ExplodedGraph.h revision 360784
1//===- ExplodedGraph.h - Local, Path-Sens. "Exploded Graph" -----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9//  This file defines the template classes ExplodedNode and ExplodedGraph,
10//  which represent a path-sensitive, intra-procedural "exploded graph."
11//  See "Precise interprocedural dataflow analysis via graph reachability"
12//  by Reps, Horwitz, and Sagiv
13//  (http://portal.acm.org/citation.cfm?id=199462) for the definition of an
14//  exploded graph.
15//
16//===----------------------------------------------------------------------===//
17
18#ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_EXPLODEDGRAPH_H
19#define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_EXPLODEDGRAPH_H
20
21#include "clang/Analysis/AnalysisDeclContext.h"
22#include "clang/Analysis/ProgramPoint.h"
23#include "clang/Analysis/Support/BumpVector.h"
24#include "clang/Basic/LLVM.h"
25#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
26#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
27#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
28#include "llvm/ADT/ArrayRef.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/DepthFirstIterator.h"
31#include "llvm/ADT/FoldingSet.h"
32#include "llvm/ADT/GraphTraits.h"
33#include "llvm/ADT/Optional.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/ADT/SetVector.h"
36#include "llvm/Support/Allocator.h"
37#include "llvm/Support/Compiler.h"
38#include <cassert>
39#include <cstdint>
40#include <memory>
41#include <utility>
42#include <vector>
43
44namespace clang {
45
46class CFG;
47class Decl;
48class Expr;
49class ParentMap;
50class Stmt;
51
52namespace ento {
53
54class ExplodedGraph;
55
56//===----------------------------------------------------------------------===//
57// ExplodedGraph "implementation" classes.  These classes are not typed to
58// contain a specific kind of state.  Typed-specialized versions are defined
59// on top of these classes.
60//===----------------------------------------------------------------------===//
61
62// ExplodedNode is not constified all over the engine because we need to add
63// successors to it at any time after creating it.
64
65class ExplodedNode : public llvm::FoldingSetNode {
66  friend class BranchNodeBuilder;
67  friend class CoreEngine;
68  friend class EndOfFunctionNodeBuilder;
69  friend class ExplodedGraph;
70  friend class IndirectGotoNodeBuilder;
71  friend class NodeBuilder;
72  friend class SwitchNodeBuilder;
73
74  /// Efficiently stores a list of ExplodedNodes, or an optional flag.
75  ///
76  /// NodeGroup provides opaque storage for a list of ExplodedNodes, optimizing
77  /// for the case when there is only one node in the group. This is a fairly
78  /// common case in an ExplodedGraph, where most nodes have only one
79  /// predecessor and many have only one successor. It can also be used to
80  /// store a flag rather than a node list, which ExplodedNode uses to mark
81  /// whether a node is a sink. If the flag is set, the group is implicitly
82  /// empty and no nodes may be added.
83  class NodeGroup {
84    // Conceptually a discriminated union. If the low bit is set, the node is
85    // a sink. If the low bit is not set, the pointer refers to the storage
86    // for the nodes in the group.
87    // This is not a PointerIntPair in order to keep the storage type opaque.
88    uintptr_t P;
89
90  public:
91    NodeGroup(bool Flag = false) : P(Flag) {
92      assert(getFlag() == Flag);
93    }
94
95    ExplodedNode * const *begin() const;
96
97    ExplodedNode * const *end() const;
98
99    unsigned size() const;
100
101    bool empty() const { return P == 0 || getFlag() != 0; }
102
103    /// Adds a node to the list.
104    ///
105    /// The group must not have been created with its flag set.
106    void addNode(ExplodedNode *N, ExplodedGraph &G);
107
108    /// Replaces the single node in this group with a new node.
109    ///
110    /// Note that this should only be used when you know the group was not
111    /// created with its flag set, and that the group is empty or contains
112    /// only a single node.
113    void replaceNode(ExplodedNode *node);
114
115    /// Returns whether this group was created with its flag set.
