1/*
2 * FILE:	sha2.c
3 * AUTHOR:	Aaron D. Gifford - http://www.aarongifford.com/
4 *
5 * Copyright (c) 2000-2001, Aaron D. Gifford
6 * All rights reserved.
7 *
8 * Modified by Jelte Jansen to fit in ldns, and not clash with any
9 * system-defined SHA code.
10 * Changes:
11 * - Renamed (external) functions and constants to fit ldns style
12 * - Removed _End and _Data functions
13 * - Added ldns_shaX(data, len, digest) convenience functions
14 * - Removed prototypes of _Transform functions and made those static
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 *    notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 *    notice, this list of conditions and the following disclaimer in the
23 *    documentation and/or other materials provided with the distribution.
24 * 3. Neither the name of the copyright holder nor the names of contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 * $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
41 */
42
43#include <ldns/config.h>
44#include <string.h>	/* memcpy()/memset() or bcopy()/bzero() */
45#include <assert.h>	/* assert() */
46#include <ldns/sha2.h>
47
48/*
49 * ASSERT NOTE:
50 * Some sanity checking code is included using assert().  On my FreeBSD
51 * system, this additional code can be removed by compiling with NDEBUG
52 * defined.  Check your own systems manpage on assert() to see how to
53 * compile WITHOUT the sanity checking code on your system.
54 *
55 * UNROLLED TRANSFORM LOOP NOTE:
56 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
57 * loop version for the hash transform rounds (defined using macros
58 * later in this file).  Either define on the command line, for example:
59 *
60 *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
61 *
62 * or define below:
63 *
64 *   #define SHA2_UNROLL_TRANSFORM
65 *
66 */
67
68
69/*** SHA-256/384/512 Machine Architecture Definitions *****************/
70/*
71 * BYTE_ORDER NOTE:
72 *
73 * Please make sure that your system defines BYTE_ORDER.  If your
74 * architecture is little-endian, make sure it also defines
75 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
76 * equivilent.
77 *
78 * If your system does not define the above, then you can do so by
79 * hand like this:
80 *
81 *   #define LITTLE_ENDIAN 1234
82 *   #define BIG_ENDIAN    4321
83 *
84 * And for little-endian machines, add:
85 *
86 *   #define BYTE_ORDER LITTLE_ENDIAN
87 *
88 * Or for big-endian machines:
89 *
90 *   #define BYTE_ORDER BIG_ENDIAN
91 *
92 * The FreeBSD machine this was written on defines BYTE_ORDER
93 * appropriately by including <sys/types.h> (which in turn includes
94 * <machine/endian.h> where the appropriate definitions are actually
95 * made).
96 */
97#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
98#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
99#endif
100
101typedef uint8_t  sha2_byte;	/* Exactly 1 byte */
102typedef uint32_t sha2_word32;	/* Exactly 4 bytes */
103#ifdef S_SPLINT_S
104typedef unsigned long long sha2_word64; /* lint 8 bytes */
105#else
106typedef uint64_t sha2_word64;	/* Exactly 8 bytes */
107#endif
108
109/*** SHA-256/384/512 Various Length Definitions ***********************/
110/* NOTE: Most of these are in sha2.h */
111#define ldns_sha256_SHORT_BLOCK_LENGTH	(LDNS_SHA256_BLOCK_LENGTH - 8)
112#define ldns_sha384_SHORT_BLOCK_LENGTH	(LDNS_SHA384_BLOCK_LENGTH - 16)
113#define ldns_sha512_SHORT_BLOCK_LENGTH	(LDNS_SHA512_BLOCK_LENGTH - 16)
114
115
116/*** ENDIAN REVERSAL MACROS *******************************************/
117#if BYTE_ORDER == LITTLE_ENDIAN
118#define REVERSE32(w,x)	{ \
119	sha2_word32 tmp = (w); \
120	tmp = (tmp >> 16) | (tmp << 16); \
121	(x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
122}
123#ifndef S_SPLINT_S
124#define REVERSE64(w,x)	{ \
125	sha2_word64 tmp = (w); \
126	tmp = (tmp >> 32) | (tmp << 32); \
127	tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
128	      ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
129	(x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
130	      ((tmp & 0x0000ffff0000ffffULL) << 16); \
131}
132#else /* splint */
133#define REVERSE64(w,x) /* splint */
134#endif /* splint */
135#endif /* BYTE_ORDER == LITTLE_ENDIAN */
136
137/*
138 * Macro for incrementally adding the unsigned 64-bit integer n to the
139 * unsigned 128-bit integer (represented using a two-element array of
140 * 64-bit words):
141 */
142#define ADDINC128(w,n)	{ \
143	(w)[0] += (sha2_word64)(n); \
144	if ((w)[0] < (n)) { \
145		(w)[1]++; \
146	} \
147}
148#ifdef S_SPLINT_S
149#undef ADDINC128
150#define ADDINC128(w,n) /* splint */
151#endif
152
153/*
154 * Macros for copying blocks of memory and for zeroing out ranges
155 * of memory.  Using these macros makes it easy to switch from
156 * using memset()/memcpy() and using bzero()/bcopy().
