stl_multimap.h revision 117397
1// Multimap implementation -*- C++ -*-
2
3// Copyright (C) 2001, 2002 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 2, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// You should have received a copy of the GNU General Public License along
17// with this library; see the file COPYING.  If not, write to the Free
18// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
19// USA.
20
21// As a special exception, you may use this file as part of a free software
22// library without restriction.  Specifically, if other files instantiate
23// templates or use macros or inline functions from this file, or you compile
24// this file and link it with other files to produce an executable, this
25// file does not by itself cause the resulting executable to be covered by
26// the GNU General Public License.  This exception does not however
27// invalidate any other reasons why the executable file might be covered by
28// the GNU General Public License.
29
30/*
31 *
32 * Copyright (c) 1994
33 * Hewlett-Packard Company
34 *
35 * Permission to use, copy, modify, distribute and sell this software
36 * and its documentation for any purpose is hereby granted without fee,
37 * provided that the above copyright notice appear in all copies and
38 * that both that copyright notice and this permission notice appear
39 * in supporting documentation.  Hewlett-Packard Company makes no
40 * representations about the suitability of this software for any
41 * purpose.  It is provided "as is" without express or implied warranty.
42 *
43 *
44 * Copyright (c) 1996,1997
45 * Silicon Graphics Computer Systems, Inc.
46 *
47 * Permission to use, copy, modify, distribute and sell this software
48 * and its documentation for any purpose is hereby granted without fee,
49 * provided that the above copyright notice appear in all copies and
50 * that both that copyright notice and this permission notice appear
51 * in supporting documentation.  Silicon Graphics makes no
52 * representations about the suitability of this software for any
53 * purpose.  It is provided "as is" without express or implied warranty.
54 */
55
56/** @file stl_multimap.h
57 *  This is an internal header file, included by other library headers.
58 *  You should not attempt to use it directly.
59 */
60
61#ifndef __GLIBCPP_INTERNAL_MULTIMAP_H
62#define __GLIBCPP_INTERNAL_MULTIMAP_H
63
64#include <bits/concept_check.h>
65
66namespace std
67{
68  // Forward declaration of operators < and ==, needed for friend declaration.
69
70  template <typename _Key, typename _Tp,
71            typename _Compare = less<_Key>,
72            typename _Alloc = allocator<pair<const _Key, _Tp> > >
73  class multimap;
74
75  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
76  inline bool operator==(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
77                         const multimap<_Key,_Tp,_Compare,_Alloc>& __y);
78
79  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
80  inline bool operator<(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
81                        const multimap<_Key,_Tp,_Compare,_Alloc>& __y);
82
83  /**
84   *  @brief A standard container made up of (key,value) pairs, which can be
85   *  retrieved based on a key, in logarithmic time.
86   *
87   *  @ingroup Containers
88   *  @ingroup Assoc_containers
89   *
90   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
91   *  <a href="tables.html#66">reversible container</a>, and an
92   *  <a href="tables.html#69">associative container</a> (using equivalent
93   *  keys).  For a @c multimap<Key,T> the key_type is Key, the mapped_type
94   *  is T, and the value_type is std::pair<const Key,T>.
95   *
96   *  Multimaps support bidirectional iterators.
97   *
98   *  @if maint
99   *  The private tree data is declared exactly the same way for map and
100   *  multimap; the distinction is made entirely in how the tree functions are
101   *  called (*_unique versus *_equal, same as the standard).