116    bool getFlag() const {
117      return (P & 1);
118    }
119  };
120
121  /// Location - The program location (within a function body) associated
122  ///  with this node.
123  const ProgramPoint Location;
124
125  /// State - The state associated with this node.
126  ProgramStateRef State;
127
128  /// Preds - The predecessors of this node.
129  NodeGroup Preds;
130
131  /// Succs - The successors of this node.
132  NodeGroup Succs;
133
134  int64_t Id;
135
136public:
137  explicit ExplodedNode(const ProgramPoint &loc, ProgramStateRef state,
138                        int64_t Id, bool IsSink)
139      : Location(loc), State(std::move(state)), Succs(IsSink), Id(Id) {
140    assert(isSink() == IsSink);
141  }
142
143  /// getLocation - Returns the edge associated with the given node.
144  ProgramPoint getLocation() const { return Location; }
145
146  const LocationContext *getLocationContext() const {
147    return getLocation().getLocationContext();
148  }
149
150  const StackFrameContext *getStackFrame() const {
151    return getLocation().getStackFrame();
152  }
153
154  const Decl &getCodeDecl() const { return *getLocationContext()->getDecl(); }
155
156  CFG &getCFG() const { return *getLocationContext()->getCFG(); }
157
158  const CFGBlock *getCFGBlock() const;
159
160  const ParentMap &getParentMap() const {
161    return getLocationContext()->getParentMap();
162  }
163
164  template <typename T>
165  T &getAnalysis() const {
166    return *getLocationContext()->getAnalysis<T>();
167  }
168
169  const ProgramStateRef &getState() const { return State; }
170
171  template <typename T>
172  Optional<T> getLocationAs() const LLVM_LVALUE_FUNCTION {
173    return Location.getAs<T>();
174  }
175
176  /// Get the value of an arbitrary expression at this node.
177  SVal getSVal(const Stmt *S) const {
178    return getState()->getSVal(S, getLocationContext());
179  }
180
181  static void Profile(llvm::FoldingSetNodeID &ID,
182                      const ProgramPoint &Loc,
183                      const ProgramStateRef &state,
184                      bool IsSink) {
185    ID.Add(Loc);
186    ID.AddPointer(state.get());
187    ID.AddBoolean(IsSink);
188  }
189
190  void Profile(llvm::FoldingSetNodeID& ID) const {
191    // We avoid copy constructors by not using accessors.
192    Profile(ID, Location, State, isSink());
193  }
194
195  /// addPredeccessor - Adds a predecessor to the current node, and
196  ///  in tandem add this node as a successor of the other node.
197  void addPredecessor(ExplodedNode *V, ExplodedGraph &G);
198
199  unsigned succ_size() const { return Succs.size(); }
200  unsigned pred_size() const { return Preds.size(); }
201  bool succ_empty() const { return Succs.empty(); }
202  bool pred_empty() const { return Preds.empty(); }
203
204  bool isSink() const { return Succs.getFlag(); }
205
206  bool hasSinglePred() const {
207    return (pred_size() == 1);
208  }
209
210  ExplodedNode *getFirstPred() {
211    return pred_empty() ? nullptr : *(pred_begin());
212  }
213
214  const ExplodedNode *getFirstPred() const {
215    return const_cast<ExplodedNode*>(this)->getFirstPred();
216  }
217
218  ExplodedNode *getFirstSucc() {
219    return succ_empty() ? nullptr : *(succ_begin());
220  }
221
222  const ExplodedNode *getFirstSucc() const {
223    return const_cast<ExplodedNode*>(this)->getFirstSucc();
224  }
225
226  // Iterators over successor and predecessor vertices.
