1/* Get info from stack frames; convert between frames, blocks,
2   functions and pc values.
3
4   Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5   1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
6   Free Software Foundation, Inc.
7
8   This file is part of GDB.
9
10   This program is free software; you can redistribute it and/or modify
11   it under the terms of the GNU General Public License as published by
12   the Free Software Foundation; either version 2 of the License, or
13   (at your option) any later version.
14
15   This program is distributed in the hope that it will be useful,
16   but WITHOUT ANY WARRANTY; without even the implied warranty of
17   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18   GNU General Public License for more details.
19
20   You should have received a copy of the GNU General Public License
21   along with this program; if not, write to the Free Software
22   Foundation, Inc., 59 Temple Place - Suite 330,
23   Boston, MA 02111-1307, USA.  */
24
25#include "defs.h"
26#include "symtab.h"
27#include "bfd.h"
28#include "objfiles.h"
29#include "frame.h"
30#include "gdbcore.h"
31#include "value.h"		/* for read_register */
32#include "target.h"		/* for target_has_stack */
33#include "inferior.h"		/* for read_pc */
34#include "annotate.h"
35#include "regcache.h"
36#include "gdb_assert.h"
37#include "dummy-frame.h"
38#include "command.h"
39#include "gdbcmd.h"
40#include "block.h"
41
42/* Prototypes for exported functions. */
43
44void _initialize_blockframe (void);
45
46/* Is ADDR inside the startup file?  Note that if your machine has a
47   way to detect the bottom of the stack, there is no need to call
48   this function from DEPRECATED_FRAME_CHAIN_VALID; the reason for
49   doing so is that some machines have no way of detecting bottom of
50   stack.
51
52   A PC of zero is always considered to be the bottom of the stack. */
53
54int
55deprecated_inside_entry_file (CORE_ADDR addr)
56{
57  if (addr == 0)
58    return 1;
59  if (symfile_objfile == 0)
60    return 0;
61  if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT
62      || CALL_DUMMY_LOCATION == AT_SYMBOL)
63    {
64      /* Do not stop backtracing if the pc is in the call dummy
65         at the entry point.  */
66      /* FIXME: Won't always work with zeros for the last two arguments */
67      if (DEPRECATED_PC_IN_CALL_DUMMY (addr, 0, 0))
68	return 0;
69    }
70  return (addr >= symfile_objfile->ei.deprecated_entry_file_lowpc &&
71	  addr < symfile_objfile->ei.deprecated_entry_file_highpc);
72}
73
74/* Test whether PC is in the range of addresses that corresponds to
75   the "main" function.  */
76
77int
78inside_main_func (CORE_ADDR pc)
79{
80  struct minimal_symbol *msymbol;
81
82  if (symfile_objfile == 0)
83    return 0;
84
85  msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
86
87  /* If the address range hasn't been set up at symbol reading time,
88     set it up now.  */
89
90  if (msymbol != NULL
91      && symfile_objfile->ei.main_func_lowpc == INVALID_ENTRY_LOWPC
92      && symfile_objfile->ei.main_func_highpc == INVALID_ENTRY_HIGHPC)
93    {
94      /* brobecker/2003-10-10: We used to rely on lookup_symbol() to
95	 search the symbol associated to the "main" function.