157 *
158 * Please define either SHA2_USE_MEMSET_MEMCPY or define
159 * SHA2_USE_BZERO_BCOPY depending on which function set you
160 * choose to use:
161 */
162#if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
163/* Default to memset()/memcpy() if no option is specified */
164#define	SHA2_USE_MEMSET_MEMCPY	1
165#endif
166#if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
167/* Abort with an error if BOTH options are defined */
168#error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
169#endif
170
171#ifdef SHA2_USE_MEMSET_MEMCPY
172#define MEMSET_BZERO(p,l)	memset((p), 0, (l))
173#define MEMCPY_BCOPY(d,s,l)	memcpy((d), (s), (l))
174#endif
175#ifdef SHA2_USE_BZERO_BCOPY
176#define MEMSET_BZERO(p,l)	bzero((p), (l))
177#define MEMCPY_BCOPY(d,s,l)	bcopy((s), (d), (l))
178#endif
179
180
181/*** THE SIX LOGICAL FUNCTIONS ****************************************/
182/*
183 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
184 *
185 *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
186 *   S is a ROTATION) because the SHA-256/384/512 description document
187 *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
188 *   same "backwards" definition.
189 */
190/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
191#define R(b,x) 		((x) >> (b))
192/* 32-bit Rotate-right (used in SHA-256): */
193#define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
194/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
195#define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
196
197/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
198#define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
199#define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
200
201/* Four of six logical functions used in SHA-256: */
202#define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
203#define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
204#define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
205#define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
206
207/* Four of six logical functions used in SHA-384 and SHA-512: */
208#define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
209#define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
210#define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
211#define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
212
213/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
214/* Hash constant words K for SHA-256: */
215static const sha2_word32 K256[64] = {
216	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
217	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
218	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
219	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
220	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
221	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
222	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
223	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
224	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
225	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
226	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
227	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
228	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
229	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
230	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
231	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
232};
233
234/* initial hash value H for SHA-256: */
235static const sha2_word32 ldns_sha256_initial_hash_value[8] = {
236	0x6a09e667UL,
237	0xbb67ae85UL,
238	0x3c6ef372UL,
239	0xa54ff53aUL,
240	0x510e527fUL,
241	0x9b05688cUL,
242	0x1f83d9abUL,
243	0x5be0cd19UL
244};
245
246/* Hash constant words K for SHA-384 and SHA-512: */
247static const sha2_word64 K512[80] = {
248	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
249	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
250	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
