    }
4775
4776    canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs,
4777                                  canonProtocols, isKindOf);
4778
4779    // Regenerate InsertPos.
4780    ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
4781  }
4782
4783  unsigned size = sizeof(ObjCObjectTypeImpl);
4784  size += typeArgs.size() * sizeof(QualType);
4785  size += protocols.size() * sizeof(ObjCProtocolDecl *);
4786  void *mem = Allocate(size, TypeAlignment);
4787  auto *T =
4788    new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols,
4789                                 isKindOf);
4790
4791  Types.push_back(T);
4792  ObjCObjectTypes.InsertNode(T, InsertPos);
4793  return QualType(T, 0);
4794}
4795
4796/// Apply Objective-C protocol qualifiers to the given type.
4797/// If this is for the canonical type of a type parameter, we can apply
4798/// protocol qualifiers on the ObjCObjectPointerType.
4799QualType
4800ASTContext::applyObjCProtocolQualifiers(QualType type,
4801                  ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
4802                  bool allowOnPointerType) const {
4803  hasError = false;
4804
4805  if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) {
4806    return getObjCTypeParamType(objT->getDecl(), protocols);
4807  }
4808
4809  // Apply protocol qualifiers to ObjCObjectPointerType.
4810  if (allowOnPointerType) {
4811    if (const auto *objPtr =
4812            dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) {
4813      const ObjCObjectType *objT = objPtr->getObjectType();
4814      // Merge protocol lists and construct ObjCObjectType.
4815      SmallVector<ObjCProtocolDecl*, 8> protocolsVec;
4816      protocolsVec.append(objT->qual_begin(),
4817                          objT->qual_end());
4818      protocolsVec.append(protocols.begin(), protocols.end());
4819      ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec;
4820      type = getObjCObjectType(
4821             objT->getBaseType(),
4822             objT->getTypeArgsAsWritten(),
4823             protocols,
4824             objT->isKindOfTypeAsWritten());
4825      return getObjCObjectPointerType(type);
4826    }
4827  }
4828
4829  // Apply protocol qualifiers to ObjCObjectType.
4830  if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){
4831    // FIXME: Check for protocols to which the class type is already
4832    // known to conform.
4833
4834    return getObjCObjectType(objT->getBaseType(),
4835                             objT->getTypeArgsAsWritten(),
4836                             protocols,
4837                             objT->isKindOfTypeAsWritten());
4838  }
4839
4840  // If the canonical type is ObjCObjectType, ...
4841  if (type->isObjCObjectType()) {
4842    // Silently overwrite any existing protocol qualifiers.
4843    // TODO: determine whether that's the right thing to do.
4844
4845    // FIXME: Check for protocols to which the class type is already
4846    // known to conform.
4847    return getObjCObjectType(type, {}, protocols, false);
4848  }
4849
4850  // id<protocol-list>
4851  if (type->isObjCIdType()) {
4852    const auto *objPtr = type->castAs<ObjCObjectPointerType>();
4853    type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols,
4854                                 objPtr->isKindOfType());
4855    return getObjCObjectPointerType(type);
4856  }
4857
4858  // Class<protocol-list>
4859  if (type->isObjCClassType()) {
4860    const auto *objPtr = type->castAs<ObjCObjectPointerType>();
4861    type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols,
4862                                 objPtr->isKindOfType());
4863    return getObjCObjectPointerType(type);
4864  }
4865
4866  hasError = true;
4867  return type;
4868}
4869
4870QualType
4871ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
4872                                 ArrayRef<ObjCProtocolDecl *> protocols) const {
4873  // Look in the folding set for an existing type.
4874  llvm::FoldingSetNodeID ID;
4875  ObjCTypeParamType::Profile(ID, Decl, protocols);
4876  void *InsertPos = nullptr;
4877  if (ObjCTypeParamType *TypeParam =
4878      ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos))
4879    return QualType(TypeParam, 0);
4880
4881  // We canonicalize to the underlying type.
4882  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
4883  if (!protocols.empty()) {
4884    // Apply the protocol qualifers.
4885    bool hasError;
4886    Canonical = getCanonicalType(applyObjCProtocolQualifiers(
4887        Canonical, protocols, hasError, true /*allowOnPointerType*/));
4888    assert(!hasError && "Error when apply protocol qualifier to bound type");
4889  }
4890
4891  unsigned size = sizeof(ObjCTypeParamType);
4892  size += protocols.size() * sizeof(ObjCProtocolDecl *);
4893  void *mem = Allocate(size, TypeAlignment);
4894  auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols);
4895
4896  Types.push_back(newType);
4897  ObjCTypeParamTypes.InsertNode(newType, InsertPos);
4898  return QualType(newType, 0);
4899}
4900
4901/// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
4902/// protocol list adopt all protocols in QT's qualified-id protocol
4903/// list.
4904bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
4905                                                ObjCInterfaceDecl *IC) {
4906  if (!QT->isObjCQualifiedIdType())
4907    return false;
4908
4909  if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) {
4910    // If both the right and left sides have qualifiers.
4911    for (auto *Proto : OPT->quals()) {
4912      if (!IC->ClassImplementsProtocol(Proto, false))
4913        return false;
4914    }
4915    return true;
4916  }
4917  return false;
4918}
4919
4920/// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
4921/// QT's qualified-id protocol list adopt all protocols in IDecl's list
4922/// of protocols.
4923bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
4924                                                ObjCInterfaceDecl *IDecl) {
4925  if (!QT->isObjCQualifiedIdType())
4926    return false;
4927  const auto *OPT = QT->getAs<ObjCObjectPointerType>();
4928  if (!OPT)
4929    return false;
4930  if (!IDecl->hasDefinition())
4931    return false;
4932  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
4933  CollectInheritedProtocols(IDecl, InheritedProtocols);
4934  if (InheritedProtocols.empty())
4935    return false;
4936  // Check that if every protocol in list of id<plist> conforms to a protocol
4937  // of IDecl's, then bridge casting is ok.
4938  bool Conforms = false;
4939  for (auto *Proto : OPT->quals()) {
4940    Conforms = false;
4941    for (auto *PI : InheritedProtocols) {
4942      if (ProtocolCompatibleWithProtocol(Proto, PI)) {
4943        Conforms = true;
4944        break;
4945      }
4946    }
4947    if (!Conforms)
4948      break;
4949  }
4950  if (Conforms)
4951    return true;
4952
4953  for (auto *PI : InheritedProtocols) {
4954    // If both the right and left sides have qualifiers.
4955    bool Adopts = false;
4956    for (auto *Proto : OPT->quals()) {
4957      // return 'true' if 'PI' is in the inheritance hierarchy of Proto
4958      if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
4959        break;
4960    }
4961    if (!Adopts)
4962      return false;
4963  }
4964  return true;
4965}
4966
4967/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
4968/// the given object type.
4969QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
4970  llvm::FoldingSetNodeID ID;
4971  ObjCObjectPointerType::Profile(ID, ObjectT);
4972
4973  void *InsertPos = nullptr;
4974  if (ObjCObjectPointerType *QT =
4975              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
4976    return QualType(QT, 0);
4977
4978  // Find the canonical object type.
4979  QualType Canonical;
4980  if (!ObjectT.isCanonical()) {
4981    Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
4982
4983    // Regenerate InsertPos.
4984    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
4985  }
4986
4987  // No match.
4988  void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
4989  auto *QType =
4990    new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
4991
4992  Types.push_back(QType);
4993  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
4994  return QualType(QType, 0);
4995}
4996
4997/// getObjCInterfaceType - Return the unique reference to the type for the
4998/// specified ObjC interface decl. The list of protocols is optional.
4999QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
5000                                          ObjCInterfaceDecl *PrevDecl) const {
5001  if (Decl->TypeForDecl)
5002    return QualType(Decl->TypeForDecl, 0);
5003
5004  if (PrevDecl) {
5005    assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
5006    Decl->TypeForDecl = PrevDecl->TypeForDecl;
5007    return QualType(PrevDecl->TypeForDecl, 0);
5008  }
5009
5010  // Prefer the definition, if there is one.
5011  if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
5012    Decl = Def;
5013
5014  void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
5015  auto *T = new (Mem) ObjCInterfaceType(Decl);
5016  Decl->TypeForDecl = T;
5017  Types.push_back(T);
5018  return QualType(T, 0);
5019}
5020
5021/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
5022/// TypeOfExprType AST's (since expression's are never shared). For example,
5023/// multiple declarations that refer to "typeof(x)" all contain different
5024/// DeclRefExpr's. This doesn't effect the type checker, since it operates
5025/// on canonical type's (which are always unique).
5026QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
5027  TypeOfExprType *toe;
5028  if (tofExpr->isTypeDependent()) {
5029    llvm::FoldingSetNodeID ID;
5030    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
5031
5032    void *InsertPos = nullptr;
5033    DependentTypeOfExprType *Canon
5034      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
5035    if (Canon) {
5036      // We already have a "canonical" version of an identical, dependent
5037      // typeof(expr) type. Use that as our canonical type.
5038      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
5039                                          QualType((TypeOfExprType*)Canon, 0));
5040    } else {
5041      // Build a new, canonical typeof(expr) type.
5042      Canon
5043        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
5044      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
5045      toe = Canon;
5046    }
5047  } else {
5048    QualType Canonical = getCanonicalType(tofExpr->getType());
5049    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
5050  }
5051  Types.push_back(toe);
5052  return QualType(toe, 0);
5053}
5054
5055/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
5056/// TypeOfType nodes. The only motivation to unique these nodes would be
5057/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
5058/// an issue. This doesn't affect the type checker, since it operates
5059/// on canonical types (which are always unique).
5060QualType ASTContext::getTypeOfType(QualType tofType) const {
5061  QualType Canonical = getCanonicalType(tofType);
5062  auto *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
5063  Types.push_back(tot);
5064  return QualType(tot, 0);
5065}
5066
5067/// Unlike many "get<Type>" functions, we don't unique DecltypeType
5068/// nodes. This would never be helpful, since each such type has its own
5069/// expression, and would not give a significant memory saving, since there
5070/// is an Expr tree under each such type.
5071QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
5072  DecltypeType *dt;
5073
5074  // C++11 [temp.type]p2:
5075  //   If an expression e involves a template parameter, decltype(e) denotes a
5076  //   unique dependent type. Two such decltype-specifiers refer to the same
5077  //   type only if their expressions are equivalent (14.5.6.1).
5078  if (e->isInstantiationDependent()) {
5079    llvm::FoldingSetNodeID ID;
5080    DependentDecltypeType::Profile(ID, *this, e);
5081
5082    void *InsertPos = nullptr;
5083    DependentDecltypeType *Canon
5084      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
5085    if (!Canon) {
5086      // Build a new, canonical decltype(expr) type.
5087      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
5088      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
5089    }
5090    dt = new (*this, TypeAlignment)
5091        DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
5092  } else {
5093    dt = new (*this, TypeAlignment)
5094        DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
5095  }
5096  Types.push_back(dt);
5097  return QualType(dt, 0);
5098}
5099
5100/// getUnaryTransformationType - We don't unique these, since the memory
5101/// savings are minimal and these are rare.
5102QualType ASTContext::getUnaryTransformType(QualType BaseType,
5103                                           QualType UnderlyingType,
5104                                           UnaryTransformType::UTTKind Kind)
5105    const {
5106  UnaryTransformType *ut = nullptr;
5107
5108  if (BaseType->isDependentType()) {
5109    // Look in the folding set for an existing type.
5110    llvm::FoldingSetNodeID ID;
5111    DependentUnaryTransformType::Profile(ID, getCanonicalType(BaseType), Kind);
5112
5113    void *InsertPos = nullptr;
5114    DependentUnaryTransformType *Canon
5115      = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos);
5116
5117    if (!Canon) {
5118      // Build a new, canonical __underlying_type(type) type.
5119      Canon = new (*this, TypeAlignment)
5120             DependentUnaryTransformType(*this, getCanonicalType(BaseType),
5121                                         Kind);
5122      DependentUnaryTransformTypes.InsertNode(Canon, InsertPos);
5123    }
5124    ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
5125                                                        QualType(), Kind,
5126                                                        QualType(Canon, 0));
5127  } else {
5128    QualType CanonType = getCanonicalType(UnderlyingType);
5129    ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
5130                                                        UnderlyingType, Kind,
5131                                                        CanonType);
5132  }
5133  Types.push_back(ut);
5134  return QualType(ut, 0);
5135}
5136
5137/// getAutoType - Return the uniqued reference to the 'auto' type which has been
5138/// deduced to the given type, or to the canonical undeduced 'auto' type, or the
5139/// canonical deduced-but-dependent 'auto' type.
5140QualType
5141ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
5142                        bool IsDependent, bool IsPack,
5143                        ConceptDecl *TypeConstraintConcept,
5144                        ArrayRef<TemplateArgument> TypeConstraintArgs) const {
5145  assert((!IsPack || IsDependent) && "only use IsPack for a dependent pack");
5146  if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto &&
5147      !TypeConstraintConcept && !IsDependent)
5148    return getAutoDeductType();
5149
5150  // Look in the folding set for an existing type.
5151  void *InsertPos = nullptr;
5152  llvm::FoldingSetNodeID ID;
5153  AutoType::Profile(ID, *this, DeducedType, Keyword, IsDependent,
5154                    TypeConstraintConcept, TypeConstraintArgs);
5155  if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
5156    return QualType(AT, 0);
5157
5158  void *Mem = Allocate(sizeof(AutoType) +
5159                       sizeof(TemplateArgument) * TypeConstraintArgs.size(),
5160                       TypeAlignment);
5161  auto *AT = new (Mem) AutoType(DeducedType, Keyword, IsDependent, IsPack,
5162                                TypeConstraintConcept, TypeConstraintArgs);
5163  Types.push_back(AT);
5164  if (InsertPos)
5165    AutoTypes.InsertNode(AT, InsertPos);
5166  return QualType(AT, 0);
5167}
5168
5169/// Return the uniqued reference to the deduced template specialization type
5170/// which has been deduced to the given type, or to the canonical undeduced
5171/// such type, or the canonical deduced-but-dependent such type.
5172QualType ASTContext::getDeducedTemplateSpecializationType(
5173    TemplateName Template, QualType DeducedType, bool IsDependent) const {
5174  // Look in the folding set for an existing type.
5175  void *InsertPos = nullptr;
5176  llvm::FoldingSetNodeID ID;
5177  DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType,
5178                                             IsDependent);
5179  if (DeducedTemplateSpecializationType *DTST =
5180          DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos))
5181    return QualType(DTST, 0);
5182
5183  auto *DTST = new (*this, TypeAlignment)
5184      DeducedTemplateSpecializationType(Template, DeducedType, IsDependent);
5185  Types.push_back(DTST);
5186  if (InsertPos)
5187    DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos);
5188  return QualType(DTST, 0);
5189}
5190
5191/// getAtomicType - Return the uniqued reference to the atomic type for
5192/// the given value type.
5193QualType ASTContext::getAtomicType(QualType T) const {
5194  // Unique pointers, to guarantee there is only one pointer of a particular
5195  // structure.
5196  llvm::FoldingSetNodeID ID;
5197  AtomicType::Profile(ID, T);
5198
5199  void *InsertPos = nullptr;
5200  if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
5201    return QualType(AT, 0);
5202
5203  // If the atomic value type isn't canonical, this won't be a canonical type
5204  // either, so fill in the canonical type field.
5205  QualType Canonical;
5206  if (!T.isCanonical()) {
5207    Canonical = getAtomicType(getCanonicalType(T));
5208
5209    // Get the new insert position for the node we care about.
5210    AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
5211    assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
5212  }
5213  auto *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
5214  Types.push_back(New);
5215  AtomicTypes.InsertNode(New, InsertPos);
5216  return QualType(New, 0);
5217}
5218
5219/// getAutoDeductType - Get type pattern for deducing against 'auto'.
5220QualType ASTContext::getAutoDeductType() const {
5221  if (AutoDeductTy.isNull())
5222    AutoDeductTy = QualType(
5223      new (*this, TypeAlignment) AutoType(QualType(), AutoTypeKeyword::Auto,
5224                                          /*dependent*/false, /*pack*/false,
5225                                          /*concept*/nullptr, /*args*/{}),
5226      0);
5227  return AutoDeductTy;
5228}
5229
5230/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
5231QualType ASTContext::getAutoRRefDeductType() const {
5232  if (AutoRRefDeductTy.isNull())
5233    AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
5234  assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
5235  return AutoRRefDeductTy;
5236}
5237
5238/// getTagDeclType - Return the unique reference to the type for the
5239/// specified TagDecl (struct/union/class/enum) decl.
5240QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
5241  assert(Decl);
5242  // FIXME: What is the design on getTagDeclType when it requires casting
5243  // away const?  mutable?
5244  return getTypeDeclType(const_cast<TagDecl*>(Decl));
5245}
5246
5247/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
5248/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
5249/// needs to agree with the definition in <stddef.h>.
5250CanQualType ASTContext::getSizeType() const {
5251  return getFromTargetType(Target->getSizeType());
5252}
5253
5254/// Return the unique signed counterpart of the integer type
5255/// corresponding to size_t.
5256CanQualType ASTContext::getSignedSizeType() const {
5257  return getFromTargetType(Target->getSignedSizeType());
5258}
5259
5260/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
5261CanQualType ASTContext::getIntMaxType() const {
5262  return getFromTargetType(Target->getIntMaxType());
5263}
5264
5265/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
5266CanQualType ASTContext::getUIntMaxType() const {
5267  return getFromTargetType(Target->getUIntMaxType());
5268}
5269
5270/// getSignedWCharType - Return the type of "signed wchar_t".
5271/// Used when in C++, as a GCC extension.
5272QualType ASTContext::getSignedWCharType() const {
5273  // FIXME: derive from "Target" ?
5274  return WCharTy;
5275}
5276
5277/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
5278/// Used when in C++, as a GCC extension.
5279QualType ASTContext::getUnsignedWCharType() const {
5280  // FIXME: derive from "Target" ?
5281  return UnsignedIntTy;
5282}
5283
5284QualType ASTContext::getIntPtrType() const {
5285  return getFromTargetType(Target->getIntPtrType());
5286}
5287
5288QualType ASTContext::getUIntPtrType() const {
5289  return getCorrespondingUnsignedType(getIntPtrType());
5290}
5291
5292/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
5293/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
5294QualType ASTContext::getPointerDiffType() const {
5295  return getFromTargetType(Target->getPtrDiffType(0));
5296}
5297
5298/// Return the unique unsigned counterpart of "ptrdiff_t"
5299/// integer type. The standard (C11 7.21.6.1p7) refers to this type
5300/// in the definition of %tu format specifier.
5301QualType ASTContext::getUnsignedPointerDiffType() const {
5302  return getFromTargetType(Target->getUnsignedPtrDiffType(0));
5303}
5304
5305/// Return the unique type for "pid_t" defined in
5306/// <sys/types.h>. We need this to compute the correct type for vfork().
5307QualType ASTContext::getProcessIDType() const {
5308  return getFromTargetType(Target->getProcessIDType());
5309}
5310
5311//===----------------------------------------------------------------------===//
5312//                              Type Operators
5313//===----------------------------------------------------------------------===//
5314
5315CanQualType ASTContext::getCanonicalParamType(QualType T) const {
5316  // Push qualifiers into arrays, and then discard any remaining
5317  // qualifiers.
5318  T = getCanonicalType(T);
5319  T = getVariableArrayDecayedType(T);
5320  const Type *Ty = T.getTypePtr();
5321  QualType Result;
5322  if (isa<ArrayType>(Ty)) {
5323    Result = getArrayDecayedType(QualType(Ty,0));
5324  } else if (isa<FunctionType>(Ty)) {
5325    Result = getPointerType(QualType(Ty, 0));
5326  } else {
5327    Result = QualType(Ty, 0);
5328  }
5329
5330  return CanQualType::CreateUnsafe(Result);
5331}
5332
5333QualType ASTContext::getUnqualifiedArrayType(QualType type,
5334                                             Qualifiers &quals) {
5335  SplitQualType splitType = type.getSplitUnqualifiedType();
5336
5337  // FIXME: getSplitUnqualifiedType() actually walks all the way to
5338  // the unqualified desugared type and then drops it on the floor.
5339  // We then have to strip that sugar back off with
5340  // getUnqualifiedDesugaredType(), which is silly.
5341  const auto *AT =
5342      dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
5343
5344  // If we don't have an array, just use the results in splitType.
5345  if (!AT) {
5346    quals = splitType.Quals;
5347    return QualType(splitType.Ty, 0);
5348  }
5349
5350  // Otherwise, recurse on the array's element type.
5351  QualType elementType = AT->getElementType();
5352  QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
5353
5354  // If that didn't change the element type, AT has no qualifiers, so we
5355  // can just use the results in splitType.
5356  if (elementType == unqualElementType) {
5357    assert(quals.empty()); // from the recursive call
5358    quals = splitType.Quals;
5359    return QualType(splitType.Ty, 0);
5360  }
5361
5362  // Otherwise, add in the qualifiers from the outermost type, then
5363  // build the type back up.
5364  quals.addConsistentQualifiers(splitType.Quals);
5365
5366  if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
5367    return getConstantArrayType(unqualElementType, CAT->getSize(),
5368                                CAT->getSizeExpr(), CAT->getSizeModifier(), 0);
5369  }
5370
5371  if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) {
5372    return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
5373  }
5374
5375  if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) {
5376    return getVariableArrayType(unqualElementType,
5377                                VAT->getSizeExpr(),
5378                                VAT->getSizeModifier(),
5379                                VAT->getIndexTypeCVRQualifiers(),
5380                                VAT->getBracketsRange());
5381  }
5382
5383  const auto *DSAT = cast<DependentSizedArrayType>(AT);
5384  return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
5385                                    DSAT->getSizeModifier(), 0,
5386                                    SourceRange());
5387}
5388
5389/// Attempt to unwrap two types that may both be array types with the same bound
5390/// (or both be array types of unknown bound) for the purpose of comparing the
5391/// cv-decomposition of two types per C++ [conv.qual].
5392bool ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2) {
5393  bool UnwrappedAny = false;
5394  while (true) {
5395    auto *AT1 = getAsArrayType(T1);
5396    if (!AT1) return UnwrappedAny;
5397
5398    auto *AT2 = getAsArrayType(T2);
5399    if (!AT2) return UnwrappedAny;
5400
5401    // If we don't have two array types with the same constant bound nor two
5402    // incomplete array types, we've unwrapped everything we can.
5403    if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) {
5404      auto *CAT2 = dyn_cast<ConstantArrayType>(AT2);
5405      if (!CAT2 || CAT1->getSize() != CAT2->getSize())
5406        return UnwrappedAny;
5407    } else if (!isa<IncompleteArrayType>(AT1) ||
5408               !isa<IncompleteArrayType>(AT2)) {
5409      return UnwrappedAny;
5410    }
5411
5412    T1 = AT1->getElementType();
5413    T2 = AT2->getElementType();
5414    UnwrappedAny = true;
5415  }
5416}
5417
5418/// Attempt to unwrap two types that may be similar (C++ [conv.qual]).
5419///
5420/// If T1 and T2 are both pointer types of the same kind, or both array types
5421/// with the same bound, unwraps layers from T1 and T2 until a pointer type is
5422/// unwrapped. Top-level qualifiers on T1 and T2 are ignored.
5423///
5424/// This function will typically be called in a loop that successively
5425/// "unwraps" pointer and pointer-to-member types to compare them at each
5426/// level.
5427///
5428/// \return \c true if a pointer type was unwrapped, \c false if we reached a
5429/// pair of types that can't be unwrapped further.
5430bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2) {
5431  UnwrapSimilarArrayTypes(T1, T2);
5432
5433  const auto *T1PtrType = T1->getAs<PointerType>();
5434  const auto *T2PtrType = T2->getAs<PointerType>();
5435  if (T1PtrType && T2PtrType) {
5436    T1 = T1PtrType->getPointeeType();
5437    T2 = T2PtrType->getPointeeType();
5438    return true;
5439  }
5440
5441  const auto *T1MPType = T1->getAs<MemberPointerType>();
5442  const auto *T2MPType = T2->getAs<MemberPointerType>();
5443  if (T1MPType && T2MPType &&
5444      hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
5445                             QualType(T2MPType->getClass(), 0))) {
5446    T1 = T1MPType->getPointeeType();
5447    T2 = T2MPType->getPointeeType();
5448    return true;
5449  }
5450
5451  if (getLangOpts().ObjC) {
5452    const auto *T1OPType = T1->getAs<ObjCObjectPointerType>();
5453    const auto *T2OPType = T2->getAs<ObjCObjectPointerType>();
5454    if (T1OPType && T2OPType) {
5455      T1 = T1OPType->getPointeeType();
5456      T2 = T2OPType->getPointeeType();
5457      return true;
5458    }
5459  }
5460
5461  // FIXME: Block pointers, too?
5462
5463  return false;
5464}
5465
5466bool ASTContext::hasSimilarType(QualType T1, QualType T2) {
5467  while (true) {
5468    Qualifiers Quals;
5469    T1 = getUnqualifiedArrayType(T1, Quals);
5470    T2 = getUnqualifiedArrayType(T2, Quals);
5471    if (hasSameType(T1, T2))
5472      return true;
5473    if (!UnwrapSimilarTypes(T1, T2))
5474      return false;
5475  }
5476}
5477
5478bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) {
5479  while (true) {
5480    Qualifiers Quals1, Quals2;
5481    T1 = getUnqualifiedArrayType(T1, Quals1);
5482    T2 = getUnqualifiedArrayType(T2, Quals2);
5483
5484    Quals1.removeCVRQualifiers();
5485    Quals2.removeCVRQualifiers();
5486    if (Quals1 != Quals2)
5487      return false;
5488
5489    if (hasSameType(T1, T2))
5490      return true;
5491
5492    if (!UnwrapSimilarTypes(T1, T2))
5493      return false;
5494  }
5495}
5496
5497DeclarationNameInfo
5498ASTContext::getNameForTemplate(TemplateName Name,
5499                               SourceLocation NameLoc) const {
5500  switch (Name.getKind()) {
5501  case TemplateName::QualifiedTemplate:
5502  case TemplateName::Template:
5503    // DNInfo work in progress: CHECKME: what about DNLoc?
5504    return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
5505                               NameLoc);
5506
5507  case TemplateName::OverloadedTemplate: {
5508    OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
5509    // DNInfo work in progress: CHECKME: what about DNLoc?
5510    return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
5511  }
5512
5513  case TemplateName::AssumedTemplate: {
5514    AssumedTemplateStorage *Storage = Name.getAsAssumedTemplateName();
5515    return DeclarationNameInfo(Storage->getDeclName(), NameLoc);
5516  }
5517
5518  case TemplateName::DependentTemplate: {
5519    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
5520    DeclarationName DName;
5521    if (DTN->isIdentifier()) {
5522      DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
5523      return DeclarationNameInfo(DName, NameLoc);
5524    } else {
5525      DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
5526      // DNInfo work in progress: FIXME: source locations?
5527      DeclarationNameLoc DNLoc;
5528      DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
5529      DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
5530      return DeclarationNameInfo(DName, NameLoc, DNLoc);
5531    }
5532  }
5533
5534  case TemplateName::SubstTemplateTemplateParm: {
5535    SubstTemplateTemplateParmStorage *subst
5536      = Name.getAsSubstTemplateTemplateParm();
5537    return DeclarationNameInfo(subst->getParameter()->getDeclName(),
5538                               NameLoc);
5539  }
5540
5541  case TemplateName::SubstTemplateTemplateParmPack: {
5542    SubstTemplateTemplateParmPackStorage *subst
5543      = Name.getAsSubstTemplateTemplateParmPack();
5544    return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
5545                               NameLoc);
5546  }
5547  }
5548
5549  llvm_unreachable("bad template name kind!");
5550}
5551
5552TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
5553  switch (Name.getKind()) {
5554  case TemplateName::QualifiedTemplate:
5555  case TemplateName::Template: {
5556    TemplateDecl *Template = Name.getAsTemplateDecl();
5557    if (auto *TTP  = dyn_cast<TemplateTemplateParmDecl>(Template))
5558      Template = getCanonicalTemplateTemplateParmDecl(TTP);
5559
5560    // The canonical template name is the canonical template declaration.
