reload.c revision 90285
1/* Search an insn for pseudo regs that must be in hard regs and are not.
2   Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3   1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA.  */
21
22
23/* $FreeBSD: head/contrib/gcc/reload.c 90285 2002-02-06 05:01:51Z obrien $ */
24
25
26/* This file contains subroutines used only from the file reload1.c.
27   It knows how to scan one insn for operands and values
28   that need to be copied into registers to make valid code.
29   It also finds other operands and values which are valid
30   but for which equivalent values in registers exist and
31   ought to be used instead.
32
33   Before processing the first insn of the function, call `init_reload'.
34
35   To scan an insn, call `find_reloads'.  This does two things:
36   1. sets up tables describing which values must be reloaded
37   for this insn, and what kind of hard regs they must be reloaded into;
38   2. optionally record the locations where those values appear in
39   the data, so they can be replaced properly later.
40   This is done only if the second arg to `find_reloads' is nonzero.
41
42   The third arg to `find_reloads' specifies the number of levels
43   of indirect addressing supported by the machine.  If it is zero,
44   indirect addressing is not valid.  If it is one, (MEM (REG n))
45   is valid even if (REG n) did not get a hard register; if it is two,
46   (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
47   hard register, and similarly for higher values.
48
49   Then you must choose the hard regs to reload those pseudo regs into,
50   and generate appropriate load insns before this insn and perhaps
51   also store insns after this insn.  Set up the array `reload_reg_rtx'
52   to contain the REG rtx's for the registers you used.  In some
53   cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
54   for certain reloads.  Then that tells you which register to use,
55   so you do not need to allocate one.  But you still do need to add extra
56   instructions to copy the value into and out of that register.
57
58   Finally you must call `subst_reloads' to substitute the reload reg rtx's
59   into the locations already recorded.
60
61NOTE SIDE EFFECTS:
62
63   find_reloads can alter the operands of the instruction it is called on.
64
65   1. Two operands of any sort may be interchanged, if they are in a
66   commutative instruction.
67   This happens only if find_reloads thinks the instruction will compile
68   better that way.
69
70   2. Pseudo-registers that are equivalent to constants are replaced
71   with those constants if they are not in hard registers.
72
731 happens every time find_reloads is called.
742 happens only when REPLACE is 1, which is only when
75actually doing the reloads, not when just counting them.
76
77Using a reload register for several reloads in one insn:
78
79When an insn has reloads, it is considered as having three parts:
80the input reloads, the insn itself after reloading, and the output reloads.
81Reloads of values used in memory addresses are often needed for only one part.
82
83When this is so, reload_when_needed records which part needs the reload.
84Two reloads for different parts of the insn can share the same reload
85register.
86
87When a reload is used for addresses in multiple parts, or when it is
88an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
89a register with any other reload.  */
90
91#define REG_OK_STRICT
92
93#include "config.h"
94#include "system.h"
95#include "rtl.h"
96#include "tm_p.h"
97#include "insn-config.h"
98#include "expr.h"
99#include "optabs.h"
100#include "recog.h"
101#include "reload.h"
102#include "regs.h"
103#include "hard-reg-set.h"
104#include "flags.h"
105#include "real.h"
106#include "output.h"
107#include "function.h"
108#include "toplev.h"
109
110#ifndef REGISTER_MOVE_COST
111#define REGISTER_MOVE_COST(m, x, y) 2
112#endif
113
114#ifndef REGNO_MODE_OK_FOR_BASE_P
115#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
116#endif
117
118#ifndef REG_MODE_OK_FOR_BASE_P
119#define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
120#endif
121
122/* All reloads of the current insn are recorded here.  See reload.h for
123   comments.  */
124int n_reloads;
125struct reload rld[MAX_RELOADS];
126
127/* All the "earlyclobber" operands of the current insn
128   are recorded here.  */
129int n_earlyclobbers;
130rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
131
132int reload_n_operands;
133
134/* Replacing reloads.
135
136   If `replace_reloads' is nonzero, then as each reload is recorded
137   an entry is made for it in the table `replacements'.
138   Then later `subst_reloads' can look through that table and
139   perform all the replacements needed.  */
140
141/* Nonzero means record the places to replace.  */
142static int replace_reloads;
143
144/* Each replacement is recorded with a structure like this.  */
145struct replacement
146{
147  rtx *where;			/* Location to store in */
148  rtx *subreg_loc;		/* Location of SUBREG if WHERE is inside
149				   a SUBREG; 0 otherwise.  */
150  int what;			/* which reload this is for */
151  enum machine_mode mode;	/* mode it must have */
152};
153
154static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
155
156/* Number of replacements currently recorded.  */
157static int n_replacements;
158
159/* Used to track what is modified by an operand.  */
160struct decomposition
161{
162  int reg_flag;		/* Nonzero if referencing a register.  */
163  int safe;		/* Nonzero if this can't conflict with anything.  */
164  rtx base;		/* Base address for MEM.  */
165  HOST_WIDE_INT start;	/* Starting offset or register number.  */
166  HOST_WIDE_INT end;	/* Ending offset or register number.  */
167};
168
169#ifdef SECONDARY_MEMORY_NEEDED
170
171/* Save MEMs needed to copy from one class of registers to another.  One MEM
172   is used per mode, but normally only one or two modes are ever used.
173
174   We keep two versions, before and after register elimination.  The one
175   after register elimination is record separately for each operand.  This
176   is done in case the address is not valid to be sure that we separately
177   reload each.  */
178
179static rtx secondary_memlocs[NUM_MACHINE_MODES];
180static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
181#endif
182
183/* The instruction we are doing reloads for;
184   so we can test whether a register dies in it.  */
185static rtx this_insn;
186
187/* Nonzero if this instruction is a user-specified asm with operands.  */
188static int this_insn_is_asm;
189
190/* If hard_regs_live_known is nonzero,
191   we can tell which hard regs are currently live,
192   at least enough to succeed in choosing dummy reloads.  */
193static int hard_regs_live_known;
194
195/* Indexed by hard reg number,
196   element is nonnegative if hard reg has been spilled.
197   This vector is passed to `find_reloads' as an argument
198   and is not changed here.  */
199static short *static_reload_reg_p;
200
201/* Set to 1 in subst_reg_equivs if it changes anything.  */
202static int subst_reg_equivs_changed;
203
204/* On return from push_reload, holds the reload-number for the OUT
205   operand, which can be different for that from the input operand.  */
206static int output_reloadnum;
207
208  /* Compare two RTX's.  */
209#define MATCHES(x, y) \
210 (x == y || (x != 0 && (GET_CODE (x) == REG				\
211			? GET_CODE (y) == REG && REGNO (x) == REGNO (y)	\
212			: rtx_equal_p (x, y) && ! side_effects_p (x))))
213
214  /* Indicates if two reloads purposes are for similar enough things that we
215     can merge their reloads.  */
216#define MERGABLE_RELOADS(when1, when2, op1, op2) \
217  ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER	\
218   || ((when1) == (when2) && (op1) == (op2))		\
219   || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
220   || ((when1) == RELOAD_FOR_OPERAND_ADDRESS		\
221       && (when2) == RELOAD_FOR_OPERAND_ADDRESS)	\
222   || ((when1) == RELOAD_FOR_OTHER_ADDRESS		\
223       && (when2) == RELOAD_FOR_OTHER_ADDRESS))
224
225  /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged.  */
226#define MERGE_TO_OTHER(when1, when2, op1, op2) \
227  ((when1) != (when2)					\
228   || ! ((op1) == (op2)					\
229	 || (when1) == RELOAD_FOR_INPUT			\
230	 || (when1) == RELOAD_FOR_OPERAND_ADDRESS	\
231	 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
232
233  /* If we are going to reload an address, compute the reload type to
234     use.  */
235#define ADDR_TYPE(type)					\
236  ((type) == RELOAD_FOR_INPUT_ADDRESS			\
237   ? RELOAD_FOR_INPADDR_ADDRESS				\
238   : ((type) == RELOAD_FOR_OUTPUT_ADDRESS		\
239      ? RELOAD_FOR_OUTADDR_ADDRESS			\
240      : (type)))
241
242#ifdef HAVE_SECONDARY_RELOADS
243static int push_secondary_reload PARAMS ((int, rtx, int, int, enum reg_class,
244					enum machine_mode, enum reload_type,
245					enum insn_code *));
246#endif
247static enum reg_class find_valid_class PARAMS ((enum machine_mode, int));
248static int reload_inner_reg_of_subreg PARAMS ((rtx, enum machine_mode));
249static void push_replacement	PARAMS ((rtx *, int, enum machine_mode));
250static void combine_reloads	PARAMS ((void));
251static int find_reusable_reload	PARAMS ((rtx *, rtx, enum reg_class,
252				       enum reload_type, int, int));
253static rtx find_dummy_reload	PARAMS ((rtx, rtx, rtx *, rtx *,
254				       enum machine_mode, enum machine_mode,
255				       enum reg_class, int, int));
256static int hard_reg_set_here_p	PARAMS ((unsigned int, unsigned int, rtx));
257static struct decomposition decompose PARAMS ((rtx));
258static int immune_p		PARAMS ((rtx, rtx, struct decomposition));
259static int alternative_allows_memconst PARAMS ((const char *, int));
260static rtx find_reloads_toplev	PARAMS ((rtx, int, enum reload_type, int,
261					 int, rtx, int *));
262static rtx make_memloc		PARAMS ((rtx, int));
263static int find_reloads_address	PARAMS ((enum machine_mode, rtx *, rtx, rtx *,
264				       int, enum reload_type, int, rtx));
265static rtx subst_reg_equivs	PARAMS ((rtx, rtx));
266static rtx subst_indexed_address PARAMS ((rtx));
267static void update_auto_inc_notes PARAMS ((rtx, int, int));
268static int find_reloads_address_1 PARAMS ((enum machine_mode, rtx, int, rtx *,
269					 int, enum reload_type,int, rtx));
270static void find_reloads_address_part PARAMS ((rtx, rtx *, enum reg_class,
271					     enum machine_mode, int,
272					     enum reload_type, int));
273static rtx find_reloads_subreg_address PARAMS ((rtx, int, int, enum reload_type,
274					      int, rtx));
275static int find_inc_amount	PARAMS ((rtx, rtx));
276
277#ifdef HAVE_SECONDARY_RELOADS
278
279/* Determine if any secondary reloads are needed for loading (if IN_P is
280   non-zero) or storing (if IN_P is zero) X to or from a reload register of
281   register class RELOAD_CLASS in mode RELOAD_MODE.  If secondary reloads
282   are needed, push them.
283
284   Return the reload number of the secondary reload we made, or -1 if
285   we didn't need one.  *PICODE is set to the insn_code to use if we do
286   need a secondary reload.  */
287
288static int
289push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
290		       type, picode)
291     int in_p;
292     rtx x;
293     int opnum;
294     int optional;
295     enum reg_class reload_class;
296     enum machine_mode reload_mode;
297     enum reload_type type;
298     enum insn_code *picode;
299{
300  enum reg_class class = NO_REGS;
301  enum machine_mode mode = reload_mode;
302  enum insn_code icode = CODE_FOR_nothing;
303  enum reg_class t_class = NO_REGS;
304  enum machine_mode t_mode = VOIDmode;
305  enum insn_code t_icode = CODE_FOR_nothing;
306  enum reload_type secondary_type;
307  int s_reload, t_reload = -1;
308
309  if (type == RELOAD_FOR_INPUT_ADDRESS
310      || type == RELOAD_FOR_OUTPUT_ADDRESS
311      || type == RELOAD_FOR_INPADDR_ADDRESS
312      || type == RELOAD_FOR_OUTADDR_ADDRESS)
313    secondary_type = type;
314  else
315    secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
316
317  *picode = CODE_FOR_nothing;
318
319  /* If X is a paradoxical SUBREG, use the inner value to determine both the
320     mode and object being reloaded.  */
321  if (GET_CODE (x) == SUBREG
322      && (GET_MODE_SIZE (GET_MODE (x))
323	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
324    {
325      x = SUBREG_REG (x);
326      reload_mode = GET_MODE (x);
327    }
328
329  /* If X is a pseudo-register that has an equivalent MEM (actually, if it
330     is still a pseudo-register by now, it *must* have an equivalent MEM
331     but we don't want to assume that), use that equivalent when seeing if
332     a secondary reload is needed since whether or not a reload is needed
333     might be sensitive to the form of the MEM.  */
334
335  if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
336      && reg_equiv_mem[REGNO (x)] != 0)
337    x = reg_equiv_mem[REGNO (x)];
338
339#ifdef SECONDARY_INPUT_RELOAD_CLASS
340  if (in_p)
341    class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
342#endif
343
344#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
345  if (! in_p)
346    class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
347#endif
348
349  /* If we don't need any secondary registers, done.  */
350  if (class == NO_REGS)
351    return -1;
352
353  /* Get a possible insn to use.  If the predicate doesn't accept X, don't
354     use the insn.  */
355
356  icode = (in_p ? reload_in_optab[(int) reload_mode]
357	   : reload_out_optab[(int) reload_mode]);
358
359  if (icode != CODE_FOR_nothing
360      && insn_data[(int) icode].operand[in_p].predicate
361      && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
362    icode = CODE_FOR_nothing;
363
364  /* If we will be using an insn, see if it can directly handle the reload
365     register we will be using.  If it can, the secondary reload is for a
366     scratch register.  If it can't, we will use the secondary reload for
367     an intermediate register and require a tertiary reload for the scratch
368     register.  */
369
370  if (icode != CODE_FOR_nothing)
371    {
372      /* If IN_P is non-zero, the reload register will be the output in
373	 operand 0.  If IN_P is zero, the reload register will be the input
374	 in operand 1.  Outputs should have an initial "=", which we must
375	 skip.  */
376
377      enum reg_class insn_class;
378
379      if (insn_data[(int) icode].operand[!in_p].constraint[0] == 0)
380	insn_class = ALL_REGS;
381      else
382	{
383	  char insn_letter
384	    = insn_data[(int) icode].operand[!in_p].constraint[in_p];
385	  insn_class
386	    = (insn_letter == 'r' ? GENERAL_REGS
387	       : REG_CLASS_FROM_LETTER ((unsigned char) insn_letter));
388
389          if (insn_class == NO_REGS)
390	    abort ();
391	  if (in_p
392	      && insn_data[(int) icode].operand[!in_p].constraint[0] != '=')
393	    abort ();
394	}
395
396      /* The scratch register's constraint must start with "=&".  */
397      if (insn_data[(int) icode].operand[2].constraint[0] != '='
398	  || insn_data[(int) icode].operand[2].constraint[1] != '&')
399	abort ();
400
401      if (reg_class_subset_p (reload_class, insn_class))
402	mode = insn_data[(int) icode].operand[2].mode;
403      else
404	{
405	  char t_letter = insn_data[(int) icode].operand[2].constraint[2];
406	  class = insn_class;
407	  t_mode = insn_data[(int) icode].operand[2].mode;
408	  t_class = (t_letter == 'r' ? GENERAL_REGS
409		     : REG_CLASS_FROM_LETTER ((unsigned char) t_letter));
410	  t_icode = icode;
411	  icode = CODE_FOR_nothing;
412	}
413    }
414
415  /* This case isn't valid, so fail.  Reload is allowed to use the same
416     register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
417     in the case of a secondary register, we actually need two different
418     registers for correct code.  We fail here to prevent the possibility of
419     silently generating incorrect code later.
420
421     The convention is that secondary input reloads are valid only if the
422     secondary_class is different from class.  If you have such a case, you
423     can not use secondary reloads, you must work around the problem some
424     other way.
425
426     Allow this when a reload_in/out pattern is being used.  I.e. assume
427     that the generated code handles this case.  */
428
429  if (in_p && class == reload_class && icode == CODE_FOR_nothing
430      && t_icode == CODE_FOR_nothing)
431    abort ();
432
433  /* If we need a tertiary reload, see if we have one we can reuse or else
434     make a new one.  */
435
436  if (t_class != NO_REGS)
437    {
438      for (t_reload = 0; t_reload < n_reloads; t_reload++)
439	if (rld[t_reload].secondary_p
440	    && (reg_class_subset_p (t_class, rld[t_reload].class)
441		|| reg_class_subset_p (rld[t_reload].class, t_class))
442	    && ((in_p && rld[t_reload].inmode == t_mode)
443		|| (! in_p && rld[t_reload].outmode == t_mode))
444	    && ((in_p && (rld[t_reload].secondary_in_icode
445			  == CODE_FOR_nothing))
446		|| (! in_p &&(rld[t_reload].secondary_out_icode
447			      == CODE_FOR_nothing)))
448	    && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
449	    && MERGABLE_RELOADS (secondary_type,
450				 rld[t_reload].when_needed,
451				 opnum, rld[t_reload].opnum))
452	  {
453	    if (in_p)
454	      rld[t_reload].inmode = t_mode;
455	    if (! in_p)
456	      rld[t_reload].outmode = t_mode;
457
458	    if (reg_class_subset_p (t_class, rld[t_reload].class))
459	      rld[t_reload].class = t_class;
460
461	    rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
462	    rld[t_reload].optional &= optional;
463	    rld[t_reload].secondary_p = 1;
464	    if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
465				opnum, rld[t_reload].opnum))
466	      rld[t_reload].when_needed = RELOAD_OTHER;
467	  }
468
469      if (t_reload == n_reloads)
470	{
471	  /* We need to make a new tertiary reload for this register class.  */
472	  rld[t_reload].in = rld[t_reload].out = 0;
473	  rld[t_reload].class = t_class;
474	  rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
475	  rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
476	  rld[t_reload].reg_rtx = 0;
477	  rld[t_reload].optional = optional;
478	  rld[t_reload].inc = 0;
479	  /* Maybe we could combine these, but it seems too tricky.  */
480	  rld[t_reload].nocombine = 1;
481	  rld[t_reload].in_reg = 0;
482	  rld[t_reload].out_reg = 0;
483	  rld[t_reload].opnum = opnum;
484	  rld[t_reload].when_needed = secondary_type;
485	  rld[t_reload].secondary_in_reload = -1;
486	  rld[t_reload].secondary_out_reload = -1;
487	  rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
488	  rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
489	  rld[t_reload].secondary_p = 1;
490
491	  n_reloads++;
492	}
493    }
494
495  /* See if we can reuse an existing secondary reload.  */
496  for (s_reload = 0; s_reload < n_reloads; s_reload++)
497    if (rld[s_reload].secondary_p
498	&& (reg_class_subset_p (class, rld[s_reload].class)
499	    || reg_class_subset_p (rld[s_reload].class, class))
500	&& ((in_p && rld[s_reload].inmode == mode)
501	    || (! in_p && rld[s_reload].outmode == mode))
502	&& ((in_p && rld[s_reload].secondary_in_reload == t_reload)
503	    || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
504	&& ((in_p && rld[s_reload].secondary_in_icode == t_icode)
505	    || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
506	&& (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
507	&& MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
508			     opnum, rld[s_reload].opnum))
509      {
510	if (in_p)
511	  rld[s_reload].inmode = mode;
512	if (! in_p)
513	  rld[s_reload].outmode = mode;
514
515	if (reg_class_subset_p (class, rld[s_reload].class))
516	  rld[s_reload].class = class;
517
518	rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
519	rld[s_reload].optional &= optional;
520	rld[s_reload].secondary_p = 1;
521	if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
522			    opnum, rld[s_reload].opnum))
523	  rld[s_reload].when_needed = RELOAD_OTHER;
524      }
525
526  if (s_reload == n_reloads)
527    {
528#ifdef SECONDARY_MEMORY_NEEDED
529      /* If we need a memory location to copy between the two reload regs,
530	 set it up now.  Note that we do the input case before making
531	 the reload and the output case after.  This is due to the
532	 way reloads are output.  */
533
534      if (in_p && icode == CODE_FOR_nothing
535	  && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
536	{
537	  get_secondary_mem (x, reload_mode, opnum, type);
538
539	  /* We may have just added new reloads.  Make sure we add
540	     the new reload at the end.  */
541	  s_reload = n_reloads;
542	}
543#endif
544
545      /* We need to make a new secondary reload for this register class.  */
546      rld[s_reload].in = rld[s_reload].out = 0;
547      rld[s_reload].class = class;
548
549      rld[s_reload].inmode = in_p ? mode : VOIDmode;
550      rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
551      rld[s_reload].reg_rtx = 0;
552      rld[s_reload].optional = optional;
553      rld[s_reload].inc = 0;
554      /* Maybe we could combine these, but it seems too tricky.  */
555      rld[s_reload].nocombine = 1;
556      rld[s_reload].in_reg = 0;
557      rld[s_reload].out_reg = 0;
558      rld[s_reload].opnum = opnum;
559      rld[s_reload].when_needed = secondary_type;
560      rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
561      rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
562      rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
563      rld[s_reload].secondary_out_icode
564	= ! in_p ? t_icode : CODE_FOR_nothing;
565      rld[s_reload].secondary_p = 1;
566
567      n_reloads++;
568
569#ifdef SECONDARY_MEMORY_NEEDED
570      if (! in_p && icode == CODE_FOR_nothing
571	  && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
572	get_secondary_mem (x, mode, opnum, type);
573#endif
574    }
575
576  *picode = icode;
577  return s_reload;
578}
579#endif /* HAVE_SECONDARY_RELOADS */
580
581#ifdef SECONDARY_MEMORY_NEEDED
582
583/* Return a memory location that will be used to copy X in mode MODE.
584   If we haven't already made a location for this mode in this insn,
585   call find_reloads_address on the location being returned.  */
586
587rtx
588get_secondary_mem (x, mode, opnum, type)
589     rtx x ATTRIBUTE_UNUSED;
590     enum machine_mode mode;
591     int opnum;
592     enum reload_type type;
593{
594  rtx loc;
595  int mem_valid;
596
597  /* By default, if MODE is narrower than a word, widen it to a word.
598     This is required because most machines that require these memory
599     locations do not support short load and stores from all registers
600     (e.g., FP registers).  */
601
602#ifdef SECONDARY_MEMORY_NEEDED_MODE
603  mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
604#else
605  if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
606    mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
607#endif
608
609  /* If we already have made a MEM for this operand in MODE, return it.  */
610  if (secondary_memlocs_elim[(int) mode][opnum] != 0)
611    return secondary_memlocs_elim[(int) mode][opnum];
612
613  /* If this is the first time we've tried to get a MEM for this mode,
614     allocate a new one.  `something_changed' in reload will get set
615     by noticing that the frame size has changed.  */
616
617  if (secondary_memlocs[(int) mode] == 0)
618    {
619#ifdef SECONDARY_MEMORY_NEEDED_RTX
620      secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
621#else
622      secondary_memlocs[(int) mode]
623	= assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
624#endif
625    }
626
627  /* Get a version of the address doing any eliminations needed.  If that
628     didn't give us a new MEM, make a new one if it isn't valid.  */
629
630  loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
631  mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
632
633  if (! mem_valid && loc == secondary_memlocs[(int) mode])
634    loc = copy_rtx (loc);
635
636  /* The only time the call below will do anything is if the stack
637     offset is too large.  In that case IND_LEVELS doesn't matter, so we
638     can just pass a zero.  Adjust the type to be the address of the
639     corresponding object.  If the address was valid, save the eliminated
640     address.  If it wasn't valid, we need to make a reload each time, so
641     don't save it.  */
642
643  if (! mem_valid)
644    {
645      type =  (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
646	       : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
647	       : RELOAD_OTHER);
648
649      find_reloads_address (mode, (rtx*) 0, XEXP (loc, 0), &XEXP (loc, 0),
650			    opnum, type, 0, 0);
651    }
652
653  secondary_memlocs_elim[(int) mode][opnum] = loc;
654  return loc;
655}
656
657/* Clear any secondary memory locations we've made.  */
658
659void
660clear_secondary_mem ()
661{
662  memset ((char *) secondary_memlocs, 0, sizeof secondary_memlocs);
663}
664#endif /* SECONDARY_MEMORY_NEEDED */
665
666/* Find the largest class for which every register number plus N is valid in
667   M1 (if in range).  Abort if no such class exists.  */
668
669static enum reg_class
670find_valid_class (m1, n)
671     enum machine_mode m1 ATTRIBUTE_UNUSED;
672     int n;
673{
674  int class;
675  int regno;
676  enum reg_class best_class = NO_REGS;
677  unsigned int best_size = 0;
678
679  for (class = 1; class < N_REG_CLASSES; class++)
680    {
681      int bad = 0;
682      for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
683	if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
684	    && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
685	    && ! HARD_REGNO_MODE_OK (regno + n, m1))
686	  bad = 1;
687
688      if (! bad && reg_class_size[class] > best_size)
689	best_class = class, best_size = reg_class_size[class];
690    }
691
692  if (best_size == 0)
693    abort ();
694
695  return best_class;
696}
697
698/* Return the number of a previously made reload that can be combined with
699   a new one, or n_reloads if none of the existing reloads can be used.