251	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
252	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
253	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
254	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
255	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
256	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
257	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
258	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
259	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
260	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
261	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
262	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
263	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
264	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
265	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
266	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
267	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
268	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
269	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
270	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
271	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
272	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
273	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
274	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
275	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
276	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
277	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
278	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
279	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
280	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
281	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
282	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
283	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
284	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
285	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
286	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
287	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
288};
289
290/* initial hash value H for SHA-384 */
291static const sha2_word64 sha384_initial_hash_value[8] = {
292	0xcbbb9d5dc1059ed8ULL,
293	0x629a292a367cd507ULL,
294	0x9159015a3070dd17ULL,
295	0x152fecd8f70e5939ULL,
296	0x67332667ffc00b31ULL,
297	0x8eb44a8768581511ULL,
298	0xdb0c2e0d64f98fa7ULL,
299	0x47b5481dbefa4fa4ULL
300};
301
302/* initial hash value H for SHA-512 */
303static const sha2_word64 sha512_initial_hash_value[8] = {
304	0x6a09e667f3bcc908ULL,
305	0xbb67ae8584caa73bULL,
306	0x3c6ef372fe94f82bULL,
307	0xa54ff53a5f1d36f1ULL,
308	0x510e527fade682d1ULL,
309	0x9b05688c2b3e6c1fULL,
310	0x1f83d9abfb41bd6bULL,
311	0x5be0cd19137e2179ULL
312};
313
314/*** SHA-256: *********************************************************/
315void ldns_sha256_init(ldns_sha256_CTX* context) {
316	if (context == (ldns_sha256_CTX*)0) {
317		return;
318	}
319	MEMCPY_BCOPY(context->state, ldns_sha256_initial_hash_value, LDNS_SHA256_DIGEST_LENGTH);
320	MEMSET_BZERO(context->buffer, LDNS_SHA256_BLOCK_LENGTH);
321	context->bitcount = 0;
322}
323
324#ifdef SHA2_UNROLL_TRANSFORM
325
326/* Unrolled SHA-256 round macros: */
327
328#if BYTE_ORDER == LITTLE_ENDIAN
329
330#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
331	REVERSE32(*data++, W256[j]); \
332	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
333             K256[j] + W256[j]; \
334	(d) += T1; \
335	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
336	j++
337
338
339#else /* BYTE_ORDER == LITTLE_ENDIAN */
340
341#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)	\
342	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
343	     K256[j] + (W256[j] = *data++); \
344	(d) += T1; \
345	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
346	j++
347
348#endif /* BYTE_ORDER == LITTLE_ENDIAN */
349
350#define ROUND256(a,b,c,d,e,f,g,h)	\
351	s0 = W256[(j+1)&0x0f]; \
