stl_multimap.h revision 132720
1// Multimap implementation -*- C++ -*-
2
3// Copyright (C) 2001, 2002, 2004 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 2, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// You should have received a copy of the GNU General Public License along
17// with this library; see the file COPYING.  If not, write to the Free
18// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
19// USA.
20
21// As a special exception, you may use this file as part of a free software
22// library without restriction.  Specifically, if other files instantiate
23// templates or use macros or inline functions from this file, or you compile
24// this file and link it with other files to produce an executable, this
25// file does not by itself cause the resulting executable to be covered by
26// the GNU General Public License.  This exception does not however
27// invalidate any other reasons why the executable file might be covered by
28// the GNU General Public License.
29
30/*
31 *
32 * Copyright (c) 1994
33 * Hewlett-Packard Company
34 *
35 * Permission to use, copy, modify, distribute and sell this software
36 * and its documentation for any purpose is hereby granted without fee,
37 * provided that the above copyright notice appear in all copies and
38 * that both that copyright notice and this permission notice appear
39 * in supporting documentation.  Hewlett-Packard Company makes no
40 * representations about the suitability of this software for any
41 * purpose.  It is provided "as is" without express or implied warranty.
42 *
43 *
44 * Copyright (c) 1996,1997
45 * Silicon Graphics Computer Systems, Inc.
46 *
47 * Permission to use, copy, modify, distribute and sell this software
48 * and its documentation for any purpose is hereby granted without fee,
49 * provided that the above copyright notice appear in all copies and
50 * that both that copyright notice and this permission notice appear
51 * in supporting documentation.  Silicon Graphics makes no
52 * representations about the suitability of this software for any
53 * purpose.  It is provided "as is" without express or implied warranty.
54 */
55
56/** @file stl_multimap.h
57 *  This is an internal header file, included by other library headers.
58 *  You should not attempt to use it directly.
59 */
60
61#ifndef _MULTIMAP_H
62#define _MULTIMAP_H 1
63
64#include <bits/concept_check.h>
65
66namespace _GLIBCXX_STD
67{
68  // Forward declaration of operators < and ==, needed for friend declaration.
69
70  template <typename _Key, typename _Tp,
71            typename _Compare = less<_Key>,
72            typename _Alloc = allocator<pair<const _Key, _Tp> > >
73    class multimap;
74
75  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
76    inline bool
77    operator==(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
78	       const multimap<_Key,_Tp,_Compare,_Alloc>& __y);
79
80  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
81    inline bool
82    operator<(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
83	      const multimap<_Key,_Tp,_Compare,_Alloc>& __y);
84
85  /**
86   *  @brief A standard container made up of (key,value) pairs, which can be
87   *  retrieved based on a key, in logarithmic time.
88   *
89   *  @ingroup Containers
90   *  @ingroup Assoc_containers
91   *
92   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
93   *  <a href="tables.html#66">reversible container</a>, and an
94   *  <a href="tables.html#69">associative container</a> (using equivalent
95   *  keys).  For a @c multimap<Key,T> the key_type is Key, the mapped_type
96   *  is T, and the value_type is std::pair<const Key,T>.
97   *
98   *  Multimaps support bidirectional iterators.
99   *
100   *  @if maint
101   *  The private tree data is declared exactly the same way for map and
102   *  multimap; the distinction is made entirely in how the tree functions are
103   *  called (*_unique versus *_equal, same as the standard).