700   OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
701   push_reload, they determine the kind of the new reload that we try to
702   combine.  P_IN points to the corresponding value of IN, which can be
703   modified by this function.
704   DONT_SHARE is nonzero if we can't share any input-only reload for IN.  */
705
706static int
707find_reusable_reload (p_in, out, class, type, opnum, dont_share)
708     rtx *p_in, out;
709     enum reg_class class;
710     enum reload_type type;
711     int opnum, dont_share;
712{
713  rtx in = *p_in;
714  int i;
715  /* We can't merge two reloads if the output of either one is
716     earlyclobbered.  */
717
718  if (earlyclobber_operand_p (out))
719    return n_reloads;
720
721  /* We can use an existing reload if the class is right
722     and at least one of IN and OUT is a match
723     and the other is at worst neutral.
724     (A zero compared against anything is neutral.)
725
726     If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
727     for the same thing since that can cause us to need more reload registers
728     than we otherwise would.  */
729
730  for (i = 0; i < n_reloads; i++)
731    if ((reg_class_subset_p (class, rld[i].class)
732	 || reg_class_subset_p (rld[i].class, class))
733	/* If the existing reload has a register, it must fit our class.  */
734	&& (rld[i].reg_rtx == 0
735	    || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
736				  true_regnum (rld[i].reg_rtx)))
737	&& ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
738	     && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
739	    || (out != 0 && MATCHES (rld[i].out, out)
740		&& (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
741	&& (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
742	&& (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
743	&& MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
744      return i;
745
746  /* Reloading a plain reg for input can match a reload to postincrement
747     that reg, since the postincrement's value is the right value.
748     Likewise, it can match a preincrement reload, since we regard
749     the preincrementation as happening before any ref in this insn
750     to that register.  */
751  for (i = 0; i < n_reloads; i++)
752    if ((reg_class_subset_p (class, rld[i].class)
753	 || reg_class_subset_p (rld[i].class, class))
754	/* If the existing reload has a register, it must fit our
755	   class.  */
756	&& (rld[i].reg_rtx == 0
757	    || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
758				  true_regnum (rld[i].reg_rtx)))
759	&& out == 0 && rld[i].out == 0 && rld[i].in != 0
760	&& ((GET_CODE (in) == REG
761	     && GET_RTX_CLASS (GET_CODE (rld[i].in)) == 'a'
762	     && MATCHES (XEXP (rld[i].in, 0), in))
763	    || (GET_CODE (rld[i].in) == REG
764		&& GET_RTX_CLASS (GET_CODE (in)) == 'a'
765		&& MATCHES (XEXP (in, 0), rld[i].in)))
766	&& (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
767	&& (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
768	&& MERGABLE_RELOADS (type, rld[i].when_needed,
769			     opnum, rld[i].opnum))
770      {
771	/* Make sure reload_in ultimately has the increment,
772	   not the plain register.  */
773	if (GET_CODE (in) == REG)
774	  *p_in = rld[i].in;
775	return i;
776      }
777  return n_reloads;
778}
779
780/* Return nonzero if X is a SUBREG which will require reloading of its
781   SUBREG_REG expression.  */
782
783static int
784reload_inner_reg_of_subreg (x, mode)
785     rtx x;
786     enum machine_mode mode;
787{
788  rtx inner;
789
790  /* Only SUBREGs are problematical.  */
791  if (GET_CODE (x) != SUBREG)
792    return 0;
793
794  inner = SUBREG_REG (x);
795
796  /* If INNER is a constant or PLUS, then INNER must be reloaded.  */
797  if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
798    return 1;
799
800  /* If INNER is not a hard register, then INNER will not need to
801     be reloaded.  */
802  if (GET_CODE (inner) != REG
803      || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
804    return 0;
805
806  /* If INNER is not ok for MODE, then INNER will need reloading.  */
807  if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
808    return 1;
809
810  /* If the outer part is a word or smaller, INNER larger than a
811     word and the number of regs for INNER is not the same as the
812     number of words in INNER, then INNER will need reloading.  */
813  return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
814	  && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
815	  && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
816	      != HARD_REGNO_NREGS (REGNO (inner), GET_MODE (inner))));
817}
818
819/* Record one reload that needs to be performed.
820   IN is an rtx saying where the data are to be found before this instruction.
821   OUT says where they must be stored after the instruction.
822   (IN is zero for data not read, and OUT is zero for data not written.)
823   INLOC and OUTLOC point to the places in the instructions where
824   IN and OUT were found.
825   If IN and OUT are both non-zero, it means the same register must be used
826   to reload both IN and OUT.
827
828   CLASS is a register class required for the reloaded data.
829   INMODE is the machine mode that the instruction requires
830   for the reg that replaces IN and OUTMODE is likewise for OUT.
831
832   If IN is zero, then OUT's location and mode should be passed as
833   INLOC and INMODE.
834
835   STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
836
837   OPTIONAL nonzero means this reload does not need to be performed:
838   it can be discarded if that is more convenient.
839
840   OPNUM and TYPE say what the purpose of this reload is.
841
842   The return value is the reload-number for this reload.
843
844   If both IN and OUT are nonzero, in some rare cases we might
845   want to make two separate reloads.  (Actually we never do this now.)
846   Therefore, the reload-number for OUT is stored in
847   output_reloadnum when we return; the return value applies to IN.
848   Usually (presently always), when IN and OUT are nonzero,
849   the two reload-numbers are equal, but the caller should be careful to
850   distinguish them.  */
851
852int
853push_reload (in, out, inloc, outloc, class,
854	     inmode, outmode, strict_low, optional, opnum, type)
855     rtx in, out;
856     rtx *inloc, *outloc;
857     enum reg_class class;
858     enum machine_mode inmode, outmode;
859     int strict_low;
860     int optional;
861     int opnum;
862     enum reload_type type;
863{
864  int i;
865  int dont_share = 0;
866  int dont_remove_subreg = 0;
867  rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
868  int secondary_in_reload = -1, secondary_out_reload = -1;
869  enum insn_code secondary_in_icode = CODE_FOR_nothing;
870  enum insn_code secondary_out_icode = CODE_FOR_nothing;
871
872  /* INMODE and/or OUTMODE could be VOIDmode if no mode
873     has been specified for the operand.  In that case,
874     use the operand's mode as the mode to reload.  */
875  if (inmode == VOIDmode && in != 0)
876    inmode = GET_MODE (in);
877  if (outmode == VOIDmode && out != 0)
878    outmode = GET_MODE (out);
879
880  /* If IN is a pseudo register everywhere-equivalent to a constant, and
881     it is not in a hard register, reload straight from the constant,
882     since we want to get rid of such pseudo registers.
883     Often this is done earlier, but not always in find_reloads_address.  */
884  if (in != 0 && GET_CODE (in) == REG)
885    {
886      int regno = REGNO (in);
887
888      if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
889	  && reg_equiv_constant[regno] != 0)
890	in = reg_equiv_constant[regno];
891    }
892
893  /* Likewise for OUT.  Of course, OUT will never be equivalent to
894     an actual constant, but it might be equivalent to a memory location
895     (in the case of a parameter).  */
896  if (out != 0 && GET_CODE (out) == REG)
897    {
898      int regno = REGNO (out);
899
900      if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
901	  && reg_equiv_constant[regno] != 0)
902	out = reg_equiv_constant[regno];
903    }
904
905  /* If we have a read-write operand with an address side-effect,
906     change either IN or OUT so the side-effect happens only once.  */
907  if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
908    switch (GET_CODE (XEXP (in, 0)))
909      {
910      case POST_INC: case POST_DEC:   case POST_MODIFY:
911	in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
912	break;
913
914      case PRE_INC: case PRE_DEC: case PRE_MODIFY:
915	out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
916	break;
917
918      default:
919	break;
920      }
921
922  /* If we are reloading a (SUBREG constant ...), really reload just the
923     inside expression in its own mode.  Similarly for (SUBREG (PLUS ...)).
924     If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
925     a pseudo and hence will become a MEM) with M1 wider than M2 and the
926     register is a pseudo, also reload the inside expression.
927     For machines that extend byte loads, do this for any SUBREG of a pseudo
928     where both M1 and M2 are a word or smaller, M1 is wider than M2, and
929     M2 is an integral mode that gets extended when loaded.
930     Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
931     either M1 is not valid for R or M2 is wider than a word but we only
932     need one word to store an M2-sized quantity in R.
933     (However, if OUT is nonzero, we need to reload the reg *and*
934     the subreg, so do nothing here, and let following statement handle it.)
935
936     Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
937     we can't handle it here because CONST_INT does not indicate a mode.
938
939     Similarly, we must reload the inside expression if we have a
940     STRICT_LOW_PART (presumably, in == out in the cas).
941
942     Also reload the inner expression if it does not require a secondary
943     reload but the SUBREG does.
944
945     Finally, reload the inner expression if it is a register that is in
946     the class whose registers cannot be referenced in a different size
947     and M1 is not the same size as M2.  If subreg_lowpart_p is false, we
948     cannot reload just the inside since we might end up with the wrong
949     register class.  But if it is inside a STRICT_LOW_PART, we have
950     no choice, so we hope we do get the right register class there.  */
951
952  if (in != 0 && GET_CODE (in) == SUBREG
953      && (subreg_lowpart_p (in) || strict_low)
954#ifdef CLASS_CANNOT_CHANGE_MODE
955      && (class != CLASS_CANNOT_CHANGE_MODE
956	  || ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (in)), inmode))
957#endif
958      && (CONSTANT_P (SUBREG_REG (in))
959	  || GET_CODE (SUBREG_REG (in)) == PLUS
960	  || strict_low
961	  || (((GET_CODE (SUBREG_REG (in)) == REG
962		&& REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
963	       || GET_CODE (SUBREG_REG (in)) == MEM)
964	      && ((GET_MODE_SIZE (inmode)
965		   > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
966#ifdef LOAD_EXTEND_OP
967		  || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
968		      && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
969			  <= UNITS_PER_WORD)
970		      && (GET_MODE_SIZE (inmode)
971			  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
972		      && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
973		      && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
974#endif
975#ifdef WORD_REGISTER_OPERATIONS
976		  || ((GET_MODE_SIZE (inmode)
977		       < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
978		      && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
979			  ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
980			   / UNITS_PER_WORD)))
981#endif
982		  ))
983	  || (GET_CODE (SUBREG_REG (in)) == REG
984	      && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
985	      /* The case where out is nonzero
986		 is handled differently in the following statement.  */
987	      && (out == 0 || subreg_lowpart_p (in))
988	      && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
989		   && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
990		       > UNITS_PER_WORD)
991		   && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
992			/ UNITS_PER_WORD)
993		       != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
994					    GET_MODE (SUBREG_REG (in)))))
995		  || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
996#ifdef SECONDARY_INPUT_RELOAD_CLASS
997	  || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
998	      && (SECONDARY_INPUT_RELOAD_CLASS (class,
999						GET_MODE (SUBREG_REG (in)),
1000						SUBREG_REG (in))
1001		  == NO_REGS))
1002#endif
1003#ifdef CLASS_CANNOT_CHANGE_MODE
1004	  || (GET_CODE (SUBREG_REG (in)) == REG
1005	      && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1006	      && (TEST_HARD_REG_BIT
1007		  (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1008		   REGNO (SUBREG_REG (in))))
1009	      && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (in)),
1010					     inmode))
1011#endif
1012	  ))
1013    {
1014      in_subreg_loc = inloc;
1015      inloc = &SUBREG_REG (in);
1016      in = *inloc;
1017#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1018      if (GET_CODE (in) == MEM)
1019	/* This is supposed to happen only for paradoxical subregs made by
1020	   combine.c.  (SUBREG (MEM)) isn't supposed to occur other ways.  */
1021	if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
1022	  abort ();
1023#endif
1024      inmode = GET_MODE (in);
1025    }
1026
1027  /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1028     either M1 is not valid for R or M2 is wider than a word but we only
1029     need one word to store an M2-sized quantity in R.
1030
1031     However, we must reload the inner reg *as well as* the subreg in
1032     that case.  */
1033
1034  /* Similar issue for (SUBREG constant ...) if it was not handled by the
1035     code above.  This can happen if SUBREG_BYTE != 0.  */
1036
1037  if (in != 0 && reload_inner_reg_of_subreg (in, inmode))
1038    {
1039      enum reg_class in_class = class;
1040
1041      if (GET_CODE (SUBREG_REG (in)) == REG)
1042	in_class
1043	  = find_valid_class (inmode,
1044			      subreg_regno_offset (REGNO (SUBREG_REG (in)),
1045						   GET_MODE (SUBREG_REG (in)),
1046						   SUBREG_BYTE (in),
1047						   GET_MODE (in)));
1048
1049      /* This relies on the fact that emit_reload_insns outputs the
1050	 instructions for input reloads of type RELOAD_OTHER in the same
1051	 order as the reloads.  Thus if the outer reload is also of type
1052	 RELOAD_OTHER, we are guaranteed that this inner reload will be
1053	 output before the outer reload.  */
1054      push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1055		   in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1056      dont_remove_subreg = 1;
1057    }
1058
1059  /* Similarly for paradoxical and problematical SUBREGs on the output.
1060     Note that there is no reason we need worry about the previous value
1061     of SUBREG_REG (out); even if wider than out,
1062     storing in a subreg is entitled to clobber it all
1063     (except in the case of STRICT_LOW_PART,
1064     and in that case the constraint should label it input-output.)  */
1065  if (out != 0 && GET_CODE (out) == SUBREG
1066      && (subreg_lowpart_p (out) || strict_low)
1067#ifdef CLASS_CANNOT_CHANGE_MODE
1068      && (class != CLASS_CANNOT_CHANGE_MODE
1069	  || ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (out)),
1070					   outmode))
1071#endif
1072      && (CONSTANT_P (SUBREG_REG (out))
1073	  || strict_low
1074	  || (((GET_CODE (SUBREG_REG (out)) == REG
1075		&& REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1076	       || GET_CODE (SUBREG_REG (out)) == MEM)
1077	      && ((GET_MODE_SIZE (outmode)
1078		   > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1079#ifdef WORD_REGISTER_OPERATIONS
1080		  || ((GET_MODE_SIZE (outmode)
1081		       < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1082		      && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1083			  ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1084			   / UNITS_PER_WORD)))
1085#endif
1086		  ))
1087	  || (GET_CODE (SUBREG_REG (out)) == REG
1088	      && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1089	      && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1090		   && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1091		       > UNITS_PER_WORD)
1092		   && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1093			/ UNITS_PER_WORD)
1094		       != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1095					    GET_MODE (SUBREG_REG (out)))))
1096		  || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1097#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1098	  || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1099	      && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1100						 GET_MODE (SUBREG_REG (out)),
1101						 SUBREG_REG (out))
1102		  == NO_REGS))
1103#endif
1104#ifdef CLASS_CANNOT_CHANGE_MODE
1105	  || (GET_CODE (SUBREG_REG (out)) == REG
1106	      && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1107	      && (TEST_HARD_REG_BIT
1108		  (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1109		   REGNO (SUBREG_REG (out))))
1110	      && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (out)),
1111					     outmode))
1112#endif
1113	  ))
1114    {
1115      out_subreg_loc = outloc;
1116      outloc = &SUBREG_REG (out);
1117      out = *outloc;
1118#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1119      if (GET_CODE (out) == MEM
1120	  && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1121	abort ();
1122#endif
1123      outmode = GET_MODE (out);
1124    }
1125
1126  /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1127     either M1 is not valid for R or M2 is wider than a word but we only
1128     need one word to store an M2-sized quantity in R.
1129
1130     However, we must reload the inner reg *as well as* the subreg in
1131     that case.  In this case, the inner reg is an in-out reload.  */
1132
1133  if (out != 0 && reload_inner_reg_of_subreg (out, outmode))
1134    {
1135      /* This relies on the fact that emit_reload_insns outputs the
1136	 instructions for output reloads of type RELOAD_OTHER in reverse
1137	 order of the reloads.  Thus if the outer reload is also of type
1138	 RELOAD_OTHER, we are guaranteed that this inner reload will be
1139	 output after the outer reload.  */
1140      dont_remove_subreg = 1;
1141      push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1142		   &SUBREG_REG (out),
1143		   find_valid_class (outmode,
1144				     subreg_regno_offset (REGNO (SUBREG_REG (out)),
1145							  GET_MODE (SUBREG_REG (out)),
1146							  SUBREG_BYTE (out),
1147							  GET_MODE (out))),
1148		   VOIDmode, VOIDmode, 0, 0,
1149		   opnum, RELOAD_OTHER);
1150    }
1151
1152  /* If IN appears in OUT, we can't share any input-only reload for IN.  */
1153  if (in != 0 && out != 0 && GET_CODE (out) == MEM
1154      && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
1155      && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1156    dont_share = 1;
1157
1158  /* If IN is a SUBREG of a hard register, make a new REG.  This
1159     simplifies some of the cases below.  */
1160
1161  if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
1162      && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1163      && ! dont_remove_subreg)
1164    in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1165
1166  /* Similarly for OUT.  */
1167  if (out != 0 && GET_CODE (out) == SUBREG
1168      && GET_CODE (SUBREG_REG (out)) == REG
1169      && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1170      && ! dont_remove_subreg)
1171    out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1172
1173  /* Narrow down the class of register wanted if that is
1174     desirable on this machine for efficiency.  */
1175  if (in != 0)
1176    class = PREFERRED_RELOAD_CLASS (in, class);
1177
1178  /* Output reloads may need analogous treatment, different in detail.  */
1179#ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1180  if (out != 0)
1181    class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1182#endif
1183
1184  /* Make sure we use a class that can handle the actual pseudo
1185     inside any subreg.  For example, on the 386, QImode regs
1186     can appear within SImode subregs.  Although GENERAL_REGS
1187     can handle SImode, QImode needs a smaller class.  */
1188#ifdef LIMIT_RELOAD_CLASS
1189  if (in_subreg_loc)
1190    class = LIMIT_RELOAD_CLASS (inmode, class);
1191  else if (in != 0 && GET_CODE (in) == SUBREG)
1192    class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1193
1194  if (out_subreg_loc)
1195    class = LIMIT_RELOAD_CLASS (outmode, class);
1196  if (out != 0 && GET_CODE (out) == SUBREG)
1197    class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1198#endif
1199
1200  /* Verify that this class is at least possible for the mode that
1201     is specified.  */
1202  if (this_insn_is_asm)
1203    {
1204      enum machine_mode mode;
1205      if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1206	mode = inmode;
1207      else
1208	mode = outmode;
1209      if (mode == VOIDmode)
1210	{
1211	  error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1212	  mode = word_mode;
1213	  if (in != 0)
1214	    inmode = word_mode;
1215	  if (out != 0)
1216	    outmode = word_mode;
1217	}
1218      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1219	if (HARD_REGNO_MODE_OK (i, mode)
1220	    && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1221	  {
1222	    int nregs = HARD_REGNO_NREGS (i, mode);
1223
1224	    int j;
1225	    for (j = 1; j < nregs; j++)
1226	      if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1227		break;
1228	    if (j == nregs)
1229	      break;
1230	  }
1231      if (i == FIRST_PSEUDO_REGISTER)
1232	{
1233	  error_for_asm (this_insn, "impossible register constraint in `asm'");
1234	  class = ALL_REGS;
1235	}
1236    }
1237
1238  /* Optional output reloads are always OK even if we have no register class,
1239     since the function of these reloads is only to have spill_reg_store etc.
1240     set, so that the storing insn can be deleted later.  */
1241  if (class == NO_REGS
1242      && (optional == 0 || type != RELOAD_FOR_OUTPUT))
1243    abort ();
1244
1245  i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1246
1247  if (i == n_reloads)
1248    {
1249      /* See if we need a secondary reload register to move between CLASS
1250	 and IN or CLASS and OUT.  Get the icode and push any required reloads
1251	 needed for each of them if so.  */
1252
1253#ifdef SECONDARY_INPUT_RELOAD_CLASS
1254      if (in != 0)
1255	secondary_in_reload
1256	  = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1257				   &secondary_in_icode);
1258#endif
1259
1260#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1261      if (out != 0 && GET_CODE (out) != SCRATCH)
1262	secondary_out_reload
1263	  = push_secondary_reload (0, out, opnum, optional, class, outmode,
1264				   type, &secondary_out_icode);
1265#endif
1266
1267      /* We found no existing reload suitable for re-use.
1268	 So add an additional reload.  */
1269
1270#ifdef SECONDARY_MEMORY_NEEDED
1271      /* If a memory location is needed for the copy, make one.  */
1272      if (in != 0 && GET_CODE (in) == REG
1273	  && REGNO (in) < FIRST_PSEUDO_REGISTER
1274	  && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
1275				      class, inmode))
1276	get_secondary_mem (in, inmode, opnum, type);
1277#endif
1278
1279      i = n_reloads;
1280      rld[i].in = in;
1281      rld[i].out = out;
1282      rld[i].class = class;
1283      rld[i].inmode = inmode;
1284      rld[i].outmode = outmode;
1285      rld[i].reg_rtx = 0;
1286      rld[i].optional = optional;
1287      rld[i].inc = 0;
1288      rld[i].nocombine = 0;
1289      rld[i].in_reg = inloc ? *inloc : 0;
1290      rld[i].out_reg = outloc ? *outloc : 0;
1291      rld[i].opnum = opnum;
1292      rld[i].when_needed = type;
1293      rld[i].secondary_in_reload = secondary_in_reload;
1294      rld[i].secondary_out_reload = secondary_out_reload;
1295      rld[i].secondary_in_icode = secondary_in_icode;
1296      rld[i].secondary_out_icode = secondary_out_icode;
1297      rld[i].secondary_p = 0;
1298
1299      n_reloads++;
1300
1301#ifdef SECONDARY_MEMORY_NEEDED
1302      if (out != 0 && GET_CODE (out) == REG
1303	  && REGNO (out) < FIRST_PSEUDO_REGISTER
1304	  && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out)),
1305				      outmode))
1306	get_secondary_mem (out, outmode, opnum, type);
1307#endif
1308    }
1309  else
1310    {
1311      /* We are reusing an existing reload,
1312	 but we may have additional information for it.
1313	 For example, we may now have both IN and OUT
1314	 while the old one may have just one of them.  */
1315
1316      /* The modes can be different.  If they are, we want to reload in
1317	 the larger mode, so that the value is valid for both modes.  */
1318      if (inmode != VOIDmode
1319	  && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1320	rld[i].inmode = inmode;
1321      if (outmode != VOIDmode
1322	  && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1323	rld[i].outmode = outmode;
1324      if (in != 0)
1325	{
1326	  rtx in_reg = inloc ? *inloc : 0;
1327	  /* If we merge reloads for two distinct rtl expressions that
1328	     are identical in content, there might be duplicate address
1329	     reloads.  Remove the extra set now, so that if we later find
1330	     that we can inherit this reload, we can get rid of the
1331	     address reloads altogether.
1332
1333	     Do not do this if both reloads are optional since the result
1334	     would be an optional reload which could potentially leave
1335	     unresolved address replacements.
