1// Multimap implementation -*- C++ -*-
2
3// Copyright (C) 2001, 2002, 2004, 2005, 2006 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 2, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// You should have received a copy of the GNU General Public License along
17// with this library; see the file COPYING.  If not, write to the Free
18// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
19// USA.
20
21// As a special exception, you may use this file as part of a free software
22// library without restriction.  Specifically, if other files instantiate
23// templates or use macros or inline functions from this file, or you compile
24// this file and link it with other files to produce an executable, this
25// file does not by itself cause the resulting executable to be covered by
26// the GNU General Public License.  This exception does not however
27// invalidate any other reasons why the executable file might be covered by
28// the GNU General Public License.
29
30/*
31 *
32 * Copyright (c) 1994
33 * Hewlett-Packard Company
34 *
35 * Permission to use, copy, modify, distribute and sell this software
36 * and its documentation for any purpose is hereby granted without fee,
37 * provided that the above copyright notice appear in all copies and
38 * that both that copyright notice and this permission notice appear
39 * in supporting documentation.  Hewlett-Packard Company makes no
40 * representations about the suitability of this software for any
41 * purpose.  It is provided "as is" without express or implied warranty.
42 *
43 *
44 * Copyright (c) 1996,1997
45 * Silicon Graphics Computer Systems, Inc.
46 *
47 * Permission to use, copy, modify, distribute and sell this software
48 * and its documentation for any purpose is hereby granted without fee,
49 * provided that the above copyright notice appear in all copies and
50 * that both that copyright notice and this permission notice appear
51 * in supporting documentation.  Silicon Graphics makes no
52 * representations about the suitability of this software for any
53 * purpose.  It is provided "as is" without express or implied warranty.
54 */
55
56/** @file stl_multimap.h
57 *  This is an internal header file, included by other library headers.
58 *  You should not attempt to use it directly.
59 */
60
61#ifndef _MULTIMAP_H
62#define _MULTIMAP_H 1
63
64#include <bits/concept_check.h>
65
66_GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD)
67
68  /**
69   *  @brief A standard container made up of (key,value) pairs, which can be
70   *  retrieved based on a key, in logarithmic time.
71   *
72   *  @ingroup Containers
73   *  @ingroup Assoc_containers
74   *
75   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
76   *  <a href="tables.html#66">reversible container</a>, and an
77   *  <a href="tables.html#69">associative container</a> (using equivalent
78   *  keys).  For a @c multimap<Key,T> the key_type is Key, the mapped_type
79   *  is T, and the value_type is std::pair<const Key,T>.
80   *
81   *  Multimaps support bidirectional iterators.
82   *
83   *  @if maint
84   *  The private tree data is declared exactly the same way for map and
85   *  multimap; the distinction is made entirely in how the tree functions are
86   *  called (*_unique versus *_equal, same as the standard).
87   *  @endif
88  */
89  template <typename _Key, typename _Tp,
90	    typename _Compare = std::less<_Key>,
91	    typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
92    class multimap
93    {
94    public:
95      typedef _Key                                          key_type;
96      typedef _Tp                                           mapped_type;
97      typedef std::pair<const _Key, _Tp>                    value_type;
98      typedef _Compare                                      key_compare;
99      typedef _Alloc                                        allocator_type;
100
101    private:
102      // concept requirements
103      typedef typename _Alloc::value_type                   _Alloc_value_type;
104      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
105      __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
106				_BinaryFunctionConcept)
107      __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
108
109    public:
110      class value_compare
111      : public std::binary_function<value_type, value_type, bool>
112      {
113	friend class multimap<_Key, _Tp, _Compare, _Alloc>;
114      protected:
115	_Compare comp;
116
117	value_compare(_Compare __c)
118	: comp(__c) { }
119
120      public:
121	bool operator()(const value_type& __x, const value_type& __y) const
122	{ return comp(__x.first, __y.first); }
123      };
124
125    private:
126      /// @if maint  This turns a red-black tree into a [multi]map.  @endif
127      typedef typename _Alloc::template rebind<value_type>::other
128        _Pair_alloc_type;
129
130      typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
131		       key_compare, _Pair_alloc_type> _Rep_type;
132      /// @if maint  The actual tree structure.  @endif
133      _Rep_type _M_t;
134
135    public:
136      // many of these are specified differently in ISO, but the following are
137      // "functionally equivalent"
138      typedef typename _Pair_alloc_type::pointer         pointer;
139      typedef typename _Pair_alloc_type::const_pointer   const_pointer;
140      typedef typename _Pair_alloc_type::reference       reference;
141      typedef typename _Pair_alloc_type::const_reference const_reference;
142      typedef typename _Rep_type::iterator               iterator;
143      typedef typename _Rep_type::const_iterator         const_iterator;
144      typedef typename _Rep_type::size_type              size_type;
145      typedef typename _Rep_type::difference_type        difference_type;
146      typedef typename _Rep_type::reverse_iterator       reverse_iterator;
147      typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
148
149      // [23.3.2] construct/copy/destroy
150      // (get_allocator() is also listed in this section)
151      /**
152       *  @brief  Default constructor creates no elements.
