1/*
2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
16 * written permission.
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20 *
21 *  Optimization module for BPF code intermediate representation.
22 */
23
24#ifdef HAVE_CONFIG_H
25#include <config.h>
26#endif
27
28#include <pcap-types.h>
29
30#include <stdio.h>
31#include <stdlib.h>
32#include <memory.h>
33#include <setjmp.h>
34#include <string.h>
35
36#include <errno.h>
37
38#include "pcap-int.h"
39
40#include "gencode.h"
41#include "optimize.h"
42
43#ifdef HAVE_OS_PROTO_H
44#include "os-proto.h"
45#endif
46
47#ifdef BDEBUG
48/*
49 * The internal "debug printout" flag for the filter expression optimizer.
50 * The code to print that stuff is present only if BDEBUG is defined, so
51 * the flag, and the routine to set it, are defined only if BDEBUG is
52 * defined.
53 */
54static int pcap_optimizer_debug;
55
56/*
57 * Routine to set that flag.
58 *
59 * This is intended for libpcap developers, not for general use.
60 * If you want to set these in a program, you'll have to declare this
61 * routine yourself, with the appropriate DLL import attribute on Windows;
62 * it's not declared in any header file, and won't be declared in any
63 * header file provided by libpcap.
64 */
65PCAP_API void pcap_set_optimizer_debug(int value);
66
67PCAP_API_DEF void
68pcap_set_optimizer_debug(int value)
69{
70	pcap_optimizer_debug = value;
71}
72
73/*
74 * The internal "print dot graph" flag for the filter expression optimizer.
75 * The code to print that stuff is present only if BDEBUG is defined, so
76 * the flag, and the routine to set it, are defined only if BDEBUG is
77 * defined.
78 */
79static int pcap_print_dot_graph;
80
81/*
82 * Routine to set that flag.
83 *
84 * This is intended for libpcap developers, not for general use.
85 * If you want to set these in a program, you'll have to declare this
86 * routine yourself, with the appropriate DLL import attribute on Windows;
87 * it's not declared in any header file, and won't be declared in any
88 * header file provided by libpcap.
89 */
90PCAP_API void pcap_set_print_dot_graph(int value);
91
92PCAP_API_DEF void
93pcap_set_print_dot_graph(int value)
94{
95	pcap_print_dot_graph = value;
96}
97
98#endif
99
100/*
101 * lowest_set_bit().
102 *
103 * Takes a 32-bit integer as an argument.
104 *
105 * If handed a non-zero value, returns the index of the lowest set bit,
106 * counting upwards fro zero.
107 *
108 * If handed zero, the results are platform- and compiler-dependent.
109 * Keep it out of the light, don't give it any water, don't feed it
110 * after midnight, and don't pass zero to it.
111 *
112 * This is the same as the count of trailing zeroes in the word.
113 */
114#if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4)
115  /*
116   * GCC 3.4 and later; we have __builtin_ctz().
117   */
118  #define lowest_set_bit(mask) __builtin_ctz(mask)
119#elif defined(_MSC_VER)
120  /*
121   * Visual Studio; we support only 2005 and later, so use
122   * _BitScanForward().
123   */
124#include <intrin.h>
125
126#ifndef __clang__
127#pragma intrinsic(_BitScanForward)
128#endif
129
130static __forceinline int
131lowest_set_bit(int mask)
132{
133	unsigned long bit;
134
135	/*
136	 * Don't sign-extend mask if long is longer than int.
137	 * (It's currently not, in MSVC, even on 64-bit platforms, but....)
138	 */
139	if (_BitScanForward(&bit, (unsigned int)mask) == 0)
140		return -1;	/* mask is zero */
141	return (int)bit;
142}
143#elif defined(MSDOS) && defined(__DJGPP__)
144  /*
145   * MS-DOS with DJGPP, which declares ffs() in <string.h>, which
146   * we've already included.
147   */
148  #define lowest_set_bit(mask)	(ffs((mask)) - 1)
149#elif (defined(MSDOS) && defined(__WATCOMC__)) || defined(STRINGS_H_DECLARES_FFS)
150  /*
151   * MS-DOS with Watcom C, which has <strings.h> and declares ffs() there,
152   * or some other platform (UN*X conforming to a sufficient recent version
153   * of the Single UNIX Specification).
154   */
155  #include <strings.h>
156  #define lowest_set_bit(mask)	(ffs((mask)) - 1)
157#else
158/*
159 * None of the above.
160 * Use a perfect-hash-function-based function.
161 */
162static int
163lowest_set_bit(int mask)
164{
165	unsigned int v = (unsigned int)mask;
166
167	static const int MultiplyDeBruijnBitPosition[32] = {
168		0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
169		31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
170	};
171
172	/*
173	 * We strip off all but the lowermost set bit (v & ~v),
174	 * and perform a minimal perfect hash on it to look up the
175	 * number of low-order zero bits in a table.
176	 *
177	 * See:
178	 *
179	 *	http://7ooo.mooo.com/text/ComputingTrailingZerosHOWTO.pdf
180	 *
181	 *	http://supertech.csail.mit.edu/papers/debruijn.pdf
182	 */
183	return (MultiplyDeBruijnBitPosition[((v & -v) * 0x077CB531U) >> 27]);
184}
185#endif
186
187/*
188 * Represents a deleted instruction.
189 */
190#define NOP -1
191
192/*
193 * Register numbers for use-def values.
194 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
195 * location.  A_ATOM is the accumulator and X_ATOM is the index
196 * register.
197 */
198#define A_ATOM BPF_MEMWORDS
199#define X_ATOM (BPF_MEMWORDS+1)
200
201/*
202 * This define is used to represent *both* the accumulator and
203 * x register in use-def computations.
204 * Currently, the use-def code assumes only one definition per instruction.
205 */
206#define AX_ATOM N_ATOMS
207
208/*
209 * These data structures are used in a Cocke and Shwarz style
210 * value numbering scheme.  Since the flowgraph is acyclic,
211 * exit values can be propagated from a node's predecessors
212 * provided it is uniquely defined.
213 */
214struct valnode {
215	int code;
216	int v0, v1;
217	int val;
218	struct valnode *next;
219};
220
221/* Integer constants mapped with the load immediate opcode. */
222#define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0L)
223
224struct vmapinfo {
225	int is_const;
226	bpf_int32 const_val;
227};
228
229typedef struct {
230	/*
231	 * Place to longjmp to on an error.
232	 */
233	jmp_buf top_ctx;
234
235	/*
236	 * The buffer into which to put error message.
237	 */
238	char *errbuf;
239
240	/*
241	 * A flag to indicate that further optimization is needed.
242	 * Iterative passes are continued until a given pass yields no
243	 * branch movement.
244	 */
245	int done;
246
247	int n_blocks;
248	struct block **blocks;
249	int n_edges;
250	struct edge **edges;
251
252	/*
253	 * A bit vector set representation of the dominators.
254	 * We round up the set size to the next power of two.
255	 */
256	int nodewords;
257	int edgewords;
258	struct block **levels;
259	bpf_u_int32 *space;
260
261#define BITS_PER_WORD (8*sizeof(bpf_u_int32))
262/*
263 * True if a is in uset {p}
264 */
265#define SET_MEMBER(p, a) \
266((p)[(unsigned)(a) / BITS_PER_WORD] & ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD)))
267
268/*
269 * Add 'a' to uset p.
270 */
271#define SET_INSERT(p, a) \
272(p)[(unsigned)(a) / BITS_PER_WORD] |= ((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
273
274/*
275 * Delete 'a' from uset p.
276 */
277#define SET_DELETE(p, a) \
278(p)[(unsigned)(a) / BITS_PER_WORD] &= ~((bpf_u_int32)1 << ((unsigned)(a) % BITS_PER_WORD))
279
280/*
281 * a := a intersect b
282 */
283#define SET_INTERSECT(a, b, n)\
284{\
285	register bpf_u_int32 *_x = a, *_y = b;\
286	register int _n = n;\
287	while (--_n >= 0) *_x++ &= *_y++;\
288}
289
290/*
291 * a := a - b
292 */
293#define SET_SUBTRACT(a, b, n)\
294{\
295	register bpf_u_int32 *_x = a, *_y = b;\
296	register int _n = n;\
297	while (--_n >= 0) *_x++ &=~ *_y++;\
298}
299
300/*
301 * a := a union b
302 */
303#define SET_UNION(a, b, n)\
304{\
305	register bpf_u_int32 *_x = a, *_y = b;\
306	register int _n = n;\
307	while (--_n >= 0) *_x++ |= *_y++;\
308}
309
310	uset all_dom_sets;
311	uset all_closure_sets;
312	uset all_edge_sets;
313
314#define MODULUS 213
315	struct valnode *hashtbl[MODULUS];
316	int curval;
317	int maxval;
318
319	struct vmapinfo *vmap;
320	struct valnode *vnode_base;
321	struct valnode *next_vnode;
322} opt_state_t;
323
324typedef struct {
325	/*
326	 * Place to longjmp to on an error.
327	 */
328	jmp_buf top_ctx;
329
330	/*
331	 * The buffer into which to put error message.
332	 */
333	char *errbuf;
334
335	/*
336	 * Some pointers used to convert the basic block form of the code,
337	 * into the array form that BPF requires.  'fstart' will point to
338	 * the malloc'd array while 'ftail' is used during the recursive
339	 * traversal.
340	 */
341	struct bpf_insn *fstart;
342	struct bpf_insn *ftail;
343} conv_state_t;
344
345static void opt_init(opt_state_t *, struct icode *);
346static void opt_cleanup(opt_state_t *);
347static void PCAP_NORETURN opt_error(opt_state_t *, const char *, ...)
348    PCAP_PRINTFLIKE(2, 3);
349
350static void intern_blocks(opt_state_t *, struct icode *);
351
352static void find_inedges(opt_state_t *, struct block *);
353#ifdef BDEBUG
354static void opt_dump(opt_state_t *, struct icode *);
355#endif
356
357#ifndef MAX
358#define MAX(a,b) ((a)>(b)?(a):(b))
359#endif
360
361static void
362find_levels_r(opt_state_t *opt_state, struct icode *ic, struct block *b)
363{
364	int level;
365
366	if (isMarked(ic, b))
367		return;
368
369	Mark(ic, b);
370	b->link = 0;
371
372	if (JT(b)) {
373		find_levels_r(opt_state, ic, JT(b));
374		find_levels_r(opt_state, ic, JF(b));
375		level = MAX(JT(b)->level, JF(b)->level) + 1;
376	} else
377		level = 0;
378	b->level = level;
379	b->link = opt_state->levels[level];
380	opt_state->levels[level] = b;
381}
382
383/*
384 * Level graph.  The levels go from 0 at the leaves to
385 * N_LEVELS at the root.  The opt_state->levels[] array points to the
386 * first node of the level list, whose elements are linked
387 * with the 'link' field of the struct block.