104   *  @endif
105  */
106  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
107    class multimap
108    {
109      // concept requirements
110      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
111      __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
112				_BinaryFunctionConcept)
113
114    public:
115      typedef _Key                                          key_type;
116      typedef _Tp                                           mapped_type;
117      typedef pair<const _Key, _Tp>                         value_type;
118      typedef _Compare                                      key_compare;
119
120      class value_compare
121      : public binary_function<value_type, value_type, bool>
122      {
123	friend class multimap<_Key,_Tp,_Compare,_Alloc>;
124      protected:
125	_Compare comp;
126
127	value_compare(_Compare __c)
128	: comp(__c) { }
129
130      public:
131	bool operator()(const value_type& __x, const value_type& __y) const
132	{ return comp(__x.first, __y.first); }
133      };
134
135    private:
136      /// @if maint  This turns a red-black tree into a [multi]map.  @endif
137      typedef _Rb_tree<key_type, value_type,
138		       _Select1st<value_type>, key_compare, _Alloc> _Rep_type;
139      /// @if maint  The actual tree structure.  @endif
140      _Rep_type _M_t;
141
142    public:
143      // many of these are specified differently in ISO, but the following are
144      // "functionally equivalent"
145      typedef typename _Alloc::pointer                   pointer;
146      typedef typename _Alloc::const_pointer             const_pointer;
147      typedef typename _Alloc::reference                 reference;
148      typedef typename _Alloc::const_reference           const_reference;
149      typedef typename _Rep_type::allocator_type         allocator_type;
150      typedef typename _Rep_type::iterator               iterator;
151      typedef typename _Rep_type::const_iterator         const_iterator;
152      typedef typename _Rep_type::size_type              size_type;
153      typedef typename _Rep_type::difference_type        difference_type;
154      typedef typename _Rep_type::reverse_iterator       reverse_iterator;
155      typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
156
157      // [23.3.2] construct/copy/destroy
158      // (get_allocator() is also listed in this section)
159      /**
160       *  @brief  Default constructor creates no elements.
161       */
162      multimap()
163      : _M_t(_Compare(), allocator_type()) { }
164
165      // for some reason this was made a separate function
166      /**
167       *  @brief  Default constructor creates no elements.
168       */
169      explicit
170      multimap(const _Compare& __comp,
171	       const allocator_type& __a = allocator_type())
172      : _M_t(__comp, __a) { }
173
174      /**
175       *  @brief  %Multimap copy constructor.
176       *  @param  x  A %multimap of identical element and allocator types.
177       *
178       *  The newly-created %multimap uses a copy of the allocation object used
179       *  by @a x.
180       */
181      multimap(const multimap& __x)
182      : _M_t(__x._M_t) { }
183
184      /**
185       *  @brief  Builds a %multimap from a range.
186       *  @param  first  An input iterator.
187       *  @param  last  An input iterator.
188       *
189       *  Create a %multimap consisting of copies of the elements from
190       *  [first,last).  This is linear in N if the range is already sorted,
191       *  and NlogN otherwise (where N is distance(first,last)).
192       */
193      template <typename _InputIterator>
194        multimap(_InputIterator __first, _InputIterator __last)
195	: _M_t(_Compare(), allocator_type())
196        { _M_t.insert_equal(__first, __last); }
197
198      /**
199       *  @brief  Builds a %multimap from a range.
200       *  @param  first  An input iterator.
201       *  @param  last  An input iterator.
202       *  @param  comp  A comparison functor.
203       *  @param  a  An allocator object.
204       *
205       *  Create a %multimap consisting of copies of the elements from
206       *  [first,last).  This is linear in N if the range is already sorted,
207       *  and NlogN otherwise (where N is distance(first,last)).
208       */
209      template <typename _InputIterator>
210        multimap(_InputIterator __first, _InputIterator __last,
211		 const _Compare& __comp,
212		 const allocator_type& __a = allocator_type())
213        : _M_t(__comp, __a)
214        { _M_t.insert_equal(__first, __last); }
215
216      // FIXME There is no dtor declared, but we should have something generated
217      // by Doxygen.  I don't know what tags to add to this paragraph to make
218      // that happen:
219      /**
220       *  The dtor only erases the elements, and note that if the elements
221       *  themselves are pointers, the pointed-to memory is not touched in any
222       *  way.  Managing the pointer is the user's responsibilty.