153       */
154      multimap()
155      : _M_t() { }
156
157      // for some reason this was made a separate function
158      /**
159       *  @brief  Default constructor creates no elements.
160       */
161      explicit
162      multimap(const _Compare& __comp,
163	       const allocator_type& __a = allocator_type())
164      : _M_t(__comp, __a) { }
165
166      /**
167       *  @brief  %Multimap copy constructor.
168       *  @param  x  A %multimap of identical element and allocator types.
169       *
170       *  The newly-created %multimap uses a copy of the allocation object used
171       *  by @a x.
172       */
173      multimap(const multimap& __x)
174      : _M_t(__x._M_t) { }
175
176      /**
177       *  @brief  Builds a %multimap from a range.
178       *  @param  first  An input iterator.
179       *  @param  last  An input iterator.
180       *
181       *  Create a %multimap consisting of copies of the elements from
182       *  [first,last).  This is linear in N if the range is already sorted,
183       *  and NlogN otherwise (where N is distance(first,last)).
184       */
185      template <typename _InputIterator>
186        multimap(_InputIterator __first, _InputIterator __last)
187	: _M_t()
188        { _M_t._M_insert_equal(__first, __last); }
189
190      /**
191       *  @brief  Builds a %multimap from a range.
192       *  @param  first  An input iterator.
193       *  @param  last  An input iterator.
194       *  @param  comp  A comparison functor.
195       *  @param  a  An allocator object.
196       *
197       *  Create a %multimap consisting of copies of the elements from
198       *  [first,last).  This is linear in N if the range is already sorted,
199       *  and NlogN otherwise (where N is distance(first,last)).
200       */
201      template <typename _InputIterator>
202        multimap(_InputIterator __first, _InputIterator __last,
203		 const _Compare& __comp,
204		 const allocator_type& __a = allocator_type())
205        : _M_t(__comp, __a)
206        { _M_t._M_insert_equal(__first, __last); }
207
208      // FIXME There is no dtor declared, but we should have something generated
209      // by Doxygen.  I don't know what tags to add to this paragraph to make
210      // that happen:
211      /**
212       *  The dtor only erases the elements, and note that if the elements
213       *  themselves are pointers, the pointed-to memory is not touched in any
214       *  way.  Managing the pointer is the user's responsibilty.
215       */
216
217      /**
218       *  @brief  %Multimap assignment operator.
219       *  @param  x  A %multimap of identical element and allocator types.
220       *
221       *  All the elements of @a x are copied, but unlike the copy constructor,
222       *  the allocator object is not copied.
223       */
224      multimap&
225      operator=(const multimap& __x)
226      {
227	_M_t = __x._M_t;
228	return *this;
229      }
230
231      /// Get a copy of the memory allocation object.
232      allocator_type
233      get_allocator() const
234      { return _M_t.get_allocator(); }
235
236      // iterators
237      /**
238       *  Returns a read/write iterator that points to the first pair in the
239       *  %multimap.  Iteration is done in ascending order according to the
240       *  keys.
241       */
242      iterator
243      begin()
244      { return _M_t.begin(); }
245
246      /**
247       *  Returns a read-only (constant) iterator that points to the first pair
248       *  in the %multimap.  Iteration is done in ascending order according to
249       *  the keys.
250       */
251      const_iterator
252      begin() const
253      { return _M_t.begin(); }
254
255      /**
256       *  Returns a read/write iterator that points one past the last pair in
257       *  the %multimap.  Iteration is done in ascending order according to the
258       *  keys.
259       */
260      iterator
261      end()
262      { return _M_t.end(); }
263
264      /**
265       *  Returns a read-only (constant) iterator that points one past the last
266       *  pair in the %multimap.  Iteration is done in ascending order according
267       *  to the keys.