96	 Unfortunately, lookup_symbol() uses the current-language
97	 la_lookup_symbol_nonlocal function to do the global symbol
98	 search.  Depending on the language, this can introduce
99	 certain side-effects, because certain languages, for instance
100	 Ada, may find more than one match.  Therefore we prefer to
101	 search the "main" function symbol using its address rather
102	 than its name.  */
103      struct symbol *mainsym =
104	find_pc_function (SYMBOL_VALUE_ADDRESS (msymbol));
105
106      if (mainsym && SYMBOL_CLASS (mainsym) == LOC_BLOCK)
107	{
108	  symfile_objfile->ei.main_func_lowpc =
109	    BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym));
110	  symfile_objfile->ei.main_func_highpc =
111	    BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym));
112	}
113    }
114
115  /* Not in the normal symbol tables, see if "main" is in the partial
116     symbol table.  If it's not, then give up.  */
117  if (msymbol != NULL && MSYMBOL_TYPE (msymbol) == mst_text)
118    {
119      CORE_ADDR maddr = SYMBOL_VALUE_ADDRESS (msymbol);
120      asection *msect = SYMBOL_BFD_SECTION (msymbol);
121      struct obj_section *osect = find_pc_sect_section (maddr, msect);
122
123      if (osect != NULL)
124	{
125	  int i;
126
127	  /* Step over other symbols at this same address, and symbols
128	     in other sections, to find the next symbol in this
129	     section with a different address.  */
130	  for (i = 1; SYMBOL_LINKAGE_NAME (msymbol + i) != NULL; i++)
131	    {
132	      if (SYMBOL_VALUE_ADDRESS (msymbol + i) != maddr
133		  && SYMBOL_BFD_SECTION (msymbol + i) == msect)
134		break;
135	    }
136
137	  symfile_objfile->ei.main_func_lowpc = maddr;
138
139	  /* Use the lesser of the next minimal symbol in the same
140	     section, or the end of the section, as the end of the
141	     function.  */
142	  if (SYMBOL_LINKAGE_NAME (msymbol + i) != NULL
143	      && SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
144	    symfile_objfile->ei.main_func_highpc =
145	      SYMBOL_VALUE_ADDRESS (msymbol + i);
146	  else
147	    /* We got the start address from the last msymbol in the
148	       objfile.  So the end address is the end of the
149	       section.  */
150	    symfile_objfile->ei.main_func_highpc = osect->endaddr;
151	}
152    }
153
154  return (symfile_objfile->ei.main_func_lowpc <= pc
155	  && symfile_objfile->ei.main_func_highpc > pc);
156}
157
158/* Test whether THIS_FRAME is inside the process entry point function.  */
159
160int
161inside_entry_func (struct frame_info *this_frame)
162{
163  return (get_frame_func (this_frame) == entry_point_address ());
164}
165
166/* Similar to inside_entry_func, but accomodating legacy frame code.  */
167
168static int
169legacy_inside_entry_func (CORE_ADDR pc)
170{
171  if (symfile_objfile == 0)
172    return 0;
173
174  if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
175    {
176      /* Do not stop backtracing if the program counter is in the call
177         dummy at the entry point.  */
178      /* FIXME: This won't always work with zeros for the last two
179         arguments.  */
180      if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
181	return 0;
182    }
183
184  return (symfile_objfile->ei.entry_func_lowpc <= pc
185	  && symfile_objfile->ei.entry_func_highpc > pc);
186}
187
188/* Return nonzero if the function for this frame lacks a prologue.
189   Many machines can define DEPRECATED_FRAMELESS_FUNCTION_INVOCATION
190   to just call this function.  */
191
192int
193legacy_frameless_look_for_prologue (struct frame_info *frame)
194{
195  CORE_ADDR func_start;
196
197  func_start = get_frame_func (frame);
198  if (func_start)
199    {
200      func_start += FUNCTION_START_OFFSET;
201      /* NOTE: cagney/2004-02-09: Eliminated per-architecture
202         PROLOGUE_FRAMELESS_P call as architectures with custom
203         implementations had all been deleted.  Eventually even this
204         function can go - GDB no longer tries to differentiate
205         between framed, frameless and stackless functions.  They are
206         all now considered equally evil :-^.  */
207      /* If skipping the prologue ends up skips nothing, there must be
208         no prologue and hence no code creating a frame.  There for
209         the function is "frameless" :-/.  */
210      return func_start == SKIP_PROLOGUE (func_start);
211    }
212  else if (get_frame_pc (frame) == 0)
213    /* A frame with a zero PC is usually created by dereferencing a
214       NULL function pointer, normally causing an immediate core dump
215       of the inferior. Mark function as frameless, as the inferior
216       has no chance of setting up a stack frame.  */
217    return 1;
218  else
219    /* If we can't find the start of the function, we don't really
220       know whether the function is frameless, but we should be able
221       to get a reasonable (i.e. best we can do under the
222       circumstances) backtrace by saying that it isn't.  */
223    return 0;
224}
225
226/* Return the innermost lexical block in execution
227   in a specified stack frame.  The frame address is assumed valid.
228
229   If ADDR_IN_BLOCK is non-zero, set *ADDR_IN_BLOCK to the exact code
230   address we used to choose the block.  We use this to find a source
231   line, to decide which macro definitions are in scope.