223       */
224
225      /**
226       *  @brief  %Multimap assignment operator.
227       *  @param  x  A %multimap of identical element and allocator types.
228       *
229       *  All the elements of @a x are copied, but unlike the copy constructor,
230       *  the allocator object is not copied.
231       */
232      multimap&
233      operator=(const multimap& __x)
234      {
235	_M_t = __x._M_t;
236	return *this;
237      }
238
239      /// Get a copy of the memory allocation object.
240      allocator_type
241      get_allocator() const
242      { return _M_t.get_allocator(); }
243
244      // iterators
245      /**
246       *  Returns a read/write iterator that points to the first pair in the
247       *  %multimap.  Iteration is done in ascending order according to the
248       *  keys.
249       */
250      iterator
251      begin()
252      { return _M_t.begin(); }
253
254      /**
255       *  Returns a read-only (constant) iterator that points to the first pair
256       *  in the %multimap.  Iteration is done in ascending order according to
257       *  the keys.
258       */
259      const_iterator
260      begin() const
261      { return _M_t.begin(); }
262
263      /**
264       *  Returns a read/write iterator that points one past the last pair in
265       *  the %multimap.  Iteration is done in ascending order according to the
266       *  keys.
267       */
268      iterator
269      end()
270      { return _M_t.end(); }
271
272      /**
273       *  Returns a read-only (constant) iterator that points one past the last
274       *  pair in the %multimap.  Iteration is done in ascending order according
275       *  to the keys.
276       */
277      const_iterator
278      end() const
279      { return _M_t.end(); }
280
281      /**
282       *  Returns a read/write reverse iterator that points to the last pair in
283       *  the %multimap.  Iteration is done in descending order according to the
284       *  keys.
285       */
286      reverse_iterator
287      rbegin()
288      { return _M_t.rbegin(); }
289
290      /**
291       *  Returns a read-only (constant) reverse iterator that points to the
292       *  last pair in the %multimap.  Iteration is done in descending order
293       *  according to the keys.
294       */
295      const_reverse_iterator
296      rbegin() const
297      { return _M_t.rbegin(); }
298
299      /**
300       *  Returns a read/write reverse iterator that points to one before the
301       *  first pair in the %multimap.  Iteration is done in descending order
302       *  according to the keys.
303       */
304      reverse_iterator
305      rend()
306      { return _M_t.rend(); }
307
308      /**
309       *  Returns a read-only (constant) reverse iterator that points to one
310       *  before the first pair in the %multimap.  Iteration is done in
311       *  descending order according to the keys.
312       */
313      const_reverse_iterator
314      rend() const
315      { return _M_t.rend(); }
316
317      // capacity
318      /** Returns true if the %multimap is empty.  */
319      bool
320      empty() const
321      { return _M_t.empty(); }
322
323      /** Returns the size of the %multimap.  */
324      size_type
325      size() const
326      { return _M_t.size(); }
327
328      /** Returns the maximum size of the %multimap.  */
329      size_type
330      max_size() const
331      { return _M_t.max_size(); }
332
333      // modifiers
334      /**
335       *  @brief Inserts a std::pair into the %multimap.
336       *  @param  x  Pair to be inserted (see std::make_pair for easy creation
337       *             of pairs).
338       *  @return An iterator that points to the inserted (key,value) pair.
339       *
340       *  This function inserts a (key, value) pair into the %multimap.
341       *  Contrary to a std::map the %multimap does not rely on unique keys and
342       *  thus multiple pairs with the same key can be inserted.
343       *
344       *  Insertion requires logarithmic time.
345       */
346      iterator
347      insert(const value_type& __x)
348      { return _M_t.insert_equal(__x); }
349
350      /**
351       *  @brief Inserts a std::pair into the %multimap.
352       *  @param  position  An iterator that serves as a hint as to where the
353       *                    pair should be inserted.
