stl_vector.h revision 236829
1// Vector implementation -*- C++ -*-
2
3// Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006
4// Free Software Foundation, Inc.
5//
6// This file is part of the GNU ISO C++ Library.  This library is free
7// software; you can redistribute it and/or modify it under the
8// terms of the GNU General Public License as published by the
9// Free Software Foundation; either version 2, or (at your option)
10// any later version.
11
12// This library is distributed in the hope that it will be useful,
13// but WITHOUT ANY WARRANTY; without even the implied warranty of
14// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15// GNU General Public License for more details.
16
17// You should have received a copy of the GNU General Public License along
18// with this library; see the file COPYING.  If not, write to the Free
19// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
20// USA.
21
22// As a special exception, you may use this file as part of a free software
23// library without restriction.  Specifically, if other files instantiate
24// templates or use macros or inline functions from this file, or you compile
25// this file and link it with other files to produce an executable, this
26// file does not by itself cause the resulting executable to be covered by
27// the GNU General Public License.  This exception does not however
28// invalidate any other reasons why the executable file might be covered by
29// the GNU General Public License.
30
31/*
32 *
33 * Copyright (c) 1994
34 * Hewlett-Packard Company
35 *
36 * Permission to use, copy, modify, distribute and sell this software
37 * and its documentation for any purpose is hereby granted without fee,
38 * provided that the above copyright notice appear in all copies and
39 * that both that copyright notice and this permission notice appear
40 * in supporting documentation.  Hewlett-Packard Company makes no
41 * representations about the suitability of this software for any
42 * purpose.  It is provided "as is" without express or implied warranty.
43 *
44 *
45 * Copyright (c) 1996
46 * Silicon Graphics Computer Systems, Inc.
47 *
48 * Permission to use, copy, modify, distribute and sell this software
49 * and its documentation for any purpose is hereby granted without fee,
50 * provided that the above copyright notice appear in all copies and
51 * that both that copyright notice and this permission notice appear
52 * in supporting documentation.  Silicon Graphics makes no
53 * representations about the suitability of this  software for any
54 * purpose.  It is provided "as is" without express or implied warranty.
55 */
56
57/** @file stl_vector.h
58 *  This is an internal header file, included by other library headers.
59 *  You should not attempt to use it directly.
60 */
61
62#ifndef _VECTOR_H
63#define _VECTOR_H 1
64
65#include <bits/stl_iterator_base_funcs.h>
66#include <bits/functexcept.h>
67#include <bits/concept_check.h>
68
69_GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD)
70
71  /**
72   *  @if maint
73   *  See bits/stl_deque.h's _Deque_base for an explanation.
74   *  @endif
75  */
76  template<typename _Tp, typename _Alloc>
77    struct _Vector_base
78    {
79      typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
80
81      struct _Vector_impl
82      : public _Tp_alloc_type
83      {
84	_Tp*           _M_start;
85	_Tp*           _M_finish;
86	_Tp*           _M_end_of_storage;
87
88	_Vector_impl()
89	: _Tp_alloc_type(), _M_start(0), _M_finish(0), _M_end_of_storage(0)
90	{ }
91
92	_Vector_impl(_Tp_alloc_type const& __a)
93	: _Tp_alloc_type(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
94	{ }
95      };
96
97    public:
98      typedef _Alloc allocator_type;
99
100      _Tp_alloc_type&
101      _M_get_Tp_allocator()
102      { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
103
104      const _Tp_alloc_type&
105      _M_get_Tp_allocator() const
106      { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
107
108      allocator_type
109      get_allocator() const
110      { return allocator_type(_M_get_Tp_allocator()); }
111
112      _Vector_base()
113      : _M_impl() { }
114
115      _Vector_base(const allocator_type& __a)
116      : _M_impl(__a)
117      { }
118
119      _Vector_base(size_t __n, const allocator_type& __a)
120      : _M_impl(__a)
121      {
122	this->_M_impl._M_start = this->_M_allocate(__n);
123	this->_M_impl._M_finish = this->_M_impl._M_start;
124	this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
125      }
126
127      ~_Vector_base()
128      { _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage
129		      - this->_M_impl._M_start); }
130
131    public:
132      _Vector_impl _M_impl;
133
134      _Tp*
135      _M_allocate(size_t __n)
136      { return _M_impl.allocate(__n); }
137
138      void
139      _M_deallocate(_Tp* __p, size_t __n)
140      {
141	if (__p)
142	  _M_impl.deallocate(__p, __n);
143      }
144    };
145
146
147  /**
148   *  @brief A standard container which offers fixed time access to
149   *  individual elements in any order.