5561    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
5562  }
5563
5564  case TemplateName::OverloadedTemplate:
5565  case TemplateName::AssumedTemplate:
5566    llvm_unreachable("cannot canonicalize unresolved template");
5567
5568  case TemplateName::DependentTemplate: {
5569    DependentTemplateName *DTN = Name.getAsDependentTemplateName();
5570    assert(DTN && "Non-dependent template names must refer to template decls.");
5571    return DTN->CanonicalTemplateName;
5572  }
5573
5574  case TemplateName::SubstTemplateTemplateParm: {
5575    SubstTemplateTemplateParmStorage *subst
5576      = Name.getAsSubstTemplateTemplateParm();
5577    return getCanonicalTemplateName(subst->getReplacement());
5578  }
5579
5580  case TemplateName::SubstTemplateTemplateParmPack: {
5581    SubstTemplateTemplateParmPackStorage *subst
5582                                  = Name.getAsSubstTemplateTemplateParmPack();
5583    TemplateTemplateParmDecl *canonParameter
5584      = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
5585    TemplateArgument canonArgPack
5586      = getCanonicalTemplateArgument(subst->getArgumentPack());
5587    return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
5588  }
5589  }
5590
5591  llvm_unreachable("bad template name!");
5592}
5593
5594bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
5595  X = getCanonicalTemplateName(X);
5596  Y = getCanonicalTemplateName(Y);
5597  return X.getAsVoidPointer() == Y.getAsVoidPointer();
5598}
5599
5600TemplateArgument
5601ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
5602  switch (Arg.getKind()) {
5603    case TemplateArgument::Null:
5604      return Arg;
5605
5606    case TemplateArgument::Expression:
5607      return Arg;
5608
5609    case TemplateArgument::Declaration: {
5610      auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
5611      return TemplateArgument(D, Arg.getParamTypeForDecl());
5612    }
5613
5614    case TemplateArgument::NullPtr:
5615      return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
5616                              /*isNullPtr*/true);
5617
5618    case TemplateArgument::Template:
5619      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
5620
5621    case TemplateArgument::TemplateExpansion:
5622      return TemplateArgument(getCanonicalTemplateName(
5623                                         Arg.getAsTemplateOrTemplatePattern()),
5624                              Arg.getNumTemplateExpansions());
5625
5626    case TemplateArgument::Integral:
5627      return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
5628
5629    case TemplateArgument::Type:
5630      return TemplateArgument(getCanonicalType(Arg.getAsType()));
5631
5632    case TemplateArgument::Pack: {
5633      if (Arg.pack_size() == 0)
5634        return Arg;
5635
5636      auto *CanonArgs = new (*this) TemplateArgument[Arg.pack_size()];
5637      unsigned Idx = 0;
5638      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
5639                                        AEnd = Arg.pack_end();
5640           A != AEnd; (void)++A, ++Idx)
5641        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
5642
5643      return TemplateArgument(llvm::makeArrayRef(CanonArgs, Arg.pack_size()));
5644    }
5645  }
5646
5647  // Silence GCC warning
5648  llvm_unreachable("Unhandled template argument kind");
5649}
5650
5651NestedNameSpecifier *
5652ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
5653  if (!NNS)
5654    return nullptr;
5655
5656  switch (NNS->getKind()) {
5657  case NestedNameSpecifier::Identifier:
5658    // Canonicalize the prefix but keep the identifier the same.
5659    return NestedNameSpecifier::Create(*this,
5660                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
5661                                       NNS->getAsIdentifier());
5662
5663  case NestedNameSpecifier::Namespace:
5664    // A namespace is canonical; build a nested-name-specifier with
5665    // this namespace and no prefix.
5666    return NestedNameSpecifier::Create(*this, nullptr,
5667                                 NNS->getAsNamespace()->getOriginalNamespace());
5668
5669  case NestedNameSpecifier::NamespaceAlias:
5670    // A namespace is canonical; build a nested-name-specifier with
5671    // this namespace and no prefix.
5672    return NestedNameSpecifier::Create(*this, nullptr,
5673                                    NNS->getAsNamespaceAlias()->getNamespace()
5674                                                      ->getOriginalNamespace());
5675
5676  case NestedNameSpecifier::TypeSpec:
5677  case NestedNameSpecifier::TypeSpecWithTemplate: {
5678    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
5679
5680    // If we have some kind of dependent-named type (e.g., "typename T::type"),
5681    // break it apart into its prefix and identifier, then reconsititute those
5682    // as the canonical nested-name-specifier. This is required to canonicalize
5683    // a dependent nested-name-specifier involving typedefs of dependent-name
5684    // types, e.g.,
5685    //   typedef typename T::type T1;
5686    //   typedef typename T1::type T2;
5687    if (const auto *DNT = T->getAs<DependentNameType>())
5688      return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
5689                           const_cast<IdentifierInfo *>(DNT->getIdentifier()));
5690
5691    // Otherwise, just canonicalize the type, and force it to be a TypeSpec.
5692    // FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
5693    // first place?
5694    return NestedNameSpecifier::Create(*this, nullptr, false,
5695                                       const_cast<Type *>(T.getTypePtr()));
5696  }
5697
5698  case NestedNameSpecifier::Global:
5699  case NestedNameSpecifier::Super:
5700    // The global specifier and __super specifer are canonical and unique.
5701    return NNS;
5702  }
5703
5704  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
5705}
5706
5707const ArrayType *ASTContext::getAsArrayType(QualType T) const {
5708  // Handle the non-qualified case efficiently.
5709  if (!T.hasLocalQualifiers()) {
5710    // Handle the common positive case fast.
5711    if (const auto *AT = dyn_cast<ArrayType>(T))
5712      return AT;
5713  }
5714
5715  // Handle the common negative case fast.
5716  if (!isa<ArrayType>(T.getCanonicalType()))
5717    return nullptr;
5718
5719  // Apply any qualifiers from the array type to the element type.  This
5720  // implements C99 6.7.3p8: "If the specification of an array type includes
5721  // any type qualifiers, the element type is so qualified, not the array type."
5722
5723  // If we get here, we either have type qualifiers on the type, or we have
5724  // sugar such as a typedef in the way.  If we have type qualifiers on the type
5725  // we must propagate them down into the element type.
5726
5727  SplitQualType split = T.getSplitDesugaredType();
5728  Qualifiers qs = split.Quals;
5729
5730  // If we have a simple case, just return now.
5731  const auto *ATy = dyn_cast<ArrayType>(split.Ty);
5732  if (!ATy || qs.empty())
5733    return ATy;
5734
5735  // Otherwise, we have an array and we have qualifiers on it.  Push the
5736  // qualifiers into the array element type and return a new array type.
5737  QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
5738
5739  if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy))
5740    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
5741                                                CAT->getSizeExpr(),
5742                                                CAT->getSizeModifier(),
5743                                           CAT->getIndexTypeCVRQualifiers()));
5744  if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy))
5745    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
5746                                                  IAT->getSizeModifier(),
5747                                           IAT->getIndexTypeCVRQualifiers()));
5748
5749  if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy))
5750    return cast<ArrayType>(
5751                     getDependentSizedArrayType(NewEltTy,
5752                                                DSAT->getSizeExpr(),
5753                                                DSAT->getSizeModifier(),
5754                                              DSAT->getIndexTypeCVRQualifiers(),
5755                                                DSAT->getBracketsRange()));
5756
5757  const auto *VAT = cast<VariableArrayType>(ATy);
5758  return cast<ArrayType>(getVariableArrayType(NewEltTy,
5759                                              VAT->getSizeExpr(),
5760                                              VAT->getSizeModifier(),
5761                                              VAT->getIndexTypeCVRQualifiers(),
5762                                              VAT->getBracketsRange()));
5763}
5764
5765QualType ASTContext::getAdjustedParameterType(QualType T) const {
5766  if (T->isArrayType() || T->isFunctionType())
5767    return getDecayedType(T);
5768  return T;
5769}
5770
5771QualType ASTContext::getSignatureParameterType(QualType T) const {
5772  T = getVariableArrayDecayedType(T);
5773  T = getAdjustedParameterType(T);
5774  return T.getUnqualifiedType();
5775}
5776
5777QualType ASTContext::getExceptionObjectType(QualType T) const {
5778  // C++ [except.throw]p3:
5779  //   A throw-expression initializes a temporary object, called the exception
5780  //   object, the type of which is determined by removing any top-level
5781  //   cv-qualifiers from the static type of the operand of throw and adjusting
5782  //   the type from "array of T" or "function returning T" to "pointer to T"
5783  //   or "pointer to function returning T", [...]
5784  T = getVariableArrayDecayedType(T);
5785  if (T->isArrayType() || T->isFunctionType())
5786    T = getDecayedType(T);
5787  return T.getUnqualifiedType();
5788}
5789
5790/// getArrayDecayedType - Return the properly qualified result of decaying the
5791/// specified array type to a pointer.  This operation is non-trivial when
5792/// handling typedefs etc.  The canonical type of "T" must be an array type,
5793/// this returns a pointer to a properly qualified element of the array.
5794///
5795/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
5796QualType ASTContext::getArrayDecayedType(QualType Ty) const {
5797  // Get the element type with 'getAsArrayType' so that we don't lose any
5798  // typedefs in the element type of the array.  This also handles propagation
5799  // of type qualifiers from the array type into the element type if present
5800  // (C99 6.7.3p8).
5801  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
5802  assert(PrettyArrayType && "Not an array type!");
5803
5804  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
5805
5806  // int x[restrict 4] ->  int *restrict
5807  QualType Result = getQualifiedType(PtrTy,
5808                                     PrettyArrayType->getIndexTypeQualifiers());
5809
5810  // int x[_Nullable] -> int * _Nullable
5811  if (auto Nullability = Ty->getNullability(*this)) {
5812    Result = const_cast<ASTContext *>(this)->getAttributedType(
5813        AttributedType::getNullabilityAttrKind(*Nullability), Result, Result);
5814  }
5815  return Result;
5816}
5817
5818QualType ASTContext::getBaseElementType(const ArrayType *array) const {
5819  return getBaseElementType(array->getElementType());
5820}
5821
5822QualType ASTContext::getBaseElementType(QualType type) const {
5823  Qualifiers qs;
5824  while (true) {
5825    SplitQualType split = type.getSplitDesugaredType();
5826    const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
5827    if (!array) break;
5828
5829    type = array->getElementType();
5830    qs.addConsistentQualifiers(split.Quals);
5831  }
5832
5833  return getQualifiedType(type, qs);
5834}
5835
5836/// getConstantArrayElementCount - Returns number of constant array elements.
5837uint64_t
5838ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
5839  uint64_t ElementCount = 1;
5840  do {
5841    ElementCount *= CA->getSize().getZExtValue();
5842    CA = dyn_cast_or_null<ConstantArrayType>(
5843      CA->getElementType()->getAsArrayTypeUnsafe());
5844  } while (CA);
5845  return ElementCount;
5846}
5847
5848/// getFloatingRank - Return a relative rank for floating point types.
5849/// This routine will assert if passed a built-in type that isn't a float.
5850static FloatingRank getFloatingRank(QualType T) {
5851  if (const auto *CT = T->getAs<ComplexType>())
5852    return getFloatingRank(CT->getElementType());
5853
5854  switch (T->castAs<BuiltinType>()->getKind()) {
5855  default: llvm_unreachable("getFloatingRank(): not a floating type");
5856  case BuiltinType::Float16:    return Float16Rank;
5857  case BuiltinType::Half:       return HalfRank;
5858  case BuiltinType::Float:      return FloatRank;
5859  case BuiltinType::Double:     return DoubleRank;
5860  case BuiltinType::LongDouble: return LongDoubleRank;
5861  case BuiltinType::Float128:   return Float128Rank;
5862  }
5863}
5864
5865/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
5866/// point or a complex type (based on typeDomain/typeSize).
5867/// 'typeDomain' is a real floating point or complex type.
5868/// 'typeSize' is a real floating point or complex type.
5869QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
5870                                                       QualType Domain) const {
5871  FloatingRank EltRank = getFloatingRank(Size);
5872  if (Domain->isComplexType()) {
5873    switch (EltRank) {
5874    case Float16Rank:
5875    case HalfRank: llvm_unreachable("Complex half is not supported");
5876    case FloatRank:      return FloatComplexTy;
5877    case DoubleRank:     return DoubleComplexTy;
5878    case LongDoubleRank: return LongDoubleComplexTy;
5879    case Float128Rank:   return Float128ComplexTy;
5880    }
5881  }
5882
5883  assert(Domain->isRealFloatingType() && "Unknown domain!");
5884  switch (EltRank) {
5885  case Float16Rank:    return HalfTy;
5886  case HalfRank:       return HalfTy;
5887  case FloatRank:      return FloatTy;
5888  case DoubleRank:     return DoubleTy;
5889  case LongDoubleRank: return LongDoubleTy;
5890  case Float128Rank:   return Float128Ty;
5891  }
5892  llvm_unreachable("getFloatingRank(): illegal value for rank");
5893}
5894
5895/// getFloatingTypeOrder - Compare the rank of the two specified floating
5896/// point types, ignoring the domain of the type (i.e. 'double' ==
5897/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
5898/// LHS < RHS, return -1.
5899int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
5900  FloatingRank LHSR = getFloatingRank(LHS);
5901  FloatingRank RHSR = getFloatingRank(RHS);
5902
5903  if (LHSR == RHSR)
5904    return 0;
5905  if (LHSR > RHSR)
5906    return 1;
5907  return -1;
5908}
5909
5910int ASTContext::getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const {
5911  if (&getFloatTypeSemantics(LHS) == &getFloatTypeSemantics(RHS))
5912    return 0;
5913  return getFloatingTypeOrder(LHS, RHS);
5914}
5915
5916/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
5917/// routine will assert if passed a built-in type that isn't an integer or enum,
5918/// or if it is not canonicalized.
5919unsigned ASTContext::getIntegerRank(const Type *T) const {
5920  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
5921
5922  switch (cast<BuiltinType>(T)->getKind()) {
5923  default: llvm_unreachable("getIntegerRank(): not a built-in integer");
5924  case BuiltinType::Bool:
5925    return 1 + (getIntWidth(BoolTy) << 3);
5926  case BuiltinType::Char_S:
5927  case BuiltinType::Char_U:
5928  case BuiltinType::SChar:
5929  case BuiltinType::UChar:
5930    return 2 + (getIntWidth(CharTy) << 3);
5931  case BuiltinType::Short:
5932  case BuiltinType::UShort:
5933    return 3 + (getIntWidth(ShortTy) << 3);
5934  case BuiltinType::Int:
5935  case BuiltinType::UInt:
5936    return 4 + (getIntWidth(IntTy) << 3);
5937  case BuiltinType::Long:
5938  case BuiltinType::ULong:
5939    return 5 + (getIntWidth(LongTy) << 3);
5940  case BuiltinType::LongLong:
5941  case BuiltinType::ULongLong:
5942    return 6 + (getIntWidth(LongLongTy) << 3);
5943  case BuiltinType::Int128:
5944  case BuiltinType::UInt128:
5945    return 7 + (getIntWidth(Int128Ty) << 3);
5946  }
5947}
5948
5949/// Whether this is a promotable bitfield reference according
5950/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
5951///
5952/// \returns the type this bit-field will promote to, or NULL if no
5953/// promotion occurs.
5954QualType ASTContext::isPromotableBitField(Expr *E) const {
5955  if (E->isTypeDependent() || E->isValueDependent())
5956    return {};
5957
5958  // C++ [conv.prom]p5:
5959  //    If the bit-field has an enumerated type, it is treated as any other
5960  //    value of that type for promotion purposes.
5961  if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType())
5962    return {};
5963
5964  // FIXME: We should not do this unless E->refersToBitField() is true. This
5965  // matters in C where getSourceBitField() will find bit-fields for various
5966  // cases where the source expression is not a bit-field designator.
5967
5968  FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
5969  if (!Field)
5970    return {};
5971
5972  QualType FT = Field->getType();
5973
5974  uint64_t BitWidth = Field->getBitWidthValue(*this);
5975  uint64_t IntSize = getTypeSize(IntTy);
5976  // C++ [conv.prom]p5:
5977  //   A prvalue for an integral bit-field can be converted to a prvalue of type
5978  //   int if int can represent all the values of the bit-field; otherwise, it
5979  //   can be converted to unsigned int if unsigned int can represent all the
5980  //   values of the bit-field. If the bit-field is larger yet, no integral
5981  //   promotion applies to it.
5982  // C11 6.3.1.1/2:
5983  //   [For a bit-field of type _Bool, int, signed int, or unsigned int:]
5984  //   If an int can represent all values of the original type (as restricted by
5985  //   the width, for a bit-field), the value is converted to an int; otherwise,
5986  //   it is converted to an unsigned int.
5987  //
5988  // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
5989  //        We perform that promotion here to match GCC and C++.
5990  // FIXME: C does not permit promotion of an enum bit-field whose rank is
5991  //        greater than that of 'int'. We perform that promotion to match GCC.
5992  if (BitWidth < IntSize)
5993    return IntTy;
5994
5995  if (BitWidth == IntSize)
5996    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
5997
5998  // Bit-fields wider than int are not subject to promotions, and therefore act
5999  // like the base type. GCC has some weird bugs in this area that we
6000  // deliberately do not follow (GCC follows a pre-standard resolution to
6001  // C's DR315 which treats bit-width as being part of the type, and this leaks
6002  // into their semantics in some cases).
6003  return {};
6004}
6005
6006/// getPromotedIntegerType - Returns the type that Promotable will
6007/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
6008/// integer type.
6009QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
6010  assert(!Promotable.isNull());
6011  assert(Promotable->isPromotableIntegerType());
6012  if (const auto *ET = Promotable->getAs<EnumType>())
6013    return ET->getDecl()->getPromotionType();
6014
6015  if (const auto *BT = Promotable->getAs<BuiltinType>()) {
6016    // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
6017    // (3.9.1) can be converted to a prvalue of the first of the following
6018    // types that can represent all the values of its underlying type:
6019    // int, unsigned int, long int, unsigned long int, long long int, or
6020    // unsigned long long int [...]
6021    // FIXME: Is there some better way to compute this?
6022    if (BT->getKind() == BuiltinType::WChar_S ||
6023        BT->getKind() == BuiltinType::WChar_U ||
6024        BT->getKind() == BuiltinType::Char8 ||
6025        BT->getKind() == BuiltinType::Char16 ||
6026        BT->getKind() == BuiltinType::Char32) {
6027      bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
6028      uint64_t FromSize = getTypeSize(BT);
6029      QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
6030                                  LongLongTy, UnsignedLongLongTy };
6031      for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
6032        uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
6033        if (FromSize < ToSize ||
6034            (FromSize == ToSize &&
6035             FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
6036          return PromoteTypes[Idx];
6037      }
6038      llvm_unreachable("char type should fit into long long");
6039    }
6040  }
6041
6042  // At this point, we should have a signed or unsigned integer type.
6043  if (Promotable->isSignedIntegerType())
6044    return IntTy;
6045  uint64_t PromotableSize = getIntWidth(Promotable);
6046  uint64_t IntSize = getIntWidth(IntTy);
6047  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
6048  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
6049}
6050
6051/// Recurses in pointer/array types until it finds an objc retainable
6052/// type and returns its ownership.
6053Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
6054  while (!T.isNull()) {
6055    if (T.getObjCLifetime() != Qualifiers::OCL_None)
6056      return T.getObjCLifetime();
6057    if (T->isArrayType())
6058      T = getBaseElementType(T);
6059    else if (const auto *PT = T->getAs<PointerType>())
6060      T = PT->getPointeeType();
6061    else if (const auto *RT = T->getAs<ReferenceType>())
6062      T = RT->getPointeeType();
6063    else
6064      break;
6065  }
6066
6067  return Qualifiers::OCL_None;
6068}
6069
6070static const Type *getIntegerTypeForEnum(const EnumType *ET) {
6071  // Incomplete enum types are not treated as integer types.
6072  // FIXME: In C++, enum types are never integer types.
6073  if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
6074    return ET->getDecl()->getIntegerType().getTypePtr();
6075  return nullptr;
6076}
6077
6078/// getIntegerTypeOrder - Returns the highest ranked integer type:
6079/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
6080/// LHS < RHS, return -1.
6081int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
6082  const Type *LHSC = getCanonicalType(LHS).getTypePtr();
6083  const Type *RHSC = getCanonicalType(RHS).getTypePtr();
6084
6085  // Unwrap enums to their underlying type.
6086  if (const auto *ET = dyn_cast<EnumType>(LHSC))
6087    LHSC = getIntegerTypeForEnum(ET);
6088  if (const auto *ET = dyn_cast<EnumType>(RHSC))
6089    RHSC = getIntegerTypeForEnum(ET);
6090
6091  if (LHSC == RHSC) return 0;
6092
6093  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
6094  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
6095
6096  unsigned LHSRank = getIntegerRank(LHSC);
6097  unsigned RHSRank = getIntegerRank(RHSC);
6098
6099  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
6100    if (LHSRank == RHSRank) return 0;
6101    return LHSRank > RHSRank ? 1 : -1;
6102  }
6103
6104  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
6105  if (LHSUnsigned) {
6106    // If the unsigned [LHS] type is larger, return it.
6107    if (LHSRank >= RHSRank)
6108      return 1;
6109
6110    // If the signed type can represent all values of the unsigned type, it
6111    // wins.  Because we are dealing with 2's complement and types that are
6112    // powers of two larger than each other, this is always safe.
6113    return -1;
6114  }
6115
6116  // If the unsigned [RHS] type is larger, return it.
6117  if (RHSRank >= LHSRank)
6118    return -1;
6119
6120  // If the signed type can represent all values of the unsigned type, it
6121  // wins.  Because we are dealing with 2's complement and types that are
6122  // powers of two larger than each other, this is always safe.
6123  return 1;
6124}
6125
6126TypedefDecl *ASTContext::getCFConstantStringDecl() const {
6127  if (CFConstantStringTypeDecl)
6128    return CFConstantStringTypeDecl;
6129
6130  assert(!CFConstantStringTagDecl &&
6131         "tag and typedef should be initialized together");
6132  CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag");
6133  CFConstantStringTagDecl->startDefinition();
6134
6135  struct {
6136    QualType Type;
6137    const char *Name;
6138  } Fields[5];
6139  unsigned Count = 0;
6140
6141  /// Objective-C ABI
6142  ///
6143  ///    typedef struct __NSConstantString_tag {
6144  ///      const int *isa;
6145  ///      int flags;
6146  ///      const char *str;
6147  ///      long length;
6148  ///    } __NSConstantString;
6149  ///
6150  /// Swift ABI (4.1, 4.2)
6151  ///
6152  ///    typedef struct __NSConstantString_tag {
6153  ///      uintptr_t _cfisa;
6154  ///      uintptr_t _swift_rc;
6155  ///      _Atomic(uint64_t) _cfinfoa;
6156  ///      const char *_ptr;
6157  ///      uint32_t _length;
6158  ///    } __NSConstantString;
6159  ///
6160  /// Swift ABI (5.0)
6161  ///
6162  ///    typedef struct __NSConstantString_tag {
6163  ///      uintptr_t _cfisa;
6164  ///      uintptr_t _swift_rc;
6165  ///      _Atomic(uint64_t) _cfinfoa;
6166  ///      const char *_ptr;
6167  ///      uintptr_t _length;
6168  ///    } __NSConstantString;
6169
6170  const auto CFRuntime = getLangOpts().CFRuntime;
6171  if (static_cast<unsigned>(CFRuntime) <
6172      static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) {
6173    Fields[Count++] = { getPointerType(IntTy.withConst()), "isa" };
6174    Fields[Count++] = { IntTy, "flags" };
6175    Fields[Count++] = { getPointerType(CharTy.withConst()), "str" };
6176    Fields[Count++] = { LongTy, "length" };
6177  } else {
6178    Fields[Count++] = { getUIntPtrType(), "_cfisa" };
6179    Fields[Count++] = { getUIntPtrType(), "_swift_rc" };
6180    Fields[Count++] = { getFromTargetType(Target->getUInt64Type()), "_swift_rc" };
6181    Fields[Count++] = { getPointerType(CharTy.withConst()), "_ptr" };
6182    if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6183        CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6184      Fields[Count++] = { IntTy, "_ptr" };
6185    else
6186      Fields[Count++] = { getUIntPtrType(), "_ptr" };
6187  }
6188
6189  // Create fields
6190  for (unsigned i = 0; i < Count; ++i) {
6191    FieldDecl *Field =
6192        FieldDecl::Create(*this, CFConstantStringTagDecl, SourceLocation(),
6193                          SourceLocation(), &Idents.get(Fields[i].Name),
6194                          Fields[i].Type, /*TInfo=*/nullptr,
6195                          /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
6196    Field->setAccess(AS_public);
6197    CFConstantStringTagDecl->addDecl(Field);
6198  }
6199
6200  CFConstantStringTagDecl->completeDefinition();
6201  // This type is designed to be compatible with NSConstantString, but cannot
6202  // use the same name, since NSConstantString is an interface.
6203  auto tagType = getTagDeclType(CFConstantStringTagDecl);
6204  CFConstantStringTypeDecl =
6205      buildImplicitTypedef(tagType, "__NSConstantString");
6206
6207  return CFConstantStringTypeDecl;
6208}
6209
6210RecordDecl *ASTContext::getCFConstantStringTagDecl() const {
6211  if (!CFConstantStringTagDecl)
6212    getCFConstantStringDecl(); // Build the tag and the typedef.
6213  return CFConstantStringTagDecl;
6214}
6215
6216// getCFConstantStringType - Return the type used for constant CFStrings.
6217QualType ASTContext::getCFConstantStringType() const {
6218  return getTypedefType(getCFConstantStringDecl());
6219}
6220
6221QualType ASTContext::getObjCSuperType() const {
6222  if (ObjCSuperType.isNull()) {
6223    RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
6224    TUDecl->addDecl(ObjCSuperTypeDecl);
6225    ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
6226  }
6227  return ObjCSuperType;
6228}
6229
6230void ASTContext::setCFConstantStringType(QualType T) {
6231  const auto *TD = T->castAs<TypedefType>();
6232  CFConstantStringTypeDecl = cast<TypedefDecl>(TD->getDecl());
6233  const auto *TagType =
6234      CFConstantStringTypeDecl->getUnderlyingType()->castAs<RecordType>();
6235  CFConstantStringTagDecl = TagType->getDecl();
6236}
6237
6238QualType ASTContext::getBlockDescriptorType() const {
6239  if (BlockDescriptorType)
6240    return getTagDeclType(BlockDescriptorType);
6241
6242  RecordDecl *RD;
6243  // FIXME: Needs the FlagAppleBlock bit.
6244  RD = buildImplicitRecord("__block_descriptor");
6245  RD->startDefinition();
6246
6247  QualType FieldTypes[] = {
6248    UnsignedLongTy,
6249    UnsignedLongTy,
6250  };
6251
6252  static const char *const FieldNames[] = {
6253    "reserved",
6254    "Size"
6255  };
6256
6257  for (size_t i = 0; i < 2; ++i) {
6258    FieldDecl *Field = FieldDecl::Create(
6259        *this, RD, SourceLocation(), SourceLocation(),
6260        &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
6261        /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
6262    Field->setAccess(AS_public);
6263    RD->addDecl(Field);
6264  }
6265
6266  RD->completeDefinition();
6267
6268  BlockDescriptorType = RD;
6269
6270  return getTagDeclType(BlockDescriptorType);
6271}
6272
6273QualType ASTContext::getBlockDescriptorExtendedType() const {
6274  if (BlockDescriptorExtendedType)
6275    return getTagDeclType(BlockDescriptorExtendedType);
6276
6277  RecordDecl *RD;
6278  // FIXME: Needs the FlagAppleBlock bit.