388 */
389static void
390find_levels(opt_state_t *opt_state, struct icode *ic)
391{
392	memset((char *)opt_state->levels, 0, opt_state->n_blocks * sizeof(*opt_state->levels));
393	unMarkAll(ic);
394	find_levels_r(opt_state, ic, ic->root);
395}
396
397/*
398 * Find dominator relationships.
399 * Assumes graph has been leveled.
400 */
401static void
402find_dom(opt_state_t *opt_state, struct block *root)
403{
404	int i;
405	struct block *b;
406	bpf_u_int32 *x;
407
408	/*
409	 * Initialize sets to contain all nodes.
410	 */
411	x = opt_state->all_dom_sets;
412	i = opt_state->n_blocks * opt_state->nodewords;
413	while (--i >= 0)
414		*x++ = 0xFFFFFFFFU;
415	/* Root starts off empty. */
416	for (i = opt_state->nodewords; --i >= 0;)
417		root->dom[i] = 0;
418
419	/* root->level is the highest level no found. */
420	for (i = root->level; i >= 0; --i) {
421		for (b = opt_state->levels[i]; b; b = b->link) {
422			SET_INSERT(b->dom, b->id);
423			if (JT(b) == 0)
424				continue;
425			SET_INTERSECT(JT(b)->dom, b->dom, opt_state->nodewords);
426			SET_INTERSECT(JF(b)->dom, b->dom, opt_state->nodewords);
427		}
428	}
429}
430
431static void
432propedom(opt_state_t *opt_state, struct edge *ep)
433{
434	SET_INSERT(ep->edom, ep->id);
435	if (ep->succ) {
436		SET_INTERSECT(ep->succ->et.edom, ep->edom, opt_state->edgewords);
437		SET_INTERSECT(ep->succ->ef.edom, ep->edom, opt_state->edgewords);
438	}
439}
440
441/*
442 * Compute edge dominators.
443 * Assumes graph has been leveled and predecessors established.
444 */
445static void
446find_edom(opt_state_t *opt_state, struct block *root)
447{
448	int i;
449	uset x;
450	struct block *b;
451
452	x = opt_state->all_edge_sets;
453	for (i = opt_state->n_edges * opt_state->edgewords; --i >= 0; )
454		x[i] = 0xFFFFFFFFU;
455
456	/* root->level is the highest level no found. */
457	memset(root->et.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
458	memset(root->ef.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
459	for (i = root->level; i >= 0; --i) {
460		for (b = opt_state->levels[i]; b != 0; b = b->link) {
461			propedom(opt_state, &b->et);
462			propedom(opt_state, &b->ef);
463		}
464	}
465}
466
467/*
468 * Find the backwards transitive closure of the flow graph.  These sets
469 * are backwards in the sense that we find the set of nodes that reach
470 * a given node, not the set of nodes that can be reached by a node.
471 *
472 * Assumes graph has been leveled.
473 */
474static void
475find_closure(opt_state_t *opt_state, struct block *root)
476{
477	int i;
478	struct block *b;
479
480	/*
481	 * Initialize sets to contain no nodes.
482	 */
483	memset((char *)opt_state->all_closure_sets, 0,
484	      opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->all_closure_sets));
485
486	/* root->level is the highest level no found. */
487	for (i = root->level; i >= 0; --i) {
488		for (b = opt_state->levels[i]; b; b = b->link) {
489			SET_INSERT(b->closure, b->id);
490			if (JT(b) == 0)
491				continue;
492			SET_UNION(JT(b)->closure, b->closure, opt_state->nodewords);
493			SET_UNION(JF(b)->closure, b->closure, opt_state->nodewords);
494		}
495	}
496}
497
498/*
499 * Return the register number that is used by s.  If A and X are both
500 * used, return AX_ATOM.  If no register is used, return -1.
501 *
502 * The implementation should probably change to an array access.
503 */
504static int
505atomuse(struct stmt *s)
506{
507	register int c = s->code;
508
509	if (c == NOP)
510		return -1;
511
512	switch (BPF_CLASS(c)) {
513
514	case BPF_RET:
515		return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
516			(BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
517
518	case BPF_LD:
519	case BPF_LDX:
520		return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
521			(BPF_MODE(c) == BPF_MEM) ? s->k : -1;
522
523	case BPF_ST:
524		return A_ATOM;
525
526	case BPF_STX:
527		return X_ATOM;
528
529	case BPF_JMP:
530	case BPF_ALU:
531		if (BPF_SRC(c) == BPF_X)
532			return AX_ATOM;
533		return A_ATOM;
534
535	case BPF_MISC:
536		return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
537	}
538	abort();
539	/* NOTREACHED */
540}
541
542/*
543 * Return the register number that is defined by 's'.  We assume that
544 * a single stmt cannot define more than one register.  If no register
545 * is defined, return -1.
546 *
547 * The implementation should probably change to an array access.
548 */
549static int
550atomdef(struct stmt *s)
551{
552	if (s->code == NOP)
553		return -1;
554
555	switch (BPF_CLASS(s->code)) {
556
557	case BPF_LD:
558	case BPF_ALU:
559		return A_ATOM;
560
561	case BPF_LDX:
562		return X_ATOM;
563
564	case BPF_ST:
565	case BPF_STX:
566		return s->k;
567
568	case BPF_MISC:
569		return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
570	}
571	return -1;
572}
573
574/*
575 * Compute the sets of registers used, defined, and killed by 'b'.
576 *
577 * "Used" means that a statement in 'b' uses the register before any
578 * statement in 'b' defines it, i.e. it uses the value left in
579 * that register by a predecessor block of this block.
580 * "Defined" means that a statement in 'b' defines it.
581 * "Killed" means that a statement in 'b' defines it before any
582 * statement in 'b' uses it, i.e. it kills the value left in that
583 * register by a predecessor block of this block.
584 */
585static void
586compute_local_ud(struct block *b)
587{
588	struct slist *s;
589	atomset def = 0, use = 0, killed = 0;
590	int atom;
591
592	for (s = b->stmts; s; s = s->next) {
593		if (s->s.code == NOP)
594			continue;
595		atom = atomuse(&s->s);
596		if (atom >= 0) {
597			if (atom == AX_ATOM) {
598				if (!ATOMELEM(def, X_ATOM))
599					use |= ATOMMASK(X_ATOM);
600				if (!ATOMELEM(def, A_ATOM))
601					use |= ATOMMASK(A_ATOM);
602			}
603			else if (atom < N_ATOMS) {
604				if (!ATOMELEM(def, atom))
605					use |= ATOMMASK(atom);
606			}
607			else
608				abort();
609		}
610		atom = atomdef(&s->s);
611		if (atom >= 0) {
612			if (!ATOMELEM(use, atom))
613				killed |= ATOMMASK(atom);
614			def |= ATOMMASK(atom);
615		}
616	}
617	if (BPF_CLASS(b->s.code) == BPF_JMP) {
618		/*
619		 * XXX - what about RET?
620		 */
621		atom = atomuse(&b->s);
622		if (atom >= 0) {
623			if (atom == AX_ATOM) {
624				if (!ATOMELEM(def, X_ATOM))
625					use |= ATOMMASK(X_ATOM);
626				if (!ATOMELEM(def, A_ATOM))
627					use |= ATOMMASK(A_ATOM);
628			}
629			else if (atom < N_ATOMS) {
630				if (!ATOMELEM(def, atom))
631					use |= ATOMMASK(atom);
632			}
633			else
634				abort();
635		}
636	}
637
638	b->def = def;
639	b->kill = killed;
640	b->in_use = use;
641}
642
643/*
644 * Assume graph is already leveled.
645 */
646static void
647find_ud(opt_state_t *opt_state, struct block *root)
648{
649	int i, maxlevel;
650	struct block *p;
651
652	/*
653	 * root->level is the highest level no found;
654	 * count down from there.
655	 */
656	maxlevel = root->level;
657	for (i = maxlevel; i >= 0; --i)
658		for (p = opt_state->levels[i]; p; p = p->link) {
659			compute_local_ud(p);
660			p->out_use = 0;
661		}
662
663	for (i = 1; i <= maxlevel; ++i) {
664		for (p = opt_state->levels[i]; p; p = p->link) {
665			p->out_use |= JT(p)->in_use | JF(p)->in_use;
666			p->in_use |= p->out_use &~ p->kill;
667		}
668	}
669}
670static void
671init_val(opt_state_t *opt_state)
672{
673	opt_state->curval = 0;
674	opt_state->next_vnode = opt_state->vnode_base;
675	memset((char *)opt_state->vmap, 0, opt_state->maxval * sizeof(*opt_state->vmap));
676	memset((char *)opt_state->hashtbl, 0, sizeof opt_state->hashtbl);
677}
678
679/* Because we really don't have an IR, this stuff is a little messy. */
680static int
681F(opt_state_t *opt_state, int code, int v0, int v1)
682{
683	u_int hash;
684	int val;
685	struct valnode *p;
686
687	hash = (u_int)code ^ ((u_int)v0 << 4) ^ ((u_int)v1 << 8);
688	hash %= MODULUS;
689
690	for (p = opt_state->hashtbl[hash]; p; p = p->next)
691		if (p->code == code && p->v0 == v0 && p->v1 == v1)
692			return p->val;
693
694	val = ++opt_state->curval;
695	if (BPF_MODE(code) == BPF_IMM &&
696	    (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
697		opt_state->vmap[val].const_val = v0;
698		opt_state->vmap[val].is_const = 1;
699	}
700	p = opt_state->next_vnode++;
701	p->val = val;
702	p->code = code;
703	p->v0 = v0;
704	p->v1 = v1;
705	p->next = opt_state->hashtbl[hash];
706	opt_state->hashtbl[hash] = p;
707
708	return val;
709}
710
711static inline void
712vstore(struct stmt *s, int *valp, int newval, int alter)
713{
714	if (alter && newval != VAL_UNKNOWN && *valp == newval)
715		s->code = NOP;
716	else
717		*valp = newval;
718}
719
720/*
721 * Do constant-folding on binary operators.
722 * (Unary operators are handled elsewhere.)