227  using succ_iterator = ExplodedNode * const *;
228  using succ_range = llvm::iterator_range<succ_iterator>;
229
230  using const_succ_iterator = const ExplodedNode * const *;
231  using const_succ_range = llvm::iterator_range<const_succ_iterator>;
232
233  using pred_iterator = ExplodedNode * const *;
234  using pred_range = llvm::iterator_range<pred_iterator>;
235
236  using const_pred_iterator = const ExplodedNode * const *;
237  using const_pred_range = llvm::iterator_range<const_pred_iterator>;
238
239  pred_iterator pred_begin() { return Preds.begin(); }
240  pred_iterator pred_end() { return Preds.end(); }
241  pred_range preds() { return {Preds.begin(), Preds.end()}; }
242
243  const_pred_iterator pred_begin() const {
244    return const_cast<ExplodedNode*>(this)->pred_begin();
245  }
246  const_pred_iterator pred_end() const {
247    return const_cast<ExplodedNode*>(this)->pred_end();
248  }
249  const_pred_range preds() const { return {Preds.begin(), Preds.end()}; }
250
251  succ_iterator succ_begin() { return Succs.begin(); }
252  succ_iterator succ_end() { return Succs.end(); }
253  succ_range succs() { return {Succs.begin(), Succs.end()}; }
254
255  const_succ_iterator succ_begin() const {
256    return const_cast<ExplodedNode*>(this)->succ_begin();
257  }
258  const_succ_iterator succ_end() const {
259    return const_cast<ExplodedNode*>(this)->succ_end();
260  }
261  const_succ_range succs() const { return {Succs.begin(), Succs.end()}; }
262
263  int64_t getID() const { return Id; }
264
265  /// The node is trivial if it has only one successor, only one predecessor,
266  /// it's predecessor has only one successor,
267  /// and its program state is the same as the program state of the previous
268  /// node.
269  /// Trivial nodes may be skipped while printing exploded graph.
270  bool isTrivial() const;
271
272  /// If the node's program point corresponds to a statement, retrieve that
273  /// statement. Useful for figuring out where to put a warning or a note.
274  /// If the statement belongs to a body-farmed definition,
275  /// retrieve the call site for that definition.
276  const Stmt *getStmtForDiagnostics() const;
277
278  /// Find the next statement that was executed on this node's execution path.
279  /// Useful for explaining control flow that follows the current node.
280  /// If the statement belongs to a body-farmed definition, retrieve the
281  /// call site for that definition.
282  const Stmt *getNextStmtForDiagnostics() const;
283
284  /// Find the statement that was executed immediately before this node.
285  /// Useful when the node corresponds to a CFG block entrance.
286  /// If the statement belongs to a body-farmed definition, retrieve the
287  /// call site for that definition.
288  const Stmt *getPreviousStmtForDiagnostics() const;
289
290  /// Find the statement that was executed at or immediately before this node.
291  /// Useful when any nearby statement will do.
292  /// If the statement belongs to a body-farmed definition, retrieve the
293  /// call site for that definition.
294  const Stmt *getCurrentOrPreviousStmtForDiagnostics() const;
295
296private:
297  void replaceSuccessor(ExplodedNode *node) { Succs.replaceNode(node); }
298  void replacePredecessor(ExplodedNode *node) { Preds.replaceNode(node); }
299};
300
301using InterExplodedGraphMap =
302    llvm::DenseMap<const ExplodedNode *, const ExplodedNode *>;
303
304class ExplodedGraph {
305protected:
306  friend class CoreEngine;
307
308  // Type definitions.
309  using NodeVector = std::vector<ExplodedNode *>;
310
311  /// The roots of the simulation graph. Usually there will be only
312  /// one, but clients are free to establish multiple subgraphs within a single
313  /// SimulGraph. Moreover, these subgraphs can often merge when paths from
314  /// different roots reach the same state at the same program location.
315  NodeVector Roots;
316
317  /// The nodes in the simulation graph which have been
318  /// specially marked as the endpoint of an abstract simulation path.
319  NodeVector EndNodes;
320
321  /// Nodes - The nodes in the graph.
322  llvm::FoldingSet<ExplodedNode> Nodes;
323
324  /// BVC - Allocator and context for allocating nodes and their predecessor
325  /// and successor groups.
326  BumpVectorContext BVC;
327
328  /// NumNodes - The number of nodes in the graph.
329  int64_t NumNodes = 0;
330
331  /// A list of recently allocated nodes that can potentially be recycled.