6279  RD = buildImplicitRecord("__block_descriptor_withcopydispose");
6280  RD->startDefinition();
6281
6282  QualType FieldTypes[] = {
6283    UnsignedLongTy,
6284    UnsignedLongTy,
6285    getPointerType(VoidPtrTy),
6286    getPointerType(VoidPtrTy)
6287  };
6288
6289  static const char *const FieldNames[] = {
6290    "reserved",
6291    "Size",
6292    "CopyFuncPtr",
6293    "DestroyFuncPtr"
6294  };
6295
6296  for (size_t i = 0; i < 4; ++i) {
6297    FieldDecl *Field = FieldDecl::Create(
6298        *this, RD, SourceLocation(), SourceLocation(),
6299        &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
6300        /*BitWidth=*/nullptr,
6301        /*Mutable=*/false, ICIS_NoInit);
6302    Field->setAccess(AS_public);
6303    RD->addDecl(Field);
6304  }
6305
6306  RD->completeDefinition();
6307
6308  BlockDescriptorExtendedType = RD;
6309  return getTagDeclType(BlockDescriptorExtendedType);
6310}
6311
6312TargetInfo::OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const {
6313  const auto *BT = dyn_cast<BuiltinType>(T);
6314
6315  if (!BT) {
6316    if (isa<PipeType>(T))
6317      return TargetInfo::OCLTK_Pipe;
6318
6319    return TargetInfo::OCLTK_Default;
6320  }
6321
6322  switch (BT->getKind()) {
6323#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix)                   \
6324  case BuiltinType::Id:                                                        \
6325    return TargetInfo::OCLTK_Image;
6326#include "clang/Basic/OpenCLImageTypes.def"
6327
6328  case BuiltinType::OCLClkEvent:
6329    return TargetInfo::OCLTK_ClkEvent;
6330
6331  case BuiltinType::OCLEvent:
6332    return TargetInfo::OCLTK_Event;
6333
6334  case BuiltinType::OCLQueue:
6335    return TargetInfo::OCLTK_Queue;
6336
6337  case BuiltinType::OCLReserveID:
6338    return TargetInfo::OCLTK_ReserveID;
6339
6340  case BuiltinType::OCLSampler:
6341    return TargetInfo::OCLTK_Sampler;
6342
6343  default:
6344    return TargetInfo::OCLTK_Default;
6345  }
6346}
6347
6348LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const {
6349  return Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T));
6350}
6351
6352/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
6353/// requires copy/dispose. Note that this must match the logic
6354/// in buildByrefHelpers.
6355bool ASTContext::BlockRequiresCopying(QualType Ty,
6356                                      const VarDecl *D) {
6357  if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
6358    const Expr *copyExpr = getBlockVarCopyInit(D).getCopyExpr();
6359    if (!copyExpr && record->hasTrivialDestructor()) return false;
6360
6361    return true;
6362  }
6363
6364  // The block needs copy/destroy helpers if Ty is non-trivial to destructively
6365  // move or destroy.
6366  if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType())
6367    return true;
6368
6369  if (!Ty->isObjCRetainableType()) return false;
6370
6371  Qualifiers qs = Ty.getQualifiers();
6372
6373  // If we have lifetime, that dominates.
6374  if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
6375    switch (lifetime) {
6376      case Qualifiers::OCL_None: llvm_unreachable("impossible");
6377
6378      // These are just bits as far as the runtime is concerned.
6379      case Qualifiers::OCL_ExplicitNone:
6380      case Qualifiers::OCL_Autoreleasing:
6381        return false;
6382
6383      // These cases should have been taken care of when checking the type's
6384      // non-triviality.
6385      case Qualifiers::OCL_Weak:
6386      case Qualifiers::OCL_Strong:
6387        llvm_unreachable("impossible");
6388    }
6389    llvm_unreachable("fell out of lifetime switch!");
6390  }
6391  return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
6392          Ty->isObjCObjectPointerType());
6393}
6394
6395bool ASTContext::getByrefLifetime(QualType Ty,
6396                              Qualifiers::ObjCLifetime &LifeTime,
6397                              bool &HasByrefExtendedLayout) const {
6398  if (!getLangOpts().ObjC ||
6399      getLangOpts().getGC() != LangOptions::NonGC)
6400    return false;
6401
6402  HasByrefExtendedLayout = false;
6403  if (Ty->isRecordType()) {
6404    HasByrefExtendedLayout = true;
6405    LifeTime = Qualifiers::OCL_None;
6406  } else if ((LifeTime = Ty.getObjCLifetime())) {
6407    // Honor the ARC qualifiers.
6408  } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) {
6409    // The MRR rule.
6410    LifeTime = Qualifiers::OCL_ExplicitNone;
6411  } else {
6412    LifeTime = Qualifiers::OCL_None;
6413  }
6414  return true;
6415}
6416
6417TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
6418  if (!ObjCInstanceTypeDecl)
6419    ObjCInstanceTypeDecl =
6420        buildImplicitTypedef(getObjCIdType(), "instancetype");
6421  return ObjCInstanceTypeDecl;
6422}
6423
6424// This returns true if a type has been typedefed to BOOL:
6425// typedef <type> BOOL;
6426static bool isTypeTypedefedAsBOOL(QualType T) {
6427  if (const auto *TT = dyn_cast<TypedefType>(T))
6428    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
6429      return II->isStr("BOOL");
6430
6431  return false;
6432}
6433
6434/// getObjCEncodingTypeSize returns size of type for objective-c encoding
6435/// purpose.
6436CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
6437  if (!type->isIncompleteArrayType() && type->isIncompleteType())
6438    return CharUnits::Zero();
6439
6440  CharUnits sz = getTypeSizeInChars(type);
6441
6442  // Make all integer and enum types at least as large as an int
6443  if (sz.isPositive() && type->isIntegralOrEnumerationType())
6444    sz = std::max(sz, getTypeSizeInChars(IntTy));
6445  // Treat arrays as pointers, since that's how they're passed in.
6446  else if (type->isArrayType())
6447    sz = getTypeSizeInChars(VoidPtrTy);
6448  return sz;
6449}
6450
6451bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
6452  return getTargetInfo().getCXXABI().isMicrosoft() &&
6453         VD->isStaticDataMember() &&
6454         VD->getType()->isIntegralOrEnumerationType() &&
6455         !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
6456}
6457
6458ASTContext::InlineVariableDefinitionKind
6459ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const {
6460  if (!VD->isInline())
6461    return InlineVariableDefinitionKind::None;
6462
6463  // In almost all cases, it's a weak definition.
6464  auto *First = VD->getFirstDecl();
6465  if (First->isInlineSpecified() || !First->isStaticDataMember())
6466    return InlineVariableDefinitionKind::Weak;
6467
6468  // If there's a file-context declaration in this translation unit, it's a
6469  // non-discardable definition.
6470  for (auto *D : VD->redecls())
6471    if (D->getLexicalDeclContext()->isFileContext() &&
6472        !D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr()))
6473      return InlineVariableDefinitionKind::Strong;
6474
6475  // If we've not seen one yet, we don't know.
6476  return InlineVariableDefinitionKind::WeakUnknown;
6477}
6478
6479static std::string charUnitsToString(const CharUnits &CU) {
6480  return llvm::itostr(CU.getQuantity());
6481}
6482
6483/// getObjCEncodingForBlock - Return the encoded type for this block
6484/// declaration.
6485std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
6486  std::string S;
6487
6488  const BlockDecl *Decl = Expr->getBlockDecl();
6489  QualType BlockTy =
6490      Expr->getType()->castAs<BlockPointerType>()->getPointeeType();
6491  QualType BlockReturnTy = BlockTy->castAs<FunctionType>()->getReturnType();
6492  // Encode result type.
6493  if (getLangOpts().EncodeExtendedBlockSig)
6494    getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, BlockReturnTy, S,
6495                                      true /*Extended*/);
6496  else
6497    getObjCEncodingForType(BlockReturnTy, S);
6498  // Compute size of all parameters.
6499  // Start with computing size of a pointer in number of bytes.
6500  // FIXME: There might(should) be a better way of doing this computation!
6501  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
6502  CharUnits ParmOffset = PtrSize;
6503  for (auto PI : Decl->parameters()) {
6504    QualType PType = PI->getType();
6505    CharUnits sz = getObjCEncodingTypeSize(PType);
6506    if (sz.isZero())
6507      continue;
6508    assert(sz.isPositive() && "BlockExpr - Incomplete param type");
6509    ParmOffset += sz;
6510  }
6511  // Size of the argument frame
6512  S += charUnitsToString(ParmOffset);
6513  // Block pointer and offset.
6514  S += "@?0";
6515
6516  // Argument types.
6517  ParmOffset = PtrSize;
6518  for (auto PVDecl : Decl->parameters()) {
6519    QualType PType = PVDecl->getOriginalType();
6520    if (const auto *AT =
6521            dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
6522      // Use array's original type only if it has known number of
6523      // elements.
6524      if (!isa<ConstantArrayType>(AT))
6525        PType = PVDecl->getType();
6526    } else if (PType->isFunctionType())
6527      PType = PVDecl->getType();
6528    if (getLangOpts().EncodeExtendedBlockSig)
6529      getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
6530                                      S, true /*Extended*/);
6531    else
6532      getObjCEncodingForType(PType, S);
6533    S += charUnitsToString(ParmOffset);
6534    ParmOffset += getObjCEncodingTypeSize(PType);
6535  }
6536
6537  return S;
6538}
6539
6540std::string
6541ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const {
6542  std::string S;
6543  // Encode result type.
6544  getObjCEncodingForType(Decl->getReturnType(), S);
6545  CharUnits ParmOffset;
6546  // Compute size of all parameters.
6547  for (auto PI : Decl->parameters()) {
6548    QualType PType = PI->getType();
6549    CharUnits sz = getObjCEncodingTypeSize(PType);
6550    if (sz.isZero())
6551      continue;
6552
6553    assert(sz.isPositive() &&
6554           "getObjCEncodingForFunctionDecl - Incomplete param type");
6555    ParmOffset += sz;
6556  }
6557  S += charUnitsToString(ParmOffset);
6558  ParmOffset = CharUnits::Zero();
6559
6560  // Argument types.
6561  for (auto PVDecl : Decl->parameters()) {
6562    QualType PType = PVDecl->getOriginalType();
6563    if (const auto *AT =
6564            dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
6565      // Use array's original type only if it has known number of
6566      // elements.
6567      if (!isa<ConstantArrayType>(AT))
6568        PType = PVDecl->getType();
6569    } else if (PType->isFunctionType())
6570      PType = PVDecl->getType();
6571    getObjCEncodingForType(PType, S);
6572    S += charUnitsToString(ParmOffset);
6573    ParmOffset += getObjCEncodingTypeSize(PType);
6574  }
6575
6576  return S;
6577}
6578
6579/// getObjCEncodingForMethodParameter - Return the encoded type for a single
6580/// method parameter or return type. If Extended, include class names and
6581/// block object types.
6582void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
6583                                                   QualType T, std::string& S,
6584                                                   bool Extended) const {
6585  // Encode type qualifer, 'in', 'inout', etc. for the parameter.
6586  getObjCEncodingForTypeQualifier(QT, S);
6587  // Encode parameter type.
6588  ObjCEncOptions Options = ObjCEncOptions()
6589                               .setExpandPointedToStructures()
6590                               .setExpandStructures()
6591                               .setIsOutermostType();
6592  if (Extended)
6593    Options.setEncodeBlockParameters().setEncodeClassNames();
6594  getObjCEncodingForTypeImpl(T, S, Options, /*Field=*/nullptr);
6595}
6596
6597/// getObjCEncodingForMethodDecl - Return the encoded type for this method
6598/// declaration.
6599std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
6600                                                     bool Extended) const {
6601  // FIXME: This is not very efficient.
6602  // Encode return type.
6603  std::string S;
6604  getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
6605                                    Decl->getReturnType(), S, Extended);
6606  // Compute size of all parameters.
6607  // Start with computing size of a pointer in number of bytes.
6608  // FIXME: There might(should) be a better way of doing this computation!
6609  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
6610  // The first two arguments (self and _cmd) are pointers; account for
6611  // their size.
6612  CharUnits ParmOffset = 2 * PtrSize;
6613  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
6614       E = Decl->sel_param_end(); PI != E; ++PI) {
6615    QualType PType = (*PI)->getType();
6616    CharUnits sz = getObjCEncodingTypeSize(PType);
6617    if (sz.isZero())
6618      continue;
6619
6620    assert(sz.isPositive() &&
6621           "getObjCEncodingForMethodDecl - Incomplete param type");
6622    ParmOffset += sz;
6623  }
6624  S += charUnitsToString(ParmOffset);
6625  S += "@0:";
6626  S += charUnitsToString(PtrSize);
6627
6628  // Argument types.
6629  ParmOffset = 2 * PtrSize;
6630  for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
6631       E = Decl->sel_param_end(); PI != E; ++PI) {
6632    const ParmVarDecl *PVDecl = *PI;
6633    QualType PType = PVDecl->getOriginalType();
6634    if (const auto *AT =
6635            dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
6636      // Use array's original type only if it has known number of
6637      // elements.
6638      if (!isa<ConstantArrayType>(AT))
6639        PType = PVDecl->getType();
6640    } else if (PType->isFunctionType())
6641      PType = PVDecl->getType();
6642    getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
6643                                      PType, S, Extended);
6644    S += charUnitsToString(ParmOffset);
6645    ParmOffset += getObjCEncodingTypeSize(PType);
6646  }
6647
6648  return S;
6649}
6650
6651ObjCPropertyImplDecl *
6652ASTContext::getObjCPropertyImplDeclForPropertyDecl(
6653                                      const ObjCPropertyDecl *PD,
6654                                      const Decl *Container) const {
6655  if (!Container)
6656    return nullptr;
6657  if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Container)) {
6658    for (auto *PID : CID->property_impls())
6659      if (PID->getPropertyDecl() == PD)
6660        return PID;
6661  } else {
6662    const auto *OID = cast<ObjCImplementationDecl>(Container);
6663    for (auto *PID : OID->property_impls())
6664      if (PID->getPropertyDecl() == PD)
6665        return PID;
6666  }
6667  return nullptr;
6668}
6669
6670/// getObjCEncodingForPropertyDecl - Return the encoded type for this
6671/// property declaration. If non-NULL, Container must be either an
6672/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
6673/// NULL when getting encodings for protocol properties.
6674/// Property attributes are stored as a comma-delimited C string. The simple
6675/// attributes readonly and bycopy are encoded as single characters. The
6676/// parametrized attributes, getter=name, setter=name, and ivar=name, are
6677/// encoded as single characters, followed by an identifier. Property types
6678/// are also encoded as a parametrized attribute. The characters used to encode
6679/// these attributes are defined by the following enumeration:
6680/// @code
6681/// enum PropertyAttributes {
6682/// kPropertyReadOnly = 'R',   // property is read-only.
6683/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
6684/// kPropertyByref = '&',  // property is a reference to the value last assigned
6685/// kPropertyDynamic = 'D',    // property is dynamic
6686/// kPropertyGetter = 'G',     // followed by getter selector name
6687/// kPropertySetter = 'S',     // followed by setter selector name
6688/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
6689/// kPropertyType = 'T'              // followed by old-style type encoding.
6690/// kPropertyWeak = 'W'              // 'weak' property
6691/// kPropertyStrong = 'P'            // property GC'able
6692/// kPropertyNonAtomic = 'N'         // property non-atomic
6693/// };
6694/// @endcode
6695std::string
6696ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
6697                                           const Decl *Container) const {
6698  // Collect information from the property implementation decl(s).
6699  bool Dynamic = false;
6700  ObjCPropertyImplDecl *SynthesizePID = nullptr;
6701
6702  if (ObjCPropertyImplDecl *PropertyImpDecl =
6703      getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
6704    if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
6705      Dynamic = true;
6706    else
6707      SynthesizePID = PropertyImpDecl;
6708  }
6709
6710  // FIXME: This is not very efficient.
6711  std::string S = "T";
6712
6713  // Encode result type.
6714  // GCC has some special rules regarding encoding of properties which
6715  // closely resembles encoding of ivars.
6716  getObjCEncodingForPropertyType(PD->getType(), S);
6717
6718  if (PD->isReadOnly()) {
6719    S += ",R";
6720    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_copy)
6721      S += ",C";
6722    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_retain)
6723      S += ",&";
6724    if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_weak)
6725      S += ",W";
6726  } else {
6727    switch (PD->getSetterKind()) {
6728    case ObjCPropertyDecl::Assign: break;
6729    case ObjCPropertyDecl::Copy:   S += ",C"; break;
6730    case ObjCPropertyDecl::Retain: S += ",&"; break;
6731    case ObjCPropertyDecl::Weak:   S += ",W"; break;
6732    }
6733  }
6734
6735  // It really isn't clear at all what this means, since properties
6736  // are "dynamic by default".
6737  if (Dynamic)
6738    S += ",D";
6739
6740  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
6741    S += ",N";
6742
6743  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
6744    S += ",G";
6745    S += PD->getGetterName().getAsString();
6746  }
6747
6748  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
6749    S += ",S";
6750    S += PD->getSetterName().getAsString();
6751  }
6752
6753  if (SynthesizePID) {
6754    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
6755    S += ",V";
6756    S += OID->getNameAsString();
6757  }
6758
6759  // FIXME: OBJCGC: weak & strong
6760  return S;
6761}
6762
6763/// getLegacyIntegralTypeEncoding -
6764/// Another legacy compatibility encoding: 32-bit longs are encoded as
6765/// 'l' or 'L' , but not always.  For typedefs, we need to use
6766/// 'i' or 'I' instead if encoding a struct field, or a pointer!
6767void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
6768  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
6769    if (const auto *BT = PointeeTy->getAs<BuiltinType>()) {
6770      if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
6771        PointeeTy = UnsignedIntTy;
6772      else
6773        if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
6774          PointeeTy = IntTy;
6775    }
6776  }
6777}
6778
6779void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
6780                                        const FieldDecl *Field,
6781                                        QualType *NotEncodedT) const {
6782  // We follow the behavior of gcc, expanding structures which are
6783  // directly pointed to, and expanding embedded structures. Note that
6784  // these rules are sufficient to prevent recursive encoding of the
6785  // same type.
6786  getObjCEncodingForTypeImpl(T, S,
6787                             ObjCEncOptions()
6788                                 .setExpandPointedToStructures()
6789                                 .setExpandStructures()
6790                                 .setIsOutermostType(),
6791                             Field, NotEncodedT);
6792}
6793
6794void ASTContext::getObjCEncodingForPropertyType(QualType T,
6795                                                std::string& S) const {
6796  // Encode result type.
6797  // GCC has some special rules regarding encoding of properties which
6798  // closely resembles encoding of ivars.
6799  getObjCEncodingForTypeImpl(T, S,
6800                             ObjCEncOptions()
6801                                 .setExpandPointedToStructures()
6802                                 .setExpandStructures()
6803                                 .setIsOutermostType()
6804                                 .setEncodingProperty(),
6805                             /*Field=*/nullptr);
6806}
6807
6808static char getObjCEncodingForPrimitiveType(const ASTContext *C,
6809                                            const BuiltinType *BT) {
6810    BuiltinType::Kind kind = BT->getKind();
6811    switch (kind) {
6812    case BuiltinType::Void:       return 'v';
6813    case BuiltinType::Bool:       return 'B';
6814    case BuiltinType::Char8:
6815    case BuiltinType::Char_U:
6816    case BuiltinType::UChar:      return 'C';
6817    case BuiltinType::Char16:
6818    case BuiltinType::UShort:     return 'S';
6819    case BuiltinType::Char32:
6820    case BuiltinType::UInt:       return 'I';
6821    case BuiltinType::ULong:
6822        return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
6823    case BuiltinType::UInt128:    return 'T';
6824    case BuiltinType::ULongLong:  return 'Q';
6825    case BuiltinType::Char_S:
6826    case BuiltinType::SChar:      return 'c';
6827    case BuiltinType::Short:      return 's';
6828    case BuiltinType::WChar_S:
6829    case BuiltinType::WChar_U:
6830    case BuiltinType::Int:        return 'i';
6831    case BuiltinType::Long:
6832      return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
6833    case BuiltinType::LongLong:   return 'q';
6834    case BuiltinType::Int128:     return 't';
6835    case BuiltinType::Float:      return 'f';
6836    case BuiltinType::Double:     return 'd';
6837    case BuiltinType::LongDouble: return 'D';
6838    case BuiltinType::NullPtr:    return '*'; // like char*
6839
6840    case BuiltinType::Float16:
6841    case BuiltinType::Float128:
6842    case BuiltinType::Half:
6843    case BuiltinType::ShortAccum:
6844    case BuiltinType::Accum:
6845    case BuiltinType::LongAccum:
6846    case BuiltinType::UShortAccum:
6847    case BuiltinType::UAccum:
6848    case BuiltinType::ULongAccum:
6849    case BuiltinType::ShortFract:
6850    case BuiltinType::Fract:
6851    case BuiltinType::LongFract:
6852    case BuiltinType::UShortFract:
6853    case BuiltinType::UFract:
6854    case BuiltinType::ULongFract:
6855    case BuiltinType::SatShortAccum:
6856    case BuiltinType::SatAccum:
6857    case BuiltinType::SatLongAccum:
6858    case BuiltinType::SatUShortAccum:
6859    case BuiltinType::SatUAccum:
6860    case BuiltinType::SatULongAccum:
6861    case BuiltinType::SatShortFract:
6862    case BuiltinType::SatFract:
6863    case BuiltinType::SatLongFract:
6864    case BuiltinType::SatUShortFract:
6865    case BuiltinType::SatUFract:
6866    case BuiltinType::SatULongFract:
6867      // FIXME: potentially need @encodes for these!
6868      return ' ';
6869
6870#define SVE_TYPE(Name, Id, SingletonId) \
6871    case BuiltinType::Id:
6872#include "clang/Basic/AArch64SVEACLETypes.def"
6873    {
6874      DiagnosticsEngine &Diags = C->getDiagnostics();
6875      unsigned DiagID = Diags.getCustomDiagID(
6876          DiagnosticsEngine::Error, "cannot yet @encode type %0");
6877      Diags.Report(DiagID) << BT->getName(C->getPrintingPolicy());
6878      return ' ';
6879    }
6880
6881    case BuiltinType::ObjCId:
6882    case BuiltinType::ObjCClass:
6883    case BuiltinType::ObjCSel:
6884      llvm_unreachable("@encoding ObjC primitive type");
6885
6886    // OpenCL and placeholder types don't need @encodings.
6887#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6888    case BuiltinType::Id:
6889#include "clang/Basic/OpenCLImageTypes.def"
6890#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6891    case BuiltinType::Id:
6892#include "clang/Basic/OpenCLExtensionTypes.def"
6893    case BuiltinType::OCLEvent:
6894    case BuiltinType::OCLClkEvent:
6895    case BuiltinType::OCLQueue:
6896    case BuiltinType::OCLReserveID:
6897    case BuiltinType::OCLSampler:
6898    case BuiltinType::Dependent:
6899#define BUILTIN_TYPE(KIND, ID)
6900#define PLACEHOLDER_TYPE(KIND, ID) \
6901    case BuiltinType::KIND:
6902#include "clang/AST/BuiltinTypes.def"
6903      llvm_unreachable("invalid builtin type for @encode");
6904    }
6905    llvm_unreachable("invalid BuiltinType::Kind value");
6906}
6907
6908static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
6909  EnumDecl *Enum = ET->getDecl();
6910
6911  // The encoding of an non-fixed enum type is always 'i', regardless of size.
6912  if (!Enum->isFixed())
6913    return 'i';
6914
6915  // The encoding of a fixed enum type matches its fixed underlying type.
6916  const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>();
6917  return getObjCEncodingForPrimitiveType(C, BT);
6918}
6919
6920static void EncodeBitField(const ASTContext *Ctx, std::string& S,
6921                           QualType T, const FieldDecl *FD) {
6922  assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
6923  S += 'b';
6924  // The NeXT runtime encodes bit fields as b followed by the number of bits.
6925  // The GNU runtime requires more information; bitfields are encoded as b,
6926  // then the offset (in bits) of the first element, then the type of the
6927  // bitfield, then the size in bits.  For example, in this structure:
6928  //
6929  // struct
6930  // {
6931  //    int integer;
6932  //    int flags:2;
6933  // };
6934  // On a 32-bit system, the encoding for flags would be b2 for the NeXT
6935  // runtime, but b32i2 for the GNU runtime.  The reason for this extra
6936  // information is not especially sensible, but we're stuck with it for
6937  // compatibility with GCC, although providing it breaks anything that
6938  // actually uses runtime introspection and wants to work on both runtimes...
6939  if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
6940    uint64_t Offset;
6941
6942    if (const auto *IVD = dyn_cast<ObjCIvarDecl>(FD)) {
6943      Offset = Ctx->lookupFieldBitOffset(IVD->getContainingInterface(), nullptr,
6944                                         IVD);
6945    } else {
6946      const RecordDecl *RD = FD->getParent();
6947      const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
6948      Offset = RL.getFieldOffset(FD->getFieldIndex());
6949    }
6950
6951    S += llvm::utostr(Offset);
6952
6953    if (const auto *ET = T->getAs<EnumType>())
6954      S += ObjCEncodingForEnumType(Ctx, ET);
6955    else {
6956      const auto *BT = T->castAs<BuiltinType>();
6957      S += getObjCEncodingForPrimitiveType(Ctx, BT);
6958    }
6959  }
6960  S += llvm::utostr(FD->getBitWidthValue(*Ctx));
6961}
6962
6963// FIXME: Use SmallString for accumulating string.
6964void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string &S,
6965                                            const ObjCEncOptions Options,
6966                                            const FieldDecl *FD,
6967                                            QualType *NotEncodedT) const {
6968  CanQualType CT = getCanonicalType(T);
6969  switch (CT->getTypeClass()) {
6970  case Type::Builtin:
6971  case Type::Enum:
6972    if (FD && FD->isBitField())
6973      return EncodeBitField(this, S, T, FD);
6974    if (const auto *BT = dyn_cast<BuiltinType>(CT))
6975      S += getObjCEncodingForPrimitiveType(this, BT);
6976    else
6977      S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
6978    return;
6979
6980  case Type::Complex:
6981    S += 'j';
6982    getObjCEncodingForTypeImpl(T->castAs<ComplexType>()->getElementType(), S,
6983                               ObjCEncOptions(),
6984                               /*Field=*/nullptr);
6985    return;
6986
6987  case Type::Atomic:
6988    S += 'A';
6989    getObjCEncodingForTypeImpl(T->castAs<AtomicType>()->getValueType(), S,
6990                               ObjCEncOptions(),
6991                               /*Field=*/nullptr);
6992    return;
6993
6994  // encoding for pointer or reference types.
6995  case Type::Pointer:
6996  case Type::LValueReference:
6997  case Type::RValueReference: {
6998    QualType PointeeTy;
6999    if (isa<PointerType>(CT)) {
7000      const auto *PT = T->castAs<PointerType>();
7001      if (PT->isObjCSelType()) {
7002        S += ':';
7003        return;
7004      }
7005      PointeeTy = PT->getPointeeType();
7006    } else {
7007      PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
7008    }
7009
7010    bool isReadOnly = false;
7011    // For historical/compatibility reasons, the read-only qualifier of the
7012    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
7013    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
7014    // Also, do not emit the 'r' for anything but the outermost type!
7015    if (isa<TypedefType>(T.getTypePtr())) {
7016      if (Options.IsOutermostType() && T.isConstQualified()) {
7017        isReadOnly = true;
7018        S += 'r';
7019      }
7020    } else if (Options.IsOutermostType()) {
7021      QualType P = PointeeTy;
7022      while (auto PT = P->getAs<PointerType>())
7023        P = PT->getPointeeType();
7024      if (P.isConstQualified()) {
7025        isReadOnly = true;
7026        S += 'r';
7027      }
7028    }
7029    if (isReadOnly) {
7030      // Another legacy compatibility encoding. Some ObjC qualifier and type
7031      // combinations need to be rearranged.