723 */
724static void
725fold_op(opt_state_t *opt_state, struct stmt *s, int v0, int v1)
726{
727	bpf_u_int32 a, b;
728
729	a = opt_state->vmap[v0].const_val;
730	b = opt_state->vmap[v1].const_val;
731
732	switch (BPF_OP(s->code)) {
733	case BPF_ADD:
734		a += b;
735		break;
736
737	case BPF_SUB:
738		a -= b;
739		break;
740
741	case BPF_MUL:
742		a *= b;
743		break;
744
745	case BPF_DIV:
746		if (b == 0)
747			opt_error(opt_state, "division by zero");
748		a /= b;
749		break;
750
751	case BPF_MOD:
752		if (b == 0)
753			opt_error(opt_state, "modulus by zero");
754		a %= b;
755		break;
756
757	case BPF_AND:
758		a &= b;
759		break;
760
761	case BPF_OR:
762		a |= b;
763		break;
764
765	case BPF_XOR:
766		a ^= b;
767		break;
768
769	case BPF_LSH:
770		/*
771		 * A left shift of more than the width of the type
772		 * is undefined in C; we'll just treat it as shifting
773		 * all the bits out.
774		 *
775		 * XXX - the BPF interpreter doesn't check for this,
776		 * so its behavior is dependent on the behavior of
777		 * the processor on which it's running.  There are
778		 * processors on which it shifts all the bits out
779		 * and processors on which it does no shift.
780		 */
781		if (b < 32)
782			a <<= b;
783		else
784			a = 0;
785		break;
786
787	case BPF_RSH:
788		/*
789		 * A right shift of more than the width of the type
790		 * is undefined in C; we'll just treat it as shifting
791		 * all the bits out.
792		 *
793		 * XXX - the BPF interpreter doesn't check for this,
794		 * so its behavior is dependent on the behavior of
795		 * the processor on which it's running.  There are
796		 * processors on which it shifts all the bits out
797		 * and processors on which it does no shift.
798		 */
799		if (b < 32)
800			a >>= b;
801		else
802			a = 0;
803		break;
804
805	default:
806		abort();
807	}
808	s->k = a;
809	s->code = BPF_LD|BPF_IMM;
810	opt_state->done = 0;
811}
812
813static inline struct slist *
814this_op(struct slist *s)
815{
816	while (s != 0 && s->s.code == NOP)
817		s = s->next;
818	return s;
819}
820
821static void
822opt_not(struct block *b)
823{
824	struct block *tmp = JT(b);
825
826	JT(b) = JF(b);
827	JF(b) = tmp;
828}
829
830static void
831opt_peep(opt_state_t *opt_state, struct block *b)
832{
833	struct slist *s;
834	struct slist *next, *last;
835	int val;
836
837	s = b->stmts;
838	if (s == 0)
839		return;
840
841	last = s;
842	for (/*empty*/; /*empty*/; s = next) {
843		/*
844		 * Skip over nops.
845		 */
846		s = this_op(s);
847		if (s == 0)
848			break;	/* nothing left in the block */
849
850		/*
851		 * Find the next real instruction after that one
852		 * (skipping nops).
853		 */
854		next = this_op(s->next);
855		if (next == 0)
856			break;	/* no next instruction */
857		last = next;
858
859		/*
860		 * st  M[k]	-->	st  M[k]
861		 * ldx M[k]		tax
862		 */
863		if (s->s.code == BPF_ST &&
864		    next->s.code == (BPF_LDX|BPF_MEM) &&
865		    s->s.k == next->s.k) {
866			opt_state->done = 0;
867			next->s.code = BPF_MISC|BPF_TAX;
868		}
869		/*
870		 * ld  #k	-->	ldx  #k
871		 * tax			txa
872		 */
873		if (s->s.code == (BPF_LD|BPF_IMM) &&
874		    next->s.code == (BPF_MISC|BPF_TAX)) {
875			s->s.code = BPF_LDX|BPF_IMM;
876			next->s.code = BPF_MISC|BPF_TXA;
877			opt_state->done = 0;
878		}
879		/*
880		 * This is an ugly special case, but it happens
881		 * when you say tcp[k] or udp[k] where k is a constant.
882		 */
883		if (s->s.code == (BPF_LD|BPF_IMM)) {
884			struct slist *add, *tax, *ild;
885
886			/*
887			 * Check that X isn't used on exit from this
888			 * block (which the optimizer might cause).
889			 * We know the code generator won't generate
890			 * any local dependencies.
891			 */
892			if (ATOMELEM(b->out_use, X_ATOM))
893				continue;
894
895			/*
896			 * Check that the instruction following the ldi
897			 * is an addx, or it's an ldxms with an addx
898			 * following it (with 0 or more nops between the
899			 * ldxms and addx).
900			 */
901			if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
902				add = next;
903			else
904				add = this_op(next->next);
905			if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
906				continue;
907
908			/*
909			 * Check that a tax follows that (with 0 or more
910			 * nops between them).
911			 */
912			tax = this_op(add->next);
913			if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
914				continue;
915
916			/*
917			 * Check that an ild follows that (with 0 or more
918			 * nops between them).
919			 */
920			ild = this_op(tax->next);
921			if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
922			    BPF_MODE(ild->s.code) != BPF_IND)
923				continue;
924			/*
925			 * We want to turn this sequence:
926			 *
927			 * (004) ldi     #0x2		{s}
928			 * (005) ldxms   [14]		{next}  -- optional
929			 * (006) addx			{add}
930			 * (007) tax			{tax}
931			 * (008) ild     [x+0]		{ild}
932			 *
933			 * into this sequence:
934			 *
935			 * (004) nop
936			 * (005) ldxms   [14]
937			 * (006) nop
938			 * (007) nop
939			 * (008) ild     [x+2]
940			 *
941			 * XXX We need to check that X is not
942			 * subsequently used, because we want to change
943			 * what'll be in it after this sequence.
944			 *
945			 * We know we can eliminate the accumulator
946			 * modifications earlier in the sequence since
947			 * it is defined by the last stmt of this sequence
948			 * (i.e., the last statement of the sequence loads
949			 * a value into the accumulator, so we can eliminate
950			 * earlier operations on the accumulator).
951			 */
952			ild->s.k += s->s.k;
953			s->s.code = NOP;
954			add->s.code = NOP;
955			tax->s.code = NOP;
956			opt_state->done = 0;
957		}
958	}
959	/*
960	 * If the comparison at the end of a block is an equality
961	 * comparison against a constant, and nobody uses the value
962	 * we leave in the A register at the end of a block, and
963	 * the operation preceding the comparison is an arithmetic
964	 * operation, we can sometime optimize it away.
965	 */
966	if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
967	    !ATOMELEM(b->out_use, A_ATOM)) {
968	    	/*
969	    	 * We can optimize away certain subtractions of the
970	    	 * X register.
971	    	 */
972		if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
973			val = b->val[X_ATOM];
974			if (opt_state->vmap[val].is_const) {
975				/*
976				 * If we have a subtract to do a comparison,
977				 * and the X register is a known constant,
978				 * we can merge this value into the
979				 * comparison:
980				 *
981				 * sub x  ->	nop
982				 * jeq #y	jeq #(x+y)
983				 */
984				b->s.k += opt_state->vmap[val].const_val;
985				last->s.code = NOP;
986				opt_state->done = 0;
987			} else if (b->s.k == 0) {
988				/*
989				 * If the X register isn't a constant,
990				 * and the comparison in the test is
991				 * against 0, we can compare with the
992				 * X register, instead:
993				 *
994				 * sub x  ->	nop
995				 * jeq #0	jeq x
996				 */
997				last->s.code = NOP;
998				b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
999				opt_state->done = 0;
1000			}
1001		}
1002		/*
1003		 * Likewise, a constant subtract can be simplified:
1004		 *
1005		 * sub #x ->	nop
1006		 * jeq #y ->	jeq #(x+y)
1007		 */
1008		else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
1009			last->s.code = NOP;
1010			b->s.k += last->s.k;
1011			opt_state->done = 0;
1012		}
1013		/*
1014		 * And, similarly, a constant AND can be simplified
1015		 * if we're testing against 0, i.e.:
1016		 *
1017		 * and #k	nop
1018		 * jeq #0  ->	jset #k
1019		 */
1020		else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
1021		    b->s.k == 0) {
1022			b->s.k = last->s.k;
1023			b->s.code = BPF_JMP|BPF_K|BPF_JSET;
1024			last->s.code = NOP;
1025			opt_state->done = 0;
1026			opt_not(b);
1027		}
1028	}
1029	/*
1030	 * jset #0        ->   never
1031	 * jset #ffffffff ->   always
1032	 */
1033	if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
1034		if (b->s.k == 0)
1035			JT(b) = JF(b);
1036		if ((u_int)b->s.k == 0xffffffffU)
1037			JF(b) = JT(b);
1038	}
1039	/*
1040	 * If we're comparing against the index register, and the index
1041	 * register is a known constant, we can just compare against that
1042	 * constant.
1043	 */
1044	val = b->val[X_ATOM];
1045	if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) {
1046		bpf_int32 v = opt_state->vmap[val].const_val;
1047		b->s.code &= ~BPF_X;
1048		b->s.k = v;
1049	}
1050	/*
1051	 * If the accumulator is a known constant, we can compute the
1052	 * comparison result.
1053	 */
1054	val = b->val[A_ATOM];
1055	if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
1056		bpf_int32 v = opt_state->vmap[val].const_val;
1057		switch (BPF_OP(b->s.code)) {
1058
1059		case BPF_JEQ:
1060			v = v == b->s.k;
1061			break;
1062
1063		case BPF_JGT:
1064			v = (unsigned)v > (unsigned)b->s.k;
1065			break;
1066
1067		case BPF_JGE:
1068			v = (unsigned)v >= (unsigned)b->s.k;
1069			break;
1070
1071		case BPF_JSET:
1072			v &= b->s.k;
1073			break;
1074
1075		default:
1076			abort();
1077		}
1078		if (JF(b) != JT(b))
1079			opt_state->done = 0;
1080		if (v)
1081			JF(b) = JT(b);
1082		else
1083			JT(b) = JF(b);
1084	}
1085}
1086
1087/*
1088 * Compute the symbolic value of expression of 's', and update
1089 * anything it defines in the value table 'val'.  If 'alter' is true,
1090 * do various optimizations.  This code would be cleaner if symbolic
1091 * evaluation and code transformations weren't folded together.