232
233   The value returned in *ADDR_IN_BLOCK isn't necessarily the frame's
234   PC, and may not really be a valid PC at all.  For example, in the
235   caller of a function declared to never return, the code at the
236   return address will never be reached, so the call instruction may
237   be the very last instruction in the block.  So the address we use
238   to choose the block is actually one byte before the return address
239   --- hopefully pointing us at the call instruction, or its delay
240   slot instruction.  */
241
242struct block *
243get_frame_block (struct frame_info *frame, CORE_ADDR *addr_in_block)
244{
245  const CORE_ADDR pc = get_frame_address_in_block (frame);
246
247  if (addr_in_block)
248    *addr_in_block = pc;
249
250  return block_for_pc (pc);
251}
252
253CORE_ADDR
254get_pc_function_start (CORE_ADDR pc)
255{
256  struct block *bl;
257  struct minimal_symbol *msymbol;
258
259  bl = block_for_pc (pc);
260  if (bl)
261    {
262      struct symbol *symbol = block_function (bl);
263
264      if (symbol)
265	{
266	  bl = SYMBOL_BLOCK_VALUE (symbol);
267	  return BLOCK_START (bl);
268	}
269    }
270
271  msymbol = lookup_minimal_symbol_by_pc (pc);
272  if (msymbol)
273    {
274      CORE_ADDR fstart = SYMBOL_VALUE_ADDRESS (msymbol);
275
276      if (find_pc_section (fstart))
277	return fstart;
278    }
279
280  return 0;
281}
282
283/* Return the symbol for the function executing in frame FRAME.  */
284
285struct symbol *
286get_frame_function (struct frame_info *frame)
287{
288  struct block *bl = get_frame_block (frame, 0);
289  if (bl == 0)
290    return 0;
291  return block_function (bl);
292}
293
294
295/* Return the function containing pc value PC in section SECTION.
296   Returns 0 if function is not known.  */
297
298struct symbol *
299find_pc_sect_function (CORE_ADDR pc, struct bfd_section *section)
300{
301  struct block *b = block_for_pc_sect (pc, section);
302  if (b == 0)
303    return 0;
304  return block_function (b);
305}
306
307/* Return the function containing pc value PC.
308   Returns 0 if function is not known.  Backward compatibility, no section */
309
310struct symbol *
311find_pc_function (CORE_ADDR pc)
312{
313  return find_pc_sect_function (pc, find_pc_mapped_section (pc));
314}
315
316/* These variables are used to cache the most recent result
317 * of find_pc_partial_function. */
318
319static CORE_ADDR cache_pc_function_low = 0;
320static CORE_ADDR cache_pc_function_high = 0;
321static char *cache_pc_function_name = 0;
322static struct bfd_section *cache_pc_function_section = NULL;
323
324/* Clear cache, e.g. when symbol table is discarded. */
325
326void
327clear_pc_function_cache (void)
328{
329  cache_pc_function_low = 0;
330  cache_pc_function_high = 0;
331  cache_pc_function_name = (char *) 0;
332  cache_pc_function_section = NULL;
333}
334
335/* Finds the "function" (text symbol) that is smaller than PC but
336   greatest of all of the potential text symbols in SECTION.  Sets
337   *NAME and/or *ADDRESS conditionally if that pointer is non-null.
338   If ENDADDR is non-null, then set *ENDADDR to be the end of the
339   function (exclusive), but passing ENDADDR as non-null means that
340   the function might cause symbols to be read.  This function either
341   succeeds or fails (not halfway succeeds).  If it succeeds, it sets
342   *NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
343   If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
344   returns 0.  */
345
346int
347find_pc_sect_partial_function (CORE_ADDR pc, asection *section, char **name,
348			       CORE_ADDR *address, CORE_ADDR *endaddr)
349{
350  struct partial_symtab *pst;
351  struct symbol *f;
352  struct minimal_symbol *msymbol;
353  struct partial_symbol *psb;
354  struct obj_section *osect;
355  int i;
356  CORE_ADDR mapped_pc;
357
358  mapped_pc = overlay_mapped_address (pc, section);
359
360  if (mapped_pc >= cache_pc_function_low
361      && mapped_pc < cache_pc_function_high
362      && section == cache_pc_function_section)