102   *  @endif
103  */
104  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
105    class multimap
106  {
107    // concept requirements
108    __glibcpp_class_requires(_Tp, _SGIAssignableConcept)
109    __glibcpp_class_requires4(_Compare, bool, _Key, _Key, _BinaryFunctionConcept)
110
111  public:
112    typedef _Key                                          key_type;
113    typedef _Tp                                           mapped_type;
114    typedef pair<const _Key, _Tp>                         value_type;
115    typedef _Compare                                      key_compare;
116
117    class value_compare
118      : public binary_function<value_type, value_type, bool>
119      {
120        friend class multimap<_Key,_Tp,_Compare,_Alloc>;
121      protected:
122        _Compare comp;
123        value_compare(_Compare __c) : comp(__c) {}
124      public:
125        bool operator()(const value_type& __x, const value_type& __y) const
126        { return comp(__x.first, __y.first); }
127    };
128
129  private:
130    /// @if maint  This turns a red-black tree into a [multi]map.  @endif
131    typedef _Rb_tree<key_type, value_type,
132                    _Select1st<value_type>, key_compare, _Alloc> _Rep_type;
133    /// @if maint  The actual tree structure.  @endif
134    _Rep_type _M_t;
135
136  public:
137    // many of these are specified differently in ISO, but the following are
138    // "functionally equivalent"
139    typedef typename _Rep_type::allocator_type            allocator_type;
140    typedef typename _Rep_type::reference                 reference;
141    typedef typename _Rep_type::const_reference           const_reference;
142    typedef typename _Rep_type::iterator                  iterator;
143    typedef typename _Rep_type::const_iterator            const_iterator;
144    typedef typename _Rep_type::size_type                 size_type;
145    typedef typename _Rep_type::difference_type           difference_type;
146    typedef typename _Rep_type::pointer                   pointer;
147    typedef typename _Rep_type::const_pointer             const_pointer;
148    typedef typename _Rep_type::reverse_iterator          reverse_iterator;
149    typedef typename _Rep_type::const_reverse_iterator    const_reverse_iterator;
150
151
152    // [23.3.2] construct/copy/destroy
153    // (get_allocator() is also listed in this section)
154    /**
155     *  @brief  Default constructor creates no elements.
156    */
157    multimap() : _M_t(_Compare(), allocator_type()) { }
158
159    // for some reason this was made a separate function
160    /**
161     *  @brief  Default constructor creates no elements.
162    */
163    explicit
164    multimap(const _Compare& __comp, const allocator_type& __a = allocator_type())
165      : _M_t(__comp, __a) { }
166
167    /**
168     *  @brief  %Multimap copy constructor.
169     *  @param  x  A %multimap of identical element and allocator types.
170     *
171     *  The newly-created %multimap uses a copy of the allocation object used
172     *  by @a x.
173    */
174    multimap(const multimap& __x)
175      : _M_t(__x._M_t) { }
176
177    /**
178     *  @brief  Builds a %multimap from a range.
179     *  @param  first  An input iterator.
180     *  @param  last  An input iterator.
181     *
182     *  Create a %multimap consisting of copies of the elements from
183     *  [first,last).  This is linear in N if the range is already sorted,
184     *  and NlogN otherwise (where N is distance(first,last)).
185    */
186    template <typename _InputIterator>
187      multimap(_InputIterator __first, _InputIterator __last)
188        : _M_t(_Compare(), allocator_type())
189        { _M_t.insert_equal(__first, __last); }
190
191    /**
192     *  @brief  Builds a %multimap from a range.
193     *  @param  first  An input iterator.
194     *  @param  last  An input iterator.
195     *  @param  comp  A comparison functor.
196     *  @param  a  An allocator object.
197     *
198     *  Create a %multimap consisting of copies of the elements from
199     *  [first,last).  This is linear in N if the range is already sorted,
200     *  and NlogN otherwise (where N is distance(first,last)).
201    */
202    template <typename _InputIterator>
203      multimap(_InputIterator __first, _InputIterator __last,
204               const _Compare& __comp,
205               const allocator_type& __a = allocator_type())
206        : _M_t(__comp, __a)
207        { _M_t.insert_equal(__first, __last); }
208
209    // FIXME There is no dtor declared, but we should have something generated
210    // by Doxygen.  I don't know what tags to add to this paragraph to make
211    // that happen:
212    /**
213     *  The dtor only erases the elements, and note that if the elements
214     *  themselves are pointers, the pointed-to memory is not touched in any
215     *  way.  Managing the pointer is the user's responsibilty.