1092 */
1093static void
1094opt_stmt(opt_state_t *opt_state, struct stmt *s, int val[], int alter)
1095{
1096	int op;
1097	int v;
1098
1099	switch (s->code) {
1100
1101	case BPF_LD|BPF_ABS|BPF_W:
1102	case BPF_LD|BPF_ABS|BPF_H:
1103	case BPF_LD|BPF_ABS|BPF_B:
1104		v = F(opt_state, s->code, s->k, 0L);
1105		vstore(s, &val[A_ATOM], v, alter);
1106		break;
1107
1108	case BPF_LD|BPF_IND|BPF_W:
1109	case BPF_LD|BPF_IND|BPF_H:
1110	case BPF_LD|BPF_IND|BPF_B:
1111		v = val[X_ATOM];
1112		if (alter && opt_state->vmap[v].is_const) {
1113			s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
1114			s->k += opt_state->vmap[v].const_val;
1115			v = F(opt_state, s->code, s->k, 0L);
1116			opt_state->done = 0;
1117		}
1118		else
1119			v = F(opt_state, s->code, s->k, v);
1120		vstore(s, &val[A_ATOM], v, alter);
1121		break;
1122
1123	case BPF_LD|BPF_LEN:
1124		v = F(opt_state, s->code, 0L, 0L);
1125		vstore(s, &val[A_ATOM], v, alter);
1126		break;
1127
1128	case BPF_LD|BPF_IMM:
1129		v = K(s->k);
1130		vstore(s, &val[A_ATOM], v, alter);
1131		break;
1132
1133	case BPF_LDX|BPF_IMM:
1134		v = K(s->k);
1135		vstore(s, &val[X_ATOM], v, alter);
1136		break;
1137
1138	case BPF_LDX|BPF_MSH|BPF_B:
1139		v = F(opt_state, s->code, s->k, 0L);
1140		vstore(s, &val[X_ATOM], v, alter);
1141		break;
1142
1143	case BPF_ALU|BPF_NEG:
1144		if (alter && opt_state->vmap[val[A_ATOM]].is_const) {
1145			s->code = BPF_LD|BPF_IMM;
1146			/*
1147			 * Do this negation as unsigned arithmetic; that's
1148			 * what modern BPF engines do, and it guarantees
1149			 * that all possible values can be negated.  (Yeah,
1150			 * negating 0x80000000, the minimum signed 32-bit
1151			 * two's-complement value, results in 0x80000000,
1152			 * so it's still negative, but we *should* be doing
1153			 * all unsigned arithmetic here, to match what
1154			 * modern BPF engines do.)
1155			 *
1156			 * Express it as 0U - (unsigned value) so that we
1157			 * don't get compiler warnings about negating an
1158			 * unsigned value and don't get UBSan warnings
1159			 * about the result of negating 0x80000000 being
1160			 * undefined.
1161			 */
1162			s->k = 0U - (bpf_u_int32)(opt_state->vmap[val[A_ATOM]].const_val);
1163			val[A_ATOM] = K(s->k);
1164		}
1165		else
1166			val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], 0L);
1167		break;
1168
1169	case BPF_ALU|BPF_ADD|BPF_K:
1170	case BPF_ALU|BPF_SUB|BPF_K:
1171	case BPF_ALU|BPF_MUL|BPF_K:
1172	case BPF_ALU|BPF_DIV|BPF_K:
1173	case BPF_ALU|BPF_MOD|BPF_K:
1174	case BPF_ALU|BPF_AND|BPF_K:
1175	case BPF_ALU|BPF_OR|BPF_K:
1176	case BPF_ALU|BPF_XOR|BPF_K:
1177	case BPF_ALU|BPF_LSH|BPF_K:
1178	case BPF_ALU|BPF_RSH|BPF_K:
1179		op = BPF_OP(s->code);
1180		if (alter) {
1181			if (s->k == 0) {
1182				/*
1183				 * Optimize operations where the constant
1184				 * is zero.
1185				 *
1186				 * Don't optimize away "sub #0"
1187				 * as it may be needed later to
1188				 * fixup the generated math code.
1189				 *
1190				 * Fail if we're dividing by zero or taking
1191				 * a modulus by zero.
1192				 */
1193				if (op == BPF_ADD ||
1194				    op == BPF_LSH || op == BPF_RSH ||
1195				    op == BPF_OR || op == BPF_XOR) {
1196					s->code = NOP;
1197					break;
1198				}
1199				if (op == BPF_MUL || op == BPF_AND) {
1200					s->code = BPF_LD|BPF_IMM;
1201					val[A_ATOM] = K(s->k);
1202					break;
1203				}
1204				if (op == BPF_DIV)
1205					opt_error(opt_state,
1206					    "division by zero");
1207				if (op == BPF_MOD)
1208					opt_error(opt_state,
1209					    "modulus by zero");
1210			}
1211			if (opt_state->vmap[val[A_ATOM]].is_const) {
1212				fold_op(opt_state, s, val[A_ATOM], K(s->k));
1213				val[A_ATOM] = K(s->k);
1214				break;
1215			}
1216		}
1217		val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], K(s->k));
1218		break;
1219
1220	case BPF_ALU|BPF_ADD|BPF_X:
1221	case BPF_ALU|BPF_SUB|BPF_X:
1222	case BPF_ALU|BPF_MUL|BPF_X:
1223	case BPF_ALU|BPF_DIV|BPF_X:
1224	case BPF_ALU|BPF_MOD|BPF_X:
1225	case BPF_ALU|BPF_AND|BPF_X:
1226	case BPF_ALU|BPF_OR|BPF_X:
1227	case BPF_ALU|BPF_XOR|BPF_X:
1228	case BPF_ALU|BPF_LSH|BPF_X:
1229	case BPF_ALU|BPF_RSH|BPF_X:
1230		op = BPF_OP(s->code);
1231		if (alter && opt_state->vmap[val[X_ATOM]].is_const) {
1232			if (opt_state->vmap[val[A_ATOM]].is_const) {
1233				fold_op(opt_state, s, val[A_ATOM], val[X_ATOM]);
1234				val[A_ATOM] = K(s->k);
1235			}
1236			else {
1237				s->code = BPF_ALU|BPF_K|op;
1238				s->k = opt_state->vmap[val[X_ATOM]].const_val;
1239				/*
1240				 * XXX - we need to make up our minds
1241				 * as to what integers are signed and
1242				 * what integers are unsigned in BPF
1243				 * programs and in our IR.
1244				 */
1245				if ((op == BPF_LSH || op == BPF_RSH) &&
1246				    (s->k < 0 || s->k > 31))
1247					opt_error(opt_state,
1248					    "shift by more than 31 bits");
1249				opt_state->done = 0;
1250				val[A_ATOM] =
1251					F(opt_state, s->code, val[A_ATOM], K(s->k));
1252			}
1253			break;
1254		}
1255		/*
1256		 * Check if we're doing something to an accumulator
1257		 * that is 0, and simplify.  This may not seem like
1258		 * much of a simplification but it could open up further
1259		 * optimizations.
1260		 * XXX We could also check for mul by 1, etc.
1261		 */
1262		if (alter && opt_state->vmap[val[A_ATOM]].is_const
1263		    && opt_state->vmap[val[A_ATOM]].const_val == 0) {
1264			if (op == BPF_ADD || op == BPF_OR || op == BPF_XOR) {
1265				s->code = BPF_MISC|BPF_TXA;
1266				vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1267				break;
1268			}
1269			else if (op == BPF_MUL || op == BPF_DIV || op == BPF_MOD ||
1270				 op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
1271				s->code = BPF_LD|BPF_IMM;
1272				s->k = 0;
1273				vstore(s, &val[A_ATOM], K(s->k), alter);
1274				break;
1275			}
1276			else if (op == BPF_NEG) {
1277				s->code = NOP;
1278				break;
1279			}
1280		}
1281		val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], val[X_ATOM]);
1282		break;
1283
1284	case BPF_MISC|BPF_TXA:
1285		vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1286		break;
1287
1288	case BPF_LD|BPF_MEM:
1289		v = val[s->k];
1290		if (alter && opt_state->vmap[v].is_const) {
1291			s->code = BPF_LD|BPF_IMM;
1292			s->k = opt_state->vmap[v].const_val;
1293			opt_state->done = 0;
1294		}
1295		vstore(s, &val[A_ATOM], v, alter);
1296		break;
1297
1298	case BPF_MISC|BPF_TAX:
1299		vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1300		break;
1301
1302	case BPF_LDX|BPF_MEM:
1303		v = val[s->k];
1304		if (alter && opt_state->vmap[v].is_const) {
1305			s->code = BPF_LDX|BPF_IMM;
1306			s->k = opt_state->vmap[v].const_val;
1307			opt_state->done = 0;
1308		}
1309		vstore(s, &val[X_ATOM], v, alter);
1310		break;
1311
1312	case BPF_ST:
1313		vstore(s, &val[s->k], val[A_ATOM], alter);
1314		break;
1315
1316	case BPF_STX:
1317		vstore(s, &val[s->k], val[X_ATOM], alter);
1318		break;
1319	}
1320}
1321
1322static void
1323deadstmt(opt_state_t *opt_state, register struct stmt *s, register struct stmt *last[])
1324{
1325	register int atom;
1326
1327	atom = atomuse(s);
1328	if (atom >= 0) {
1329		if (atom == AX_ATOM) {
1330			last[X_ATOM] = 0;
1331			last[A_ATOM] = 0;
1332		}
1333		else
1334			last[atom] = 0;
1335	}
1336	atom = atomdef(s);
1337	if (atom >= 0) {
1338		if (last[atom]) {
1339			opt_state->done = 0;
1340			last[atom]->code = NOP;
1341		}
1342		last[atom] = s;
1343	}
1344}
1345
1346static void
1347opt_deadstores(opt_state_t *opt_state, register struct block *b)
1348{
1349	register struct slist *s;
1350	register int atom;
1351	struct stmt *last[N_ATOMS];
1352
1353	memset((char *)last, 0, sizeof last);
1354
1355	for (s = b->stmts; s != 0; s = s->next)
1356		deadstmt(opt_state, &s->s, last);
1357	deadstmt(opt_state, &b->s, last);
1358
1359	for (atom = 0; atom < N_ATOMS; ++atom)
1360		if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1361			last[atom]->code = NOP;
1362			opt_state->done = 0;
1363		}
1364}
1365
1366static void
1367opt_blk(opt_state_t *opt_state, struct block *b, int do_stmts)
1368{
1369	struct slist *s;
1370	struct edge *p;
1371	int i;
1372	bpf_int32 aval, xval;
1373
1374#if 0
1375	for (s = b->stmts; s && s->next; s = s->next)
1376		if (BPF_CLASS(s->s.code) == BPF_JMP) {
1377			do_stmts = 0;
1378			break;
1379		}
1380#endif
1381
1382	/*
1383	 * Initialize the atom values.
1384	 */
1385	p = b->in_edges;
1386	if (p == 0) {
1387		/*
1388		 * We have no predecessors, so everything is undefined
1389		 * upon entry to this block.
1390		 */
1391		memset((char *)b->val, 0, sizeof(b->val));
1392	} else {
1393		/*
1394		 * Inherit values from our predecessors.
1395		 *
1396		 * First, get the values from the predecessor along the
1397		 * first edge leading to this node.
1398		 */
1399		memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1400		/*
1401		 * Now look at all the other nodes leading to this node.