7032      // Rewrite "in const" from "nr" to "rn"
7033      if (StringRef(S).endswith("nr"))
7034        S.replace(S.end()-2, S.end(), "rn");
7035    }
7036
7037    if (PointeeTy->isCharType()) {
7038      // char pointer types should be encoded as '*' unless it is a
7039      // type that has been typedef'd to 'BOOL'.
7040      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
7041        S += '*';
7042        return;
7043      }
7044    } else if (const auto *RTy = PointeeTy->getAs<RecordType>()) {
7045      // GCC binary compat: Need to convert "struct objc_class *" to "#".
7046      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
7047        S += '#';
7048        return;
7049      }
7050      // GCC binary compat: Need to convert "struct objc_object *" to "@".
7051      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
7052        S += '@';
7053        return;
7054      }
7055      // fall through...
7056    }
7057    S += '^';
7058    getLegacyIntegralTypeEncoding(PointeeTy);
7059
7060    ObjCEncOptions NewOptions;
7061    if (Options.ExpandPointedToStructures())
7062      NewOptions.setExpandStructures();
7063    getObjCEncodingForTypeImpl(PointeeTy, S, NewOptions,
7064                               /*Field=*/nullptr, NotEncodedT);
7065    return;
7066  }
7067
7068  case Type::ConstantArray:
7069  case Type::IncompleteArray:
7070  case Type::VariableArray: {
7071    const auto *AT = cast<ArrayType>(CT);
7072
7073    if (isa<IncompleteArrayType>(AT) && !Options.IsStructField()) {
7074      // Incomplete arrays are encoded as a pointer to the array element.
7075      S += '^';
7076
7077      getObjCEncodingForTypeImpl(
7078          AT->getElementType(), S,
7079          Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD);
7080    } else {
7081      S += '[';
7082
7083      if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
7084        S += llvm::utostr(CAT->getSize().getZExtValue());
7085      else {
7086        //Variable length arrays are encoded as a regular array with 0 elements.
7087        assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
7088               "Unknown array type!");
7089        S += '0';
7090      }
7091
7092      getObjCEncodingForTypeImpl(
7093          AT->getElementType(), S,
7094          Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD,
7095          NotEncodedT);
7096      S += ']';
7097    }
7098    return;
7099  }
7100
7101  case Type::FunctionNoProto:
7102  case Type::FunctionProto:
7103    S += '?';
7104    return;
7105
7106  case Type::Record: {
7107    RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
7108    S += RDecl->isUnion() ? '(' : '{';
7109    // Anonymous structures print as '?'
7110    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
7111      S += II->getName();
7112      if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
7113        const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
7114        llvm::raw_string_ostream OS(S);
7115        printTemplateArgumentList(OS, TemplateArgs.asArray(),
7116                                  getPrintingPolicy());
7117      }
7118    } else {
7119      S += '?';
7120    }
7121    if (Options.ExpandStructures()) {
7122      S += '=';
7123      if (!RDecl->isUnion()) {
7124        getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
7125      } else {
7126        for (const auto *Field : RDecl->fields()) {
7127          if (FD) {
7128            S += '"';
7129            S += Field->getNameAsString();
7130            S += '"';
7131          }
7132
7133          // Special case bit-fields.
7134          if (Field->isBitField()) {
7135            getObjCEncodingForTypeImpl(Field->getType(), S,
7136                                       ObjCEncOptions().setExpandStructures(),
7137                                       Field);
7138          } else {
7139            QualType qt = Field->getType();
7140            getLegacyIntegralTypeEncoding(qt);
7141            getObjCEncodingForTypeImpl(
7142                qt, S,
7143                ObjCEncOptions().setExpandStructures().setIsStructField(), FD,
7144                NotEncodedT);
7145          }
7146        }
7147      }
7148    }
7149    S += RDecl->isUnion() ? ')' : '}';
7150    return;
7151  }
7152
7153  case Type::BlockPointer: {
7154    const auto *BT = T->castAs<BlockPointerType>();
7155    S += "@?"; // Unlike a pointer-to-function, which is "^?".
7156    if (Options.EncodeBlockParameters()) {
7157      const auto *FT = BT->getPointeeType()->castAs<FunctionType>();
7158
7159      S += '<';
7160      // Block return type
7161      getObjCEncodingForTypeImpl(FT->getReturnType(), S,
7162                                 Options.forComponentType(), FD, NotEncodedT);
7163      // Block self
7164      S += "@?";
7165      // Block parameters
7166      if (const auto *FPT = dyn_cast<FunctionProtoType>(FT)) {
7167        for (const auto &I : FPT->param_types())
7168          getObjCEncodingForTypeImpl(I, S, Options.forComponentType(), FD,
7169                                     NotEncodedT);
7170      }
7171      S += '>';
7172    }
7173    return;
7174  }
7175
7176  case Type::ObjCObject: {
7177    // hack to match legacy encoding of *id and *Class
7178    QualType Ty = getObjCObjectPointerType(CT);
7179    if (Ty->isObjCIdType()) {
7180      S += "{objc_object=}";
7181      return;
7182    }
7183    else if (Ty->isObjCClassType()) {
7184      S += "{objc_class=}";
7185      return;
7186    }
7187    // TODO: Double check to make sure this intentionally falls through.
7188    LLVM_FALLTHROUGH;
7189  }
7190
7191  case Type::ObjCInterface: {
7192    // Ignore protocol qualifiers when mangling at this level.
7193    // @encode(class_name)
7194    ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface();
7195    S += '{';
7196    S += OI->getObjCRuntimeNameAsString();
7197    if (Options.ExpandStructures()) {
7198      S += '=';
7199      SmallVector<const ObjCIvarDecl*, 32> Ivars;
7200      DeepCollectObjCIvars(OI, true, Ivars);
7201      for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
7202        const FieldDecl *Field = Ivars[i];
7203        if (Field->isBitField())
7204          getObjCEncodingForTypeImpl(Field->getType(), S,
7205                                     ObjCEncOptions().setExpandStructures(),
7206                                     Field);
7207        else
7208          getObjCEncodingForTypeImpl(Field->getType(), S,
7209                                     ObjCEncOptions().setExpandStructures(), FD,
7210                                     NotEncodedT);
7211      }
7212    }
7213    S += '}';
7214    return;
7215  }
7216
7217  case Type::ObjCObjectPointer: {
7218    const auto *OPT = T->castAs<ObjCObjectPointerType>();
7219    if (OPT->isObjCIdType()) {
7220      S += '@';
7221      return;
7222    }
7223
7224    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
7225      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
7226      // Since this is a binary compatibility issue, need to consult with
7227      // runtime folks. Fortunately, this is a *very* obscure construct.
7228      S += '#';
7229      return;
7230    }
7231
7232    if (OPT->isObjCQualifiedIdType()) {
7233      getObjCEncodingForTypeImpl(
7234          getObjCIdType(), S,
7235          Options.keepingOnly(ObjCEncOptions()
7236                                  .setExpandPointedToStructures()
7237                                  .setExpandStructures()),
7238          FD);
7239      if (FD || Options.EncodingProperty() || Options.EncodeClassNames()) {
7240        // Note that we do extended encoding of protocol qualifer list
7241        // Only when doing ivar or property encoding.
7242        S += '"';
7243        for (const auto *I : OPT->quals()) {
7244          S += '<';
7245          S += I->getObjCRuntimeNameAsString();
7246          S += '>';
7247        }
7248        S += '"';
7249      }
7250      return;
7251    }
7252
7253    S += '@';
7254    if (OPT->getInterfaceDecl() &&
7255        (FD || Options.EncodingProperty() || Options.EncodeClassNames())) {
7256      S += '"';
7257      S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString();
7258      for (const auto *I : OPT->quals()) {
7259        S += '<';
7260        S += I->getObjCRuntimeNameAsString();
7261        S += '>';
7262      }
7263      S += '"';
7264    }
7265    return;
7266  }
7267
7268  // gcc just blithely ignores member pointers.
7269  // FIXME: we should do better than that.  'M' is available.
7270  case Type::MemberPointer:
7271  // This matches gcc's encoding, even though technically it is insufficient.
7272  //FIXME. We should do a better job than gcc.
7273  case Type::Vector:
7274  case Type::ExtVector:
7275  // Until we have a coherent encoding of these three types, issue warning.
7276    if (NotEncodedT)
7277      *NotEncodedT = T;
7278    return;
7279
7280  // We could see an undeduced auto type here during error recovery.
7281  // Just ignore it.
7282  case Type::Auto:
7283  case Type::DeducedTemplateSpecialization:
7284    return;
7285
7286  case Type::Pipe:
7287#define ABSTRACT_TYPE(KIND, BASE)
7288#define TYPE(KIND, BASE)
7289#define DEPENDENT_TYPE(KIND, BASE) \
7290  case Type::KIND:
7291#define NON_CANONICAL_TYPE(KIND, BASE) \
7292  case Type::KIND:
7293#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
7294  case Type::KIND:
7295#include "clang/AST/TypeNodes.inc"
7296    llvm_unreachable("@encode for dependent type!");
7297  }
7298  llvm_unreachable("bad type kind!");
7299}
7300
7301void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
7302                                                 std::string &S,
7303                                                 const FieldDecl *FD,
7304                                                 bool includeVBases,
7305                                                 QualType *NotEncodedT) const {
7306  assert(RDecl && "Expected non-null RecordDecl");
7307  assert(!RDecl->isUnion() && "Should not be called for unions");
7308  if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl())
7309    return;
7310
7311  const auto *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
7312  std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
7313  const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
7314
7315  if (CXXRec) {
7316    for (const auto &BI : CXXRec->bases()) {
7317      if (!BI.isVirtual()) {
7318        CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
7319        if (base->isEmpty())
7320          continue;
7321        uint64_t offs = toBits(layout.getBaseClassOffset(base));
7322        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
7323                                  std::make_pair(offs, base));
7324      }
7325    }
7326  }
7327
7328  unsigned i = 0;
7329  for (auto *Field : RDecl->fields()) {
7330    uint64_t offs = layout.getFieldOffset(i);
7331    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
7332                              std::make_pair(offs, Field));
7333    ++i;
7334  }
7335
7336  if (CXXRec && includeVBases) {
7337    for (const auto &BI : CXXRec->vbases()) {
7338      CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
7339      if (base->isEmpty())
7340        continue;
7341      uint64_t offs = toBits(layout.getVBaseClassOffset(base));
7342      if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
7343          FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
7344        FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
7345                                  std::make_pair(offs, base));
7346    }
7347  }
7348
7349  CharUnits size;
7350  if (CXXRec) {
7351    size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
7352  } else {
7353    size = layout.getSize();
7354  }
7355
7356#ifndef NDEBUG
7357  uint64_t CurOffs = 0;
7358#endif
7359  std::multimap<uint64_t, NamedDecl *>::iterator
7360    CurLayObj = FieldOrBaseOffsets.begin();
7361
7362  if (CXXRec && CXXRec->isDynamicClass() &&
7363      (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
7364    if (FD) {
7365      S += "\"_vptr$";
7366      std::string recname = CXXRec->getNameAsString();
7367      if (recname.empty()) recname = "?";
7368      S += recname;
7369      S += '"';
7370    }
7371    S += "^^?";
7372#ifndef NDEBUG
7373    CurOffs += getTypeSize(VoidPtrTy);
7374#endif
7375  }
7376
7377  if (!RDecl->hasFlexibleArrayMember()) {
7378    // Mark the end of the structure.
7379    uint64_t offs = toBits(size);
7380    FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
7381                              std::make_pair(offs, nullptr));
7382  }
7383
7384  for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
7385#ifndef NDEBUG
7386    assert(CurOffs <= CurLayObj->first);
7387    if (CurOffs < CurLayObj->first) {
7388      uint64_t padding = CurLayObj->first - CurOffs;
7389      // FIXME: There doesn't seem to be a way to indicate in the encoding that
7390      // packing/alignment of members is different that normal, in which case
7391      // the encoding will be out-of-sync with the real layout.
7392      // If the runtime switches to just consider the size of types without
7393      // taking into account alignment, we could make padding explicit in the
7394      // encoding (e.g. using arrays of chars). The encoding strings would be
7395      // longer then though.
7396      CurOffs += padding;
7397    }
7398#endif
7399
7400    NamedDecl *dcl = CurLayObj->second;
7401    if (!dcl)
7402      break; // reached end of structure.
7403
7404    if (auto *base = dyn_cast<CXXRecordDecl>(dcl)) {
7405      // We expand the bases without their virtual bases since those are going
7406      // in the initial structure. Note that this differs from gcc which
7407      // expands virtual bases each time one is encountered in the hierarchy,
7408      // making the encoding type bigger than it really is.
7409      getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
7410                                      NotEncodedT);
7411      assert(!base->isEmpty());
7412#ifndef NDEBUG
7413      CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
7414#endif
7415    } else {
7416      const auto *field = cast<FieldDecl>(dcl);
7417      if (FD) {
7418        S += '"';
7419        S += field->getNameAsString();
7420        S += '"';
7421      }
7422
7423      if (field->isBitField()) {
7424        EncodeBitField(this, S, field->getType(), field);
7425#ifndef NDEBUG
7426        CurOffs += field->getBitWidthValue(*this);
7427#endif
7428      } else {
7429        QualType qt = field->getType();
7430        getLegacyIntegralTypeEncoding(qt);
7431        getObjCEncodingForTypeImpl(
7432            qt, S, ObjCEncOptions().setExpandStructures().setIsStructField(),
7433            FD, NotEncodedT);
7434#ifndef NDEBUG
7435        CurOffs += getTypeSize(field->getType());
7436#endif
7437      }
7438    }
7439  }
7440}
7441
7442void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
7443                                                 std::string& S) const {
7444  if (QT & Decl::OBJC_TQ_In)
7445    S += 'n';
7446  if (QT & Decl::OBJC_TQ_Inout)
7447    S += 'N';
7448  if (QT & Decl::OBJC_TQ_Out)
7449    S += 'o';
7450  if (QT & Decl::OBJC_TQ_Bycopy)
7451    S += 'O';
7452  if (QT & Decl::OBJC_TQ_Byref)
7453    S += 'R';
7454  if (QT & Decl::OBJC_TQ_Oneway)
7455    S += 'V';
7456}
7457
7458TypedefDecl *ASTContext::getObjCIdDecl() const {
7459  if (!ObjCIdDecl) {
7460    QualType T = getObjCObjectType(ObjCBuiltinIdTy, {}, {});
7461    T = getObjCObjectPointerType(T);
7462    ObjCIdDecl = buildImplicitTypedef(T, "id");
7463  }
7464  return ObjCIdDecl;
7465}
7466
7467TypedefDecl *ASTContext::getObjCSelDecl() const {
7468  if (!ObjCSelDecl) {
7469    QualType T = getPointerType(ObjCBuiltinSelTy);
7470    ObjCSelDecl = buildImplicitTypedef(T, "SEL");
7471  }
7472  return ObjCSelDecl;
7473}
7474
7475TypedefDecl *ASTContext::getObjCClassDecl() const {
7476  if (!ObjCClassDecl) {
7477    QualType T = getObjCObjectType(ObjCBuiltinClassTy, {}, {});
7478    T = getObjCObjectPointerType(T);
7479    ObjCClassDecl = buildImplicitTypedef(T, "Class");
7480  }
7481  return ObjCClassDecl;
7482}
7483
7484ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
7485  if (!ObjCProtocolClassDecl) {
7486    ObjCProtocolClassDecl
7487      = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
7488                                  SourceLocation(),
7489                                  &Idents.get("Protocol"),
7490                                  /*typeParamList=*/nullptr,
7491                                  /*PrevDecl=*/nullptr,
7492                                  SourceLocation(), true);
7493  }
7494
7495  return ObjCProtocolClassDecl;
7496}
7497
7498//===----------------------------------------------------------------------===//
7499// __builtin_va_list Construction Functions
7500//===----------------------------------------------------------------------===//
7501
7502static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context,
7503                                                 StringRef Name) {
7504  // typedef char* __builtin[_ms]_va_list;
7505  QualType T = Context->getPointerType(Context->CharTy);
7506  return Context->buildImplicitTypedef(T, Name);
7507}
7508
7509static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) {
7510  return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list");
7511}
7512
7513static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
7514  return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list");
7515}
7516
7517static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
7518  // typedef void* __builtin_va_list;
7519  QualType T = Context->getPointerType(Context->VoidTy);
7520  return Context->buildImplicitTypedef(T, "__builtin_va_list");
7521}
7522
7523static TypedefDecl *
7524CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
7525  // struct __va_list
7526  RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
7527  if (Context->getLangOpts().CPlusPlus) {
7528    // namespace std { struct __va_list {
7529    NamespaceDecl *NS;
7530    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
7531                               Context->getTranslationUnitDecl(),
7532                               /*Inline*/ false, SourceLocation(),
7533                               SourceLocation(), &Context->Idents.get("std"),
7534                               /*PrevDecl*/ nullptr);
7535    NS->setImplicit();
7536    VaListTagDecl->setDeclContext(NS);
7537  }
7538
7539  VaListTagDecl->startDefinition();
7540
7541  const size_t NumFields = 5;
7542  QualType FieldTypes[NumFields];
7543  const char *FieldNames[NumFields];
7544
7545  // void *__stack;
7546  FieldTypes[0] = Context->getPointerType(Context->VoidTy);
7547  FieldNames[0] = "__stack";
7548
7549  // void *__gr_top;
7550  FieldTypes[1] = Context->getPointerType(Context->VoidTy);
7551  FieldNames[1] = "__gr_top";
7552
7553  // void *__vr_top;
7554  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
7555  FieldNames[2] = "__vr_top";
7556
7557  // int __gr_offs;
7558  FieldTypes[3] = Context->IntTy;
7559  FieldNames[3] = "__gr_offs";
7560
7561  // int __vr_offs;
7562  FieldTypes[4] = Context->IntTy;
7563  FieldNames[4] = "__vr_offs";
7564
7565  // Create fields
7566  for (unsigned i = 0; i < NumFields; ++i) {
7567    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
7568                                         VaListTagDecl,
7569                                         SourceLocation(),
7570                                         SourceLocation(),
7571                                         &Context->Idents.get(FieldNames[i]),
7572                                         FieldTypes[i], /*TInfo=*/nullptr,
7573                                         /*BitWidth=*/nullptr,
7574                                         /*Mutable=*/false,
7575                                         ICIS_NoInit);
7576    Field->setAccess(AS_public);
7577    VaListTagDecl->addDecl(Field);
7578  }
7579  VaListTagDecl->completeDefinition();
7580  Context->VaListTagDecl = VaListTagDecl;
7581  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
7582
7583  // } __builtin_va_list;
7584  return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
7585}
7586
7587static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
7588  // typedef struct __va_list_tag {
7589  RecordDecl *VaListTagDecl;
7590
7591  VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
7592  VaListTagDecl->startDefinition();
7593
7594  const size_t NumFields = 5;
7595  QualType FieldTypes[NumFields];
7596  const char *FieldNames[NumFields];
7597
7598  //   unsigned char gpr;
7599  FieldTypes[0] = Context->UnsignedCharTy;
7600  FieldNames[0] = "gpr";
7601
7602  //   unsigned char fpr;
7603  FieldTypes[1] = Context->UnsignedCharTy;
7604  FieldNames[1] = "fpr";
7605
7606  //   unsigned short reserved;
7607  FieldTypes[2] = Context->UnsignedShortTy;
7608  FieldNames[2] = "reserved";
7609
7610  //   void* overflow_arg_area;
7611  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
7612  FieldNames[3] = "overflow_arg_area";
7613
7614  //   void* reg_save_area;
7615  FieldTypes[4] = Context->getPointerType(Context->VoidTy);
7616  FieldNames[4] = "reg_save_area";
7617
7618  // Create fields
7619  for (unsigned i = 0; i < NumFields; ++i) {
7620    FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
7621                                         SourceLocation(),
7622                                         SourceLocation(),
7623                                         &Context->Idents.get(FieldNames[i]),
7624                                         FieldTypes[i], /*TInfo=*/nullptr,
7625                                         /*BitWidth=*/nullptr,
7626                                         /*Mutable=*/false,
7627                                         ICIS_NoInit);
7628    Field->setAccess(AS_public);
7629    VaListTagDecl->addDecl(Field);
7630  }
7631  VaListTagDecl->completeDefinition();
7632  Context->VaListTagDecl = VaListTagDecl;
7633  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
7634
7635  // } __va_list_tag;
7636  TypedefDecl *VaListTagTypedefDecl =
7637      Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
7638
7639  QualType VaListTagTypedefType =
7640    Context->getTypedefType(VaListTagTypedefDecl);
7641
7642  // typedef __va_list_tag __builtin_va_list[1];
7643  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
7644  QualType VaListTagArrayType
7645    = Context->getConstantArrayType(VaListTagTypedefType,
7646                                    Size, nullptr, ArrayType::Normal, 0);
7647  return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
7648}
7649
7650static TypedefDecl *
7651CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
7652  // struct __va_list_tag {
7653  RecordDecl *VaListTagDecl;
7654  VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
7655  VaListTagDecl->startDefinition();
7656
7657  const size_t NumFields = 4;
7658  QualType FieldTypes[NumFields];
7659  const char *FieldNames[NumFields];
7660
7661  //   unsigned gp_offset;
7662  FieldTypes[0] = Context->UnsignedIntTy;
7663  FieldNames[0] = "gp_offset";
7664
7665  //   unsigned fp_offset;
7666  FieldTypes[1] = Context->UnsignedIntTy;
7667  FieldNames[1] = "fp_offset";
7668
7669  //   void* overflow_arg_area;
7670  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
7671  FieldNames[2] = "overflow_arg_area";
7672
7673  //   void* reg_save_area;
7674  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
7675  FieldNames[3] = "reg_save_area";
7676
7677  // Create fields
7678  for (unsigned i = 0; i < NumFields; ++i) {
7679    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
7680                                         VaListTagDecl,
7681                                         SourceLocation(),
7682                                         SourceLocation(),
7683                                         &Context->Idents.get(FieldNames[i]),
7684                                         FieldTypes[i], /*TInfo=*/nullptr,
7685                                         /*BitWidth=*/nullptr,
7686                                         /*Mutable=*/false,
7687                                         ICIS_NoInit);
7688    Field->setAccess(AS_public);
7689    VaListTagDecl->addDecl(Field);
7690  }
7691  VaListTagDecl->completeDefinition();
7692  Context->VaListTagDecl = VaListTagDecl;
7693  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
7694
7695  // };
7696
7697  // typedef struct __va_list_tag __builtin_va_list[1];
7698  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
7699  QualType VaListTagArrayType = Context->getConstantArrayType(
7700      VaListTagType, Size, nullptr, ArrayType::Normal, 0);
7701  return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
7702}
7703
7704static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
7705  // typedef int __builtin_va_list[4];
7706  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
7707  QualType IntArrayType = Context->getConstantArrayType(
7708      Context->IntTy, Size, nullptr, ArrayType::Normal, 0);
7709  return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
7710}
7711
7712static TypedefDecl *
7713CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
7714  // struct __va_list
7715  RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
7716  if (Context->getLangOpts().CPlusPlus) {
7717    // namespace std { struct __va_list {
7718    NamespaceDecl *NS;
7719    NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
7720                               Context->getTranslationUnitDecl(),
7721                               /*Inline*/false, SourceLocation(),
7722                               SourceLocation(), &Context->Idents.get("std"),
7723                               /*PrevDecl*/ nullptr);
7724    NS->setImplicit();
7725    VaListDecl->setDeclContext(NS);
7726  }
7727
7728  VaListDecl->startDefinition();
7729
7730  // void * __ap;
7731  FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
7732                                       VaListDecl,
7733                                       SourceLocation(),
7734                                       SourceLocation(),
7735                                       &Context->Idents.get("__ap"),
7736                                       Context->getPointerType(Context->VoidTy),
7737                                       /*TInfo=*/nullptr,
7738                                       /*BitWidth=*/nullptr,
7739                                       /*Mutable=*/false,
7740                                       ICIS_NoInit);
7741  Field->setAccess(AS_public);
7742  VaListDecl->addDecl(Field);
7743
7744  // };
7745  VaListDecl->completeDefinition();
7746  Context->VaListTagDecl = VaListDecl;
7747
7748  // typedef struct __va_list __builtin_va_list;
7749  QualType T = Context->getRecordType(VaListDecl);
7750  return Context->buildImplicitTypedef(T, "__builtin_va_list");
7751}
7752
7753static TypedefDecl *
7754CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
7755  // struct __va_list_tag {
7756  RecordDecl *VaListTagDecl;
7757  VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
7758  VaListTagDecl->startDefinition();
7759
7760  const size_t NumFields = 4;
7761  QualType FieldTypes[NumFields];
7762  const char *FieldNames[NumFields];
7763
7764  //   long __gpr;
7765  FieldTypes[0] = Context->LongTy;
7766  FieldNames[0] = "__gpr";
7767
7768  //   long __fpr;
7769  FieldTypes[1] = Context->LongTy;
7770  FieldNames[1] = "__fpr";
7771
7772  //   void *__overflow_arg_area;
7773  FieldTypes[2] = Context->getPointerType(Context->VoidTy);
7774  FieldNames[2] = "__overflow_arg_area";
7775
7776  //   void *__reg_save_area;
7777  FieldTypes[3] = Context->getPointerType(Context->VoidTy);
7778  FieldNames[3] = "__reg_save_area";
7779
7780  // Create fields
7781  for (unsigned i = 0; i < NumFields; ++i) {
7782    FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
7783                                         VaListTagDecl,
7784                                         SourceLocation(),
7785                                         SourceLocation(),
7786                                         &Context->Idents.get(FieldNames[i]),
7787                                         FieldTypes[i], /*TInfo=*/nullptr,
7788                                         /*BitWidth=*/nullptr,
7789                                         /*Mutable=*/false,
7790                                         ICIS_NoInit);
7791    Field->setAccess(AS_public);
7792    VaListTagDecl->addDecl(Field);
7793  }
7794  VaListTagDecl->completeDefinition();
7795  Context->VaListTagDecl = VaListTagDecl;
7796  QualType VaListTagType = Context->getRecordType(VaListTagDecl);
7797
7798  // };
7799
7800  // typedef __va_list_tag __builtin_va_list[1];
7801  llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
7802  QualType VaListTagArrayType = Context->getConstantArrayType(
7803      VaListTagType, Size, nullptr, ArrayType::Normal, 0);
7804
7805  return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
7806}
7807
7808static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
7809                                     TargetInfo::BuiltinVaListKind Kind) {
7810  switch (Kind) {
7811  case TargetInfo::CharPtrBuiltinVaList:
7812    return CreateCharPtrBuiltinVaListDecl(Context);
7813  case TargetInfo::VoidPtrBuiltinVaList:
7814    return CreateVoidPtrBuiltinVaListDecl(Context);
7815  case TargetInfo::AArch64ABIBuiltinVaList:
7816    return CreateAArch64ABIBuiltinVaListDecl(Context);
7817  case TargetInfo::PowerABIBuiltinVaList:
7818    return CreatePowerABIBuiltinVaListDecl(Context);
7819  case TargetInfo::X86_64ABIBuiltinVaList:
7820    return CreateX86_64ABIBuiltinVaListDecl(Context);
7821  case TargetInfo::PNaClABIBuiltinVaList:
7822    return CreatePNaClABIBuiltinVaListDecl(Context);
7823  case TargetInfo::AAPCSABIBuiltinVaList:
7824    return CreateAAPCSABIBuiltinVaListDecl(Context);
7825  case TargetInfo::SystemZBuiltinVaList:
7826    return CreateSystemZBuiltinVaListDecl(Context);
7827  }
7828
7829  llvm_unreachable("Unhandled __builtin_va_list type kind");
7830}
7831
7832TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
7833  if (!BuiltinVaListDecl) {
7834    BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
7835    assert(BuiltinVaListDecl->isImplicit());
7836  }
7837
7838  return BuiltinVaListDecl;
7839}
7840
7841Decl *ASTContext::getVaListTagDecl() const {
7842  // Force the creation of VaListTagDecl by building the __builtin_va_list
7843  // declaration.