150   *
151   *  @ingroup Containers
152   *  @ingroup Sequences
153   *
154   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
155   *  <a href="tables.html#66">reversible container</a>, and a
156   *  <a href="tables.html#67">sequence</a>, including the
157   *  <a href="tables.html#68">optional sequence requirements</a> with the
158   *  %exception of @c push_front and @c pop_front.
159   *
160   *  In some terminology a %vector can be described as a dynamic
161   *  C-style array, it offers fast and efficient access to individual
162   *  elements in any order and saves the user from worrying about
163   *  memory and size allocation.  Subscripting ( @c [] ) access is
164   *  also provided as with C-style arrays.
165  */
166  template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
167    class vector : protected _Vector_base<_Tp, _Alloc>
168    {
169      // Concept requirements.
170      typedef typename _Alloc::value_type                _Alloc_value_type;
171      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
172      __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
173
174      typedef _Vector_base<_Tp, _Alloc>			 _Base;
175      typedef vector<_Tp, _Alloc>			 vector_type;
176      typedef typename _Base::_Tp_alloc_type		 _Tp_alloc_type;
177
178    public:
179      typedef _Tp					 value_type;
180      typedef typename _Tp_alloc_type::pointer           pointer;
181      typedef typename _Tp_alloc_type::const_pointer     const_pointer;
182      typedef typename _Tp_alloc_type::reference         reference;
183      typedef typename _Tp_alloc_type::const_reference   const_reference;
184      typedef __gnu_cxx::__normal_iterator<pointer, vector_type> iterator;
185      typedef __gnu_cxx::__normal_iterator<const_pointer, vector_type>
186      const_iterator;
187      typedef std::reverse_iterator<const_iterator>  const_reverse_iterator;
188      typedef std::reverse_iterator<iterator>		 reverse_iterator;
189      typedef size_t					 size_type;
190      typedef ptrdiff_t					 difference_type;
191      typedef _Alloc                        		 allocator_type;
192
193    protected:
194      using _Base::_M_allocate;
195      using _Base::_M_deallocate;
196      using _Base::_M_impl;
197      using _Base::_M_get_Tp_allocator;
198
199    public:
200      // [23.2.4.1] construct/copy/destroy
201      // (assign() and get_allocator() are also listed in this section)
202      /**
203       *  @brief  Default constructor creates no elements.
204       */
205      vector()
206      : _Base() { }
207
208      explicit
209      vector(const allocator_type& __a)
210      : _Base(__a)
211      { }
212
213      /**
214       *  @brief  Create a %vector with copies of an exemplar element.
215       *  @param  n  The number of elements to initially create.
216       *  @param  value  An element to copy.
217       *
218       *  This constructor fills the %vector with @a n copies of @a value.
219       */
220      explicit
221      vector(size_type __n, const value_type& __value = value_type(),
222	     const allocator_type& __a = allocator_type())
223      : _Base(__n, __a)
224      {
225	std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
226				      _M_get_Tp_allocator());
227	this->_M_impl._M_finish = this->_M_impl._M_start + __n;
228      }
229
230      /**
231       *  @brief  %Vector copy constructor.
232       *  @param  x  A %vector of identical element and allocator types.
233       *
234       *  The newly-created %vector uses a copy of the allocation
235       *  object used by @a x.  All the elements of @a x are copied,
236       *  but any extra memory in
237       *  @a x (for fast expansion) will not be copied.