1402		 * If, for the predecessor along that edge, a register
1403		 * has a different value from the one we have (i.e.,
1404		 * control paths are merging, and the merging paths
1405		 * assign different values to that register), give the
1406		 * register the undefined value of 0.
1407		 */
1408		while ((p = p->next) != NULL) {
1409			for (i = 0; i < N_ATOMS; ++i)
1410				if (b->val[i] != p->pred->val[i])
1411					b->val[i] = 0;
1412		}
1413	}
1414	aval = b->val[A_ATOM];
1415	xval = b->val[X_ATOM];
1416	for (s = b->stmts; s; s = s->next)
1417		opt_stmt(opt_state, &s->s, b->val, do_stmts);
1418
1419	/*
1420	 * This is a special case: if we don't use anything from this
1421	 * block, and we load the accumulator or index register with a
1422	 * value that is already there, or if this block is a return,
1423	 * eliminate all the statements.
1424	 *
1425	 * XXX - what if it does a store?
1426	 *
1427	 * XXX - why does it matter whether we use anything from this
1428	 * block?  If the accumulator or index register doesn't change
1429	 * its value, isn't that OK even if we use that value?
1430	 *
1431	 * XXX - if we load the accumulator with a different value,
1432	 * and the block ends with a conditional branch, we obviously
1433	 * can't eliminate it, as the branch depends on that value.
1434	 * For the index register, the conditional branch only depends
1435	 * on the index register value if the test is against the index
1436	 * register value rather than a constant; if nothing uses the
1437	 * value we put into the index register, and we're not testing
1438	 * against the index register's value, and there aren't any
1439	 * other problems that would keep us from eliminating this
1440	 * block, can we eliminate it?
1441	 */
1442	if (do_stmts &&
1443	    ((b->out_use == 0 &&
1444	      aval != VAL_UNKNOWN && b->val[A_ATOM] == aval &&
1445	      xval != VAL_UNKNOWN && b->val[X_ATOM] == xval) ||
1446	     BPF_CLASS(b->s.code) == BPF_RET)) {
1447		if (b->stmts != 0) {
1448			b->stmts = 0;
1449			opt_state->done = 0;
1450		}
1451	} else {
1452		opt_peep(opt_state, b);
1453		opt_deadstores(opt_state, b);
1454	}
1455	/*
1456	 * Set up values for branch optimizer.
1457	 */
1458	if (BPF_SRC(b->s.code) == BPF_K)
1459		b->oval = K(b->s.k);
1460	else
1461		b->oval = b->val[X_ATOM];
1462	b->et.code = b->s.code;
1463	b->ef.code = -b->s.code;
1464}
1465
1466/*
1467 * Return true if any register that is used on exit from 'succ', has
1468 * an exit value that is different from the corresponding exit value
1469 * from 'b'.
1470 */
1471static int
1472use_conflict(struct block *b, struct block *succ)
1473{
1474	int atom;
1475	atomset use = succ->out_use;
1476
1477	if (use == 0)
1478		return 0;
1479
1480	for (atom = 0; atom < N_ATOMS; ++atom)
1481		if (ATOMELEM(use, atom))
1482			if (b->val[atom] != succ->val[atom])
1483				return 1;
1484	return 0;
1485}
1486
1487static struct block *
1488fold_edge(struct block *child, struct edge *ep)
1489{
1490	int sense;
1491	int aval0, aval1, oval0, oval1;
1492	int code = ep->code;
1493
1494	if (code < 0) {
1495		code = -code;
1496		sense = 0;
1497	} else
1498		sense = 1;
1499
1500	if (child->s.code != code)
1501		return 0;
1502
1503	aval0 = child->val[A_ATOM];
1504	oval0 = child->oval;
1505	aval1 = ep->pred->val[A_ATOM];
1506	oval1 = ep->pred->oval;
1507
1508	if (aval0 != aval1)
1509		return 0;
1510
1511	if (oval0 == oval1)
1512		/*
1513		 * The operands of the branch instructions are
1514		 * identical, so the result is true if a true
1515		 * branch was taken to get here, otherwise false.
1516		 */
1517		return sense ? JT(child) : JF(child);
1518
1519	if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1520		/*
1521		 * At this point, we only know the comparison if we
1522		 * came down the true branch, and it was an equality
1523		 * comparison with a constant.
1524		 *
1525		 * I.e., if we came down the true branch, and the branch
1526		 * was an equality comparison with a constant, we know the
1527		 * accumulator contains that constant.  If we came down
1528		 * the false branch, or the comparison wasn't with a
1529		 * constant, we don't know what was in the accumulator.
1530		 *
1531		 * We rely on the fact that distinct constants have distinct
1532		 * value numbers.
1533		 */
1534		return JF(child);
1535
1536	return 0;
1537}
1538
1539static void
1540opt_j(opt_state_t *opt_state, struct edge *ep)
1541{
1542	register int i, k;
1543	register struct block *target;
1544
1545	if (JT(ep->succ) == 0)
1546		return;
1547
1548	if (JT(ep->succ) == JF(ep->succ)) {
1549		/*
1550		 * Common branch targets can be eliminated, provided
1551		 * there is no data dependency.
1552		 */
1553		if (!use_conflict(ep->pred, ep->succ->et.succ)) {
1554			opt_state->done = 0;
1555			ep->succ = JT(ep->succ);
1556		}
1557	}
1558	/*
1559	 * For each edge dominator that matches the successor of this
1560	 * edge, promote the edge successor to the its grandchild.
1561	 *
1562	 * XXX We violate the set abstraction here in favor a reasonably
1563	 * efficient loop.
1564	 */
1565 top:
1566	for (i = 0; i < opt_state->edgewords; ++i) {
1567		register bpf_u_int32 x = ep->edom[i];
1568
1569		while (x != 0) {
1570			k = lowest_set_bit(x);
1571			x &=~ ((bpf_u_int32)1 << k);
1572			k += i * BITS_PER_WORD;
1573
1574			target = fold_edge(ep->succ, opt_state->edges[k]);
1575			/*
1576			 * Check that there is no data dependency between
1577			 * nodes that will be violated if we move the edge.
1578			 */
1579			if (target != 0 && !use_conflict(ep->pred, target)) {
1580				opt_state->done = 0;
1581				ep->succ = target;
1582				if (JT(target) != 0)
1583					/*
1584					 * Start over unless we hit a leaf.
1585					 */
1586					goto top;
1587				return;
1588			}
1589		}
1590	}
1591}
1592
1593
1594static void
1595or_pullup(opt_state_t *opt_state, struct block *b)
1596{
1597	int val, at_top;
1598	struct block *pull;
1599	struct block **diffp, **samep;
1600	struct edge *ep;
1601
1602	ep = b->in_edges;
1603	if (ep == 0)
1604		return;
1605
1606	/*
1607	 * Make sure each predecessor loads the same value.
1608	 * XXX why?
1609	 */
1610	val = ep->pred->val[A_ATOM];
1611	for (ep = ep->next; ep != 0; ep = ep->next)
1612		if (val != ep->pred->val[A_ATOM])
1613			return;
1614
1615	if (JT(b->in_edges->pred) == b)
1616		diffp = &JT(b->in_edges->pred);
1617	else
1618		diffp = &JF(b->in_edges->pred);
1619
1620	at_top = 1;
1621	for (;;) {
1622		if (*diffp == 0)
1623			return;
1624
1625		if (JT(*diffp) != JT(b))
1626			return;
1627
1628		if (!SET_MEMBER((*diffp)->dom, b->id))
1629			return;
1630
1631		if ((*diffp)->val[A_ATOM] != val)
1632			break;
1633
1634		diffp = &JF(*diffp);
1635		at_top = 0;
1636	}
1637	samep = &JF(*diffp);
1638	for (;;) {
1639		if (*samep == 0)
1640			return;
1641
1642		if (JT(*samep) != JT(b))
1643			return;
1644
1645		if (!SET_MEMBER((*samep)->dom, b->id))
1646			return;
1647
1648		if ((*samep)->val[A_ATOM] == val)
1649			break;
1650
1651		/* XXX Need to check that there are no data dependencies
1652		   between dp0 and dp1.  Currently, the code generator
1653		   will not produce such dependencies. */
1654		samep = &JF(*samep);
1655	}
1656#ifdef notdef
1657	/* XXX This doesn't cover everything. */
1658	for (i = 0; i < N_ATOMS; ++i)
1659		if ((*samep)->val[i] != pred->val[i])
1660			return;
1661#endif
1662	/* Pull up the node. */
1663	pull = *samep;
1664	*samep = JF(pull);
1665	JF(pull) = *diffp;
1666
1667	/*
1668	 * At the top of the chain, each predecessor needs to point at the
1669	 * pulled up node.  Inside the chain, there is only one predecessor
1670	 * to worry about.
1671	 */
1672	if (at_top) {
1673		for (ep = b->in_edges; ep != 0; ep = ep->next) {
1674			if (JT(ep->pred) == b)
1675				JT(ep->pred) = pull;
1676			else
1677				JF(ep->pred) = pull;
1678		}
1679	}
1680	else
1681		*diffp = pull;
1682
1683	opt_state->done = 0;
1684}
1685
1686static void
1687and_pullup(opt_state_t *opt_state, struct block *b)
1688{
1689	int val, at_top;
1690	struct block *pull;
1691	struct block **diffp, **samep;
1692	struct edge *ep;
1693
1694	ep = b->in_edges;
1695	if (ep == 0)
1696		return;
1697
1698	/*
1699	 * Make sure each predecessor loads the same value.
1700	 */
1701	val = ep->pred->val[A_ATOM];
1702	for (ep = ep->next; ep != 0; ep = ep->next)
1703		if (val != ep->pred->val[A_ATOM])
1704			return;
1705
1706	if (JT(b->in_edges->pred) == b)
1707		diffp = &JT(b->in_edges->pred);
1708	else
1709		diffp = &JF(b->in_edges->pred);
1710
1711	at_top = 1;
1712	for (;;) {
1713		if (*diffp == 0)
1714			return;
1715
1716		if (JF(*diffp) != JF(b))
1717			return;
1718
1719		if (!SET_MEMBER((*diffp)->dom, b->id))
1720			return;
1721
1722		if ((*diffp)->val[A_ATOM] != val)
1723			break;
1724
1725		diffp = &JT(*diffp);
1726		at_top = 0;
1727	}
1728	samep = &JT(*diffp);
1729	for (;;) {
1730		if (*samep == 0)
1731			return;
1732
1733		if (JF(*samep) != JF(b))
1734			return;
1735
1736		if (!SET_MEMBER((*samep)->dom, b->id))
1737			return;
1738
1739		if ((*samep)->val[A_ATOM] == val)
1740			break;
1741
1742		/* XXX Need to check that there are no data dependencies
1743		   between diffp and samep.  Currently, the code generator
1744		   will not produce such dependencies. */
1745		samep = &JT(*samep);
1746	}
1747#ifdef notdef
1748	/* XXX This doesn't cover everything. */
1749	for (i = 0; i < N_ATOMS; ++i)
1750		if ((*samep)->val[i] != pred->val[i])
1751			return;
1752#endif
1753	/* Pull up the node. */
1754	pull = *samep;
1755	*samep = JT(pull);
1756	JT(pull) = *diffp;
1757
1758	/*
1759	 * At the top of the chain, each predecessor needs to point at the
1760	 * pulled up node.  Inside the chain, there is only one predecessor
1761	 * to worry about.