354       *  @param  x  Pair to be inserted (see std::make_pair for easy creation
355       *             of pairs).
356       *  @return An iterator that points to the inserted (key,value) pair.
357       *
358       *  This function inserts a (key, value) pair into the %multimap.
359       *  Contrary to a std::map the %multimap does not rely on unique keys and
360       *  thus multiple pairs with the same key can be inserted.
361       *  Note that the first parameter is only a hint and can potentially
362       *  improve the performance of the insertion process.  A bad hint would
363       *  cause no gains in efficiency.
364       *
365       *  See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
366       *  for more on "hinting".
367       *
368       *  Insertion requires logarithmic time (if the hint is not taken).
369       */
370      iterator
371      insert(iterator __position, const value_type& __x)
372      { return _M_t.insert_equal(__position, __x); }
373
374      /**
375       *  @brief A template function that attemps to insert a range of elements.
376       *  @param  first  Iterator pointing to the start of the range to be
377       *                 inserted.
378       *  @param  last  Iterator pointing to the end of the range.
379       *
380       *  Complexity similar to that of the range constructor.
381       */
382      template <typename _InputIterator>
383        void
384        insert(_InputIterator __first, _InputIterator __last)
385        { _M_t.insert_equal(__first, __last); }
386
387      /**
388       *  @brief Erases an element from a %multimap.
389       *  @param  position  An iterator pointing to the element to be erased.
390       *
391       *  This function erases an element, pointed to by the given iterator,
392       *  from a %multimap.  Note that this function only erases the element,
393       *  and that if the element is itself a pointer, the pointed-to memory is
394       *  not touched in any way.  Managing the pointer is the user's
395       *  responsibilty.
396       */
397      void
398      erase(iterator __position)
399      { _M_t.erase(__position); }
400
401      /**
402       *  @brief Erases elements according to the provided key.
403       *  @param  x  Key of element to be erased.
404       *  @return  The number of elements erased.
405       *
406       *  This function erases all elements located by the given key from a
407       *  %multimap.
408       *  Note that this function only erases the element, and that if
409       *  the element is itself a pointer, the pointed-to memory is not touched
410       *  in any way.  Managing the pointer is the user's responsibilty.
411       */
412      size_type
413      erase(const key_type& __x)
414      { return _M_t.erase(__x); }
415
416      /**
417       *  @brief Erases a [first,last) range of elements from a %multimap.
418       *  @param  first  Iterator pointing to the start of the range to be
419       *                 erased.
420       *  @param  last  Iterator pointing to the end of the range to be erased.
421       *
422       *  This function erases a sequence of elements from a %multimap.
423       *  Note that this function only erases the elements, and that if
424       *  the elements themselves are pointers, the pointed-to memory is not
425       *  touched in any way.  Managing the pointer is the user's responsibilty.
426       */
427      void
428      erase(iterator __first, iterator __last)
429      { _M_t.erase(__first, __last); }
430
431      /**
432       *  @brief  Swaps data with another %multimap.
433       *  @param  x  A %multimap of the same element and allocator types.
434       *
435       *  This exchanges the elements between two multimaps in constant time.
436       *  (It is only swapping a pointer, an integer, and an instance of
437       *  the @c Compare type (which itself is often stateless and empty), so it
438       *  should be quite fast.)
439       *  Note that the global std::swap() function is specialized such that
440       *  std::swap(m1,m2) will feed to this function.
441       */
442      void
443      swap(multimap& __x)
444      { _M_t.swap(__x._M_t); }
445
446      /**
447       *  Erases all elements in a %multimap.  Note that this function only
448       *  erases the elements, and that if the elements themselves are pointers,
449       *  the pointed-to memory is not touched in any way.  Managing the pointer
450       *  is the user's responsibilty.
451       */
452      void
453      clear()
454      { _M_t.clear(); }
455
456      // observers
457      /**
458       *  Returns the key comparison object out of which the %multimap
459       *  was constructed.