216    */
217
218    /**
219     *  @brief  %Multimap assignment operator.
220     *  @param  x  A %multimap of identical element and allocator types.
221     *
222     *  All the elements of @a x are copied, but unlike the copy constructor,
223     *  the allocator object is not copied.
224    */
225    multimap&
226    operator=(const multimap& __x)
227    {
228      _M_t = __x._M_t;
229      return *this;
230    }
231
232    /// Get a copy of the memory allocation object.
233    allocator_type
234    get_allocator() const { return _M_t.get_allocator(); }
235
236    // iterators
237    /**
238     *  Returns a read/write iterator that points to the first pair in the
239     *  %multimap.  Iteration is done in ascending order according to the keys.
240    */
241    iterator
242    begin() { return _M_t.begin(); }
243
244    /**
245     *  Returns a read-only (constant) iterator that points to the first pair
246     *  in the %multimap.  Iteration is done in ascending order according to the
247     *  keys.
248    */
249    const_iterator
250    begin() const { return _M_t.begin(); }
251
252    /**
253     *  Returns a read/write iterator that points one past the last pair in the
254     *  %multimap.  Iteration is done in ascending order according to the keys.
255    */
256    iterator
257    end() { return _M_t.end(); }
258
259    /**
260     *  Returns a read-only (constant) iterator that points one past the last
261     *  pair in the %multimap.  Iteration is done in ascending order according
262     *  to the keys.
263    */
264    const_iterator
265    end() const { return _M_t.end(); }
266
267    /**
268     *  Returns a read/write reverse iterator that points to the last pair in
269     *  the %multimap.  Iteration is done in descending order according to the
270     *  keys.
271    */
272    reverse_iterator
273    rbegin() { return _M_t.rbegin(); }
274
275    /**
276     *  Returns a read-only (constant) reverse iterator that points to the last
277     *  pair in the %multimap.  Iteration is done in descending order according
278     *  to the keys.
279    */
280    const_reverse_iterator
281    rbegin() const { return _M_t.rbegin(); }
282
283    /**
284     *  Returns a read/write reverse iterator that points to one before the
285     *  first pair in the %multimap.  Iteration is done in descending order
286     *  according to the keys.
287    */
288    reverse_iterator
289    rend() { return _M_t.rend(); }
290
291    /**
292     *  Returns a read-only (constant) reverse iterator that points to one
293     *  before the first pair in the %multimap.  Iteration is done in descending
294     *  order according to the keys.
295    */
296    const_reverse_iterator
297    rend() const { return _M_t.rend(); }
298
299    // capacity
300    /** Returns true if the %multimap is empty.  */
301    bool
302    empty() const { return _M_t.empty(); }
303
304    /** Returns the size of the %multimap.  */
305    size_type
306    size() const { return _M_t.size(); }
307
308    /** Returns the maximum size of the %multimap.  */
309    size_type
310    max_size() const { return _M_t.max_size(); }
311
312    // modifiers
313    /**
314     *  @brief Inserts a std::pair into the %multimap.
315     *  @param  x  Pair to be inserted (see std::make_pair for easy creation of
316     *             pairs).
317     *  @return An iterator that points to the inserted (key,value) pair.
318     *
319     *  This function inserts a (key, value) pair into the %multimap.  Contrary
320     *  to a std::map the %multimap does not rely on unique keys and thus
321     *  multiple pairs with the same key can be inserted.
322     *
323     *  Insertion requires logarithmic time.
324    */
325    iterator
326    insert(const value_type& __x) { return _M_t.insert_equal(__x); }
327
328    /**
329     *  @brief Inserts a std::pair into the %multimap.
330     *  @param  position  An iterator that serves as a hint as to where the
331     *                    pair should be inserted.