1762	 */
1763	if (at_top) {
1764		for (ep = b->in_edges; ep != 0; ep = ep->next) {
1765			if (JT(ep->pred) == b)
1766				JT(ep->pred) = pull;
1767			else
1768				JF(ep->pred) = pull;
1769		}
1770	}
1771	else
1772		*diffp = pull;
1773
1774	opt_state->done = 0;
1775}
1776
1777static void
1778opt_blks(opt_state_t *opt_state, struct icode *ic, int do_stmts)
1779{
1780	int i, maxlevel;
1781	struct block *p;
1782
1783	init_val(opt_state);
1784	maxlevel = ic->root->level;
1785
1786	find_inedges(opt_state, ic->root);
1787	for (i = maxlevel; i >= 0; --i)
1788		for (p = opt_state->levels[i]; p; p = p->link)
1789			opt_blk(opt_state, p, do_stmts);
1790
1791	if (do_stmts)
1792		/*
1793		 * No point trying to move branches; it can't possibly
1794		 * make a difference at this point.
1795		 */
1796		return;
1797
1798	for (i = 1; i <= maxlevel; ++i) {
1799		for (p = opt_state->levels[i]; p; p = p->link) {
1800			opt_j(opt_state, &p->et);
1801			opt_j(opt_state, &p->ef);
1802		}
1803	}
1804
1805	find_inedges(opt_state, ic->root);
1806	for (i = 1; i <= maxlevel; ++i) {
1807		for (p = opt_state->levels[i]; p; p = p->link) {
1808			or_pullup(opt_state, p);
1809			and_pullup(opt_state, p);
1810		}
1811	}
1812}
1813
1814static inline void
1815link_inedge(struct edge *parent, struct block *child)
1816{
1817	parent->next = child->in_edges;
1818	child->in_edges = parent;
1819}
1820
1821static void
1822find_inedges(opt_state_t *opt_state, struct block *root)
1823{
1824	int i;
1825	struct block *b;
1826
1827	for (i = 0; i < opt_state->n_blocks; ++i)
1828		opt_state->blocks[i]->in_edges = 0;
1829
1830	/*
1831	 * Traverse the graph, adding each edge to the predecessor
1832	 * list of its successors.  Skip the leaves (i.e. level 0).
1833	 */
1834	for (i = root->level; i > 0; --i) {
1835		for (b = opt_state->levels[i]; b != 0; b = b->link) {
1836			link_inedge(&b->et, JT(b));
1837			link_inedge(&b->ef, JF(b));
1838		}
1839	}
1840}
1841
1842static void
1843opt_root(struct block **b)
1844{
1845	struct slist *tmp, *s;
1846
1847	s = (*b)->stmts;
1848	(*b)->stmts = 0;
1849	while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
1850		*b = JT(*b);
1851
1852	tmp = (*b)->stmts;
1853	if (tmp != 0)
1854		sappend(s, tmp);
1855	(*b)->stmts = s;
1856
1857	/*
1858	 * If the root node is a return, then there is no
1859	 * point executing any statements (since the bpf machine
1860	 * has no side effects).
1861	 */
1862	if (BPF_CLASS((*b)->s.code) == BPF_RET)
1863		(*b)->stmts = 0;
1864}
1865
1866static void
1867opt_loop(opt_state_t *opt_state, struct icode *ic, int do_stmts)
1868{
1869
1870#ifdef BDEBUG
1871	if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
1872		printf("opt_loop(root, %d) begin\n", do_stmts);
1873		opt_dump(opt_state, ic);
1874	}
1875#endif
1876	do {
1877		opt_state->done = 1;
1878		find_levels(opt_state, ic);
1879		find_dom(opt_state, ic->root);
1880		find_closure(opt_state, ic->root);
1881		find_ud(opt_state, ic->root);
1882		find_edom(opt_state, ic->root);
1883		opt_blks(opt_state, ic, do_stmts);
1884#ifdef BDEBUG
1885		if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
1886			printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, opt_state->done);
1887			opt_dump(opt_state, ic);
1888		}
1889#endif
1890	} while (!opt_state->done);
1891}
1892
1893/*
1894 * Optimize the filter code in its dag representation.
1895 * Return 0 on success, -1 on error.
1896 */
1897int
1898bpf_optimize(struct icode *ic, char *errbuf)
1899{
1900	opt_state_t opt_state;
1901
1902	memset(&opt_state, 0, sizeof(opt_state));
1903	opt_state.errbuf = errbuf;
1904	if (setjmp(opt_state.top_ctx)) {
1905		opt_cleanup(&opt_state);
1906		return -1;
1907	}
1908	opt_init(&opt_state, ic);
1909	opt_loop(&opt_state, ic, 0);
1910	opt_loop(&opt_state, ic, 1);
1911	intern_blocks(&opt_state, ic);
1912#ifdef BDEBUG
1913	if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
1914		printf("after intern_blocks()\n");
1915		opt_dump(&opt_state, ic);
1916	}
1917#endif
1918	opt_root(&ic->root);
1919#ifdef BDEBUG
1920	if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
1921		printf("after opt_root()\n");
1922		opt_dump(&opt_state, ic);
1923	}
1924#endif
1925	opt_cleanup(&opt_state);
1926	return 0;
1927}
1928
1929static void
1930make_marks(struct icode *ic, struct block *p)
1931{
1932	if (!isMarked(ic, p)) {
1933		Mark(ic, p);
1934		if (BPF_CLASS(p->s.code) != BPF_RET) {
1935			make_marks(ic, JT(p));
1936			make_marks(ic, JF(p));
1937		}
1938	}
1939}
1940
1941/*
1942 * Mark code array such that isMarked(ic->cur_mark, i) is true
1943 * only for nodes that are alive.
1944 */
1945static void
1946mark_code(struct icode *ic)
1947{
1948	ic->cur_mark += 1;
1949	make_marks(ic, ic->root);
1950}
1951
1952/*
1953 * True iff the two stmt lists load the same value from the packet into
1954 * the accumulator.
1955 */
1956static int
1957eq_slist(struct slist *x, struct slist *y)
1958{
1959	for (;;) {
1960		while (x && x->s.code == NOP)
1961			x = x->next;
1962		while (y && y->s.code == NOP)
1963			y = y->next;
1964		if (x == 0)
1965			return y == 0;
1966		if (y == 0)
1967			return x == 0;
1968		if (x->s.code != y->s.code || x->s.k != y->s.k)
1969			return 0;
1970		x = x->next;
1971		y = y->next;
1972	}
1973}
1974
1975static inline int
1976eq_blk(struct block *b0, struct block *b1)
1977{
1978	if (b0->s.code == b1->s.code &&
1979	    b0->s.k == b1->s.k &&
1980	    b0->et.succ == b1->et.succ &&
1981	    b0->ef.succ == b1->ef.succ)
1982		return eq_slist(b0->stmts, b1->stmts);
1983	return 0;
1984}
1985
1986static void
1987intern_blocks(opt_state_t *opt_state, struct icode *ic)
1988{
1989	struct block *p;
1990	int i, j;
1991	int done1; /* don't shadow global */
1992 top:
1993	done1 = 1;
1994	for (i = 0; i < opt_state->n_blocks; ++i)
1995		opt_state->blocks[i]->link = 0;
1996
1997	mark_code(ic);
1998
1999	for (i = opt_state->n_blocks - 1; --i >= 0; ) {
2000		if (!isMarked(ic, opt_state->blocks[i]))
2001			continue;
2002		for (j = i + 1; j < opt_state->n_blocks; ++j) {
2003			if (!isMarked(ic, opt_state->blocks[j]))
2004				continue;
2005			if (eq_blk(opt_state->blocks[i], opt_state->blocks[j])) {
2006				opt_state->blocks[i]->link = opt_state->blocks[j]->link ?
2007					opt_state->blocks[j]->link : opt_state->blocks[j];
2008				break;
2009			}
2010		}
2011	}
2012	for (i = 0; i < opt_state->n_blocks; ++i) {
2013		p = opt_state->blocks[i];
2014		if (JT(p) == 0)
2015			continue;
2016		if (JT(p)->link) {
2017			done1 = 0;
2018			JT(p) = JT(p)->link;
2019		}
2020		if (JF(p)->link) {
2021			done1 = 0;
2022			JF(p) = JF(p)->link;
2023		}
2024	}
2025	if (!done1)
2026		goto top;
2027}
2028
2029static void
2030opt_cleanup(opt_state_t *opt_state)
2031{
2032	free((void *)opt_state->vnode_base);
2033	free((void *)opt_state->vmap);
2034	free((void *)opt_state->edges);
2035	free((void *)opt_state->space);
2036	free((void *)opt_state->levels);
2037	free((void *)opt_state->blocks);
2038}
2039
2040/*
2041 * For optimizer errors.
2042 */
2043static void PCAP_NORETURN
2044opt_error(opt_state_t *opt_state, const char *fmt, ...)
2045{
2046	va_list ap;
2047
2048	if (opt_state->errbuf != NULL) {
2049		va_start(ap, fmt);
2050		(void)pcap_vsnprintf(opt_state->errbuf,
2051		    PCAP_ERRBUF_SIZE, fmt, ap);
2052		va_end(ap);
2053	}
2054	longjmp(opt_state->top_ctx, 1);
2055	/* NOTREACHED */
2056}
2057
2058/*
2059 * Return the number of stmts in 's'.
2060 */
2061static u_int
2062slength(struct slist *s)
2063{
2064	u_int n = 0;
2065
2066	for (; s; s = s->next)
2067		if (s->s.code != NOP)
2068			++n;
2069	return n;
2070}
2071
2072/*
2073 * Return the number of nodes reachable by 'p'.
2074 * All nodes should be initially unmarked.