1336
1337	     It is not sufficient to call transfer_replacements since
1338	     choose_reload_regs will remove the replacements for address
1339	     reloads of inherited reloads which results in the same
1340	     problem.  */
1341	  if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1342	      && ! (rld[i].optional && optional))
1343	    {
1344	      /* We must keep the address reload with the lower operand
1345		 number alive.  */
1346	      if (opnum > rld[i].opnum)
1347		{
1348		  remove_address_replacements (in);
1349		  in = rld[i].in;
1350		  in_reg = rld[i].in_reg;
1351		}
1352	      else
1353		remove_address_replacements (rld[i].in);
1354	    }
1355	  rld[i].in = in;
1356	  rld[i].in_reg = in_reg;
1357	}
1358      if (out != 0)
1359	{
1360	  rld[i].out = out;
1361	  rld[i].out_reg = outloc ? *outloc : 0;
1362	}
1363      if (reg_class_subset_p (class, rld[i].class))
1364	rld[i].class = class;
1365      rld[i].optional &= optional;
1366      if (MERGE_TO_OTHER (type, rld[i].when_needed,
1367			  opnum, rld[i].opnum))
1368	rld[i].when_needed = RELOAD_OTHER;
1369      rld[i].opnum = MIN (rld[i].opnum, opnum);
1370    }
1371
1372  /* If the ostensible rtx being reloaded differs from the rtx found
1373     in the location to substitute, this reload is not safe to combine
1374     because we cannot reliably tell whether it appears in the insn.  */
1375
1376  if (in != 0 && in != *inloc)
1377    rld[i].nocombine = 1;
1378
1379#if 0
1380  /* This was replaced by changes in find_reloads_address_1 and the new
1381     function inc_for_reload, which go with a new meaning of reload_inc.  */
1382
1383  /* If this is an IN/OUT reload in an insn that sets the CC,
1384     it must be for an autoincrement.  It doesn't work to store
1385     the incremented value after the insn because that would clobber the CC.
1386     So we must do the increment of the value reloaded from,
1387     increment it, store it back, then decrement again.  */
1388  if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1389    {
1390      out = 0;
1391      rld[i].out = 0;
1392      rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1393      /* If we did not find a nonzero amount-to-increment-by,
1394	 that contradicts the belief that IN is being incremented
1395	 in an address in this insn.  */
1396      if (rld[i].inc == 0)
1397	abort ();
1398    }
1399#endif
1400
1401  /* If we will replace IN and OUT with the reload-reg,
1402     record where they are located so that substitution need
1403     not do a tree walk.  */
1404
1405  if (replace_reloads)
1406    {
1407      if (inloc != 0)
1408	{
1409	  struct replacement *r = &replacements[n_replacements++];
1410	  r->what = i;
1411	  r->subreg_loc = in_subreg_loc;
1412	  r->where = inloc;
1413	  r->mode = inmode;
1414	}
1415      if (outloc != 0 && outloc != inloc)
1416	{
1417	  struct replacement *r = &replacements[n_replacements++];
1418	  r->what = i;
1419	  r->where = outloc;
1420	  r->subreg_loc = out_subreg_loc;
1421	  r->mode = outmode;
1422	}
1423    }
1424
1425  /* If this reload is just being introduced and it has both
1426     an incoming quantity and an outgoing quantity that are
1427     supposed to be made to match, see if either one of the two
1428     can serve as the place to reload into.
1429
1430     If one of them is acceptable, set rld[i].reg_rtx
1431     to that one.  */
1432
1433  if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1434    {
1435      rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1436					  inmode, outmode,
1437					  rld[i].class, i,
1438					  earlyclobber_operand_p (out));
1439
1440      /* If the outgoing register already contains the same value
1441	 as the incoming one, we can dispense with loading it.
1442	 The easiest way to tell the caller that is to give a phony
1443	 value for the incoming operand (same as outgoing one).  */
1444      if (rld[i].reg_rtx == out
1445	  && (GET_CODE (in) == REG || CONSTANT_P (in))
1446	  && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1447				  static_reload_reg_p, i, inmode))
1448	rld[i].in = out;
1449    }
1450
1451  /* If this is an input reload and the operand contains a register that
1452     dies in this insn and is used nowhere else, see if it is the right class
1453     to be used for this reload.  Use it if so.  (This occurs most commonly
1454     in the case of paradoxical SUBREGs and in-out reloads).  We cannot do
1455     this if it is also an output reload that mentions the register unless
1456     the output is a SUBREG that clobbers an entire register.
1457
1458     Note that the operand might be one of the spill regs, if it is a
1459     pseudo reg and we are in a block where spilling has not taken place.
1460     But if there is no spilling in this block, that is OK.
1461     An explicitly used hard reg cannot be a spill reg.  */
1462
1463  if (rld[i].reg_rtx == 0 && in != 0)
1464    {
1465      rtx note;
1466      int regno;
1467      enum machine_mode rel_mode = inmode;
1468
1469      if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1470	rel_mode = outmode;
1471
1472      for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1473	if (REG_NOTE_KIND (note) == REG_DEAD
1474	    && GET_CODE (XEXP (note, 0)) == REG
1475	    && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1476	    && reg_mentioned_p (XEXP (note, 0), in)
1477	    && ! refers_to_regno_for_reload_p (regno,
1478					       (regno
1479						+ HARD_REGNO_NREGS (regno,
1480								    rel_mode)),
1481					       PATTERN (this_insn), inloc)
1482	    /* If this is also an output reload, IN cannot be used as
1483	       the reload register if it is set in this insn unless IN
1484	       is also OUT.  */
1485	    && (out == 0 || in == out
1486		|| ! hard_reg_set_here_p (regno,
1487					  (regno
1488					   + HARD_REGNO_NREGS (regno,
1489							       rel_mode)),
1490					  PATTERN (this_insn)))
1491	    /* ??? Why is this code so different from the previous?
1492	       Is there any simple coherent way to describe the two together?
1493	       What's going on here.  */
1494	    && (in != out
1495		|| (GET_CODE (in) == SUBREG
1496		    && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1497			 / UNITS_PER_WORD)
1498			== ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1499			     + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1500	    /* Make sure the operand fits in the reg that dies.  */
1501	    && (GET_MODE_SIZE (rel_mode)
1502		<= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1503	    && HARD_REGNO_MODE_OK (regno, inmode)
1504	    && HARD_REGNO_MODE_OK (regno, outmode))
1505	  {
1506	    unsigned int offs;
1507	    unsigned int nregs = MAX (HARD_REGNO_NREGS (regno, inmode),
1508				      HARD_REGNO_NREGS (regno, outmode));
1509
1510	    for (offs = 0; offs < nregs; offs++)
1511	      if (fixed_regs[regno + offs]
1512		  || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1513					  regno + offs))
1514		break;
1515
1516	    if (offs == nregs)
1517	      {
1518		rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1519		break;
1520	      }
1521	  }
1522    }
1523
1524  if (out)
1525    output_reloadnum = i;
1526
1527  return i;
1528}
1529
1530/* Record an additional place we must replace a value
1531   for which we have already recorded a reload.
1532   RELOADNUM is the value returned by push_reload
1533   when the reload was recorded.
1534   This is used in insn patterns that use match_dup.  */
1535
1536static void
1537push_replacement (loc, reloadnum, mode)
1538     rtx *loc;
1539     int reloadnum;
1540     enum machine_mode mode;
1541{
1542  if (replace_reloads)
1543    {
1544      struct replacement *r = &replacements[n_replacements++];
1545      r->what = reloadnum;
1546      r->where = loc;
1547      r->subreg_loc = 0;
1548      r->mode = mode;
1549    }
1550}
1551
1552/* Transfer all replacements that used to be in reload FROM to be in
1553   reload TO.  */
1554
1555void
1556transfer_replacements (to, from)
1557     int to, from;
1558{
1559  int i;
1560
1561  for (i = 0; i < n_replacements; i++)
1562    if (replacements[i].what == from)
1563      replacements[i].what = to;
1564}
1565
1566/* IN_RTX is the value loaded by a reload that we now decided to inherit,
1567   or a subpart of it.  If we have any replacements registered for IN_RTX,
1568   cancel the reloads that were supposed to load them.
1569   Return non-zero if we canceled any reloads.  */
1570int
1571remove_address_replacements (in_rtx)
1572     rtx in_rtx;
1573{
1574  int i, j;
1575  char reload_flags[MAX_RELOADS];
1576  int something_changed = 0;
1577
1578  memset (reload_flags, 0, sizeof reload_flags);
1579  for (i = 0, j = 0; i < n_replacements; i++)
1580    {
1581      if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1582	reload_flags[replacements[i].what] |= 1;
1583      else
1584	{
1585	  replacements[j++] = replacements[i];
1586	  reload_flags[replacements[i].what] |= 2;
1587	}
1588    }
1589  /* Note that the following store must be done before the recursive calls.  */
1590  n_replacements = j;
1591
1592  for (i = n_reloads - 1; i >= 0; i--)
1593    {
1594      if (reload_flags[i] == 1)
1595	{
1596	  deallocate_reload_reg (i);
1597	  remove_address_replacements (rld[i].in);
1598	  rld[i].in = 0;
1599	  something_changed = 1;
1600	}
1601    }
1602  return something_changed;
1603}
1604
1605/* If there is only one output reload, and it is not for an earlyclobber
1606   operand, try to combine it with a (logically unrelated) input reload
1607   to reduce the number of reload registers needed.
1608
1609   This is safe if the input reload does not appear in
1610   the value being output-reloaded, because this implies
1611   it is not needed any more once the original insn completes.
1612
1613   If that doesn't work, see we can use any of the registers that
1614   die in this insn as a reload register.  We can if it is of the right
1615   class and does not appear in the value being output-reloaded.  */
1616
1617static void
1618combine_reloads ()
1619{
1620  int i;
1621  int output_reload = -1;
1622  int secondary_out = -1;
1623  rtx note;
1624
1625  /* Find the output reload; return unless there is exactly one
1626     and that one is mandatory.  */
1627
1628  for (i = 0; i < n_reloads; i++)
1629    if (rld[i].out != 0)
1630      {
1631	if (output_reload >= 0)
1632	  return;
1633	output_reload = i;
1634      }
1635
1636  if (output_reload < 0 || rld[output_reload].optional)
1637    return;
1638
1639  /* An input-output reload isn't combinable.  */
1640
1641  if (rld[output_reload].in != 0)
1642    return;
1643
1644  /* If this reload is for an earlyclobber operand, we can't do anything.  */
1645  if (earlyclobber_operand_p (rld[output_reload].out))
1646    return;
1647
1648  /* If there is a reload for part of the address of this operand, we would
1649     need to chnage it to RELOAD_FOR_OTHER_ADDRESS.  But that would extend
1650     its life to the point where doing this combine would not lower the
1651     number of spill registers needed.  */
1652  for (i = 0; i < n_reloads; i++)
1653    if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1654	 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1655	&& rld[i].opnum == rld[output_reload].opnum)
1656      return;
1657
1658  /* Check each input reload; can we combine it?  */
1659
1660  for (i = 0; i < n_reloads; i++)
1661    if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1662	/* Life span of this reload must not extend past main insn.  */
1663	&& rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1664	&& rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1665	&& rld[i].when_needed != RELOAD_OTHER
1666	&& (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1667	    == CLASS_MAX_NREGS (rld[output_reload].class,
1668				rld[output_reload].outmode))
1669	&& rld[i].inc == 0
1670	&& rld[i].reg_rtx == 0
1671#ifdef SECONDARY_MEMORY_NEEDED
1672	/* Don't combine two reloads with different secondary
1673	   memory locations.  */
1674	&& (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1675	    || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1676	    || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1677			    secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1678#endif
1679	&& (SMALL_REGISTER_CLASSES
1680	    ? (rld[i].class == rld[output_reload].class)
1681	    : (reg_class_subset_p (rld[i].class,
1682				   rld[output_reload].class)
1683	       || reg_class_subset_p (rld[output_reload].class,
1684				      rld[i].class)))
1685	&& (MATCHES (rld[i].in, rld[output_reload].out)
1686	    /* Args reversed because the first arg seems to be
1687	       the one that we imagine being modified
1688	       while the second is the one that might be affected.  */
1689	    || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1690						      rld[i].in)
1691		/* However, if the input is a register that appears inside
1692		   the output, then we also can't share.
1693		   Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1694		   If the same reload reg is used for both reg 69 and the
1695		   result to be stored in memory, then that result
1696		   will clobber the address of the memory ref.  */
1697		&& ! (GET_CODE (rld[i].in) == REG
1698		      && reg_overlap_mentioned_for_reload_p (rld[i].in,
1699							     rld[output_reload].out))))
1700	&& ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode)
1701	&& (reg_class_size[(int) rld[i].class]
1702	    || SMALL_REGISTER_CLASSES)
1703	/* We will allow making things slightly worse by combining an
1704	   input and an output, but no worse than that.  */
1705	&& (rld[i].when_needed == RELOAD_FOR_INPUT
1706	    || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1707      {
1708	int j;
1709
1710	/* We have found a reload to combine with!  */
1711	rld[i].out = rld[output_reload].out;
1712	rld[i].out_reg = rld[output_reload].out_reg;
1713	rld[i].outmode = rld[output_reload].outmode;
1714	/* Mark the old output reload as inoperative.  */
1715	rld[output_reload].out = 0;
1716	/* The combined reload is needed for the entire insn.  */
1717	rld[i].when_needed = RELOAD_OTHER;
1718	/* If the output reload had a secondary reload, copy it.  */
1719	if (rld[output_reload].secondary_out_reload != -1)
1720	  {
1721	    rld[i].secondary_out_reload
1722	      = rld[output_reload].secondary_out_reload;
1723	    rld[i].secondary_out_icode
1724	      = rld[output_reload].secondary_out_icode;
1725	  }
1726
1727#ifdef SECONDARY_MEMORY_NEEDED
1728	/* Copy any secondary MEM.  */
1729	if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1730	  secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1731	    = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1732#endif
1733	/* If required, minimize the register class.  */
1734	if (reg_class_subset_p (rld[output_reload].class,
1735				rld[i].class))
1736	  rld[i].class = rld[output_reload].class;
1737
1738	/* Transfer all replacements from the old reload to the combined.  */
1739	for (j = 0; j < n_replacements; j++)
1740	  if (replacements[j].what == output_reload)
1741	    replacements[j].what = i;
1742
1743	return;
1744      }
1745
1746  /* If this insn has only one operand that is modified or written (assumed
1747     to be the first),  it must be the one corresponding to this reload.  It
1748     is safe to use anything that dies in this insn for that output provided
1749     that it does not occur in the output (we already know it isn't an
1750     earlyclobber.  If this is an asm insn, give up.  */
1751
1752  if (INSN_CODE (this_insn) == -1)
1753    return;
1754
1755  for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1756    if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1757	|| insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1758      return;
1759
1760  /* See if some hard register that dies in this insn and is not used in
1761     the output is the right class.  Only works if the register we pick
1762     up can fully hold our output reload.  */
1763  for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1764    if (REG_NOTE_KIND (note) == REG_DEAD
1765	&& GET_CODE (XEXP (note, 0)) == REG
1766	&& ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1767						 rld[output_reload].out)
1768	&& REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1769	&& HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1770	&& TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1771			      REGNO (XEXP (note, 0)))
1772	&& (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1773	    <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
1774	/* Ensure that a secondary or tertiary reload for this output
1775	   won't want this register.  */
1776	&& ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1777	    || (! (TEST_HARD_REG_BIT
1778		   (reg_class_contents[(int) rld[secondary_out].class],
1779		    REGNO (XEXP (note, 0))))
1780		&& ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1781		    ||  ! (TEST_HARD_REG_BIT
1782			   (reg_class_contents[(int) rld[secondary_out].class],
1783			    REGNO (XEXP (note, 0)))))))
1784	&& ! fixed_regs[REGNO (XEXP (note, 0))])
1785      {
1786	rld[output_reload].reg_rtx
1787	  = gen_rtx_REG (rld[output_reload].outmode,
1788			 REGNO (XEXP (note, 0)));
1789	return;
1790      }
1791}
1792
1793/* Try to find a reload register for an in-out reload (expressions IN and OUT).
1794   See if one of IN and OUT is a register that may be used;
1795   this is desirable since a spill-register won't be needed.
1796   If so, return the register rtx that proves acceptable.
1797
1798   INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1799   CLASS is the register class required for the reload.
1800
1801   If FOR_REAL is >= 0, it is the number of the reload,
1802   and in some cases when it can be discovered that OUT doesn't need
1803   to be computed, clear out rld[FOR_REAL].out.
1804
1805   If FOR_REAL is -1, this should not be done, because this call
1806   is just to see if a register can be found, not to find and install it.
1807
1808   EARLYCLOBBER is non-zero if OUT is an earlyclobber operand.  This
1809   puts an additional constraint on being able to use IN for OUT since
1810   IN must not appear elsewhere in the insn (it is assumed that IN itself
1811   is safe from the earlyclobber).  */
1812
1813static rtx
1814find_dummy_reload (real_in, real_out, inloc, outloc,
1815		   inmode, outmode, class, for_real, earlyclobber)
1816     rtx real_in, real_out;
1817     rtx *inloc, *outloc;
1818     enum machine_mode inmode, outmode;
1819     enum reg_class class;
1820     int for_real;
1821     int earlyclobber;
1822{
1823  rtx in = real_in;
1824  rtx out = real_out;
1825  int in_offset = 0;
1826  int out_offset = 0;
1827  rtx value = 0;
1828
1829  /* If operands exceed a word, we can't use either of them
1830     unless they have the same size.  */
1831  if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1832      && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1833	  || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1834    return 0;
1835
1836  /* Note that {in,out}_offset are needed only when 'in' or 'out'
1837     respectively refers to a hard register.  */
1838
1839  /* Find the inside of any subregs.  */
1840  while (GET_CODE (out) == SUBREG)
1841    {
1842      if (GET_CODE (SUBREG_REG (out)) == REG
1843	  && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1844	out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1845					   GET_MODE (SUBREG_REG (out)),
1846					   SUBREG_BYTE (out),
1847					   GET_MODE (out));
1848      out = SUBREG_REG (out);
1849    }
1850  while (GET_CODE (in) == SUBREG)
1851    {
1852      if (GET_CODE (SUBREG_REG (in)) == REG
1853	  && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1854	in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1855					  GET_MODE (SUBREG_REG (in)),
1856					  SUBREG_BYTE (in),
1857					  GET_MODE (in));
1858      in = SUBREG_REG (in);
1859    }
1860
1861  /* Narrow down the reg class, the same way push_reload will;
1862     otherwise we might find a dummy now, but push_reload won't.  */
1863  class = PREFERRED_RELOAD_CLASS (in, class);
1864
1865  /* See if OUT will do.  */
1866  if (GET_CODE (out) == REG
1867      && REGNO (out) < FIRST_PSEUDO_REGISTER)
1868    {
1869      unsigned int regno = REGNO (out) + out_offset;
1870      unsigned int nwords = HARD_REGNO_NREGS (regno, outmode);
1871      rtx saved_rtx;
1872
1873      /* When we consider whether the insn uses OUT,
1874	 ignore references within IN.  They don't prevent us
1875	 from copying IN into OUT, because those refs would
1876	 move into the insn that reloads IN.
1877
1878	 However, we only ignore IN in its role as this reload.
1879	 If the insn uses IN elsewhere and it contains OUT,
1880	 that counts.  We can't be sure it's the "same" operand
1881	 so it might not go through this reload.  */
1882      saved_rtx = *inloc;
1883      *inloc = const0_rtx;
1884
1885      if (regno < FIRST_PSEUDO_REGISTER
1886	  && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1887					     PATTERN (this_insn), outloc))
1888	{
1889	  unsigned int i;
1890
1891	  for (i = 0; i < nwords; i++)
1892	    if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1893				     regno + i))
1894	      break;
1895
1896	  if (i == nwords)
1897	    {
1898	      if (GET_CODE (real_out) == REG)
1899		value = real_out;
1900	      else
1901		value = gen_rtx_REG (outmode, regno);
1902	    }
1903	}
1904
1905      *inloc = saved_rtx;
1906    }
1907
1908  /* Consider using IN if OUT was not acceptable
1909     or if OUT dies in this insn (like the quotient in a divmod insn).
1910     We can't use IN unless it is dies in this insn,
1911     which means we must know accurately which hard regs are live.
1912     Also, the result can't go in IN if IN is used within OUT,
1913     or if OUT is an earlyclobber and IN appears elsewhere in the insn.  */
1914  if (hard_regs_live_known
1915      && GET_CODE (in) == REG
1916      && REGNO (in) < FIRST_PSEUDO_REGISTER
1917      && (value == 0
1918	  || find_reg_note (this_insn, REG_UNUSED, real_out))
1919      && find_reg_note (this_insn, REG_DEAD, real_in)
1920      && !fixed_regs[REGNO (in)]
1921      && HARD_REGNO_MODE_OK (REGNO (in),
1922			     /* The only case where out and real_out might
1923				have different modes is where real_out
1924				is a subreg, and in that case, out
1925				has a real mode.  */
1926			     (GET_MODE (out) != VOIDmode
1927			      ? GET_MODE (out) : outmode)))
1928    {
1929      unsigned int regno = REGNO (in) + in_offset;
1930      unsigned int nwords = HARD_REGNO_NREGS (regno, inmode);
1931
1932      if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
1933	  && ! hard_reg_set_here_p (regno, regno + nwords,
1934				    PATTERN (this_insn))
1935	  && (! earlyclobber
1936	      || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1937						 PATTERN (this_insn), inloc)))
1938	{
1939	  unsigned int i;
1940
1941	  for (i = 0; i < nwords; i++)
1942	    if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1943				     regno + i))
1944	      break;
1945
1946	  if (i == nwords)
1947	    {
1948	      /* If we were going to use OUT as the reload reg
1949		 and changed our mind, it means OUT is a dummy that
1950		 dies here.  So don't bother copying value to it.  */
1951	      if (for_real >= 0 && value == real_out)
1952		rld[for_real].out = 0;
1953	      if (GET_CODE (real_in) == REG)
1954		value = real_in;
1955	      else
1956		value = gen_rtx_REG (inmode, regno);
1957	    }
1958	}
1959    }
1960
1961  return value;
1962}
1963
1964/* This page contains subroutines used mainly for determining
1965   whether the IN or an OUT of a reload can serve as the
1966   reload register.  */
1967
1968/* Return 1 if X is an operand of an insn that is being earlyclobbered.  */
1969
1970int
1971earlyclobber_operand_p (x)
1972     rtx x;
1973{
1974  int i;
1975
1976  for (i = 0; i < n_earlyclobbers; i++)
1977    if (reload_earlyclobbers[i] == x)
1978      return 1;
1979
1980  return 0;
1981}
1982
1983/* Return 1 if expression X alters a hard reg in the range
1984   from BEG_REGNO (inclusive) to END_REGNO (exclusive),
1985   either explicitly or in the guise of a pseudo-reg allocated to REGNO.
1986   X should be the body of an instruction.  */
1987
1988static int
1989hard_reg_set_here_p (beg_regno, end_regno, x)
1990     unsigned int beg_regno, end_regno;
1991     rtx x;
1992{
1993  if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1994    {
1995      rtx op0 = SET_DEST (x);
1996
1997      while (GET_CODE (op0) == SUBREG)
1998	op0 = SUBREG_REG (op0);
1999      if (GET_CODE (op0) == REG)
2000	{
2001	  unsigned int r = REGNO (op0);
2002
2003	  /* See if this reg overlaps range under consideration.  */
2004	  if (r < end_regno
2005	      && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
2006	    return 1;
2007	}
2008    }
2009  else if (GET_CODE (x) == PARALLEL)
2010    {
2011      int i = XVECLEN (x, 0) - 1;
2012
2013      for (; i >= 0; i--)
2014	if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2015	  return 1;
2016    }
2017
2018  return 0;
2019}
2020
2021/* Return 1 if ADDR is a valid memory address for mode MODE,
2022   and check that each pseudo reg has the proper kind of
2023   hard reg.  */
2024
2025int
2026strict_memory_address_p (mode, addr)
2027     enum machine_mode mode ATTRIBUTE_UNUSED;
2028     rtx addr;
2029{
2030  GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2031  return 0;
2032
2033 win:
2034  return 1;
2035}
2036
2037/* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2038   if they are the same hard reg, and has special hacks for
2039   autoincrement and autodecrement.
2040   This is specifically intended for find_reloads to use
2041   in determining whether two operands match.
2042   X is the operand whose number is the lower of the two.
2043
2044   The value is 2 if Y contains a pre-increment that matches
2045   a non-incrementing address in X.  */
2046
2047/* ??? To be completely correct, we should arrange to pass
2048   for X the output operand and for Y the input operand.