238       */
239      vector(const vector& __x)
240      : _Base(__x.size(), __x._M_get_Tp_allocator())
241      { this->_M_impl._M_finish =
242	  std::__uninitialized_copy_a(__x.begin(), __x.end(),
243				      this->_M_impl._M_start,
244				      _M_get_Tp_allocator());
245      }
246
247      /**
248       *  @brief  Builds a %vector from a range.
249       *  @param  first  An input iterator.
250       *  @param  last  An input iterator.
251       *
252       *  Create a %vector consisting of copies of the elements from
253       *  [first,last).
254       *
255       *  If the iterators are forward, bidirectional, or
256       *  random-access, then this will call the elements' copy
257       *  constructor N times (where N is distance(first,last)) and do
258       *  no memory reallocation.  But if only input iterators are
259       *  used, then this will do at most 2N calls to the copy
260       *  constructor, and logN memory reallocations.
261       */
262      template<typename _InputIterator>
263        vector(_InputIterator __first, _InputIterator __last,
264	       const allocator_type& __a = allocator_type())
265	: _Base(__a)
266        {
267	  // Check whether it's an integral type.  If so, it's not an iterator.
268	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
269	  _M_initialize_dispatch(__first, __last, _Integral());
270	}
271
272      /**
273       *  The dtor only erases the elements, and note that if the
274       *  elements themselves are pointers, the pointed-to memory is
275       *  not touched in any way.  Managing the pointer is the user's
276       *  responsibilty.
277       */
278      ~vector()
279      { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
280		      _M_get_Tp_allocator()); }
281
282      /**
283       *  @brief  %Vector assignment operator.
284       *  @param  x  A %vector of identical element and allocator types.
285       *
286       *  All the elements of @a x are copied, but any extra memory in
287       *  @a x (for fast expansion) will not be copied.  Unlike the
288       *  copy constructor, the allocator object is not copied.
289       */
290      vector&
291      operator=(const vector& __x);
292
293      /**
294       *  @brief  Assigns a given value to a %vector.
295       *  @param  n  Number of elements to be assigned.
296       *  @param  val  Value to be assigned.
297       *
298       *  This function fills a %vector with @a n copies of the given
299       *  value.  Note that the assignment completely changes the
300       *  %vector and that the resulting %vector's size is the same as
301       *  the number of elements assigned.  Old data may be lost.
302       */
303      void
304      assign(size_type __n, const value_type& __val)
305      { _M_fill_assign(__n, __val); }
306
307      /**
308       *  @brief  Assigns a range to a %vector.
309       *  @param  first  An input iterator.
310       *  @param  last   An input iterator.
311       *
312       *  This function fills a %vector with copies of the elements in the
313       *  range [first,last).
314       *
315       *  Note that the assignment completely changes the %vector and
316       *  that the resulting %vector's size is the same as the number
317       *  of elements assigned.  Old data may be lost.
318       */
319      template<typename _InputIterator>
320        void
321        assign(_InputIterator __first, _InputIterator __last)
322        {
323	  // Check whether it's an integral type.  If so, it's not an iterator.
324	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
325	  _M_assign_dispatch(__first, __last, _Integral());
326	}
327
328      /// Get a copy of the memory allocation object.
329      using _Base::get_allocator;
330
331      // iterators
332      /**
333       *  Returns a read/write iterator that points to the first
334       *  element in the %vector.  Iteration is done in ordinary
335       *  element order.
336       */
337      iterator
338      begin()
339      { return iterator(this->_M_impl._M_start); }
340
341      /**
342       *  Returns a read-only (constant) iterator that points to the
343       *  first element in the %vector.  Iteration is done in ordinary
344       *  element order.
345       */
346      const_iterator
347      begin() const
348      { return const_iterator(this->_M_impl._M_start); }
349
350      /**
351       *  Returns a read/write iterator that points one past the last
352       *  element in the %vector.  Iteration is done in ordinary
353       *  element order.
354       */
355      iterator
356      end()
357      { return iterator(this->_M_impl._M_finish); }
358
359      /**
360       *  Returns a read-only (constant) iterator that points one past
361       *  the last element in the %vector.  Iteration is done in
362       *  ordinary element order.
