archive_read_support_format_rar5.c revision 348607
1/*-
2* Copyright (c) 2018 Grzegorz Antoniak (http://antoniak.org)
3* All rights reserved.
4*
5* Redistribution and use in source and binary forms, with or without
6* modification, are permitted provided that the following conditions
7* are met:
8* 1. Redistributions of source code must retain the above copyright
9*    notice, this list of conditions and the following disclaimer.
10* 2. Redistributions in binary form must reproduce the above copyright
11*    notice, this list of conditions and the following disclaimer in the
12*    documentation and/or other materials provided with the distribution.
13*
14* THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) ``AS IS'' AND ANY EXPRESS OR
15* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17* IN NO EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY DIRECT, INDIRECT,
18* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24*/
25
26#include "archive_platform.h"
27#include "archive_endian.h"
28
29#ifdef HAVE_ERRNO_H
30#include <errno.h>
31#endif
32#include <time.h>
33#ifdef HAVE_ZLIB_H
34#include <zlib.h> /* crc32 */
35#endif
36#ifdef HAVE_LIMITS_H
37#include <limits.h>
38#endif
39
40#include "archive.h"
41#ifndef HAVE_ZLIB_H
42#include "archive_crc32.h"
43#endif
44
45#include "archive_entry.h"
46#include "archive_entry_locale.h"
47#include "archive_ppmd7_private.h"
48#include "archive_entry_private.h"
49
50#ifdef HAVE_BLAKE2_H
51#include <blake2.h>
52#else
53#include "archive_blake2.h"
54#endif
55
56/*#define CHECK_CRC_ON_SOLID_SKIP*/
57/*#define DONT_FAIL_ON_CRC_ERROR*/
58/*#define DEBUG*/
59
60#define rar5_min(a, b) (((a) > (b)) ? (b) : (a))
61#define rar5_max(a, b) (((a) > (b)) ? (a) : (b))
62#define rar5_countof(X) ((const ssize_t) (sizeof(X) / sizeof(*X)))
63
64#if defined DEBUG
65#define DEBUG_CODE if(1)
66#else
67#define DEBUG_CODE if(0)
68#endif
69
70/* Real RAR5 magic number is:
71 *
72 * 0x52, 0x61, 0x72, 0x21, 0x1a, 0x07, 0x01, 0x00
73 * "Rar!�����������\x00"
74 *
75 * It's stored in `rar5_signature` after XOR'ing it with 0xA1, because I don't
76 * want to put this magic sequence in each binary that uses libarchive, so
77 * applications that scan through the file for this marker won't trigger on
78 * this "false" one.
79 *
80 * The array itself is decrypted in `rar5_init` function. */
81
82static unsigned char rar5_signature[] = { 243, 192, 211, 128, 187, 166, 160, 161 };
83static const ssize_t rar5_signature_size = sizeof(rar5_signature);
84static const size_t g_unpack_window_size = 0x20000;
85
86/* These could have been static const's, but they aren't, because of
87 * Visual Studio. */
88#define MAX_NAME_IN_CHARS 2048
89#define MAX_NAME_IN_BYTES (4 * MAX_NAME_IN_CHARS)
90
91struct file_header {
92	ssize_t bytes_remaining;
93	ssize_t unpacked_size;
94	int64_t last_offset;         /* Used in sanity checks. */
95	int64_t last_size;           /* Used in sanity checks. */
96
97	uint8_t solid : 1;           /* Is this a solid stream? */
98	uint8_t service : 1;         /* Is this file a service data? */
99	uint8_t eof : 1;             /* Did we finish unpacking the file? */
100	uint8_t dir : 1;             /* Is this file entry a directory? */
101
102	/* Optional time fields. */
103	uint64_t e_mtime;
104	uint64_t e_ctime;
105	uint64_t e_atime;
106	uint32_t e_unix_ns;
107
108	/* Optional hash fields. */
109	uint32_t stored_crc32;
110	uint32_t calculated_crc32;
111	uint8_t blake2sp[32];
112	blake2sp_state b2state;
113	char has_blake2;
114
115	/* Optional redir fields */
116	uint64_t redir_type;
117	uint64_t redir_flags;
118};
119
120enum EXTRA {
121	EX_CRYPT = 0x01,
122	EX_HASH = 0x02,
123	EX_HTIME = 0x03,
124	EX_VERSION = 0x04,
125	EX_REDIR = 0x05,
126	EX_UOWNER = 0x06,
127	EX_SUBDATA = 0x07
128};
129
130#define REDIR_SYMLINK_IS_DIR	1
131
132enum REDIR_TYPE {
133	REDIR_TYPE_NONE = 0,
134	REDIR_TYPE_UNIXSYMLINK = 1,
135	REDIR_TYPE_WINSYMLINK = 2,
136	REDIR_TYPE_JUNCTION = 3,
137	REDIR_TYPE_HARDLINK = 4,
138	REDIR_TYPE_FILECOPY = 5,
139};
140
141#define	OWNER_USER_NAME		0x01
142#define	OWNER_GROUP_NAME	0x02
143#define	OWNER_USER_UID		0x04
144#define	OWNER_GROUP_GID		0x08
145#define	OWNER_MAXNAMELEN	256
146
147enum FILTER_TYPE {
148	FILTER_DELTA = 0,   /* Generic pattern. */
149	FILTER_E8    = 1,   /* Intel x86 code. */
150	FILTER_E8E9  = 2,   /* Intel x86 code. */
151	FILTER_ARM   = 3,   /* ARM code. */
152	FILTER_AUDIO = 4,   /* Audio filter, not used in RARv5. */
153	FILTER_RGB   = 5,   /* Color palette, not used in RARv5. */
154	FILTER_ITANIUM = 6, /* Intel's Itanium, not used in RARv5. */
155	FILTER_PPM   = 7,   /* Predictive pattern matching, not used in
156			       RARv5. */
157	FILTER_NONE  = 8,
158};
159
160struct filter_info {
161	int type;
162	int channels;
163	int pos_r;
164
165	int64_t block_start;
166	ssize_t block_length;
167	uint16_t width;
168};
169
170struct data_ready {
171	char used;
172	const uint8_t* buf;
173	size_t size;
174	int64_t offset;
175};
176
177struct cdeque {
178	uint16_t beg_pos;
179	uint16_t end_pos;
180	uint16_t cap_mask;
181	uint16_t size;
182	size_t* arr;
183};
184
185struct decode_table {
186	uint32_t size;
187	int32_t decode_len[16];
188	uint32_t decode_pos[16];
189	uint32_t quick_bits;
190	uint8_t quick_len[1 << 10];
191	uint16_t quick_num[1 << 10];
192	uint16_t decode_num[306];
193};
194
195struct comp_state {
196	/* Flag used to specify if unpacker needs to reinitialize the
197	   uncompression context. */
198	uint8_t initialized : 1;
199
200	/* Flag used when applying filters. */
201	uint8_t all_filters_applied : 1;
202
203	/* Flag used to skip file context reinitialization, used when unpacker
204	   is skipping through different multivolume archives. */
205	uint8_t switch_multivolume : 1;
206
207	/* Flag used to specify if unpacker has processed the whole data block
208	   or just a part of it. */
209	uint8_t block_parsing_finished : 1;
210
211	int notused : 4;
212
213	int flags;                   /* Uncompression flags. */
214	int method;                  /* Uncompression algorithm method. */
215	int version;                 /* Uncompression algorithm version. */
216	ssize_t window_size;         /* Size of window_buf. */
217	uint8_t* window_buf;         /* Circular buffer used during
218	                                decompression. */
219	uint8_t* filtered_buf;       /* Buffer used when applying filters. */
220	const uint8_t* block_buf;    /* Buffer used when merging blocks. */
221	size_t window_mask;          /* Convenience field; window_size - 1. */
222	int64_t write_ptr;           /* This amount of data has been unpacked
223					in the window buffer. */
224	int64_t last_write_ptr;      /* This amount of data has been stored in
225	                                the output file. */
226	int64_t last_unstore_ptr;    /* Counter of bytes extracted during
227	                                unstoring. This is separate from
228	                                last_write_ptr because of how SERVICE
229	                                base blocks are handled during skipping
230	                                in solid multiarchive archives. */
231	int64_t solid_offset;        /* Additional offset inside the window
232	                                buffer, used in unpacking solid
233	                                archives. */
234	ssize_t cur_block_size;      /* Size of current data block. */
235	int last_len;                /* Flag used in lzss decompression. */
236
237	/* Decode tables used during lzss uncompression. */
238
239#define HUFF_BC 20
240	struct decode_table bd;      /* huffman bit lengths */
241#define HUFF_NC 306
242	struct decode_table ld;      /* literals */
243#define HUFF_DC 64
244	struct decode_table dd;      /* distances */
245#define HUFF_LDC 16
246	struct decode_table ldd;     /* lower bits of distances */
247#define HUFF_RC 44
248	struct decode_table rd;      /* repeating distances */
249#define HUFF_TABLE_SIZE (HUFF_NC + HUFF_DC + HUFF_RC + HUFF_LDC)
250
251	/* Circular deque for storing filters. */
252	struct cdeque filters;
253	int64_t last_block_start;    /* Used for sanity checking. */
254	ssize_t last_block_length;   /* Used for sanity checking. */
255
256	/* Distance cache used during lzss uncompression. */
257	int dist_cache[4];
258
259	/* Data buffer stack. */
260	struct data_ready dready[2];
261};
262
263/* Bit reader state. */
264struct bit_reader {
265	int8_t bit_addr;    /* Current bit pointer inside current byte. */
266	int in_addr;        /* Current byte pointer. */
267};
268
269/* RARv5 block header structure. Use bf_* functions to get values from
270 * block_flags_u8 field. I.e. bf_byte_count, etc. */
271struct compressed_block_header {
272	/* block_flags_u8 contain fields encoded in little-endian bitfield:
273	 *
274	 * - table present flag (shr 7, and 1),
275	 * - last block flag    (shr 6, and 1),
276	 * - byte_count         (shr 3, and 7),
277	 * - bit_size           (shr 0, and 7).
278	 */
279	uint8_t block_flags_u8;
280	uint8_t block_cksum;
281};
282
283/* RARv5 main header structure. */
284struct main_header {
285	/* Does the archive contain solid streams? */
286	uint8_t solid : 1;
287
288	/* If this a multi-file archive? */
289	uint8_t volume : 1;
290	uint8_t endarc : 1;
291	uint8_t notused : 5;
292
293	unsigned int vol_no;
294};
295
296struct generic_header {
297	uint8_t split_after : 1;
298	uint8_t split_before : 1;
299	uint8_t padding : 6;
300	int size;
301	int last_header_id;
302};
303
304struct multivolume {
305	unsigned int expected_vol_no;
306	uint8_t* push_buf;
307};
308
309/* Main context structure. */
310struct rar5 {
311	int header_initialized;
312
313	/* Set to 1 if current file is positioned AFTER the magic value
314	 * of the archive file. This is used in header reading functions. */
315	int skipped_magic;
316
317	/* Set to not zero if we're in skip mode (either by calling
318	 * rar5_data_skip function or when skipping over solid streams).
319	 * Set to 0 when in * extraction mode. This is used during checksum
320	 * calculation functions. */
321	int skip_mode;
322
323	/* Set to not zero if we're in block merging mode (i.e. when switching
324	 * to another file in multivolume archive, last block from 1st archive
325	 * needs to be merged with 1st block from 2nd archive). This flag
326	 * guards against recursive use of the merging function, which doesn't
327	 * support recursive calls. */
328	int merge_mode;
329
330	/* An offset to QuickOpen list. This is not supported by this unpacker,
331	 * because we're focusing on streaming interface. QuickOpen is designed
332	 * to make things quicker for non-stream interfaces, so it's not our
333	 * use case. */
334	uint64_t qlist_offset;
335
336	/* An offset to additional Recovery data. This is not supported by this
337	 * unpacker. Recovery data are additional Reed-Solomon codes that could
338	 * be used to calculate bytes that are missing in archive or are
339	 * corrupted. */
340	uint64_t rr_offset;
341
342	/* Various context variables grouped to different structures. */
343	struct generic_header generic;
344	struct main_header main;
345	struct comp_state cstate;
346	struct file_header file;
347	struct bit_reader bits;
348	struct multivolume vol;
349
350	/* The header of currently processed RARv5 block. Used in main
351	 * decompression logic loop. */
352	struct compressed_block_header last_block_hdr;
353};
354
355/* Forward function declarations. */
356
357static int verify_global_checksums(struct archive_read* a);
358static int rar5_read_data_skip(struct archive_read *a);
359static int push_data_ready(struct archive_read* a, struct rar5* rar,
360	const uint8_t* buf, size_t size, int64_t offset);
361
362/* CDE_xxx = Circular Double Ended (Queue) return values. */
363enum CDE_RETURN_VALUES {
364	CDE_OK, CDE_ALLOC, CDE_PARAM, CDE_OUT_OF_BOUNDS,
365};
366
367/* Clears the contents of this circular deque. */
368static void cdeque_clear(struct cdeque* d) {
369	d->size = 0;
370	d->beg_pos = 0;
371	d->end_pos = 0;
372}
373
374/* Creates a new circular deque object. Capacity must be power of 2: 8, 16, 32,
375 * 64, 256, etc. When the user will add another item above current capacity,
376 * the circular deque will overwrite the oldest entry. */
377static int cdeque_init(struct cdeque* d, int max_capacity_power_of_2) {
378	if(d == NULL || max_capacity_power_of_2 == 0)
379		return CDE_PARAM;
380
381	d->cap_mask = max_capacity_power_of_2 - 1;
382	d->arr = NULL;
383
384	if((max_capacity_power_of_2 & d->cap_mask) > 0)
385		return CDE_PARAM;
386
387	cdeque_clear(d);
388	d->arr = malloc(sizeof(void*) * max_capacity_power_of_2);
389
390	return d->arr ? CDE_OK : CDE_ALLOC;
391}
392
393/* Return the current size (not capacity) of circular deque `d`. */
394static size_t cdeque_size(struct cdeque* d) {
395	return d->size;
396}
397
398/* Returns the first element of current circular deque. Note that this function
399 * doesn't perform any bounds checking. If you need bounds checking, use
400 * `cdeque_front()` function instead. */
401static void cdeque_front_fast(struct cdeque* d, void** value) {
402	*value = (void*) d->arr[d->beg_pos];
403}
404
405/* Returns the first element of current circular deque. This function
406 * performs bounds checking. */
407static int cdeque_front(struct cdeque* d, void** value) {
408	if(d->size > 0) {
409		cdeque_front_fast(d, value);
410		return CDE_OK;
411	} else
412		return CDE_OUT_OF_BOUNDS;
413}
414
415/* Pushes a new element into the end of this circular deque object. If current
416 * size will exceed capacity, the oldest element will be overwritten. */
417static int cdeque_push_back(struct cdeque* d, void* item) {
418	if(d == NULL)
419		return CDE_PARAM;
420
421	if(d->size == d->cap_mask + 1)
422		return CDE_OUT_OF_BOUNDS;
423
424	d->arr[d->end_pos] = (size_t) item;
425	d->end_pos = (d->end_pos + 1) & d->cap_mask;
426	d->size++;
427
428	return CDE_OK;
429}
430
431/* Pops a front element of this circular deque object and returns its value.
432 * This function doesn't perform any bounds checking. */
433static void cdeque_pop_front_fast(struct cdeque* d, void** value) {
434	*value = (void*) d->arr[d->beg_pos];
435	d->beg_pos = (d->beg_pos + 1) & d->cap_mask;
436	d->size--;
437}
438
439/* Pops a front element of this circular deque object and returns its value.