2075 */
2076static int
2077count_blocks(struct icode *ic, struct block *p)
2078{
2079	if (p == 0 || isMarked(ic, p))
2080		return 0;
2081	Mark(ic, p);
2082	return count_blocks(ic, JT(p)) + count_blocks(ic, JF(p)) + 1;
2083}
2084
2085/*
2086 * Do a depth first search on the flow graph, numbering the
2087 * the basic blocks, and entering them into the 'blocks' array.`
2088 */
2089static void
2090number_blks_r(opt_state_t *opt_state, struct icode *ic, struct block *p)
2091{
2092	int n;
2093
2094	if (p == 0 || isMarked(ic, p))
2095		return;
2096
2097	Mark(ic, p);
2098	n = opt_state->n_blocks++;
2099	p->id = n;
2100	opt_state->blocks[n] = p;
2101
2102	number_blks_r(opt_state, ic, JT(p));
2103	number_blks_r(opt_state, ic, JF(p));
2104}
2105
2106/*
2107 * Return the number of stmts in the flowgraph reachable by 'p'.
2108 * The nodes should be unmarked before calling.
2109 *
2110 * Note that "stmts" means "instructions", and that this includes
2111 *
2112 *	side-effect statements in 'p' (slength(p->stmts));
2113 *
2114 *	statements in the true branch from 'p' (count_stmts(JT(p)));
2115 *
2116 *	statements in the false branch from 'p' (count_stmts(JF(p)));
2117 *
2118 *	the conditional jump itself (1);
2119 *
2120 *	an extra long jump if the true branch requires it (p->longjt);
2121 *
2122 *	an extra long jump if the false branch requires it (p->longjf).
2123 */
2124static u_int
2125count_stmts(struct icode *ic, struct block *p)
2126{
2127	u_int n;
2128
2129	if (p == 0 || isMarked(ic, p))
2130		return 0;
2131	Mark(ic, p);
2132	n = count_stmts(ic, JT(p)) + count_stmts(ic, JF(p));
2133	return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
2134}
2135
2136/*
2137 * Allocate memory.  All allocation is done before optimization
2138 * is begun.  A linear bound on the size of all data structures is computed
2139 * from the total number of blocks and/or statements.
2140 */
2141static void
2142opt_init(opt_state_t *opt_state, struct icode *ic)
2143{
2144	bpf_u_int32 *p;
2145	int i, n, max_stmts;
2146
2147	/*
2148	 * First, count the blocks, so we can malloc an array to map
2149	 * block number to block.  Then, put the blocks into the array.
2150	 */
2151	unMarkAll(ic);
2152	n = count_blocks(ic, ic->root);
2153	opt_state->blocks = (struct block **)calloc(n, sizeof(*opt_state->blocks));
2154	if (opt_state->blocks == NULL)
2155		opt_error(opt_state, "malloc");
2156	unMarkAll(ic);
2157	opt_state->n_blocks = 0;
2158	number_blks_r(opt_state, ic, ic->root);
2159
2160	opt_state->n_edges = 2 * opt_state->n_blocks;
2161	opt_state->edges = (struct edge **)calloc(opt_state->n_edges, sizeof(*opt_state->edges));
2162	if (opt_state->edges == NULL) {
2163		opt_error(opt_state, "malloc");
2164	}
2165
2166	/*
2167	 * The number of levels is bounded by the number of nodes.
2168	 */
2169	opt_state->levels = (struct block **)calloc(opt_state->n_blocks, sizeof(*opt_state->levels));
2170	if (opt_state->levels == NULL) {
2171		opt_error(opt_state, "malloc");
2172	}
2173
2174	opt_state->edgewords = opt_state->n_edges / (8 * sizeof(bpf_u_int32)) + 1;
2175	opt_state->nodewords = opt_state->n_blocks / (8 * sizeof(bpf_u_int32)) + 1;
2176
2177	/* XXX */
2178	opt_state->space = (bpf_u_int32 *)malloc(2 * opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->space)
2179				 + opt_state->n_edges * opt_state->edgewords * sizeof(*opt_state->space));
2180	if (opt_state->space == NULL) {
2181		opt_error(opt_state, "malloc");
2182	}
2183	p = opt_state->space;
2184	opt_state->all_dom_sets = p;
2185	for (i = 0; i < n; ++i) {
2186		opt_state->blocks[i]->dom = p;
2187		p += opt_state->nodewords;
2188	}
2189	opt_state->all_closure_sets = p;
2190	for (i = 0; i < n; ++i) {
2191		opt_state->blocks[i]->closure = p;
2192		p += opt_state->nodewords;
2193	}
2194	opt_state->all_edge_sets = p;
2195	for (i = 0; i < n; ++i) {
2196		register struct block *b = opt_state->blocks[i];
2197
2198		b->et.edom = p;
2199		p += opt_state->edgewords;
2200		b->ef.edom = p;
2201		p += opt_state->edgewords;
2202		b->et.id = i;
2203		opt_state->edges[i] = &b->et;
2204		b->ef.id = opt_state->n_blocks + i;
2205		opt_state->edges[opt_state->n_blocks + i] = &b->ef;
2206		b->et.pred = b;
2207		b->ef.pred = b;
2208	}
2209	max_stmts = 0;
2210	for (i = 0; i < n; ++i)
2211		max_stmts += slength(opt_state->blocks[i]->stmts) + 1;
2212	/*
2213	 * We allocate at most 3 value numbers per statement,
2214	 * so this is an upper bound on the number of valnodes
2215	 * we'll need.
2216	 */
2217	opt_state->maxval = 3 * max_stmts;
2218	opt_state->vmap = (struct vmapinfo *)calloc(opt_state->maxval, sizeof(*opt_state->vmap));
2219	if (opt_state->vmap == NULL) {
2220		opt_error(opt_state, "malloc");
2221	}
2222	opt_state->vnode_base = (struct valnode *)calloc(opt_state->maxval, sizeof(*opt_state->vnode_base));
2223	if (opt_state->vnode_base == NULL) {
2224		opt_error(opt_state, "malloc");
2225	}
2226}
2227
2228/*
2229 * This is only used when supporting optimizer debugging.  It is
2230 * global state, so do *not* do more than one compile in parallel
2231 * and expect it to provide meaningful information.
2232 */
2233#ifdef BDEBUG
2234int bids[NBIDS];
2235#endif
2236
2237static void PCAP_NORETURN conv_error(conv_state_t *, const char *, ...)
2238    PCAP_PRINTFLIKE(2, 3);
2239
2240/*
2241 * Returns true if successful.  Returns false if a branch has
2242 * an offset that is too large.  If so, we have marked that
2243 * branch so that on a subsequent iteration, it will be treated
2244 * properly.
2245 */
2246static int
2247convert_code_r(conv_state_t *conv_state, struct icode *ic, struct block *p)
2248{
2249	struct bpf_insn *dst;
2250	struct slist *src;
2251	u_int slen;
2252	u_int off;
2253	u_int extrajmps;	/* number of extra jumps inserted */
2254	struct slist **offset = NULL;
2255
2256	if (p == 0 || isMarked(ic, p))
2257		return (1);
2258	Mark(ic, p);
2259
2260	if (convert_code_r(conv_state, ic, JF(p)) == 0)
2261		return (0);
2262	if (convert_code_r(conv_state, ic, JT(p)) == 0)
2263		return (0);
2264
2265	slen = slength(p->stmts);
2266	dst = conv_state->ftail -= (slen + 1 + p->longjt + p->longjf);
2267		/* inflate length by any extra jumps */
2268
2269	p->offset = (int)(dst - conv_state->fstart);
2270
2271	/* generate offset[] for convenience  */
2272	if (slen) {
2273		offset = (struct slist **)calloc(slen, sizeof(struct slist *));
2274		if (!offset) {
2275			conv_error(conv_state, "not enough core");
2276			/*NOTREACHED*/
2277		}
2278	}
2279	src = p->stmts;
2280	for (off = 0; off < slen && src; off++) {
2281#if 0
2282		printf("off=%d src=%x\n", off, src);
2283#endif
2284		offset[off] = src;
2285		src = src->next;
2286	}
2287
2288	off = 0;
2289	for (src = p->stmts; src; src = src->next) {
2290		if (src->s.code == NOP)
2291			continue;
2292		dst->code = (u_short)src->s.code;
2293		dst->k = src->s.k;
2294
2295		/* fill block-local relative jump */
2296		if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
2297#if 0
2298			if (src->s.jt || src->s.jf) {
2299				free(offset);
2300				conv_error(conv_state, "illegal jmp destination");
2301				/*NOTREACHED*/
2302			}
2303#endif
2304			goto filled;
2305		}
2306		if (off == slen - 2)	/*???*/
2307			goto filled;
2308
2309	    {
2310		u_int i;
2311		int jt, jf;
2312		const char ljerr[] = "%s for block-local relative jump: off=%d";
2313
2314#if 0
2315		printf("code=%x off=%d %x %x\n", src->s.code,
2316			off, src->s.jt, src->s.jf);
2317#endif
2318
2319		if (!src->s.jt || !src->s.jf) {
2320			free(offset);
2321			conv_error(conv_state, ljerr, "no jmp destination", off);
2322			/*NOTREACHED*/
2323		}
2324
2325		jt = jf = 0;
2326		for (i = 0; i < slen; i++) {
2327			if (offset[i] == src->s.jt) {
2328				if (jt) {
2329					free(offset);
2330					conv_error(conv_state, ljerr, "multiple matches", off);
2331					/*NOTREACHED*/
2332				}
2333
2334				if (i - off - 1 >= 256) {
2335					free(offset);
2336					conv_error(conv_state, ljerr, "out-of-range jump", off);
2337					/*NOTREACHED*/
2338				}
2339				dst->jt = (u_char)(i - off - 1);
2340				jt++;
2341			}
2342			if (offset[i] == src->s.jf) {
2343				if (jf) {
2344					free(offset);
2345					conv_error(conv_state, ljerr, "multiple matches", off);
2346					/*NOTREACHED*/
2347				}
2348				if (i - off - 1 >= 256) {
2349					free(offset);
2350					conv_error(conv_state, ljerr, "out-of-range jump", off);
2351					/*NOTREACHED*/
2352				}
2353				dst->jf = (u_char)(i - off - 1);
2354				jf++;
2355			}
2356		}
2357		if (!jt || !jf) {
2358			free(offset);
2359			conv_error(conv_state, ljerr, "no destination found", off);
2360			/*NOTREACHED*/
2361		}
2362	    }
2363filled:
2364		++dst;
2365		++off;
2366	}
2367	if (offset)
2368		free(offset);
2369
2370#ifdef BDEBUG
2371	if (dst - conv_state->fstart < NBIDS)
2372		bids[dst - conv_state->fstart] = p->id + 1;
2373#endif
2374	dst->code = (u_short)p->s.code;
2375	dst->k = p->s.k;
2376	if (JT(p)) {
2377		extrajmps = 0;
2378		off = JT(p)->offset - (p->offset + slen) - 1;
2379		if (off >= 256) {
2380		    /* offset too large for branch, must add a jump */
2381		    if (p->longjt == 0) {
2382		    	/* mark this instruction and retry */
2383			p->longjt++;
2384			return(0);
2385		    }
2386		    /* branch if T to following jump */
2387		    if (extrajmps >= 256) {
2388			conv_error(conv_state, "too many extra jumps");
2389			/*NOTREACHED*/
2390		    }
2391		    dst->jt = (u_char)extrajmps;
2392		    extrajmps++;
2393		    dst[extrajmps].code = BPF_JMP|BPF_JA;
2394		    dst[extrajmps].k = off - extrajmps;
2395		}
2396		else
2397		    dst->jt = (u_char)off;
2398		off = JF(p)->offset - (p->offset + slen) - 1;
2399		if (off >= 256) {
2400		    /* offset too large for branch, must add a jump */
2401		    if (p->longjf == 0) {
2402		    	/* mark this instruction and retry */
2403			p->longjf++;
2404			return(0);
2405		    }
2406		    /* branch if F to following jump */
2407		    /* if two jumps are inserted, F goes to second one */
2408		    if (extrajmps >= 256) {
2409			conv_error(conv_state, "too many extra jumps");
2410			/*NOTREACHED*/
2411		    }
2412		    dst->jf = (u_char)extrajmps;
2413		    extrajmps++;
2414		    dst[extrajmps].code = BPF_JMP|BPF_JA;
2415		    dst[extrajmps].k = off - extrajmps;
2416		}
2417		else
2418		    dst->jf = (u_char)off;
2419	}
2420	return (1);
2421}
2422
2423
2424/*
2425 * Convert flowgraph intermediate representation to the
2426 * BPF array representation.  Set *lenp to the number of instructions.