332     *  @param  x  Pair to be inserted (see std::make_pair for easy creation of
333     *             pairs).
334     *  @return An iterator that points to the inserted (key,value) pair.
335     *
336     *  This function inserts a (key, value) pair into the %multimap.  Contrary
337     *  to a std::map the %multimap does not rely on unique keys and thus
338     *  multiple pairs with the same key can be inserted.
339     *  Note that the first parameter is only a hint and can potentially
340     *  improve the performance of the insertion process.  A bad hint would
341     *  cause no gains in efficiency.
342     *
343     *  See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
344     *  for more on "hinting".
345     *
346     *  Insertion requires logarithmic time (if the hint is not taken).
347    */
348    iterator
349    insert(iterator __position, const value_type& __x)
350    { return _M_t.insert_equal(__position, __x); }
351
352    /**
353     *  @brief A template function that attemps to insert a range of elements.
354     *  @param  first  Iterator pointing to the start of the range to be
355     *                 inserted.
356     *  @param  last  Iterator pointing to the end of the range.
357     *
358     *  Complexity similar to that of the range constructor.
359    */
360    template <typename _InputIterator>
361      void
362      insert(_InputIterator __first, _InputIterator __last)
363      { _M_t.insert_equal(__first, __last); }
364
365    /**
366     *  @brief Erases an element from a %multimap.
367     *  @param  position  An iterator pointing to the element to be erased.
368     *
369     *  This function erases an element, pointed to by the given iterator, from
370     *  a %multimap.  Note that this function only erases the element, and that
371     *  if the element is itself a pointer, the pointed-to memory is not
372     *  touched in any way.  Managing the pointer is the user's responsibilty.
373    */
374    void
375    erase(iterator __position) { _M_t.erase(__position); }
376
377    /**
378     *  @brief Erases elements according to the provided key.
379     *  @param  x  Key of element to be erased.
380     *  @return  The number of elements erased.
381     *
382     *  This function erases all elements located by the given key from a
383     *  %multimap.
384     *  Note that this function only erases the element, and that if
385     *  the element is itself a pointer, the pointed-to memory is not touched
386     *  in any way.  Managing the pointer is the user's responsibilty.
387    */
388    size_type
389    erase(const key_type& __x) { return _M_t.erase(__x); }
390
391    /**
392     *  @brief Erases a [first,last) range of elements from a %multimap.
393     *  @param  first  Iterator pointing to the start of the range to be erased.
394     *  @param  last  Iterator pointing to the end of the range to be erased.
395     *
396     *  This function erases a sequence of elements from a %multimap.
397     *  Note that this function only erases the elements, and that if
398     *  the elements themselves are pointers, the pointed-to memory is not
399     *  touched in any way.  Managing the pointer is the user's responsibilty.
400    */
401    void
402    erase(iterator __first, iterator __last) { _M_t.erase(__first, __last); }
403
404    /**
405     *  @brief  Swaps data with another %multimap.
406     *  @param  x  A %multimap of the same element and allocator types.
407     *
408     *  This exchanges the elements between two multimaps in constant time.
409     *  (It is only swapping a pointer, an integer, and an instance of
410     *  the @c Compare type (which itself is often stateless and empty), so it
411     *  should be quite fast.)
412     *  Note that the global std::swap() function is specialized such that
413     *  std::swap(m1,m2) will feed to this function.
414    */
415    void
416    swap(multimap& __x) { _M_t.swap(__x._M_t); }
417
418    /**
419     *  Erases all elements in a %multimap.  Note that this function only erases
420     *  the elements, and that if the elements themselves are pointers, the
421     *  pointed-to memory is not touched in any way.  Managing the pointer is
422     *  the user's responsibilty.
423    */
424    void
425    clear() { _M_t.clear(); }
426
427    // observers
428    /**
429     *  Returns the key comparison object out of which the %multimap
430     *  was constructed.