440 * This function performs bounds checking. */
441static int cdeque_pop_front(struct cdeque* d, void** value) {
442	if(!d || !value)
443		return CDE_PARAM;
444
445	if(d->size == 0)
446		return CDE_OUT_OF_BOUNDS;
447
448	cdeque_pop_front_fast(d, value);
449	return CDE_OK;
450}
451
452/* Convenience function to cast filter_info** to void **. */
453static void** cdeque_filter_p(struct filter_info** f) {
454	return (void**) (size_t) f;
455}
456
457/* Convenience function to cast filter_info* to void *. */
458static void* cdeque_filter(struct filter_info* f) {
459	return (void**) (size_t) f;
460}
461
462/* Destroys this circular deque object. Deallocates the memory of the
463 * collection buffer, but doesn't deallocate the memory of any pointer passed
464 * to this deque as a value. */
465static void cdeque_free(struct cdeque* d) {
466	if(!d)
467		return;
468
469	if(!d->arr)
470		return;
471
472	free(d->arr);
473
474	d->arr = NULL;
475	d->beg_pos = -1;
476	d->end_pos = -1;
477	d->cap_mask = 0;
478}
479
480static inline
481uint8_t bf_bit_size(const struct compressed_block_header* hdr) {
482	return hdr->block_flags_u8 & 7;
483}
484
485static inline
486uint8_t bf_byte_count(const struct compressed_block_header* hdr) {
487	return (hdr->block_flags_u8 >> 3) & 7;
488}
489
490static inline
491uint8_t bf_is_table_present(const struct compressed_block_header* hdr) {
492	return (hdr->block_flags_u8 >> 7) & 1;
493}
494
495static inline struct rar5* get_context(struct archive_read* a) {
496	return (struct rar5*) a->format->data;
497}
498
499/* Convenience functions used by filter implementations. */
500static void circular_memcpy(uint8_t* dst, uint8_t* window, const uint64_t mask,
501    int64_t start, int64_t end)
502{
503	if((start & mask) > (end & mask)) {
504		ssize_t len1 = mask + 1 - (start & mask);
505		ssize_t len2 = end & mask;
506
507		memcpy(dst, &window[start & mask], len1);
508		memcpy(dst + len1, window, len2);
509	} else {
510		memcpy(dst, &window[start & mask], (size_t) (end - start));
511	}
512}
513
514static uint32_t read_filter_data(struct rar5* rar, uint32_t offset) {
515	uint8_t linear_buf[4];
516	circular_memcpy(linear_buf, rar->cstate.window_buf,
517	    rar->cstate.window_mask, offset, offset + 4);
518	return archive_le32dec(linear_buf);
519}
520
521static void write_filter_data(struct rar5* rar, uint32_t offset,
522    uint32_t value)
523{
524	archive_le32enc(&rar->cstate.filtered_buf[offset], value);
525}
526
527/* Allocates a new filter descriptor and adds it to the filter array. */
528static struct filter_info* add_new_filter(struct rar5* rar) {
529	struct filter_info* f =
530		(struct filter_info*) calloc(1, sizeof(struct filter_info));
531
532	if(!f) {
533		return NULL;
534	}
535
536	cdeque_push_back(&rar->cstate.filters, cdeque_filter(f));
537	return f;
538}
539
540static int run_delta_filter(struct rar5* rar, struct filter_info* flt) {
541	int i;
542	ssize_t dest_pos, src_pos = 0;
543
544	for(i = 0; i < flt->channels; i++) {
545		uint8_t prev_byte = 0;
546		for(dest_pos = i;
547				dest_pos < flt->block_length;
548				dest_pos += flt->channels)
549		{
550			uint8_t byte;
551
552			byte = rar->cstate.window_buf[
553			    (rar->cstate.solid_offset + flt->block_start +
554			    src_pos) & rar->cstate.window_mask];
555
556			prev_byte -= byte;
557			rar->cstate.filtered_buf[dest_pos] = prev_byte;
558			src_pos++;
559		}
560	}
561
562	return ARCHIVE_OK;
563}
564
565static int run_e8e9_filter(struct rar5* rar, struct filter_info* flt,
566		int extended)
567{
568	const uint32_t file_size = 0x1000000;
569	ssize_t i;
570
571	circular_memcpy(rar->cstate.filtered_buf,
572	    rar->cstate.window_buf, rar->cstate.window_mask,
573	    rar->cstate.solid_offset + flt->block_start,
574	    rar->cstate.solid_offset + flt->block_start + flt->block_length);
575
576	for(i = 0; i < flt->block_length - 4;) {
577		uint8_t b = rar->cstate.window_buf[
578		    (rar->cstate.solid_offset + flt->block_start +
579		    i++) & rar->cstate.window_mask];
580
581		/*
582		 * 0xE8 = x86's call <relative_addr_uint32> (function call)
583		 * 0xE9 = x86's jmp <relative_addr_uint32> (unconditional jump)
584		 */
585		if(b == 0xE8 || (extended && b == 0xE9)) {
586
587			uint32_t addr;
588			uint32_t offset = (i + flt->block_start) % file_size;
589
590			addr = read_filter_data(rar,
591			    (uint32_t)(rar->cstate.solid_offset +
592			    flt->block_start + i) & rar->cstate.window_mask);
593
594			if(addr & 0x80000000) {
595				if(((addr + offset) & 0x80000000) == 0) {
596					write_filter_data(rar, (uint32_t)i,
597					    addr + file_size);
598				}
599			} else {
600				if((addr - file_size) & 0x80000000) {
601					uint32_t naddr = addr - offset;
602					write_filter_data(rar, (uint32_t)i,
603					    naddr);
604				}
605			}
606
607			i += 4;
608		}
609	}
610
611	return ARCHIVE_OK;
612}
613
614static int run_arm_filter(struct rar5* rar, struct filter_info* flt) {
615	ssize_t i = 0;
616	uint32_t offset;
617
618	circular_memcpy(rar->cstate.filtered_buf,
619	    rar->cstate.window_buf, rar->cstate.window_mask,
620	    rar->cstate.solid_offset + flt->block_start,
621	    rar->cstate.solid_offset + flt->block_start + flt->block_length);
622
623	for(i = 0; i < flt->block_length - 3; i += 4) {
624		uint8_t* b = &rar->cstate.window_buf[
625		    (rar->cstate.solid_offset +
626		    flt->block_start + i) & rar->cstate.window_mask];
627
628		if(b[3] == 0xEB) {
629			/* 0xEB = ARM's BL (branch + link) instruction. */
630			offset = read_filter_data(rar,
631			    (rar->cstate.solid_offset + flt->block_start + i) &
632			     rar->cstate.window_mask) & 0x00ffffff;
633
634			offset -= (uint32_t) ((i + flt->block_start) / 4);
635			offset = (offset & 0x00ffffff) | 0xeb000000;
636			write_filter_data(rar, (uint32_t)i, offset);
637		}
638	}
639
640	return ARCHIVE_OK;
641}
642
643static int run_filter(struct archive_read* a, struct filter_info* flt) {
644	int ret;
645	struct rar5* rar = get_context(a);
646
647	free(rar->cstate.filtered_buf);
648
649	rar->cstate.filtered_buf = malloc(flt->block_length);
650	if(!rar->cstate.filtered_buf) {
651		archive_set_error(&a->archive, ENOMEM,
652		    "Can't allocate memory for filter data.");
653		return ARCHIVE_FATAL;
654	}
655
656	switch(flt->type) {
657		case FILTER_DELTA:
658			ret = run_delta_filter(rar, flt);
659			break;
660
661		case FILTER_E8:
662			/* fallthrough */
663		case FILTER_E8E9:
664			ret = run_e8e9_filter(rar, flt,
665			    flt->type == FILTER_E8E9);
666			break;
667
668		case FILTER_ARM:
669			ret = run_arm_filter(rar, flt);
670			break;
671
672		default:
673			archive_set_error(&a->archive,
674			    ARCHIVE_ERRNO_FILE_FORMAT,
675			    "Unsupported filter type: 0x%x", flt->type);
676			return ARCHIVE_FATAL;
677	}
678
679	if(ret != ARCHIVE_OK) {
680		/* Filter has failed. */
681		return ret;
682	}
683
684	if(ARCHIVE_OK != push_data_ready(a, rar, rar->cstate.filtered_buf,
685	    flt->block_length, rar->cstate.last_write_ptr))
686	{
687		archive_set_error(&a->archive, ARCHIVE_ERRNO_PROGRAMMER,
688		    "Stack overflow when submitting unpacked data");
689
690		return ARCHIVE_FATAL;
691	}
692
693	rar->cstate.last_write_ptr += flt->block_length;
694	return ARCHIVE_OK;
695}
696
697/* The `push_data` function submits the selected data range to the user.
698 * Next call of `use_data` will use the pointer, size and offset arguments
699 * that are specified here. These arguments are pushed to the FIFO stack here,
700 * and popped from the stack by the `use_data` function. */
701static void push_data(struct archive_read* a, struct rar5* rar,
702    const uint8_t* buf, int64_t idx_begin, int64_t idx_end)
703{
704	const uint64_t wmask = rar->cstate.window_mask;
705	const ssize_t solid_write_ptr = (rar->cstate.solid_offset +
706	    rar->cstate.last_write_ptr) & wmask;
707
708	idx_begin += rar->cstate.solid_offset;
709	idx_end += rar->cstate.solid_offset;
710
711	/* Check if our unpacked data is wrapped inside the window circular
712	 * buffer.  If it's not wrapped, it can be copied out by using
713	 * a single memcpy, but when it's wrapped, we need to copy the first
714	 * part with one memcpy, and the second part with another memcpy. */
715
716	if((idx_begin & wmask) > (idx_end & wmask)) {
717		/* The data is wrapped (begin offset sis bigger than end
718		 * offset). */
719		const ssize_t frag1_size = rar->cstate.window_size -
720		    (idx_begin & wmask);
721		const ssize_t frag2_size = idx_end & wmask;
722
723		/* Copy the first part of the buffer first. */
724		push_data_ready(a, rar, buf + solid_write_ptr, frag1_size,
725		    rar->cstate.last_write_ptr);
726
727		/* Copy the second part of the buffer. */
728		push_data_ready(a, rar, buf, frag2_size,
729		    rar->cstate.last_write_ptr + frag1_size);
730
731		rar->cstate.last_write_ptr += frag1_size + frag2_size;
732	} else {
733		/* Data is not wrapped, so we can just use one call to copy the
734		 * data. */
735		push_data_ready(a, rar,
736		    buf + solid_write_ptr, (idx_end - idx_begin) & wmask,
737		    rar->cstate.last_write_ptr);
738
739		rar->cstate.last_write_ptr += idx_end - idx_begin;
740	}
741}
742
743/* Convenience function that submits the data to the user. It uses the
744 * unpack window buffer as a source location. */
745static void push_window_data(struct archive_read* a, struct rar5* rar,
746    int64_t idx_begin, int64_t idx_end)
747{
748	push_data(a, rar, rar->cstate.window_buf, idx_begin, idx_end);
749}
750
751static int apply_filters(struct archive_read* a) {
752	struct filter_info* flt;
753	struct rar5* rar = get_context(a);
754	int ret;
755
756	rar->cstate.all_filters_applied = 0;
757
758	/* Get the first filter that can be applied to our data. The data
759	 * needs to be fully unpacked before the filter can be run. */
760	if(CDE_OK == cdeque_front(&rar->cstate.filters,
761	    cdeque_filter_p(&flt))) {
762		/* Check if our unpacked data fully covers this filter's
763		 * range. */
764		if(rar->cstate.write_ptr > flt->block_start &&
765		    rar->cstate.write_ptr >= flt->block_start +
766		    flt->block_length) {
767			/* Check if we have some data pending to be written
768			 * right before the filter's start offset. */
769			if(rar->cstate.last_write_ptr == flt->block_start) {
770				/* Run the filter specified by descriptor
771				 * `flt`. */
772				ret = run_filter(a, flt);
773				if(ret != ARCHIVE_OK) {
774					/* Filter failure, return error. */
775					return ret;
776				}
777
778				/* Filter descriptor won't be needed anymore
779				 * after it's used, * so remove it from the
780				 * filter list and free its memory. */
781				(void) cdeque_pop_front(&rar->cstate.filters,
782				    cdeque_filter_p(&flt));
783
784				free(flt);
785			} else {
786				/* We can't run filters yet, dump the memory
787				 * right before the filter. */
788				push_window_data(a, rar,
789				    rar->cstate.last_write_ptr,
790				    flt->block_start);
791			}
792
793			/* Return 'filter applied or not needed' state to the
794			 * caller. */
795			return ARCHIVE_RETRY;
796		}
797	}
798
799	rar->cstate.all_filters_applied = 1;
800	return ARCHIVE_OK;
801}
802
803static void dist_cache_push(struct rar5* rar, int value) {
804	int* q = rar->cstate.dist_cache;
805
806	q[3] = q[2];
807	q[2] = q[1];
808	q[1] = q[0];
809	q[0] = value;
810}
811
812static int dist_cache_touch(struct rar5* rar, int idx) {
813	int* q = rar->cstate.dist_cache;
814	int i, dist = q[idx];
815
816	for(i = idx; i > 0; i--)
817		q[i] = q[i - 1];
818
819	q[0] = dist;
820	return dist;
821}
822
823static void free_filters(struct rar5* rar) {
824	struct cdeque* d = &rar->cstate.filters;
825
826	/* Free any remaining filters. All filters should be naturally
827	 * consumed by the unpacking function, so remaining filters after
828	 * unpacking normally mean that unpacking wasn't successful.
829	 * But still of course we shouldn't leak memory in such case. */
830
831	/* cdeque_size() is a fast operation, so we can use it as a loop
832	 * expression. */
833	while(cdeque_size(d) > 0) {
834		struct filter_info* f = NULL;
835
836		/* Pop_front will also decrease the collection's size. */
837		if (CDE_OK == cdeque_pop_front(d, cdeque_filter_p(&f)))
838			free(f);
839	}
840
841	cdeque_clear(d);
842
843	/* Also clear out the variables needed for sanity checking. */
844	rar->cstate.last_block_start = 0;
845	rar->cstate.last_block_length = 0;
846}
847
848static void reset_file_context(struct rar5* rar) {
849	memset(&rar->file, 0, sizeof(rar->file));
850	blake2sp_init(&rar->file.b2state, 32);
851
852	if(rar->main.solid) {
853		rar->cstate.solid_offset += rar->cstate.write_ptr;
854	} else {
855		rar->cstate.solid_offset = 0;
856	}
857
858	rar->cstate.write_ptr = 0;
859	rar->cstate.last_write_ptr = 0;
860	rar->cstate.last_unstore_ptr = 0;
861
862	rar->file.redir_type = REDIR_TYPE_NONE;
863	rar->file.redir_flags = 0;
864
865	free_filters(rar);
866}
867
868static inline int get_archive_read(struct archive* a,
869    struct archive_read** ar)
870{
871	*ar = (struct archive_read*) a;
872	archive_check_magic(a, ARCHIVE_READ_MAGIC, ARCHIVE_STATE_NEW,
873	    "archive_read_support_format_rar5");
874
875	return ARCHIVE_OK;
876}
877
878static int read_ahead(struct archive_read* a, size_t how_many,
879    const uint8_t** ptr)
880{
881	if(!ptr)
882		return 0;
883
884	ssize_t avail = -1;
885	*ptr = __archive_read_ahead(a, how_many, &avail);
886	if(*ptr == NULL) {
887		return 0;
888	}
889
890	return 1;
891}
892
893static int consume(struct archive_read* a, int64_t how_many) {
894	int ret;
895
896	ret = how_many == __archive_read_consume(a, how_many)
897		? ARCHIVE_OK
898		: ARCHIVE_FATAL;
899
900	return ret;
901}
902
903/**
904 * Read a RAR5 variable sized numeric value. This value will be stored in
905 * `pvalue`. The `pvalue_len` argument points to a variable that will receive
906 * the byte count that was consumed in order to decode the `pvalue` value, plus
907 * one.
908 *
909 * pvalue_len is optional and can be NULL.
910 *
911 * NOTE: if `pvalue_len` is NOT NULL, the caller needs to manually consume
912 * the number of bytes that `pvalue_len` value contains. If the `pvalue_len`
913 * is NULL, this consuming operation is done automatically.
914 *
915 * Returns 1 if *pvalue was successfully read.
916 * Returns 0 if there was an error. In this case, *pvalue contains an
917 *           invalid value.
918 */
919
920static int read_var(struct archive_read* a, uint64_t* pvalue,
921    uint64_t* pvalue_len)
922{
923	uint64_t result = 0;
924	size_t shift, i;
925	const uint8_t* p;
926	uint8_t b;
927
928	/* We will read maximum of 8 bytes. We don't have to handle the
929	 * situation to read the RAR5 variable-sized value stored at the end of
930	 * the file, because such situation will never happen. */
931	if(!read_ahead(a, 8, &p))
932		return 0;
933
934	for(shift = 0, i = 0; i < 8; i++, shift += 7) {
935		b = p[i];
936
937		/* Strip the MSB from the input byte and add the resulting
938		 * number to the `result`. */
939		result += (b & (uint64_t)0x7F) << shift;
940
941		/* MSB set to 1 means we need to continue decoding process.
942		 * MSB set to 0 means we're done.
943		 *
944		 * This conditional checks for the second case. */
945		if((b & 0x80) == 0) {
946			if(pvalue) {
947				*pvalue = result;
948			}
949
950			/* If the caller has passed the `pvalue_len` pointer,
951			 * store the number of consumed bytes in it and do NOT
952			 * consume those bytes, since the caller has all the
953			 * information it needs to perform */
954			if(pvalue_len) {
955				*pvalue_len = 1 + i;
956			} else {
957				/* If the caller did not provide the
958				 * `pvalue_len` pointer, it will not have the
959				 * possibility to advance the file pointer,
960				 * because it will not know how many bytes it
961				 * needs to consume. This is why we handle
962				 * such situation here automatically. */
963				if(ARCHIVE_OK != consume(a, 1 + i)) {
964					return 0;
965				}
966			}
967
968			/* End of decoding process, return success. */
969			return 1;
970		}
971	}
972
973	/* The decoded value takes the maximum number of 8 bytes.