363       */
364      const_iterator
365      end() const
366      { return const_iterator(this->_M_impl._M_finish); }
367
368      /**
369       *  Returns a read/write reverse iterator that points to the
370       *  last element in the %vector.  Iteration is done in reverse
371       *  element order.
372       */
373      reverse_iterator
374      rbegin()
375      { return reverse_iterator(end()); }
376
377      /**
378       *  Returns a read-only (constant) reverse iterator that points
379       *  to the last element in the %vector.  Iteration is done in
380       *  reverse element order.
381       */
382      const_reverse_iterator
383      rbegin() const
384      { return const_reverse_iterator(end()); }
385
386      /**
387       *  Returns a read/write reverse iterator that points to one
388       *  before the first element in the %vector.  Iteration is done
389       *  in reverse element order.
390       */
391      reverse_iterator
392      rend()
393      { return reverse_iterator(begin()); }
394
395      /**
396       *  Returns a read-only (constant) reverse iterator that points
397       *  to one before the first element in the %vector.  Iteration
398       *  is done in reverse element order.
399       */
400      const_reverse_iterator
401      rend() const
402      { return const_reverse_iterator(begin()); }
403
404      // [23.2.4.2] capacity
405      /**  Returns the number of elements in the %vector.  */
406      size_type
407      size() const
408      { return size_type(this->_M_impl._M_finish - this->_M_impl._M_start); }
409
410      /**  Returns the size() of the largest possible %vector.  */
411      size_type
412      max_size() const
413      { return _M_get_Tp_allocator().max_size(); }
414
415      /**
416       *  @brief  Resizes the %vector to the specified number of elements.
417       *  @param  new_size  Number of elements the %vector should contain.
418       *  @param  x  Data with which new elements should be populated.
419       *
420       *  This function will %resize the %vector to the specified
421       *  number of elements.  If the number is smaller than the
422       *  %vector's current size the %vector is truncated, otherwise
423       *  the %vector is extended and new elements are populated with
424       *  given data.
425       */
426      void
427      resize(size_type __new_size, value_type __x = value_type())
428      {
429	if (__new_size < size())
430	  _M_erase_at_end(this->_M_impl._M_start + __new_size);
431	else
432	  insert(end(), __new_size - size(), __x);
433      }
434
435      /**
436       *  Returns the total number of elements that the %vector can
437       *  hold before needing to allocate more memory.
438       */
439      size_type
440      capacity() const
441      { return size_type(this->_M_impl._M_end_of_storage
442			 - this->_M_impl._M_start); }
443
444      /**
445       *  Returns true if the %vector is empty.  (Thus begin() would
446       *  equal end().)
447       */
448      bool
449      empty() const
450      { return begin() == end(); }
451
452      /**
453       *  @brief  Attempt to preallocate enough memory for specified number of
454       *          elements.
455       *  @param  n  Number of elements required.
456       *  @throw  std::length_error  If @a n exceeds @c max_size().
457       *
458       *  This function attempts to reserve enough memory for the
459       *  %vector to hold the specified number of elements.  If the
460       *  number requested is more than max_size(), length_error is
461       *  thrown.
462       *
463       *  The advantage of this function is that if optimal code is a
464       *  necessity and the user can determine the number of elements
465       *  that will be required, the user can reserve the memory in
466       *  %advance, and thus prevent a possible reallocation of memory
467       *  and copying of %vector data.
468       */
469      void
470      reserve(size_type __n);
471
472      // element access
473      /**
474       *  @brief  Subscript access to the data contained in the %vector.
475       *  @param n The index of the element for which data should be
476       *  accessed.
477       *  @return  Read/write reference to data.
478       *
479       *  This operator allows for easy, array-style, data access.
480       *  Note that data access with this operator is unchecked and
481       *  out_of_range lookups are not defined. (For checked lookups
482       *  see at().)
483       */
484      reference
485      operator[](size_type __n)
486      { return *(this->_M_impl._M_start + __n); }
487
488      /**
489       *  @brief  Subscript access to the data contained in the %vector.
490       *  @param n The index of the element for which data should be
491       *  accessed.