2049   For now, we assume that the output operand has the lower number
2050   because that is natural in (SET output (... input ...)).  */
2051
2052int
2053operands_match_p (x, y)
2054     rtx x, y;
2055{
2056  int i;
2057  RTX_CODE code = GET_CODE (x);
2058  const char *fmt;
2059  int success_2;
2060
2061  if (x == y)
2062    return 1;
2063  if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
2064      && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
2065				  && GET_CODE (SUBREG_REG (y)) == REG)))
2066    {
2067      int j;
2068
2069      if (code == SUBREG)
2070	{
2071	  i = REGNO (SUBREG_REG (x));
2072	  if (i >= FIRST_PSEUDO_REGISTER)
2073	    goto slow;
2074	  i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2075				    GET_MODE (SUBREG_REG (x)),
2076				    SUBREG_BYTE (x),
2077				    GET_MODE (x));
2078	}
2079      else
2080	i = REGNO (x);
2081
2082      if (GET_CODE (y) == SUBREG)
2083	{
2084	  j = REGNO (SUBREG_REG (y));
2085	  if (j >= FIRST_PSEUDO_REGISTER)
2086	    goto slow;
2087	  j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2088				    GET_MODE (SUBREG_REG (y)),
2089				    SUBREG_BYTE (y),
2090				    GET_MODE (y));
2091	}
2092      else
2093	j = REGNO (y);
2094
2095      /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2096	 multiple hard register group, so that for example (reg:DI 0) and
2097	 (reg:SI 1) will be considered the same register.  */
2098      if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2099	  && i < FIRST_PSEUDO_REGISTER)
2100	i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
2101      if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2102	  && j < FIRST_PSEUDO_REGISTER)
2103	j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
2104
2105      return i == j;
2106    }
2107  /* If two operands must match, because they are really a single
2108     operand of an assembler insn, then two postincrements are invalid
2109     because the assembler insn would increment only once.
2110     On the other hand, an postincrement matches ordinary indexing
2111     if the postincrement is the output operand.  */
2112  if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2113    return operands_match_p (XEXP (x, 0), y);
2114  /* Two preincrements are invalid
2115     because the assembler insn would increment only once.
2116     On the other hand, an preincrement matches ordinary indexing
2117     if the preincrement is the input operand.
2118     In this case, return 2, since some callers need to do special
2119     things when this happens.  */
2120  if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2121      || GET_CODE (y) == PRE_MODIFY)
2122    return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2123
2124 slow:
2125
2126  /* Now we have disposed of all the cases
2127     in which different rtx codes can match.  */
2128  if (code != GET_CODE (y))
2129    return 0;
2130  if (code == LABEL_REF)
2131    return XEXP (x, 0) == XEXP (y, 0);
2132  if (code == SYMBOL_REF)
2133    return XSTR (x, 0) == XSTR (y, 0);
2134
2135  /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
2136
2137  if (GET_MODE (x) != GET_MODE (y))
2138    return 0;
2139
2140  /* Compare the elements.  If any pair of corresponding elements
2141     fail to match, return 0 for the whole things.  */
2142
2143  success_2 = 0;
2144  fmt = GET_RTX_FORMAT (code);
2145  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2146    {
2147      int val, j;
2148      switch (fmt[i])
2149	{
2150	case 'w':
2151	  if (XWINT (x, i) != XWINT (y, i))
2152	    return 0;
2153	  break;
2154
2155	case 'i':
2156	  if (XINT (x, i) != XINT (y, i))
2157	    return 0;
2158	  break;
2159
2160	case 'e':
2161	  val = operands_match_p (XEXP (x, i), XEXP (y, i));
2162	  if (val == 0)
2163	    return 0;
2164	  /* If any subexpression returns 2,
2165	     we should return 2 if we are successful.  */
2166	  if (val == 2)
2167	    success_2 = 1;
2168	  break;
2169
2170	case '0':
2171	  break;
2172
2173	case 'E':
2174	  if (XVECLEN (x, i) != XVECLEN (y, i))
2175	    return 0;
2176	  for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2177	    {
2178	      val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2179	      if (val == 0)
2180		return 0;
2181	      if (val == 2)
2182		success_2 = 1;
2183	    }
2184	  break;
2185
2186	  /* It is believed that rtx's at this level will never
2187	     contain anything but integers and other rtx's,
2188	     except for within LABEL_REFs and SYMBOL_REFs.  */
2189	default:
2190	  abort ();
2191	}
2192    }
2193  return 1 + success_2;
2194}
2195
2196/* Describe the range of registers or memory referenced by X.
2197   If X is a register, set REG_FLAG and put the first register
2198   number into START and the last plus one into END.
2199   If X is a memory reference, put a base address into BASE
2200   and a range of integer offsets into START and END.
2201   If X is pushing on the stack, we can assume it causes no trouble,
2202   so we set the SAFE field.  */
2203
2204static struct decomposition
2205decompose (x)
2206     rtx x;
2207{
2208  struct decomposition val;
2209  int all_const = 0;
2210
2211  val.reg_flag = 0;
2212  val.safe = 0;
2213  val.base = 0;
2214  if (GET_CODE (x) == MEM)
2215    {
2216      rtx base = NULL_RTX, offset = 0;
2217      rtx addr = XEXP (x, 0);
2218
2219      if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2220	  || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2221	{
2222	  val.base = XEXP (addr, 0);
2223	  val.start = -GET_MODE_SIZE (GET_MODE (x));
2224	  val.end = GET_MODE_SIZE (GET_MODE (x));
2225	  val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2226	  return val;
2227	}
2228
2229      if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2230	{
2231	  if (GET_CODE (XEXP (addr, 1)) == PLUS
2232	      && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2233	      && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2234	    {
2235	      val.base  = XEXP (addr, 0);
2236	      val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2237	      val.end   = INTVAL (XEXP (XEXP (addr, 1), 1));
2238	      val.safe  = REGNO (val.base) == STACK_POINTER_REGNUM;
2239	      return val;
2240	    }
2241	}
2242
2243      if (GET_CODE (addr) == CONST)
2244	{
2245	  addr = XEXP (addr, 0);
2246	  all_const = 1;
2247	}
2248      if (GET_CODE (addr) == PLUS)
2249	{
2250	  if (CONSTANT_P (XEXP (addr, 0)))
2251	    {
2252	      base = XEXP (addr, 1);
2253	      offset = XEXP (addr, 0);
2254	    }
2255	  else if (CONSTANT_P (XEXP (addr, 1)))
2256	    {
2257	      base = XEXP (addr, 0);
2258	      offset = XEXP (addr, 1);
2259	    }
2260	}
2261
2262      if (offset == 0)
2263	{
2264	  base = addr;
2265	  offset = const0_rtx;
2266	}
2267      if (GET_CODE (offset) == CONST)
2268	offset = XEXP (offset, 0);
2269      if (GET_CODE (offset) == PLUS)
2270	{
2271	  if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2272	    {
2273	      base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2274	      offset = XEXP (offset, 0);
2275	    }
2276	  else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2277	    {
2278	      base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2279	      offset = XEXP (offset, 1);
2280	    }
2281	  else
2282	    {
2283	      base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2284	      offset = const0_rtx;
2285	    }
2286	}
2287      else if (GET_CODE (offset) != CONST_INT)
2288	{
2289	  base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2290	  offset = const0_rtx;
2291	}
2292
2293      if (all_const && GET_CODE (base) == PLUS)
2294	base = gen_rtx_CONST (GET_MODE (base), base);
2295
2296      if (GET_CODE (offset) != CONST_INT)
2297	abort ();
2298
2299      val.start = INTVAL (offset);
2300      val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2301      val.base = base;
2302      return val;
2303    }
2304  else if (GET_CODE (x) == REG)
2305    {
2306      val.reg_flag = 1;
2307      val.start = true_regnum (x);
2308      if (val.start < 0)
2309	{
2310	  /* A pseudo with no hard reg.  */
2311	  val.start = REGNO (x);
2312	  val.end = val.start + 1;
2313	}
2314      else
2315	/* A hard reg.  */
2316	val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2317    }
2318  else if (GET_CODE (x) == SUBREG)
2319    {
2320      if (GET_CODE (SUBREG_REG (x)) != REG)
2321	/* This could be more precise, but it's good enough.  */
2322	return decompose (SUBREG_REG (x));
2323      val.reg_flag = 1;
2324      val.start = true_regnum (x);
2325      if (val.start < 0)
2326	return decompose (SUBREG_REG (x));
2327      else
2328	/* A hard reg.  */
2329	val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2330    }
2331  else if (CONSTANT_P (x)
2332	   /* This hasn't been assigned yet, so it can't conflict yet.  */
2333	   || GET_CODE (x) == SCRATCH)
2334    val.safe = 1;
2335  else
2336    abort ();
2337  return val;
2338}
2339
2340/* Return 1 if altering Y will not modify the value of X.
2341   Y is also described by YDATA, which should be decompose (Y).  */
2342
2343static int
2344immune_p (x, y, ydata)
2345     rtx x, y;
2346     struct decomposition ydata;
2347{
2348  struct decomposition xdata;
2349
2350  if (ydata.reg_flag)
2351    return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2352  if (ydata.safe)
2353    return 1;
2354
2355  if (GET_CODE (y) != MEM)
2356    abort ();
2357  /* If Y is memory and X is not, Y can't affect X.  */
2358  if (GET_CODE (x) != MEM)
2359    return 1;
2360
2361  xdata = decompose (x);
2362
2363  if (! rtx_equal_p (xdata.base, ydata.base))
2364    {
2365      /* If bases are distinct symbolic constants, there is no overlap.  */
2366      if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2367	return 1;
2368      /* Constants and stack slots never overlap.  */
2369      if (CONSTANT_P (xdata.base)
2370	  && (ydata.base == frame_pointer_rtx
2371	      || ydata.base == hard_frame_pointer_rtx
2372	      || ydata.base == stack_pointer_rtx))
2373	return 1;
2374      if (CONSTANT_P (ydata.base)
2375	  && (xdata.base == frame_pointer_rtx
2376	      || xdata.base == hard_frame_pointer_rtx
2377	      || xdata.base == stack_pointer_rtx))
2378	return 1;
2379      /* If either base is variable, we don't know anything.  */
2380      return 0;
2381    }
2382
2383  return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2384}
2385
2386/* Similar, but calls decompose.  */
2387
2388int
2389safe_from_earlyclobber (op, clobber)
2390     rtx op, clobber;
2391{
2392  struct decomposition early_data;
2393
2394  early_data = decompose (clobber);
2395  return immune_p (op, clobber, early_data);
2396}
2397
2398/* Main entry point of this file: search the body of INSN
2399   for values that need reloading and record them with push_reload.
2400   REPLACE nonzero means record also where the values occur
2401   so that subst_reloads can be used.
2402
2403   IND_LEVELS says how many levels of indirection are supported by this
2404   machine; a value of zero means that a memory reference is not a valid
2405   memory address.
2406
2407   LIVE_KNOWN says we have valid information about which hard
2408   regs are live at each point in the program; this is true when
2409   we are called from global_alloc but false when stupid register
2410   allocation has been done.
2411
2412   RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2413   which is nonnegative if the reg has been commandeered for reloading into.
2414   It is copied into STATIC_RELOAD_REG_P and referenced from there
2415   by various subroutines.
2416
2417   Return TRUE if some operands need to be changed, because of swapping
2418   commutative operands, reg_equiv_address substitution, or whatever.  */
2419
2420int
2421find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2422     rtx insn;
2423     int replace, ind_levels;
2424     int live_known;
2425     short *reload_reg_p;
2426{
2427  int insn_code_number;
2428  int i, j;
2429  int noperands;
2430  /* These start out as the constraints for the insn
2431     and they are chewed up as we consider alternatives.  */
2432  char *constraints[MAX_RECOG_OPERANDS];
2433  /* These are the preferred classes for an operand, or NO_REGS if it isn't
2434     a register.  */
2435  enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2436  char pref_or_nothing[MAX_RECOG_OPERANDS];
2437  /* Nonzero for a MEM operand whose entire address needs a reload.  */
2438  int address_reloaded[MAX_RECOG_OPERANDS];
2439  /* Value of enum reload_type to use for operand.  */
2440  enum reload_type operand_type[MAX_RECOG_OPERANDS];
2441  /* Value of enum reload_type to use within address of operand.  */
2442  enum reload_type address_type[MAX_RECOG_OPERANDS];
2443  /* Save the usage of each operand.  */
2444  enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2445  int no_input_reloads = 0, no_output_reloads = 0;
2446  int n_alternatives;
2447  int this_alternative[MAX_RECOG_OPERANDS];
2448  char this_alternative_match_win[MAX_RECOG_OPERANDS];
2449  char this_alternative_win[MAX_RECOG_OPERANDS];
2450  char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2451  char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2452  int this_alternative_matches[MAX_RECOG_OPERANDS];
2453  int swapped;
2454  int goal_alternative[MAX_RECOG_OPERANDS];
2455  int this_alternative_number;
2456  int goal_alternative_number = 0;
2457  int operand_reloadnum[MAX_RECOG_OPERANDS];
2458  int goal_alternative_matches[MAX_RECOG_OPERANDS];
2459  int goal_alternative_matched[MAX_RECOG_OPERANDS];
2460  char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2461  char goal_alternative_win[MAX_RECOG_OPERANDS];
2462  char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2463  char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2464  int goal_alternative_swapped;
2465  int best;
2466  int commutative;
2467  char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2468  rtx substed_operand[MAX_RECOG_OPERANDS];
2469  rtx body = PATTERN (insn);
2470  rtx set = single_set (insn);
2471  int goal_earlyclobber = 0, this_earlyclobber;
2472  enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2473  int retval = 0;
2474
2475  this_insn = insn;
2476  n_reloads = 0;
2477  n_replacements = 0;
2478  n_earlyclobbers = 0;
2479  replace_reloads = replace;
2480  hard_regs_live_known = live_known;
2481  static_reload_reg_p = reload_reg_p;
2482
2483  /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2484     neither are insns that SET cc0.  Insns that use CC0 are not allowed
2485     to have any input reloads.  */
2486  if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2487    no_output_reloads = 1;
2488
2489#ifdef HAVE_cc0
2490  if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2491    no_input_reloads = 1;
2492  if (reg_set_p (cc0_rtx, PATTERN (insn)))
2493    no_output_reloads = 1;
2494#endif
2495
2496#ifdef SECONDARY_MEMORY_NEEDED
2497  /* The eliminated forms of any secondary memory locations are per-insn, so
2498     clear them out here.  */
2499
2500  memset ((char *) secondary_memlocs_elim, 0, sizeof secondary_memlocs_elim);
2501#endif
2502
2503  /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2504     is cheap to move between them.  If it is not, there may not be an insn
2505     to do the copy, so we may need a reload.  */
2506  if (GET_CODE (body) == SET
2507      && GET_CODE (SET_DEST (body)) == REG
2508      && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2509      && GET_CODE (SET_SRC (body)) == REG
2510      && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2511      && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2512			     REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2513			     REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2514    return 0;
2515
2516  extract_insn (insn);
2517
2518  noperands = reload_n_operands = recog_data.n_operands;
2519  n_alternatives = recog_data.n_alternatives;
2520
2521  /* Just return "no reloads" if insn has no operands with constraints.  */
2522  if (noperands == 0 || n_alternatives == 0)
2523    return 0;
2524
2525  insn_code_number = INSN_CODE (insn);
2526  this_insn_is_asm = insn_code_number < 0;
2527
2528  memcpy (operand_mode, recog_data.operand_mode,
2529	  noperands * sizeof (enum machine_mode));
2530  memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2531
2532  commutative = -1;
2533
2534  /* If we will need to know, later, whether some pair of operands
2535     are the same, we must compare them now and save the result.
2536     Reloading the base and index registers will clobber them
2537     and afterward they will fail to match.  */
2538
2539  for (i = 0; i < noperands; i++)
2540    {
2541      char *p;
2542      int c;
2543
2544      substed_operand[i] = recog_data.operand[i];
2545      p = constraints[i];
2546
2547      modified[i] = RELOAD_READ;
2548
2549      /* Scan this operand's constraint to see if it is an output operand,
2550	 an in-out operand, is commutative, or should match another.  */
2551
2552      while ((c = *p++))
2553	{
2554	  if (c == '=')
2555	    modified[i] = RELOAD_WRITE;
2556	  else if (c == '+')
2557	    modified[i] = RELOAD_READ_WRITE;
2558	  else if (c == '%')
2559	    {
2560	      /* The last operand should not be marked commutative.  */
2561	      if (i == noperands - 1)
2562		abort ();
2563
2564	      commutative = i;
2565	    }
2566	  else if (ISDIGIT (c))
2567	    {
2568	      c = strtoul (p - 1, &p, 10);
2569
2570	      operands_match[c][i]
2571		= operands_match_p (recog_data.operand[c],
2572				    recog_data.operand[i]);
2573
2574	      /* An operand may not match itself.  */
2575	      if (c == i)
2576		abort ();
2577
2578	      /* If C can be commuted with C+1, and C might need to match I,
2579		 then C+1 might also need to match I.  */
2580	      if (commutative >= 0)
2581		{
2582		  if (c == commutative || c == commutative + 1)
2583		    {
2584		      int other = c + (c == commutative ? 1 : -1);
2585		      operands_match[other][i]
2586			= operands_match_p (recog_data.operand[other],
2587					    recog_data.operand[i]);
2588		    }
2589		  if (i == commutative || i == commutative + 1)
2590		    {
2591		      int other = i + (i == commutative ? 1 : -1);
2592		      operands_match[c][other]
2593			= operands_match_p (recog_data.operand[c],
2594					    recog_data.operand[other]);
2595		    }
2596		  /* Note that C is supposed to be less than I.
2597		     No need to consider altering both C and I because in
2598		     that case we would alter one into the other.  */
2599		}
2600	    }
2601	}
2602    }
2603
2604  /* Examine each operand that is a memory reference or memory address
2605     and reload parts of the addresses into index registers.
2606     Also here any references to pseudo regs that didn't get hard regs
2607     but are equivalent to constants get replaced in the insn itself
2608     with those constants.  Nobody will ever see them again.
2609
2610     Finally, set up the preferred classes of each operand.  */
2611
2612  for (i = 0; i < noperands; i++)
2613    {
2614      RTX_CODE code = GET_CODE (recog_data.operand[i]);
2615
2616      address_reloaded[i] = 0;
2617      operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2618			 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2619			 : RELOAD_OTHER);
2620      address_type[i]
2621	= (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2622	   : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2623	   : RELOAD_OTHER);
2624
2625      if (*constraints[i] == 0)
2626	/* Ignore things like match_operator operands.  */
2627	;
2628      else if (constraints[i][0] == 'p')
2629	{
2630	  find_reloads_address (VOIDmode, (rtx*) 0,
2631				recog_data.operand[i],
2632				recog_data.operand_loc[i],
2633				i, operand_type[i], ind_levels, insn);
2634
2635	  /* If we now have a simple operand where we used to have a
2636	     PLUS or MULT, re-recognize and try again.  */
2637	  if ((GET_RTX_CLASS (GET_CODE (*recog_data.operand_loc[i])) == 'o'
2638	       || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2639	      && (GET_CODE (recog_data.operand[i]) == MULT
2640		  || GET_CODE (recog_data.operand[i]) == PLUS))
2641	    {
2642	      INSN_CODE (insn) = -1;
2643	      retval = find_reloads (insn, replace, ind_levels, live_known,
2644				     reload_reg_p);
2645	      return retval;
2646	    }
2647
2648	  recog_data.operand[i] = *recog_data.operand_loc[i];
2649	  substed_operand[i] = recog_data.operand[i];
2650	}
2651      else if (code == MEM)
2652	{
2653	  address_reloaded[i]
2654	    = find_reloads_address (GET_MODE (recog_data.operand[i]),
2655				    recog_data.operand_loc[i],
2656				    XEXP (recog_data.operand[i], 0),
2657				    &XEXP (recog_data.operand[i], 0),
2658				    i, address_type[i], ind_levels, insn);
2659	  recog_data.operand[i] = *recog_data.operand_loc[i];
2660	  substed_operand[i] = recog_data.operand[i];
2661	}
2662      else if (code == SUBREG)
2663	{
2664	  rtx reg = SUBREG_REG (recog_data.operand[i]);
2665	  rtx op
2666	    = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2667				   ind_levels,
2668				   set != 0
2669				   && &SET_DEST (set) == recog_data.operand_loc[i],
2670				   insn,
2671				   &address_reloaded[i]);
2672
2673	  /* If we made a MEM to load (a part of) the stackslot of a pseudo
2674	     that didn't get a hard register, emit a USE with a REG_EQUAL
2675	     note in front so that we might inherit a previous, possibly
2676	     wider reload.  */
2677
2678	  if (replace
2679	      && GET_CODE (op) == MEM
2680	      && GET_CODE (reg) == REG
2681	      && (GET_MODE_SIZE (GET_MODE (reg))
2682		  >= GET_MODE_SIZE (GET_MODE (op))))
2683	    set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2684						   insn),
2685				 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2686
2687	  substed_operand[i] = recog_data.operand[i] = op;
2688	}
2689      else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2690	/* We can get a PLUS as an "operand" as a result of register
2691	   elimination.  See eliminate_regs and gen_reload.  We handle
2692	   a unary operator by reloading the operand.  */
2693	substed_operand[i] = recog_data.operand[i]
2694	  = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2695				 ind_levels, 0, insn,
2696				 &address_reloaded[i]);
2697      else if (code == REG)
2698	{
2699	  /* This is equivalent to calling find_reloads_toplev.
2700	     The code is duplicated for speed.
2701	     When we find a pseudo always equivalent to a constant,
2702	     we replace it by the constant.  We must be sure, however,
2703	     that we don't try to replace it in the insn in which it
2704	     is being set.  */
2705	  int regno = REGNO (recog_data.operand[i]);
2706	  if (reg_equiv_constant[regno] != 0
2707	      && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2708	    {
2709	      /* Record the existing mode so that the check if constants are
2710		 allowed will work when operand_mode isn't specified.  */
2711
2712	      if (operand_mode[i] == VOIDmode)
2713		operand_mode[i] = GET_MODE (recog_data.operand[i]);
2714
2715	      substed_operand[i] = recog_data.operand[i]
2716		= reg_equiv_constant[regno];
2717	    }
2718	  if (reg_equiv_memory_loc[regno] != 0
2719	      && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2720	    /* We need not give a valid is_set_dest argument since the case
2721	       of a constant equivalence was checked above.  */
2722	    substed_operand[i] = recog_data.operand[i]
2723	      = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2724				     ind_levels, 0, insn,
2725				     &address_reloaded[i]);
2726	}
2727      /* If the operand is still a register (we didn't replace it with an
2728	 equivalent), get the preferred class to reload it into.  */
2729      code = GET_CODE (recog_data.operand[i]);
2730      preferred_class[i]
2731	= ((code == REG && REGNO (recog_data.operand[i])
2732	    >= FIRST_PSEUDO_REGISTER)
2733	   ? reg_preferred_class (REGNO (recog_data.operand[i]))
2734	   : NO_REGS);
2735      pref_or_nothing[i]
2736	= (code == REG
2737	   && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2738	   && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2739    }
2740
2741  /* If this is simply a copy from operand 1 to operand 0, merge the
2742     preferred classes for the operands.  */
2743  if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2744      && recog_data.operand[1] == SET_SRC (set))
2745    {
2746      preferred_class[0] = preferred_class[1]
2747	= reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2748      pref_or_nothing[0] |= pref_or_nothing[1];
2749      pref_or_nothing[1] |= pref_or_nothing[0];
2750    }
2751
2752  /* Now see what we need for pseudo-regs that didn't get hard regs
2753     or got the wrong kind of hard reg.  For this, we must consider
2754     all the operands together against the register constraints.  */
2755
2756  best = MAX_RECOG_OPERANDS * 2 + 600;
2757
2758  swapped = 0;
2759  goal_alternative_swapped = 0;
2760 try_swapped:
2761
2762  /* The constraints are made of several alternatives.
2763     Each operand's constraint looks like foo,bar,... with commas
2764     separating the alternatives.  The first alternatives for all
2765     operands go together, the second alternatives go together, etc.