974	 * It's a maximum number of bytes, so end decoding process here
975	 * even if the first bit of last byte is 1. */
976	if(pvalue) {
977		*pvalue = result;
978	}
979
980	if(pvalue_len) {
981		*pvalue_len = 9;
982	} else {
983		if(ARCHIVE_OK != consume(a, 9)) {
984			return 0;
985		}
986	}
987
988	return 1;
989}
990
991static int read_var_sized(struct archive_read* a, size_t* pvalue,
992    size_t* pvalue_len)
993{
994	uint64_t v;
995	uint64_t v_size = 0;
996
997	const int ret = pvalue_len ? read_var(a, &v, &v_size)
998				   : read_var(a, &v, NULL);
999
1000	if(ret == 1 && pvalue) {
1001		*pvalue = (size_t) v;
1002	}
1003
1004	if(pvalue_len) {
1005		/* Possible data truncation should be safe. */
1006		*pvalue_len = (size_t) v_size;
1007	}
1008
1009	return ret;
1010}
1011
1012static int read_bits_32(struct rar5* rar, const uint8_t* p, uint32_t* value) {
1013	uint32_t bits = ((uint32_t) p[rar->bits.in_addr]) << 24;
1014	bits |= p[rar->bits.in_addr + 1] << 16;
1015	bits |= p[rar->bits.in_addr + 2] << 8;
1016	bits |= p[rar->bits.in_addr + 3];
1017	bits <<= rar->bits.bit_addr;
1018	bits |= p[rar->bits.in_addr + 4] >> (8 - rar->bits.bit_addr);
1019	*value = bits;
1020	return ARCHIVE_OK;
1021}
1022
1023static int read_bits_16(struct rar5* rar, const uint8_t* p, uint16_t* value) {
1024	int bits = (int) ((uint32_t) p[rar->bits.in_addr]) << 16;
1025	bits |= (int) p[rar->bits.in_addr + 1] << 8;
1026	bits |= (int) p[rar->bits.in_addr + 2];
1027	bits >>= (8 - rar->bits.bit_addr);
1028	*value = bits & 0xffff;
1029	return ARCHIVE_OK;
1030}
1031
1032static void skip_bits(struct rar5* rar, int bits) {
1033	const int new_bits = rar->bits.bit_addr + bits;
1034	rar->bits.in_addr += new_bits >> 3;
1035	rar->bits.bit_addr = new_bits & 7;
1036}
1037
1038/* n = up to 16 */
1039static int read_consume_bits(struct rar5* rar, const uint8_t* p, int n,
1040    int* value)
1041{
1042	uint16_t v;
1043	int ret, num;
1044
1045	if(n == 0 || n > 16) {
1046		/* This is a programmer error and should never happen
1047		 * in runtime. */
1048		return ARCHIVE_FATAL;
1049	}
1050
1051	ret = read_bits_16(rar, p, &v);
1052	if(ret != ARCHIVE_OK)
1053		return ret;
1054
1055	num = (int) v;
1056	num >>= 16 - n;
1057
1058	skip_bits(rar, n);
1059
1060	if(value)
1061		*value = num;
1062
1063	return ARCHIVE_OK;
1064}
1065
1066static int read_u32(struct archive_read* a, uint32_t* pvalue) {
1067	const uint8_t* p;
1068	if(!read_ahead(a, 4, &p))
1069		return 0;
1070
1071	*pvalue = archive_le32dec(p);
1072	return ARCHIVE_OK == consume(a, 4) ? 1 : 0;
1073}
1074
1075static int read_u64(struct archive_read* a, uint64_t* pvalue) {
1076	const uint8_t* p;
1077	if(!read_ahead(a, 8, &p))
1078		return 0;
1079
1080	*pvalue = archive_le64dec(p);
1081	return ARCHIVE_OK == consume(a, 8) ? 1 : 0;
1082}
1083
1084static int bid_standard(struct archive_read* a) {
1085	const uint8_t* p;
1086
1087	if(!read_ahead(a, rar5_signature_size, &p))
1088		return -1;
1089
1090	if(!memcmp(rar5_signature, p, rar5_signature_size))
1091		return 30;
1092
1093	return -1;
1094}
1095
1096static int rar5_bid(struct archive_read* a, int best_bid) {
1097	int my_bid;
1098
1099	if(best_bid > 30)
1100		return -1;
1101
1102	my_bid = bid_standard(a);
1103	if(my_bid > -1) {
1104		return my_bid;
1105	}
1106
1107	return -1;
1108}
1109
1110static int rar5_options(struct archive_read *a, const char *key,
1111    const char *val) {
1112	(void) a;
1113	(void) key;
1114	(void) val;
1115
1116	/* No options supported in this version. Return the ARCHIVE_WARN code
1117	 * to signal the options supervisor that the unpacker didn't handle
1118	 * setting this option. */
1119
1120	return ARCHIVE_WARN;
1121}
1122
1123static void init_header(struct archive_read* a) {
1124	a->archive.archive_format = ARCHIVE_FORMAT_RAR_V5;
1125	a->archive.archive_format_name = "RAR5";
1126}
1127
1128enum HEADER_FLAGS {
1129	HFL_EXTRA_DATA = 0x0001,
1130	HFL_DATA = 0x0002,
1131	HFL_SKIP_IF_UNKNOWN = 0x0004,
1132	HFL_SPLIT_BEFORE = 0x0008,
1133	HFL_SPLIT_AFTER = 0x0010,
1134	HFL_CHILD = 0x0020,
1135	HFL_INHERITED = 0x0040
1136};
1137
1138static int process_main_locator_extra_block(struct archive_read* a,
1139    struct rar5* rar)
1140{
1141	uint64_t locator_flags;
1142
1143	if(!read_var(a, &locator_flags, NULL)) {
1144		return ARCHIVE_EOF;
1145	}
1146
1147	enum LOCATOR_FLAGS {
1148		QLIST = 0x01, RECOVERY = 0x02,
1149	};
1150
1151	if(locator_flags & QLIST) {
1152		if(!read_var(a, &rar->qlist_offset, NULL)) {
1153			return ARCHIVE_EOF;
1154		}
1155
1156		/* qlist is not used */
1157	}
1158
1159	if(locator_flags & RECOVERY) {
1160		if(!read_var(a, &rar->rr_offset, NULL)) {
1161			return ARCHIVE_EOF;
1162		}
1163
1164		/* rr is not used */
1165	}
1166
1167	return ARCHIVE_OK;
1168}
1169
1170static int parse_file_extra_hash(struct archive_read* a, struct rar5* rar,
1171    ssize_t* extra_data_size)
1172{
1173	size_t hash_type;
1174	size_t value_len;
1175
1176	if(!read_var_sized(a, &hash_type, &value_len))
1177		return ARCHIVE_EOF;
1178
1179	*extra_data_size -= value_len;
1180	if(ARCHIVE_OK != consume(a, value_len)) {
1181		return ARCHIVE_EOF;
1182	}
1183
1184	enum HASH_TYPE {
1185		BLAKE2sp = 0x00
1186	};
1187
1188	/* The file uses BLAKE2sp checksum algorithm instead of plain old
1189	 * CRC32. */
1190	if(hash_type == BLAKE2sp) {
1191		const uint8_t* p;
1192		const int hash_size = sizeof(rar->file.blake2sp);
1193
1194		if(!read_ahead(a, hash_size, &p))
1195			return ARCHIVE_EOF;
1196
1197		rar->file.has_blake2 = 1;
1198		memcpy(&rar->file.blake2sp, p, hash_size);
1199
1200		if(ARCHIVE_OK != consume(a, hash_size)) {
1201			return ARCHIVE_EOF;
1202		}
1203
1204		*extra_data_size -= hash_size;
1205	} else {
1206		archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
1207		    "Unsupported hash type (0x%x)", (int) hash_type);
1208		return ARCHIVE_FATAL;
1209	}
1210
1211	return ARCHIVE_OK;
1212}
1213
1214static uint64_t time_win_to_unix(uint64_t win_time) {
1215	const size_t ns_in_sec = 10000000;
1216	const uint64_t sec_to_unix = 11644473600LL;
1217	return win_time / ns_in_sec - sec_to_unix;
1218}
1219
1220static int parse_htime_item(struct archive_read* a, char unix_time,
1221    uint64_t* where, ssize_t* extra_data_size)
1222{
1223	if(unix_time) {
1224		uint32_t time_val;
1225		if(!read_u32(a, &time_val))
1226			return ARCHIVE_EOF;
1227
1228		*extra_data_size -= 4;
1229		*where = (uint64_t) time_val;
1230	} else {
1231		uint64_t windows_time;
1232		if(!read_u64(a, &windows_time))
1233			return ARCHIVE_EOF;
1234
1235		*where = time_win_to_unix(windows_time);
1236		*extra_data_size -= 8;
1237	}
1238
1239	return ARCHIVE_OK;
1240}
1241
1242static int parse_file_extra_version(struct archive_read* a,
1243    struct archive_entry* e, ssize_t* extra_data_size)
1244{
1245	size_t flags = 0;
1246	size_t version = 0;
1247	size_t value_len = 0;
1248	struct archive_string version_string;
1249	struct archive_string name_utf8_string;
1250
1251	/* Flags are ignored. */
1252	if(!read_var_sized(a, &flags, &value_len))
1253		return ARCHIVE_EOF;
1254
1255	*extra_data_size -= value_len;
1256	if(ARCHIVE_OK != consume(a, value_len))
1257		return ARCHIVE_EOF;
1258
1259	if(!read_var_sized(a, &version, &value_len))
1260		return ARCHIVE_EOF;
1261
1262	*extra_data_size -= value_len;
1263	if(ARCHIVE_OK != consume(a, value_len))
1264		return ARCHIVE_EOF;
1265
1266	/* extra_data_size should be zero here. */
1267
1268	const char* cur_filename = archive_entry_pathname_utf8(e);
1269	if(cur_filename == NULL) {
1270		archive_set_error(&a->archive, ARCHIVE_ERRNO_PROGRAMMER,
1271		    "Version entry without file name");
1272		return ARCHIVE_FATAL;
1273	}
1274
1275	archive_string_init(&version_string);
1276	archive_string_init(&name_utf8_string);
1277
1278	/* Prepare a ;123 suffix for the filename, where '123' is the version
1279	 * value of this file. */
1280	archive_string_sprintf(&version_string, ";%zu", version);
1281
1282	/* Build the new filename. */
1283	archive_strcat(&name_utf8_string, cur_filename);
1284	archive_strcat(&name_utf8_string, version_string.s);
1285
1286	/* Apply the new filename into this file's context. */
1287	archive_entry_update_pathname_utf8(e, name_utf8_string.s);
1288
1289	/* Free buffers. */
1290	archive_string_free(&version_string);
1291	archive_string_free(&name_utf8_string);
1292	return ARCHIVE_OK;
1293}
1294
1295static int parse_file_extra_htime(struct archive_read* a,
1296    struct archive_entry* e, struct rar5* rar, ssize_t* extra_data_size)
1297{
1298	char unix_time = 0;
1299	size_t flags;
1300	size_t value_len;
1301
1302	enum HTIME_FLAGS {
1303		IS_UNIX       = 0x01,
1304		HAS_MTIME     = 0x02,
1305		HAS_CTIME     = 0x04,
1306		HAS_ATIME     = 0x08,
1307		HAS_UNIX_NS   = 0x10,
1308	};
1309
1310	if(!read_var_sized(a, &flags, &value_len))
1311		return ARCHIVE_EOF;
1312
1313	*extra_data_size -= value_len;
1314	if(ARCHIVE_OK != consume(a, value_len)) {
1315		return ARCHIVE_EOF;
1316	}
1317
1318	unix_time = flags & IS_UNIX;
1319
1320	if(flags & HAS_MTIME) {
1321		parse_htime_item(a, unix_time, &rar->file.e_mtime,
1322		    extra_data_size);
1323		archive_entry_set_mtime(e, rar->file.e_mtime, 0);
1324	}
1325
1326	if(flags & HAS_CTIME) {
1327		parse_htime_item(a, unix_time, &rar->file.e_ctime,
1328		    extra_data_size);
1329		archive_entry_set_ctime(e, rar->file.e_ctime, 0);
1330	}
1331
1332	if(flags & HAS_ATIME) {
1333		parse_htime_item(a, unix_time, &rar->file.e_atime,
1334		    extra_data_size);
1335		archive_entry_set_atime(e, rar->file.e_atime, 0);
1336	}
1337
1338	if(flags & HAS_UNIX_NS) {
1339		if(!read_u32(a, &rar->file.e_unix_ns))
1340			return ARCHIVE_EOF;
1341
1342		*extra_data_size -= 4;
1343	}
1344
1345	return ARCHIVE_OK;
1346}
1347
1348static int parse_file_extra_redir(struct archive_read* a,
1349    struct archive_entry* e, struct rar5* rar, ssize_t* extra_data_size)
1350{
1351	uint64_t value_size = 0;
1352	size_t target_size = 0;
1353	char target_utf8_buf[MAX_NAME_IN_BYTES];
1354	const uint8_t* p;
1355
1356	if(!read_var(a, &rar->file.redir_type, &value_size))
1357		return ARCHIVE_EOF;
1358	if(ARCHIVE_OK != consume(a, (int64_t)value_size))
1359		return ARCHIVE_EOF;
1360	*extra_data_size -= value_size;
1361
1362	if(!read_var(a, &rar->file.redir_flags, &value_size))
1363		return ARCHIVE_EOF;
1364	if(ARCHIVE_OK != consume(a, (int64_t)value_size))
1365		return ARCHIVE_EOF;
1366	*extra_data_size -= value_size;
1367
1368	if(!read_var_sized(a, &target_size, NULL))
1369		return ARCHIVE_EOF;
1370	*extra_data_size -= target_size + 1;
1371
1372	if(!read_ahead(a, target_size, &p))
1373		return ARCHIVE_EOF;
1374
1375	if(target_size > (MAX_NAME_IN_CHARS - 1)) {
1376		archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
1377		    "Link target is too long");
1378		return ARCHIVE_FATAL;
1379	}
1380
1381	if(target_size == 0) {
1382		archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
1383		    "No link target specified");
1384		return ARCHIVE_FATAL;
1385	}
1386
1387	memcpy(target_utf8_buf, p, target_size);
1388	target_utf8_buf[target_size] = 0;
1389
1390	if(ARCHIVE_OK != consume(a, (int64_t)target_size))
1391		return ARCHIVE_EOF;
1392
1393	switch(rar->file.redir_type) {
1394		case REDIR_TYPE_UNIXSYMLINK:
1395		case REDIR_TYPE_WINSYMLINK:
1396			archive_entry_set_filetype(e, AE_IFLNK);
1397			archive_entry_update_symlink_utf8(e, target_utf8_buf);
1398			if (rar->file.redir_flags & REDIR_SYMLINK_IS_DIR) {
1399				archive_entry_set_symlink_type(e,
1400					AE_SYMLINK_TYPE_DIRECTORY);
1401			} else {
1402				archive_entry_set_symlink_type(e,
1403				AE_SYMLINK_TYPE_FILE);
1404			}
1405			break;
1406
1407		case REDIR_TYPE_HARDLINK:
1408			archive_entry_set_filetype(e, AE_IFREG);
1409			archive_entry_update_hardlink_utf8(e, target_utf8_buf);
1410			break;
1411
1412		default:
1413			/* Unknown redir type, skip it. */
1414			break;
1415	}
1416	return ARCHIVE_OK;
1417}
1418
1419static int parse_file_extra_owner(struct archive_read* a,
1420    struct archive_entry* e, ssize_t* extra_data_size)
1421{
1422	uint64_t flags = 0;
1423	uint64_t value_size = 0;
1424	uint64_t id = 0;
1425	size_t name_len = 0;
1426	size_t name_size = 0;
1427	char namebuf[OWNER_MAXNAMELEN];
1428	const uint8_t* p;
1429
1430	if(!read_var(a, &flags, &value_size))
1431		return ARCHIVE_EOF;
1432	if(ARCHIVE_OK != consume(a, (int64_t)value_size))
1433		return ARCHIVE_EOF;
1434	*extra_data_size -= value_size;
1435
1436	if ((flags & OWNER_USER_NAME) != 0) {
1437		if(!read_var_sized(a, &name_size, NULL))
1438			return ARCHIVE_EOF;
1439		*extra_data_size -= name_size + 1;
1440
1441		if(!read_ahead(a, name_size, &p))
1442			return ARCHIVE_EOF;
1443
1444		if (name_size >= OWNER_MAXNAMELEN) {
1445			name_len = OWNER_MAXNAMELEN - 1;
1446		} else {
1447			name_len = name_size;
1448		}
1449
1450		memcpy(namebuf, p, name_len);
1451		namebuf[name_len] = 0;
1452		if(ARCHIVE_OK != consume(a, (int64_t)name_size))
1453			return ARCHIVE_EOF;
1454
1455		archive_entry_set_uname(e, namebuf);
1456	}
1457	if ((flags & OWNER_GROUP_NAME) != 0) {
1458		if(!read_var_sized(a, &name_size, NULL))
1459			return ARCHIVE_EOF;
1460		*extra_data_size -= name_size + 1;
1461
1462		if(!read_ahead(a, name_size, &p))
1463			return ARCHIVE_EOF;
1464
1465		if (name_size >= OWNER_MAXNAMELEN) {
1466			name_len = OWNER_MAXNAMELEN - 1;
1467		} else {
1468			name_len = name_size;
1469		}
1470
1471		memcpy(namebuf, p, name_len);
1472		namebuf[name_len] = 0;
1473		if(ARCHIVE_OK != consume(a, (int64_t)name_size))
1474			return ARCHIVE_EOF;
1475
1476		archive_entry_set_gname(e, namebuf);
1477	}
1478	if ((flags & OWNER_USER_UID) != 0) {
1479		if(!read_var(a, &id, &value_size))
1480			return ARCHIVE_EOF;
1481		if(ARCHIVE_OK != consume(a, (int64_t)value_size))
1482			return ARCHIVE_EOF;
1483		*extra_data_size -= value_size;
1484
1485		archive_entry_set_uid(e, (la_int64_t)id);
1486	}
1487	if ((flags & OWNER_GROUP_GID) != 0) {
1488		if(!read_var(a, &id, &value_size))
1489			return ARCHIVE_EOF;
1490		if(ARCHIVE_OK != consume(a, (int64_t)value_size))
1491			return ARCHIVE_EOF;
1492		*extra_data_size -= value_size;
1493
1494		archive_entry_set_gid(e, (la_int64_t)id);
1495	}
1496	return ARCHIVE_OK;
1497}
1498
1499static int process_head_file_extra(struct archive_read* a,
1500    struct archive_entry* e, struct rar5* rar, ssize_t extra_data_size)
1501{
1502	size_t extra_field_size;
1503	size_t extra_field_id = 0;
1504	int ret = ARCHIVE_FATAL;
1505	size_t var_size;
1506
1507	while(extra_data_size > 0) {
1508		if(!read_var_sized(a, &extra_field_size, &var_size))
1509			return ARCHIVE_EOF;
1510
1511		extra_data_size -= var_size;
1512		if(ARCHIVE_OK != consume(a, var_size)) {
1513			return ARCHIVE_EOF;
1514		}
1515
1516		if(!read_var_sized(a, &extra_field_id, &var_size))
1517			return ARCHIVE_EOF;
1518
1519		extra_data_size -= var_size;
1520		if(ARCHIVE_OK != consume(a, var_size)) {
1521			return ARCHIVE_EOF;
1522		}
1523
1524		switch(extra_field_id) {
1525			case EX_HASH:
1526				ret = parse_file_extra_hash(a, rar,
1527				    &extra_data_size);
1528				break;
1529			case EX_HTIME:
1530				ret = parse_file_extra_htime(a, e, rar,
1531				    &extra_data_size);
1532				break;
1533			case EX_REDIR:
1534				ret = parse_file_extra_redir(a, e, rar,
1535				    &extra_data_size);
1536				break;
1537			case EX_UOWNER:
1538				ret = parse_file_extra_owner(a, e,
1539				    &extra_data_size);
1540				break;
1541			case EX_VERSION:
1542				ret = parse_file_extra_version(a, e,
1543				    &extra_data_size);
1544				break;
1545			case EX_CRYPT:
1546				/* fallthrough */
1547			case EX_SUBDATA:
1548				/* fallthrough */
1549			default:
1550				/* Skip unsupported entry. */
1551				return consume(a, extra_data_size);
1552		}
1553	}
1554
1555	if(ret != ARCHIVE_OK) {
1556		/* Attribute not implemented. */
1557		return ret;
1558	}
1559
1560	return ARCHIVE_OK;
1561}
1562
1563static int process_head_file(struct archive_read* a, struct rar5* rar,
1564    struct archive_entry* entry, size_t block_flags)
1565{
1566	ssize_t extra_data_size = 0;
1567	size_t data_size = 0;
1568	size_t file_flags = 0;
1569	size_t file_attr = 0;
1570	size_t compression_info = 0;
1571	size_t host_os = 0;
1572	size_t name_size = 0;
1573	uint64_t unpacked_size, window_size;
1574	uint32_t mtime = 0, crc = 0;
1575	int c_method = 0, c_version = 0;
1576	char name_utf8_buf[MAX_NAME_IN_BYTES];
1577	const uint8_t* p;
1578
1579	archive_entry_clear(entry);
1580
1581	/* Do not reset file context if we're switching archives. */
1582	if(!rar->cstate.switch_multivolume) {
1583		reset_file_context(rar);
1584	}
1585
1586	if(block_flags & HFL_EXTRA_DATA) {
1587		size_t edata_size = 0;
1588		if(!read_var_sized(a, &edata_size, NULL))
1589			return ARCHIVE_EOF;
1590
1591		/* Intentional type cast from unsigned to signed. */
1592		extra_data_size = (ssize_t) edata_size;
1593	}
1594
1595	if(block_flags & HFL_DATA) {
1596		if(!read_var_sized(a, &data_size, NULL))
1597			return ARCHIVE_EOF;
1598
1599		rar->file.bytes_remaining = data_size;
1600	} else {
1601		rar->file.bytes_remaining = 0;
1602
1603		archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
1604				"no data found in file/service block");
1605		return ARCHIVE_FATAL;
1606	}
1607
1608	enum FILE_FLAGS {
1609		DIRECTORY = 0x0001, UTIME = 0x0002, CRC32 = 0x0004,
1610		UNKNOWN_UNPACKED_SIZE = 0x0008,
1611	};
1612
1613	enum FILE_ATTRS {
1614		ATTR_READONLY = 0x1, ATTR_HIDDEN = 0x2, ATTR_SYSTEM = 0x4,
1615		ATTR_DIRECTORY = 0x10,
1616	};
1617
1618	enum COMP_INFO_FLAGS {
1619		SOLID = 0x0040,
1620	};
1621
1622	if(!read_var_sized(a, &file_flags, NULL))
1623		return ARCHIVE_EOF;
1624
1625	if(!read_var(a, &unpacked_size, NULL))
1626		return ARCHIVE_EOF;
1627
1628	if(file_flags & UNKNOWN_UNPACKED_SIZE) {
1629		archive_set_error(&a->archive, ARCHIVE_ERRNO_PROGRAMMER,
1630		    "Files with unknown unpacked size are not supported");
1631		return ARCHIVE_FATAL;
1632	}
1633
1634	rar->file.dir = (uint8_t) ((file_flags & DIRECTORY) > 0);
1635
1636	if(!read_var_sized(a, &file_attr, NULL))
1637		return ARCHIVE_EOF;
1638
1639	if(file_flags & UTIME) {
1640		if(!read_u32(a, &mtime))
1641			return ARCHIVE_EOF;
1642	}
1643
1644	if(file_flags & CRC32) {
1645		if(!read_u32(a, &crc))
1646			return ARCHIVE_EOF;
1647	}
1648
1649	if(!read_var_sized(a, &compression_info, NULL))
1650		return ARCHIVE_EOF;
1651
1652	c_method = (int) (compression_info >> 7) & 0x7;
1653	c_version = (int) (compression_info & 0x3f);
1654
1655	/* RAR5 seems to limit the dictionary size to 64MB. */
1656	window_size = (rar->file.dir > 0) ?