431    */
432    key_compare
433    key_comp() const { return _M_t.key_comp(); }
434
435    /**
436     *  Returns a value comparison object, built from the key comparison
437     *  object out of which the %multimap was constructed.
438    */
439    value_compare
440    value_comp() const { return value_compare(_M_t.key_comp()); }
441
442    // multimap operations
443    /**
444     *  @brief Tries to locate an element in a %multimap.
445     *  @param  x  Key of (key, value) pair to be located.
446     *  @return  Iterator pointing to sought-after element,
447     *           or end() if not found.
448     *
449     *  This function takes a key and tries to locate the element with which
450     *  the key matches.  If successful the function returns an iterator
451     *  pointing to the sought after %pair.  If unsuccessful it returns the
452     *  past-the-end ( @c end() ) iterator.
453    */
454    iterator
455    find(const key_type& __x) { return _M_t.find(__x); }
456
457    /**
458     *  @brief Tries to locate an element in a %multimap.
459     *  @param  x  Key of (key, value) pair to be located.
460     *  @return  Read-only (constant) iterator pointing to sought-after
461     *           element, or end() if not found.
462     *
463     *  This function takes a key and tries to locate the element with which
464     *  the key matches.  If successful the function returns a constant iterator
465     *  pointing to the sought after %pair.  If unsuccessful it returns the
466     *  past-the-end ( @c end() ) iterator.
467    */
468    const_iterator
469    find(const key_type& __x) const { return _M_t.find(__x); }
470
471    /**
472     *  @brief Finds the number of elements with given key.
473     *  @param  x  Key of (key, value) pairs to be located.
474     *  @return Number of elements with specified key.
475    */
476    size_type
477    count(const key_type& __x) const { return _M_t.count(__x); }
478
479    /**
480     *  @brief Finds the beginning of a subsequence matching given key.
481     *  @param  x  Key of (key, value) pair to be located.
482     *  @return  Iterator pointing to first element matching given key, or
483     *           end() if not found.
484     *
485     *  This function returns the first element of a subsequence of elements
486     *  that matches the given key.  If unsuccessful it returns an iterator
487     *  pointing to the first element that has a greater value than given key
488     *  or end() if no such element exists.
489    */
490    iterator
491    lower_bound(const key_type& __x) { return _M_t.lower_bound(__x); }
492
493    /**
494     *  @brief Finds the beginning of a subsequence matching given key.
495     *  @param  x  Key of (key, value) pair to be located.
496     *  @return  Read-only (constant) iterator pointing to first element
497     *           matching given key, or end() if not found.
498     *
499     *  This function returns the first element of a subsequence of elements
500     *  that matches the given key.  If unsuccessful the iterator will point
501     *  to the next greatest element or, if no such greater element exists, to
502     *  end().
503    */
504    const_iterator
505    lower_bound(const key_type& __x) const { return _M_t.lower_bound(__x); }
506
507    /**
508     *  @brief Finds the end of a subsequence matching given key.
509     *  @param  x  Key of (key, value) pair to be located.
510     *  @return Iterator pointing to last element matching given key.
511    */
512    iterator
513    upper_bound(const key_type& __x) { return _M_t.upper_bound(__x); }
514
515    /**
516     *  @brief Finds the end of a subsequence matching given key.
517     *  @param  x  Key of (key, value) pair to be located.
518     *  @return  Read-only (constant) iterator pointing to last element matching
519     *           given key.
520    */
521    const_iterator
522    upper_bound(const key_type& __x) const { return _M_t.upper_bound(__x); }
523
524    /**
525     *  @brief Finds a subsequence matching given key.
526     *  @param  x  Key of (key, value) pairs to be located.
527     *  @return  Pair of iterators that possibly points to the subsequence
528     *           matching given key.