7844  if (!VaListTagDecl)
7845    (void)getBuiltinVaListDecl();
7846
7847  return VaListTagDecl;
7848}
7849
7850TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const {
7851  if (!BuiltinMSVaListDecl)
7852    BuiltinMSVaListDecl = CreateMSVaListDecl(this);
7853
7854  return BuiltinMSVaListDecl;
7855}
7856
7857bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const {
7858  return BuiltinInfo.canBeRedeclared(FD->getBuiltinID());
7859}
7860
7861void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
7862  assert(ObjCConstantStringType.isNull() &&
7863         "'NSConstantString' type already set!");
7864
7865  ObjCConstantStringType = getObjCInterfaceType(Decl);
7866}
7867
7868/// Retrieve the template name that corresponds to a non-empty
7869/// lookup.
7870TemplateName
7871ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
7872                                      UnresolvedSetIterator End) const {
7873  unsigned size = End - Begin;
7874  assert(size > 1 && "set is not overloaded!");
7875
7876  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
7877                          size * sizeof(FunctionTemplateDecl*));
7878  auto *OT = new (memory) OverloadedTemplateStorage(size);
7879
7880  NamedDecl **Storage = OT->getStorage();
7881  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
7882    NamedDecl *D = *I;
7883    assert(isa<FunctionTemplateDecl>(D) ||
7884           isa<UnresolvedUsingValueDecl>(D) ||
7885           (isa<UsingShadowDecl>(D) &&
7886            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
7887    *Storage++ = D;
7888  }
7889
7890  return TemplateName(OT);
7891}
7892
7893/// Retrieve a template name representing an unqualified-id that has been
7894/// assumed to name a template for ADL purposes.
7895TemplateName ASTContext::getAssumedTemplateName(DeclarationName Name) const {
7896  auto *OT = new (*this) AssumedTemplateStorage(Name);
7897  return TemplateName(OT);
7898}
7899
7900/// Retrieve the template name that represents a qualified
7901/// template name such as \c std::vector.
7902TemplateName
7903ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
7904                                     bool TemplateKeyword,
7905                                     TemplateDecl *Template) const {
7906  assert(NNS && "Missing nested-name-specifier in qualified template name");
7907
7908  // FIXME: Canonicalization?
7909  llvm::FoldingSetNodeID ID;
7910  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
7911
7912  void *InsertPos = nullptr;
7913  QualifiedTemplateName *QTN =
7914    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
7915  if (!QTN) {
7916    QTN = new (*this, alignof(QualifiedTemplateName))
7917        QualifiedTemplateName(NNS, TemplateKeyword, Template);
7918    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
7919  }
7920
7921  return TemplateName(QTN);
7922}
7923
7924/// Retrieve the template name that represents a dependent
7925/// template name such as \c MetaFun::template apply.
7926TemplateName
7927ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
7928                                     const IdentifierInfo *Name) const {
7929  assert((!NNS || NNS->isDependent()) &&
7930         "Nested name specifier must be dependent");
7931
7932  llvm::FoldingSetNodeID ID;
7933  DependentTemplateName::Profile(ID, NNS, Name);
7934
7935  void *InsertPos = nullptr;
7936  DependentTemplateName *QTN =
7937    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
7938
7939  if (QTN)
7940    return TemplateName(QTN);
7941
7942  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
7943  if (CanonNNS == NNS) {
7944    QTN = new (*this, alignof(DependentTemplateName))
7945        DependentTemplateName(NNS, Name);
7946  } else {
7947    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
7948    QTN = new (*this, alignof(DependentTemplateName))
7949        DependentTemplateName(NNS, Name, Canon);
7950    DependentTemplateName *CheckQTN =
7951      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
7952    assert(!CheckQTN && "Dependent type name canonicalization broken");
7953    (void)CheckQTN;
7954  }
7955
7956  DependentTemplateNames.InsertNode(QTN, InsertPos);
7957  return TemplateName(QTN);
7958}
7959
7960/// Retrieve the template name that represents a dependent
7961/// template name such as \c MetaFun::template operator+.
7962TemplateName
7963ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
7964                                     OverloadedOperatorKind Operator) const {
7965  assert((!NNS || NNS->isDependent()) &&
7966         "Nested name specifier must be dependent");
7967
7968  llvm::FoldingSetNodeID ID;
7969  DependentTemplateName::Profile(ID, NNS, Operator);
7970
7971  void *InsertPos = nullptr;
7972  DependentTemplateName *QTN
7973    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
7974
7975  if (QTN)
7976    return TemplateName(QTN);
7977
7978  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
7979  if (CanonNNS == NNS) {
7980    QTN = new (*this, alignof(DependentTemplateName))
7981        DependentTemplateName(NNS, Operator);
7982  } else {
7983    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
7984    QTN = new (*this, alignof(DependentTemplateName))
7985        DependentTemplateName(NNS, Operator, Canon);
7986
7987    DependentTemplateName *CheckQTN
7988      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
7989    assert(!CheckQTN && "Dependent template name canonicalization broken");
7990    (void)CheckQTN;
7991  }
7992
7993  DependentTemplateNames.InsertNode(QTN, InsertPos);
7994  return TemplateName(QTN);
7995}
7996
7997TemplateName
7998ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
7999                                         TemplateName replacement) const {
8000  llvm::FoldingSetNodeID ID;
8001  SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
8002
8003  void *insertPos = nullptr;
8004  SubstTemplateTemplateParmStorage *subst
8005    = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
8006
8007  if (!subst) {
8008    subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
8009    SubstTemplateTemplateParms.InsertNode(subst, insertPos);
8010  }
8011
8012  return TemplateName(subst);
8013}
8014
8015TemplateName
8016ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
8017                                       const TemplateArgument &ArgPack) const {
8018  auto &Self = const_cast<ASTContext &>(*this);
8019  llvm::FoldingSetNodeID ID;
8020  SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
8021
8022  void *InsertPos = nullptr;
8023  SubstTemplateTemplateParmPackStorage *Subst
8024    = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
8025
8026  if (!Subst) {
8027    Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
8028                                                           ArgPack.pack_size(),
8029                                                         ArgPack.pack_begin());
8030    SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
8031  }
8032
8033  return TemplateName(Subst);
8034}
8035
8036/// getFromTargetType - Given one of the integer types provided by
8037/// TargetInfo, produce the corresponding type. The unsigned @p Type
8038/// is actually a value of type @c TargetInfo::IntType.
8039CanQualType ASTContext::getFromTargetType(unsigned Type) const {
8040  switch (Type) {
8041  case TargetInfo::NoInt: return {};
8042  case TargetInfo::SignedChar: return SignedCharTy;
8043  case TargetInfo::UnsignedChar: return UnsignedCharTy;
8044  case TargetInfo::SignedShort: return ShortTy;
8045  case TargetInfo::UnsignedShort: return UnsignedShortTy;
8046  case TargetInfo::SignedInt: return IntTy;
8047  case TargetInfo::UnsignedInt: return UnsignedIntTy;
8048  case TargetInfo::SignedLong: return LongTy;
8049  case TargetInfo::UnsignedLong: return UnsignedLongTy;
8050  case TargetInfo::SignedLongLong: return LongLongTy;
8051  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
8052  }
8053
8054  llvm_unreachable("Unhandled TargetInfo::IntType value");
8055}
8056
8057//===----------------------------------------------------------------------===//
8058//                        Type Predicates.
8059//===----------------------------------------------------------------------===//
8060
8061/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
8062/// garbage collection attribute.
8063///
8064Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
8065  if (getLangOpts().getGC() == LangOptions::NonGC)
8066    return Qualifiers::GCNone;
8067
8068  assert(getLangOpts().ObjC);
8069  Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
8070
8071  // Default behaviour under objective-C's gc is for ObjC pointers
8072  // (or pointers to them) be treated as though they were declared
8073  // as __strong.
8074  if (GCAttrs == Qualifiers::GCNone) {
8075    if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
8076      return Qualifiers::Strong;
8077    else if (Ty->isPointerType())
8078      return getObjCGCAttrKind(Ty->castAs<PointerType>()->getPointeeType());
8079  } else {
8080    // It's not valid to set GC attributes on anything that isn't a
8081    // pointer.
8082#ifndef NDEBUG
8083    QualType CT = Ty->getCanonicalTypeInternal();
8084    while (const auto *AT = dyn_cast<ArrayType>(CT))
8085      CT = AT->getElementType();
8086    assert(CT->isAnyPointerType() || CT->isBlockPointerType());
8087#endif
8088  }
8089  return GCAttrs;
8090}
8091
8092//===----------------------------------------------------------------------===//
8093//                        Type Compatibility Testing
8094//===----------------------------------------------------------------------===//
8095
8096/// areCompatVectorTypes - Return true if the two specified vector types are
8097/// compatible.
8098static bool areCompatVectorTypes(const VectorType *LHS,
8099                                 const VectorType *RHS) {
8100  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
8101  return LHS->getElementType() == RHS->getElementType() &&
8102         LHS->getNumElements() == RHS->getNumElements();
8103}
8104
8105bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
8106                                          QualType SecondVec) {
8107  assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
8108  assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
8109
8110  if (hasSameUnqualifiedType(FirstVec, SecondVec))
8111    return true;
8112
8113  // Treat Neon vector types and most AltiVec vector types as if they are the
8114  // equivalent GCC vector types.
8115  const auto *First = FirstVec->castAs<VectorType>();
8116  const auto *Second = SecondVec->castAs<VectorType>();
8117  if (First->getNumElements() == Second->getNumElements() &&
8118      hasSameType(First->getElementType(), Second->getElementType()) &&
8119      First->getVectorKind() != VectorType::AltiVecPixel &&
8120      First->getVectorKind() != VectorType::AltiVecBool &&
8121      Second->getVectorKind() != VectorType::AltiVecPixel &&
8122      Second->getVectorKind() != VectorType::AltiVecBool)
8123    return true;
8124
8125  return false;
8126}
8127
8128bool ASTContext::hasDirectOwnershipQualifier(QualType Ty) const {
8129  while (true) {
8130    // __strong id
8131    if (const AttributedType *Attr = dyn_cast<AttributedType>(Ty)) {
8132      if (Attr->getAttrKind() == attr::ObjCOwnership)
8133        return true;
8134
8135      Ty = Attr->getModifiedType();
8136
8137    // X *__strong (...)
8138    } else if (const ParenType *Paren = dyn_cast<ParenType>(Ty)) {
8139      Ty = Paren->getInnerType();
8140
8141    // We do not want to look through typedefs, typeof(expr),
8142    // typeof(type), or any other way that the type is somehow
8143    // abstracted.
8144    } else {
8145      return false;
8146    }
8147  }
8148}
8149
8150//===----------------------------------------------------------------------===//
8151// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
8152//===----------------------------------------------------------------------===//
8153
8154/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
8155/// inheritance hierarchy of 'rProto'.
8156bool
8157ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
8158                                           ObjCProtocolDecl *rProto) const {
8159  if (declaresSameEntity(lProto, rProto))
8160    return true;
8161  for (auto *PI : rProto->protocols())
8162    if (ProtocolCompatibleWithProtocol(lProto, PI))
8163      return true;
8164  return false;
8165}
8166
8167/// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and
8168/// Class<pr1, ...>.
8169bool ASTContext::ObjCQualifiedClassTypesAreCompatible(
8170    const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs) {
8171  for (auto *lhsProto : lhs->quals()) {
8172    bool match = false;
8173    for (auto *rhsProto : rhs->quals()) {
8174      if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
8175        match = true;
8176        break;
8177      }
8178    }
8179    if (!match)
8180      return false;
8181  }
8182  return true;
8183}
8184
8185/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
8186/// ObjCQualifiedIDType.
8187bool ASTContext::ObjCQualifiedIdTypesAreCompatible(
8188    const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs,
8189    bool compare) {
8190  // Allow id<P..> and an 'id' in all cases.
8191  if (lhs->isObjCIdType() || rhs->isObjCIdType())
8192    return true;
8193
8194  // Don't allow id<P..> to convert to Class or Class<P..> in either direction.
8195  if (lhs->isObjCClassType() || lhs->isObjCQualifiedClassType() ||
8196      rhs->isObjCClassType() || rhs->isObjCQualifiedClassType())
8197    return false;
8198
8199  if (lhs->isObjCQualifiedIdType()) {
8200    if (rhs->qual_empty()) {
8201      // If the RHS is a unqualified interface pointer "NSString*",
8202      // make sure we check the class hierarchy.
8203      if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
8204        for (auto *I : lhs->quals()) {
8205          // when comparing an id<P> on lhs with a static type on rhs,
8206          // see if static class implements all of id's protocols, directly or
8207          // through its super class and categories.
8208          if (!rhsID->ClassImplementsProtocol(I, true))
8209            return false;
8210        }
8211      }
8212      // If there are no qualifiers and no interface, we have an 'id'.
8213      return true;
8214    }
8215    // Both the right and left sides have qualifiers.
8216    for (auto *lhsProto : lhs->quals()) {
8217      bool match = false;
8218
8219      // when comparing an id<P> on lhs with a static type on rhs,
8220      // see if static class implements all of id's protocols, directly or
8221      // through its super class and categories.
8222      for (auto *rhsProto : rhs->quals()) {
8223        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
8224            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
8225          match = true;
8226          break;
8227        }
8228      }
8229      // If the RHS is a qualified interface pointer "NSString<P>*",
8230      // make sure we check the class hierarchy.
8231      if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
8232        for (auto *I : lhs->quals()) {
8233          // when comparing an id<P> on lhs with a static type on rhs,
8234          // see if static class implements all of id's protocols, directly or
8235          // through its super class and categories.
8236          if (rhsID->ClassImplementsProtocol(I, true)) {
8237            match = true;
8238            break;
8239          }
8240        }
8241      }
8242      if (!match)
8243        return false;
8244    }
8245
8246    return true;
8247  }
8248
8249  assert(rhs->isObjCQualifiedIdType() && "One of the LHS/RHS should be id<x>");
8250
8251  if (lhs->getInterfaceType()) {
8252    // If both the right and left sides have qualifiers.
8253    for (auto *lhsProto : lhs->quals()) {
8254      bool match = false;
8255
8256      // when comparing an id<P> on rhs with a static type on lhs,
8257      // see if static class implements all of id's protocols, directly or
8258      // through its super class and categories.
8259      // First, lhs protocols in the qualifier list must be found, direct
8260      // or indirect in rhs's qualifier list or it is a mismatch.
8261      for (auto *rhsProto : rhs->quals()) {
8262        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
8263            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
8264          match = true;
8265          break;
8266        }
8267      }
8268      if (!match)
8269        return false;
8270    }
8271
8272    // Static class's protocols, or its super class or category protocols
8273    // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
8274    if (ObjCInterfaceDecl *lhsID = lhs->getInterfaceDecl()) {
8275      llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
8276      CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
8277      // This is rather dubious but matches gcc's behavior. If lhs has
8278      // no type qualifier and its class has no static protocol(s)
8279      // assume that it is mismatch.
8280      if (LHSInheritedProtocols.empty() && lhs->qual_empty())
8281        return false;
8282      for (auto *lhsProto : LHSInheritedProtocols) {
8283        bool match = false;
8284        for (auto *rhsProto : rhs->quals()) {
8285          if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
8286              (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
8287            match = true;
8288            break;
8289          }
8290        }
8291        if (!match)
8292          return false;
8293      }
8294    }
8295    return true;
8296  }
8297  return false;
8298}
8299
8300/// canAssignObjCInterfaces - Return true if the two interface types are
8301/// compatible for assignment from RHS to LHS.  This handles validation of any
8302/// protocol qualifiers on the LHS or RHS.
8303bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
8304                                         const ObjCObjectPointerType *RHSOPT) {
8305  const ObjCObjectType* LHS = LHSOPT->getObjectType();
8306  const ObjCObjectType* RHS = RHSOPT->getObjectType();
8307
8308  // If either type represents the built-in 'id' type, return true.
8309  if (LHS->isObjCUnqualifiedId() || RHS->isObjCUnqualifiedId())
8310    return true;
8311
8312  // Function object that propagates a successful result or handles
8313  // __kindof types.
8314  auto finish = [&](bool succeeded) -> bool {
8315    if (succeeded)
8316      return true;
8317
8318    if (!RHS->isKindOfType())
8319      return false;
8320
8321    // Strip off __kindof and protocol qualifiers, then check whether
8322    // we can assign the other way.
8323    return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this),
8324                                   LHSOPT->stripObjCKindOfTypeAndQuals(*this));
8325  };
8326
8327  // Casts from or to id<P> are allowed when the other side has compatible
8328  // protocols.
8329  if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) {
8330    return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false));
8331  }
8332
8333  // Verify protocol compatibility for casts from Class<P1> to Class<P2>.
8334  if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) {
8335    return finish(ObjCQualifiedClassTypesAreCompatible(LHSOPT, RHSOPT));
8336  }
8337
8338  // Casts from Class to Class<Foo>, or vice-versa, are allowed.
8339  if (LHS->isObjCClass() && RHS->isObjCClass()) {
8340    return true;
8341  }
8342
8343  // If we have 2 user-defined types, fall into that path.
8344  if (LHS->getInterface() && RHS->getInterface()) {
8345    return finish(canAssignObjCInterfaces(LHS, RHS));
8346  }
8347
8348  return false;
8349}
8350
8351/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
8352/// for providing type-safety for objective-c pointers used to pass/return
8353/// arguments in block literals. When passed as arguments, passing 'A*' where
8354/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
8355/// not OK. For the return type, the opposite is not OK.
8356bool ASTContext::canAssignObjCInterfacesInBlockPointer(
8357                                         const ObjCObjectPointerType *LHSOPT,
8358                                         const ObjCObjectPointerType *RHSOPT,
8359                                         bool BlockReturnType) {
8360
8361  // Function object that propagates a successful result or handles
8362  // __kindof types.
8363  auto finish = [&](bool succeeded) -> bool {
8364    if (succeeded)
8365      return true;
8366
8367    const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT;
8368    if (!Expected->isKindOfType())
8369      return false;
8370
8371    // Strip off __kindof and protocol qualifiers, then check whether
8372    // we can assign the other way.
8373    return canAssignObjCInterfacesInBlockPointer(
8374             RHSOPT->stripObjCKindOfTypeAndQuals(*this),
8375             LHSOPT->stripObjCKindOfTypeAndQuals(*this),
8376             BlockReturnType);
8377  };
8378
8379  if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
8380    return true;
8381
8382  if (LHSOPT->isObjCBuiltinType()) {
8383    return finish(RHSOPT->isObjCBuiltinType() ||
8384                  RHSOPT->isObjCQualifiedIdType());
8385  }
8386
8387  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
8388    return finish(ObjCQualifiedIdTypesAreCompatible(
8389        (BlockReturnType ? LHSOPT : RHSOPT),
8390        (BlockReturnType ? RHSOPT : LHSOPT), false));
8391
8392  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
8393  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
8394  if (LHS && RHS)  { // We have 2 user-defined types.
8395    if (LHS != RHS) {
8396      if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
8397        return finish(BlockReturnType);
8398      if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
8399        return finish(!BlockReturnType);
8400    }
8401    else
8402      return true;
8403  }
8404  return false;
8405}
8406
8407/// Comparison routine for Objective-C protocols to be used with
8408/// llvm::array_pod_sort.
8409static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs,
8410                                      ObjCProtocolDecl * const *rhs) {
8411  return (*lhs)->getName().compare((*rhs)->getName());
8412}
8413
8414/// getIntersectionOfProtocols - This routine finds the intersection of set
8415/// of protocols inherited from two distinct objective-c pointer objects with
8416/// the given common base.
8417/// It is used to build composite qualifier list of the composite type of
8418/// the conditional expression involving two objective-c pointer objects.
8419static
8420void getIntersectionOfProtocols(ASTContext &Context,
8421                                const ObjCInterfaceDecl *CommonBase,
8422                                const ObjCObjectPointerType *LHSOPT,
8423                                const ObjCObjectPointerType *RHSOPT,
8424      SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) {
8425
8426  const ObjCObjectType* LHS = LHSOPT->getObjectType();
8427  const ObjCObjectType* RHS = RHSOPT->getObjectType();
8428  assert(LHS->getInterface() && "LHS must have an interface base");
8429  assert(RHS->getInterface() && "RHS must have an interface base");
8430
8431  // Add all of the protocols for the LHS.
8432  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet;
8433
8434  // Start with the protocol qualifiers.
8435  for (auto proto : LHS->quals()) {
8436    Context.CollectInheritedProtocols(proto, LHSProtocolSet);
8437  }
8438
8439  // Also add the protocols associated with the LHS interface.
8440  Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet);
8441
8442  // Add all of the protocols for the RHS.
8443  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet;
8444
8445  // Start with the protocol qualifiers.
8446  for (auto proto : RHS->quals()) {
8447    Context.CollectInheritedProtocols(proto, RHSProtocolSet);
8448  }
8449
8450  // Also add the protocols associated with the RHS interface.
8451  Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet);
8452
8453  // Compute the intersection of the collected protocol sets.
8454  for (auto proto : LHSProtocolSet) {
8455    if (RHSProtocolSet.count(proto))
8456      IntersectionSet.push_back(proto);
8457  }
8458
8459  // Compute the set of protocols that is implied by either the common type or
8460  // the protocols within the intersection.
8461  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols;
8462  Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols);
8463
8464  // Remove any implied protocols from the list of inherited protocols.
8465  if (!ImpliedProtocols.empty()) {
8466    IntersectionSet.erase(
8467      std::remove_if(IntersectionSet.begin(),
8468                     IntersectionSet.end(),
8469                     [&](ObjCProtocolDecl *proto) -> bool {
8470                       return ImpliedProtocols.count(proto) > 0;
8471                     }),
8472      IntersectionSet.end());
8473  }
8474
8475  // Sort the remaining protocols by name.
8476  llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(),
8477                       compareObjCProtocolsByName);
8478}
8479
8480/// Determine whether the first type is a subtype of the second.
8481static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs,
8482                                     QualType rhs) {
8483  // Common case: two object pointers.
8484  const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>();
8485  const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
8486  if (lhsOPT && rhsOPT)
8487    return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT);
8488
8489  // Two block pointers.
8490  const auto *lhsBlock = lhs->getAs<BlockPointerType>();
8491  const auto *rhsBlock = rhs->getAs<BlockPointerType>();
8492  if (lhsBlock && rhsBlock)
8493    return ctx.typesAreBlockPointerCompatible(lhs, rhs);
8494
8495  // If either is an unqualified 'id' and the other is a block, it's
8496  // acceptable.
8497  if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) ||
8498      (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock))
8499    return true;
8500
8501  return false;
8502}
8503
8504// Check that the given Objective-C type argument lists are equivalent.
8505static bool sameObjCTypeArgs(ASTContext &ctx,
8506                             const ObjCInterfaceDecl *iface,
8507                             ArrayRef<QualType> lhsArgs,
8508                             ArrayRef<QualType> rhsArgs,
8509                             bool stripKindOf) {
8510  if (lhsArgs.size() != rhsArgs.size())
8511    return false;
8512
8513  ObjCTypeParamList *typeParams = iface->getTypeParamList();
8514  for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) {
8515    if (ctx.hasSameType(lhsArgs[i], rhsArgs[i]))
8516      continue;
8517
8518    switch (typeParams->begin()[i]->getVariance()) {
8519    case ObjCTypeParamVariance::Invariant:
8520      if (!stripKindOf ||
8521          !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx),
8522                           rhsArgs[i].stripObjCKindOfType(ctx))) {
8523        return false;
8524      }
8525      break;
8526
8527    case ObjCTypeParamVariance::Covariant:
8528      if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i]))
8529        return false;
8530      break;
8531
8532    case ObjCTypeParamVariance::Contravariant:
8533      if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i]))
8534        return false;
8535      break;
8536    }
8537  }
8538
8539  return true;
8540}
8541
8542QualType ASTContext::areCommonBaseCompatible(
8543           const ObjCObjectPointerType *Lptr,
8544           const ObjCObjectPointerType *Rptr) {
8545  const ObjCObjectType *LHS = Lptr->getObjectType();
8546  const ObjCObjectType *RHS = Rptr->getObjectType();
8547  const ObjCInterfaceDecl* LDecl = LHS->getInterface();
8548  const ObjCInterfaceDecl* RDecl = RHS->getInterface();
8549
8550  if (!LDecl || !RDecl)
8551    return {};
8552
8553  // When either LHS or RHS is a kindof type, we should return a kindof type.
8554  // For example, for common base of kindof(ASub1) and kindof(ASub2), we return
8555  // kindof(A).
8556  bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType();
8557
8558  // Follow the left-hand side up the class hierarchy until we either hit a
8559  // root or find the RHS. Record the ancestors in case we don't find it.
8560  llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4>
8561    LHSAncestors;
8562  while (true) {
8563    // Record this ancestor. We'll need this if the common type isn't in the
8564    // path from the LHS to the root.
8565    LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS;
8566
8567    if (declaresSameEntity(LHS->getInterface(), RDecl)) {
8568      // Get the type arguments.
8569      ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten();
8570      bool anyChanges = false;
8571      if (LHS->isSpecialized() && RHS->isSpecialized()) {
8572        // Both have type arguments, compare them.
8573        if (!sameObjCTypeArgs(*this, LHS->getInterface(),
8574                              LHS->getTypeArgs(), RHS->getTypeArgs(),
8575                              /*stripKindOf=*/true))
8576          return {};
8577      } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
8578        // If only one has type arguments, the result will not have type
8579        // arguments.
8580        LHSTypeArgs = {};
8581        anyChanges = true;
8582      }
8583
8584      // Compute the intersection of protocols.
8585      SmallVector<ObjCProtocolDecl *, 8> Protocols;
8586      getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr,
8587                                 Protocols);
8588      if (!Protocols.empty())
8589        anyChanges = true;
8590
8591      // If anything in the LHS will have changed, build a new result type.
8592      // If we need to return a kindof type but LHS is not a kindof type, we
8593      // build a new result type.
8594      if (anyChanges || LHS->isKindOfType() != anyKindOf) {
8595        QualType Result = getObjCInterfaceType(LHS->getInterface());
8596        Result = getObjCObjectType(Result, LHSTypeArgs, Protocols,
8597                                   anyKindOf || LHS->isKindOfType());
8598        return getObjCObjectPointerType(Result);
8599      }
8600
8601      return getObjCObjectPointerType(QualType(LHS, 0));
8602    }
8603
8604    // Find the superclass.
8605    QualType LHSSuperType = LHS->getSuperClassType();
8606    if (LHSSuperType.isNull())
8607      break;
8608
8609    LHS = LHSSuperType->castAs<ObjCObjectType>();
8610  }
8611
8612  // We didn't find anything by following the LHS to its root; now check
8613  // the RHS against the cached set of ancestors.
8614  while (true) {
8615    auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl());
8616    if (KnownLHS != LHSAncestors.end()) {
8617      LHS = KnownLHS->second;
8618
8619      // Get the type arguments.
8620      ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten();
8621      bool anyChanges = false;
8622      if (LHS->isSpecialized() && RHS->isSpecialized()) {
8623        // Both have type arguments, compare them.
8624        if (!sameObjCTypeArgs(*this, LHS->getInterface(),
8625                              LHS->getTypeArgs(), RHS->getTypeArgs(),
8626                              /*stripKindOf=*/true))
8627          return {};
8628      } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
8629        // If only one has type arguments, the result will not have type
8630        // arguments.
8631        RHSTypeArgs = {};
8632        anyChanges = true;
8633      }
8634
8635      // Compute the intersection of protocols.
8636      SmallVector<ObjCProtocolDecl *, 8> Protocols;
8637      getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr,
8638                                 Protocols);
8639      if (!Protocols.empty())
8640        anyChanges = true;
8641
8642      // If we need to return a kindof type but RHS is not a kindof type, we
8643      // build a new result type.