492       *  @return  Read-only (constant) reference to data.
493       *
494       *  This operator allows for easy, array-style, data access.
495       *  Note that data access with this operator is unchecked and
496       *  out_of_range lookups are not defined. (For checked lookups
497       *  see at().)
498       */
499      const_reference
500      operator[](size_type __n) const
501      { return *(this->_M_impl._M_start + __n); }
502
503    protected:
504      /// @if maint Safety check used only from at().  @endif
505      void
506      _M_range_check(size_type __n) const
507      {
508	if (__n >= this->size())
509	  __throw_out_of_range(__N("vector::_M_range_check"));
510      }
511
512    public:
513      /**
514       *  @brief  Provides access to the data contained in the %vector.
515       *  @param n The index of the element for which data should be
516       *  accessed.
517       *  @return  Read/write reference to data.
518       *  @throw  std::out_of_range  If @a n is an invalid index.
519       *
520       *  This function provides for safer data access.  The parameter
521       *  is first checked that it is in the range of the vector.  The
522       *  function throws out_of_range if the check fails.
523       */
524      reference
525      at(size_type __n)
526      {
527	_M_range_check(__n);
528	return (*this)[__n];
529      }
530
531      /**
532       *  @brief  Provides access to the data contained in the %vector.
533       *  @param n The index of the element for which data should be
534       *  accessed.
535       *  @return  Read-only (constant) reference to data.
536       *  @throw  std::out_of_range  If @a n is an invalid index.
537       *
538       *  This function provides for safer data access.  The parameter
539       *  is first checked that it is in the range of the vector.  The
540       *  function throws out_of_range if the check fails.
541       */
542      const_reference
543      at(size_type __n) const
544      {
545	_M_range_check(__n);
546	return (*this)[__n];
547      }
548
549      /**
550       *  Returns a read/write reference to the data at the first
551       *  element of the %vector.
552       */
553      reference
554      front()
555      { return *begin(); }
556
557      /**
558       *  Returns a read-only (constant) reference to the data at the first
559       *  element of the %vector.
560       */
561      const_reference
562      front() const
563      { return *begin(); }
564
565      /**
566       *  Returns a read/write reference to the data at the last
567       *  element of the %vector.
568       */
569      reference
570      back()
571      { return *(end() - 1); }
572
573      /**
574       *  Returns a read-only (constant) reference to the data at the
575       *  last element of the %vector.
576       */
577      const_reference
578      back() const
579      { return *(end() - 1); }
580
581      // _GLIBCXX_RESOLVE_LIB_DEFECTS
582      // DR 464. Suggestion for new member functions in standard containers.
583      // data access
584      /**
585       *   Returns a pointer such that [data(), data() + size()) is a valid
586       *   range.  For a non-empty %vector, data() == &front().
587       */
588      pointer
589      data()
590      { return pointer(this->_M_impl._M_start); }
591
592      const_pointer
593      data() const
594      { return const_pointer(this->_M_impl._M_start); }
595
596      // [23.2.4.3] modifiers
597      /**
598       *  @brief  Add data to the end of the %vector.
599       *  @param  x  Data to be added.
600       *
601       *  This is a typical stack operation.  The function creates an
602       *  element at the end of the %vector and assigns the given data
603       *  to it.  Due to the nature of a %vector this operation can be
604       *  done in constant time if the %vector has preallocated space
605       *  available.
606       */
607      void
608      push_back(const value_type& __x)
609      {
610	if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
611	  {
612	    this->_M_impl.construct(this->_M_impl._M_finish, __x);
613	    ++this->_M_impl._M_finish;
614	  }
615	else
616	  _M_insert_aux(end(), __x);
617      }
618
619      /**
620       *  @brief  Removes last element.
621       *
622       *  This is a typical stack operation. It shrinks the %vector by one.
623       *
624       *  Note that no data is returned, and if the last element's
625       *  data is needed, it should be retrieved before pop_back() is
626       *  called.