529     *
530     *  This function returns a pair of which the first
531     *  element possibly points to the first element matching the given key
532     *  and the second element possibly points to the last element matching the
533     *  given key.  If unsuccessful the first element of the returned pair will
534     *  contain an iterator pointing to the next greatest element or, if no such
535     *  greater element exists, to end().
536    */
537    pair<iterator,iterator>
538    equal_range(const key_type& __x) { return _M_t.equal_range(__x); }
539
540    /**
541     *  @brief Finds a subsequence matching given key.
542     *  @param  x  Key of (key, value) pairs to be located.
543     *  @return  Pair of read-only (constant) iterators that possibly points to
544     *           the subsequence matching given key.
545     *
546     *  This function returns a pair of which the first
547     *  element possibly points to the first element matching the given key
548     *  and the second element possibly points to the last element matching the
549     *  given key.  If unsuccessful the first element of the returned pair will
550     *  contain an iterator pointing to the next greatest element or, if no such
551     *  a greater element exists, to end().
552    */
553    pair<const_iterator,const_iterator>
554    equal_range(const key_type& __x) const { return _M_t.equal_range(__x); }
555
556    template <typename _K1, typename _T1, typename _C1, typename _A1>
557    friend bool operator== (const multimap<_K1,_T1,_C1,_A1>&,
558                            const multimap<_K1,_T1,_C1,_A1>&);
559    template <typename _K1, typename _T1, typename _C1, typename _A1>
560    friend bool operator< (const multimap<_K1,_T1,_C1,_A1>&,
561                           const multimap<_K1,_T1,_C1,_A1>&);
562  };
563
564
565  /**
566   *  @brief  Multimap equality comparison.
567   *  @param  x  A %multimap.
568   *  @param  y  A %multimap of the same type as @a x.
569   *  @return  True iff the size and elements of the maps are equal.
570   *
571   *  This is an equivalence relation.  It is linear in the size of the
572   *  multimaps.  Multimaps are considered equivalent if their sizes are equal,
573   *  and if corresponding elements compare equal.
574  */
575  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
576    inline bool
577    operator==(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
578               const multimap<_Key,_Tp,_Compare,_Alloc>& __y)
579    {
580      return __x._M_t == __y._M_t;
581    }
582
583  /**
584   *  @brief  Multimap ordering relation.
585   *  @param  x  A %multimap.
586   *  @param  y  A %multimap of the same type as @a x.
587   *  @return  True iff @a x is lexographically less than @a y.
588   *
589   *  This is a total ordering relation.  It is linear in the size of the
590   *  multimaps.  The elements must be comparable with @c <.
591   *
592   *  See std::lexographical_compare() for how the determination is made.
593  */
594  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
595    inline bool
596    operator<(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
597              const multimap<_Key,_Tp,_Compare,_Alloc>& __y)
598    { return __x._M_t < __y._M_t; }
599
600  /// Based on operator==
601  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
602    inline bool
603    operator!=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
604               const multimap<_Key,_Tp,_Compare,_Alloc>& __y)
605    { return !(__x == __y); }
606
607  /// Based on operator<
608  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
609    inline bool
610    operator>(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
611              const multimap<_Key,_Tp,_Compare,_Alloc>& __y)
612    { return __y < __x; }
613
614  /// Based on operator<
615  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
616    inline bool
617    operator<=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
618               const multimap<_Key,_Tp,_Compare,_Alloc>& __y)
619    { return !(__y < __x); }
620
621  /// Based on operator<
622  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
623    inline bool
624    operator>=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
625               const multimap<_Key,_Tp,_Compare,_Alloc>& __y)
626    { return !(__x < __y); }
627
628  /// See std::multimap::swap().
629  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
630    inline void
631    swap(multimap<_Key,_Tp,_Compare,_Alloc>& __x,
632         multimap<_Key,_Tp,_Compare,_Alloc>& __y)
633    { __x.swap(__y); }
634} // namespace std
635
636#endif /* __GLIBCPP_INTERNAL_MULTIMAP_H */
637