8644      if (anyChanges || RHS->isKindOfType() != anyKindOf) {
8645        QualType Result = getObjCInterfaceType(RHS->getInterface());
8646        Result = getObjCObjectType(Result, RHSTypeArgs, Protocols,
8647                                   anyKindOf || RHS->isKindOfType());
8648        return getObjCObjectPointerType(Result);
8649      }
8650
8651      return getObjCObjectPointerType(QualType(RHS, 0));
8652    }
8653
8654    // Find the superclass of the RHS.
8655    QualType RHSSuperType = RHS->getSuperClassType();
8656    if (RHSSuperType.isNull())
8657      break;
8658
8659    RHS = RHSSuperType->castAs<ObjCObjectType>();
8660  }
8661
8662  return {};
8663}
8664
8665bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
8666                                         const ObjCObjectType *RHS) {
8667  assert(LHS->getInterface() && "LHS is not an interface type");
8668  assert(RHS->getInterface() && "RHS is not an interface type");
8669
8670  // Verify that the base decls are compatible: the RHS must be a subclass of
8671  // the LHS.
8672  ObjCInterfaceDecl *LHSInterface = LHS->getInterface();
8673  bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface());
8674  if (!IsSuperClass)
8675    return false;
8676
8677  // If the LHS has protocol qualifiers, determine whether all of them are
8678  // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the
8679  // LHS).
8680  if (LHS->getNumProtocols() > 0) {
8681    // OK if conversion of LHS to SuperClass results in narrowing of types
8682    // ; i.e., SuperClass may implement at least one of the protocols
8683    // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
8684    // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
8685    llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
8686    CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
8687    // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
8688    // qualifiers.
8689    for (auto *RHSPI : RHS->quals())
8690      CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols);
8691    // If there is no protocols associated with RHS, it is not a match.
8692    if (SuperClassInheritedProtocols.empty())
8693      return false;
8694
8695    for (const auto *LHSProto : LHS->quals()) {
8696      bool SuperImplementsProtocol = false;
8697      for (auto *SuperClassProto : SuperClassInheritedProtocols)
8698        if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
8699          SuperImplementsProtocol = true;
8700          break;
8701        }
8702      if (!SuperImplementsProtocol)
8703        return false;
8704    }
8705  }
8706
8707  // If the LHS is specialized, we may need to check type arguments.
8708  if (LHS->isSpecialized()) {
8709    // Follow the superclass chain until we've matched the LHS class in the
8710    // hierarchy. This substitutes type arguments through.
8711    const ObjCObjectType *RHSSuper = RHS;
8712    while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface))
8713      RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>();
8714
8715    // If the RHS is specializd, compare type arguments.
8716    if (RHSSuper->isSpecialized() &&
8717        !sameObjCTypeArgs(*this, LHS->getInterface(),
8718                          LHS->getTypeArgs(), RHSSuper->getTypeArgs(),
8719                          /*stripKindOf=*/true)) {
8720      return false;
8721    }
8722  }
8723
8724  return true;
8725}
8726
8727bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
8728  // get the "pointed to" types
8729  const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
8730  const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
8731
8732  if (!LHSOPT || !RHSOPT)
8733    return false;
8734
8735  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
8736         canAssignObjCInterfaces(RHSOPT, LHSOPT);
8737}
8738
8739bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
8740  return canAssignObjCInterfaces(
8741                getObjCObjectPointerType(To)->getAs<ObjCObjectPointerType>(),
8742                getObjCObjectPointerType(From)->getAs<ObjCObjectPointerType>());
8743}
8744
8745/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
8746/// both shall have the identically qualified version of a compatible type.
8747/// C99 6.2.7p1: Two types have compatible types if their types are the
8748/// same. See 6.7.[2,3,5] for additional rules.
8749bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
8750                                    bool CompareUnqualified) {
8751  if (getLangOpts().CPlusPlus)
8752    return hasSameType(LHS, RHS);
8753
8754  return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
8755}
8756
8757bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
8758  return typesAreCompatible(LHS, RHS);
8759}
8760
8761bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
8762  return !mergeTypes(LHS, RHS, true).isNull();
8763}
8764
8765/// mergeTransparentUnionType - if T is a transparent union type and a member
8766/// of T is compatible with SubType, return the merged type, else return
8767/// QualType()
8768QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
8769                                               bool OfBlockPointer,
8770                                               bool Unqualified) {
8771  if (const RecordType *UT = T->getAsUnionType()) {
8772    RecordDecl *UD = UT->getDecl();
8773    if (UD->hasAttr<TransparentUnionAttr>()) {
8774      for (const auto *I : UD->fields()) {
8775        QualType ET = I->getType().getUnqualifiedType();
8776        QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
8777        if (!MT.isNull())
8778          return MT;
8779      }
8780    }
8781  }
8782
8783  return {};
8784}
8785
8786/// mergeFunctionParameterTypes - merge two types which appear as function
8787/// parameter types
8788QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
8789                                                 bool OfBlockPointer,
8790                                                 bool Unqualified) {
8791  // GNU extension: two types are compatible if they appear as a function
8792  // argument, one of the types is a transparent union type and the other
8793  // type is compatible with a union member
8794  QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
8795                                              Unqualified);
8796  if (!lmerge.isNull())
8797    return lmerge;
8798
8799  QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
8800                                              Unqualified);
8801  if (!rmerge.isNull())
8802    return rmerge;
8803
8804  return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
8805}
8806
8807QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
8808                                        bool OfBlockPointer,
8809                                        bool Unqualified) {
8810  const auto *lbase = lhs->castAs<FunctionType>();
8811  const auto *rbase = rhs->castAs<FunctionType>();
8812  const auto *lproto = dyn_cast<FunctionProtoType>(lbase);
8813  const auto *rproto = dyn_cast<FunctionProtoType>(rbase);
8814  bool allLTypes = true;
8815  bool allRTypes = true;
8816
8817  // Check return type
8818  QualType retType;
8819  if (OfBlockPointer) {
8820    QualType RHS = rbase->getReturnType();
8821    QualType LHS = lbase->getReturnType();
8822    bool UnqualifiedResult = Unqualified;
8823    if (!UnqualifiedResult)
8824      UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
8825    retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
8826  }
8827  else
8828    retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
8829                         Unqualified);
8830  if (retType.isNull())
8831    return {};
8832
8833  if (Unqualified)
8834    retType = retType.getUnqualifiedType();
8835
8836  CanQualType LRetType = getCanonicalType(lbase->getReturnType());
8837  CanQualType RRetType = getCanonicalType(rbase->getReturnType());
8838  if (Unqualified) {
8839    LRetType = LRetType.getUnqualifiedType();
8840    RRetType = RRetType.getUnqualifiedType();
8841  }
8842
8843  if (getCanonicalType(retType) != LRetType)
8844    allLTypes = false;
8845  if (getCanonicalType(retType) != RRetType)
8846    allRTypes = false;
8847
8848  // FIXME: double check this
8849  // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
8850  //                           rbase->getRegParmAttr() != 0 &&
8851  //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()?
8852  FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
8853  FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
8854
8855  // Compatible functions must have compatible calling conventions
8856  if (lbaseInfo.getCC() != rbaseInfo.getCC())
8857    return {};
8858
8859  // Regparm is part of the calling convention.
8860  if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
8861    return {};
8862  if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
8863    return {};
8864
8865  if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
8866    return {};
8867  if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs())
8868    return {};
8869  if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck())
8870    return {};
8871
8872  // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
8873  bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
8874
8875  if (lbaseInfo.getNoReturn() != NoReturn)
8876    allLTypes = false;
8877  if (rbaseInfo.getNoReturn() != NoReturn)
8878    allRTypes = false;
8879
8880  FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
8881
8882  if (lproto && rproto) { // two C99 style function prototypes
8883    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
8884           "C++ shouldn't be here");
8885    // Compatible functions must have the same number of parameters
8886    if (lproto->getNumParams() != rproto->getNumParams())
8887      return {};
8888
8889    // Variadic and non-variadic functions aren't compatible
8890    if (lproto->isVariadic() != rproto->isVariadic())
8891      return {};
8892
8893    if (lproto->getMethodQuals() != rproto->getMethodQuals())
8894      return {};
8895
8896    SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos;
8897    bool canUseLeft, canUseRight;
8898    if (!mergeExtParameterInfo(lproto, rproto, canUseLeft, canUseRight,
8899                               newParamInfos))
8900      return {};
8901
8902    if (!canUseLeft)
8903      allLTypes = false;
8904    if (!canUseRight)
8905      allRTypes = false;
8906
8907    // Check parameter type compatibility
8908    SmallVector<QualType, 10> types;
8909    for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
8910      QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
8911      QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
8912      QualType paramType = mergeFunctionParameterTypes(
8913          lParamType, rParamType, OfBlockPointer, Unqualified);
8914      if (paramType.isNull())
8915        return {};
8916
8917      if (Unqualified)
8918        paramType = paramType.getUnqualifiedType();
8919
8920      types.push_back(paramType);
8921      if (Unqualified) {
8922        lParamType = lParamType.getUnqualifiedType();
8923        rParamType = rParamType.getUnqualifiedType();
8924      }
8925
8926      if (getCanonicalType(paramType) != getCanonicalType(lParamType))
8927        allLTypes = false;
8928      if (getCanonicalType(paramType) != getCanonicalType(rParamType))
8929        allRTypes = false;
8930    }
8931
8932    if (allLTypes) return lhs;
8933    if (allRTypes) return rhs;
8934
8935    FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
8936    EPI.ExtInfo = einfo;
8937    EPI.ExtParameterInfos =
8938        newParamInfos.empty() ? nullptr : newParamInfos.data();
8939    return getFunctionType(retType, types, EPI);
8940  }
8941
8942  if (lproto) allRTypes = false;
8943  if (rproto) allLTypes = false;
8944
8945  const FunctionProtoType *proto = lproto ? lproto : rproto;
8946  if (proto) {
8947    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
8948    if (proto->isVariadic())
8949      return {};
8950    // Check that the types are compatible with the types that
8951    // would result from default argument promotions (C99 6.7.5.3p15).
8952    // The only types actually affected are promotable integer
8953    // types and floats, which would be passed as a different
8954    // type depending on whether the prototype is visible.
8955    for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
8956      QualType paramTy = proto->getParamType(i);
8957
8958      // Look at the converted type of enum types, since that is the type used
8959      // to pass enum values.
8960      if (const auto *Enum = paramTy->getAs<EnumType>()) {
8961        paramTy = Enum->getDecl()->getIntegerType();
8962        if (paramTy.isNull())
8963          return {};
8964      }
8965
8966      if (paramTy->isPromotableIntegerType() ||
8967          getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
8968        return {};
8969    }
8970
8971    if (allLTypes) return lhs;
8972    if (allRTypes) return rhs;
8973
8974    FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
8975    EPI.ExtInfo = einfo;
8976    return getFunctionType(retType, proto->getParamTypes(), EPI);
8977  }
8978
8979  if (allLTypes) return lhs;
8980  if (allRTypes) return rhs;
8981  return getFunctionNoProtoType(retType, einfo);
8982}
8983
8984/// Given that we have an enum type and a non-enum type, try to merge them.
8985static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
8986                                     QualType other, bool isBlockReturnType) {
8987  // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
8988  // a signed integer type, or an unsigned integer type.
8989  // Compatibility is based on the underlying type, not the promotion
8990  // type.
8991  QualType underlyingType = ET->getDecl()->getIntegerType();
8992  if (underlyingType.isNull())
8993    return {};
8994  if (Context.hasSameType(underlyingType, other))
8995    return other;
8996
8997  // In block return types, we're more permissive and accept any
8998  // integral type of the same size.
8999  if (isBlockReturnType && other->isIntegerType() &&
9000      Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
9001    return other;
9002
9003  return {};
9004}
9005
9006QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
9007                                bool OfBlockPointer,
9008                                bool Unqualified, bool BlockReturnType) {
9009  // C++ [expr]: If an expression initially has the type "reference to T", the
9010  // type is adjusted to "T" prior to any further analysis, the expression
9011  // designates the object or function denoted by the reference, and the
9012  // expression is an lvalue unless the reference is an rvalue reference and
9013  // the expression is a function call (possibly inside parentheses).
9014  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
9015  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
9016
9017  if (Unqualified) {
9018    LHS = LHS.getUnqualifiedType();
9019    RHS = RHS.getUnqualifiedType();
9020  }
9021
9022  QualType LHSCan = getCanonicalType(LHS),
9023           RHSCan = getCanonicalType(RHS);
9024
9025  // If two types are identical, they are compatible.
9026  if (LHSCan == RHSCan)
9027    return LHS;
9028
9029  // If the qualifiers are different, the types aren't compatible... mostly.
9030  Qualifiers LQuals = LHSCan.getLocalQualifiers();
9031  Qualifiers RQuals = RHSCan.getLocalQualifiers();
9032  if (LQuals != RQuals) {
9033    // If any of these qualifiers are different, we have a type
9034    // mismatch.
9035    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
9036        LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
9037        LQuals.getObjCLifetime() != RQuals.getObjCLifetime() ||
9038        LQuals.hasUnaligned() != RQuals.hasUnaligned())
9039      return {};
9040
9041    // Exactly one GC qualifier difference is allowed: __strong is
9042    // okay if the other type has no GC qualifier but is an Objective
9043    // C object pointer (i.e. implicitly strong by default).  We fix
9044    // this by pretending that the unqualified type was actually
9045    // qualified __strong.
9046    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
9047    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
9048    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
9049
9050    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
9051      return {};
9052
9053    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
9054      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
9055    }
9056    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
9057      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
9058    }
9059    return {};
9060  }
9061
9062  // Okay, qualifiers are equal.
9063
9064  Type::TypeClass LHSClass = LHSCan->getTypeClass();
9065  Type::TypeClass RHSClass = RHSCan->getTypeClass();
9066
9067  // We want to consider the two function types to be the same for these
9068  // comparisons, just force one to the other.
9069  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
9070  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
9071
9072  // Same as above for arrays
9073  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
9074    LHSClass = Type::ConstantArray;
9075  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
9076    RHSClass = Type::ConstantArray;
9077
9078  // ObjCInterfaces are just specialized ObjCObjects.
9079  if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
9080  if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
9081
9082  // Canonicalize ExtVector -> Vector.
9083  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
9084  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
9085
9086  // If the canonical type classes don't match.
9087  if (LHSClass != RHSClass) {
9088    // Note that we only have special rules for turning block enum
9089    // returns into block int returns, not vice-versa.
9090    if (const auto *ETy = LHS->getAs<EnumType>()) {
9091      return mergeEnumWithInteger(*this, ETy, RHS, false);
9092    }
9093    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
9094      return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
9095    }
9096    // allow block pointer type to match an 'id' type.
9097    if (OfBlockPointer && !BlockReturnType) {
9098       if (LHS->isObjCIdType() && RHS->isBlockPointerType())
9099         return LHS;
9100      if (RHS->isObjCIdType() && LHS->isBlockPointerType())
9101        return RHS;
9102    }
9103
9104    return {};
9105  }
9106
9107  // The canonical type classes match.
9108  switch (LHSClass) {
9109#define TYPE(Class, Base)
9110#define ABSTRACT_TYPE(Class, Base)
9111#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
9112#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
9113#define DEPENDENT_TYPE(Class, Base) case Type::Class:
9114#include "clang/AST/TypeNodes.inc"
9115    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
9116
9117  case Type::Auto:
9118  case Type::DeducedTemplateSpecialization:
9119  case Type::LValueReference:
9120  case Type::RValueReference:
9121  case Type::MemberPointer:
9122    llvm_unreachable("C++ should never be in mergeTypes");
9123
9124  case Type::ObjCInterface:
9125  case Type::IncompleteArray:
9126  case Type::VariableArray:
9127  case Type::FunctionProto:
9128  case Type::ExtVector:
9129    llvm_unreachable("Types are eliminated above");
9130
9131  case Type::Pointer:
9132  {
9133    // Merge two pointer types, while trying to preserve typedef info
9134    QualType LHSPointee = LHS->castAs<PointerType>()->getPointeeType();
9135    QualType RHSPointee = RHS->castAs<PointerType>()->getPointeeType();
9136    if (Unqualified) {
9137      LHSPointee = LHSPointee.getUnqualifiedType();
9138      RHSPointee = RHSPointee.getUnqualifiedType();
9139    }
9140    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
9141                                     Unqualified);
9142    if (ResultType.isNull())
9143      return {};
9144    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
9145      return LHS;
9146    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
9147      return RHS;
9148    return getPointerType(ResultType);
9149  }
9150  case Type::BlockPointer:
9151  {
9152    // Merge two block pointer types, while trying to preserve typedef info
9153    QualType LHSPointee = LHS->castAs<BlockPointerType>()->getPointeeType();
9154    QualType RHSPointee = RHS->castAs<BlockPointerType>()->getPointeeType();
9155    if (Unqualified) {
9156      LHSPointee = LHSPointee.getUnqualifiedType();
9157      RHSPointee = RHSPointee.getUnqualifiedType();
9158    }
9159    if (getLangOpts().OpenCL) {
9160      Qualifiers LHSPteeQual = LHSPointee.getQualifiers();
9161      Qualifiers RHSPteeQual = RHSPointee.getQualifiers();
9162      // Blocks can't be an expression in a ternary operator (OpenCL v2.0
9163      // 6.12.5) thus the following check is asymmetric.
9164      if (!LHSPteeQual.isAddressSpaceSupersetOf(RHSPteeQual))
9165        return {};
9166      LHSPteeQual.removeAddressSpace();
9167      RHSPteeQual.removeAddressSpace();
9168      LHSPointee =
9169          QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue());
9170      RHSPointee =
9171          QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue());
9172    }
9173    QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
9174                                     Unqualified);
9175    if (ResultType.isNull())
9176      return {};
9177    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
9178      return LHS;
9179    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
9180      return RHS;
9181    return getBlockPointerType(ResultType);
9182  }
9183  case Type::Atomic:
9184  {
9185    // Merge two pointer types, while trying to preserve typedef info
9186    QualType LHSValue = LHS->castAs<AtomicType>()->getValueType();
9187    QualType RHSValue = RHS->castAs<AtomicType>()->getValueType();
9188    if (Unqualified) {
9189      LHSValue = LHSValue.getUnqualifiedType();
9190      RHSValue = RHSValue.getUnqualifiedType();
9191    }
9192    QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
9193                                     Unqualified);
9194    if (ResultType.isNull())
9195      return {};
9196    if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
9197      return LHS;
9198    if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
9199      return RHS;
9200    return getAtomicType(ResultType);
9201  }
9202  case Type::ConstantArray:
9203  {
9204    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
9205    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
9206    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
9207      return {};
9208
9209    QualType LHSElem = getAsArrayType(LHS)->getElementType();
9210    QualType RHSElem = getAsArrayType(RHS)->getElementType();
9211    if (Unqualified) {
9212      LHSElem = LHSElem.getUnqualifiedType();
9213      RHSElem = RHSElem.getUnqualifiedType();
9214    }
9215
9216    QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
9217    if (ResultType.isNull())
9218      return {};
9219
9220    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
9221    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
9222
9223    // If either side is a variable array, and both are complete, check whether
9224    // the current dimension is definite.
9225    if (LVAT || RVAT) {
9226      auto SizeFetch = [this](const VariableArrayType* VAT,
9227          const ConstantArrayType* CAT)
9228          -> std::pair<bool,llvm::APInt> {
9229        if (VAT) {
9230          llvm::APSInt TheInt;
9231          Expr *E = VAT->getSizeExpr();
9232          if (E && E->isIntegerConstantExpr(TheInt, *this))
9233            return std::make_pair(true, TheInt);
9234          else
9235            return std::make_pair(false, TheInt);
9236        } else if (CAT) {
9237            return std::make_pair(true, CAT->getSize());
9238        } else {
9239            return std::make_pair(false, llvm::APInt());
9240        }
9241      };
9242
9243      bool HaveLSize, HaveRSize;
9244      llvm::APInt LSize, RSize;
9245      std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT);
9246      std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT);
9247      if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(LSize, RSize))
9248        return {}; // Definite, but unequal, array dimension
9249    }
9250
9251    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
9252      return LHS;
9253    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
9254      return RHS;
9255    if (LCAT)
9256      return getConstantArrayType(ResultType, LCAT->getSize(),
9257                                  LCAT->getSizeExpr(),
9258                                  ArrayType::ArraySizeModifier(), 0);
9259    if (RCAT)
9260      return getConstantArrayType(ResultType, RCAT->getSize(),
9261                                  RCAT->getSizeExpr(),
9262                                  ArrayType::ArraySizeModifier(), 0);
9263    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
9264      return LHS;
9265    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
9266      return RHS;
9267    if (LVAT) {
9268      // FIXME: This isn't correct! But tricky to implement because
9269      // the array's size has to be the size of LHS, but the type
9270      // has to be different.
9271      return LHS;
9272    }
9273    if (RVAT) {
9274      // FIXME: This isn't correct! But tricky to implement because
9275      // the array's size has to be the size of RHS, but the type
9276      // has to be different.
9277      return RHS;
9278    }
9279    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
9280    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
9281    return getIncompleteArrayType(ResultType,
9282                                  ArrayType::ArraySizeModifier(), 0);
9283  }
9284  case Type::FunctionNoProto:
9285    return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
9286  case Type::Record:
9287  case Type::Enum:
9288    return {};
9289  case Type::Builtin:
9290    // Only exactly equal builtin types are compatible, which is tested above.
9291    return {};
9292  case Type::Complex:
9293    // Distinct complex types are incompatible.
9294    return {};
9295  case Type::Vector:
9296    // FIXME: The merged type should be an ExtVector!
9297    if (areCompatVectorTypes(LHSCan->castAs<VectorType>(),
9298                             RHSCan->castAs<VectorType>()))
9299      return LHS;
9300    return {};
9301  case Type::ObjCObject: {
9302    // Check if the types are assignment compatible.
9303    // FIXME: This should be type compatibility, e.g. whether
9304    // "LHS x; RHS x;" at global scope is legal.
9305    if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectType>(),
9306                                RHS->castAs<ObjCObjectType>()))
9307      return LHS;
9308    return {};
9309  }
9310  case Type::ObjCObjectPointer:
9311    if (OfBlockPointer) {
9312      if (canAssignObjCInterfacesInBlockPointer(
9313              LHS->castAs<ObjCObjectPointerType>(),
9314              RHS->castAs<ObjCObjectPointerType>(), BlockReturnType))
9315        return LHS;
9316      return {};
9317    }
9318    if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectPointerType>(),
9319                                RHS->castAs<ObjCObjectPointerType>()))
9320      return LHS;
9321    return {};
9322  case Type::Pipe:
9323    assert(LHS != RHS &&
9324           "Equivalent pipe types should have already been handled!");
9325    return {};
9326  }
9327
9328  llvm_unreachable("Invalid Type::Class!");
9329}
9330
9331bool ASTContext::mergeExtParameterInfo(
9332    const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType,
9333    bool &CanUseFirst, bool &CanUseSecond,
9334    SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) {
9335  assert(NewParamInfos.empty() && "param info list not empty");
9336  CanUseFirst = CanUseSecond = true;
9337  bool FirstHasInfo = FirstFnType->hasExtParameterInfos();
9338  bool SecondHasInfo = SecondFnType->hasExtParameterInfos();
9339
9340  // Fast path: if the first type doesn't have ext parameter infos,
9341  // we match if and only if the second type also doesn't have them.
9342  if (!FirstHasInfo && !SecondHasInfo)
9343    return true;
9344
9345  bool NeedParamInfo = false;
9346  size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size()
9347                          : SecondFnType->getExtParameterInfos().size();
9348
9349  for (size_t I = 0; I < E; ++I) {
9350    FunctionProtoType::ExtParameterInfo FirstParam, SecondParam;
9351    if (FirstHasInfo)
9352      FirstParam = FirstFnType->getExtParameterInfo(I);
9353    if (SecondHasInfo)
9354      SecondParam = SecondFnType->getExtParameterInfo(I);
9355
9356    // Cannot merge unless everything except the noescape flag matches.
9357    if (FirstParam.withIsNoEscape(false) != SecondParam.withIsNoEscape(false))
9358      return false;
9359
9360    bool FirstNoEscape = FirstParam.isNoEscape();
9361    bool SecondNoEscape = SecondParam.isNoEscape();
9362    bool IsNoEscape = FirstNoEscape && SecondNoEscape;
9363    NewParamInfos.push_back(FirstParam.withIsNoEscape(IsNoEscape));
9364    if (NewParamInfos.back().getOpaqueValue())
9365      NeedParamInfo = true;
9366    if (FirstNoEscape != IsNoEscape)
9367      CanUseFirst = false;
9368    if (SecondNoEscape != IsNoEscape)
9369      CanUseSecond = false;
9370  }
9371
9372  if (!NeedParamInfo)
9373    NewParamInfos.clear();
9374
9375  return true;
9376}
9377
9378void ASTContext::ResetObjCLayout(const ObjCContainerDecl *CD) {
9379  ObjCLayouts[CD] = nullptr;
9380}
9381
9382/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
9383/// 'RHS' attributes and returns the merged version; including for function
9384/// return types.
9385QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
9386  QualType LHSCan = getCanonicalType(LHS),
9387  RHSCan = getCanonicalType(RHS);
9388  // If two types are identical, they are compatible.
9389  if (LHSCan == RHSCan)
9390    return LHS;
9391  if (RHSCan->isFunctionType()) {
9392    if (!LHSCan->isFunctionType())
9393      return {};
9394    QualType OldReturnType =
9395        cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
9396    QualType NewReturnType =
9397        cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
9398    QualType ResReturnType =
9399      mergeObjCGCQualifiers(NewReturnType, OldReturnType);
9400    if (ResReturnType.isNull())
9401      return {};
9402    if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
9403      // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
9404      // In either case, use OldReturnType to build the new function type.
9405      const auto *F = LHS->castAs<FunctionType>();
9406      if (const auto *FPT = cast<FunctionProtoType>(F)) {
9407        FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9408        EPI.ExtInfo = getFunctionExtInfo(LHS);
9409        QualType ResultType =
9410            getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
9411        return ResultType;
9412      }
9413    }
9414    return {};
9415  }
9416
9417  // If the qualifiers are different, the types can still be merged.
9418  Qualifiers LQuals = LHSCan.getLocalQualifiers();
9419  Qualifiers RQuals = RHSCan.getLocalQualifiers();
9420  if (LQuals != RQuals) {
9421    // If any of these qualifiers are different, we have a type mismatch.
9422    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
9423        LQuals.getAddressSpace() != RQuals.getAddressSpace())
9424      return {};
9425
9426    // Exactly one GC qualifier difference is allowed: __strong is
9427    // okay if the other type has no GC qualifier but is an Objective
9428    // C object pointer (i.e. implicitly strong by default).  We fix
9429    // this by pretending that the unqualified type was actually
9430    // qualified __strong.
9431    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
9432    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
9433    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
9434
9435    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
9436      return {};
9437
9438    if (GC_L == Qualifiers::Strong)
9439      return LHS;
9440    if (GC_R == Qualifiers::Strong)
9441      return RHS;
9442    return {};
9443  }
9444
9445  if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
9446    QualType LHSBaseQT = LHS->castAs<ObjCObjectPointerType>()->getPointeeType();
9447    QualType RHSBaseQT = RHS->castAs<ObjCObjectPointerType>()->getPointeeType();
9448    QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
9449    if (ResQT == LHSBaseQT)
9450      return LHS;
9451    if (ResQT == RHSBaseQT)
9452      return RHS;
9453  }
9454  return {};
9455}
9456
9457//===----------------------------------------------------------------------===//
9458//                         Integer Predicates
9459//===----------------------------------------------------------------------===//
9460
9461unsigned ASTContext::getIntWidth(QualType T) const {
9462  if (const auto *ET = T->getAs<EnumType>())
9463    T = ET->getDecl()->getIntegerType();
9464  if (T->isBooleanType())
9465    return 1;
9466  // For builtin types, just use the standard type sizing method
9467  return (unsigned)getTypeSize(T);
9468}
9469
9470QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
9471  assert((T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) &&
9472         "Unexpected type");
9473
9474  // Turn <4 x signed int> -> <4 x unsigned int>
9475  if (const auto *VTy = T->getAs<VectorType>())
9476    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
9477                         VTy->getNumElements(), VTy->getVectorKind());
9478
9479  // For enums, we return the unsigned version of the base type.