1657		0 :
1658		g_unpack_window_size << ((compression_info >> 10) & 15);
1659	rar->cstate.method = c_method;
1660	rar->cstate.version = c_version + 50;
1661
1662	/* Check if window_size is a sane value. Also, if the file is not
1663	 * declared as a directory, disallow window_size == 0. */
1664	if(window_size > (64 * 1024 * 1024) ||
1665	    (rar->file.dir == 0 && window_size == 0))
1666	{
1667		archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
1668		    "Declared dictionary size is not supported.");
1669		return ARCHIVE_FATAL;
1670	}
1671
1672	/* Values up to 64M should fit into ssize_t on every
1673	 * architecture. */
1674	rar->cstate.window_size = (ssize_t) window_size;
1675
1676	rar->file.solid = (compression_info & SOLID) > 0;
1677	rar->file.service = 0;
1678
1679	if(!read_var_sized(a, &host_os, NULL))
1680		return ARCHIVE_EOF;
1681
1682	enum HOST_OS {
1683		HOST_WINDOWS = 0,
1684		HOST_UNIX = 1,
1685	};
1686
1687	if(host_os == HOST_WINDOWS) {
1688		/* Host OS is Windows */
1689
1690		__LA_MODE_T mode;
1691
1692		if(file_attr & ATTR_DIRECTORY) {
1693			if (file_attr & ATTR_READONLY) {
1694				mode = 0555 | AE_IFDIR;
1695			} else {
1696				mode = 0755 | AE_IFDIR;
1697			}
1698		} else {
1699			if (file_attr & ATTR_READONLY) {
1700				mode = 0444 | AE_IFREG;
1701			} else {
1702				mode = 0644 | AE_IFREG;
1703			}
1704		}
1705
1706		archive_entry_set_mode(entry, mode);
1707
1708		if (file_attr & (ATTR_READONLY | ATTR_HIDDEN | ATTR_SYSTEM)) {
1709			char *fflags_text, *ptr;
1710			/* allocate for "rdonly,hidden,system," */
1711			fflags_text = malloc(22 * sizeof(char));
1712			if (fflags_text != NULL) {
1713				ptr = fflags_text;
1714				if (file_attr & ATTR_READONLY) {
1715					strcpy(ptr, "rdonly,");
1716					ptr = ptr + 7;
1717				}
1718				if (file_attr & ATTR_HIDDEN) {
1719					strcpy(ptr, "hidden,");
1720					ptr = ptr + 7;
1721				}
1722				if (file_attr & ATTR_SYSTEM) {
1723					strcpy(ptr, "system,");
1724					ptr = ptr + 7;
1725				}
1726				if (ptr > fflags_text) {
1727					/* Delete trailing comma */
1728					*(ptr - 1) = '\0';
1729					archive_entry_copy_fflags_text(entry,
1730					    fflags_text);
1731				}
1732				free(fflags_text);
1733			}
1734		}
1735	} else if(host_os == HOST_UNIX) {
1736		/* Host OS is Unix */
1737		archive_entry_set_mode(entry, (__LA_MODE_T) file_attr);
1738	} else {
1739		/* Unknown host OS */
1740		archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
1741				"Unsupported Host OS: 0x%x", (int) host_os);
1742
1743		return ARCHIVE_FATAL;
1744	}
1745
1746	if(!read_var_sized(a, &name_size, NULL))
1747		return ARCHIVE_EOF;
1748
1749	if(!read_ahead(a, name_size, &p))
1750		return ARCHIVE_EOF;
1751
1752	if(name_size > (MAX_NAME_IN_CHARS - 1)) {
1753		archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
1754				"Filename is too long");
1755
1756		return ARCHIVE_FATAL;
1757	}
1758
1759	if(name_size == 0) {
1760		archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
1761				"No filename specified");
1762
1763		return ARCHIVE_FATAL;
1764	}
1765
1766	memcpy(name_utf8_buf, p, name_size);
1767	name_utf8_buf[name_size] = 0;
1768	if(ARCHIVE_OK != consume(a, name_size)) {
1769		return ARCHIVE_EOF;
1770	}
1771
1772	archive_entry_update_pathname_utf8(entry, name_utf8_buf);
1773
1774	if(extra_data_size > 0) {
1775		int ret = process_head_file_extra(a, entry, rar,
1776		    extra_data_size);
1777
1778		/* Sanity check. */
1779		if(extra_data_size < 0) {
1780			archive_set_error(&a->archive, ARCHIVE_ERRNO_PROGRAMMER,
1781			    "File extra data size is not zero");
1782			return ARCHIVE_FATAL;
1783		}
1784
1785		if(ret != ARCHIVE_OK)
1786			return ret;
1787	}
1788
1789	if((file_flags & UNKNOWN_UNPACKED_SIZE) == 0) {
1790		rar->file.unpacked_size = (ssize_t) unpacked_size;
1791		if(rar->file.redir_type == REDIR_TYPE_NONE)
1792			archive_entry_set_size(entry, unpacked_size);
1793	}
1794
1795	if(file_flags & UTIME) {
1796		archive_entry_set_mtime(entry, (time_t) mtime, 0);
1797	}
1798
1799	if(file_flags & CRC32) {
1800		rar->file.stored_crc32 = crc;
1801	}
1802
1803	if(!rar->cstate.switch_multivolume) {
1804		/* Do not reinitialize unpacking state if we're switching
1805		 * archives. */
1806		rar->cstate.block_parsing_finished = 1;
1807		rar->cstate.all_filters_applied = 1;
1808		rar->cstate.initialized = 0;
1809	}
1810
1811	if(rar->generic.split_before > 0) {
1812		/* If now we're standing on a header that has a 'split before'
1813		 * mark, it means we're standing on a 'continuation' file
1814		 * header. Signal the caller that if it wants to move to
1815		 * another file, it must call rar5_read_header() function
1816		 * again. */
1817
1818		return ARCHIVE_RETRY;
1819	} else {
1820		return ARCHIVE_OK;
1821	}
1822}
1823
1824static int process_head_service(struct archive_read* a, struct rar5* rar,
1825    struct archive_entry* entry, size_t block_flags)
1826{
1827	/* Process this SERVICE block the same way as FILE blocks. */
1828	int ret = process_head_file(a, rar, entry, block_flags);
1829	if(ret != ARCHIVE_OK)
1830		return ret;
1831
1832	rar->file.service = 1;
1833
1834	/* But skip the data part automatically. It's no use for the user
1835	 * anyway.  It contains only service data, not even needed to
1836	 * properly unpack the file. */
1837	ret = rar5_read_data_skip(a);
1838	if(ret != ARCHIVE_OK)
1839		return ret;
1840
1841	/* After skipping, try parsing another block automatically. */
1842	return ARCHIVE_RETRY;
1843}
1844
1845static int process_head_main(struct archive_read* a, struct rar5* rar,
1846    struct archive_entry* entry, size_t block_flags)
1847{
1848	(void) entry;
1849
1850	int ret;
1851	size_t extra_data_size = 0;
1852	size_t extra_field_size = 0;
1853	size_t extra_field_id = 0;
1854	size_t archive_flags = 0;
1855
1856	if(block_flags & HFL_EXTRA_DATA) {
1857		if(!read_var_sized(a, &extra_data_size, NULL))
1858			return ARCHIVE_EOF;
1859	} else {
1860		extra_data_size = 0;
1861	}
1862
1863	if(!read_var_sized(a, &archive_flags, NULL)) {
1864		return ARCHIVE_EOF;
1865	}
1866
1867	enum MAIN_FLAGS {
1868		VOLUME = 0x0001,         /* multi-volume archive */
1869		VOLUME_NUMBER = 0x0002,  /* volume number, first vol doesn't
1870					  * have it */
1871		SOLID = 0x0004,          /* solid archive */
1872		PROTECT = 0x0008,        /* contains Recovery info */
1873		LOCK = 0x0010,           /* readonly flag, not used */
1874	};
1875
1876	rar->main.volume = (archive_flags & VOLUME) > 0;
1877	rar->main.solid = (archive_flags & SOLID) > 0;
1878
1879	if(archive_flags & VOLUME_NUMBER) {
1880		size_t v = 0;
1881		if(!read_var_sized(a, &v, NULL)) {
1882			return ARCHIVE_EOF;
1883		}
1884
1885		if (v > UINT_MAX) {
1886			archive_set_error(&a->archive,
1887			    ARCHIVE_ERRNO_FILE_FORMAT,
1888			    "Invalid volume number");
1889			return ARCHIVE_FATAL;
1890		}
1891
1892		rar->main.vol_no = (unsigned int) v;
1893	} else {
1894		rar->main.vol_no = 0;
1895	}
1896
1897	if(rar->vol.expected_vol_no > 0 &&
1898		rar->main.vol_no != rar->vol.expected_vol_no)
1899	{
1900		/* Returning EOF instead of FATAL because of strange
1901		 * libarchive behavior. When opening multiple files via
1902		 * archive_read_open_filenames(), after reading up the whole
1903		 * last file, the __archive_read_ahead function wraps up to
1904		 * the first archive instead of returning EOF. */
1905		return ARCHIVE_EOF;
1906	}
1907
1908	if(extra_data_size == 0) {
1909		/* Early return. */
1910		return ARCHIVE_OK;
1911	}
1912
1913	if(!read_var_sized(a, &extra_field_size, NULL)) {
1914		return ARCHIVE_EOF;
1915	}
1916
1917	if(!read_var_sized(a, &extra_field_id, NULL)) {
1918		return ARCHIVE_EOF;
1919	}
1920
1921	if(extra_field_size == 0) {
1922		archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
1923		    "Invalid extra field size");
1924		return ARCHIVE_FATAL;
1925	}
1926
1927	enum MAIN_EXTRA {
1928		// Just one attribute here.
1929		LOCATOR = 0x01,
1930	};
1931
1932	switch(extra_field_id) {
1933		case LOCATOR:
1934			ret = process_main_locator_extra_block(a, rar);
1935			if(ret != ARCHIVE_OK) {
1936				/* Error while parsing main locator extra
1937				 * block. */
1938				return ret;
1939			}
1940
1941			break;
1942		default:
1943			archive_set_error(&a->archive,
1944			    ARCHIVE_ERRNO_FILE_FORMAT,
1945			    "Unsupported extra type (0x%x)",
1946			    (int) extra_field_id);
1947			return ARCHIVE_FATAL;
1948	}
1949
1950	return ARCHIVE_OK;
1951}
1952
1953static int skip_unprocessed_bytes(struct archive_read* a) {
1954	struct rar5* rar = get_context(a);
1955	int ret;
1956
1957	if(rar->file.bytes_remaining) {
1958		/* Use different skipping method in block merging mode than in
1959		 * normal mode. If merge mode is active, rar5_read_data_skip
1960		 * can't be used, because it could allow recursive use of
1961		 * merge_block() * function, and this function doesn't support
1962		 * recursive use. */
1963		if(rar->merge_mode) {
1964			/* Discard whole merged block. This is valid in solid
1965			 * mode as well, because the code will discard blocks
1966			 * only if those blocks are safe to discard (i.e.
1967			 * they're not FILE blocks).  */
1968			ret = consume(a, rar->file.bytes_remaining);
1969			if(ret != ARCHIVE_OK) {
1970				return ret;
1971			}
1972			rar->file.bytes_remaining = 0;
1973		} else {
1974			/* If we're not in merge mode, use safe skipping code.
1975			 * This will ensure we'll handle solid archives
1976			 * properly. */
1977			ret = rar5_read_data_skip(a);
1978			if(ret != ARCHIVE_OK) {
1979				return ret;
1980			}
1981		}
1982	}
1983
1984	return ARCHIVE_OK;
1985}
1986
1987static int scan_for_signature(struct archive_read* a);
1988
1989/* Base block processing function. A 'base block' is a RARv5 header block
1990 * that tells the reader what kind of data is stored inside the block.
1991 *
1992 * From the birds-eye view a RAR file looks file this:
1993 *
1994 * <magic><base_block_1><base_block_2>...<base_block_n>
1995 *
1996 * There are a few types of base blocks. Those types are specified inside
1997 * the 'switch' statement in this function. For example purposes, I'll write
1998 * how a standard RARv5 file could look like here:
1999 *
2000 * <magic><MAIN><FILE><FILE><FILE><SERVICE><ENDARC>
2001 *
2002 * The structure above could describe an archive file with 3 files in it,
2003 * one service "QuickOpen" block (that is ignored by this parser), and an
2004 * end of file base block marker.
2005 *
2006 * If the file is stored in multiple archive files ("multiarchive"), it might
2007 * look like this:
2008 *
2009 * .part01.rar: <magic><MAIN><FILE><ENDARC>
2010 * .part02.rar: <magic><MAIN><FILE><ENDARC>
2011 * .part03.rar: <magic><MAIN><FILE><ENDARC>
2012 *
2013 * This example could describe 3 RAR files that contain ONE archived file.
2014 * Or it could describe 3 RAR files that contain 3 different files. Or 3
2015 * RAR files than contain 2 files. It all depends what metadata is stored in
2016 * the headers of <FILE> blocks.
2017 *
2018 * Each <FILE> block contains info about its size, the name of the file it's
2019 * storing inside, and whether this FILE block is a continuation block of
2020 * previous archive ('split before'), and is this FILE block should be
2021 * continued in another archive ('split after'). By parsing the 'split before'
2022 * and 'split after' flags, we're able to tell if multiple <FILE> base blocks
2023 * are describing one file, or multiple files (with the same filename, for
2024 * example).