352	s0 = sigma0_256(s0); \
353	s1 = W256[(j+14)&0x0f]; \
354	s1 = sigma1_256(s1); \
355	T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
356	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
357	(d) += T1; \
358	(h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
359	j++
360
361static void ldns_sha256_Transform(ldns_sha256_CTX* context,
362                                  const sha2_word32* data) {
363	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
364	sha2_word32	T1, *W256;
365	int		j;
366
367	W256 = (sha2_word32*)context->buffer;
368
369	/* initialize registers with the prev. intermediate value */
370	a = context->state[0];
371	b = context->state[1];
372	c = context->state[2];
373	d = context->state[3];
374	e = context->state[4];
375	f = context->state[5];
376	g = context->state[6];
377	h = context->state[7];
378
379	j = 0;
380	do {
381		/* Rounds 0 to 15 (unrolled): */
382		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
383		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
384		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
385		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
386		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
387		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
388		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
389		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
390	} while (j < 16);
391
392	/* Now for the remaining rounds to 64: */
393	do {
394		ROUND256(a,b,c,d,e,f,g,h);
395		ROUND256(h,a,b,c,d,e,f,g);
396		ROUND256(g,h,a,b,c,d,e,f);
397		ROUND256(f,g,h,a,b,c,d,e);
398		ROUND256(e,f,g,h,a,b,c,d);
399		ROUND256(d,e,f,g,h,a,b,c);
400		ROUND256(c,d,e,f,g,h,a,b);
401		ROUND256(b,c,d,e,f,g,h,a);
402	} while (j < 64);
403
404	/* Compute the current intermediate hash value */
405	context->state[0] += a;
406	context->state[1] += b;
407	context->state[2] += c;
408	context->state[3] += d;
409	context->state[4] += e;
410	context->state[5] += f;
411	context->state[6] += g;
412	context->state[7] += h;
413
414	/* Clean up */
415	a = b = c = d = e = f = g = h = T1 = 0;
416}
417
418#else /* SHA2_UNROLL_TRANSFORM */
419
420static void ldns_sha256_Transform(ldns_sha256_CTX* context,
421                                  const sha2_word32* data) {
422	sha2_word32	a, b, c, d, e, f, g, h, s0, s1;
423	sha2_word32	T1, T2, *W256;
424	int		j;
425
426	W256 = (sha2_word32*)context->buffer;
427
428	/* initialize registers with the prev. intermediate value */
429	a = context->state[0];
430	b = context->state[1];
431	c = context->state[2];
432	d = context->state[3];
433	e = context->state[4];
434	f = context->state[5];
435	g = context->state[6];
436	h = context->state[7];
437
438	j = 0;
439	do {
440#if BYTE_ORDER == LITTLE_ENDIAN
441		/* Copy data while converting to host byte order */
442		REVERSE32(*data++,W256[j]);
443		/* Apply the SHA-256 compression function to update a..h */
444		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
445#else /* BYTE_ORDER == LITTLE_ENDIAN */
446		/* Apply the SHA-256 compression function to update a..h with copy */
447		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
448#endif /* BYTE_ORDER == LITTLE_ENDIAN */
449		T2 = Sigma0_256(a) + Maj(a, b, c);
450		h = g;
451		g = f;
452		f = e;
453		e = d + T1;
454		d = c;
455		c = b;
456		b = a;
457		a = T1 + T2;
458
459		j++;
460	} while (j < 16);
461
462	do {
463		/* Part of the message block expansion: */
464		s0 = W256[(j+1)&0x0f];
465		s0 = sigma0_256(s0);
466		s1 = W256[(j+14)&0x0f];
467		s1 = sigma1_256(s1);
468
469		/* Apply the SHA-256 compression function to update a..h */
470		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
471		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
472		T2 = Sigma0_256(a) + Maj(a, b, c);
473		h = g;
474		g = f;
475		f = e;
476		e = d + T1;
477		d = c;
478		c = b;
479		b = a;
480		a = T1 + T2;
481
482		j++;
483	} while (j < 64);
484
485	/* Compute the current intermediate hash value */
486	context->state[0] += a;