268       */
269      const_iterator
270      end() const
271      { return _M_t.end(); }
272
273      /**
274       *  Returns a read/write reverse iterator that points to the last pair in
275       *  the %multimap.  Iteration is done in descending order according to the
276       *  keys.
277       */
278      reverse_iterator
279      rbegin()
280      { return _M_t.rbegin(); }
281
282      /**
283       *  Returns a read-only (constant) reverse iterator that points to the
284       *  last pair in the %multimap.  Iteration is done in descending order
285       *  according to the keys.
286       */
287      const_reverse_iterator
288      rbegin() const
289      { return _M_t.rbegin(); }
290
291      /**
292       *  Returns a read/write reverse iterator that points to one before the
293       *  first pair in the %multimap.  Iteration is done in descending order
294       *  according to the keys.
295       */
296      reverse_iterator
297      rend()
298      { return _M_t.rend(); }
299
300      /**
301       *  Returns a read-only (constant) reverse iterator that points to one
302       *  before the first pair in the %multimap.  Iteration is done in
303       *  descending order according to the keys.
304       */
305      const_reverse_iterator
306      rend() const
307      { return _M_t.rend(); }
308
309      // capacity
310      /** Returns true if the %multimap is empty.  */
311      bool
312      empty() const
313      { return _M_t.empty(); }
314
315      /** Returns the size of the %multimap.  */
316      size_type
317      size() const
318      { return _M_t.size(); }
319
320      /** Returns the maximum size of the %multimap.  */
321      size_type
322      max_size() const
323      { return _M_t.max_size(); }
324
325      // modifiers
326      /**
327       *  @brief Inserts a std::pair into the %multimap.
328       *  @param  x  Pair to be inserted (see std::make_pair for easy creation
329       *             of pairs).
330       *  @return An iterator that points to the inserted (key,value) pair.
331       *
332       *  This function inserts a (key, value) pair into the %multimap.
333       *  Contrary to a std::map the %multimap does not rely on unique keys and
334       *  thus multiple pairs with the same key can be inserted.
335       *
336       *  Insertion requires logarithmic time.
337       */
338      iterator
339      insert(const value_type& __x)
340      { return _M_t._M_insert_equal(__x); }
341
342      /**
343       *  @brief Inserts a std::pair into the %multimap.
344       *  @param  position  An iterator that serves as a hint as to where the
345       *                    pair should be inserted.
346       *  @param  x  Pair to be inserted (see std::make_pair for easy creation
347       *             of pairs).
348       *  @return An iterator that points to the inserted (key,value) pair.
349       *
350       *  This function inserts a (key, value) pair into the %multimap.
351       *  Contrary to a std::map the %multimap does not rely on unique keys and
352       *  thus multiple pairs with the same key can be inserted.
353       *  Note that the first parameter is only a hint and can potentially
354       *  improve the performance of the insertion process.  A bad hint would
355       *  cause no gains in efficiency.
356       *
357       *  See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
358       *  for more on "hinting".
359       *
360       *  Insertion requires logarithmic time (if the hint is not taken).
361       */
362      iterator
363      insert(iterator __position, const value_type& __x)
364      { return _M_t._M_insert_equal(__position, __x); }
365
366      /**
367       *  @brief A template function that attemps to insert a range of elements.
368       *  @param  first  Iterator pointing to the start of the range to be
369       *                 inserted.
370       *  @param  last  Iterator pointing to the end of the range.
371       *
372       *  Complexity similar to that of the range constructor.
373       */
374      template <typename _InputIterator>
375        void
376        insert(_InputIterator __first, _InputIterator __last)
377        { _M_t._M_insert_equal(__first, __last); }
378
379      /**
380       *  @brief Erases an element from a %multimap.
381       *  @param  position  An iterator pointing to the element to be erased.
382       *
383       *  This function erases an element, pointed to by the given iterator,
384       *  from a %multimap.  Note that this function only erases the element,
385       *  and that if the element is itself a pointer, the pointed-to memory is
386       *  not touched in any way.  Managing the pointer is the user's
387       *  responsibilty.
388       */
389      void
390      erase(iterator __position)
391      { _M_t.erase(__position); }
392
393      /**
394       *  @brief Erases elements according to the provided key.
395       *  @param  x  Key of element to be erased.
396       *  @return  The number of elements erased.
397       *
398       *  This function erases all elements located by the given key from a
399       *  %multimap.
400       *  Note that this function only erases the element, and that if
401       *  the element is itself a pointer, the pointed-to memory is not touched
402       *  in any way.  Managing the pointer is the user's responsibilty.