2025 *
2026 * One thing to note is that if we're parsing the first <FILE> block, and
2027 * we see 'split after' flag, then we need to jump over to another <FILE>
2028 * block to be able to decompress rest of the data. To do this, we need
2029 * to skip the <ENDARC> block, then switch to another file, then skip the
2030 * <magic> block, <MAIN> block, and then we're standing on the proper
2031 * <FILE> block.
2032 */
2033
2034static int process_base_block(struct archive_read* a,
2035    struct archive_entry* entry)
2036{
2037	struct rar5* rar = get_context(a);
2038	uint32_t hdr_crc, computed_crc;
2039	size_t raw_hdr_size = 0, hdr_size_len, hdr_size;
2040	size_t header_id = 0;
2041	size_t header_flags = 0;
2042	const uint8_t* p;
2043	int ret;
2044
2045	/* Skip any unprocessed data for this file. */
2046	ret = skip_unprocessed_bytes(a);
2047	if(ret != ARCHIVE_OK)
2048		return ret;
2049
2050	/* Read the expected CRC32 checksum. */
2051	if(!read_u32(a, &hdr_crc)) {
2052		return ARCHIVE_EOF;
2053	}
2054
2055	/* Read header size. */
2056	if(!read_var_sized(a, &raw_hdr_size, &hdr_size_len)) {
2057		return ARCHIVE_EOF;
2058	}
2059
2060	/* Sanity check, maximum header size for RAR5 is 2MB. */
2061	if(raw_hdr_size > (2 * 1024 * 1024)) {
2062		archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
2063		    "Base block header is too large");
2064
2065		return ARCHIVE_FATAL;
2066	}
2067
2068	hdr_size = raw_hdr_size + hdr_size_len;
2069
2070	/* Read the whole header data into memory, maximum memory use here is
2071	 * 2MB. */
2072	if(!read_ahead(a, hdr_size, &p)) {
2073		return ARCHIVE_EOF;
2074	}
2075
2076	/* Verify the CRC32 of the header data. */
2077	computed_crc = (uint32_t) crc32(0, p, (int) hdr_size);
2078	if(computed_crc != hdr_crc) {
2079		archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
2080		    "Header CRC error");
2081
2082		return ARCHIVE_FATAL;
2083	}
2084
2085	/* If the checksum is OK, we proceed with parsing. */
2086	if(ARCHIVE_OK != consume(a, hdr_size_len)) {
2087		return ARCHIVE_EOF;
2088	}
2089
2090	if(!read_var_sized(a, &header_id, NULL))
2091		return ARCHIVE_EOF;
2092
2093	if(!read_var_sized(a, &header_flags, NULL))
2094		return ARCHIVE_EOF;
2095
2096	rar->generic.split_after = (header_flags & HFL_SPLIT_AFTER) > 0;
2097	rar->generic.split_before = (header_flags & HFL_SPLIT_BEFORE) > 0;
2098	rar->generic.size = (int)hdr_size;
2099	rar->generic.last_header_id = (int)header_id;
2100	rar->main.endarc = 0;
2101
2102	/* Those are possible header ids in RARv5. */
2103	enum HEADER_TYPE {
2104		HEAD_MARK    = 0x00, HEAD_MAIN  = 0x01, HEAD_FILE   = 0x02,
2105		HEAD_SERVICE = 0x03, HEAD_CRYPT = 0x04, HEAD_ENDARC = 0x05,
2106		HEAD_UNKNOWN = 0xff,
2107	};
2108
2109	switch(header_id) {
2110		case HEAD_MAIN:
2111			ret = process_head_main(a, rar, entry, header_flags);
2112
2113			/* Main header doesn't have any files in it, so it's
2114			 * pointless to return to the caller. Retry to next
2115			 * header, which should be HEAD_FILE/HEAD_SERVICE. */
2116			if(ret == ARCHIVE_OK)
2117				return ARCHIVE_RETRY;
2118
2119			return ret;
2120		case HEAD_SERVICE:
2121			ret = process_head_service(a, rar, entry, header_flags);
2122			return ret;
2123		case HEAD_FILE:
2124			ret = process_head_file(a, rar, entry, header_flags);
2125			return ret;
2126		case HEAD_CRYPT:
2127			archive_set_error(&a->archive,
2128			    ARCHIVE_ERRNO_FILE_FORMAT,
2129			    "Encryption is not supported");
2130			return ARCHIVE_FATAL;
2131		case HEAD_ENDARC:
2132			rar->main.endarc = 1;
2133
2134			/* After encountering an end of file marker, we need
2135			 * to take into consideration if this archive is
2136			 * continued in another file (i.e. is it part01.rar:
2137			 * is there a part02.rar?) */
2138			if(rar->main.volume) {
2139				/* In case there is part02.rar, position the
2140				 * read pointer in a proper place, so we can
2141				 * resume parsing. */
2142				ret = scan_for_signature(a);
2143				if(ret == ARCHIVE_FATAL) {
2144					return ARCHIVE_EOF;
2145				} else {
2146					if(rar->vol.expected_vol_no ==
2147					    UINT_MAX) {
2148						archive_set_error(&a->archive,
2149						    ARCHIVE_ERRNO_FILE_FORMAT,
2150						    "Header error");
2151							return ARCHIVE_FATAL;
2152					}
2153
2154					rar->vol.expected_vol_no =
2155					    rar->main.vol_no + 1;
2156					return ARCHIVE_OK;
2157				}
2158			} else {
2159				return ARCHIVE_EOF;
2160			}
2161		case HEAD_MARK:
2162			return ARCHIVE_EOF;
2163		default:
2164			if((header_flags & HFL_SKIP_IF_UNKNOWN) == 0) {
2165				archive_set_error(&a->archive,
2166				    ARCHIVE_ERRNO_FILE_FORMAT,
2167				    "Header type error");
2168				return ARCHIVE_FATAL;
2169			} else {
2170				/* If the block is marked as 'skip if unknown',
2171				 * do as the flag says: skip the block
2172				 * instead on failing on it. */
2173				return ARCHIVE_RETRY;
2174			}
2175	}
2176
2177#if !defined WIN32
2178	// Not reached.
2179	archive_set_error(&a->archive, ARCHIVE_ERRNO_PROGRAMMER,
2180	    "Internal unpacker error");
2181	return ARCHIVE_FATAL;
2182#endif
2183}
2184
2185static int skip_base_block(struct archive_read* a) {
2186	int ret;
2187	struct rar5* rar = get_context(a);
2188
2189	/* Create a new local archive_entry structure that will be operated on
2190	 * by header reader; operations on this archive_entry will be discarded.
2191	 */
2192	struct archive_entry* entry = archive_entry_new();
2193	ret = process_base_block(a, entry);
2194
2195	/* Discard operations on this archive_entry structure. */
2196	archive_entry_free(entry);
2197	if(ret == ARCHIVE_FATAL)
2198		return ret;
2199
2200	if(rar->generic.last_header_id == 2 && rar->generic.split_before > 0)
2201		return ARCHIVE_OK;
2202
2203	if(ret == ARCHIVE_OK)
2204		return ARCHIVE_RETRY;
2205	else
2206		return ret;
2207}
2208
2209static int rar5_read_header(struct archive_read *a,
2210    struct archive_entry *entry)
2211{
2212	struct rar5* rar = get_context(a);
2213	int ret;
2214
2215	if(rar->header_initialized == 0) {
2216		init_header(a);
2217		rar->header_initialized = 1;
2218	}
2219
2220	if(rar->skipped_magic == 0) {
2221		if(ARCHIVE_OK != consume(a, rar5_signature_size)) {
2222			return ARCHIVE_EOF;
2223		}
2224
2225		rar->skipped_magic = 1;
2226	}
2227
2228	do {
2229		ret = process_base_block(a, entry);
2230	} while(ret == ARCHIVE_RETRY ||
2231			(rar->main.endarc > 0 && ret == ARCHIVE_OK));
2232
2233	return ret;
2234}
2235
2236static void init_unpack(struct rar5* rar) {
2237	rar->file.calculated_crc32 = 0;
2238	if (rar->cstate.window_size)
2239		rar->cstate.window_mask = rar->cstate.window_size - 1;
2240	else
2241		rar->cstate.window_mask = 0;
2242
2243	free(rar->cstate.window_buf);
2244	free(rar->cstate.filtered_buf);
2245
2246	if(rar->cstate.window_size > 0) {
2247		rar->cstate.window_buf = calloc(1, rar->cstate.window_size);
2248		rar->cstate.filtered_buf = calloc(1, rar->cstate.window_size);
2249	} else {
2250		rar->cstate.window_buf = NULL;
2251		rar->cstate.filtered_buf = NULL;
2252	}
2253
2254	rar->cstate.write_ptr = 0;
2255	rar->cstate.last_write_ptr = 0;
2256
2257	memset(&rar->cstate.bd, 0, sizeof(rar->cstate.bd));
2258	memset(&rar->cstate.ld, 0, sizeof(rar->cstate.ld));
2259	memset(&rar->cstate.dd, 0, sizeof(rar->cstate.dd));
2260	memset(&rar->cstate.ldd, 0, sizeof(rar->cstate.ldd));
2261	memset(&rar->cstate.rd, 0, sizeof(rar->cstate.rd));
2262}
2263
2264static void update_crc(struct rar5* rar, const uint8_t* p, size_t to_read) {
2265    int verify_crc;
2266
2267	if(rar->skip_mode) {
2268#if defined CHECK_CRC_ON_SOLID_SKIP
2269		verify_crc = 1;
2270#else
2271		verify_crc = 0;
2272#endif
2273	} else
2274		verify_crc = 1;
2275
2276	if(verify_crc) {
2277		/* Don't update CRC32 if the file doesn't have the
2278		 * `stored_crc32` info filled in. */
2279		if(rar->file.stored_crc32 > 0) {
2280			rar->file.calculated_crc32 =
2281				crc32(rar->file.calculated_crc32, p, to_read);
2282		}
2283
2284		/* Check if the file uses an optional BLAKE2sp checksum
2285		 * algorithm. */
2286		if(rar->file.has_blake2 > 0) {
2287			/* Return value of the `update` function is always 0,
2288			 * so we can explicitly ignore it here. */
2289			(void) blake2sp_update(&rar->file.b2state, p, to_read);
2290		}
2291	}
2292}
2293
2294static int create_decode_tables(uint8_t* bit_length,
2295    struct decode_table* table, int size)
2296{
2297	int code, upper_limit = 0, i, lc[16];
2298	uint32_t decode_pos_clone[rar5_countof(table->decode_pos)];
2299	ssize_t cur_len, quick_data_size;
2300
2301	memset(&lc, 0, sizeof(lc));
2302	memset(table->decode_num, 0, sizeof(table->decode_num));
2303	table->size = size;
2304	table->quick_bits = size == HUFF_NC ? 10 : 7;
2305
2306	for(i = 0; i < size; i++) {
2307		lc[bit_length[i] & 15]++;
2308	}
2309
2310	lc[0] = 0;
2311	table->decode_pos[0] = 0;
2312	table->decode_len[0] = 0;
2313
2314	for(i = 1; i < 16; i++) {
2315		upper_limit += lc[i];
2316
2317		table->decode_len[i] = upper_limit << (16 - i);
2318		table->decode_pos[i] = table->decode_pos[i - 1] + lc[i - 1];
2319
2320		upper_limit <<= 1;
2321	}
2322
2323	memcpy(decode_pos_clone, table->decode_pos, sizeof(decode_pos_clone));
2324
2325	for(i = 0; i < size; i++) {
2326		uint8_t clen = bit_length[i] & 15;
2327		if(clen > 0) {
2328			int last_pos = decode_pos_clone[clen];
2329			table->decode_num[last_pos] = i;
2330			decode_pos_clone[clen]++;
2331		}
2332	}
2333
2334	quick_data_size = (int64_t)1 << table->quick_bits;
2335	cur_len = 1;
2336	for(code = 0; code < quick_data_size; code++) {
2337		int bit_field = code << (16 - table->quick_bits);
2338		int dist, pos;
2339
2340		while(cur_len < rar5_countof(table->decode_len) &&
2341				bit_field >= table->decode_len[cur_len]) {
2342			cur_len++;
2343		}
2344
2345		table->quick_len[code] = (uint8_t) cur_len;
2346
2347		dist = bit_field - table->decode_len[cur_len - 1];
2348		dist >>= (16 - cur_len);
2349
2350		pos = table->decode_pos[cur_len & 15] + dist;
2351		if(cur_len < rar5_countof(table->decode_pos) && pos < size) {
2352			table->quick_num[code] = table->decode_num[pos];
2353		} else {
2354			table->quick_num[code] = 0;
2355		}
2356	}
2357
2358	return ARCHIVE_OK;
2359}
2360
2361static int decode_number(struct archive_read* a, struct decode_table* table,
2362    const uint8_t* p, uint16_t* num)
2363{
2364	int i, bits, dist;
2365	uint16_t bitfield;
2366	uint32_t pos;
2367	struct rar5* rar = get_context(a);
2368
2369	if(ARCHIVE_OK != read_bits_16(rar, p, &bitfield)) {
2370		return ARCHIVE_EOF;
2371	}
2372
2373	bitfield &= 0xfffe;
2374
2375	if(bitfield < table->decode_len[table->quick_bits]) {
2376		int code = bitfield >> (16 - table->quick_bits);
2377		skip_bits(rar, table->quick_len[code]);
2378		*num = table->quick_num[code];
2379		return ARCHIVE_OK;
2380	}
2381
2382	bits = 15;
2383
2384	for(i = table->quick_bits + 1; i < 15; i++) {
2385		if(bitfield < table->decode_len[i]) {
2386			bits = i;
2387			break;
2388		}
2389	}
2390
2391	skip_bits(rar, bits);
2392
2393	dist = bitfield - table->decode_len[bits - 1];
2394	dist >>= (16 - bits);
2395	pos = table->decode_pos[bits] + dist;
2396
2397	if(pos >= table->size)
2398		pos = 0;
2399
2400	*num = table->decode_num[pos];
2401	return ARCHIVE_OK;
2402}
2403
2404/* Reads and parses Huffman tables from the beginning of the block. */
2405static int parse_tables(struct archive_read* a, struct rar5* rar,
2406    const uint8_t* p)
2407{
2408	int ret, value, i, w, idx = 0;
2409	uint8_t bit_length[HUFF_BC],
2410		table[HUFF_TABLE_SIZE],
2411		nibble_mask = 0xF0,
2412		nibble_shift = 4;
2413
2414	enum { ESCAPE = 15 };
2415
2416	/* The data for table generation is compressed using a simple RLE-like
2417	 * algorithm when storing zeroes, so we need to unpack it first. */
2418	for(w = 0, i = 0; w < HUFF_BC;) {
2419		if(i >= rar->cstate.cur_block_size) {
2420			/* Truncated data, can't continue. */
2421			archive_set_error(&a->archive,
2422			    ARCHIVE_ERRNO_FILE_FORMAT,
2423			    "Truncated data in huffman tables");
2424			return ARCHIVE_FATAL;
2425		}
2426
2427		value = (p[i] & nibble_mask) >> nibble_shift;
2428
2429		if(nibble_mask == 0x0F)
2430			++i;
2431
2432		nibble_mask ^= 0xFF;
2433		nibble_shift ^= 4;
2434
2435		/* Values smaller than 15 is data, so we write it directly.