487	context->state[1] += b;
488	context->state[2] += c;
489	context->state[3] += d;
490	context->state[4] += e;
491	context->state[5] += f;
492	context->state[6] += g;
493	context->state[7] += h;
494
495	/* Clean up */
496	a = b = c = d = e = f = g = h = T1 = T2 = 0;
497}
498
499#endif /* SHA2_UNROLL_TRANSFORM */
500
501void ldns_sha256_update(ldns_sha256_CTX* context, const sha2_byte *data, size_t len) {
502	size_t freespace, usedspace;
503
504	if (len == 0) {
505		/* Calling with no data is valid - we do nothing */
506		return;
507	}
508
509	/* Sanity check: */
510	assert(context != (ldns_sha256_CTX*)0 && data != (sha2_byte*)0);
511
512	usedspace = (context->bitcount >> 3) % LDNS_SHA256_BLOCK_LENGTH;
513	if (usedspace > 0) {
514		/* Calculate how much free space is available in the buffer */
515		freespace = LDNS_SHA256_BLOCK_LENGTH - usedspace;
516
517		if (len >= freespace) {
518			/* Fill the buffer completely and process it */
519			MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
520			context->bitcount += freespace << 3;
521			len -= freespace;
522			data += freespace;
523			ldns_sha256_Transform(context, (sha2_word32*)context->buffer);
524		} else {
525			/* The buffer is not yet full */
526			MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
527			context->bitcount += len << 3;
528			/* Clean up: */
529			usedspace = freespace = 0;
530			return;
531		}
532	}
533	while (len >= LDNS_SHA256_BLOCK_LENGTH) {
534		/* Process as many complete blocks as we can */
535		ldns_sha256_Transform(context, (sha2_word32*)data);
536		context->bitcount += LDNS_SHA256_BLOCK_LENGTH << 3;
537		len -= LDNS_SHA256_BLOCK_LENGTH;
538		data += LDNS_SHA256_BLOCK_LENGTH;
539	}
540	if (len > 0) {
541		/* There's left-overs, so save 'em */
542		MEMCPY_BCOPY(context->buffer, data, len);
543		context->bitcount += len << 3;
544	}
545	/* Clean up: */
546	usedspace = freespace = 0;
547}
548
549typedef union _ldns_sha2_buffer_union {
550        uint8_t*  theChars;
551        uint64_t* theLongs;
552} ldns_sha2_buffer_union;
553
554void ldns_sha256_final(sha2_byte digest[], ldns_sha256_CTX* context) {
555	sha2_word32	*d = (sha2_word32*)digest;
556	size_t usedspace;
557	ldns_sha2_buffer_union cast_var;
558
559	/* Sanity check: */
560	assert(context != (ldns_sha256_CTX*)0);
561
562	/* If no digest buffer is passed, we don't bother doing this: */
563	if (digest != (sha2_byte*)0) {
564		usedspace = (context->bitcount >> 3) % LDNS_SHA256_BLOCK_LENGTH;
565#if BYTE_ORDER == LITTLE_ENDIAN
566		/* Convert FROM host byte order */
567		REVERSE64(context->bitcount,context->bitcount);
568#endif
569		if (usedspace > 0) {
570			/* Begin padding with a 1 bit: */
571			context->buffer[usedspace++] = 0x80;
572
573			if (usedspace <= ldns_sha256_SHORT_BLOCK_LENGTH) {
574				/* Set-up for the last transform: */
575				MEMSET_BZERO(&context->buffer[usedspace], ldns_sha256_SHORT_BLOCK_LENGTH - usedspace);
576			} else {
577				if (usedspace < LDNS_SHA256_BLOCK_LENGTH) {
578					MEMSET_BZERO(&context->buffer[usedspace], LDNS_SHA256_BLOCK_LENGTH - usedspace);
579				}
580				/* Do second-to-last transform: */
581				ldns_sha256_Transform(context, (sha2_word32*)context->buffer);
582
583				/* And set-up for the last transform: */
584				MEMSET_BZERO(context->buffer, ldns_sha256_SHORT_BLOCK_LENGTH);
585			}
586		} else {
587			/* Set-up for the last transform: */
588			MEMSET_BZERO(context->buffer, ldns_sha256_SHORT_BLOCK_LENGTH);
589
590			/* Begin padding with a 1 bit: */
591			*context->buffer = 0x80;
592		}
593		/* Set the bit count: */
594		cast_var.theChars = context->buffer;
595		cast_var.theLongs[ldns_sha256_SHORT_BLOCK_LENGTH / 8] = context->bitcount;
596
597		/* final transform: */
598		ldns_sha256_Transform(context, (sha2_word32*)context->buffer);
599
600#if BYTE_ORDER == LITTLE_ENDIAN
601		{
602			/* Convert TO host byte order */
603			int	j;
604			for (j = 0; j < 8; j++) {
605				REVERSE32(context->state[j],context->state[j]);
606				*d++ = context->state[j];