627       */
628      void
629      pop_back()
630      {
631	--this->_M_impl._M_finish;
632	this->_M_impl.destroy(this->_M_impl._M_finish);
633      }
634
635      /**
636       *  @brief  Inserts given value into %vector before specified iterator.
637       *  @param  position  An iterator into the %vector.
638       *  @param  x  Data to be inserted.
639       *  @return  An iterator that points to the inserted data.
640       *
641       *  This function will insert a copy of the given value before
642       *  the specified location.  Note that this kind of operation
643       *  could be expensive for a %vector and if it is frequently
644       *  used the user should consider using std::list.
645       */
646      iterator
647      insert(iterator __position, const value_type& __x);
648
649      /**
650       *  @brief  Inserts a number of copies of given data into the %vector.
651       *  @param  position  An iterator into the %vector.
652       *  @param  n  Number of elements to be inserted.
653       *  @param  x  Data to be inserted.
654       *
655       *  This function will insert a specified number of copies of
656       *  the given data before the location specified by @a position.
657       *
658       *  Note that this kind of operation could be expensive for a
659       *  %vector and if it is frequently used the user should
660       *  consider using std::list.
661       */
662      void
663      insert(iterator __position, size_type __n, const value_type& __x)
664      { _M_fill_insert(__position, __n, __x); }
665
666      /**
667       *  @brief  Inserts a range into the %vector.
668       *  @param  position  An iterator into the %vector.
669       *  @param  first  An input iterator.
670       *  @param  last   An input iterator.
671       *
672       *  This function will insert copies of the data in the range
673       *  [first,last) into the %vector before the location specified
674       *  by @a pos.
675       *
676       *  Note that this kind of operation could be expensive for a
677       *  %vector and if it is frequently used the user should
678       *  consider using std::list.
679       */
680      template<typename _InputIterator>
681        void
682        insert(iterator __position, _InputIterator __first,
683	       _InputIterator __last)
684        {
685	  // Check whether it's an integral type.  If so, it's not an iterator.
686	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
687	  _M_insert_dispatch(__position, __first, __last, _Integral());
688	}
689
690      /**
691       *  @brief  Remove element at given position.
692       *  @param  position  Iterator pointing to element to be erased.
693       *  @return  An iterator pointing to the next element (or end()).
694       *
695       *  This function will erase the element at the given position and thus
696       *  shorten the %vector by one.
697       *
698       *  Note This operation could be expensive and if it is
699       *  frequently used the user should consider using std::list.
700       *  The user is also cautioned that this function only erases
701       *  the element, and that if the element is itself a pointer,
702       *  the pointed-to memory is not touched in any way.  Managing
703       *  the pointer is the user's responsibilty.
704       */
705      iterator
706      erase(iterator __position);
707
708      /**
709       *  @brief  Remove a range of elements.
710       *  @param  first  Iterator pointing to the first element to be erased.
711       *  @param  last  Iterator pointing to one past the last element to be
712       *                erased.
713       *  @return  An iterator pointing to the element pointed to by @a last
714       *           prior to erasing (or end()).
715       *
716       *  This function will erase the elements in the range [first,last) and
717       *  shorten the %vector accordingly.
718       *
719       *  Note This operation could be expensive and if it is
720       *  frequently used the user should consider using std::list.
721       *  The user is also cautioned that this function only erases
722       *  the elements, and that if the elements themselves are
723       *  pointers, the pointed-to memory is not touched in any way.
724       *  Managing the pointer is the user's responsibilty.
725       */
726      iterator
727      erase(iterator __first, iterator __last);
728
729      /**
730       *  @brief  Swaps data with another %vector.
731       *  @param  x  A %vector of the same element and allocator types.
732       *
733       *  This exchanges the elements between two vectors in constant time.
734       *  (Three pointers, so it should be quite fast.)
735       *  Note that the global std::swap() function is specialized such that
736       *  std::swap(v1,v2) will feed to this function.
737       */
738      void
739      swap(vector& __x)
740      {
741	std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
742	std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
743	std::swap(this->_M_impl._M_end_of_storage,
744		  __x._M_impl._M_end_of_storage);
745
746	// _GLIBCXX_RESOLVE_LIB_DEFECTS
747	// 431. Swapping containers with unequal allocators.