2766
2767     First loop over alternatives.  */
2768
2769  for (this_alternative_number = 0;
2770       this_alternative_number < n_alternatives;
2771       this_alternative_number++)
2772    {
2773      /* Loop over operands for one constraint alternative.  */
2774      /* LOSERS counts those that don't fit this alternative
2775	 and would require loading.  */
2776      int losers = 0;
2777      /* BAD is set to 1 if it some operand can't fit this alternative
2778	 even after reloading.  */
2779      int bad = 0;
2780      /* REJECT is a count of how undesirable this alternative says it is
2781	 if any reloading is required.  If the alternative matches exactly
2782	 then REJECT is ignored, but otherwise it gets this much
2783	 counted against it in addition to the reloading needed.  Each
2784	 ? counts three times here since we want the disparaging caused by
2785	 a bad register class to only count 1/3 as much.  */
2786      int reject = 0;
2787
2788      this_earlyclobber = 0;
2789
2790      for (i = 0; i < noperands; i++)
2791	{
2792	  char *p = constraints[i];
2793	  int win = 0;
2794	  int did_match = 0;
2795	  /* 0 => this operand can be reloaded somehow for this alternative.  */
2796	  int badop = 1;
2797	  /* 0 => this operand can be reloaded if the alternative allows regs.  */
2798	  int winreg = 0;
2799	  int c;
2800	  rtx operand = recog_data.operand[i];
2801	  int offset = 0;
2802	  /* Nonzero means this is a MEM that must be reloaded into a reg
2803	     regardless of what the constraint says.  */
2804	  int force_reload = 0;
2805	  int offmemok = 0;
2806	  /* Nonzero if a constant forced into memory would be OK for this
2807	     operand.  */
2808	  int constmemok = 0;
2809	  int earlyclobber = 0;
2810
2811	  /* If the predicate accepts a unary operator, it means that
2812	     we need to reload the operand, but do not do this for
2813	     match_operator and friends.  */
2814	  if (GET_RTX_CLASS (GET_CODE (operand)) == '1' && *p != 0)
2815	    operand = XEXP (operand, 0);
2816
2817	  /* If the operand is a SUBREG, extract
2818	     the REG or MEM (or maybe even a constant) within.
2819	     (Constants can occur as a result of reg_equiv_constant.)  */
2820
2821	  while (GET_CODE (operand) == SUBREG)
2822	    {
2823	      /* Offset only matters when operand is a REG and
2824		 it is a hard reg.  This is because it is passed
2825		 to reg_fits_class_p if it is a REG and all pseudos
2826		 return 0 from that function.  */
2827	      if (GET_CODE (SUBREG_REG (operand)) == REG
2828		  && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2829		{
2830		  offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2831						 GET_MODE (SUBREG_REG (operand)),
2832						 SUBREG_BYTE (operand),
2833						 GET_MODE (operand));
2834		}
2835	      operand = SUBREG_REG (operand);
2836	      /* Force reload if this is a constant or PLUS or if there may
2837		 be a problem accessing OPERAND in the outer mode.  */
2838	      if (CONSTANT_P (operand)
2839		  || GET_CODE (operand) == PLUS
2840		  /* We must force a reload of paradoxical SUBREGs
2841		     of a MEM because the alignment of the inner value
2842		     may not be enough to do the outer reference.  On
2843		     big-endian machines, it may also reference outside
2844		     the object.
2845
2846		     On machines that extend byte operations and we have a
2847		     SUBREG where both the inner and outer modes are no wider
2848		     than a word and the inner mode is narrower, is integral,
2849		     and gets extended when loaded from memory, combine.c has
2850		     made assumptions about the behavior of the machine in such
2851		     register access.  If the data is, in fact, in memory we
2852		     must always load using the size assumed to be in the
2853		     register and let the insn do the different-sized
2854		     accesses.
2855
2856		     This is doubly true if WORD_REGISTER_OPERATIONS.  In
2857		     this case eliminate_regs has left non-paradoxical
2858		     subregs for push_reloads to see.  Make sure it does
2859		     by forcing the reload.
2860
2861		     ??? When is it right at this stage to have a subreg
2862		     of a mem that is _not_ to be handled specialy?  IMO
2863		     those should have been reduced to just a mem.  */
2864		  || ((GET_CODE (operand) == MEM
2865		       || (GET_CODE (operand)== REG
2866			   && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2867#ifndef WORD_REGISTER_OPERATIONS
2868		      && (((GET_MODE_BITSIZE (GET_MODE (operand))
2869			    < BIGGEST_ALIGNMENT)
2870			   && (GET_MODE_SIZE (operand_mode[i])
2871			       > GET_MODE_SIZE (GET_MODE (operand))))
2872			  || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
2873#ifdef LOAD_EXTEND_OP
2874			  || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2875			      && (GET_MODE_SIZE (GET_MODE (operand))
2876				  <= UNITS_PER_WORD)
2877			      && (GET_MODE_SIZE (operand_mode[i])
2878				  > GET_MODE_SIZE (GET_MODE (operand)))
2879			      && INTEGRAL_MODE_P (GET_MODE (operand))
2880			      && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2881#endif
2882			  )
2883#endif
2884		      )
2885		  /* This following hunk of code should no longer be
2886		     needed at all with SUBREG_BYTE.  If you need this
2887		     code back, please explain to me why so I can
2888		     fix the real problem.  -DaveM */
2889#if 0
2890		  /* Subreg of a hard reg which can't handle the subreg's mode
2891		     or which would handle that mode in the wrong number of
2892		     registers for subregging to work.  */
2893		  || (GET_CODE (operand) == REG
2894		      && REGNO (operand) < FIRST_PSEUDO_REGISTER
2895		      && ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2896			   && (GET_MODE_SIZE (GET_MODE (operand))
2897			       > UNITS_PER_WORD)
2898			   && ((GET_MODE_SIZE (GET_MODE (operand))
2899				/ UNITS_PER_WORD)
2900			       != HARD_REGNO_NREGS (REGNO (operand),
2901						    GET_MODE (operand))))
2902			  || ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
2903						   operand_mode[i])))
2904#endif
2905		  )
2906		force_reload = 1;
2907	    }
2908
2909	  this_alternative[i] = (int) NO_REGS;
2910	  this_alternative_win[i] = 0;
2911	  this_alternative_match_win[i] = 0;
2912	  this_alternative_offmemok[i] = 0;
2913	  this_alternative_earlyclobber[i] = 0;
2914	  this_alternative_matches[i] = -1;
2915
2916	  /* An empty constraint or empty alternative
2917	     allows anything which matched the pattern.  */
2918	  if (*p == 0 || *p == ',')
2919	    win = 1, badop = 0;
2920
2921	  /* Scan this alternative's specs for this operand;
2922	     set WIN if the operand fits any letter in this alternative.
2923	     Otherwise, clear BADOP if this operand could
2924	     fit some letter after reloads,
2925	     or set WINREG if this operand could fit after reloads
2926	     provided the constraint allows some registers.  */
2927
2928	  while (*p && (c = *p++) != ',')
2929	    switch (c)
2930	      {
2931	      case '=':  case '+':  case '*':
2932		break;
2933
2934	      case '%':
2935		/* The last operand should not be marked commutative.  */
2936		if (i != noperands - 1)
2937		  commutative = i;
2938		break;
2939
2940	      case '?':
2941		reject += 6;
2942		break;
2943
2944	      case '!':
2945		reject = 600;
2946		break;
2947
2948	      case '#':
2949		/* Ignore rest of this alternative as far as
2950		   reloading is concerned.  */
2951		while (*p && *p != ',')
2952		  p++;
2953		break;
2954
2955	      case '0':  case '1':  case '2':  case '3':  case '4':
2956	      case '5':  case '6':  case '7':  case '8':  case '9':
2957		c = strtoul (p - 1, &p, 10);
2958
2959		this_alternative_matches[i] = c;
2960		/* We are supposed to match a previous operand.
2961		   If we do, we win if that one did.
2962		   If we do not, count both of the operands as losers.
2963		   (This is too conservative, since most of the time
2964		   only a single reload insn will be needed to make
2965		   the two operands win.  As a result, this alternative
2966		   may be rejected when it is actually desirable.)  */
2967		if ((swapped && (c != commutative || i != commutative + 1))
2968		    /* If we are matching as if two operands were swapped,
2969		       also pretend that operands_match had been computed
2970		       with swapped.
2971		       But if I is the second of those and C is the first,
2972		       don't exchange them, because operands_match is valid
2973		       only on one side of its diagonal.  */
2974		    ? (operands_match
2975		       [(c == commutative || c == commutative + 1)
2976		       ? 2 * commutative + 1 - c : c]
2977		       [(i == commutative || i == commutative + 1)
2978		       ? 2 * commutative + 1 - i : i])
2979		    : operands_match[c][i])
2980		  {
2981		    /* If we are matching a non-offsettable address where an
2982		       offsettable address was expected, then we must reject
2983		       this combination, because we can't reload it.  */
2984		    if (this_alternative_offmemok[c]
2985			&& GET_CODE (recog_data.operand[c]) == MEM
2986			&& this_alternative[c] == (int) NO_REGS
2987			&& ! this_alternative_win[c])
2988		      bad = 1;
2989
2990		    did_match = this_alternative_win[c];
2991		  }
2992		else
2993		  {
2994		    /* Operands don't match.  */
2995		    rtx value;
2996		    /* Retroactively mark the operand we had to match
2997		       as a loser, if it wasn't already.  */
2998		    if (this_alternative_win[c])
2999		      losers++;
3000		    this_alternative_win[c] = 0;
3001		    if (this_alternative[c] == (int) NO_REGS)
3002		      bad = 1;
3003		    /* But count the pair only once in the total badness of
3004		       this alternative, if the pair can be a dummy reload.  */
3005		    value
3006		      = find_dummy_reload (recog_data.operand[i],
3007					   recog_data.operand[c],
3008					   recog_data.operand_loc[i],
3009					   recog_data.operand_loc[c],
3010					   operand_mode[i], operand_mode[c],
3011					   this_alternative[c], -1,
3012					   this_alternative_earlyclobber[c]);
3013
3014		    if (value != 0)
3015		      losers--;
3016		  }
3017		/* This can be fixed with reloads if the operand
3018		   we are supposed to match can be fixed with reloads.  */
3019		badop = 0;
3020		this_alternative[i] = this_alternative[c];
3021
3022		/* If we have to reload this operand and some previous
3023		   operand also had to match the same thing as this
3024		   operand, we don't know how to do that.  So reject this
3025		   alternative.  */
3026		if (! did_match || force_reload)
3027		  for (j = 0; j < i; j++)
3028		    if (this_alternative_matches[j]
3029			== this_alternative_matches[i])
3030		      badop = 1;
3031		break;
3032
3033	      case 'p':
3034		/* All necessary reloads for an address_operand
3035		   were handled in find_reloads_address.  */
3036		this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3037		win = 1;
3038		break;
3039
3040	      case 'm':
3041		if (force_reload)
3042		  break;
3043		if (GET_CODE (operand) == MEM
3044		    || (GET_CODE (operand) == REG
3045			&& REGNO (operand) >= FIRST_PSEUDO_REGISTER
3046			&& reg_renumber[REGNO (operand)] < 0))
3047		  win = 1;
3048		if (CONSTANT_P (operand)
3049		    /* force_const_mem does not accept HIGH.  */
3050		    && GET_CODE (operand) != HIGH)
3051		  badop = 0;
3052		constmemok = 1;
3053		break;
3054
3055	      case '<':
3056		if (GET_CODE (operand) == MEM
3057		    && ! address_reloaded[i]
3058		    && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3059			|| GET_CODE (XEXP (operand, 0)) == POST_DEC))
3060		  win = 1;
3061		break;
3062
3063	      case '>':
3064		if (GET_CODE (operand) == MEM
3065		    && ! address_reloaded[i]
3066		    && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3067			|| GET_CODE (XEXP (operand, 0)) == POST_INC))
3068		  win = 1;
3069		break;
3070
3071		/* Memory operand whose address is not offsettable.  */
3072	      case 'V':
3073		if (force_reload)
3074		  break;
3075		if (GET_CODE (operand) == MEM
3076		    && ! (ind_levels ? offsettable_memref_p (operand)
3077			  : offsettable_nonstrict_memref_p (operand))
3078		    /* Certain mem addresses will become offsettable
3079		       after they themselves are reloaded.  This is important;
3080		       we don't want our own handling of unoffsettables
3081		       to override the handling of reg_equiv_address.  */
3082		    && !(GET_CODE (XEXP (operand, 0)) == REG
3083			 && (ind_levels == 0
3084			     || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3085		  win = 1;
3086		break;
3087
3088		/* Memory operand whose address is offsettable.  */
3089	      case 'o':
3090		if (force_reload)
3091		  break;
3092		if ((GET_CODE (operand) == MEM
3093		     /* If IND_LEVELS, find_reloads_address won't reload a
3094			pseudo that didn't get a hard reg, so we have to
3095			reject that case.  */
3096		     && ((ind_levels ? offsettable_memref_p (operand)
3097			  : offsettable_nonstrict_memref_p (operand))
3098			 /* A reloaded address is offsettable because it is now
3099			    just a simple register indirect.  */
3100			 || address_reloaded[i]))
3101		    || (GET_CODE (operand) == REG
3102			&& REGNO (operand) >= FIRST_PSEUDO_REGISTER
3103			&& reg_renumber[REGNO (operand)] < 0
3104			/* If reg_equiv_address is nonzero, we will be
3105			   loading it into a register; hence it will be
3106			   offsettable, but we cannot say that reg_equiv_mem
3107			   is offsettable without checking.  */
3108			&& ((reg_equiv_mem[REGNO (operand)] != 0
3109			     && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3110			    || (reg_equiv_address[REGNO (operand)] != 0))))
3111		  win = 1;
3112		/* force_const_mem does not accept HIGH.  */
3113		if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3114		    || GET_CODE (operand) == MEM)
3115		  badop = 0;
3116		constmemok = 1;
3117		offmemok = 1;
3118		break;
3119
3120	      case '&':
3121		/* Output operand that is stored before the need for the
3122		   input operands (and their index registers) is over.  */
3123		earlyclobber = 1, this_earlyclobber = 1;
3124		break;
3125
3126	      case 'E':
3127#ifndef REAL_ARITHMETIC
3128		/* Match any floating double constant, but only if
3129		   we can examine the bits of it reliably.  */
3130		if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
3131		     || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
3132		    && GET_MODE (operand) != VOIDmode && ! flag_pretend_float)
3133		  break;
3134#endif
3135		if (GET_CODE (operand) == CONST_DOUBLE)
3136		  win = 1;
3137		break;
3138
3139	      case 'F':
3140		if (GET_CODE (operand) == CONST_DOUBLE)
3141		  win = 1;
3142		break;
3143
3144	      case 'G':
3145	      case 'H':
3146		if (GET_CODE (operand) == CONST_DOUBLE
3147		    && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
3148		  win = 1;
3149		break;
3150
3151	      case 's':
3152		if (GET_CODE (operand) == CONST_INT
3153		    || (GET_CODE (operand) == CONST_DOUBLE
3154			&& GET_MODE (operand) == VOIDmode))
3155		  break;
3156	      case 'i':
3157		if (CONSTANT_P (operand)
3158#ifdef LEGITIMATE_PIC_OPERAND_P
3159		    && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3160#endif
3161		    )
3162		  win = 1;
3163		break;
3164
3165	      case 'n':
3166		if (GET_CODE (operand) == CONST_INT
3167		    || (GET_CODE (operand) == CONST_DOUBLE
3168			&& GET_MODE (operand) == VOIDmode))
3169		  win = 1;
3170		break;
3171
3172	      case 'I':
3173	      case 'J':
3174	      case 'K':
3175	      case 'L':
3176	      case 'M':
3177	      case 'N':
3178	      case 'O':
3179	      case 'P':
3180		if (GET_CODE (operand) == CONST_INT
3181		    && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
3182		  win = 1;
3183		break;
3184
3185	      case 'X':
3186		win = 1;
3187		break;
3188
3189	      case 'g':
3190		if (! force_reload
3191		    /* A PLUS is never a valid operand, but reload can make
3192		       it from a register when eliminating registers.  */
3193		    && GET_CODE (operand) != PLUS
3194		    /* A SCRATCH is not a valid operand.  */
3195		    && GET_CODE (operand) != SCRATCH
3196#ifdef LEGITIMATE_PIC_OPERAND_P
3197		    && (! CONSTANT_P (operand)
3198			|| ! flag_pic
3199			|| LEGITIMATE_PIC_OPERAND_P (operand))
3200#endif
3201		    && (GENERAL_REGS == ALL_REGS
3202			|| GET_CODE (operand) != REG
3203			|| (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3204			    && reg_renumber[REGNO (operand)] < 0)))
3205		  win = 1;
3206		/* Drop through into 'r' case.  */
3207
3208	      case 'r':
3209		this_alternative[i]
3210		  = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3211		goto reg;
3212
3213	      default:
3214		if (REG_CLASS_FROM_LETTER (c) == NO_REGS)
3215		  {
3216#ifdef EXTRA_CONSTRAINT
3217		    if (EXTRA_CONSTRAINT (operand, c))
3218		      win = 1;
3219#endif
3220		    break;
3221		  }
3222
3223		this_alternative[i]
3224		  = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
3225	      reg:
3226		if (GET_MODE (operand) == BLKmode)
3227		  break;
3228		winreg = 1;
3229		if (GET_CODE (operand) == REG
3230		    && reg_fits_class_p (operand, this_alternative[i],
3231					 offset, GET_MODE (recog_data.operand[i])))
3232		  win = 1;
3233		break;
3234	      }
3235
3236	  constraints[i] = p;
3237
3238	  /* If this operand could be handled with a reg,
3239	     and some reg is allowed, then this operand can be handled.  */
3240	  if (winreg && this_alternative[i] != (int) NO_REGS)
3241	    badop = 0;
3242
3243	  /* Record which operands fit this alternative.  */
3244	  this_alternative_earlyclobber[i] = earlyclobber;
3245	  if (win && ! force_reload)
3246	    this_alternative_win[i] = 1;
3247	  else if (did_match && ! force_reload)
3248	    this_alternative_match_win[i] = 1;
3249	  else
3250	    {
3251	      int const_to_mem = 0;
3252
3253	      this_alternative_offmemok[i] = offmemok;
3254	      losers++;
3255	      if (badop)
3256		bad = 1;
3257	      /* Alternative loses if it has no regs for a reg operand.  */
3258	      if (GET_CODE (operand) == REG
3259		  && this_alternative[i] == (int) NO_REGS
3260		  && this_alternative_matches[i] < 0)
3261		bad = 1;
3262
3263	      /* If this is a constant that is reloaded into the desired
3264		 class by copying it to memory first, count that as another
3265		 reload.  This is consistent with other code and is
3266		 required to avoid choosing another alternative when
3267		 the constant is moved into memory by this function on
3268		 an early reload pass.  Note that the test here is
3269		 precisely the same as in the code below that calls
3270		 force_const_mem.  */
3271	      if (CONSTANT_P (operand)
3272		  /* force_const_mem does not accept HIGH.  */
3273		  && GET_CODE (operand) != HIGH
3274		  && ((PREFERRED_RELOAD_CLASS (operand,
3275					       (enum reg_class) this_alternative[i])
3276		       == NO_REGS)
3277		      || no_input_reloads)
3278		  && operand_mode[i] != VOIDmode)
3279		{
3280		  const_to_mem = 1;
3281		  if (this_alternative[i] != (int) NO_REGS)
3282		    losers++;
3283		}
3284
3285	      /* If we can't reload this value at all, reject this
3286		 alternative.  Note that we could also lose due to
3287		 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3288		 here.  */
3289
3290	      if (! CONSTANT_P (operand)
3291		  && (enum reg_class) this_alternative[i] != NO_REGS
3292		  && (PREFERRED_RELOAD_CLASS (operand,
3293					      (enum reg_class) this_alternative[i])
3294		      == NO_REGS))
3295		bad = 1;
3296
3297	      /* Alternative loses if it requires a type of reload not
3298		 permitted for this insn.  We can always reload SCRATCH
3299		 and objects with a REG_UNUSED note.  */
3300	      else if (GET_CODE (operand) != SCRATCH
3301		       && modified[i] != RELOAD_READ && no_output_reloads
3302		       && ! find_reg_note (insn, REG_UNUSED, operand))
3303		bad = 1;
3304	      else if (modified[i] != RELOAD_WRITE && no_input_reloads
3305		       && ! const_to_mem)
3306		bad = 1;
3307
3308	      /* We prefer to reload pseudos over reloading other things,
3309		 since such reloads may be able to be eliminated later.
3310		 If we are reloading a SCRATCH, we won't be generating any
3311		 insns, just using a register, so it is also preferred.
3312		 So bump REJECT in other cases.  Don't do this in the
3313		 case where we are forcing a constant into memory and
3314		 it will then win since we don't want to have a different
3315		 alternative match then.  */
3316	      if (! (GET_CODE (operand) == REG
3317		     && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3318		  && GET_CODE (operand) != SCRATCH
3319		  && ! (const_to_mem && constmemok))
3320		reject += 2;
3321
3322	      /* Input reloads can be inherited more often than output
3323		 reloads can be removed, so penalize output reloads.  */
3324	      if (operand_type[i] != RELOAD_FOR_INPUT
3325		  && GET_CODE (operand) != SCRATCH)
3326		reject++;
3327	    }
3328
3329	  /* If this operand is a pseudo register that didn't get a hard
3330	     reg and this alternative accepts some register, see if the
3331	     class that we want is a subset of the preferred class for this
3332	     register.  If not, but it intersects that class, use the
3333	     preferred class instead.  If it does not intersect the preferred
3334	     class, show that usage of this alternative should be discouraged;
3335	     it will be discouraged more still if the register is `preferred
3336	     or nothing'.  We do this because it increases the chance of
3337	     reusing our spill register in a later insn and avoiding a pair
3338	     of memory stores and loads.
3339
3340	     Don't bother with this if this alternative will accept this
3341	     operand.
3342
3343	     Don't do this for a multiword operand, since it is only a
3344	     small win and has the risk of requiring more spill registers,
3345	     which could cause a large loss.