332  NodeVector ChangedNodes;
333
334  /// A list of nodes that can be reused.
335  NodeVector FreeNodes;
336
337  /// Determines how often nodes are reclaimed.
338  ///
339  /// If this is 0, nodes will never be reclaimed.
340  unsigned ReclaimNodeInterval = 0;
341
342  /// Counter to determine when to reclaim nodes.
343  unsigned ReclaimCounter;
344
345public:
346  ExplodedGraph();
347  ~ExplodedGraph();
348
349  /// Retrieve the node associated with a (Location,State) pair,
350  ///  where the 'Location' is a ProgramPoint in the CFG.  If no node for
351  ///  this pair exists, it is created. IsNew is set to true if
352  ///  the node was freshly created.
353  ExplodedNode *getNode(const ProgramPoint &L, ProgramStateRef State,
354                        bool IsSink = false,
355                        bool* IsNew = nullptr);
356
357  /// Create a node for a (Location, State) pair,
358  ///  but don't store it for deduplication later.  This
359  ///  is useful when copying an already completed
360  ///  ExplodedGraph for further processing.
361  ExplodedNode *createUncachedNode(const ProgramPoint &L,
362    ProgramStateRef State,
363    int64_t Id,
364    bool IsSink = false);
365
366  std::unique_ptr<ExplodedGraph> MakeEmptyGraph() const {
367    return std::make_unique<ExplodedGraph>();
368  }
369
370  /// addRoot - Add an untyped node to the set of roots.
371  ExplodedNode *addRoot(ExplodedNode *V) {
372    Roots.push_back(V);
373    return V;
374  }
375
376  /// addEndOfPath - Add an untyped node to the set of EOP nodes.
377  ExplodedNode *addEndOfPath(ExplodedNode *V) {
378    EndNodes.push_back(V);
379    return V;
380  }
381
382  unsigned num_roots() const { return Roots.size(); }
383  unsigned num_eops() const { return EndNodes.size(); }
384
385  bool empty() const { return NumNodes == 0; }
386  unsigned size() const { return NumNodes; }
387
388  void reserve(unsigned NodeCount) { Nodes.reserve(NodeCount); }
389
390  // Iterators.
391  using NodeTy = ExplodedNode;
392  using AllNodesTy = llvm::FoldingSet<ExplodedNode>;
393  using roots_iterator = NodeVector::iterator;
394  using const_roots_iterator = NodeVector::const_iterator;
395  using eop_iterator = NodeVector::iterator;
396  using const_eop_iterator = NodeVector::const_iterator;
397  using node_iterator = AllNodesTy::iterator;
398  using const_node_iterator = AllNodesTy::const_iterator;
399
400  node_iterator nodes_begin() { return Nodes.begin(); }
401
402  node_iterator nodes_end() { return Nodes.end(); }
403
404  const_node_iterator nodes_begin() const { return Nodes.begin(); }
405
406  const_node_iterator nodes_end() const { return Nodes.end(); }
407
408  roots_iterator roots_begin() { return Roots.begin(); }
409
410  roots_iterator roots_end() { return Roots.end(); }
411
412  const_roots_iterator roots_begin() const { return Roots.begin(); }
413
414  const_roots_iterator roots_end() const { return Roots.end(); }
415
416  eop_iterator eop_begin() { return EndNodes.begin(); }
417
418  eop_iterator eop_end() { return EndNodes.end(); }
419
420  const_eop_iterator eop_begin() const { return EndNodes.begin(); }
421
422  const_eop_iterator eop_end() const { return EndNodes.end(); }
423
424  llvm::BumpPtrAllocator & getAllocator() { return BVC.getAllocator(); }
425  BumpVectorContext &getNodeAllocator() { return BVC; }
426
427  using NodeMap = llvm::DenseMap<const ExplodedNode *, ExplodedNode *>;
428
429  /// Creates a trimmed version of the graph that only contains paths leading
430  /// to the given nodes.
431  ///
432  /// \param Nodes The nodes which must appear in the final graph. Presumably
433  ///              these are end-of-path nodes (i.e. they have no successors).