9480  if (const auto *ETy = T->getAs<EnumType>())
9481    T = ETy->getDecl()->getIntegerType();
9482
9483  switch (T->castAs<BuiltinType>()->getKind()) {
9484  case BuiltinType::Char_S:
9485  case BuiltinType::SChar:
9486    return UnsignedCharTy;
9487  case BuiltinType::Short:
9488    return UnsignedShortTy;
9489  case BuiltinType::Int:
9490    return UnsignedIntTy;
9491  case BuiltinType::Long:
9492    return UnsignedLongTy;
9493  case BuiltinType::LongLong:
9494    return UnsignedLongLongTy;
9495  case BuiltinType::Int128:
9496    return UnsignedInt128Ty;
9497
9498  case BuiltinType::ShortAccum:
9499    return UnsignedShortAccumTy;
9500  case BuiltinType::Accum:
9501    return UnsignedAccumTy;
9502  case BuiltinType::LongAccum:
9503    return UnsignedLongAccumTy;
9504  case BuiltinType::SatShortAccum:
9505    return SatUnsignedShortAccumTy;
9506  case BuiltinType::SatAccum:
9507    return SatUnsignedAccumTy;
9508  case BuiltinType::SatLongAccum:
9509    return SatUnsignedLongAccumTy;
9510  case BuiltinType::ShortFract:
9511    return UnsignedShortFractTy;
9512  case BuiltinType::Fract:
9513    return UnsignedFractTy;
9514  case BuiltinType::LongFract:
9515    return UnsignedLongFractTy;
9516  case BuiltinType::SatShortFract:
9517    return SatUnsignedShortFractTy;
9518  case BuiltinType::SatFract:
9519    return SatUnsignedFractTy;
9520  case BuiltinType::SatLongFract:
9521    return SatUnsignedLongFractTy;
9522  default:
9523    llvm_unreachable("Unexpected signed integer or fixed point type");
9524  }
9525}
9526
9527ASTMutationListener::~ASTMutationListener() = default;
9528
9529void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
9530                                            QualType ReturnType) {}
9531
9532//===----------------------------------------------------------------------===//
9533//                          Builtin Type Computation
9534//===----------------------------------------------------------------------===//
9535
9536/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
9537/// pointer over the consumed characters.  This returns the resultant type.  If
9538/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
9539/// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of
9540/// a vector of "i*".
9541///
9542/// RequiresICE is filled in on return to indicate whether the value is required
9543/// to be an Integer Constant Expression.
9544static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
9545                                  ASTContext::GetBuiltinTypeError &Error,
9546                                  bool &RequiresICE,
9547                                  bool AllowTypeModifiers) {
9548  // Modifiers.
9549  int HowLong = 0;
9550  bool Signed = false, Unsigned = false;
9551  RequiresICE = false;
9552
9553  // Read the prefixed modifiers first.
9554  bool Done = false;
9555  #ifndef NDEBUG
9556  bool IsSpecial = false;
9557  #endif
9558  while (!Done) {
9559    switch (*Str++) {
9560    default: Done = true; --Str; break;
9561    case 'I':
9562      RequiresICE = true;
9563      break;
9564    case 'S':
9565      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
9566      assert(!Signed && "Can't use 'S' modifier multiple times!");
9567      Signed = true;
9568      break;
9569    case 'U':
9570      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
9571      assert(!Unsigned && "Can't use 'U' modifier multiple times!");
9572      Unsigned = true;
9573      break;
9574    case 'L':
9575      assert(!IsSpecial && "Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers");
9576      assert(HowLong <= 2 && "Can't have LLLL modifier");
9577      ++HowLong;
9578      break;
9579    case 'N':
9580      // 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise.
9581      assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
9582      assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!");
9583      #ifndef NDEBUG
9584      IsSpecial = true;
9585      #endif
9586      if (Context.getTargetInfo().getLongWidth() == 32)
9587        ++HowLong;
9588      break;
9589    case 'W':
9590      // This modifier represents int64 type.
9591      assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
9592      assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
9593      #ifndef NDEBUG
9594      IsSpecial = true;
9595      #endif
9596      switch (Context.getTargetInfo().getInt64Type()) {
9597      default:
9598        llvm_unreachable("Unexpected integer type");
9599      case TargetInfo::SignedLong:
9600        HowLong = 1;
9601        break;
9602      case TargetInfo::SignedLongLong:
9603        HowLong = 2;
9604        break;
9605      }
9606      break;
9607    case 'Z':
9608      // This modifier represents int32 type.
9609      assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
9610      assert(HowLong == 0 && "Can't use both 'L' and 'Z' modifiers!");
9611      #ifndef NDEBUG
9612      IsSpecial = true;
9613      #endif
9614      switch (Context.getTargetInfo().getIntTypeByWidth(32, true)) {
9615      default:
9616        llvm_unreachable("Unexpected integer type");
9617      case TargetInfo::SignedInt:
9618        HowLong = 0;
9619        break;
9620      case TargetInfo::SignedLong:
9621        HowLong = 1;
9622        break;
9623      case TargetInfo::SignedLongLong:
9624        HowLong = 2;
9625        break;
9626      }
9627      break;
9628    case 'O':
9629      assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
9630      assert(HowLong == 0 && "Can't use both 'L' and 'O' modifiers!");
9631      #ifndef NDEBUG
9632      IsSpecial = true;
9633      #endif
9634      if (Context.getLangOpts().OpenCL)
9635        HowLong = 1;
9636      else
9637        HowLong = 2;
9638      break;
9639    }
9640  }
9641
9642  QualType Type;
9643
9644  // Read the base type.
9645  switch (*Str++) {
9646  default: llvm_unreachable("Unknown builtin type letter!");
9647  case 'v':
9648    assert(HowLong == 0 && !Signed && !Unsigned &&
9649           "Bad modifiers used with 'v'!");
9650    Type = Context.VoidTy;
9651    break;
9652  case 'h':
9653    assert(HowLong == 0 && !Signed && !Unsigned &&
9654           "Bad modifiers used with 'h'!");
9655    Type = Context.HalfTy;
9656    break;
9657  case 'f':
9658    assert(HowLong == 0 && !Signed && !Unsigned &&
9659           "Bad modifiers used with 'f'!");
9660    Type = Context.FloatTy;
9661    break;
9662  case 'd':
9663    assert(HowLong < 3 && !Signed && !Unsigned &&
9664           "Bad modifiers used with 'd'!");
9665    if (HowLong == 1)
9666      Type = Context.LongDoubleTy;
9667    else if (HowLong == 2)
9668      Type = Context.Float128Ty;
9669    else
9670      Type = Context.DoubleTy;
9671    break;
9672  case 's':
9673    assert(HowLong == 0 && "Bad modifiers used with 's'!");
9674    if (Unsigned)
9675      Type = Context.UnsignedShortTy;
9676    else
9677      Type = Context.ShortTy;
9678    break;
9679  case 'i':
9680    if (HowLong == 3)
9681      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
9682    else if (HowLong == 2)
9683      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
9684    else if (HowLong == 1)
9685      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
9686    else
9687      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
9688    break;
9689  case 'c':
9690    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
9691    if (Signed)
9692      Type = Context.SignedCharTy;
9693    else if (Unsigned)
9694      Type = Context.UnsignedCharTy;
9695    else
9696      Type = Context.CharTy;
9697    break;
9698  case 'b': // boolean
9699    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
9700    Type = Context.BoolTy;
9701    break;
9702  case 'z':  // size_t.
9703    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
9704    Type = Context.getSizeType();
9705    break;
9706  case 'w':  // wchar_t.
9707    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!");
9708    Type = Context.getWideCharType();
9709    break;
9710  case 'F':
9711    Type = Context.getCFConstantStringType();
9712    break;
9713  case 'G':
9714    Type = Context.getObjCIdType();
9715    break;
9716  case 'H':
9717    Type = Context.getObjCSelType();
9718    break;
9719  case 'M':
9720    Type = Context.getObjCSuperType();
9721    break;
9722  case 'a':
9723    Type = Context.getBuiltinVaListType();
9724    assert(!Type.isNull() && "builtin va list type not initialized!");
9725    break;
9726  case 'A':
9727    // This is a "reference" to a va_list; however, what exactly
9728    // this means depends on how va_list is defined. There are two
9729    // different kinds of va_list: ones passed by value, and ones
9730    // passed by reference.  An example of a by-value va_list is
9731    // x86, where va_list is a char*. An example of by-ref va_list
9732    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
9733    // we want this argument to be a char*&; for x86-64, we want
9734    // it to be a __va_list_tag*.
9735    Type = Context.getBuiltinVaListType();
9736    assert(!Type.isNull() && "builtin va list type not initialized!");
9737    if (Type->isArrayType())
9738      Type = Context.getArrayDecayedType(Type);
9739    else
9740      Type = Context.getLValueReferenceType(Type);
9741    break;
9742  case 'V': {
9743    char *End;
9744    unsigned NumElements = strtoul(Str, &End, 10);
9745    assert(End != Str && "Missing vector size");
9746    Str = End;
9747
9748    QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
9749                                             RequiresICE, false);
9750    assert(!RequiresICE && "Can't require vector ICE");
9751
9752    // TODO: No way to make AltiVec vectors in builtins yet.
9753    Type = Context.getVectorType(ElementType, NumElements,
9754                                 VectorType::GenericVector);
9755    break;
9756  }
9757  case 'E': {
9758    char *End;
9759
9760    unsigned NumElements = strtoul(Str, &End, 10);
9761    assert(End != Str && "Missing vector size");
9762
9763    Str = End;
9764
9765    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
9766                                             false);
9767    Type = Context.getExtVectorType(ElementType, NumElements);
9768    break;
9769  }
9770  case 'X': {
9771    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
9772                                             false);
9773    assert(!RequiresICE && "Can't require complex ICE");
9774    Type = Context.getComplexType(ElementType);
9775    break;
9776  }
9777  case 'Y':
9778    Type = Context.getPointerDiffType();
9779    break;
9780  case 'P':
9781    Type = Context.getFILEType();
9782    if (Type.isNull()) {
9783      Error = ASTContext::GE_Missing_stdio;
9784      return {};
9785    }
9786    break;
9787  case 'J':
9788    if (Signed)
9789      Type = Context.getsigjmp_bufType();
9790    else
9791      Type = Context.getjmp_bufType();
9792
9793    if (Type.isNull()) {
9794      Error = ASTContext::GE_Missing_setjmp;
9795      return {};
9796    }
9797    break;
9798  case 'K':
9799    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
9800    Type = Context.getucontext_tType();
9801
9802    if (Type.isNull()) {
9803      Error = ASTContext::GE_Missing_ucontext;
9804      return {};
9805    }
9806    break;
9807  case 'p':
9808    Type = Context.getProcessIDType();
9809    break;
9810  }
9811
9812  // If there are modifiers and if we're allowed to parse them, go for it.
9813  Done = !AllowTypeModifiers;
9814  while (!Done) {
9815    switch (char c = *Str++) {
9816    default: Done = true; --Str; break;
9817    case '*':
9818    case '&': {
9819      // Both pointers and references can have their pointee types
9820      // qualified with an address space.
9821      char *End;
9822      unsigned AddrSpace = strtoul(Str, &End, 10);
9823      if (End != Str) {
9824        // Note AddrSpace == 0 is not the same as an unspecified address space.
9825        Type = Context.getAddrSpaceQualType(
9826          Type,
9827          Context.getLangASForBuiltinAddressSpace(AddrSpace));
9828        Str = End;
9829      }
9830      if (c == '*')
9831        Type = Context.getPointerType(Type);
9832      else
9833        Type = Context.getLValueReferenceType(Type);
9834      break;
9835    }
9836    // FIXME: There's no way to have a built-in with an rvalue ref arg.
9837    case 'C':
9838      Type = Type.withConst();
9839      break;
9840    case 'D':
9841      Type = Context.getVolatileType(Type);
9842      break;
9843    case 'R':
9844      Type = Type.withRestrict();
9845      break;
9846    }
9847  }
9848
9849  assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
9850         "Integer constant 'I' type must be an integer");
9851
9852  return Type;
9853}
9854
9855/// GetBuiltinType - Return the type for the specified builtin.
9856QualType ASTContext::GetBuiltinType(unsigned Id,
9857                                    GetBuiltinTypeError &Error,
9858                                    unsigned *IntegerConstantArgs) const {
9859  const char *TypeStr = BuiltinInfo.getTypeString(Id);
9860  if (TypeStr[0] == '\0') {
9861    Error = GE_Missing_type;
9862    return {};
9863  }
9864
9865  SmallVector<QualType, 8> ArgTypes;
9866
9867  bool RequiresICE = false;
9868  Error = GE_None;
9869  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
9870                                       RequiresICE, true);
9871  if (Error != GE_None)
9872    return {};
9873
9874  assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
9875
9876  while (TypeStr[0] && TypeStr[0] != '.') {
9877    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
9878    if (Error != GE_None)
9879      return {};
9880
9881    // If this argument is required to be an IntegerConstantExpression and the
9882    // caller cares, fill in the bitmask we return.
9883    if (RequiresICE && IntegerConstantArgs)
9884      *IntegerConstantArgs |= 1 << ArgTypes.size();
9885
9886    // Do array -> pointer decay.  The builtin should use the decayed type.
9887    if (Ty->isArrayType())
9888      Ty = getArrayDecayedType(Ty);
9889
9890    ArgTypes.push_back(Ty);
9891  }
9892
9893  if (Id == Builtin::BI__GetExceptionInfo)
9894    return {};
9895
9896  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
9897         "'.' should only occur at end of builtin type list!");
9898
9899  bool Variadic = (TypeStr[0] == '.');
9900
9901  FunctionType::ExtInfo EI(getDefaultCallingConvention(
9902      Variadic, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
9903  if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
9904
9905
9906  // We really shouldn't be making a no-proto type here.
9907  if (ArgTypes.empty() && Variadic && !getLangOpts().CPlusPlus)
9908    return getFunctionNoProtoType(ResType, EI);
9909
9910  FunctionProtoType::ExtProtoInfo EPI;
9911  EPI.ExtInfo = EI;
9912  EPI.Variadic = Variadic;
9913  if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(Id))
9914    EPI.ExceptionSpec.Type =
9915        getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
9916
9917  return getFunctionType(ResType, ArgTypes, EPI);
9918}
9919
9920static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
9921                                             const FunctionDecl *FD) {
9922  if (!FD->isExternallyVisible())
9923    return GVA_Internal;
9924
9925  // Non-user-provided functions get emitted as weak definitions with every
9926  // use, no matter whether they've been explicitly instantiated etc.
9927  if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
9928    if (!MD->isUserProvided())
9929      return GVA_DiscardableODR;
9930
9931  GVALinkage External;
9932  switch (FD->getTemplateSpecializationKind()) {
9933  case TSK_Undeclared:
9934  case TSK_ExplicitSpecialization:
9935    External = GVA_StrongExternal;
9936    break;
9937
9938  case TSK_ExplicitInstantiationDefinition:
9939    return GVA_StrongODR;
9940
9941  // C++11 [temp.explicit]p10:
9942  //   [ Note: The intent is that an inline function that is the subject of
9943  //   an explicit instantiation declaration will still be implicitly
9944  //   instantiated when used so that the body can be considered for
9945  //   inlining, but that no out-of-line copy of the inline function would be
9946  //   generated in the translation unit. -- end note ]
9947  case TSK_ExplicitInstantiationDeclaration:
9948    return GVA_AvailableExternally;
9949
9950  case TSK_ImplicitInstantiation:
9951    External = GVA_DiscardableODR;
9952    break;
9953  }
9954
9955  if (!FD->isInlined())
9956    return External;
9957
9958  if ((!Context.getLangOpts().CPlusPlus &&
9959       !Context.getTargetInfo().getCXXABI().isMicrosoft() &&
9960       !FD->hasAttr<DLLExportAttr>()) ||
9961      FD->hasAttr<GNUInlineAttr>()) {
9962    // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
9963
9964    // GNU or C99 inline semantics. Determine whether this symbol should be
9965    // externally visible.
9966    if (FD->isInlineDefinitionExternallyVisible())
9967      return External;
9968
9969    // C99 inline semantics, where the symbol is not externally visible.
9970    return GVA_AvailableExternally;
9971  }
9972
9973  // Functions specified with extern and inline in -fms-compatibility mode
9974  // forcibly get emitted.  While the body of the function cannot be later
9975  // replaced, the function definition cannot be discarded.
9976  if (FD->isMSExternInline())
9977    return GVA_StrongODR;
9978
9979  return GVA_DiscardableODR;
9980}
9981
9982static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context,
9983                                                const Decl *D, GVALinkage L) {
9984  // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
9985  // dllexport/dllimport on inline functions.
9986  if (D->hasAttr<DLLImportAttr>()) {
9987    if (L == GVA_DiscardableODR || L == GVA_StrongODR)
9988      return GVA_AvailableExternally;
9989  } else if (D->hasAttr<DLLExportAttr>()) {
9990    if (L == GVA_DiscardableODR)
9991      return GVA_StrongODR;
9992  } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice &&
9993             D->hasAttr<CUDAGlobalAttr>()) {
9994    // Device-side functions with __global__ attribute must always be
9995    // visible externally so they can be launched from host.
9996    if (L == GVA_DiscardableODR || L == GVA_Internal)
9997      return GVA_StrongODR;
9998  }
9999  return L;
10000}
10001
10002/// Adjust the GVALinkage for a declaration based on what an external AST source
10003/// knows about whether there can be other definitions of this declaration.
10004static GVALinkage
10005adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D,
10006                                          GVALinkage L) {
10007  ExternalASTSource *Source = Ctx.getExternalSource();
10008  if (!Source)
10009    return L;
10010
10011  switch (Source->hasExternalDefinitions(D)) {
10012  case ExternalASTSource::EK_Never:
10013    // Other translation units rely on us to provide the definition.
10014    if (L == GVA_DiscardableODR)
10015      return GVA_StrongODR;
10016    break;
10017
10018  case ExternalASTSource::EK_Always:
10019    return GVA_AvailableExternally;
10020
10021  case ExternalASTSource::EK_ReplyHazy:
10022    break;
10023  }
10024  return L;
10025}
10026
10027GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
10028  return adjustGVALinkageForExternalDefinitionKind(*this, FD,
10029           adjustGVALinkageForAttributes(*this, FD,
10030             basicGVALinkageForFunction(*this, FD)));
10031}
10032
10033static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
10034                                             const VarDecl *VD) {
10035  if (!VD->isExternallyVisible())
10036    return GVA_Internal;
10037
10038  if (VD->isStaticLocal()) {
10039    const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
10040    while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
10041      LexicalContext = LexicalContext->getLexicalParent();
10042
10043    // ObjC Blocks can create local variables that don't have a FunctionDecl
10044    // LexicalContext.
10045    if (!LexicalContext)
10046      return GVA_DiscardableODR;
10047
10048    // Otherwise, let the static local variable inherit its linkage from the
10049    // nearest enclosing function.
10050    auto StaticLocalLinkage =
10051        Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
10052
10053    // Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must
10054    // be emitted in any object with references to the symbol for the object it
10055    // contains, whether inline or out-of-line."
10056    // Similar behavior is observed with MSVC. An alternative ABI could use
10057    // StrongODR/AvailableExternally to match the function, but none are
10058    // known/supported currently.
10059    if (StaticLocalLinkage == GVA_StrongODR ||
10060        StaticLocalLinkage == GVA_AvailableExternally)
10061      return GVA_DiscardableODR;
10062    return StaticLocalLinkage;
10063  }
10064
10065  // MSVC treats in-class initialized static data members as definitions.
10066  // By giving them non-strong linkage, out-of-line definitions won't
10067  // cause link errors.
10068  if (Context.isMSStaticDataMemberInlineDefinition(VD))
10069    return GVA_DiscardableODR;
10070
10071  // Most non-template variables have strong linkage; inline variables are
10072  // linkonce_odr or (occasionally, for compatibility) weak_odr.
10073  GVALinkage StrongLinkage;
10074  switch (Context.getInlineVariableDefinitionKind(VD)) {
10075  case ASTContext::InlineVariableDefinitionKind::None:
10076    StrongLinkage = GVA_StrongExternal;
10077    break;
10078  case ASTContext::InlineVariableDefinitionKind::Weak:
10079  case ASTContext::InlineVariableDefinitionKind::WeakUnknown:
10080    StrongLinkage = GVA_DiscardableODR;
10081    break;
10082  case ASTContext::InlineVariableDefinitionKind::Strong:
10083    StrongLinkage = GVA_StrongODR;
10084    break;
10085  }
10086
10087  switch (VD->getTemplateSpecializationKind()) {
10088  case TSK_Undeclared:
10089    return StrongLinkage;
10090
10091  case TSK_ExplicitSpecialization:
10092    return Context.getTargetInfo().getCXXABI().isMicrosoft() &&
10093                   VD->isStaticDataMember()
10094               ? GVA_StrongODR
10095               : StrongLinkage;
10096
10097  case TSK_ExplicitInstantiationDefinition:
10098    return GVA_StrongODR;
10099
10100  case TSK_ExplicitInstantiationDeclaration:
10101    return GVA_AvailableExternally;
10102
10103  case TSK_ImplicitInstantiation:
10104    return GVA_DiscardableODR;
10105  }
10106
10107  llvm_unreachable("Invalid Linkage!");
10108}
10109
10110GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
10111  return adjustGVALinkageForExternalDefinitionKind(*this, VD,
10112           adjustGVALinkageForAttributes(*this, VD,
10113             basicGVALinkageForVariable(*this, VD)));
10114}
10115
10116bool ASTContext::DeclMustBeEmitted(const Decl *D) {
10117  if (const auto *VD = dyn_cast<VarDecl>(D)) {
10118    if (!VD->isFileVarDecl())
10119      return false;
10120    // Global named register variables (GNU extension) are never emitted.
10121    if (VD->getStorageClass() == SC_Register)
10122      return false;
10123    if (VD->getDescribedVarTemplate() ||
10124        isa<VarTemplatePartialSpecializationDecl>(VD))
10125      return false;
10126  } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
10127    // We never need to emit an uninstantiated function template.
10128    if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
10129      return false;
10130  } else if (isa<PragmaCommentDecl>(D))
10131    return true;
10132  else if (isa<PragmaDetectMismatchDecl>(D))
10133    return true;
10134  else if (isa<OMPThreadPrivateDecl>(D))
10135    return !D->getDeclContext()->isDependentContext();
10136  else if (isa<OMPAllocateDecl>(D))
10137    return !D->getDeclContext()->isDependentContext();
10138  else if (isa<OMPDeclareReductionDecl>(D) || isa<OMPDeclareMapperDecl>(D))
10139    return !D->getDeclContext()->isDependentContext();
10140  else if (isa<ImportDecl>(D))
10141    return true;
10142  else
10143    return false;
10144
10145  if (D->isFromASTFile() && !LangOpts.BuildingPCHWithObjectFile) {
10146    assert(getExternalSource() && "It's from an AST file; must have a source.");
10147    // On Windows, PCH files are built together with an object file. If this
10148    // declaration comes from such a PCH and DeclMustBeEmitted would return
10149    // true, it would have returned true and the decl would have been emitted
10150    // into that object file, so it doesn't need to be emitted here.
10151    // Note that decls are still emitted if they're referenced, as usual;
10152    // DeclMustBeEmitted is used to decide whether a decl must be emitted even
10153    // if it's not referenced.
10154    //
10155    // Explicit template instantiation definitions are tricky. If there was an
10156    // explicit template instantiation decl in the PCH before, it will look like
10157    // the definition comes from there, even if that was just the declaration.
10158    // (Explicit instantiation defs of variable templates always get emitted.)
10159    bool IsExpInstDef =
10160        isa<FunctionDecl>(D) &&
10161        cast<FunctionDecl>(D)->getTemplateSpecializationKind() ==
10162            TSK_ExplicitInstantiationDefinition;
10163
10164    // Implicit member function definitions, such as operator= might not be
10165    // marked as template specializations, since they're not coming from a
10166    // template but synthesized directly on the class.
10167    IsExpInstDef |=
10168        isa<CXXMethodDecl>(D) &&
10169        cast<CXXMethodDecl>(D)->getParent()->getTemplateSpecializationKind() ==
10170            TSK_ExplicitInstantiationDefinition;
10171
10172    if (getExternalSource()->DeclIsFromPCHWithObjectFile(D) && !IsExpInstDef)
10173      return false;
10174  }
10175
10176  // If this is a member of a class template, we do not need to emit it.
10177  if (D->getDeclContext()->isDependentContext())
10178    return false;
10179
10180  // Weak references don't produce any output by themselves.
10181  if (D->hasAttr<WeakRefAttr>())
10182    return false;
10183
10184  // Aliases and used decls are required.
10185  if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
10186    return true;
10187
10188  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
10189    // Forward declarations aren't required.
10190    if (!FD->doesThisDeclarationHaveABody())
10191      return FD->doesDeclarationForceExternallyVisibleDefinition();
10192
10193    // Constructors and destructors are required.
10194    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
10195      return true;
10196
10197    // The key function for a class is required.  This rule only comes
10198    // into play when inline functions can be key functions, though.
10199    if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
10200      if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
10201        const CXXRecordDecl *RD = MD->getParent();
10202        if (MD->isOutOfLine() && RD->isDynamicClass()) {
10203          const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
10204          if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
10205            return true;
10206        }
10207      }
10208    }
10209
10210    GVALinkage Linkage = GetGVALinkageForFunction(FD);
10211
10212    // static, static inline, always_inline, and extern inline functions can
10213    // always be deferred.  Normal inline functions can be deferred in C99/C++.
10214    // Implicit template instantiations can also be deferred in C++.
10215    return !isDiscardableGVALinkage(Linkage);
10216  }
10217
10218  const auto *VD = cast<VarDecl>(D);
10219  assert(VD->isFileVarDecl() && "Expected file scoped var");
10220
10221  // If the decl is marked as `declare target to`, it should be emitted for the
10222  // host and for the device.
10223  if (LangOpts.OpenMP &&
10224      OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
10225    return true;
10226
10227  if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
10228      !isMSStaticDataMemberInlineDefinition(VD))
10229    return false;
10230
10231  // Variables that can be needed in other TUs are required.
10232  auto Linkage = GetGVALinkageForVariable(VD);
10233  if (!isDiscardableGVALinkage(Linkage))
10234    return true;
10235
10236  // We never need to emit a variable that is available in another TU.
10237  if (Linkage == GVA_AvailableExternally)
10238    return false;
10239
10240  // Variables that have destruction with side-effects are required.
10241  if (VD->needsDestruction(*this))
10242    return true;
10243
10244  // Variables that have initialization with side-effects are required.
10245  if (VD->getInit() && VD->getInit()->HasSideEffects(*this) &&
10246      // We can get a value-dependent initializer during error recovery.
10247      (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
10248    return true;
10249
10250  // Likewise, variables with tuple-like bindings are required if their
10251  // bindings have side-effects.