460       */
461      key_compare
462      key_comp() const
463      { return _M_t.key_comp(); }
464
465      /**
466       *  Returns a value comparison object, built from the key comparison
467       *  object out of which the %multimap was constructed.
468       */
469      value_compare
470      value_comp() const
471      { return value_compare(_M_t.key_comp()); }
472
473      // multimap operations
474      /**
475       *  @brief Tries to locate an element in a %multimap.
476       *  @param  x  Key of (key, value) pair to be located.
477       *  @return  Iterator pointing to sought-after element,
478       *           or end() if not found.
479       *
480       *  This function takes a key and tries to locate the element with which
481       *  the key matches.  If successful the function returns an iterator
482       *  pointing to the sought after %pair.  If unsuccessful it returns the
483       *  past-the-end ( @c end() ) iterator.
484       */
485      iterator
486      find(const key_type& __x)
487      { return _M_t.find(__x); }
488
489      /**
490       *  @brief Tries to locate an element in a %multimap.
491       *  @param  x  Key of (key, value) pair to be located.
492       *  @return  Read-only (constant) iterator pointing to sought-after
493       *           element, or end() if not found.
494       *
495       *  This function takes a key and tries to locate the element with which
496       *  the key matches.  If successful the function returns a constant
497       *  iterator pointing to the sought after %pair.  If unsuccessful it
498       *  returns the past-the-end ( @c end() ) iterator.
499       */
500      const_iterator
501      find(const key_type& __x) const
502      { return _M_t.find(__x); }
503
504      /**
505       *  @brief Finds the number of elements with given key.
506       *  @param  x  Key of (key, value) pairs to be located.
507       *  @return Number of elements with specified key.
508       */
509      size_type
510      count(const key_type& __x) const
511      { return _M_t.count(__x); }
512
513      /**
514       *  @brief Finds the beginning of a subsequence matching given key.
515       *  @param  x  Key of (key, value) pair to be located.
516       *  @return  Iterator pointing to first element equal to or greater
517       *           than key, or end().
518       *
519       *  This function returns the first element of a subsequence of elements
520       *  that matches the given key.  If unsuccessful it returns an iterator
521       *  pointing to the first element that has a greater value than given key
522       *  or end() if no such element exists.
523       */
524      iterator
525      lower_bound(const key_type& __x)
526      { return _M_t.lower_bound(__x); }
527
528      /**
529       *  @brief Finds the beginning of a subsequence matching given key.
530       *  @param  x  Key of (key, value) pair to be located.
531       *  @return  Read-only (constant) iterator pointing to first element
532       *           equal to or greater than key, or end().
533       *
534       *  This function returns the first element of a subsequence of elements
535       *  that matches the given key.  If unsuccessful the iterator will point
536       *  to the next greatest element or, if no such greater element exists, to
537       *  end().
538       */
539      const_iterator
540      lower_bound(const key_type& __x) const
541      { return _M_t.lower_bound(__x); }
542
543      /**
544       *  @brief Finds the end of a subsequence matching given key.
545       *  @param  x  Key of (key, value) pair to be located.
546       *  @return Iterator pointing to the first element
547       *          greater than key, or end().
548       */
549      iterator
550      upper_bound(const key_type& __x)
551      { return _M_t.upper_bound(__x); }
552
553      /**
554       *  @brief Finds the end of a subsequence matching given key.
555       *  @param  x  Key of (key, value) pair to be located.
556       *  @return  Read-only (constant) iterator pointing to first iterator
557       *           greater than key, or end().
558       */
559      const_iterator
560      upper_bound(const key_type& __x) const
561      { return _M_t.upper_bound(__x); }
562
563      /**
564       *  @brief Finds a subsequence matching given key.
565       *  @param  x  Key of (key, value) pairs to be located.