3346
3347	     Don't do this if the preferred class has only one register
3348	     because we might otherwise exhaust the class.  */
3349
3350	  if (! win && ! did_match
3351	      && this_alternative[i] != (int) NO_REGS
3352	      && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3353	      && reg_class_size[(int) preferred_class[i]] > 1)
3354	    {
3355	      if (! reg_class_subset_p (this_alternative[i],
3356					preferred_class[i]))
3357		{
3358		  /* Since we don't have a way of forming the intersection,
3359		     we just do something special if the preferred class
3360		     is a subset of the class we have; that's the most
3361		     common case anyway.  */
3362		  if (reg_class_subset_p (preferred_class[i],
3363					  this_alternative[i]))
3364		    this_alternative[i] = (int) preferred_class[i];
3365		  else
3366		    reject += (2 + 2 * pref_or_nothing[i]);
3367		}
3368	    }
3369	}
3370
3371      /* Now see if any output operands that are marked "earlyclobber"
3372	 in this alternative conflict with any input operands
3373	 or any memory addresses.  */
3374
3375      for (i = 0; i < noperands; i++)
3376	if (this_alternative_earlyclobber[i]
3377	    && (this_alternative_win[i] || this_alternative_match_win[i]))
3378	  {
3379	    struct decomposition early_data;
3380
3381	    early_data = decompose (recog_data.operand[i]);
3382
3383	    if (modified[i] == RELOAD_READ)
3384	      abort ();
3385
3386	    if (this_alternative[i] == NO_REGS)
3387	      {
3388		this_alternative_earlyclobber[i] = 0;
3389		if (this_insn_is_asm)
3390		  error_for_asm (this_insn,
3391				 "`&' constraint used with no register class");
3392		else
3393		  abort ();
3394	      }
3395
3396	    for (j = 0; j < noperands; j++)
3397	      /* Is this an input operand or a memory ref?  */
3398	      if ((GET_CODE (recog_data.operand[j]) == MEM
3399		   || modified[j] != RELOAD_WRITE)
3400		  && j != i
3401		  /* Ignore things like match_operator operands.  */
3402		  && *recog_data.constraints[j] != 0
3403		  /* Don't count an input operand that is constrained to match
3404		     the early clobber operand.  */
3405		  && ! (this_alternative_matches[j] == i
3406			&& rtx_equal_p (recog_data.operand[i],
3407					recog_data.operand[j]))
3408		  /* Is it altered by storing the earlyclobber operand?  */
3409		  && !immune_p (recog_data.operand[j], recog_data.operand[i],
3410				early_data))
3411		{
3412		  /* If the output is in a single-reg class,
3413		     it's costly to reload it, so reload the input instead.  */
3414		  if (reg_class_size[this_alternative[i]] == 1
3415		      && (GET_CODE (recog_data.operand[j]) == REG
3416			  || GET_CODE (recog_data.operand[j]) == SUBREG))
3417		    {
3418		      losers++;
3419		      this_alternative_win[j] = 0;
3420		      this_alternative_match_win[j] = 0;
3421		    }
3422		  else
3423		    break;
3424		}
3425	    /* If an earlyclobber operand conflicts with something,
3426	       it must be reloaded, so request this and count the cost.  */
3427	    if (j != noperands)
3428	      {
3429		losers++;
3430		this_alternative_win[i] = 0;
3431		this_alternative_match_win[j] = 0;
3432		for (j = 0; j < noperands; j++)
3433		  if (this_alternative_matches[j] == i
3434		      && this_alternative_match_win[j])
3435		    {
3436		      this_alternative_win[j] = 0;
3437		      this_alternative_match_win[j] = 0;
3438		      losers++;
3439		    }
3440	      }
3441	  }
3442
3443      /* If one alternative accepts all the operands, no reload required,
3444	 choose that alternative; don't consider the remaining ones.  */
3445      if (losers == 0)
3446	{
3447	  /* Unswap these so that they are never swapped at `finish'.  */
3448	  if (commutative >= 0)
3449	    {
3450	      recog_data.operand[commutative] = substed_operand[commutative];
3451	      recog_data.operand[commutative + 1]
3452		= substed_operand[commutative + 1];
3453	    }
3454	  for (i = 0; i < noperands; i++)
3455	    {
3456	      goal_alternative_win[i] = this_alternative_win[i];
3457	      goal_alternative_match_win[i] = this_alternative_match_win[i];
3458	      goal_alternative[i] = this_alternative[i];
3459	      goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3460	      goal_alternative_matches[i] = this_alternative_matches[i];
3461	      goal_alternative_earlyclobber[i]
3462		= this_alternative_earlyclobber[i];
3463	    }
3464	  goal_alternative_number = this_alternative_number;
3465	  goal_alternative_swapped = swapped;
3466	  goal_earlyclobber = this_earlyclobber;
3467	  goto finish;
3468	}
3469
3470      /* REJECT, set by the ! and ? constraint characters and when a register
3471	 would be reloaded into a non-preferred class, discourages the use of
3472	 this alternative for a reload goal.  REJECT is incremented by six
3473	 for each ? and two for each non-preferred class.  */
3474      losers = losers * 6 + reject;
3475
3476      /* If this alternative can be made to work by reloading,
3477	 and it needs less reloading than the others checked so far,
3478	 record it as the chosen goal for reloading.  */
3479      if (! bad && best > losers)
3480	{
3481	  for (i = 0; i < noperands; i++)
3482	    {
3483	      goal_alternative[i] = this_alternative[i];
3484	      goal_alternative_win[i] = this_alternative_win[i];
3485	      goal_alternative_match_win[i] = this_alternative_match_win[i];
3486	      goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3487	      goal_alternative_matches[i] = this_alternative_matches[i];
3488	      goal_alternative_earlyclobber[i]
3489		= this_alternative_earlyclobber[i];
3490	    }
3491	  goal_alternative_swapped = swapped;
3492	  best = losers;
3493	  goal_alternative_number = this_alternative_number;
3494	  goal_earlyclobber = this_earlyclobber;
3495	}
3496    }
3497
3498  /* If insn is commutative (it's safe to exchange a certain pair of operands)
3499     then we need to try each alternative twice,
3500     the second time matching those two operands
3501     as if we had exchanged them.
3502     To do this, really exchange them in operands.
3503
3504     If we have just tried the alternatives the second time,
3505     return operands to normal and drop through.  */
3506
3507  if (commutative >= 0)
3508    {
3509      swapped = !swapped;
3510      if (swapped)
3511	{
3512	  enum reg_class tclass;
3513	  int t;
3514
3515	  recog_data.operand[commutative] = substed_operand[commutative + 1];
3516	  recog_data.operand[commutative + 1] = substed_operand[commutative];
3517	  /* Swap the duplicates too.  */
3518	  for (i = 0; i < recog_data.n_dups; i++)
3519	    if (recog_data.dup_num[i] == commutative
3520		|| recog_data.dup_num[i] == commutative + 1)
3521	      *recog_data.dup_loc[i]
3522		 = recog_data.operand[(int) recog_data.dup_num[i]];
3523
3524	  tclass = preferred_class[commutative];
3525	  preferred_class[commutative] = preferred_class[commutative + 1];
3526	  preferred_class[commutative + 1] = tclass;
3527
3528	  t = pref_or_nothing[commutative];
3529	  pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3530	  pref_or_nothing[commutative + 1] = t;
3531
3532	  memcpy (constraints, recog_data.constraints,
3533		  noperands * sizeof (char *));
3534	  goto try_swapped;
3535	}
3536      else
3537	{
3538	  recog_data.operand[commutative] = substed_operand[commutative];
3539	  recog_data.operand[commutative + 1]
3540	    = substed_operand[commutative + 1];
3541	  /* Unswap the duplicates too.  */
3542	  for (i = 0; i < recog_data.n_dups; i++)
3543	    if (recog_data.dup_num[i] == commutative
3544		|| recog_data.dup_num[i] == commutative + 1)
3545	      *recog_data.dup_loc[i]
3546		 = recog_data.operand[(int) recog_data.dup_num[i]];
3547	}
3548    }
3549
3550  /* The operands don't meet the constraints.
3551     goal_alternative describes the alternative
3552     that we could reach by reloading the fewest operands.
3553     Reload so as to fit it.  */
3554
3555  if (best == MAX_RECOG_OPERANDS * 2 + 600)
3556    {
3557      /* No alternative works with reloads??  */
3558      if (insn_code_number >= 0)
3559	fatal_insn ("unable to generate reloads for:", insn);
3560      error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3561      /* Avoid further trouble with this insn.  */
3562      PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3563      n_reloads = 0;
3564      return 0;
3565    }
3566
3567  /* Jump to `finish' from above if all operands are valid already.
3568     In that case, goal_alternative_win is all 1.  */
3569 finish:
3570
3571  /* Right now, for any pair of operands I and J that are required to match,
3572     with I < J,
3573     goal_alternative_matches[J] is I.
3574     Set up goal_alternative_matched as the inverse function:
3575     goal_alternative_matched[I] = J.  */
3576
3577  for (i = 0; i < noperands; i++)
3578    goal_alternative_matched[i] = -1;
3579
3580  for (i = 0; i < noperands; i++)
3581    if (! goal_alternative_win[i]
3582	&& goal_alternative_matches[i] >= 0)
3583      goal_alternative_matched[goal_alternative_matches[i]] = i;
3584
3585  for (i = 0; i < noperands; i++)
3586    goal_alternative_win[i] |= goal_alternative_match_win[i];
3587
3588  /* If the best alternative is with operands 1 and 2 swapped,
3589     consider them swapped before reporting the reloads.  Update the
3590     operand numbers of any reloads already pushed.  */
3591
3592  if (goal_alternative_swapped)
3593    {
3594      rtx tem;
3595
3596      tem = substed_operand[commutative];
3597      substed_operand[commutative] = substed_operand[commutative + 1];
3598      substed_operand[commutative + 1] = tem;
3599      tem = recog_data.operand[commutative];
3600      recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3601      recog_data.operand[commutative + 1] = tem;
3602      tem = *recog_data.operand_loc[commutative];
3603      *recog_data.operand_loc[commutative]
3604	= *recog_data.operand_loc[commutative + 1];
3605      *recog_data.operand_loc[commutative + 1] = tem;
3606
3607      for (i = 0; i < n_reloads; i++)
3608	{
3609	  if (rld[i].opnum == commutative)
3610	    rld[i].opnum = commutative + 1;
3611	  else if (rld[i].opnum == commutative + 1)
3612	    rld[i].opnum = commutative;
3613	}
3614    }
3615
3616  for (i = 0; i < noperands; i++)
3617    {
3618      operand_reloadnum[i] = -1;
3619
3620      /* If this is an earlyclobber operand, we need to widen the scope.
3621	 The reload must remain valid from the start of the insn being
3622	 reloaded until after the operand is stored into its destination.
3623	 We approximate this with RELOAD_OTHER even though we know that we
3624	 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3625
3626	 One special case that is worth checking is when we have an
3627	 output that is earlyclobber but isn't used past the insn (typically
3628	 a SCRATCH).  In this case, we only need have the reload live
3629	 through the insn itself, but not for any of our input or output
3630	 reloads.
3631	 But we must not accidentally narrow the scope of an existing
3632	 RELOAD_OTHER reload - leave these alone.
3633
3634	 In any case, anything needed to address this operand can remain
3635	 however they were previously categorized.  */
3636
3637      if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3638	operand_type[i]
3639	  = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3640	     ? RELOAD_FOR_INSN : RELOAD_OTHER);
3641    }
3642
3643  /* Any constants that aren't allowed and can't be reloaded
3644     into registers are here changed into memory references.  */
3645  for (i = 0; i < noperands; i++)
3646    if (! goal_alternative_win[i]
3647	&& CONSTANT_P (recog_data.operand[i])
3648	/* force_const_mem does not accept HIGH.  */
3649	&& GET_CODE (recog_data.operand[i]) != HIGH
3650	&& ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3651				     (enum reg_class) goal_alternative[i])
3652	     == NO_REGS)
3653	    || no_input_reloads)
3654	&& operand_mode[i] != VOIDmode)
3655      {
3656	substed_operand[i] = recog_data.operand[i]
3657	  = find_reloads_toplev (force_const_mem (operand_mode[i],
3658						  recog_data.operand[i]),
3659				 i, address_type[i], ind_levels, 0, insn,
3660				 NULL);
3661	if (alternative_allows_memconst (recog_data.constraints[i],
3662					 goal_alternative_number))
3663	  goal_alternative_win[i] = 1;
3664      }
3665
3666  /* Record the values of the earlyclobber operands for the caller.  */
3667  if (goal_earlyclobber)
3668    for (i = 0; i < noperands; i++)
3669      if (goal_alternative_earlyclobber[i])
3670	reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3671
3672  /* Now record reloads for all the operands that need them.  */
3673  for (i = 0; i < noperands; i++)
3674    if (! goal_alternative_win[i])
3675      {
3676	/* Operands that match previous ones have already been handled.  */
3677	if (goal_alternative_matches[i] >= 0)
3678	  ;
3679	/* Handle an operand with a nonoffsettable address
3680	   appearing where an offsettable address will do
3681	   by reloading the address into a base register.
3682
3683	   ??? We can also do this when the operand is a register and
3684	   reg_equiv_mem is not offsettable, but this is a bit tricky,
3685	   so we don't bother with it.  It may not be worth doing.  */
3686	else if (goal_alternative_matched[i] == -1
3687		 && goal_alternative_offmemok[i]
3688		 && GET_CODE (recog_data.operand[i]) == MEM)
3689	  {
3690	    operand_reloadnum[i]
3691	      = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3692			     &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3693			     MODE_BASE_REG_CLASS (VOIDmode),
3694			     GET_MODE (XEXP (recog_data.operand[i], 0)),
3695			     VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3696	    rld[operand_reloadnum[i]].inc
3697	      = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3698
3699	    /* If this operand is an output, we will have made any
3700	       reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3701	       now we are treating part of the operand as an input, so
3702	       we must change these to RELOAD_FOR_INPUT_ADDRESS.  */
3703
3704	    if (modified[i] == RELOAD_WRITE)
3705	      {
3706		for (j = 0; j < n_reloads; j++)
3707		  {
3708		    if (rld[j].opnum == i)
3709		      {
3710			if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3711			  rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3712			else if (rld[j].when_needed
3713				 == RELOAD_FOR_OUTADDR_ADDRESS)
3714			  rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3715		      }
3716		  }
3717	      }
3718	  }
3719	else if (goal_alternative_matched[i] == -1)
3720	  {
3721	    operand_reloadnum[i]
3722	      = push_reload ((modified[i] != RELOAD_WRITE
3723			      ? recog_data.operand[i] : 0),
3724			     (modified[i] != RELOAD_READ
3725			      ? recog_data.operand[i] : 0),
3726			     (modified[i] != RELOAD_WRITE
3727			      ? recog_data.operand_loc[i] : 0),
3728			     (modified[i] != RELOAD_READ
3729			      ? recog_data.operand_loc[i] : 0),
3730			     (enum reg_class) goal_alternative[i],
3731			     (modified[i] == RELOAD_WRITE
3732			      ? VOIDmode : operand_mode[i]),
3733			     (modified[i] == RELOAD_READ
3734			      ? VOIDmode : operand_mode[i]),
3735			     (insn_code_number < 0 ? 0
3736			      : insn_data[insn_code_number].operand[i].strict_low),
3737			     0, i, operand_type[i]);
3738	  }
3739	/* In a matching pair of operands, one must be input only
3740	   and the other must be output only.
3741	   Pass the input operand as IN and the other as OUT.  */
3742	else if (modified[i] == RELOAD_READ
3743		 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3744	  {
3745	    operand_reloadnum[i]
3746	      = push_reload (recog_data.operand[i],
3747			     recog_data.operand[goal_alternative_matched[i]],
3748			     recog_data.operand_loc[i],
3749			     recog_data.operand_loc[goal_alternative_matched[i]],
3750			     (enum reg_class) goal_alternative[i],
3751			     operand_mode[i],
3752			     operand_mode[goal_alternative_matched[i]],
3753			     0, 0, i, RELOAD_OTHER);
3754	    operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3755	  }
3756	else if (modified[i] == RELOAD_WRITE
3757		 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3758	  {
3759	    operand_reloadnum[goal_alternative_matched[i]]
3760	      = push_reload (recog_data.operand[goal_alternative_matched[i]],
3761			     recog_data.operand[i],
3762			     recog_data.operand_loc[goal_alternative_matched[i]],
3763			     recog_data.operand_loc[i],
3764			     (enum reg_class) goal_alternative[i],
3765			     operand_mode[goal_alternative_matched[i]],
3766			     operand_mode[i],
3767			     0, 0, i, RELOAD_OTHER);
3768	    operand_reloadnum[i] = output_reloadnum;
3769	  }
3770	else if (insn_code_number >= 0)
3771	  abort ();
3772	else
3773	  {
3774	    error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3775	    /* Avoid further trouble with this insn.  */
3776	    PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3777	    n_reloads = 0;
3778	    return 0;
3779	  }
3780      }
3781    else if (goal_alternative_matched[i] < 0
3782	     && goal_alternative_matches[i] < 0
3783	     && optimize)
3784      {
3785	/* For each non-matching operand that's a MEM or a pseudo-register
3786	   that didn't get a hard register, make an optional reload.
3787	   This may get done even if the insn needs no reloads otherwise.  */
3788
3789	rtx operand = recog_data.operand[i];
3790
3791	while (GET_CODE (operand) == SUBREG)
3792	  operand = SUBREG_REG (operand);
3793	if ((GET_CODE (operand) == MEM
3794	     || (GET_CODE (operand) == REG
3795		 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3796	    /* If this is only for an output, the optional reload would not
3797	       actually cause us to use a register now, just note that
3798	       something is stored here.  */
3799	    && ((enum reg_class) goal_alternative[i] != NO_REGS
3800		|| modified[i] == RELOAD_WRITE)
3801	    && ! no_input_reloads
3802	    /* An optional output reload might allow to delete INSN later.
3803	       We mustn't make in-out reloads on insns that are not permitted
3804	       output reloads.
3805	       If this is an asm, we can't delete it; we must not even call
3806	       push_reload for an optional output reload in this case,
3807	       because we can't be sure that the constraint allows a register,
3808	       and push_reload verifies the constraints for asms.  */
3809	    && (modified[i] == RELOAD_READ
3810		|| (! no_output_reloads && ! this_insn_is_asm)))
3811	  operand_reloadnum[i]
3812	    = push_reload ((modified[i] != RELOAD_WRITE
3813			    ? recog_data.operand[i] : 0),
3814			   (modified[i] != RELOAD_READ
3815			    ? recog_data.operand[i] : 0),
3816			   (modified[i] != RELOAD_WRITE
3817			    ? recog_data.operand_loc[i] : 0),
3818			   (modified[i] != RELOAD_READ
3819			    ? recog_data.operand_loc[i] : 0),
3820			   (enum reg_class) goal_alternative[i],
3821			   (modified[i] == RELOAD_WRITE
3822			    ? VOIDmode : operand_mode[i]),
3823			   (modified[i] == RELOAD_READ
3824			    ? VOIDmode : operand_mode[i]),
3825			   (insn_code_number < 0 ? 0
3826			    : insn_data[insn_code_number].operand[i].strict_low),
3827			   1, i, operand_type[i]);
3828	/* If a memory reference remains (either as a MEM or a pseudo that
3829	   did not get a hard register), yet we can't make an optional
3830	   reload, check if this is actually a pseudo register reference;
3831	   we then need to emit a USE and/or a CLOBBER so that reload
3832	   inheritance will do the right thing.  */
3833	else if (replace
3834		 && (GET_CODE (operand) == MEM
3835		     || (GET_CODE (operand) == REG
3836			 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3837			 && reg_renumber [REGNO (operand)] < 0)))
3838	  {
3839	    operand = *recog_data.operand_loc[i];
3840
3841	    while (GET_CODE (operand) == SUBREG)
3842	      operand = SUBREG_REG (operand);
3843	    if (GET_CODE (operand) == REG)
3844	      {
3845		if (modified[i] != RELOAD_WRITE)
3846		  /* We mark the USE with QImode so that we recognize
3847		     it as one that can be safely deleted at the end
3848		     of reload.  */
3849		  PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
3850					      insn), QImode);
3851		if (modified[i] != RELOAD_READ)
3852		  emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3853	      }
3854	  }
3855      }
3856    else if (goal_alternative_matches[i] >= 0
3857	     && goal_alternative_win[goal_alternative_matches[i]]
3858	     && modified[i] == RELOAD_READ
3859	     && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3860	     && ! no_input_reloads && ! no_output_reloads
3861	     && optimize)
3862      {
3863	/* Similarly, make an optional reload for a pair of matching
3864	   objects that are in MEM or a pseudo that didn't get a hard reg.  */
3865
3866	rtx operand = recog_data.operand[i];
3867
3868	while (GET_CODE (operand) == SUBREG)
3869	  operand = SUBREG_REG (operand);
3870	if ((GET_CODE (operand) == MEM
3871	     || (GET_CODE (operand) == REG
3872		 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3873	    && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3874		!= NO_REGS))
3875	  operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3876	    = push_reload (recog_data.operand[goal_alternative_matches[i]],
3877			   recog_data.operand[i],
3878			   recog_data.operand_loc[goal_alternative_matches[i]],
3879			   recog_data.operand_loc[i],
3880			   (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3881			   operand_mode[goal_alternative_matches[i]],
3882			   operand_mode[i],
3883			   0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3884      }
3885
3886  /* Perform whatever substitutions on the operands we are supposed
3887     to make due to commutativity or replacement of registers
3888     with equivalent constants or memory slots.  */
3889
3890  for (i = 0; i < noperands; i++)
3891    {
3892      /* We only do this on the last pass through reload, because it is
3893	 possible for some data (like reg_equiv_address) to be changed during
3894	 later passes.  Moreover, we loose the opportunity to get a useful
3895	 reload_{in,out}_reg when we do these replacements.  */
3896
3897      if (replace)
3898	{
3899	  rtx substitution = substed_operand[i];
3900
3901	  *recog_data.operand_loc[i] = substitution;
3902
3903	  /* If we're replacing an operand with a LABEL_REF, we need
3904	     to make sure that there's a REG_LABEL note attached to
3905	     this instruction.  */
3906	  if (GET_CODE (insn) != JUMP_INSN
3907	      && GET_CODE (substitution) == LABEL_REF
3908	      && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
3909	    REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
3910						  XEXP (substitution, 0),
3911						  REG_NOTES (insn));
3912	}
3913      else
3914	retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
3915    }
3916
3917  /* If this insn pattern contains any MATCH_DUP's, make sure that
3918     they will be substituted if the operands they match are substituted.
3919     Also do now any substitutions we already did on the operands.
3920
3921     Don't do this if we aren't making replacements because we might be
3922     propagating things allocated by frame pointer elimination into places
3923     it doesn't expect.  */
3924
3925  if (insn_code_number >= 0 && replace)
3926    for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
3927      {
3928	int opno = recog_data.dup_num[i];
3929	*recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
3930	if (operand_reloadnum[opno] >= 0)
3931	  push_replacement (recog_data.dup_loc[i], operand_reloadnum[opno],
3932			    insn_data[insn_code_number].operand[opno].mode);
3933      }
3934
3935#if 0
3936  /* This loses because reloading of prior insns can invalidate the equivalence
3937     (or at least find_equiv_reg isn't smart enough to find it any more),
3938     causing this insn to need more reload regs than it needed before.
3939     It may be too late to make the reload regs available.
3940     Now this optimization is done safely in choose_reload_regs.  */
3941
3942  /* For each reload of a reg into some other class of reg,
3943     search for an existing equivalent reg (same value now) in the right class.
3944     We can use it as long as we don't need to change its contents.  */
3945  for (i = 0; i < n_reloads; i++)
3946    if (rld[i].reg_rtx == 0
3947	&& rld[i].in != 0
3948	&& GET_CODE (rld[i].in) == REG
3949	&& rld[i].out == 0)
3950      {
3951	rld[i].reg_rtx
3952	  = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
3953			    static_reload_reg_p, 0, rld[i].inmode);
3954	/* Prevent generation of insn to load the value
3955	   because the one we found already has the value.  */
3956	if (rld[i].reg_rtx)
3957	  rld[i].in = rld[i].reg_rtx;
3958      }
3959#endif
3960
3961  /* Perhaps an output reload can be combined with another
3962     to reduce needs by one.  */
3963  if (!goal_earlyclobber)
3964    combine_reloads ();
3965
3966  /* If we have a pair of reloads for parts of an address, they are reloading
3967     the same object, the operands themselves were not reloaded, and they
3968     are for two operands that are supposed to match, merge the reloads and
3969     change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS.  */
3970
3971  for (i = 0; i < n_reloads; i++)
3972    {
3973      int k;
3974
3975      for (j = i + 1; j < n_reloads; j++)
3976	if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
3977	     || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3978	     || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3979	     || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3980	    && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
3981		|| rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3982		|| rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3983		|| rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3984	    && rtx_equal_p (rld[i].in, rld[j].in)
3985	    && (operand_reloadnum[rld[i].opnum] < 0
3986		|| rld[operand_reloadnum[rld[i].opnum]].optional)
3987	    && (operand_reloadnum[rld[j].opnum] < 0
3988		|| rld[operand_reloadnum[rld[j].opnum]].optional)
3989	    && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
3990		|| (goal_alternative_matches[rld[j].opnum]
3991		    == rld[i].opnum)))
3992	  {
3993	    for (k = 0; k < n_replacements; k++)
3994	      if (replacements[k].what == j)
3995		replacements[k].what = i;
3996
3997	    if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3998		|| rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3999	      rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4000	    else
4001	      rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4002	    rld[j].in = 0;
4003	  }
4004    }
4005
4006  /* Scan all the reloads and update their type.
4007     If a reload is for the address of an operand and we didn't reload
4008     that operand, change the type.  Similarly, change the operand number
4009     of a reload when two operands match.  If a reload is optional, treat it
4010     as though the operand isn't reloaded.
4011
4012     ??? This latter case is somewhat odd because if we do the optional
4013     reload, it means the object is hanging around.  Thus we need only
4014     do the address reload if the optional reload was NOT done.
4015
4016     Change secondary reloads to be the address type of their operand, not
4017     the normal type.