2436		 * Value 15 is a flag telling us that we need to unpack more
2437		 * bytes. */
2438		if(value == ESCAPE) {
2439			value = (p[i] & nibble_mask) >> nibble_shift;
2440			if(nibble_mask == 0x0F)
2441				++i;
2442			nibble_mask ^= 0xFF;
2443			nibble_shift ^= 4;
2444
2445			if(value == 0) {
2446				/* We sometimes need to write the actual value
2447				 * of 15, so this case handles that. */
2448				bit_length[w++] = ESCAPE;
2449			} else {
2450				int k;
2451
2452				/* Fill zeroes. */
2453				for(k = 0; (k < value + 2) && (w < HUFF_BC);
2454				    k++) {
2455					bit_length[w++] = 0;
2456				}
2457			}
2458		} else {
2459			bit_length[w++] = value;
2460		}
2461	}
2462
2463	rar->bits.in_addr = i;
2464	rar->bits.bit_addr = nibble_shift ^ 4;
2465
2466	ret = create_decode_tables(bit_length, &rar->cstate.bd, HUFF_BC);
2467	if(ret != ARCHIVE_OK) {
2468		archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
2469		    "Decoding huffman tables failed");
2470		return ARCHIVE_FATAL;
2471	}
2472
2473	for(i = 0; i < HUFF_TABLE_SIZE;) {
2474		uint16_t num;
2475
2476		if((rar->bits.in_addr + 6) >= rar->cstate.cur_block_size) {
2477			/* Truncated data, can't continue. */
2478			archive_set_error(&a->archive,
2479			    ARCHIVE_ERRNO_FILE_FORMAT,
2480			    "Truncated data in huffman tables (#2)");
2481			return ARCHIVE_FATAL;
2482		}
2483
2484		ret = decode_number(a, &rar->cstate.bd, p, &num);
2485		if(ret != ARCHIVE_OK) {
2486			archive_set_error(&a->archive,
2487			    ARCHIVE_ERRNO_FILE_FORMAT,
2488			    "Decoding huffman tables failed");
2489			return ARCHIVE_FATAL;
2490		}
2491
2492		if(num < 16) {
2493			/* 0..15: store directly */
2494			table[i] = (uint8_t) num;
2495			i++;
2496			continue;
2497		}
2498
2499		if(num < 18) {
2500			/* 16..17: repeat previous code */
2501			uint16_t n;
2502			if(ARCHIVE_OK != read_bits_16(rar, p, &n))
2503				return ARCHIVE_EOF;
2504
2505			if(num == 16) {
2506				n >>= 13;
2507				n += 3;
2508				skip_bits(rar, 3);
2509			} else {
2510				n >>= 9;
2511				n += 11;
2512				skip_bits(rar, 7);
2513			}
2514
2515			if(i > 0) {
2516				while(n-- > 0 && i < HUFF_TABLE_SIZE) {
2517					table[i] = table[i - 1];
2518					i++;
2519				}
2520			} else {
2521				archive_set_error(&a->archive,
2522				    ARCHIVE_ERRNO_FILE_FORMAT,
2523				    "Unexpected error when decoding "
2524				    "huffman tables");
2525				return ARCHIVE_FATAL;
2526			}
2527
2528			continue;
2529		}
2530
2531		/* other codes: fill with zeroes `n` times */
2532		uint16_t n;
2533		if(ARCHIVE_OK != read_bits_16(rar, p, &n))
2534			return ARCHIVE_EOF;
2535
2536		if(num == 18) {
2537			n >>= 13;
2538			n += 3;
2539			skip_bits(rar, 3);
2540		} else {
2541			n >>= 9;
2542			n += 11;
2543			skip_bits(rar, 7);
2544		}
2545
2546		while(n-- > 0 && i < HUFF_TABLE_SIZE)
2547			table[i++] = 0;
2548	}
2549
2550	ret = create_decode_tables(&table[idx], &rar->cstate.ld, HUFF_NC);
2551	if(ret != ARCHIVE_OK) {
2552		archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
2553		     "Failed to create literal table");
2554		return ARCHIVE_FATAL;
2555	}
2556
2557	idx += HUFF_NC;
2558
2559	ret = create_decode_tables(&table[idx], &rar->cstate.dd, HUFF_DC);
2560	if(ret != ARCHIVE_OK) {
2561		archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
2562		    "Failed to create distance table");
2563		return ARCHIVE_FATAL;
2564	}
2565
2566	idx += HUFF_DC;
2567
2568	ret = create_decode_tables(&table[idx], &rar->cstate.ldd, HUFF_LDC);
2569	if(ret != ARCHIVE_OK) {
2570		archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
2571		    "Failed to create lower bits of distances table");
2572		return ARCHIVE_FATAL;
2573	}
2574
2575	idx += HUFF_LDC;
2576
2577	ret = create_decode_tables(&table[idx], &rar->cstate.rd, HUFF_RC);
2578	if(ret != ARCHIVE_OK) {
2579		archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
2580		    "Failed to create repeating distances table");
2581		return ARCHIVE_FATAL;
2582	}
2583
2584	return ARCHIVE_OK;
2585}
2586
2587/* Parses the block header, verifies its CRC byte, and saves the header
2588 * fields inside the `hdr` pointer. */
2589static int parse_block_header(struct archive_read* a, const uint8_t* p,
2590    ssize_t* block_size, struct compressed_block_header* hdr)
2591{
2592	memcpy(hdr, p, sizeof(struct compressed_block_header));
2593
2594	if(bf_byte_count(hdr) > 2) {
2595		archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
2596		    "Unsupported block header size (was %d, max is 2)",
2597		    bf_byte_count(hdr));
2598		return ARCHIVE_FATAL;
2599	}
2600
2601	/* This should probably use bit reader interface in order to be more
2602	 * future-proof. */
2603	*block_size = 0;
2604	switch(bf_byte_count(hdr)) {
2605		/* 1-byte block size */
2606		case 0:
2607			*block_size = *(const uint8_t*) &p[2];
2608			break;
2609
2610		/* 2-byte block size */
2611		case 1:
2612			*block_size = archive_le16dec(&p[2]);
2613			break;
2614
2615		/* 3-byte block size */
2616		case 2:
2617			*block_size = archive_le32dec(&p[2]);
2618			*block_size &= 0x00FFFFFF;
2619			break;
2620
2621		/* Other block sizes are not supported. This case is not
2622		 * reached, because we have an 'if' guard before the switch
2623		 * that makes sure of it. */
2624		default:
2625			return ARCHIVE_FATAL;
2626	}
2627
2628	/* Verify the block header checksum. 0x5A is a magic value and is
2629	 * always * constant. */
2630	uint8_t calculated_cksum = 0x5A
2631	    ^ (uint8_t) hdr->block_flags_u8
2632	    ^ (uint8_t) *block_size
2633	    ^ (uint8_t) (*block_size >> 8)
2634	    ^ (uint8_t) (*block_size >> 16);
2635
2636	if(calculated_cksum != hdr->block_cksum) {
2637		archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
2638		    "Block checksum error: got 0x%x, expected 0x%x",
2639		    hdr->block_cksum, calculated_cksum);
2640
2641		return ARCHIVE_FATAL;
2642	}
2643
2644	return ARCHIVE_OK;
2645}
2646
2647/* Convenience function used during filter processing. */
2648static int parse_filter_data(struct rar5* rar, const uint8_t* p,
2649    uint32_t* filter_data)
2650{
2651	int i, bytes;
2652	uint32_t data = 0;
2653
2654	if(ARCHIVE_OK != read_consume_bits(rar, p, 2, &bytes))
2655		return ARCHIVE_EOF;
2656
2657	bytes++;
2658
2659	for(i = 0; i < bytes; i++) {
2660		uint16_t byte;
2661
2662		if(ARCHIVE_OK != read_bits_16(rar, p, &byte)) {
2663			return ARCHIVE_EOF;
2664		}
2665
2666		/* Cast to uint32_t will ensure the shift operation will not
2667		 * produce undefined result. */
2668		data += ((uint32_t) byte >> 8) << (i * 8);
2669		skip_bits(rar, 8);
2670	}
2671
2672	*filter_data = data;
2673	return ARCHIVE_OK;
2674}
2675
2676/* Function is used during sanity checking. */
2677static int is_valid_filter_block_start(struct rar5* rar,
2678    uint32_t start)
2679{
2680	const int64_t block_start = (ssize_t) start + rar->cstate.write_ptr;
2681	const int64_t last_bs = rar->cstate.last_block_start;
2682	const ssize_t last_bl = rar->cstate.last_block_length;
2683
2684	if(last_bs == 0 || last_bl == 0) {
2685		/* We didn't have any filters yet, so accept this offset. */
2686		return 1;
2687	}
2688
2689	if(block_start >= last_bs + last_bl) {
2690		/* Current offset is bigger than last block's end offset, so
2691		 * accept current offset. */
2692		return 1;
2693	}
2694
2695	/* Any other case is not a normal situation and we should fail. */
2696	return 0;
2697}
2698
2699/* The function will create a new filter, read its parameters from the input
2700 * stream and add it to the filter collection. */
2701static int parse_filter(struct archive_read* ar, const uint8_t* p) {
2702	uint32_t block_start, block_length;
2703	uint16_t filter_type;
2704	struct rar5* rar = get_context(ar);
2705
2706	/* Read the parameters from the input stream. */
2707	if(ARCHIVE_OK != parse_filter_data(rar, p, &block_start))
2708		return ARCHIVE_EOF;
2709
2710	if(ARCHIVE_OK != parse_filter_data(rar, p, &block_length))
2711		return ARCHIVE_EOF;
2712
2713	if(ARCHIVE_OK != read_bits_16(rar, p, &filter_type))
2714		return ARCHIVE_EOF;
2715
2716	filter_type >>= 13;
2717	skip_bits(rar, 3);
2718
2719	/* Perform some sanity checks on this filter parameters. Note that we
2720	 * allow only DELTA, E8/E9 and ARM filters here, because rest of
2721	 * filters are not used in RARv5. */
2722
2723	if(block_length < 4 ||
2724	    block_length > 0x400000 ||
2725	    filter_type > FILTER_ARM ||
2726	    !is_valid_filter_block_start(rar, block_start))
2727	{
2728		archive_set_error(&ar->archive, ARCHIVE_ERRNO_FILE_FORMAT,
2729		    "Invalid filter encountered");
2730		return ARCHIVE_FATAL;
2731	}
2732
2733	/* Allocate a new filter. */
2734	struct filter_info* filt = add_new_filter(rar);
2735	if(filt == NULL) {
2736		archive_set_error(&ar->archive, ENOMEM,
2737		    "Can't allocate memory for a filter descriptor.");
2738		return ARCHIVE_FATAL;
2739	}
2740
2741	filt->type = filter_type;
2742	filt->block_start = rar->cstate.write_ptr + block_start;
2743	filt->block_length = block_length;
2744
2745	rar->cstate.last_block_start = filt->block_start;
2746	rar->cstate.last_block_length = filt->block_length;
2747
2748	/* Read some more data in case this is a DELTA filter. Other filter
2749	 * types don't require any additional data over what was already
2750	 * read. */
2751	if(filter_type == FILTER_DELTA) {
2752		int channels;
2753
2754		if(ARCHIVE_OK != read_consume_bits(rar, p, 5, &channels))
2755			return ARCHIVE_EOF;
2756
2757		filt->channels = channels + 1;
2758	}
2759
2760	return ARCHIVE_OK;
2761}
2762
2763static int decode_code_length(struct rar5* rar, const uint8_t* p,
2764    uint16_t code)
2765{
2766	int lbits, length = 2;
2767	if(code < 8) {
2768		lbits = 0;
2769		length += code;
2770	} else {
2771		lbits = code / 4 - 1;
2772		length += (4 | (code & 3)) << lbits;
2773	}
2774
2775	if(lbits > 0) {
2776		int add;
2777
2778		if(ARCHIVE_OK != read_consume_bits(rar, p, lbits, &add))
2779			return -1;
2780
2781		length += add;
2782	}
2783
2784	return length;
2785}
2786
2787static int copy_string(struct archive_read* a, int len, int dist) {
2788	struct rar5* rar = get_context(a);
2789	const uint64_t cmask = rar->cstate.window_mask;
2790	const uint64_t write_ptr = rar->cstate.write_ptr +
2791	    rar->cstate.solid_offset;
2792	int i;
2793
2794	if (rar->cstate.window_buf == NULL)
2795		return ARCHIVE_FATAL;
2796
2797	/* The unpacker spends most of the time in this function. It would be
2798	 * a good idea to introduce some optimizations here.
2799	 *
2800	 * Just remember that this loop treats buffers that overlap differently
2801	 * than buffers that do not overlap. This is why a simple memcpy(3)
2802	 * call will not be enough. */
2803
2804	for(i = 0; i < len; i++) {
2805		const ssize_t write_idx = (write_ptr + i) & cmask;
2806		const ssize_t read_idx = (write_ptr + i - dist) & cmask;
2807		rar->cstate.window_buf[write_idx] =
2808		    rar->cstate.window_buf[read_idx];
2809	}
2810
2811	rar->cstate.write_ptr += len;
2812	return ARCHIVE_OK;
2813}
2814
2815static int do_uncompress_block(struct archive_read* a, const uint8_t* p) {
2816	struct rar5* rar = get_context(a);
2817	uint16_t num;
2818	int ret;
2819
2820	const uint64_t cmask = rar->cstate.window_mask;
2821	const struct compressed_block_header* hdr = &rar->last_block_hdr;
2822	const uint8_t bit_size = 1 + bf_bit_size(hdr);
2823
2824	while(1) {
2825		if(rar->cstate.write_ptr - rar->cstate.last_write_ptr >
2826		    (rar->cstate.window_size >> 1)) {
2827			/* Don't allow growing data by more than half of the
2828			 * window size at a time. In such case, break the loop;
2829			 *  next call to this function will continue processing
2830			 *  from this moment. */
2831			break;
2832		}
2833
2834		if(rar->bits.in_addr > rar->cstate.cur_block_size - 1 ||
2835		    (rar->bits.in_addr == rar->cstate.cur_block_size - 1 &&
2836		    rar->bits.bit_addr >= bit_size))
2837		{
2838			/* If the program counter is here, it means the
2839			 * function has finished processing the block. */
2840			rar->cstate.block_parsing_finished = 1;
2841			break;
2842		}
2843
2844		/* Decode the next literal. */
2845		if(ARCHIVE_OK != decode_number(a, &rar->cstate.ld, p, &num)) {
2846			return ARCHIVE_EOF;
2847		}
2848
2849		/* Num holds a decompression literal, or 'command code'.
2850		 *
2851		 * - Values lower than 256 are just bytes. Those codes
2852		 *   can be stored in the output buffer directly.
2853		 *
2854		 * - Code 256 defines a new filter, which is later used to
2855		 *   ransform the data block accordingly to the filter type.
2856		 *   The data block needs to be fully uncompressed first.
2857		 *
2858		 * - Code bigger than 257 and smaller than 262 define
2859		 *   a repetition pattern that should be copied from
2860		 *   an already uncompressed chunk of data.
2861		 */
2862
2863		if(num < 256) {
2864			/* Directly store the byte. */
2865			int64_t write_idx = rar->cstate.solid_offset +
2866			    rar->cstate.write_ptr++;
2867
2868			rar->cstate.window_buf[write_idx & cmask] =
2869			    (uint8_t) num;
2870			continue;
2871		} else if(num >= 262) {
2872			uint16_t dist_slot;
2873			int len = decode_code_length(rar, p, num - 262),
2874				dbits,
2875				dist = 1;
2876
2877			if(len == -1) {
2878				archive_set_error(&a->archive,
2879				    ARCHIVE_ERRNO_PROGRAMMER,
2880				    "Failed to decode the code length");
2881
2882				return ARCHIVE_FATAL;
2883			}
2884
2885			if(ARCHIVE_OK != decode_number(a, &rar->cstate.dd, p,
2886			    &dist_slot))
2887			{
2888				archive_set_error(&a->archive,
2889				    ARCHIVE_ERRNO_PROGRAMMER,
2890				    "Failed to decode the distance slot");
2891
2892				return ARCHIVE_FATAL;
2893			}
2894
2895			if(dist_slot < 4) {
2896				dbits = 0;
2897				dist += dist_slot;
2898			} else {
2899				dbits = dist_slot / 2 - 1;
2900
2901				/* Cast to uint32_t will make sure the shift
2902				 * left operation won't produce undefined
2903				 * result. Then, the uint32_t type will
2904				 * be implicitly casted to int. */
2905				dist += (uint32_t) (2 |
2906				    (dist_slot & 1)) << dbits;
2907			}
2908
2909			if(dbits > 0) {
2910				if(dbits >= 4) {
2911					uint32_t add = 0;
2912					uint16_t low_dist;
2913
2914					if(dbits > 4) {
2915						if(ARCHIVE_OK != read_bits_32(
2916						    rar, p, &add)) {
2917							/* Return EOF if we
2918							 * can't read more
2919							 * data. */
2920							return ARCHIVE_EOF;
2921						}
2922
2923						skip_bits(rar, dbits - 4);
2924						add = (add >> (
2925						    36 - dbits)) << 4;
2926						dist += add;
2927					}
2928
2929					if(ARCHIVE_OK != decode_number(a,
2930					    &rar->cstate.ldd, p, &low_dist))
2931					{
2932						archive_set_error(&a->archive,
2933						    ARCHIVE_ERRNO_PROGRAMMER,
2934						    "Failed to decode the "
2935						    "distance slot");
2936
2937						return ARCHIVE_FATAL;
2938					}
2939
2940					if(dist >= INT_MAX - low_dist - 1) {
2941						/* This only happens in
2942						 * invalid archives. */
2943						archive_set_error(&a->archive,
2944						    ARCHIVE_ERRNO_FILE_FORMAT,
2945						    "Distance pointer "
2946						    "overflow");
2947						return ARCHIVE_FATAL;
2948					}
2949
2950					dist += low_dist;
2951				} else {
2952					/* dbits is one of [0,1,2,3] */
2953					int add;
2954
2955					if(ARCHIVE_OK != read_consume_bits(rar,
2956					     p, dbits, &add)) {
2957						/* Return EOF if we can't read
2958						 * more data. */
2959						return ARCHIVE_EOF;
2960					}
2961
2962					dist += add;
2963				}
2964			}
2965
2966			if(dist > 0x100) {
2967				len++;
2968
2969				if(dist > 0x2000) {
2970					len++;
2971
2972					if(dist > 0x40000) {
2973						len++;
2974					}
2975				}
2976			}
2977
2978			dist_cache_push(rar, dist);
2979			rar->cstate.last_len = len;
2980
2981			if(ARCHIVE_OK != copy_string(a, len, dist))
2982				return ARCHIVE_FATAL;
2983
2984			continue;
2985		} else if(num == 256) {
2986			/* Create a filter. */
2987			ret = parse_filter(a, p);
2988			if(ret != ARCHIVE_OK)
2989				return ret;
2990
2991			continue;
2992		} else if(num == 257) {
2993			if(rar->cstate.last_len != 0) {
2994				if(ARCHIVE_OK != copy_string(a,
2995				    rar->cstate.last_len,
2996				    rar->cstate.dist_cache[0]))
2997				{
2998					return ARCHIVE_FATAL;
2999				}
3000			}
3001
3002			continue;
3003		} else if(num < 262) {
3004			const int idx = num - 258;
3005			const int dist = dist_cache_touch(rar, idx);
3006
3007			uint16_t len_slot;
3008			int len;
3009
3010			if(ARCHIVE_OK != decode_number(a, &rar->cstate.rd, p,
3011			    &len_slot)) {
3012				return ARCHIVE_FATAL;
3013			}
3014
3015			len = decode_code_length(rar, p, len_slot);
3016			rar->cstate.last_len = len;
3017
3018			if(ARCHIVE_OK != copy_string(a, len, dist))
3019				return ARCHIVE_FATAL;
3020
3021			continue;
3022		}
3023
3024		/* The program counter shouldn't reach here. */
3025		archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
3026		    "Unsupported block code: 0x%x", num);
3027
3028		return ARCHIVE_FATAL;
3029	}
3030
3031	return ARCHIVE_OK;
3032}
3033
3034/* Binary search for the RARv5 signature. */
3035static int scan_for_signature(struct archive_read* a) {
3036	const uint8_t* p;
3037	const int chunk_size = 512;
3038	ssize_t i;
3039
3040	/* If we're here, it means we're on an 'unknown territory' data.