607			}
608		}
609#else
610		MEMCPY_BCOPY(d, context->state, LDNS_SHA256_DIGEST_LENGTH);
611#endif
612	}
613
614	/* Clean up state data: */
615	MEMSET_BZERO(context, sizeof(ldns_sha256_CTX));
616	usedspace = 0;
617}
618
619unsigned char *
620ldns_sha256(unsigned char *data, unsigned int data_len, unsigned char *digest)
621{
622    ldns_sha256_CTX ctx;
623    ldns_sha256_init(&ctx);
624    ldns_sha256_update(&ctx, data, data_len);
625    ldns_sha256_final(digest, &ctx);
626    return digest;
627}
628
629/*** SHA-512: *********************************************************/
630void ldns_sha512_init(ldns_sha512_CTX* context) {
631	if (context == (ldns_sha512_CTX*)0) {
632		return;
633	}
634	MEMCPY_BCOPY(context->state, sha512_initial_hash_value, LDNS_SHA512_DIGEST_LENGTH);
635	MEMSET_BZERO(context->buffer, LDNS_SHA512_BLOCK_LENGTH);
636	context->bitcount[0] = context->bitcount[1] =  0;
637}
638
639#ifdef SHA2_UNROLL_TRANSFORM
640
641/* Unrolled SHA-512 round macros: */
642#if BYTE_ORDER == LITTLE_ENDIAN
643
644#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
645	REVERSE64(*data++, W512[j]); \
646	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
647             K512[j] + W512[j]; \
648	(d) += T1, \
649	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
650	j++
651
652
653#else /* BYTE_ORDER == LITTLE_ENDIAN */
654
655#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h)	\
656	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
657             K512[j] + (W512[j] = *data++); \
658	(d) += T1; \
659	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
660	j++
661
662#endif /* BYTE_ORDER == LITTLE_ENDIAN */
663
664#define ROUND512(a,b,c,d,e,f,g,h)	\
665	s0 = W512[(j+1)&0x0f]; \
666	s0 = sigma0_512(s0); \
667	s1 = W512[(j+14)&0x0f]; \
668	s1 = sigma1_512(s1); \
669	T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
670             (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
671	(d) += T1; \
672	(h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
673	j++
674
675static void ldns_sha512_Transform(ldns_sha512_CTX* context,
676                                  const sha2_word64* data) {
677	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
678	sha2_word64	T1, *W512 = (sha2_word64*)context->buffer;
679	int		j;
680
681	/* initialize registers with the prev. intermediate value */
682	a = context->state[0];
683	b = context->state[1];
684	c = context->state[2];
685	d = context->state[3];
686	e = context->state[4];
687	f = context->state[5];
688	g = context->state[6];
689	h = context->state[7];
690
691	j = 0;
692	do {
693		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
694		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
695		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
696		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
697		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
698		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
699		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
700		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
701	} while (j < 16);
702
703	/* Now for the remaining rounds up to 79: */
704	do {
705		ROUND512(a,b,c,d,e,f,g,h);
706		ROUND512(h,a,b,c,d,e,f,g);
707		ROUND512(g,h,a,b,c,d,e,f);
708		ROUND512(f,g,h,a,b,c,d,e);
709		ROUND512(e,f,g,h,a,b,c,d);
710		ROUND512(d,e,f,g,h,a,b,c);
711		ROUND512(c,d,e,f,g,h,a,b);
712		ROUND512(b,c,d,e,f,g,h,a);
713	} while (j < 80);
714
715	/* Compute the current intermediate hash value */
716	context->state[0] += a;
717	context->state[1] += b;
718	context->state[2] += c;
719	context->state[3] += d;
720	context->state[4] += e;
721	context->state[5] += f;
722	context->state[6] += g;
723	context->state[7] += h;
724
725	/* Clean up */
726	a = b = c = d = e = f = g = h = T1 = 0;
727}
728
729#else /* SHA2_UNROLL_TRANSFORM */
730
731static void ldns_sha512_Transform(ldns_sha512_CTX* context,
732                                  const sha2_word64* data) {
733	sha2_word64	a, b, c, d, e, f, g, h, s0, s1;