4018
4019     If an operand's reload is now RELOAD_OTHER, change any
4020     RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4021     RELOAD_FOR_OTHER_ADDRESS.  */
4022
4023  for (i = 0; i < n_reloads; i++)
4024    {
4025      if (rld[i].secondary_p
4026	  && rld[i].when_needed == operand_type[rld[i].opnum])
4027	rld[i].when_needed = address_type[rld[i].opnum];
4028
4029      if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4030	   || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4031	   || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4032	   || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4033	  && (operand_reloadnum[rld[i].opnum] < 0
4034	      || rld[operand_reloadnum[rld[i].opnum]].optional))
4035	{
4036	  /* If we have a secondary reload to go along with this reload,
4037	     change its type to RELOAD_FOR_OPADDR_ADDR.  */
4038
4039	  if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4040	       || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4041	      && rld[i].secondary_in_reload != -1)
4042	    {
4043	      int secondary_in_reload = rld[i].secondary_in_reload;
4044
4045	      rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4046
4047	      /* If there's a tertiary reload we have to change it also.  */
4048	      if (secondary_in_reload > 0
4049		  && rld[secondary_in_reload].secondary_in_reload != -1)
4050		rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4051		  = RELOAD_FOR_OPADDR_ADDR;
4052	    }
4053
4054	  if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4055	       || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4056	      && rld[i].secondary_out_reload != -1)
4057	    {
4058	      int secondary_out_reload = rld[i].secondary_out_reload;
4059
4060	      rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4061
4062	      /* If there's a tertiary reload we have to change it also.  */
4063	      if (secondary_out_reload
4064		  && rld[secondary_out_reload].secondary_out_reload != -1)
4065		rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4066		  = RELOAD_FOR_OPADDR_ADDR;
4067	    }
4068
4069	  if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4070	      || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4071	    rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4072	  else
4073	    rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4074	}
4075
4076      if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4077	   || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4078	  && operand_reloadnum[rld[i].opnum] >= 0
4079	  && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4080	      == RELOAD_OTHER))
4081	rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4082
4083      if (goal_alternative_matches[rld[i].opnum] >= 0)
4084	rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4085    }
4086
4087  /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4088     If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4089     reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4090
4091     choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4092     conflict with RELOAD_FOR_OPERAND_ADDRESS reloads.  This is true for a
4093     single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4094     However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4095     then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4096     RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4097     This is complicated by the fact that a single operand can have more
4098     than one RELOAD_FOR_OPERAND_ADDRESS reload.  It is very difficult to fix
4099     choose_reload_regs without affecting code quality, and cases that
4100     actually fail are extremely rare, so it turns out to be better to fix
4101     the problem here by not generating cases that choose_reload_regs will
4102     fail for.  */
4103  /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4104     RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4105     a single operand.
4106     We can reduce the register pressure by exploiting that a
4107     RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4108     does not conflict with any of them, if it is only used for the first of
4109     the RELOAD_FOR_X_ADDRESS reloads.  */
4110  {
4111    int first_op_addr_num = -2;
4112    int first_inpaddr_num[MAX_RECOG_OPERANDS];
4113    int first_outpaddr_num[MAX_RECOG_OPERANDS];
4114    int need_change = 0;
4115    /* We use last_op_addr_reload and the contents of the above arrays
4116       first as flags - -2 means no instance encountered, -1 means exactly
4117       one instance encountered.
4118       If more than one instance has been encountered, we store the reload
4119       number of the first reload of the kind in question; reload numbers
4120       are known to be non-negative.  */
4121    for (i = 0; i < noperands; i++)
4122      first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4123    for (i = n_reloads - 1; i >= 0; i--)
4124      {
4125	switch (rld[i].when_needed)
4126	  {
4127	  case RELOAD_FOR_OPERAND_ADDRESS:
4128	    if (++first_op_addr_num >= 0)
4129	      {
4130		first_op_addr_num = i;
4131		need_change = 1;
4132	      }
4133	    break;
4134	  case RELOAD_FOR_INPUT_ADDRESS:
4135	    if (++first_inpaddr_num[rld[i].opnum] >= 0)
4136	      {
4137		first_inpaddr_num[rld[i].opnum] = i;
4138		need_change = 1;
4139	      }
4140	    break;
4141	  case RELOAD_FOR_OUTPUT_ADDRESS:
4142	    if (++first_outpaddr_num[rld[i].opnum] >= 0)
4143	      {
4144		first_outpaddr_num[rld[i].opnum] = i;
4145		need_change = 1;
4146	      }
4147	    break;
4148	  default:
4149	    break;
4150	  }
4151      }
4152
4153    if (need_change)
4154      {
4155	for (i = 0; i < n_reloads; i++)
4156	  {
4157	    int first_num;
4158	    enum reload_type type;
4159
4160	    switch (rld[i].when_needed)
4161	      {
4162	      case RELOAD_FOR_OPADDR_ADDR:
4163		first_num = first_op_addr_num;
4164		type = RELOAD_FOR_OPERAND_ADDRESS;
4165		break;
4166	      case RELOAD_FOR_INPADDR_ADDRESS:
4167		first_num = first_inpaddr_num[rld[i].opnum];
4168		type = RELOAD_FOR_INPUT_ADDRESS;
4169		break;
4170	      case RELOAD_FOR_OUTADDR_ADDRESS:
4171		first_num = first_outpaddr_num[rld[i].opnum];
4172		type = RELOAD_FOR_OUTPUT_ADDRESS;
4173		break;
4174	      default:
4175		continue;
4176	      }
4177	    if (first_num < 0)
4178	      continue;
4179	    else if (i > first_num)
4180	      rld[i].when_needed = type;
4181	    else
4182	      {
4183		/* Check if the only TYPE reload that uses reload I is
4184		   reload FIRST_NUM.  */
4185		for (j = n_reloads - 1; j > first_num; j--)
4186		  {
4187		    if (rld[j].when_needed == type
4188			&& (rld[i].secondary_p
4189			    ? rld[j].secondary_in_reload == i
4190			    : reg_mentioned_p (rld[i].in, rld[j].in)))
4191		      {
4192			rld[i].when_needed = type;
4193			break;
4194		      }
4195		  }
4196	      }
4197	  }
4198      }
4199  }
4200
4201  /* See if we have any reloads that are now allowed to be merged
4202     because we've changed when the reload is needed to
4203     RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS.  Only
4204     check for the most common cases.  */
4205
4206  for (i = 0; i < n_reloads; i++)
4207    if (rld[i].in != 0 && rld[i].out == 0
4208	&& (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4209	    || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4210	    || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4211      for (j = 0; j < n_reloads; j++)
4212	if (i != j && rld[j].in != 0 && rld[j].out == 0
4213	    && rld[j].when_needed == rld[i].when_needed
4214	    && MATCHES (rld[i].in, rld[j].in)
4215	    && rld[i].class == rld[j].class
4216	    && !rld[i].nocombine && !rld[j].nocombine
4217	    && rld[i].reg_rtx == rld[j].reg_rtx)
4218	  {
4219	    rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4220	    transfer_replacements (i, j);
4221	    rld[j].in = 0;
4222	  }
4223
4224#ifdef HAVE_cc0
4225  /* If we made any reloads for addresses, see if they violate a
4226     "no input reloads" requirement for this insn.  But loads that we
4227     do after the insn (such as for output addresses) are fine.  */
4228  if (no_input_reloads)
4229    for (i = 0; i < n_reloads; i++)
4230      if (rld[i].in != 0
4231	  && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
4232	  && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS)
4233	abort ();
4234#endif
4235
4236  /* Compute reload_mode and reload_nregs.  */
4237  for (i = 0; i < n_reloads; i++)
4238    {
4239      rld[i].mode
4240	= (rld[i].inmode == VOIDmode
4241	   || (GET_MODE_SIZE (rld[i].outmode)
4242	       > GET_MODE_SIZE (rld[i].inmode)))
4243	  ? rld[i].outmode : rld[i].inmode;
4244
4245      rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4246    }
4247
4248  /* Special case a simple move with an input reload and a
4249     destination of a hard reg, if the hard reg is ok, use it.  */
4250  for (i = 0; i < n_reloads; i++)
4251    if (rld[i].when_needed == RELOAD_FOR_INPUT
4252	&& GET_CODE (PATTERN (insn)) == SET
4253 	&& GET_CODE (SET_DEST (PATTERN (insn))) == REG
4254 	&& SET_SRC (PATTERN (insn)) == rld[i].in)
4255      {
4256 	rtx dest = SET_DEST (PATTERN (insn));
4257	unsigned int regno = REGNO (dest);
4258
4259 	if (regno < FIRST_PSEUDO_REGISTER
4260 	    && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4261 	    && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4262 	  rld[i].reg_rtx = dest;
4263      }
4264
4265  return retval;
4266}
4267
4268/* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4269   accepts a memory operand with constant address.  */
4270
4271static int
4272alternative_allows_memconst (constraint, altnum)
4273     const char *constraint;
4274     int altnum;
4275{
4276  int c;
4277  /* Skip alternatives before the one requested.  */
4278  while (altnum > 0)
4279    {
4280      while (*constraint++ != ',');
4281      altnum--;
4282    }
4283  /* Scan the requested alternative for 'm' or 'o'.
4284     If one of them is present, this alternative accepts memory constants.  */
4285  while ((c = *constraint++) && c != ',' && c != '#')
4286    if (c == 'm' || c == 'o')
4287      return 1;
4288  return 0;
4289}
4290
4291/* Scan X for memory references and scan the addresses for reloading.
4292   Also checks for references to "constant" regs that we want to eliminate
4293   and replaces them with the values they stand for.
4294   We may alter X destructively if it contains a reference to such.
4295   If X is just a constant reg, we return the equivalent value
4296   instead of X.
4297
4298   IND_LEVELS says how many levels of indirect addressing this machine
4299   supports.
4300
4301   OPNUM and TYPE identify the purpose of the reload.
4302
4303   IS_SET_DEST is true if X is the destination of a SET, which is not
4304   appropriate to be replaced by a constant.
4305
4306   INSN, if nonzero, is the insn in which we do the reload.  It is used
4307   to determine if we may generate output reloads, and where to put USEs
4308   for pseudos that we have to replace with stack slots.
4309
4310   ADDRESS_RELOADED.  If nonzero, is a pointer to where we put the
4311   result of find_reloads_address.  */
4312
4313static rtx
4314find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest, insn,
4315		     address_reloaded)
4316     rtx x;
4317     int opnum;
4318     enum reload_type type;
4319     int ind_levels;
4320     int is_set_dest;
4321     rtx insn;
4322     int *address_reloaded;
4323{
4324  RTX_CODE code = GET_CODE (x);
4325
4326  const char *fmt = GET_RTX_FORMAT (code);
4327  int i;
4328  int copied;
4329
4330  if (code == REG)
4331    {
4332      /* This code is duplicated for speed in find_reloads.  */
4333      int regno = REGNO (x);
4334      if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4335	x = reg_equiv_constant[regno];
4336#if 0
4337      /*  This creates (subreg (mem...)) which would cause an unnecessary
4338	  reload of the mem.  */
4339      else if (reg_equiv_mem[regno] != 0)
4340	x = reg_equiv_mem[regno];
4341#endif
4342      else if (reg_equiv_memory_loc[regno]
4343	       && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4344	{
4345	  rtx mem = make_memloc (x, regno);
4346	  if (reg_equiv_address[regno]
4347	      || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4348	    {
4349	      /* If this is not a toplevel operand, find_reloads doesn't see
4350		 this substitution.  We have to emit a USE of the pseudo so
4351		 that delete_output_reload can see it.  */
4352	      if (replace_reloads && recog_data.operand[opnum] != x)
4353		/* We mark the USE with QImode so that we recognize it
4354		   as one that can be safely deleted at the end of
4355		   reload.  */
4356		PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4357			  QImode);
4358	      x = mem;
4359	      i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4360					opnum, type, ind_levels, insn);
4361	      if (address_reloaded)
4362		*address_reloaded = i;
4363	    }
4364	}
4365      return x;
4366    }
4367  if (code == MEM)
4368    {
4369      rtx tem = x;
4370
4371      i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4372				opnum, type, ind_levels, insn);
4373      if (address_reloaded)
4374	*address_reloaded = i;
4375
4376      return tem;
4377    }
4378
4379  if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4380    {
4381      /* Check for SUBREG containing a REG that's equivalent to a constant.
4382	 If the constant has a known value, truncate it right now.
4383	 Similarly if we are extracting a single-word of a multi-word
4384	 constant.  If the constant is symbolic, allow it to be substituted
4385	 normally.  push_reload will strip the subreg later.  If the
4386	 constant is VOIDmode, abort because we will lose the mode of
4387	 the register (this should never happen because one of the cases
4388	 above should handle it).  */
4389
4390      int regno = REGNO (SUBREG_REG (x));
4391      rtx tem;
4392
4393      if (subreg_lowpart_p (x)
4394	  && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4395	  && reg_equiv_constant[regno] != 0
4396	  && (tem = gen_lowpart_common (GET_MODE (x),
4397					reg_equiv_constant[regno])) != 0)
4398	return tem;
4399
4400      if (GET_MODE_BITSIZE (GET_MODE (x)) == BITS_PER_WORD
4401	  && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4402	  && reg_equiv_constant[regno] != 0
4403	  && (tem = operand_subword (reg_equiv_constant[regno],
4404				     SUBREG_BYTE (x) / UNITS_PER_WORD, 0,
4405				     GET_MODE (SUBREG_REG (x)))) != 0)
4406	{
4407	  /* TEM is now a word sized constant for the bits from X that
4408	     we wanted.  However, TEM may be the wrong representation.
4409
4410	     Use gen_lowpart_common to convert a CONST_INT into a
4411	     CONST_DOUBLE and vice versa as needed according to by the mode
4412	     of the SUBREG.  */
4413	  tem = gen_lowpart_common (GET_MODE (x), tem);
4414	  if (!tem)
4415	    abort ();
4416	  return tem;
4417	}
4418
4419      /* If the SUBREG is wider than a word, the above test will fail.
4420	 For example, we might have a SImode SUBREG of a DImode SUBREG_REG
4421	 for a 16 bit target, or a DImode SUBREG of a TImode SUBREG_REG for
4422	 a 32 bit target.  We still can - and have to - handle this
4423	 for non-paradoxical subregs of CONST_INTs.  */
4424      if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4425	  && reg_equiv_constant[regno] != 0
4426	  && GET_CODE (reg_equiv_constant[regno]) == CONST_INT
4427	  && (GET_MODE_SIZE (GET_MODE (x))
4428	      < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
4429	{
4430	  int shift = SUBREG_BYTE (x) * BITS_PER_UNIT;
4431	  if (WORDS_BIG_ENDIAN)
4432	    shift = (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4433		     - GET_MODE_BITSIZE (GET_MODE (x))
4434		     - shift);
4435	  /* Here we use the knowledge that CONST_INTs have a
4436	     HOST_WIDE_INT field.  */
4437	  if (shift >= HOST_BITS_PER_WIDE_INT)
4438	    shift = HOST_BITS_PER_WIDE_INT - 1;
4439	  return GEN_INT (INTVAL (reg_equiv_constant[regno]) >> shift);
4440	}
4441
4442      if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4443	  && reg_equiv_constant[regno] != 0
4444	  && GET_MODE (reg_equiv_constant[regno]) == VOIDmode)
4445	abort ();
4446
4447      /* If the subreg contains a reg that will be converted to a mem,
4448	 convert the subreg to a narrower memref now.
4449	 Otherwise, we would get (subreg (mem ...) ...),
4450	 which would force reload of the mem.
4451
4452	 We also need to do this if there is an equivalent MEM that is
4453	 not offsettable.  In that case, alter_subreg would produce an
4454	 invalid address on big-endian machines.
4455
4456	 For machines that extend byte loads, we must not reload using
4457	 a wider mode if we have a paradoxical SUBREG.  find_reloads will
4458	 force a reload in that case.  So we should not do anything here.  */
4459
4460      else if (regno >= FIRST_PSEUDO_REGISTER
4461#ifdef LOAD_EXTEND_OP
4462	       && (GET_MODE_SIZE (GET_MODE (x))
4463		   <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4464#endif
4465	       && (reg_equiv_address[regno] != 0
4466		   || (reg_equiv_mem[regno] != 0
4467		       && (! strict_memory_address_p (GET_MODE (x),
4468						      XEXP (reg_equiv_mem[regno], 0))
4469			   || ! offsettable_memref_p (reg_equiv_mem[regno])
4470			   || num_not_at_initial_offset))))
4471	x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4472					 insn);
4473    }
4474
4475  for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4476    {
4477      if (fmt[i] == 'e')
4478	{
4479	  rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4480					      ind_levels, is_set_dest, insn,
4481					      address_reloaded);
4482	  /* If we have replaced a reg with it's equivalent memory loc -
4483	     that can still be handled here e.g. if it's in a paradoxical
4484	     subreg - we must make the change in a copy, rather than using
4485	     a destructive change.  This way, find_reloads can still elect
4486	     not to do the change.  */
4487	  if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4488	    {
4489	      x = shallow_copy_rtx (x);
4490	      copied = 1;
4491	    }
4492	  XEXP (x, i) = new_part;
4493	}
4494    }
4495  return x;
4496}
4497
4498/* Return a mem ref for the memory equivalent of reg REGNO.
4499   This mem ref is not shared with anything.  */
4500
4501static rtx
4502make_memloc (ad, regno)
4503     rtx ad;
4504     int regno;
4505{
4506  /* We must rerun eliminate_regs, in case the elimination
4507     offsets have changed.  */
4508  rtx tem
4509    = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4510
4511  /* If TEM might contain a pseudo, we must copy it to avoid
4512     modifying it when we do the substitution for the reload.  */
4513  if (rtx_varies_p (tem, 0))
4514    tem = copy_rtx (tem);
4515
4516  tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4517  tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4518
4519  /* Copy the result if it's still the same as the equivalence, to avoid
4520     modifying it when we do the substitution for the reload.  */
4521  if (tem == reg_equiv_memory_loc[regno])
4522    tem = copy_rtx (tem);
4523  return tem;
4524}
4525
4526/* Record all reloads needed for handling memory address AD
4527   which appears in *LOC in a memory reference to mode MODE
4528   which itself is found in location  *MEMREFLOC.
4529   Note that we take shortcuts assuming that no multi-reg machine mode
4530   occurs as part of an address.
4531
4532   OPNUM and TYPE specify the purpose of this reload.
4533
4534   IND_LEVELS says how many levels of indirect addressing this machine
4535   supports.
4536
4537   INSN, if nonzero, is the insn in which we do the reload.  It is used
4538   to determine if we may generate output reloads, and where to put USEs
4539   for pseudos that we have to replace with stack slots.
4540
4541   Value is nonzero if this address is reloaded or replaced as a whole.
4542   This is interesting to the caller if the address is an autoincrement.
4543
4544   Note that there is no verification that the address will be valid after
4545   this routine does its work.  Instead, we rely on the fact that the address
4546   was valid when reload started.  So we need only undo things that reload
4547   could have broken.  These are wrong register types, pseudos not allocated
4548   to a hard register, and frame pointer elimination.  */
4549
4550static int
4551find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
4552     enum machine_mode mode;
4553     rtx *memrefloc;
4554     rtx ad;
4555     rtx *loc;
4556     int opnum;
4557     enum reload_type type;
4558     int ind_levels;
4559     rtx insn;
4560{
4561  int regno;
4562  int removed_and = 0;
4563  rtx tem;
4564
4565  /* If the address is a register, see if it is a legitimate address and
4566     reload if not.  We first handle the cases where we need not reload
4567     or where we must reload in a non-standard way.  */
4568
4569  if (GET_CODE (ad) == REG)
4570    {
4571      regno = REGNO (ad);
4572
4573      /* If the register is equivalent to an invariant expression, substitute
4574	 the invariant, and eliminate any eliminable register references.  */
4575      tem = reg_equiv_constant[regno];
4576      if (tem != 0
4577	  && (tem = eliminate_regs (tem, mode, insn))
4578	  && strict_memory_address_p (mode, tem))
4579	{
4580	  *loc = ad = tem;
4581	  return 0;
4582	}
4583
4584      tem = reg_equiv_memory_loc[regno];
4585      if (tem != 0)
4586	{
4587	  if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4588	    {
4589	      tem = make_memloc (ad, regno);
4590	      if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4591		{
4592		  find_reloads_address (GET_MODE (tem), (rtx*) 0, XEXP (tem, 0),
4593					&XEXP (tem, 0), opnum, ADDR_TYPE (type),
4594					ind_levels, insn);
4595		}
4596	      /* We can avoid a reload if the register's equivalent memory
4597		 expression is valid as an indirect memory address.
4598		 But not all addresses are valid in a mem used as an indirect
4599		 address: only reg or reg+constant.  */
4600
4601	      if (ind_levels > 0
4602		  && strict_memory_address_p (mode, tem)
4603		  && (GET_CODE (XEXP (tem, 0)) == REG
4604		      || (GET_CODE (XEXP (tem, 0)) == PLUS
4605			  && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4606			  && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4607		{
4608		  /* TEM is not the same as what we'll be replacing the
4609		     pseudo with after reload, put a USE in front of INSN
4610		     in the final reload pass.  */
4611		  if (replace_reloads
4612		      && num_not_at_initial_offset
4613		      && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4614		    {
4615		      *loc = tem;
4616		      /* We mark the USE with QImode so that we
4617			 recognize it as one that can be safely
4618			 deleted at the end of reload.  */
4619		      PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4620						  insn), QImode);
4621
4622		      /* This doesn't really count as replacing the address
4623			 as a whole, since it is still a memory access.  */
4624		    }
4625		  return 0;
4626		}
4627	      ad = tem;
4628	    }
4629	}
4630
4631      /* The only remaining case where we can avoid a reload is if this is a
4632	 hard register that is valid as a base register and which is not the
4633	 subject of a CLOBBER in this insn.  */
4634
4635      else if (regno < FIRST_PSEUDO_REGISTER
4636	       && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4637	       && ! regno_clobbered_p (regno, this_insn, mode, 0))
4638	return 0;
4639
4640      /* If we do not have one of the cases above, we must do the reload.  */
4641      push_reload (ad, NULL_RTX, loc, (rtx*) 0, MODE_BASE_REG_CLASS (mode),
4642		   GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4643      return 1;
4644    }
4645
4646  if (strict_memory_address_p (mode, ad))
4647    {
4648      /* The address appears valid, so reloads are not needed.
4649	 But the address may contain an eliminable register.
4650	 This can happen because a machine with indirect addressing
4651	 may consider a pseudo register by itself a valid address even when
4652	 it has failed to get a hard reg.