403       */
404      size_type
405      erase(const key_type& __x)
406      { return _M_t.erase(__x); }
407
408      /**
409       *  @brief Erases a [first,last) range of elements from a %multimap.
410       *  @param  first  Iterator pointing to the start of the range to be
411       *                 erased.
412       *  @param  last  Iterator pointing to the end of the range to be erased.
413       *
414       *  This function erases a sequence of elements from a %multimap.
415       *  Note that this function only erases the elements, and that if
416       *  the elements themselves are pointers, the pointed-to memory is not
417       *  touched in any way.  Managing the pointer is the user's responsibilty.
418       */
419      void
420      erase(iterator __first, iterator __last)
421      { _M_t.erase(__first, __last); }
422
423      /**
424       *  @brief  Swaps data with another %multimap.
425       *  @param  x  A %multimap of the same element and allocator types.
426       *
427       *  This exchanges the elements between two multimaps in constant time.
428       *  (It is only swapping a pointer, an integer, and an instance of
429       *  the @c Compare type (which itself is often stateless and empty), so it
430       *  should be quite fast.)
431       *  Note that the global std::swap() function is specialized such that
432       *  std::swap(m1,m2) will feed to this function.
433       */
434      void
435      swap(multimap& __x)
436      { _M_t.swap(__x._M_t); }
437
438      /**
439       *  Erases all elements in a %multimap.  Note that this function only
440       *  erases the elements, and that if the elements themselves are pointers,
441       *  the pointed-to memory is not touched in any way.  Managing the pointer
442       *  is the user's responsibilty.
443       */
444      void
445      clear()
446      { _M_t.clear(); }
447
448      // observers
449      /**
450       *  Returns the key comparison object out of which the %multimap
451       *  was constructed.
452       */
453      key_compare
454      key_comp() const
455      { return _M_t.key_comp(); }
456
457      /**
458       *  Returns a value comparison object, built from the key comparison
459       *  object out of which the %multimap was constructed.
460       */
461      value_compare
462      value_comp() const
463      { return value_compare(_M_t.key_comp()); }
464
465      // multimap operations
466      /**
467       *  @brief Tries to locate an element in a %multimap.
468       *  @param  x  Key of (key, value) pair to be located.
469       *  @return  Iterator pointing to sought-after element,
470       *           or end() if not found.
471       *
472       *  This function takes a key and tries to locate the element with which
473       *  the key matches.  If successful the function returns an iterator
474       *  pointing to the sought after %pair.  If unsuccessful it returns the
475       *  past-the-end ( @c end() ) iterator.
476       */
477      iterator
478      find(const key_type& __x)
479      { return _M_t.find(__x); }
480
481      /**
482       *  @brief Tries to locate an element in a %multimap.
483       *  @param  x  Key of (key, value) pair to be located.
484       *  @return  Read-only (constant) iterator pointing to sought-after
485       *           element, or end() if not found.
486       *
487       *  This function takes a key and tries to locate the element with which
488       *  the key matches.  If successful the function returns a constant
489       *  iterator pointing to the sought after %pair.  If unsuccessful it
490       *  returns the past-the-end ( @c end() ) iterator.
491       */
492      const_iterator
493      find(const key_type& __x) const
494      { return _M_t.find(__x); }
495
496      /**
497       *  @brief Finds the number of elements with given key.
498       *  @param  x  Key of (key, value) pairs to be located.
499       *  @return Number of elements with specified key.
500       */
501      size_type
502      count(const key_type& __x) const
503      { return _M_t.count(__x); }
504
505      /**
506       *  @brief Finds the beginning of a subsequence matching given key.
507       *  @param  x  Key of (key, value) pair to be located.
508       *  @return  Iterator pointing to first element equal to or greater
509       *           than key, or end().
510       *
511       *  This function returns the first element of a subsequence of elements
512       *  that matches the given key.  If unsuccessful it returns an iterator
513       *  pointing to the first element that has a greater value than given key
514       *  or end() if no such element exists.
515       */
516      iterator
517      lower_bound(const key_type& __x)
518      { return _M_t.lower_bound(__x); }
519
520      /**
521       *  @brief Finds the beginning of a subsequence matching given key.
522       *  @param  x  Key of (key, value) pair to be located.
523       *  @return  Read-only (constant) iterator pointing to first element
524       *           equal to or greater than key, or end().
525       *
526       *  This function returns the first element of a subsequence of elements
527       *  that matches the given key.  If unsuccessful the iterator will point
528       *  to the next greatest element or, if no such greater element exists, to
529       *  end().