3041	 * There's no indication what kind of data we're reading here.
3042	 * It could be some text comment, any kind of binary data,
3043	 * digital sign, dragons, etc.
3044	 *
3045	 * We want to find a valid RARv5 magic header inside this unknown
3046	 * data. */
3047
3048	/* Is it possible in libarchive to just skip everything until the
3049	 * end of the file? If so, it would be a better approach than the
3050	 * current implementation of this function. */
3051
3052	while(1) {
3053		if(!read_ahead(a, chunk_size, &p))
3054			return ARCHIVE_EOF;
3055
3056		for(i = 0; i < chunk_size - rar5_signature_size; i++) {
3057			if(memcmp(&p[i], rar5_signature,
3058			    rar5_signature_size) == 0) {
3059				/* Consume the number of bytes we've used to
3060				 * search for the signature, as well as the
3061				 * number of bytes used by the signature
3062				 * itself. After this we should be standing
3063				 * on a valid base block header. */
3064				(void) consume(a, i + rar5_signature_size);
3065				return ARCHIVE_OK;
3066			}
3067		}
3068
3069		consume(a, chunk_size);
3070	}
3071
3072	return ARCHIVE_FATAL;
3073}
3074
3075/* This function will switch the multivolume archive file to another file,
3076 * i.e. from part03 to part 04. */
3077static int advance_multivolume(struct archive_read* a) {
3078	int lret;
3079	struct rar5* rar = get_context(a);
3080
3081	/* A small state machine that will skip unnecessary data, needed to
3082	 * switch from one multivolume to another. Such skipping is needed if
3083	 * we want to be an stream-oriented (instead of file-oriented)
3084	 * unpacker.
3085	 *
3086	 * The state machine starts with `rar->main.endarc` == 0. It also
3087	 * assumes that current stream pointer points to some base block
3088	 * header.
3089	 *
3090	 * The `endarc` field is being set when the base block parsing
3091	 * function encounters the 'end of archive' marker.
3092	 */
3093
3094	while(1) {
3095		if(rar->main.endarc == 1) {
3096			int looping = 1;
3097
3098			rar->main.endarc = 0;
3099
3100			while(looping) {
3101				lret = skip_base_block(a);
3102				switch(lret) {
3103					case ARCHIVE_RETRY:
3104						/* Continue looping. */
3105						break;
3106					case ARCHIVE_OK:
3107						/* Break loop. */
3108						looping = 0;
3109						break;
3110					default:
3111						/* Forward any errors to the
3112						 * caller. */
3113						return lret;
3114				}
3115			}
3116
3117			break;
3118		} else {
3119			/* Skip current base block. In order to properly skip
3120			 * it, we really need to simply parse it and discard
3121			 * the results. */
3122
3123			lret = skip_base_block(a);
3124			if(lret == ARCHIVE_FATAL || lret == ARCHIVE_FAILED)
3125				return lret;
3126
3127			/* The `skip_base_block` function tells us if we
3128			 * should continue with skipping, or we should stop
3129			 * skipping. We're trying to skip everything up to
3130			 * a base FILE block. */
3131
3132			if(lret != ARCHIVE_RETRY) {
3133				/* If there was an error during skipping, or we
3134				 * have just skipped a FILE base block... */
3135
3136				if(rar->main.endarc == 0) {
3137					return lret;
3138				} else {
3139					continue;
3140				}
3141			}
3142		}
3143	}
3144
3145	return ARCHIVE_OK;
3146}
3147
3148/* Merges the partial block from the first multivolume archive file, and
3149 * partial block from the second multivolume archive file. The result is
3150 * a chunk of memory containing the whole block, and the stream pointer
3151 * is advanced to the next block in the second multivolume archive file. */
3152static int merge_block(struct archive_read* a, ssize_t block_size,
3153    const uint8_t** p)
3154{
3155	struct rar5* rar = get_context(a);
3156	ssize_t cur_block_size, partial_offset = 0;
3157	const uint8_t* lp;
3158	int ret;
3159
3160	if(rar->merge_mode) {
3161		archive_set_error(&a->archive, ARCHIVE_ERRNO_PROGRAMMER,
3162		    "Recursive merge is not allowed");
3163
3164		return ARCHIVE_FATAL;
3165	}
3166
3167	/* Set a flag that we're in the switching mode. */
3168	rar->cstate.switch_multivolume = 1;
3169
3170	/* Reallocate the memory which will hold the whole block. */
3171	if(rar->vol.push_buf)
3172		free((void*) rar->vol.push_buf);
3173
3174	/* Increasing the allocation block by 8 is due to bit reading functions,
3175	 * which are using additional 2 or 4 bytes. Allocating the block size
3176	 * by exact value would make bit reader perform reads from invalid
3177	 * memory block when reading the last byte from the buffer. */
3178	rar->vol.push_buf = malloc(block_size + 8);
3179	if(!rar->vol.push_buf) {
3180		archive_set_error(&a->archive, ENOMEM,
3181		    "Can't allocate memory for a merge block buffer.");
3182		return ARCHIVE_FATAL;
3183	}
3184
3185	/* Valgrind complains if the extension block for bit reader is not
3186	 * initialized, so initialize it. */
3187	memset(&rar->vol.push_buf[block_size], 0, 8);
3188
3189	/* A single block can span across multiple multivolume archive files,
3190	 * so we use a loop here. This loop will consume enough multivolume
3191	 * archive files until the whole block is read. */
3192
3193	while(1) {
3194		/* Get the size of current block chunk in this multivolume
3195		 * archive file and read it. */
3196		cur_block_size = rar5_min(rar->file.bytes_remaining,
3197		    block_size - partial_offset);
3198
3199		if(cur_block_size == 0) {
3200			archive_set_error(&a->archive,
3201			    ARCHIVE_ERRNO_FILE_FORMAT,
3202			    "Encountered block size == 0 during block merge");
3203			return ARCHIVE_FATAL;
3204		}
3205
3206		if(!read_ahead(a, cur_block_size, &lp))
3207			return ARCHIVE_EOF;
3208
3209		/* Sanity check; there should never be a situation where this
3210		 * function reads more data than the block's size. */
3211		if(partial_offset + cur_block_size > block_size) {
3212			archive_set_error(&a->archive,
3213			    ARCHIVE_ERRNO_PROGRAMMER,
3214			    "Consumed too much data when merging blocks.");
3215			return ARCHIVE_FATAL;
3216		}
3217
3218		/* Merge previous block chunk with current block chunk,
3219		 * or create first block chunk if this is our first
3220		 * iteration. */
3221		memcpy(&rar->vol.push_buf[partial_offset], lp, cur_block_size);
3222
3223		/* Advance the stream read pointer by this block chunk size. */
3224		if(ARCHIVE_OK != consume(a, cur_block_size))
3225			return ARCHIVE_EOF;
3226
3227		/* Update the pointers. `partial_offset` contains information
3228		 * about the sum of merged block chunks. */
3229		partial_offset += cur_block_size;
3230		rar->file.bytes_remaining -= cur_block_size;
3231
3232		/* If `partial_offset` is the same as `block_size`, this means
3233		 * we've merged all block chunks and we have a valid full
3234		 * block. */
3235		if(partial_offset == block_size) {
3236			break;
3237		}
3238
3239		/* If we don't have any bytes to read, this means we should
3240		 * switch to another multivolume archive file. */
3241		if(rar->file.bytes_remaining == 0) {
3242			rar->merge_mode++;
3243			ret = advance_multivolume(a);
3244			rar->merge_mode--;
3245			if(ret != ARCHIVE_OK) {
3246				return ret;
3247			}
3248		}
3249	}
3250
3251	*p = rar->vol.push_buf;
3252
3253	/* If we're here, we can resume unpacking by processing the block
3254	 * pointed to by the `*p` memory pointer. */
3255
3256	return ARCHIVE_OK;
3257}
3258
3259static int process_block(struct archive_read* a) {
3260	const uint8_t* p;
3261	struct rar5* rar = get_context(a);
3262	int ret;
3263
3264	/* If we don't have any data to be processed, this most probably means
3265	 * we need to switch to the next volume. */
3266	if(rar->main.volume && rar->file.bytes_remaining == 0) {
3267		ret = advance_multivolume(a);
3268		if(ret != ARCHIVE_OK)
3269			return ret;
3270	}
3271
3272	if(rar->cstate.block_parsing_finished) {
3273		ssize_t block_size;
3274
3275		/* The header size won't be bigger than 6 bytes. */
3276		if(!read_ahead(a, 6, &p)) {
3277			/* Failed to prefetch data block header. */
3278			return ARCHIVE_EOF;
3279		}
3280
3281		/*
3282		 * Read block_size by parsing block header. Validate the header
3283		 * by calculating CRC byte stored inside the header. Size of
3284		 * the header is not constant (block size can be stored either
3285		 * in 1 or 2 bytes), that's why block size is left out from the
3286		 * `compressed_block_header` structure and returned by
3287		 * `parse_block_header` as the second argument. */
3288
3289		ret = parse_block_header(a, p, &block_size,
3290		    &rar->last_block_hdr);
3291		if(ret != ARCHIVE_OK) {
3292			return ret;
3293		}
3294
3295		/* Skip block header. Next data is huffman tables,
3296		 * if present. */
3297		ssize_t to_skip = sizeof(struct compressed_block_header) +
3298			bf_byte_count(&rar->last_block_hdr) + 1;
3299
3300		if(ARCHIVE_OK != consume(a, to_skip))
3301			return ARCHIVE_EOF;
3302
3303		rar->file.bytes_remaining -= to_skip;
3304
3305		/* The block size gives information about the whole block size,
3306		 * but the block could be stored in split form when using
3307		 * multi-volume archives. In this case, the block size will be
3308		 * bigger than the actual data stored in this file. Remaining
3309		 * part of the data will be in another file. */
3310
3311		ssize_t cur_block_size =
3312			rar5_min(rar->file.bytes_remaining, block_size);
3313
3314		if(block_size > rar->file.bytes_remaining) {
3315			/* If current blocks' size is bigger than our data
3316			 * size, this means we have a multivolume archive.
3317			 * In this case, skip all base headers until the end
3318			 * of the file, proceed to next "partXXX.rar" volume,
3319			 * find its signature, skip all headers up to the first
3320			 * FILE base header, and continue from there.
3321			 *
3322			 * Note that `merge_block` will update the `rar`
3323			 * context structure quite extensively. */
3324
3325			ret = merge_block(a, block_size, &p);
3326			if(ret != ARCHIVE_OK) {
3327				return ret;
3328			}
3329
3330			cur_block_size = block_size;
3331
3332			/* Current stream pointer should be now directly
3333			 * *after* the block that spanned through multiple
3334			 * archive files. `p` pointer should have the data of
3335			 * the *whole* block (merged from partial blocks
3336			 * stored in multiple archives files). */
3337		} else {
3338			rar->cstate.switch_multivolume = 0;
3339
3340			/* Read the whole block size into memory. This can take
3341			 * up to  8 megabytes of memory in theoretical cases.
3342			 * Might be worth to optimize this and use a standard
3343			 * chunk of 4kb's. */
3344			if(!read_ahead(a, 4 + cur_block_size, &p)) {
3345				/* Failed to prefetch block data. */
3346				return ARCHIVE_EOF;
3347			}
3348		}
3349
3350		rar->cstate.block_buf = p;
3351		rar->cstate.cur_block_size = cur_block_size;
3352		rar->cstate.block_parsing_finished = 0;
3353
3354		rar->bits.in_addr = 0;
3355		rar->bits.bit_addr = 0;
3356
3357		if(bf_is_table_present(&rar->last_block_hdr)) {
3358			/* Load Huffman tables. */
3359			ret = parse_tables(a, rar, p);
3360			if(ret != ARCHIVE_OK) {
3361				/* Error during decompression of Huffman
3362				 * tables. */
3363				return ret;
3364			}
3365		}
3366	} else {
3367		/* Block parsing not finished, reuse previous memory buffer. */
3368		p = rar->cstate.block_buf;
3369	}
3370
3371	/* Uncompress the block, or a part of it, depending on how many bytes
3372	 * will be generated by uncompressing the block.
3373	 *
3374	 * In case too many bytes will be generated, calling this function
3375	 * again will resume the uncompression operation. */
3376	ret = do_uncompress_block(a, p);
3377	if(ret != ARCHIVE_OK) {
3378		return ret;
3379	}
3380
3381	if(rar->cstate.block_parsing_finished &&
3382	    rar->cstate.switch_multivolume == 0 &&
3383	    rar->cstate.cur_block_size > 0)
3384	{
3385		/* If we're processing a normal block, consume the whole
3386		 * block. We can do this because we've already read the whole
3387		 * block to memory. */
3388		if(ARCHIVE_OK != consume(a, rar->cstate.cur_block_size))
3389			return ARCHIVE_FATAL;
3390
3391		rar->file.bytes_remaining -= rar->cstate.cur_block_size;
3392	} else if(rar->cstate.switch_multivolume) {
3393		/* Don't consume the block if we're doing multivolume
3394		 * processing. The volume switching function will consume
3395		 * the proper count of bytes instead. */
3396		rar->cstate.switch_multivolume = 0;
3397	}
3398
3399	return ARCHIVE_OK;
3400}
3401
3402/* Pops the `buf`, `size` and `offset` from the "data ready" stack.
3403 *
3404 * Returns ARCHIVE_OK when those arguments can be used, ARCHIVE_RETRY
3405 * when there is no data on the stack. */
3406static int use_data(struct rar5* rar, const void** buf, size_t* size,
3407    int64_t* offset)
3408{
3409	int i;
3410
3411	for(i = 0; i < rar5_countof(rar->cstate.dready); i++) {
3412		struct data_ready *d = &rar->cstate.dready[i];
3413
3414		if(d->used) {
3415			if(buf)    *buf = d->buf;
3416			if(size)   *size = d->size;
3417			if(offset) *offset = d->offset;
3418
3419			d->used = 0;
3420			return ARCHIVE_OK;
3421		}
3422	}
3423
3424	return ARCHIVE_RETRY;
3425}
3426
3427/* Pushes the `buf`, `size` and `offset` arguments to the rar->cstate.dready
3428 * FIFO stack. Those values will be popped from this stack by the `use_data`
3429 * function. */
3430static int push_data_ready(struct archive_read* a, struct rar5* rar,
3431    const uint8_t* buf, size_t size, int64_t offset)
3432{
3433	int i;
3434
3435	/* Don't push if we're in skip mode. This is needed because solid
3436	 * streams need full processing even if we're skipping data. After
3437	 * fully processing the stream, we need to discard the generated bytes,
3438	 * because we're interested only in the side effect: building up the
3439	 * internal window circular buffer. This window buffer will be used
3440	 * later during unpacking of requested data. */
3441	if(rar->skip_mode)
3442		return ARCHIVE_OK;
3443
3444	/* Sanity check. */
3445	if(offset != rar->file.last_offset + rar->file.last_size) {
3446		archive_set_error(&a->archive, ARCHIVE_ERRNO_PROGRAMMER,
3447		    "Sanity check error: output stream is not continuous");
3448		return ARCHIVE_FATAL;
3449	}
3450
3451	for(i = 0; i < rar5_countof(rar->cstate.dready); i++) {
3452		struct data_ready* d = &rar->cstate.dready[i];
3453		if(!d->used) {
3454			d->used = 1;
3455			d->buf = buf;
3456			d->size = size;
3457			d->offset = offset;
3458
3459			/* These fields are used only in sanity checking. */
3460			rar->file.last_offset = offset;
3461			rar->file.last_size = size;
3462
3463			/* Calculate the checksum of this new block before
3464			 * submitting data to libarchive's engine. */
3465			update_crc(rar, d->buf, d->size);
3466
3467			return ARCHIVE_OK;
3468		}
3469	}
3470
3471	/* Program counter will reach this code if the `rar->cstate.data_ready`
3472	 * stack will be filled up so that no new entries will be allowed. The
3473	 * code shouldn't allow such situation to occur. So we treat this case
3474	 * as an internal error. */
3475
3476	archive_set_error(&a->archive, ARCHIVE_ERRNO_PROGRAMMER,
3477	    "Error: premature end of data_ready stack");
3478	return ARCHIVE_FATAL;
3479}
3480
3481/* This function uncompresses the data that is stored in the <FILE> base
3482 * block.
3483 *
3484 * The FILE base block looks like this:
3485 *
3486 * <header><huffman tables><block_1><block_2>...<block_n>
3487 *
3488 * The <header> is a block header, that is parsed in parse_block_header().
3489 * It's a "compressed_block_header" structure, containing metadata needed
3490 * to know when we should stop looking for more <block_n> blocks.
3491 *
3492 * <huffman tables> contain data needed to set up the huffman tables, needed
3493 * for the actual decompression.
3494 *
3495 * Each <block_n> consists of series of literals:
3496 *
3497 * <literal><literal><literal>...<literal>
3498 *
3499 * Those literals generate the uncompression data. They operate on a circular
3500 * buffer, sometimes writing raw data into it, sometimes referencing
3501 * some previous data inside this buffer, and sometimes declaring a filter
3502 * that will need to be executed on the data stored in the circular buffer.
3503 * It all depends on the literal that is used.
3504 *
3505 * Sometimes blocks produce output data, sometimes they don't. For example, for
3506 * some huge files that use lots of filters, sometimes a block is filled with
3507 * only filter declaration literals. Such blocks won't produce any data in the
3508 * circular buffer.
3509 *
3510 * Sometimes blocks will produce 4 bytes of data, and sometimes 1 megabyte,
3511 * because a literal can reference previously decompressed data. For example,
3512 * there can be a literal that says: 'append a byte 0xFE here', and after
3513 * it another literal can say 'append 1 megabyte of data from circular buffer
3514 * offset 0x12345'. This is how RAR format handles compressing repeated
3515 * patterns.