734	sha2_word64	T1, T2, *W512 = (sha2_word64*)context->buffer;
735	int		j;
736
737	/* initialize registers with the prev. intermediate value */
738	a = context->state[0];
739	b = context->state[1];
740	c = context->state[2];
741	d = context->state[3];
742	e = context->state[4];
743	f = context->state[5];
744	g = context->state[6];
745	h = context->state[7];
746
747	j = 0;
748	do {
749#if BYTE_ORDER == LITTLE_ENDIAN
750		/* Convert TO host byte order */
751		REVERSE64(*data++, W512[j]);
752		/* Apply the SHA-512 compression function to update a..h */
753		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
754#else /* BYTE_ORDER == LITTLE_ENDIAN */
755		/* Apply the SHA-512 compression function to update a..h with copy */
756		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
757#endif /* BYTE_ORDER == LITTLE_ENDIAN */
758		T2 = Sigma0_512(a) + Maj(a, b, c);
759		h = g;
760		g = f;
761		f = e;
762		e = d + T1;
763		d = c;
764		c = b;
765		b = a;
766		a = T1 + T2;
767
768		j++;
769	} while (j < 16);
770
771	do {
772		/* Part of the message block expansion: */
773		s0 = W512[(j+1)&0x0f];
774		s0 = sigma0_512(s0);
775		s1 = W512[(j+14)&0x0f];
776		s1 =  sigma1_512(s1);
777
778		/* Apply the SHA-512 compression function to update a..h */
779		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
780		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
781		T2 = Sigma0_512(a) + Maj(a, b, c);
782		h = g;
783		g = f;
784		f = e;
785		e = d + T1;
786		d = c;
787		c = b;
788		b = a;
789		a = T1 + T2;
790
791		j++;
792	} while (j < 80);
793
794	/* Compute the current intermediate hash value */
795	context->state[0] += a;
796	context->state[1] += b;
797	context->state[2] += c;
798	context->state[3] += d;
799	context->state[4] += e;
800	context->state[5] += f;
801	context->state[6] += g;
802	context->state[7] += h;
803
804	/* Clean up */
805	a = b = c = d = e = f = g = h = T1 = T2 = 0;
806}
807
808#endif /* SHA2_UNROLL_TRANSFORM */
809
810void ldns_sha512_update(ldns_sha512_CTX* context, const sha2_byte *data, size_t len) {
811	size_t freespace, usedspace;
812
813	if (len == 0) {
814		/* Calling with no data is valid - we do nothing */
815		return;
816	}
817
818	/* Sanity check: */
819	assert(context != (ldns_sha512_CTX*)0 && data != (sha2_byte*)0);
820
821	usedspace = (context->bitcount[0] >> 3) % LDNS_SHA512_BLOCK_LENGTH;
822	if (usedspace > 0) {
823		/* Calculate how much free space is available in the buffer */
824		freespace = LDNS_SHA512_BLOCK_LENGTH - usedspace;
825
826		if (len >= freespace) {
827			/* Fill the buffer completely and process it */
828			MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
829			ADDINC128(context->bitcount, freespace << 3);
830			len -= freespace;
831			data += freespace;
832			ldns_sha512_Transform(context, (sha2_word64*)context->buffer);
833		} else {
834			/* The buffer is not yet full */
835			MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
836			ADDINC128(context->bitcount, len << 3);
837			/* Clean up: */
838			usedspace = freespace = 0;
839			return;
840		}
841	}
842	while (len >= LDNS_SHA512_BLOCK_LENGTH) {
843		/* Process as many complete blocks as we can */
844		ldns_sha512_Transform(context, (sha2_word64*)data);
845		ADDINC128(context->bitcount, LDNS_SHA512_BLOCK_LENGTH << 3);
846		len -= LDNS_SHA512_BLOCK_LENGTH;
847		data += LDNS_SHA512_BLOCK_LENGTH;
848	}
849	if (len > 0) {
850		/* There's left-overs, so save 'em */
851		MEMCPY_BCOPY(context->buffer, data, len);
852		ADDINC128(context->bitcount, len << 3);
853	}
854	/* Clean up: */
855	usedspace = freespace = 0;
856}
857
858static void ldns_sha512_Last(ldns_sha512_CTX* context) {
859	size_t usedspace;
860	ldns_sha2_buffer_union cast_var;
861
862	usedspace = (context->bitcount[0] >> 3) % LDNS_SHA512_BLOCK_LENGTH;
863#if BYTE_ORDER == LITTLE_ENDIAN
864	/* Convert FROM host byte order */
865	REVERSE64(context->bitcount[0],context->bitcount[0]);
866	REVERSE64(context->bitcount[1],context->bitcount[1]);
867#endif