530       */
531      const_iterator
532      lower_bound(const key_type& __x) const
533      { return _M_t.lower_bound(__x); }
534
535      /**
536       *  @brief Finds the end of a subsequence matching given key.
537       *  @param  x  Key of (key, value) pair to be located.
538       *  @return Iterator pointing to the first element
539       *          greater than key, or end().
540       */
541      iterator
542      upper_bound(const key_type& __x)
543      { return _M_t.upper_bound(__x); }
544
545      /**
546       *  @brief Finds the end of a subsequence matching given key.
547       *  @param  x  Key of (key, value) pair to be located.
548       *  @return  Read-only (constant) iterator pointing to first iterator
549       *           greater than key, or end().
550       */
551      const_iterator
552      upper_bound(const key_type& __x) const
553      { return _M_t.upper_bound(__x); }
554
555      /**
556       *  @brief Finds a subsequence matching given key.
557       *  @param  x  Key of (key, value) pairs to be located.
558       *  @return  Pair of iterators that possibly points to the subsequence
559       *           matching given key.
560       *
561       *  This function is equivalent to
562       *  @code
563       *    std::make_pair(c.lower_bound(val),
564       *                   c.upper_bound(val))
565       *  @endcode
566       *  (but is faster than making the calls separately).
567       */
568      std::pair<iterator, iterator>
569      equal_range(const key_type& __x)
570      { return _M_t.equal_range(__x); }
571
572      /**
573       *  @brief Finds a subsequence matching given key.
574       *  @param  x  Key of (key, value) pairs to be located.
575       *  @return  Pair of read-only (constant) iterators that possibly points
576       *           to the subsequence matching given key.
577       *
578       *  This function is equivalent to
579       *  @code
580       *    std::make_pair(c.lower_bound(val),
581       *                   c.upper_bound(val))
582       *  @endcode
583       *  (but is faster than making the calls separately).
584       */
585      std::pair<const_iterator, const_iterator>
586      equal_range(const key_type& __x) const
587      { return _M_t.equal_range(__x); }
588
589      template <typename _K1, typename _T1, typename _C1, typename _A1>
590        friend bool
591        operator== (const multimap<_K1, _T1, _C1, _A1>&,
592		    const multimap<_K1, _T1, _C1, _A1>&);
593
594      template <typename _K1, typename _T1, typename _C1, typename _A1>
595        friend bool
596        operator< (const multimap<_K1, _T1, _C1, _A1>&,
597		   const multimap<_K1, _T1, _C1, _A1>&);
598  };
599
600  /**
601   *  @brief  Multimap equality comparison.
602   *  @param  x  A %multimap.
603   *  @param  y  A %multimap of the same type as @a x.
604   *  @return  True iff the size and elements of the maps are equal.
605   *
606   *  This is an equivalence relation.  It is linear in the size of the
607   *  multimaps.  Multimaps are considered equivalent if their sizes are equal,
608   *  and if corresponding elements compare equal.
609  */
610  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
611    inline bool
612    operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
613               const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
614    { return __x._M_t == __y._M_t; }
615
616  /**
617   *  @brief  Multimap ordering relation.
618   *  @param  x  A %multimap.
619   *  @param  y  A %multimap of the same type as @a x.
620   *  @return  True iff @a x is lexicographically less than @a y.
621   *
622   *  This is a total ordering relation.  It is linear in the size of the
623   *  multimaps.  The elements must be comparable with @c <.
624   *
625   *  See std::lexicographical_compare() for how the determination is made.
626  */
627  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
628    inline bool
629    operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
630              const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
631    { return __x._M_t < __y._M_t; }
632
633  /// Based on operator==
634  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
635    inline bool
636    operator!=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
637               const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
638    { return !(__x == __y); }
639
640  /// Based on operator<
641  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
642    inline bool
643    operator>(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
644              const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
645    { return __y < __x; }
646
647  /// Based on operator<
648  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
649    inline bool
650    operator<=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
651               const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
652    { return !(__y < __x); }
653
654  /// Based on operator<
655  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
656    inline bool
657    operator>=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
658               const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
659    { return !(__x < __y); }
660
661  /// See std::multimap::swap().
662  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
663    inline void
664    swap(multimap<_Key, _Tp, _Compare, _Alloc>& __x,
665         multimap<_Key, _Tp, _Compare, _Alloc>& __y)
666    { __x.swap(__y); }
667
668_GLIBCXX_END_NESTED_NAMESPACE
669
670#endif /* _MULTIMAP_H */
671