434  /// \param[out] ForwardMap A optional map from nodes in this graph to nodes in
435  ///                        the returned graph.
436  /// \param[out] InverseMap An optional map from nodes in the returned graph to
437  ///                        nodes in this graph.
438  /// \returns The trimmed graph
439  std::unique_ptr<ExplodedGraph>
440  trim(ArrayRef<const NodeTy *> Nodes,
441       InterExplodedGraphMap *ForwardMap = nullptr,
442       InterExplodedGraphMap *InverseMap = nullptr) const;
443
444  /// Enable tracking of recently allocated nodes for potential reclamation
445  /// when calling reclaimRecentlyAllocatedNodes().
446  void enableNodeReclamation(unsigned Interval) {
447    ReclaimCounter = ReclaimNodeInterval = Interval;
448  }
449
450  /// Reclaim "uninteresting" nodes created since the last time this method
451  /// was called.
452  void reclaimRecentlyAllocatedNodes();
453
454  /// Returns true if nodes for the given expression kind are always
455  ///        kept around.
456  static bool isInterestingLValueExpr(const Expr *Ex);
457
458private:
459  bool shouldCollect(const ExplodedNode *node);
460  void collectNode(ExplodedNode *node);
461};
462
463class ExplodedNodeSet {
464  using ImplTy = llvm::SmallSetVector<ExplodedNode *, 4>;
465  ImplTy Impl;
466
467public:
468  ExplodedNodeSet(ExplodedNode *N) {
469    assert(N && !static_cast<ExplodedNode*>(N)->isSink());
470    Impl.insert(N);
471  }
472
473  ExplodedNodeSet() = default;
474
475  void Add(ExplodedNode *N) {
476    if (N && !static_cast<ExplodedNode*>(N)->isSink()) Impl.insert(N);
477  }
478
479  using iterator = ImplTy::iterator;
480  using const_iterator = ImplTy::const_iterator;
481
482  unsigned size() const { return Impl.size();  }
483  bool empty()    const { return Impl.empty(); }
484  bool erase(ExplodedNode *N) { return Impl.remove(N); }
485
486  void clear() { Impl.clear(); }
487
488  void insert(const ExplodedNodeSet &S) {
489    assert(&S != this);
490    if (empty())
491      Impl = S.Impl;
492    else
493      Impl.insert(S.begin(), S.end());
494  }
495
496  iterator begin() { return Impl.begin(); }
497  iterator end() { return Impl.end(); }
498
499  const_iterator begin() const { return Impl.begin(); }
500  const_iterator end() const { return Impl.end(); }
501};
502
503} // namespace ento
504
505} // namespace clang
506
507// GraphTraits
508
509namespace llvm {
510  template <> struct GraphTraits<clang::ento::ExplodedGraph *> {
511    using GraphTy = clang::ento::ExplodedGraph *;
512    using NodeRef = clang::ento::ExplodedNode *;
513    using ChildIteratorType = clang::ento::ExplodedNode::succ_iterator;
514    using nodes_iterator = llvm::df_iterator<GraphTy>;
515
516    static NodeRef getEntryNode(const GraphTy G) {
517      return *G->roots_begin();
518    }
519
520    static bool predecessorOfTrivial(NodeRef N) {
521      return N->succ_size() == 1 && N->getFirstSucc()->isTrivial();
522    }
523
524    static ChildIteratorType child_begin(NodeRef N) {
525      if (predecessorOfTrivial(N))
526        return child_begin(*N->succ_begin());
527      return N->succ_begin();
528    }
529
530    static ChildIteratorType child_end(NodeRef N) {
531      if (predecessorOfTrivial(N))
532        return child_end(N->getFirstSucc());
533      return N->succ_end();
534    }
535
536    static nodes_iterator nodes_begin(const GraphTy G) {
537      return df_begin(G);
538    }
539
540    static nodes_iterator nodes_end(const GraphTy G) {
541      return df_end(G);
542    }
543  };
544} // namespace llvm
545
546#endif // LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_EXPLODEDGRAPH_H
547