2427 *
2428 * This routine does *NOT* leak the memory pointed to by fp.  It *must
2429 * not* do free(fp) before returning fp; doing so would make no sense,
2430 * as the BPF array pointed to by the return value of icode_to_fcode()
2431 * must be valid - it's being returned for use in a bpf_program structure.
2432 *
2433 * If it appears that icode_to_fcode() is leaking, the problem is that
2434 * the program using pcap_compile() is failing to free the memory in
2435 * the BPF program when it's done - the leak is in the program, not in
2436 * the routine that happens to be allocating the memory.  (By analogy, if
2437 * a program calls fopen() without ever calling fclose() on the FILE *,
2438 * it will leak the FILE structure; the leak is not in fopen(), it's in
2439 * the program.)  Change the program to use pcap_freecode() when it's
2440 * done with the filter program.  See the pcap man page.
2441 */
2442struct bpf_insn *
2443icode_to_fcode(struct icode *ic, struct block *root, u_int *lenp,
2444    char *errbuf)
2445{
2446	u_int n;
2447	struct bpf_insn *fp;
2448	conv_state_t conv_state;
2449
2450	conv_state.fstart = NULL;
2451	conv_state.errbuf = errbuf;
2452	if (setjmp(conv_state.top_ctx) != 0) {
2453		free(conv_state.fstart);
2454		return NULL;
2455	}
2456
2457	/*
2458	 * Loop doing convert_code_r() until no branches remain
2459	 * with too-large offsets.
2460	 */
2461	for (;;) {
2462	    unMarkAll(ic);
2463	    n = *lenp = count_stmts(ic, root);
2464
2465	    fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2466	    if (fp == NULL) {
2467		(void)pcap_snprintf(errbuf, PCAP_ERRBUF_SIZE,
2468		    "malloc");
2469		free(fp);
2470		return NULL;
2471	    }
2472	    memset((char *)fp, 0, sizeof(*fp) * n);
2473	    conv_state.fstart = fp;
2474	    conv_state.ftail = fp + n;
2475
2476	    unMarkAll(ic);
2477	    if (convert_code_r(&conv_state, ic, root))
2478		break;
2479	    free(fp);
2480	}
2481
2482	return fp;
2483}
2484
2485/*
2486 * For iconv_to_fconv() errors.
2487 */
2488static void PCAP_NORETURN
2489conv_error(conv_state_t *conv_state, const char *fmt, ...)
2490{
2491	va_list ap;
2492
2493	va_start(ap, fmt);
2494	(void)pcap_vsnprintf(conv_state->errbuf,
2495	    PCAP_ERRBUF_SIZE, fmt, ap);
2496	va_end(ap);
2497	longjmp(conv_state->top_ctx, 1);
2498	/* NOTREACHED */
2499}
2500
2501/*
2502 * Make a copy of a BPF program and put it in the "fcode" member of
2503 * a "pcap_t".
2504 *
2505 * If we fail to allocate memory for the copy, fill in the "errbuf"
2506 * member of the "pcap_t" with an error message, and return -1;
2507 * otherwise, return 0.
2508 */
2509int
2510install_bpf_program(pcap_t *p, struct bpf_program *fp)
2511{
2512	size_t prog_size;
2513
2514	/*
2515	 * Validate the program.
2516	 */
2517	if (!bpf_validate(fp->bf_insns, fp->bf_len)) {
2518		pcap_snprintf(p->errbuf, sizeof(p->errbuf),
2519			"BPF program is not valid");
2520		return (-1);
2521	}
2522
2523	/*
2524	 * Free up any already installed program.
2525	 */
2526	pcap_freecode(&p->fcode);
2527
2528	prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2529	p->fcode.bf_len = fp->bf_len;
2530	p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2531	if (p->fcode.bf_insns == NULL) {
2532		pcap_fmt_errmsg_for_errno(p->errbuf, sizeof(p->errbuf),
2533		    errno, "malloc");
2534		return (-1);
2535	}
2536	memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2537	return (0);
2538}
2539
2540#ifdef BDEBUG
2541static void
2542dot_dump_node(struct icode *ic, struct block *block, struct bpf_program *prog,
2543    FILE *out)
2544{
2545	int icount, noffset;
2546	int i;
2547
2548	if (block == NULL || isMarked(ic, block))
2549		return;
2550	Mark(ic, block);
2551
2552	icount = slength(block->stmts) + 1 + block->longjt + block->longjf;
2553	noffset = min(block->offset + icount, (int)prog->bf_len);
2554
2555	fprintf(out, "\tblock%d [shape=ellipse, id=\"block-%d\" label=\"BLOCK%d\\n", block->id, block->id, block->id);
2556	for (i = block->offset; i < noffset; i++) {
2557		fprintf(out, "\\n%s", bpf_image(prog->bf_insns + i, i));
2558	}
2559	fprintf(out, "\" tooltip=\"");
2560	for (i = 0; i < BPF_MEMWORDS; i++)
2561		if (block->val[i] != VAL_UNKNOWN)
2562			fprintf(out, "val[%d]=%d ", i, block->val[i]);
2563	fprintf(out, "val[A]=%d ", block->val[A_ATOM]);
2564	fprintf(out, "val[X]=%d", block->val[X_ATOM]);
2565	fprintf(out, "\"");
2566	if (JT(block) == NULL)
2567		fprintf(out, ", peripheries=2");
2568	fprintf(out, "];\n");
2569
2570	dot_dump_node(ic, JT(block), prog, out);
2571	dot_dump_node(ic, JF(block), prog, out);
2572}
2573
2574static void
2575dot_dump_edge(struct icode *ic, struct block *block, FILE *out)
2576{
2577	if (block == NULL || isMarked(ic, block))
2578		return;
2579	Mark(ic, block);
2580
2581	if (JT(block)) {
2582		fprintf(out, "\t\"block%d\":se -> \"block%d\":n [label=\"T\"]; \n",
2583				block->id, JT(block)->id);
2584		fprintf(out, "\t\"block%d\":sw -> \"block%d\":n [label=\"F\"]; \n",
2585			   block->id, JF(block)->id);
2586	}
2587	dot_dump_edge(ic, JT(block), out);
2588	dot_dump_edge(ic, JF(block), out);
2589}
2590
2591/* Output the block CFG using graphviz/DOT language
2592 * In the CFG, block's code, value index for each registers at EXIT,
2593 * and the jump relationship is show.
2594 *
2595 * example DOT for BPF `ip src host 1.1.1.1' is:
2596    digraph BPF {
2597    	block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh      [12]\n(001) jeq      #0x800           jt 2	jf 5" tooltip="val[A]=0 val[X]=0"];
2598    	block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld       [26]\n(003) jeq      #0x1010101       jt 4	jf 5" tooltip="val[A]=0 val[X]=0"];
2599    	block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret      #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
2600    	block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret      #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
2601    	"block0":se -> "block1":n [label="T"];
2602    	"block0":sw -> "block3":n [label="F"];
2603    	"block1":se -> "block2":n [label="T"];
2604    	"block1":sw -> "block3":n [label="F"];
2605    }
2606 *
2607 *  After install graphviz on http://www.graphviz.org/, save it as bpf.dot
2608 *  and run `dot -Tpng -O bpf.dot' to draw the graph.
2609 */
2610static int
2611dot_dump(struct icode *ic, char *errbuf)
2612{
2613	struct bpf_program f;
2614	FILE *out = stdout;
2615
2616	memset(bids, 0, sizeof bids);
2617	f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
2618	if (f.bf_insns == NULL)
2619		return -1;
2620
2621	fprintf(out, "digraph BPF {\n");
2622	unMarkAll(ic);
2623	dot_dump_node(ic, ic->root, &f, out);
2624	unMarkAll(ic);
2625	dot_dump_edge(ic, ic->root, out);
2626	fprintf(out, "}\n");
2627
2628	free((char *)f.bf_insns);
2629	return 0;
2630}
2631
2632static int
2633plain_dump(struct icode *ic, char *errbuf)
2634{
2635	struct bpf_program f;
2636
2637	memset(bids, 0, sizeof bids);
2638	f.bf_insns = icode_to_fcode(ic, ic->root, &f.bf_len, errbuf);
2639	if (f.bf_insns == NULL)
2640		return -1;
2641	bpf_dump(&f, 1);
2642	putchar('\n');
2643	free((char *)f.bf_insns);
2644	return 0;
2645}
2646
2647static void
2648opt_dump(opt_state_t *opt_state, struct icode *ic)
2649{
2650	int status;
2651	char errbuf[PCAP_ERRBUF_SIZE];
2652
2653	/*
2654	 * If the CFG, in DOT format, is requested, output it rather than
2655	 * the code that would be generated from that graph.
2656	 */
2657	if (pcap_print_dot_graph)
2658		status = dot_dump(ic, errbuf);
2659	else
2660		status = plain_dump(ic, errbuf);
2661	if (status == -1)
2662		opt_error(opt_state, "opt_dump: icode_to_fcode failed: %s", errbuf);
2663}
2664#endif
2665