363    goto return_cached_value;
364
365  /* If sigtramp is in the u area, it counts as a function (especially
366     important for step_1).  */
367  if (SIGTRAMP_START_P () && PC_IN_SIGTRAMP (mapped_pc, (char *) NULL))
368    {
369      cache_pc_function_low = SIGTRAMP_START (mapped_pc);
370      cache_pc_function_high = SIGTRAMP_END (mapped_pc);
371      cache_pc_function_name = "<sigtramp>";
372      cache_pc_function_section = section;
373      goto return_cached_value;
374    }
375
376  msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
377  pst = find_pc_sect_psymtab (mapped_pc, section);
378  if (pst)
379    {
380      /* Need to read the symbols to get a good value for the end address.  */
381      if (endaddr != NULL && !pst->readin)
382	{
383	  /* Need to get the terminal in case symbol-reading produces
384	     output.  */
385	  target_terminal_ours_for_output ();
386	  PSYMTAB_TO_SYMTAB (pst);
387	}
388
389      if (pst->readin)
390	{
391	  /* Checking whether the msymbol has a larger value is for the
392	     "pathological" case mentioned in print_frame_info.  */
393	  f = find_pc_sect_function (mapped_pc, section);
394	  if (f != NULL
395	      && (msymbol == NULL
396		  || (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
397		      >= SYMBOL_VALUE_ADDRESS (msymbol))))
398	    {
399	      cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
400	      cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
401	      cache_pc_function_name = DEPRECATED_SYMBOL_NAME (f);
402	      cache_pc_function_section = section;
403	      goto return_cached_value;
404	    }
405	}
406      else
407	{
408	  /* Now that static symbols go in the minimal symbol table, perhaps
409	     we could just ignore the partial symbols.  But at least for now
410	     we use the partial or minimal symbol, whichever is larger.  */
411	  psb = find_pc_sect_psymbol (pst, mapped_pc, section);
412
413	  if (psb
414	      && (msymbol == NULL ||
415		  (SYMBOL_VALUE_ADDRESS (psb)
416		   >= SYMBOL_VALUE_ADDRESS (msymbol))))
417	    {
418	      /* This case isn't being cached currently. */
419	      if (address)
420		*address = SYMBOL_VALUE_ADDRESS (psb);
421	      if (name)
422		*name = DEPRECATED_SYMBOL_NAME (psb);
423	      /* endaddr non-NULL can't happen here.  */
424	      return 1;
425	    }
426	}
427    }
428
429  /* Not in the normal symbol tables, see if the pc is in a known section.
430     If it's not, then give up.  This ensures that anything beyond the end
431     of the text seg doesn't appear to be part of the last function in the
432     text segment.  */
433
434  osect = find_pc_sect_section (mapped_pc, section);
435
436  if (!osect)
437    msymbol = NULL;
438
439  /* Must be in the minimal symbol table.  */
440  if (msymbol == NULL)
441    {
442      /* No available symbol.  */
443      if (name != NULL)
444	*name = 0;
445      if (address != NULL)
446	*address = 0;
447      if (endaddr != NULL)
448	*endaddr = 0;
449      return 0;
450    }
451
452  cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
453  cache_pc_function_name = DEPRECATED_SYMBOL_NAME (msymbol);
454  cache_pc_function_section = section;
455
456  /* Use the lesser of the next minimal symbol in the same section, or
457     the end of the section, as the end of the function.  */
458
459  /* Step over other symbols at this same address, and symbols in
460     other sections, to find the next symbol in this section with
461     a different address.  */
462
463  for (i = 1; DEPRECATED_SYMBOL_NAME (msymbol + i) != NULL; i++)
464    {
465      if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol)
466	  && SYMBOL_BFD_SECTION (msymbol + i) == SYMBOL_BFD_SECTION (msymbol))
467	break;
468    }
469
470  if (DEPRECATED_SYMBOL_NAME (msymbol + i) != NULL
471      && SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
472    cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
473  else
474    /* We got the start address from the last msymbol in the objfile.