3516 *
3517 * The RAR compressor creates those literals and the actual efficiency of
3518 * compression depends on what those literals are. The literals can also
3519 * be seen as a kind of a non-turing-complete virtual machine that simply
3520 * tells the decompressor what it should do.
3521 * */
3522
3523static int do_uncompress_file(struct archive_read* a) {
3524	struct rar5* rar = get_context(a);
3525	int ret;
3526	int64_t max_end_pos;
3527
3528	if(!rar->cstate.initialized) {
3529		/* Don't perform full context reinitialization if we're
3530		 * processing a solid archive. */
3531		if(!rar->main.solid || !rar->cstate.window_buf) {
3532			init_unpack(rar);
3533		}
3534
3535		rar->cstate.initialized = 1;
3536	}
3537
3538	if(rar->cstate.all_filters_applied == 1) {
3539		/* We use while(1) here, but standard case allows for just 1
3540		 * iteration. The loop will iterate if process_block() didn't
3541		 * generate any data at all. This can happen if the block
3542		 * contains only filter definitions (this is common in big
3543		 * files). */
3544		while(1) {
3545			ret = process_block(a);
3546			if(ret == ARCHIVE_EOF || ret == ARCHIVE_FATAL)
3547				return ret;
3548
3549			if(rar->cstate.last_write_ptr ==
3550			    rar->cstate.write_ptr) {
3551				/* The block didn't generate any new data,
3552				 * so just process a new block. */
3553				continue;
3554			}
3555
3556			/* The block has generated some new data, so break
3557			 * the loop. */
3558			break;
3559		}
3560	}
3561
3562	/* Try to run filters. If filters won't be applied, it means that
3563	 * insufficient data was generated. */
3564	ret = apply_filters(a);
3565	if(ret == ARCHIVE_RETRY) {
3566		return ARCHIVE_OK;
3567	} else if(ret == ARCHIVE_FATAL) {
3568		return ARCHIVE_FATAL;
3569	}
3570
3571	/* If apply_filters() will return ARCHIVE_OK, we can continue here. */
3572
3573	if(cdeque_size(&rar->cstate.filters) > 0) {
3574		/* Check if we can write something before hitting first
3575		 * filter. */
3576		struct filter_info* flt;
3577
3578		/* Get the block_start offset from the first filter. */
3579		if(CDE_OK != cdeque_front(&rar->cstate.filters,
3580		    cdeque_filter_p(&flt)))
3581		{
3582			archive_set_error(&a->archive,
3583			    ARCHIVE_ERRNO_PROGRAMMER,
3584			    "Can't read first filter");
3585			return ARCHIVE_FATAL;
3586		}
3587
3588		max_end_pos = rar5_min(flt->block_start,
3589		    rar->cstate.write_ptr);
3590	} else {
3591		/* There are no filters defined, or all filters were applied.
3592		 * This means we can just store the data without any
3593		 * postprocessing. */
3594		max_end_pos = rar->cstate.write_ptr;
3595	}
3596
3597	if(max_end_pos == rar->cstate.last_write_ptr) {
3598		/* We can't write anything yet. The block uncompression
3599		 * function did not generate enough data, and no filter can be
3600		 * applied. At the same time we don't have any data that can be
3601		 *  stored without filter postprocessing. This means we need to
3602		 *  wait for more data to be generated, so we can apply the
3603		 * filters.
3604		 *
3605		 * Signal the caller that we need more data to be able to do
3606		 * anything.
3607		 */
3608		return ARCHIVE_RETRY;
3609	} else {
3610		/* We can write the data before hitting the first filter.
3611		 * So let's do it. The push_window_data() function will
3612		 * effectively return the selected data block to the user
3613		 * application. */
3614		push_window_data(a, rar, rar->cstate.last_write_ptr,
3615		    max_end_pos);
3616		rar->cstate.last_write_ptr = max_end_pos;
3617	}
3618
3619	return ARCHIVE_OK;
3620}
3621
3622static int uncompress_file(struct archive_read* a) {
3623	int ret;
3624
3625	while(1) {
3626		/* Sometimes the uncompression function will return a
3627		 * 'retry' signal. If this will happen, we have to retry
3628		 * the function. */
3629		ret = do_uncompress_file(a);
3630		if(ret != ARCHIVE_RETRY)
3631			return ret;
3632	}
3633}
3634
3635
3636static int do_unstore_file(struct archive_read* a,
3637    struct rar5* rar, const void** buf, size_t* size, int64_t* offset)
3638{
3639	const uint8_t* p;
3640
3641	if(rar->file.bytes_remaining == 0 && rar->main.volume > 0 &&
3642	    rar->generic.split_after > 0)
3643	{
3644		int ret;
3645
3646		rar->cstate.switch_multivolume = 1;
3647		ret = advance_multivolume(a);
3648		rar->cstate.switch_multivolume = 0;
3649
3650		if(ret != ARCHIVE_OK) {
3651			/* Failed to advance to next multivolume archive
3652			 * file. */
3653			return ret;
3654		}
3655	}
3656
3657	size_t to_read = rar5_min(rar->file.bytes_remaining, 64 * 1024);
3658	if(to_read == 0) {
3659		return ARCHIVE_EOF;
3660	}
3661
3662	if(!read_ahead(a, to_read, &p)) {
3663		archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
3664		    "I/O error when unstoring file");
3665		return ARCHIVE_FATAL;
3666	}
3667
3668	if(ARCHIVE_OK != consume(a, to_read)) {
3669		return ARCHIVE_EOF;
3670	}
3671
3672	if(buf)    *buf = p;
3673	if(size)   *size = to_read;
3674	if(offset) *offset = rar->cstate.last_unstore_ptr;
3675
3676	rar->file.bytes_remaining -= to_read;
3677	rar->cstate.last_unstore_ptr += to_read;
3678
3679	update_crc(rar, p, to_read);
3680	return ARCHIVE_OK;
3681}
3682
3683static int do_unpack(struct archive_read* a, struct rar5* rar,
3684    const void** buf, size_t* size, int64_t* offset)
3685{
3686	enum COMPRESSION_METHOD {
3687		STORE = 0, FASTEST = 1, FAST = 2, NORMAL = 3, GOOD = 4,
3688		BEST = 5
3689	};
3690
3691	if(rar->file.service > 0) {
3692		return do_unstore_file(a, rar, buf, size, offset);
3693	} else {
3694		switch(rar->cstate.method) {
3695			case STORE:
3696				return do_unstore_file(a, rar, buf, size,
3697				    offset);
3698			case FASTEST:
3699				/* fallthrough */
3700			case FAST:
3701				/* fallthrough */
3702			case NORMAL:
3703				/* fallthrough */
3704			case GOOD:
3705				/* fallthrough */
3706			case BEST:
3707				return uncompress_file(a);
3708			default:
3709				archive_set_error(&a->archive,
3710				    ARCHIVE_ERRNO_FILE_FORMAT,
3711				    "Compression method not supported: 0x%x",
3712				    rar->cstate.method);
3713
3714				return ARCHIVE_FATAL;
3715		}
3716	}
3717
3718#if !defined WIN32
3719	/* Not reached. */
3720	return ARCHIVE_OK;
3721#endif
3722}
3723
3724static int verify_checksums(struct archive_read* a) {
3725	int verify_crc;
3726	struct rar5* rar = get_context(a);
3727
3728	/* Check checksums only when actually unpacking the data. There's no
3729	 * need to calculate checksum when we're skipping data in solid archives
3730	 * (skipping in solid archives is the same thing as unpacking compressed
3731	 * data and discarding the result). */
3732
3733	if(!rar->skip_mode) {
3734		/* Always check checksums if we're not in skip mode */
3735		verify_crc = 1;
3736	} else {
3737		/* We can override the logic above with a compile-time option
3738		 * NO_CRC_ON_SOLID_SKIP. This option is used during debugging,
3739		 * and it will check checksums of unpacked data even when
3740		 * we're skipping it. */
3741
3742#if defined CHECK_CRC_ON_SOLID_SKIP
3743		/* Debug case */
3744		verify_crc = 1;
3745#else
3746		/* Normal case */
3747		verify_crc = 0;
3748#endif
3749	}
3750
3751	if(verify_crc) {
3752		/* During unpacking, on each unpacked block we're calling the
3753		 * update_crc() function. Since we are here, the unpacking
3754		 * process is already over and we can check if calculated
3755		 * checksum (CRC32 or BLAKE2sp) is the same as what is stored
3756		 * in the archive. */
3757		if(rar->file.stored_crc32 > 0) {
3758			/* Check CRC32 only when the file contains a CRC32
3759			 * value for this file. */
3760
3761			if(rar->file.calculated_crc32 !=
3762			    rar->file.stored_crc32) {
3763				/* Checksums do not match; the unpacked file
3764				 * is corrupted. */
3765
3766				DEBUG_CODE {
3767					printf("Checksum error: CRC32 "
3768					    "(was: %08x, expected: %08x)\n",
3769					    rar->file.calculated_crc32,
3770					    rar->file.stored_crc32);
3771				}
3772
3773#ifndef DONT_FAIL_ON_CRC_ERROR
3774				archive_set_error(&a->archive,
3775				    ARCHIVE_ERRNO_FILE_FORMAT,
3776				    "Checksum error: CRC32");
3777				return ARCHIVE_FATAL;
3778#endif
3779			} else {
3780				DEBUG_CODE {
3781					printf("Checksum OK: CRC32 "
3782					    "(%08x/%08x)\n",
3783					    rar->file.stored_crc32,
3784					    rar->file.calculated_crc32);
3785				}
3786			}
3787		}
3788
3789		if(rar->file.has_blake2 > 0) {
3790			/* BLAKE2sp is an optional checksum algorithm that is
3791			 * added to RARv5 archives when using the `-htb` switch
3792			 *  during creation of archive.
3793			 *
3794			 * We now finalize the hash calculation by calling the
3795			 * `final` function. This will generate the final hash
3796			 * value we can use to compare it with the BLAKE2sp
3797			 * checksum that is stored in the archive.
3798			 *
3799			 * The return value of this `final` function is not
3800			 * very helpful, as it guards only against improper use.
3801 			 * This is why we're explicitly ignoring it. */
3802
3803			uint8_t b2_buf[32];
3804			(void) blake2sp_final(&rar->file.b2state, b2_buf, 32);
3805
3806			if(memcmp(&rar->file.blake2sp, b2_buf, 32) != 0) {
3807#ifndef DONT_FAIL_ON_CRC_ERROR
3808				archive_set_error(&a->archive,
3809				    ARCHIVE_ERRNO_FILE_FORMAT,
3810				    "Checksum error: BLAKE2");
3811
3812				return ARCHIVE_FATAL;
3813#endif
3814			}
3815		}
3816	}
3817
3818	/* Finalization for this file has been successfully completed. */
3819	return ARCHIVE_OK;
3820}
3821
3822static int verify_global_checksums(struct archive_read* a) {
3823	return verify_checksums(a);
3824}
3825
3826static int rar5_read_data(struct archive_read *a, const void **buff,
3827    size_t *size, int64_t *offset) {
3828	int ret;
3829	struct rar5* rar = get_context(a);
3830
3831	if(rar->file.dir > 0) {
3832		/* Don't process any data if this file entry was declared
3833		 * as a directory. This is needed, because entries marked as
3834		 * directory doesn't have any dictionary buffer allocated, so
3835		 * it's impossible to perform any decompression. */
3836		archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT,
3837		    "Can't decompress an entry marked as a directory");
3838		return ARCHIVE_FAILED;
3839	}
3840
3841	if(!rar->skip_mode && (rar->cstate.last_write_ptr > rar->file.unpacked_size)) {
3842		archive_set_error(&a->archive, ARCHIVE_ERRNO_PROGRAMMER,
3843		    "Unpacker has written too many bytes");
3844		return ARCHIVE_FATAL;
3845	}
3846
3847	ret = use_data(rar, buff, size, offset);
3848	if(ret == ARCHIVE_OK) {
3849		return ret;
3850	}
3851
3852	if(rar->file.eof == 1) {
3853		return ARCHIVE_EOF;
3854	}
3855
3856	ret = do_unpack(a, rar, buff, size, offset);
3857	if(ret != ARCHIVE_OK) {
3858		return ret;
3859	}
3860
3861	if(rar->file.bytes_remaining == 0 &&
3862			rar->cstate.last_write_ptr == rar->file.unpacked_size)
3863	{
3864		/* If all bytes of current file were processed, run
3865		 * finalization.
3866		 *
3867		 * Finalization will check checksum against proper values. If
3868		 * some of the checksums will not match, we'll return an error
3869		 * value in the last `archive_read_data` call to signal an error
3870		 * to the user. */
3871
3872		rar->file.eof = 1;
3873		return verify_global_checksums(a);
3874	}
3875
3876	return ARCHIVE_OK;
3877}
3878
3879static int rar5_read_data_skip(struct archive_read *a) {
3880	struct rar5* rar = get_context(a);
3881
3882	if(rar->main.solid) {
3883		/* In solid archives, instead of skipping the data, we need to
3884		 * extract it, and dispose the result. The side effect of this
3885		 * operation will be setting up the initial window buffer state
3886		 * needed to be able to extract the selected file. */
3887
3888		int ret;
3889
3890		/* Make sure to process all blocks in the compressed stream. */
3891		while(rar->file.bytes_remaining > 0) {
3892			/* Setting the "skip mode" will allow us to skip
3893			 * checksum checks during data skipping. Checking the
3894			 * checksum of skipped data isn't really necessary and
3895			 * it's only slowing things down.
3896			 *
3897			 * This is incremented instead of setting to 1 because
3898			 * this data skipping function can be called
3899			 * recursively. */
3900			rar->skip_mode++;
3901
3902			/* We're disposing 1 block of data, so we use triple
3903			 * NULLs in arguments. */
3904			ret = rar5_read_data(a, NULL, NULL, NULL);
3905
3906			/* Turn off "skip mode". */
3907			rar->skip_mode--;
3908
3909			if(ret < 0) {
3910				/* Propagate any potential error conditions
3911				 * to the caller. */
3912				return ret;
3913			}
3914		}
3915	} else {
3916		/* In standard archives, we can just jump over the compressed
3917		 * stream. Each file in non-solid archives starts from an empty
3918		 * window buffer. */
3919
3920		if(ARCHIVE_OK != consume(a, rar->file.bytes_remaining)) {
3921			return ARCHIVE_FATAL;
3922		}
3923
3924		rar->file.bytes_remaining = 0;
3925	}
3926
3927	return ARCHIVE_OK;
3928}
3929
3930static int64_t rar5_seek_data(struct archive_read *a, int64_t offset,
3931    int whence)
3932{
3933	(void) a;
3934	(void) offset;
3935	(void) whence;
3936
3937	/* We're a streaming unpacker, and we don't support seeking. */
3938
3939	return ARCHIVE_FATAL;
3940}
3941
3942static int rar5_cleanup(struct archive_read *a) {
3943	struct rar5* rar = get_context(a);
3944
3945	free(rar->cstate.window_buf);
3946	free(rar->cstate.filtered_buf);
3947
3948	free(rar->vol.push_buf);
3949
3950	free_filters(rar);
3951	cdeque_free(&rar->cstate.filters);
3952
3953	free(rar);
3954	a->format->data = NULL;
3955
3956	return ARCHIVE_OK;
3957}
3958
3959static int rar5_capabilities(struct archive_read * a) {
3960	(void) a;
3961	return 0;
3962}
3963
3964static int rar5_has_encrypted_entries(struct archive_read *_a) {
3965	(void) _a;
3966
3967	/* Unsupported for now. */
3968	return ARCHIVE_READ_FORMAT_ENCRYPTION_UNSUPPORTED;
3969}
3970
3971static int rar5_init(struct rar5* rar) {
3972	ssize_t i;
3973
3974	memset(rar, 0, sizeof(struct rar5));
3975
3976	/* Decrypt the magic signature pattern. Check the comment near the
3977	 * `rar5_signature` symbol to read the rationale behind this. */
3978
3979	if(rar5_signature[0] == 243) {
3980		for(i = 0; i < rar5_signature_size; i++) {
3981			rar5_signature[i] ^= 0xA1;
3982		}
3983	}
3984
3985	if(CDE_OK != cdeque_init(&rar->cstate.filters, 8192))
3986		return ARCHIVE_FATAL;
3987
3988	return ARCHIVE_OK;
3989}
3990
3991int archive_read_support_format_rar5(struct archive *_a) {
3992	struct archive_read* ar;
3993	int ret;
3994	struct rar5* rar;
3995
3996	if(ARCHIVE_OK != (ret = get_archive_read(_a, &ar)))
3997		return ret;
3998
3999	rar = malloc(sizeof(*rar));
4000	if(rar == NULL) {
4001		archive_set_error(&ar->archive, ENOMEM,
4002		    "Can't allocate rar5 data");
4003		return ARCHIVE_FATAL;
4004	}
4005
4006	if(ARCHIVE_OK != rar5_init(rar)) {
4007		archive_set_error(&ar->archive, ENOMEM,
4008		    "Can't allocate rar5 filter buffer");
4009		return ARCHIVE_FATAL;
4010	}
4011
4012	ret = __archive_read_register_format(ar,
4013	    rar,
4014	    "rar5",
4015	    rar5_bid,
4016	    rar5_options,
4017	    rar5_read_header,
4018	    rar5_read_data,
4019	    rar5_read_data_skip,
4020	    rar5_seek_data,
4021	    rar5_cleanup,
4022	    rar5_capabilities,
4023	    rar5_has_encrypted_entries);
4024
4025	if(ret != ARCHIVE_OK) {
4026		(void) rar5_cleanup(ar);
4027	}
4028
4029	return ret;
4030}
4031