748	std::__alloc_swap<_Tp_alloc_type>::_S_do_it(_M_get_Tp_allocator(),
749						    __x._M_get_Tp_allocator());
750      }
751
752      /**
753       *  Erases all the elements.  Note that this function only erases the
754       *  elements, and that if the elements themselves are pointers, the
755       *  pointed-to memory is not touched in any way.  Managing the pointer is
756       *  the user's responsibilty.
757       */
758      void
759      clear()
760      { _M_erase_at_end(this->_M_impl._M_start); }
761
762    protected:
763      /**
764       *  @if maint
765       *  Memory expansion handler.  Uses the member allocation function to
766       *  obtain @a n bytes of memory, and then copies [first,last) into it.
767       *  @endif
768       */
769      template<typename _ForwardIterator>
770        pointer
771        _M_allocate_and_copy(size_type __n,
772			     _ForwardIterator __first, _ForwardIterator __last)
773        {
774	  pointer __result = this->_M_allocate(__n);
775	  try
776	    {
777	      std::__uninitialized_copy_a(__first, __last, __result,
778					  _M_get_Tp_allocator());
779	      return __result;
780	    }
781	  catch(...)
782	    {
783	      _M_deallocate(__result, __n);
784	      __throw_exception_again;
785	    }
786	}
787
788
789      // Internal constructor functions follow.
790
791      // Called by the range constructor to implement [23.1.1]/9
792      template<typename _Integer>
793        void
794        _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
795        {
796	  this->_M_impl._M_start = _M_allocate(__n);
797	  this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
798	  std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
799					_M_get_Tp_allocator());
800	  this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;
801	}
802
803      // Called by the range constructor to implement [23.1.1]/9
804      template<typename _InputIterator>
805        void
806        _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
807			       __false_type)
808        {
809	  typedef typename std::iterator_traits<_InputIterator>::
810	    iterator_category _IterCategory;
811	  _M_range_initialize(__first, __last, _IterCategory());
812	}
813
814      // Called by the second initialize_dispatch above
815      template<typename _InputIterator>
816        void
817        _M_range_initialize(_InputIterator __first,
818			    _InputIterator __last, std::input_iterator_tag)
819        {
820	  for (; __first != __last; ++__first)
821	    push_back(*__first);
822	}
823
824      // Called by the second initialize_dispatch above
825      template<typename _ForwardIterator>
826        void
827        _M_range_initialize(_ForwardIterator __first,
828			    _ForwardIterator __last, std::forward_iterator_tag)
829        {
830	  const size_type __n = std::distance(__first, __last);
831	  this->_M_impl._M_start = this->_M_allocate(__n);
832	  this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
833	  this->_M_impl._M_finish =
834	    std::__uninitialized_copy_a(__first, __last,
835					this->_M_impl._M_start,
836					_M_get_Tp_allocator());
837	}
838
839
840      // Internal assign functions follow.  The *_aux functions do the actual
841      // assignment work for the range versions.
842
843      // Called by the range assign to implement [23.1.1]/9
844      template<typename _Integer>
845        void
846        _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
847        {
848	  _M_fill_assign(static_cast<size_type>(__n),
849			 static_cast<value_type>(__val));
850	}
851
852      // Called by the range assign to implement [23.1.1]/9
853      template<typename _InputIterator>
854        void
855        _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
856			   __false_type)
857        {
858	  typedef typename std::iterator_traits<_InputIterator>::
859	    iterator_category _IterCategory;
860	  _M_assign_aux(__first, __last, _IterCategory());
861	}
862
863      // Called by the second assign_dispatch above
864      template<typename _InputIterator>
865        void
866        _M_assign_aux(_InputIterator __first, _InputIterator __last,
867		      std::input_iterator_tag);
868
869      // Called by the second assign_dispatch above
870      template<typename _ForwardIterator>
871        void
872        _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
873		      std::forward_iterator_tag);
874
875      // Called by assign(n,t), and the range assign when it turns out
876      // to be the same thing.