475       So the end address is the end of the section.  */
476    cache_pc_function_high = osect->endaddr;
477
478 return_cached_value:
479
480  if (address)
481    {
482      if (pc_in_unmapped_range (pc, section))
483	*address = overlay_unmapped_address (cache_pc_function_low, section);
484      else
485	*address = cache_pc_function_low;
486    }
487
488  if (name)
489    *name = cache_pc_function_name;
490
491  if (endaddr)
492    {
493      if (pc_in_unmapped_range (pc, section))
494	{
495	  /* Because the high address is actually beyond the end of
496	     the function (and therefore possibly beyond the end of
497	     the overlay), we must actually convert (high - 1) and
498	     then add one to that. */
499
500	  *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
501						   section);
502	}
503      else
504	*endaddr = cache_pc_function_high;
505    }
506
507  return 1;
508}
509
510/* Backward compatibility, no section argument.  */
511
512int
513find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address,
514			  CORE_ADDR *endaddr)
515{
516  struct bfd_section *bfd_section;
517
518  /* To ensure that the symbol returned belongs to the correct setion
519     (and that the last [random] symbol from the previous section
520     isn't returned) try to find the section containing PC.  First try
521     the overlay code (which by default returns NULL); and second try
522     the normal section code (which almost always succeeds).  */
523  bfd_section = find_pc_overlay (pc);
524  if (bfd_section == NULL)
525    {
526      struct obj_section *obj_section = find_pc_section (pc);
527      if (obj_section == NULL)
528	bfd_section = NULL;
529      else
530	bfd_section = obj_section->the_bfd_section;
531    }
532  return find_pc_sect_partial_function (pc, bfd_section, name, address,
533					endaddr);
534}
535
536/* Return the innermost stack frame executing inside of BLOCK,
537   or NULL if there is no such frame.  If BLOCK is NULL, just return NULL.  */
538
539struct frame_info *
540block_innermost_frame (struct block *block)
541{
542  struct frame_info *frame;
543  CORE_ADDR start;
544  CORE_ADDR end;
545  CORE_ADDR calling_pc;
546
547  if (block == NULL)
548    return NULL;
549
550  start = BLOCK_START (block);
551  end = BLOCK_END (block);
552
553  frame = NULL;
554  while (1)
555    {
556      frame = get_prev_frame (frame);
557      if (frame == NULL)
558	return NULL;
559      calling_pc = get_frame_address_in_block (frame);
560      if (calling_pc >= start && calling_pc < end)
561	return frame;
562    }
563}
564
565/* Are we in a call dummy?  The code below which allows DECR_PC_AFTER_BREAK
566   below is for infrun.c, which may give the macro a pc without that
567   subtracted out.  */
568
569/* Is the PC in a call dummy?  SP and FRAME_ADDRESS are the bottom and
570   top of the stack frame which we are checking, where "bottom" and
571   "top" refer to some section of memory which contains the code for
572   the call dummy.  Calls to this macro assume that the contents of
573   SP_REGNUM and DEPRECATED_FP_REGNUM (or the saved values thereof),
574   respectively, are the things to pass.
575
576   This won't work on the 29k, where SP_REGNUM and
577   DEPRECATED_FP_REGNUM don't have that meaning, but the 29k doesn't
578   use ON_STACK.  This could be fixed by generalizing this scheme,
579   perhaps by passing in a frame and adding a few fields, at least on
580   machines which need them for DEPRECATED_PC_IN_CALL_DUMMY.
581
582   Something simpler, like checking for the stack segment, doesn't work,
583   since various programs (threads implementations, gcc nested function
584   stubs, etc) may either allocate stack frames in another segment, or
585   allocate other kinds of code on the stack.  */
586
587int
588deprecated_pc_in_call_dummy_on_stack (CORE_ADDR pc, CORE_ADDR sp,
589				      CORE_ADDR frame_address)
590{
591  return (INNER_THAN ((sp), (pc))
592	  && (frame_address != 0)
593	  && INNER_THAN ((pc), (frame_address)));
594}
595
596int
597deprecated_pc_in_call_dummy_at_entry_point (CORE_ADDR pc, CORE_ADDR sp,
598					    CORE_ADDR frame_address)
599{
600  CORE_ADDR addr = entry_point_address ();
601  return ((pc) >= addr && (pc) <= (addr + DECR_PC_AFTER_BREAK));
602}
603
604/* Returns true for a user frame or a call_function_by_hand dummy
605   frame, and false for the CRT0 start-up frame.  Purpose is to
606   terminate backtrace.  */
607
608int
609legacy_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
610{
611  /* Don't prune CALL_DUMMY frames.  */
612  if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES
613      && DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
614    return 1;
615
616  /* If the new frame pointer is zero, then it isn't valid.  */
617  if (fp == 0)
618    return 0;
619
620  /* If the new frame would be inside (younger than) the previous frame,
621     then it isn't valid.  */
622  if (INNER_THAN (fp, get_frame_base (fi)))
623    return 0;
624
625  /* If the architecture has a custom DEPRECATED_FRAME_CHAIN_VALID,
626     call it now.  */
627  if (DEPRECATED_FRAME_CHAIN_VALID_P ())
628    return DEPRECATED_FRAME_CHAIN_VALID (fp, fi);
629
630  /* If we're already inside the entry function for the main objfile, then it
631     isn't valid.  */
632  if (legacy_inside_entry_func (get_frame_pc (fi)))
633    return 0;
634
635  /* If we're inside the entry file, it isn't valid.  */
636  /* NOTE/drow 2002-12-25: should there be a way to disable this check?  It
637     assumes a single small entry file, and the way some debug readers (e.g.
638     dbxread) figure out which object is the entry file is somewhat hokey.  */
639  if (deprecated_inside_entry_file (frame_pc_unwind (fi)))
640      return 0;
641
642  return 1;
643}
644