566       *  @return  Pair of iterators that possibly points to the subsequence
567       *           matching given key.
568       *
569       *  This function is equivalent to
570       *  @code
571       *    std::make_pair(c.lower_bound(val),
572       *                   c.upper_bound(val))
573       *  @endcode
574       *  (but is faster than making the calls separately).
575       */
576      pair<iterator,iterator>
577      equal_range(const key_type& __x)
578      { return _M_t.equal_range(__x); }
579
580      /**
581       *  @brief Finds a subsequence matching given key.
582       *  @param  x  Key of (key, value) pairs to be located.
583       *  @return  Pair of read-only (constant) iterators that possibly points
584       *           to the subsequence matching given key.
585       *
586       *  This function is equivalent to
587       *  @code
588       *    std::make_pair(c.lower_bound(val),
589       *                   c.upper_bound(val))
590       *  @endcode
591       *  (but is faster than making the calls separately).
592       */
593      pair<const_iterator,const_iterator>
594      equal_range(const key_type& __x) const
595      { return _M_t.equal_range(__x); }
596
597      template <typename _K1, typename _T1, typename _C1, typename _A1>
598        friend bool
599        operator== (const multimap<_K1,_T1,_C1,_A1>&,
600		    const multimap<_K1,_T1,_C1,_A1>&);
601
602      template <typename _K1, typename _T1, typename _C1, typename _A1>
603        friend bool
604        operator< (const multimap<_K1,_T1,_C1,_A1>&,
605		   const multimap<_K1,_T1,_C1,_A1>&);
606  };
607
608  /**
609   *  @brief  Multimap equality comparison.
610   *  @param  x  A %multimap.
611   *  @param  y  A %multimap of the same type as @a x.
612   *  @return  True iff the size and elements of the maps are equal.
613   *
614   *  This is an equivalence relation.  It is linear in the size of the
615   *  multimaps.  Multimaps are considered equivalent if their sizes are equal,
616   *  and if corresponding elements compare equal.
617  */
618  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
619    inline bool
620    operator==(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
621               const multimap<_Key,_Tp,_Compare,_Alloc>& __y)
622    { return __x._M_t == __y._M_t; }
623
624  /**
625   *  @brief  Multimap ordering relation.
626   *  @param  x  A %multimap.
627   *  @param  y  A %multimap of the same type as @a x.
628   *  @return  True iff @a x is lexicographically less than @a y.
629   *
630   *  This is a total ordering relation.  It is linear in the size of the
631   *  multimaps.  The elements must be comparable with @c <.
632   *
633   *  See std::lexicographical_compare() for how the determination is made.
634  */
635  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
636    inline bool
637    operator<(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
638              const multimap<_Key,_Tp,_Compare,_Alloc>& __y)
639    { return __x._M_t < __y._M_t; }
640
641  /// Based on operator==
642  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
643    inline bool
644    operator!=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
645               const multimap<_Key,_Tp,_Compare,_Alloc>& __y)
646    { return !(__x == __y); }
647
648  /// Based on operator<
649  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
650    inline bool
651    operator>(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
652              const multimap<_Key,_Tp,_Compare,_Alloc>& __y)
653    { return __y < __x; }
654
655  /// Based on operator<
656  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
657    inline bool
658    operator<=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
659               const multimap<_Key,_Tp,_Compare,_Alloc>& __y)
660    { return !(__y < __x); }
661
662  /// Based on operator<
663  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
664    inline bool
665    operator>=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
666               const multimap<_Key,_Tp,_Compare,_Alloc>& __y)
667    { return !(__x < __y); }
668
669  /// See std::multimap::swap().
670  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
671    inline void
672    swap(multimap<_Key,_Tp,_Compare,_Alloc>& __x,
673         multimap<_Key,_Tp,_Compare,_Alloc>& __y)
674    { __x.swap(__y); }
675} // namespace std
676
677#endif /* _MULTIMAP_H */
678