877      void
878      _M_fill_assign(size_type __n, const value_type& __val);
879
880
881      // Internal insert functions follow.
882
883      // Called by the range insert to implement [23.1.1]/9
884      template<typename _Integer>
885        void
886        _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
887			   __true_type)
888        {
889	  _M_fill_insert(__pos, static_cast<size_type>(__n),
890			 static_cast<value_type>(__val));
891	}
892
893      // Called by the range insert to implement [23.1.1]/9
894      template<typename _InputIterator>
895        void
896        _M_insert_dispatch(iterator __pos, _InputIterator __first,
897			   _InputIterator __last, __false_type)
898        {
899	  typedef typename std::iterator_traits<_InputIterator>::
900	    iterator_category _IterCategory;
901	  _M_range_insert(__pos, __first, __last, _IterCategory());
902	}
903
904      // Called by the second insert_dispatch above
905      template<typename _InputIterator>
906        void
907        _M_range_insert(iterator __pos, _InputIterator __first,
908			_InputIterator __last, std::input_iterator_tag);
909
910      // Called by the second insert_dispatch above
911      template<typename _ForwardIterator>
912        void
913        _M_range_insert(iterator __pos, _ForwardIterator __first,
914			_ForwardIterator __last, std::forward_iterator_tag);
915
916      // Called by insert(p,n,x), and the range insert when it turns out to be
917      // the same thing.
918      void
919      _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
920
921      // Called by insert(p,x)
922      void
923      _M_insert_aux(iterator __position, const value_type& __x);
924
925      // Internal erase functions follow.
926
927      // Called by erase(q1,q2), clear(), resize(), _M_fill_assign,
928      // _M_assign_aux.
929      void
930      _M_erase_at_end(pointer __pos)
931      {
932	std::_Destroy(__pos, this->_M_impl._M_finish, _M_get_Tp_allocator());
933	this->_M_impl._M_finish = __pos;
934      }
935    };
936
937
938  /**
939   *  @brief  Vector equality comparison.
940   *  @param  x  A %vector.
941   *  @param  y  A %vector of the same type as @a x.
942   *  @return  True iff the size and elements of the vectors are equal.
943   *
944   *  This is an equivalence relation.  It is linear in the size of the
945   *  vectors.  Vectors are considered equivalent if their sizes are equal,
946   *  and if corresponding elements compare equal.
947  */
948  template<typename _Tp, typename _Alloc>
949    inline bool
950    operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
951    { return (__x.size() == __y.size()
952	      && std::equal(__x.begin(), __x.end(), __y.begin())); }
953
954  /**
955   *  @brief  Vector ordering relation.
956   *  @param  x  A %vector.
957   *  @param  y  A %vector of the same type as @a x.
958   *  @return  True iff @a x is lexicographically less than @a y.
959   *
960   *  This is a total ordering relation.  It is linear in the size of the
961   *  vectors.  The elements must be comparable with @c <.
962   *
963   *  See std::lexicographical_compare() for how the determination is made.
964  */
965  template<typename _Tp, typename _Alloc>
966    inline bool
967    operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
968    { return std::lexicographical_compare(__x.begin(), __x.end(),
969					  __y.begin(), __y.end()); }
970
971  /// Based on operator==
972  template<typename _Tp, typename _Alloc>
973    inline bool
974    operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
975    { return !(__x == __y); }
976
977  /// Based on operator<
978  template<typename _Tp, typename _Alloc>
979    inline bool
980    operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
981    { return __y < __x; }
982
983  /// Based on operator<
984  template<typename _Tp, typename _Alloc>
985    inline bool
986    operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
987    { return !(__y < __x); }
988
989  /// Based on operator<
990  template<typename _Tp, typename _Alloc>
991    inline bool
992    operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
993    { return !(__x < __y); }
994
995  /// See std::vector::swap().
996  template<typename _Tp, typename _Alloc>
997    inline void
998    swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
999    { __x.swap(__y); }
1000
1001_GLIBCXX_END_NESTED_NAMESPACE
1002
1003#endif /* _VECTOR_H */
1004