868	if (usedspace > 0) {
869		/* Begin padding with a 1 bit: */
870		context->buffer[usedspace++] = 0x80;
871
872		if (usedspace <= ldns_sha512_SHORT_BLOCK_LENGTH) {
873			/* Set-up for the last transform: */
874			MEMSET_BZERO(&context->buffer[usedspace], ldns_sha512_SHORT_BLOCK_LENGTH - usedspace);
875		} else {
876			if (usedspace < LDNS_SHA512_BLOCK_LENGTH) {
877				MEMSET_BZERO(&context->buffer[usedspace], LDNS_SHA512_BLOCK_LENGTH - usedspace);
878			}
879			/* Do second-to-last transform: */
880			ldns_sha512_Transform(context, (sha2_word64*)context->buffer);
881
882			/* And set-up for the last transform: */
883			MEMSET_BZERO(context->buffer, LDNS_SHA512_BLOCK_LENGTH - 2);
884		}
885	} else {
886		/* Prepare for final transform: */
887		MEMSET_BZERO(context->buffer, ldns_sha512_SHORT_BLOCK_LENGTH);
888
889		/* Begin padding with a 1 bit: */
890		*context->buffer = 0x80;
891	}
892	/* Store the length of input data (in bits): */
893	cast_var.theChars = context->buffer;
894	cast_var.theLongs[ldns_sha512_SHORT_BLOCK_LENGTH / 8] = context->bitcount[1];
895	cast_var.theLongs[ldns_sha512_SHORT_BLOCK_LENGTH / 8 + 1] = context->bitcount[0];
896
897	/* final transform: */
898	ldns_sha512_Transform(context, (sha2_word64*)context->buffer);
899}
900
901void ldns_sha512_final(sha2_byte digest[], ldns_sha512_CTX* context) {
902	sha2_word64	*d = (sha2_word64*)digest;
903
904	/* Sanity check: */
905	assert(context != (ldns_sha512_CTX*)0);
906
907	/* If no digest buffer is passed, we don't bother doing this: */
908	if (digest != (sha2_byte*)0) {
909		ldns_sha512_Last(context);
910
911		/* Save the hash data for output: */
912#if BYTE_ORDER == LITTLE_ENDIAN
913		{
914			/* Convert TO host byte order */
915			int	j;
916			for (j = 0; j < 8; j++) {
917				REVERSE64(context->state[j],context->state[j]);
918				*d++ = context->state[j];
919			}
920		}
921#else
922		MEMCPY_BCOPY(d, context->state, LDNS_SHA512_DIGEST_LENGTH);
923#endif
924	}
925
926	/* Zero out state data */
927	MEMSET_BZERO(context, sizeof(ldns_sha512_CTX));
928}
929
930unsigned char *
931ldns_sha512(unsigned char *data, unsigned int data_len, unsigned char *digest)
932{
933    ldns_sha512_CTX ctx;
934    ldns_sha512_init(&ctx);
935    ldns_sha512_update(&ctx, data, data_len);
936    ldns_sha512_final(digest, &ctx);
937    return digest;
938}
939
940/*** SHA-384: *********************************************************/
941void ldns_sha384_init(ldns_sha384_CTX* context) {
942	if (context == (ldns_sha384_CTX*)0) {
943		return;
944	}
945	MEMCPY_BCOPY(context->state, sha384_initial_hash_value, LDNS_SHA512_DIGEST_LENGTH);
946	MEMSET_BZERO(context->buffer, LDNS_SHA384_BLOCK_LENGTH);
947	context->bitcount[0] = context->bitcount[1] = 0;
948}
949
950void ldns_sha384_update(ldns_sha384_CTX* context, const sha2_byte* data, size_t len) {
951	ldns_sha512_update((ldns_sha512_CTX*)context, data, len);
952}
953
954void ldns_sha384_final(sha2_byte digest[], ldns_sha384_CTX* context) {
955	sha2_word64	*d = (sha2_word64*)digest;
956
957	/* Sanity check: */
958	assert(context != (ldns_sha384_CTX*)0);
959
960	/* If no digest buffer is passed, we don't bother doing this: */
961	if (digest != (sha2_byte*)0) {
962		ldns_sha512_Last((ldns_sha512_CTX*)context);
963
964		/* Save the hash data for output: */
965#if BYTE_ORDER == LITTLE_ENDIAN
966		{
967			/* Convert TO host byte order */
968			int	j;
969			for (j = 0; j < 6; j++) {
970				REVERSE64(context->state[j],context->state[j]);
971				*d++ = context->state[j];
972			}
973		}
974#else
975		MEMCPY_BCOPY(d, context->state, LDNS_SHA384_DIGEST_LENGTH);
976#endif
977	}
978
979	/* Zero out state data */
980	MEMSET_BZERO(context, sizeof(ldns_sha384_CTX));
981}
982
983unsigned char *
984ldns_sha384(unsigned char *data, unsigned int data_len, unsigned char *digest)
985{
986    ldns_sha384_CTX ctx;
987    ldns_sha384_init(&ctx);
988    ldns_sha384_update(&ctx, data, data_len);
989    ldns_sha384_final(digest, &ctx);
990    return digest;
991}
992