10252  if (const auto *DD = dyn_cast<DecompositionDecl>(VD))
10253    for (const auto *BD : DD->bindings())
10254      if (const auto *BindingVD = BD->getHoldingVar())
10255        if (DeclMustBeEmitted(BindingVD))
10256          return true;
10257
10258  return false;
10259}
10260
10261void ASTContext::forEachMultiversionedFunctionVersion(
10262    const FunctionDecl *FD,
10263    llvm::function_ref<void(FunctionDecl *)> Pred) const {
10264  assert(FD->isMultiVersion() && "Only valid for multiversioned functions");
10265  llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls;
10266  FD = FD->getMostRecentDecl();
10267  for (auto *CurDecl :
10268       FD->getDeclContext()->getRedeclContext()->lookup(FD->getDeclName())) {
10269    FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl();
10270    if (CurFD && hasSameType(CurFD->getType(), FD->getType()) &&
10271        std::end(SeenDecls) == llvm::find(SeenDecls, CurFD)) {
10272      SeenDecls.insert(CurFD);
10273      Pred(CurFD);
10274    }
10275  }
10276}
10277
10278CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
10279                                                    bool IsCXXMethod,
10280                                                    bool IsBuiltin) const {
10281  // Pass through to the C++ ABI object
10282  if (IsCXXMethod)
10283    return ABI->getDefaultMethodCallConv(IsVariadic);
10284
10285  // Builtins ignore user-specified default calling convention and remain the
10286  // Target's default calling convention.
10287  if (!IsBuiltin) {
10288    switch (LangOpts.getDefaultCallingConv()) {
10289    case LangOptions::DCC_None:
10290      break;
10291    case LangOptions::DCC_CDecl:
10292      return CC_C;
10293    case LangOptions::DCC_FastCall:
10294      if (getTargetInfo().hasFeature("sse2") && !IsVariadic)
10295        return CC_X86FastCall;
10296      break;
10297    case LangOptions::DCC_StdCall:
10298      if (!IsVariadic)
10299        return CC_X86StdCall;
10300      break;
10301    case LangOptions::DCC_VectorCall:
10302      // __vectorcall cannot be applied to variadic functions.
10303      if (!IsVariadic)
10304        return CC_X86VectorCall;
10305      break;
10306    case LangOptions::DCC_RegCall:
10307      // __regcall cannot be applied to variadic functions.
10308      if (!IsVariadic)
10309        return CC_X86RegCall;
10310      break;
10311    }
10312  }
10313  return Target->getDefaultCallingConv();
10314}
10315
10316bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
10317  // Pass through to the C++ ABI object
10318  return ABI->isNearlyEmpty(RD);
10319}
10320
10321VTableContextBase *ASTContext::getVTableContext() {
10322  if (!VTContext.get()) {
10323    if (Target->getCXXABI().isMicrosoft())
10324      VTContext.reset(new MicrosoftVTableContext(*this));
10325    else
10326      VTContext.reset(new ItaniumVTableContext(*this));
10327  }
10328  return VTContext.get();
10329}
10330
10331MangleContext *ASTContext::createMangleContext(const TargetInfo *T) {
10332  if (!T)
10333    T = Target;
10334  switch (T->getCXXABI().getKind()) {
10335  case TargetCXXABI::Fuchsia:
10336  case TargetCXXABI::GenericAArch64:
10337  case TargetCXXABI::GenericItanium:
10338  case TargetCXXABI::GenericARM:
10339  case TargetCXXABI::GenericMIPS:
10340  case TargetCXXABI::iOS:
10341  case TargetCXXABI::iOS64:
10342  case TargetCXXABI::WebAssembly:
10343  case TargetCXXABI::WatchOS:
10344    return ItaniumMangleContext::create(*this, getDiagnostics());
10345  case TargetCXXABI::Microsoft:
10346    return MicrosoftMangleContext::create(*this, getDiagnostics());
10347  }
10348  llvm_unreachable("Unsupported ABI");
10349}
10350
10351CXXABI::~CXXABI() = default;
10352
10353size_t ASTContext::getSideTableAllocatedMemory() const {
10354  return ASTRecordLayouts.getMemorySize() +
10355         llvm::capacity_in_bytes(ObjCLayouts) +
10356         llvm::capacity_in_bytes(KeyFunctions) +
10357         llvm::capacity_in_bytes(ObjCImpls) +
10358         llvm::capacity_in_bytes(BlockVarCopyInits) +
10359         llvm::capacity_in_bytes(DeclAttrs) +
10360         llvm::capacity_in_bytes(TemplateOrInstantiation) +
10361         llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
10362         llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
10363         llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
10364         llvm::capacity_in_bytes(OverriddenMethods) +
10365         llvm::capacity_in_bytes(Types) +
10366         llvm::capacity_in_bytes(VariableArrayTypes);
10367}
10368
10369/// getIntTypeForBitwidth -
10370/// sets integer QualTy according to specified details:
10371/// bitwidth, signed/unsigned.
10372/// Returns empty type if there is no appropriate target types.
10373QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
10374                                           unsigned Signed) const {
10375  TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
10376  CanQualType QualTy = getFromTargetType(Ty);
10377  if (!QualTy && DestWidth == 128)
10378    return Signed ? Int128Ty : UnsignedInt128Ty;
10379  return QualTy;
10380}
10381
10382/// getRealTypeForBitwidth -
10383/// sets floating point QualTy according to specified bitwidth.
10384/// Returns empty type if there is no appropriate target types.
10385QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth) const {
10386  TargetInfo::RealType Ty = getTargetInfo().getRealTypeByWidth(DestWidth);
10387  switch (Ty) {
10388  case TargetInfo::Float:
10389    return FloatTy;
10390  case TargetInfo::Double:
10391    return DoubleTy;
10392  case TargetInfo::LongDouble:
10393    return LongDoubleTy;
10394  case TargetInfo::Float128:
10395    return Float128Ty;
10396  case TargetInfo::NoFloat:
10397    return {};
10398  }
10399
10400  llvm_unreachable("Unhandled TargetInfo::RealType value");
10401}
10402
10403void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
10404  if (Number > 1)
10405    MangleNumbers[ND] = Number;
10406}
10407
10408unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
10409  auto I = MangleNumbers.find(ND);
10410  return I != MangleNumbers.end() ? I->second : 1;
10411}
10412
10413void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
10414  if (Number > 1)
10415    StaticLocalNumbers[VD] = Number;
10416}
10417
10418unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
10419  auto I = StaticLocalNumbers.find(VD);
10420  return I != StaticLocalNumbers.end() ? I->second : 1;
10421}
10422
10423MangleNumberingContext &
10424ASTContext::getManglingNumberContext(const DeclContext *DC) {
10425  assert(LangOpts.CPlusPlus);  // We don't need mangling numbers for plain C.
10426  std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC];
10427  if (!MCtx)
10428    MCtx = createMangleNumberingContext();
10429  return *MCtx;
10430}
10431
10432MangleNumberingContext &
10433ASTContext::getManglingNumberContext(NeedExtraManglingDecl_t, const Decl *D) {
10434  assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C.
10435  std::unique_ptr<MangleNumberingContext> &MCtx =
10436      ExtraMangleNumberingContexts[D];
10437  if (!MCtx)
10438    MCtx = createMangleNumberingContext();
10439  return *MCtx;
10440}
10441
10442std::unique_ptr<MangleNumberingContext>
10443ASTContext::createMangleNumberingContext() const {
10444  return ABI->createMangleNumberingContext();
10445}
10446
10447const CXXConstructorDecl *
10448ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) {
10449  return ABI->getCopyConstructorForExceptionObject(
10450      cast<CXXRecordDecl>(RD->getFirstDecl()));
10451}
10452
10453void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
10454                                                      CXXConstructorDecl *CD) {
10455  return ABI->addCopyConstructorForExceptionObject(
10456      cast<CXXRecordDecl>(RD->getFirstDecl()),
10457      cast<CXXConstructorDecl>(CD->getFirstDecl()));
10458}
10459
10460void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD,
10461                                                 TypedefNameDecl *DD) {
10462  return ABI->addTypedefNameForUnnamedTagDecl(TD, DD);
10463}
10464
10465TypedefNameDecl *
10466ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) {
10467  return ABI->getTypedefNameForUnnamedTagDecl(TD);
10468}
10469
10470void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD,
10471                                                DeclaratorDecl *DD) {
10472  return ABI->addDeclaratorForUnnamedTagDecl(TD, DD);
10473}
10474
10475DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) {
10476  return ABI->getDeclaratorForUnnamedTagDecl(TD);
10477}
10478
10479void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
10480  ParamIndices[D] = index;
10481}
10482
10483unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
10484  ParameterIndexTable::const_iterator I = ParamIndices.find(D);
10485  assert(I != ParamIndices.end() &&
10486         "ParmIndices lacks entry set by ParmVarDecl");
10487  return I->second;
10488}
10489
10490QualType ASTContext::getStringLiteralArrayType(QualType EltTy,
10491                                               unsigned Length) const {
10492  // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
10493  if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
10494    EltTy = EltTy.withConst();
10495
10496  EltTy = adjustStringLiteralBaseType(EltTy);
10497
10498  // Get an array type for the string, according to C99 6.4.5. This includes
10499  // the null terminator character.
10500  return getConstantArrayType(EltTy, llvm::APInt(32, Length + 1), nullptr,
10501                              ArrayType::Normal, /*IndexTypeQuals*/ 0);
10502}
10503
10504StringLiteral *
10505ASTContext::getPredefinedStringLiteralFromCache(StringRef Key) const {
10506  StringLiteral *&Result = StringLiteralCache[Key];
10507  if (!Result)
10508    Result = StringLiteral::Create(
10509        *this, Key, StringLiteral::Ascii,
10510        /*Pascal*/ false, getStringLiteralArrayType(CharTy, Key.size()),
10511        SourceLocation());
10512  return Result;
10513}
10514
10515bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
10516  const llvm::Triple &T = getTargetInfo().getTriple();
10517  if (!T.isOSDarwin())
10518    return false;
10519
10520  if (!(T.isiOS() && T.isOSVersionLT(7)) &&
10521      !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
10522    return false;
10523
10524  QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
10525  CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
10526  uint64_t Size = sizeChars.getQuantity();
10527  CharUnits alignChars = getTypeAlignInChars(AtomicTy);
10528  unsigned Align = alignChars.getQuantity();
10529  unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
10530  return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
10531}
10532
10533/// Template specializations to abstract away from pointers and TypeLocs.
10534/// @{
10535template <typename T>
10536static ast_type_traits::DynTypedNode createDynTypedNode(const T &Node) {
10537  return ast_type_traits::DynTypedNode::create(*Node);
10538}
10539template <>
10540ast_type_traits::DynTypedNode createDynTypedNode(const TypeLoc &Node) {
10541  return ast_type_traits::DynTypedNode::create(Node);
10542}
10543template <>
10544ast_type_traits::DynTypedNode
10545createDynTypedNode(const NestedNameSpecifierLoc &Node) {
10546  return ast_type_traits::DynTypedNode::create(Node);
10547}
10548/// @}
10549
10550/// A \c RecursiveASTVisitor that builds a map from nodes to their
10551/// parents as defined by the \c RecursiveASTVisitor.
10552///
10553/// Note that the relationship described here is purely in terms of AST
10554/// traversal - there are other relationships (for example declaration context)
10555/// in the AST that are better modeled by special matchers.
10556///
10557/// FIXME: Currently only builds up the map using \c Stmt and \c Decl nodes.
10558class ASTContext::ParentMap::ASTVisitor
10559    : public RecursiveASTVisitor<ASTVisitor> {
10560public:
10561  ASTVisitor(ParentMap &Map, ASTContext &Context)
10562      : Map(Map), Context(Context) {}
10563
10564private:
10565  friend class RecursiveASTVisitor<ASTVisitor>;
10566
10567  using VisitorBase = RecursiveASTVisitor<ASTVisitor>;
10568
10569  bool shouldVisitTemplateInstantiations() const { return true; }
10570
10571  bool shouldVisitImplicitCode() const { return true; }
10572
10573  template <typename T, typename MapNodeTy, typename BaseTraverseFn,
10574            typename MapTy>
10575  bool TraverseNode(T Node, MapNodeTy MapNode, BaseTraverseFn BaseTraverse,
10576                    MapTy *Parents) {
10577    if (!Node)
10578      return true;
10579    if (ParentStack.size() > 0) {
10580      // FIXME: Currently we add the same parent multiple times, but only
10581      // when no memoization data is available for the type.
10582      // For example when we visit all subexpressions of template
10583      // instantiations; this is suboptimal, but benign: the only way to
10584      // visit those is with hasAncestor / hasParent, and those do not create
10585      // new matches.
10586      // The plan is to enable DynTypedNode to be storable in a map or hash
10587      // map. The main problem there is to implement hash functions /
10588      // comparison operators for all types that DynTypedNode supports that
10589      // do not have pointer identity.
10590      auto &NodeOrVector = (*Parents)[MapNode];
10591      if (NodeOrVector.isNull()) {
10592        if (const auto *D = ParentStack.back().get<Decl>())
10593          NodeOrVector = D;
10594        else if (const auto *S = ParentStack.back().get<Stmt>())
10595          NodeOrVector = S;
10596        else
10597          NodeOrVector = new ast_type_traits::DynTypedNode(ParentStack.back());
10598      } else {
10599        if (!NodeOrVector.template is<ParentVector *>()) {
10600          auto *Vector = new ParentVector(
10601              1, getSingleDynTypedNodeFromParentMap(NodeOrVector));
10602          delete NodeOrVector
10603              .template dyn_cast<ast_type_traits::DynTypedNode *>();
10604          NodeOrVector = Vector;
10605        }
10606
10607        auto *Vector = NodeOrVector.template get<ParentVector *>();
10608        // Skip duplicates for types that have memoization data.
10609        // We must check that the type has memoization data before calling
10610        // std::find() because DynTypedNode::operator== can't compare all
10611        // types.
10612        bool Found = ParentStack.back().getMemoizationData() &&
10613                     std::find(Vector->begin(), Vector->end(),
10614                               ParentStack.back()) != Vector->end();
10615        if (!Found)
10616          Vector->push_back(ParentStack.back());
10617      }
10618    }
10619    ParentStack.push_back(createDynTypedNode(Node));
10620    bool Result = BaseTraverse();
10621    ParentStack.pop_back();
10622    return Result;
10623  }
10624
10625  bool TraverseDecl(Decl *DeclNode) {
10626    return TraverseNode(
10627        DeclNode, DeclNode, [&] { return VisitorBase::TraverseDecl(DeclNode); },
10628        &Map.PointerParents);
10629  }
10630
10631  bool TraverseStmt(Stmt *StmtNode) {
10632    Stmt *FilteredNode = StmtNode;
10633    if (auto *ExprNode = dyn_cast_or_null<Expr>(FilteredNode))
10634      FilteredNode = Context.traverseIgnored(ExprNode);
10635    return TraverseNode(FilteredNode, FilteredNode,
10636                        [&] { return VisitorBase::TraverseStmt(FilteredNode); },
10637                        &Map.PointerParents);
10638  }
10639
10640  bool TraverseTypeLoc(TypeLoc TypeLocNode) {
10641    return TraverseNode(
10642        TypeLocNode, ast_type_traits::DynTypedNode::create(TypeLocNode),
10643        [&] { return VisitorBase::TraverseTypeLoc(TypeLocNode); },
10644        &Map.OtherParents);
10645  }
10646
10647  bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNSLocNode) {
10648    return TraverseNode(
10649        NNSLocNode, ast_type_traits::DynTypedNode::create(NNSLocNode),
10650        [&] { return VisitorBase::TraverseNestedNameSpecifierLoc(NNSLocNode); },
10651        &Map.OtherParents);
10652  }
10653
10654  ParentMap &Map;
10655  ASTContext &Context;
10656  llvm::SmallVector<ast_type_traits::DynTypedNode, 16> ParentStack;
10657};
10658
10659ASTContext::ParentMap::ParentMap(ASTContext &Ctx) {
10660  ASTVisitor(*this, Ctx).TraverseAST(Ctx);
10661}
10662
10663ASTContext::DynTypedNodeList
10664ASTContext::getParents(const ast_type_traits::DynTypedNode &Node) {
10665  std::unique_ptr<ParentMap> &P = Parents[Traversal];
10666  if (!P)
10667    // We build the parent map for the traversal scope (usually whole TU), as
10668    // hasAncestor can escape any subtree.
10669    P = std::make_unique<ParentMap>(*this);
10670  return P->getParents(Node);
10671}
10672
10673bool
10674ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
10675                                const ObjCMethodDecl *MethodImpl) {
10676  // No point trying to match an unavailable/deprecated mothod.
10677  if (MethodDecl->hasAttr<UnavailableAttr>()
10678      || MethodDecl->hasAttr<DeprecatedAttr>())
10679    return false;
10680  if (MethodDecl->getObjCDeclQualifier() !=
10681      MethodImpl->getObjCDeclQualifier())
10682    return false;
10683  if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
10684    return false;
10685
10686  if (MethodDecl->param_size() != MethodImpl->param_size())
10687    return false;
10688
10689  for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
10690       IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
10691       EF = MethodDecl->param_end();
10692       IM != EM && IF != EF; ++IM, ++IF) {
10693    const ParmVarDecl *DeclVar = (*IF);
10694    const ParmVarDecl *ImplVar = (*IM);
10695    if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
10696      return false;
10697    if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
10698      return false;
10699  }
10700
10701  return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
10702}
10703
10704uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const {
10705  LangAS AS;
10706  if (QT->getUnqualifiedDesugaredType()->isNullPtrType())
10707    AS = LangAS::Default;
10708  else
10709    AS = QT->getPointeeType().getAddressSpace();
10710
10711  return getTargetInfo().getNullPointerValue(AS);
10712}
10713
10714unsigned ASTContext::getTargetAddressSpace(LangAS AS) const {
10715  if (isTargetAddressSpace(AS))
10716    return toTargetAddressSpace(AS);
10717  else
10718    return (*AddrSpaceMap)[(unsigned)AS];
10719}
10720
10721QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const {
10722  assert(Ty->isFixedPointType());
10723
10724  if (Ty->isSaturatedFixedPointType()) return Ty;
10725
10726  switch (Ty->castAs<BuiltinType>()->getKind()) {
10727    default:
10728      llvm_unreachable("Not a fixed point type!");
10729    case BuiltinType::ShortAccum:
10730      return SatShortAccumTy;
10731    case BuiltinType::Accum:
10732      return SatAccumTy;
10733    case BuiltinType::LongAccum:
10734      return SatLongAccumTy;
10735    case BuiltinType::UShortAccum:
10736      return SatUnsignedShortAccumTy;
10737    case BuiltinType::UAccum:
10738      return SatUnsignedAccumTy;
10739    case BuiltinType::ULongAccum:
10740      return SatUnsignedLongAccumTy;
10741    case BuiltinType::ShortFract:
10742      return SatShortFractTy;
10743    case BuiltinType::Fract:
10744      return SatFractTy;
10745    case BuiltinType::LongFract:
10746      return SatLongFractTy;
10747    case BuiltinType::UShortFract:
10748      return SatUnsignedShortFractTy;
10749    case BuiltinType::UFract:
10750      return SatUnsignedFractTy;
10751    case BuiltinType::ULongFract:
10752      return SatUnsignedLongFractTy;
10753  }
10754}
10755
10756LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const {
10757  if (LangOpts.OpenCL)
10758    return getTargetInfo().getOpenCLBuiltinAddressSpace(AS);
10759
10760  if (LangOpts.CUDA)
10761    return getTargetInfo().getCUDABuiltinAddressSpace(AS);
10762
10763  return getLangASFromTargetAS(AS);
10764}
10765
10766// Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
10767// doesn't include ASTContext.h
10768template
10769clang::LazyGenerationalUpdatePtr<
10770    const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
10771clang::LazyGenerationalUpdatePtr<
10772    const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
10773        const clang::ASTContext &Ctx, Decl *Value);
10774
10775unsigned char ASTContext::getFixedPointScale(QualType Ty) const {
10776  assert(Ty->isFixedPointType());
10777
10778  const TargetInfo &Target = getTargetInfo();
10779  switch (Ty->castAs<BuiltinType>()->getKind()) {
10780    default:
10781      llvm_unreachable("Not a fixed point type!");
10782    case BuiltinType::ShortAccum:
10783    case BuiltinType::SatShortAccum:
10784      return Target.getShortAccumScale();
10785    case BuiltinType::Accum:
10786    case BuiltinType::SatAccum:
10787      return Target.getAccumScale();
10788    case BuiltinType::LongAccum:
10789    case BuiltinType::SatLongAccum:
10790      return Target.getLongAccumScale();
10791    case BuiltinType::UShortAccum:
10792    case BuiltinType::SatUShortAccum:
10793      return Target.getUnsignedShortAccumScale();
10794    case BuiltinType::UAccum:
10795    case BuiltinType::SatUAccum:
10796      return Target.getUnsignedAccumScale();
10797    case BuiltinType::ULongAccum:
10798    case BuiltinType::SatULongAccum:
10799      return Target.getUnsignedLongAccumScale();
10800    case BuiltinType::ShortFract:
10801    case BuiltinType::SatShortFract:
10802      return Target.getShortFractScale();
10803    case BuiltinType::Fract:
10804    case BuiltinType::SatFract:
10805      return Target.getFractScale();
10806    case BuiltinType::LongFract:
10807    case BuiltinType::SatLongFract:
10808      return Target.getLongFractScale();
10809    case BuiltinType::UShortFract:
10810    case BuiltinType::SatUShortFract:
10811      return Target.getUnsignedShortFractScale();
10812    case BuiltinType::UFract:
10813    case BuiltinType::SatUFract:
10814      return Target.getUnsignedFractScale();
10815    case BuiltinType::ULongFract:
10816    case BuiltinType::SatULongFract:
10817      return Target.getUnsignedLongFractScale();
10818  }
10819}
10820
10821unsigned char ASTContext::getFixedPointIBits(QualType Ty) const {
10822  assert(Ty->isFixedPointType());
10823
10824  const TargetInfo &Target = getTargetInfo();
10825  switch (Ty->castAs<BuiltinType>()->getKind()) {
10826    default:
10827      llvm_unreachable("Not a fixed point type!");
10828    case BuiltinType::ShortAccum:
10829    case BuiltinType::SatShortAccum:
10830      return Target.getShortAccumIBits();
10831    case BuiltinType::Accum:
10832    case BuiltinType::SatAccum:
10833      return Target.getAccumIBits();
10834    case BuiltinType::LongAccum:
10835    case BuiltinType::SatLongAccum:
10836      return Target.getLongAccumIBits();
10837    case BuiltinType::UShortAccum:
10838    case BuiltinType::SatUShortAccum:
10839      return Target.getUnsignedShortAccumIBits();
10840    case BuiltinType::UAccum:
10841    case BuiltinType::SatUAccum:
10842      return Target.getUnsignedAccumIBits();
10843    case BuiltinType::ULongAccum:
10844    case BuiltinType::SatULongAccum:
10845      return Target.getUnsignedLongAccumIBits();
10846    case BuiltinType::ShortFract:
10847    case BuiltinType::SatShortFract:
10848    case BuiltinType::Fract:
10849    case BuiltinType::SatFract:
10850    case BuiltinType::LongFract:
10851    case BuiltinType::SatLongFract:
10852    case BuiltinType::UShortFract:
10853    case BuiltinType::SatUShortFract:
10854    case BuiltinType::UFract:
10855    case BuiltinType::SatUFract:
10856    case BuiltinType::ULongFract:
10857    case BuiltinType::SatULongFract:
10858      return 0;
10859  }
10860}
10861
10862FixedPointSemantics ASTContext::getFixedPointSemantics(QualType Ty) const {
10863  assert((Ty->isFixedPointType() || Ty->isIntegerType()) &&
10864         "Can only get the fixed point semantics for a "
10865         "fixed point or integer type.");
10866  if (Ty->isIntegerType())
10867    return FixedPointSemantics::GetIntegerSemantics(getIntWidth(Ty),
10868                                                    Ty->isSignedIntegerType());
10869
10870  bool isSigned = Ty->isSignedFixedPointType();
10871  return FixedPointSemantics(
10872      static_cast<unsigned>(getTypeSize(Ty)), getFixedPointScale(Ty), isSigned,
10873      Ty->isSaturatedFixedPointType(),
10874      !isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding());
10875}
10876
10877APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const {
10878  assert(Ty->isFixedPointType());
10879  return APFixedPoint::getMax(getFixedPointSemantics(Ty));
10880}
10881
10882APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const {
10883  assert(Ty->isFixedPointType());
10884  return APFixedPoint::getMin(getFixedPointSemantics(Ty));
10885}
10886
10887QualType ASTContext::getCorrespondingSignedFixedPointType(QualType Ty) const {
10888  assert(Ty->isUnsignedFixedPointType() &&
10889         "Expected unsigned fixed point type");
10890
10891  switch (Ty->castAs<BuiltinType>()->getKind()) {
10892  case BuiltinType::UShortAccum:
10893    return ShortAccumTy;
10894  case BuiltinType::UAccum:
10895    return AccumTy;
10896  case BuiltinType::ULongAccum:
10897    return LongAccumTy;
10898  case BuiltinType::SatUShortAccum:
10899    return SatShortAccumTy;
10900  case BuiltinType::SatUAccum:
10901    return SatAccumTy;
10902  case BuiltinType::SatULongAccum:
10903    return SatLongAccumTy;
10904  case BuiltinType::UShortFract:
10905    return ShortFractTy;
10906  case BuiltinType::UFract:
10907    return FractTy;
10908  case BuiltinType::ULongFract:
10909    return LongFractTy;
10910  case BuiltinType::SatUShortFract:
10911    return SatShortFractTy;
10912  case BuiltinType::SatUFract:
10913    return SatFractTy;
10914  case BuiltinType::SatULongFract:
10915    return SatLongFractTy;
10916  default:
10917    llvm_unreachable("Unexpected unsigned fixed point type");
10918  }
10919}
10920
10921ParsedTargetAttr
10922ASTContext::filterFunctionTargetAttrs(const TargetAttr *TD) const {
10923  assert(TD != nullptr);
10924  ParsedTargetAttr ParsedAttr = TD->parse();
10925
10926  ParsedAttr.Features.erase(
10927      llvm::remove_if(ParsedAttr.Features,
10928                      [&](const std::string &Feat) {
10929                        return !Target->isValidFeatureName(
10930                            StringRef{Feat}.substr(1));
10931                      }),
10932      ParsedAttr.Features.end());
10933  return ParsedAttr;
10934}
10935
10936void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
10937                                       const FunctionDecl *FD) const {
10938  if (FD)
10939    getFunctionFeatureMap(FeatureMap, GlobalDecl().getWithDecl(FD));
10940  else
10941    Target->initFeatureMap(FeatureMap, getDiagnostics(),
10942                           Target->getTargetOpts().CPU,
10943                           Target->getTargetOpts().Features);
10944}
10945
10946// Fills in the supplied string map with the set of target features for the
10947// passed in function.
10948void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
10949                                       GlobalDecl GD) const {
10950  StringRef TargetCPU = Target->getTargetOpts().CPU;
10951  const FunctionDecl *FD = GD.getDecl()->getAsFunction();
10952  if (const auto *TD = FD->getAttr<TargetAttr>()) {
10953    ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
10954
10955    // Make a copy of the features as passed on the command line into the
10956    // beginning of the additional features from the function to override.
10957    ParsedAttr.Features.insert(
10958        ParsedAttr.Features.begin(),
10959        Target->getTargetOpts().FeaturesAsWritten.begin(),
10960        Target->getTargetOpts().FeaturesAsWritten.end());
10961
10962    if (ParsedAttr.Architecture != "" &&
10963        Target->isValidCPUName(ParsedAttr.Architecture))
10964      TargetCPU = ParsedAttr.Architecture;
10965
10966    // Now populate the feature map, first with the TargetCPU which is either
10967    // the default or a new one from the target attribute string. Then we'll use
10968    // the passed in features (FeaturesAsWritten) along with the new ones from
10969    // the attribute.
10970    Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU,
10971                           ParsedAttr.Features);
10972  } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
10973    llvm::SmallVector<StringRef, 32> FeaturesTmp;
10974    Target->getCPUSpecificCPUDispatchFeatures(
10975        SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
10976    std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
10977    Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features);
10978  } else {
10979    Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU,
10980                           Target->getTargetOpts().Features);
10981  }
10982}
10983