4653	 So do a tree-walk to find and eliminate all such regs.  */
4654
4655      /* But first quickly dispose of a common case.  */
4656      if (GET_CODE (ad) == PLUS
4657	  && GET_CODE (XEXP (ad, 1)) == CONST_INT
4658	  && GET_CODE (XEXP (ad, 0)) == REG
4659	  && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4660	return 0;
4661
4662      subst_reg_equivs_changed = 0;
4663      *loc = subst_reg_equivs (ad, insn);
4664
4665      if (! subst_reg_equivs_changed)
4666	return 0;
4667
4668      /* Check result for validity after substitution.  */
4669      if (strict_memory_address_p (mode, ad))
4670	return 0;
4671    }
4672
4673#ifdef LEGITIMIZE_RELOAD_ADDRESS
4674  do
4675    {
4676      if (memrefloc)
4677	{
4678	  LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4679				     ind_levels, win);
4680	}
4681      break;
4682    win:
4683      *memrefloc = copy_rtx (*memrefloc);
4684      XEXP (*memrefloc, 0) = ad;
4685      move_replacements (&ad, &XEXP (*memrefloc, 0));
4686      return 1;
4687    }
4688  while (0);
4689#endif
4690
4691  /* The address is not valid.  We have to figure out why.  First see if
4692     we have an outer AND and remove it if so.  Then analyze what's inside.  */
4693
4694  if (GET_CODE (ad) == AND)
4695    {
4696      removed_and = 1;
4697      loc = &XEXP (ad, 0);
4698      ad = *loc;
4699    }
4700
4701  /* One possibility for why the address is invalid is that it is itself
4702     a MEM.  This can happen when the frame pointer is being eliminated, a
4703     pseudo is not allocated to a hard register, and the offset between the
4704     frame and stack pointers is not its initial value.  In that case the
4705     pseudo will have been replaced by a MEM referring to the
4706     stack pointer.  */
4707  if (GET_CODE (ad) == MEM)
4708    {
4709      /* First ensure that the address in this MEM is valid.  Then, unless
4710	 indirect addresses are valid, reload the MEM into a register.  */
4711      tem = ad;
4712      find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4713			    opnum, ADDR_TYPE (type),
4714			    ind_levels == 0 ? 0 : ind_levels - 1, insn);
4715
4716      /* If tem was changed, then we must create a new memory reference to
4717	 hold it and store it back into memrefloc.  */
4718      if (tem != ad && memrefloc)
4719	{
4720	  *memrefloc = copy_rtx (*memrefloc);
4721	  copy_replacements (tem, XEXP (*memrefloc, 0));
4722	  loc = &XEXP (*memrefloc, 0);
4723	  if (removed_and)
4724	    loc = &XEXP (*loc, 0);
4725	}
4726
4727      /* Check similar cases as for indirect addresses as above except
4728	 that we can allow pseudos and a MEM since they should have been
4729	 taken care of above.  */
4730
4731      if (ind_levels == 0
4732	  || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4733	  || GET_CODE (XEXP (tem, 0)) == MEM
4734	  || ! (GET_CODE (XEXP (tem, 0)) == REG
4735		|| (GET_CODE (XEXP (tem, 0)) == PLUS
4736		    && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4737		    && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4738	{
4739	  /* Must use TEM here, not AD, since it is the one that will
4740	     have any subexpressions reloaded, if needed.  */
4741	  push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4742		       MODE_BASE_REG_CLASS (mode), GET_MODE (tem),
4743		       VOIDmode, 0,
4744		       0, opnum, type);
4745	  return ! removed_and;
4746	}
4747      else
4748	return 0;
4749    }
4750
4751  /* If we have address of a stack slot but it's not valid because the
4752     displacement is too large, compute the sum in a register.
4753     Handle all base registers here, not just fp/ap/sp, because on some
4754     targets (namely SH) we can also get too large displacements from
4755     big-endian corrections.  */
4756  else if (GET_CODE (ad) == PLUS
4757	   && GET_CODE (XEXP (ad, 0)) == REG
4758	   && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4759	   && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4760	   && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4761    {
4762      /* Unshare the MEM rtx so we can safely alter it.  */
4763      if (memrefloc)
4764	{
4765	  *memrefloc = copy_rtx (*memrefloc);
4766	  loc = &XEXP (*memrefloc, 0);
4767	  if (removed_and)
4768	    loc = &XEXP (*loc, 0);
4769	}
4770
4771      if (double_reg_address_ok)
4772	{
4773	  /* Unshare the sum as well.  */
4774	  *loc = ad = copy_rtx (ad);
4775
4776	  /* Reload the displacement into an index reg.
4777	     We assume the frame pointer or arg pointer is a base reg.  */
4778	  find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4779				     INDEX_REG_CLASS, GET_MODE (ad), opnum,
4780				     type, ind_levels);
4781	  return 0;
4782	}
4783      else
4784	{
4785	  /* If the sum of two regs is not necessarily valid,
4786	     reload the sum into a base reg.
4787	     That will at least work.  */
4788	  find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4789				     Pmode, opnum, type, ind_levels);
4790	}
4791      return ! removed_and;
4792    }
4793
4794  /* If we have an indexed stack slot, there are three possible reasons why
4795     it might be invalid: The index might need to be reloaded, the address
4796     might have been made by frame pointer elimination and hence have a
4797     constant out of range, or both reasons might apply.
4798
4799     We can easily check for an index needing reload, but even if that is the
4800     case, we might also have an invalid constant.  To avoid making the
4801     conservative assumption and requiring two reloads, we see if this address
4802     is valid when not interpreted strictly.  If it is, the only problem is
4803     that the index needs a reload and find_reloads_address_1 will take care
4804     of it.
4805
4806     If we decide to do something here, it must be that
4807     `double_reg_address_ok' is true and that this address rtl was made by
4808     eliminate_regs.  We generate a reload of the fp/sp/ap + constant and
4809     rework the sum so that the reload register will be added to the index.
4810     This is safe because we know the address isn't shared.
4811
4812     We check for fp/ap/sp as both the first and second operand of the
4813     innermost PLUS.  */
4814
4815  else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4816	   && GET_CODE (XEXP (ad, 0)) == PLUS
4817	   && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
4818#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4819	       || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4820#endif
4821#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4822	       || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4823#endif
4824	       || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4825	   && ! memory_address_p (mode, ad))
4826    {
4827      *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4828				plus_constant (XEXP (XEXP (ad, 0), 0),
4829					       INTVAL (XEXP (ad, 1))),
4830				XEXP (XEXP (ad, 0), 1));
4831      find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0),
4832				 MODE_BASE_REG_CLASS (mode),
4833				 GET_MODE (ad), opnum, type, ind_levels);
4834      find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4835			      type, 0, insn);
4836
4837      return 0;
4838    }
4839
4840  else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4841	   && GET_CODE (XEXP (ad, 0)) == PLUS
4842	   && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
4843#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4844	       || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4845#endif
4846#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4847	       || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4848#endif
4849	       || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4850	   && ! memory_address_p (mode, ad))
4851    {
4852      *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4853				XEXP (XEXP (ad, 0), 0),
4854				plus_constant (XEXP (XEXP (ad, 0), 1),
4855					       INTVAL (XEXP (ad, 1))));
4856      find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4857				 MODE_BASE_REG_CLASS (mode),
4858				 GET_MODE (ad), opnum, type, ind_levels);
4859      find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4860			      type, 0, insn);
4861
4862      return 0;
4863    }
4864
4865  /* See if address becomes valid when an eliminable register
4866     in a sum is replaced.  */
4867
4868  tem = ad;
4869  if (GET_CODE (ad) == PLUS)
4870    tem = subst_indexed_address (ad);
4871  if (tem != ad && strict_memory_address_p (mode, tem))
4872    {
4873      /* Ok, we win that way.  Replace any additional eliminable
4874	 registers.  */
4875
4876      subst_reg_equivs_changed = 0;
4877      tem = subst_reg_equivs (tem, insn);
4878
4879      /* Make sure that didn't make the address invalid again.  */
4880
4881      if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4882	{
4883	  *loc = tem;
4884	  return 0;
4885	}
4886    }
4887
4888  /* If constants aren't valid addresses, reload the constant address
4889     into a register.  */
4890  if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4891    {
4892      /* If AD is an address in the constant pool, the MEM rtx may be shared.
4893	 Unshare it so we can safely alter it.  */
4894      if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4895	  && CONSTANT_POOL_ADDRESS_P (ad))
4896	{
4897	  *memrefloc = copy_rtx (*memrefloc);
4898	  loc = &XEXP (*memrefloc, 0);
4899	  if (removed_and)
4900	    loc = &XEXP (*loc, 0);
4901	}
4902
4903      find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4904				 Pmode, opnum, type, ind_levels);
4905      return ! removed_and;
4906    }
4907
4908  return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4909				 insn);
4910}
4911
4912/* Find all pseudo regs appearing in AD
4913   that are eliminable in favor of equivalent values
4914   and do not have hard regs; replace them by their equivalents.
4915   INSN, if nonzero, is the insn in which we do the reload.  We put USEs in
4916   front of it for pseudos that we have to replace with stack slots.  */
4917
4918static rtx
4919subst_reg_equivs (ad, insn)
4920     rtx ad;
4921     rtx insn;
4922{
4923  RTX_CODE code = GET_CODE (ad);
4924  int i;
4925  const char *fmt;
4926
4927  switch (code)
4928    {
4929    case HIGH:
4930    case CONST_INT:
4931    case CONST:
4932    case CONST_DOUBLE:
4933    case SYMBOL_REF:
4934    case LABEL_REF:
4935    case PC:
4936    case CC0:
4937      return ad;
4938
4939    case REG:
4940      {
4941	int regno = REGNO (ad);
4942
4943	if (reg_equiv_constant[regno] != 0)
4944	  {
4945	    subst_reg_equivs_changed = 1;
4946	    return reg_equiv_constant[regno];
4947	  }
4948	if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
4949	  {
4950	    rtx mem = make_memloc (ad, regno);
4951	    if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
4952	      {
4953		subst_reg_equivs_changed = 1;
4954		/* We mark the USE with QImode so that we recognize it
4955		   as one that can be safely deleted at the end of
4956		   reload.  */
4957		PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
4958			  QImode);
4959		return mem;
4960	      }
4961	  }
4962      }
4963      return ad;
4964
4965    case PLUS:
4966      /* Quickly dispose of a common case.  */
4967      if (XEXP (ad, 0) == frame_pointer_rtx
4968	  && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4969	return ad;
4970      break;
4971
4972    default:
4973      break;
4974    }
4975
4976  fmt = GET_RTX_FORMAT (code);
4977  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4978    if (fmt[i] == 'e')
4979      XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
4980  return ad;
4981}
4982
4983/* Compute the sum of X and Y, making canonicalizations assumed in an
4984   address, namely: sum constant integers, surround the sum of two
4985   constants with a CONST, put the constant as the second operand, and
4986   group the constant on the outermost sum.
4987
4988   This routine assumes both inputs are already in canonical form.  */
4989
4990rtx
4991form_sum (x, y)
4992     rtx x, y;
4993{
4994  rtx tem;
4995  enum machine_mode mode = GET_MODE (x);
4996
4997  if (mode == VOIDmode)
4998    mode = GET_MODE (y);
4999
5000  if (mode == VOIDmode)
5001    mode = Pmode;
5002
5003  if (GET_CODE (x) == CONST_INT)
5004    return plus_constant (y, INTVAL (x));
5005  else if (GET_CODE (y) == CONST_INT)
5006    return plus_constant (x, INTVAL (y));
5007  else if (CONSTANT_P (x))
5008    tem = x, x = y, y = tem;
5009
5010  if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5011    return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5012
5013  /* Note that if the operands of Y are specified in the opposite
5014     order in the recursive calls below, infinite recursion will occur.  */
5015  if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5016    return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5017
5018  /* If both constant, encapsulate sum.  Otherwise, just form sum.  A
5019     constant will have been placed second.  */
5020  if (CONSTANT_P (x) && CONSTANT_P (y))
5021    {
5022      if (GET_CODE (x) == CONST)
5023	x = XEXP (x, 0);
5024      if (GET_CODE (y) == CONST)
5025	y = XEXP (y, 0);
5026
5027      return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5028    }
5029
5030  return gen_rtx_PLUS (mode, x, y);
5031}
5032
5033/* If ADDR is a sum containing a pseudo register that should be
5034   replaced with a constant (from reg_equiv_constant),
5035   return the result of doing so, and also apply the associative
5036   law so that the result is more likely to be a valid address.
5037   (But it is not guaranteed to be one.)
5038
5039   Note that at most one register is replaced, even if more are
5040   replaceable.  Also, we try to put the result into a canonical form
5041   so it is more likely to be a valid address.
5042
5043   In all other cases, return ADDR.  */
5044
5045static rtx
5046subst_indexed_address (addr)
5047     rtx addr;
5048{
5049  rtx op0 = 0, op1 = 0, op2 = 0;
5050  rtx tem;
5051  int regno;
5052
5053  if (GET_CODE (addr) == PLUS)
5054    {
5055      /* Try to find a register to replace.  */
5056      op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5057      if (GET_CODE (op0) == REG
5058	  && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5059	  && reg_renumber[regno] < 0
5060	  && reg_equiv_constant[regno] != 0)
5061	op0 = reg_equiv_constant[regno];
5062      else if (GET_CODE (op1) == REG
5063	       && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5064	       && reg_renumber[regno] < 0
5065	       && reg_equiv_constant[regno] != 0)
5066	op1 = reg_equiv_constant[regno];
5067      else if (GET_CODE (op0) == PLUS
5068	       && (tem = subst_indexed_address (op0)) != op0)
5069	op0 = tem;
5070      else if (GET_CODE (op1) == PLUS
5071	       && (tem = subst_indexed_address (op1)) != op1)
5072	op1 = tem;
5073      else
5074	return addr;
5075
5076      /* Pick out up to three things to add.  */
5077      if (GET_CODE (op1) == PLUS)
5078	op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5079      else if (GET_CODE (op0) == PLUS)
5080	op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5081
5082      /* Compute the sum.  */
5083      if (op2 != 0)
5084	op1 = form_sum (op1, op2);
5085      if (op1 != 0)
5086	op0 = form_sum (op0, op1);
5087
5088      return op0;
5089    }
5090  return addr;
5091}
5092
5093/* Update the REG_INC notes for an insn.  It updates all REG_INC
5094   notes for the instruction which refer to REGNO the to refer
5095   to the reload number.
5096
5097   INSN is the insn for which any REG_INC notes need updating.
5098
5099   REGNO is the register number which has been reloaded.
5100
5101   RELOADNUM is the reload number.  */
5102
5103static void
5104update_auto_inc_notes (insn, regno, reloadnum)
5105     rtx insn ATTRIBUTE_UNUSED;
5106     int regno ATTRIBUTE_UNUSED;
5107     int reloadnum ATTRIBUTE_UNUSED;
5108{
5109#ifdef AUTO_INC_DEC
5110  rtx link;
5111
5112  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5113    if (REG_NOTE_KIND (link) == REG_INC
5114        && REGNO (XEXP (link, 0)) == regno)
5115      push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5116#endif
5117}
5118
5119/* Record the pseudo registers we must reload into hard registers in a
5120   subexpression of a would-be memory address, X referring to a value
5121   in mode MODE.  (This function is not called if the address we find
5122   is strictly valid.)
5123
5124   CONTEXT = 1 means we are considering regs as index regs,
5125   = 0 means we are considering them as base regs.
5126
5127   OPNUM and TYPE specify the purpose of any reloads made.
5128
5129   IND_LEVELS says how many levels of indirect addressing are
5130   supported at this point in the address.
5131
5132   INSN, if nonzero, is the insn in which we do the reload.  It is used
5133   to determine if we may generate output reloads.
5134
5135   We return nonzero if X, as a whole, is reloaded or replaced.  */
5136
5137/* Note that we take shortcuts assuming that no multi-reg machine mode
5138   occurs as part of an address.
5139   Also, this is not fully machine-customizable; it works for machines
5140   such as VAXen and 68000's and 32000's, but other possible machines
5141   could have addressing modes that this does not handle right.  */
5142
5143static int
5144find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
5145     enum machine_mode mode;
5146     rtx x;
5147     int context;
5148     rtx *loc;
5149     int opnum;
5150     enum reload_type type;
5151     int ind_levels;
5152     rtx insn;
5153{
5154  RTX_CODE code = GET_CODE (x);
5155
5156  switch (code)
5157    {
5158    case PLUS:
5159      {
5160	rtx orig_op0 = XEXP (x, 0);
5161	rtx orig_op1 = XEXP (x, 1);
5162	RTX_CODE code0 = GET_CODE (orig_op0);
5163	RTX_CODE code1 = GET_CODE (orig_op1);
5164	rtx op0 = orig_op0;
5165	rtx op1 = orig_op1;
5166
5167	if (GET_CODE (op0) == SUBREG)
5168	  {
5169	    op0 = SUBREG_REG (op0);
5170	    code0 = GET_CODE (op0);
5171	    if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5172	      op0 = gen_rtx_REG (word_mode,
5173				 (REGNO (op0) +
5174				  subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5175						       GET_MODE (SUBREG_REG (orig_op0)),
5176						       SUBREG_BYTE (orig_op0),
5177						       GET_MODE (orig_op0))));
5178	  }
5179
5180	if (GET_CODE (op1) == SUBREG)
5181	  {
5182	    op1 = SUBREG_REG (op1);
5183	    code1 = GET_CODE (op1);
5184	    if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5185	      /* ??? Why is this given op1's mode and above for
5186		 ??? op0 SUBREGs we use word_mode?  */
5187	      op1 = gen_rtx_REG (GET_MODE (op1),
5188				 (REGNO (op1) +
5189				  subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5190						       GET_MODE (SUBREG_REG (orig_op1)),
5191						       SUBREG_BYTE (orig_op1),
5192						       GET_MODE (orig_op1))));
5193	  }
5194
5195	if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5196	    || code0 == ZERO_EXTEND || code1 == MEM)
5197	  {
5198	    find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5199				    type, ind_levels, insn);
5200	    find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5201				    type, ind_levels, insn);
5202	  }
5203
5204	else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5205		 || code1 == ZERO_EXTEND || code0 == MEM)
5206	  {
5207	    find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5208				    type, ind_levels, insn);
5209	    find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5210				    type, ind_levels, insn);
5211	  }
5212
5213	else if (code0 == CONST_INT || code0 == CONST
5214		 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5215	  find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5216				  type, ind_levels, insn);
5217
5218	else if (code1 == CONST_INT || code1 == CONST
5219		 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5220	  find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5221				  type, ind_levels, insn);
5222
5223	else if (code0 == REG && code1 == REG)
5224	  {
5225	    if (REG_OK_FOR_INDEX_P (op0)
5226		&& REG_MODE_OK_FOR_BASE_P (op1, mode))
5227	      return 0;
5228	    else if (REG_OK_FOR_INDEX_P (op1)
5229		     && REG_MODE_OK_FOR_BASE_P (op0, mode))
5230	      return 0;
5231	    else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5232	      find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5233				      type, ind_levels, insn);
5234	    else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5235	      find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5236				      type, ind_levels, insn);
5237	    else if (REG_OK_FOR_INDEX_P (op1))
5238	      find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5239				      type, ind_levels, insn);
5240	    else if (REG_OK_FOR_INDEX_P (op0))
5241	      find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5242				      type, ind_levels, insn);
5243	    else
5244	      {
5245		find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5246					type, ind_levels, insn);
5247		find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5248					type, ind_levels, insn);
5249	      }
5250	  }
5251
5252	else if (code0 == REG)
5253	  {
5254	    find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5255				    type, ind_levels, insn);
5256	    find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5257				    type, ind_levels, insn);
5258	  }
5259
5260	else if (code1 == REG)
5261	  {
5262	    find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5263				    type, ind_levels, insn);
5264	    find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5265				    type, ind_levels, insn);
5266	  }
5267      }
5268
5269      return 0;
5270
5271    case POST_MODIFY:
5272    case PRE_MODIFY:
5273      {
5274	rtx op0 = XEXP (x, 0);
5275	rtx op1 = XEXP (x, 1);
5276
5277	if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5278	  return 0;
5279
5280	/* Currently, we only support {PRE,POST}_MODIFY constructs
5281	   where a base register is {inc,dec}remented by the contents
5282	   of another register or by a constant value.  Thus, these
5283	   operands must match.  */
5284	if (op0 != XEXP (op1, 0))
5285	  abort ();
5286
5287	/* Require index register (or constant).  Let's just handle the
5288	   register case in the meantime... If the target allows
5289	   auto-modify by a constant then we could try replacing a pseudo
5290	   register with its equivalent constant where applicable.  */
5291	if (REG_P (XEXP (op1, 1)))
5292	  if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5293	    find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5294				    opnum, type, ind_levels, insn);
5295
5296	if (REG_P (XEXP (op1, 0)))
5297	  {
5298	    int regno = REGNO (XEXP (op1, 0));
5299	    int reloadnum;
5300
5301	    /* A register that is incremented cannot be constant!  */
5302	    if (regno >= FIRST_PSEUDO_REGISTER
5303		&& reg_equiv_constant[regno] != 0)
5304	      abort ();
5305
5306	    /* Handle a register that is equivalent to a memory location
5307	       which cannot be addressed directly.  */
5308 	    if (reg_equiv_memory_loc[regno] != 0
5309		&& (reg_equiv_address[regno] != 0
5310		    || num_not_at_initial_offset))
5311	      {
5312		rtx tem = make_memloc (XEXP (x, 0), regno);
5313
5314		if (reg_equiv_address[regno]
5315		    || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5316		  {
5317		    /* First reload the memory location's address.
5318		       We can't use ADDR_TYPE (type) here, because we need to
5319		       write back the value after reading it, hence we actually
5320		       need two registers.  */
5321		    find_reloads_address (GET_MODE (tem), 0, XEXP (tem, 0),
5322					  &XEXP (tem, 0), opnum,
5323					  RELOAD_OTHER,
5324					  ind_levels, insn);
5325
5326		    /* Then reload the memory location into a base
5327		       register.  */
5328		    reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5329					     &XEXP (op1, 0),
5330					     MODE_BASE_REG_CLASS (mode),
5331					     GET_MODE (x), GET_MODE (x), 0,
5332					     0, opnum, RELOAD_OTHER);
5333
5334		    update_auto_inc_notes (this_insn, regno, reloadnum);
5335		    return 0;
5336		  }
5337	      }
5338
5339	    if (reg_renumber[regno] >= 0)
5340	      regno = reg_renumber[regno];
5341
5342	    /* We require a base register here...  */
5343	    if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5344	      {
5345		reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5346					 &XEXP (op1, 0), &XEXP (x, 0),
5347					 MODE_BASE_REG_CLASS (mode),
5348					 GET_MODE (x), GET_MODE (x), 0, 0,
5349					 opnum, RELOAD_OTHER);
5350
5351		update_auto_inc_notes (this_insn, regno, reloadnum);
5352		return 0;
5353	      }
5354	  }
5355	else
5356	  abort ();
5357      }
5358      return 0;
5359
5360    case POST_INC:
5361    case POST_DEC:
5362    case PRE_INC:
5363    case PRE_DEC:
5364      if (GET_CODE (XEXP (x, 0)) == REG)
5365	{
5366	  int regno = REGNO (XEXP (x, 0));
5367	  int value = 0;
5368	  rtx x_orig = x;
5369
5370	  /* A register that is incremented cannot be constant!  */
5371	  if (regno >= FIRST_PSEUDO_REGISTER
5372	      && reg_equiv_constant[regno] != 0)
5373	    abort ();
5374
5375	  /* Handle a register that is equivalent to a memory location
5376	     which cannot be addressed directly.  */
5377	  if (reg_equiv_memory_loc[regno] != 0
5378	      && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5379	    {
5380	      rtx tem = make_memloc (XEXP (x, 0), regno);
5381	      if (reg_equiv_address[regno]
5382		  || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5383		{
5384		  /* First reload the memory location's address.
5385		     We can't use ADDR_TYPE (type) here, because we need to
5386		     write back the value after reading it, hence we actually
5387		     need two registers.  */
5388		  find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5389					&XEXP (tem, 0), opnum, type,
5390					ind_levels, insn);
5391		  /* Put this inside a new increment-expression.  */
5392		  x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5393		  /* Proceed to reload that, as if it contained a register.  */
5394		}
5395	    }
5396
5397	  /* If we have a hard register that is ok as an index,
5398	     don't make a reload.  If an autoincrement of a nice register
5399	     isn't "valid", it must be that no autoincrement is "valid".
5400	     If that is true and something made an autoincrement anyway,
5401	     this must be a special context where one is allowed.
5402	     (For example, a "push" instruction.)
5403	     We can't improve this address, so leave it alone.  */
5404
5405	  /* Otherwise, reload the autoincrement into a suitable hard reg
5406	     and record how much to increment by.  */
5407
5408	  if (reg_renumber[regno] >= 0)
5409	    regno = reg_renumber[regno];
5410	  if ((regno >= FIRST_PSEUDO_REGISTER
5411	       || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5412		    : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5413	    {
5414	      int reloadnum;
5415
5416	      /* If we can output the register afterwards, do so, this
5417		 saves the extra update.
5418		 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5419		 CALL_INSN - and it does not set CC0.
5420		 But don't do this if we cannot directly address the
5421		 memory location, since this will make it harder to
5422		 reuse address reloads, and increases register pressure.
5423		 Also don't do this if we can probably update x directly.  */
5424	      rtx equiv = (GET_CODE (XEXP (x, 0)) == MEM
5425			   ? XEXP (x, 0)
5426			   : reg_equiv_mem[regno]);
5427	      int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5428	      if (insn && GET_CODE (insn) == INSN && equiv
5429		  && memory_operand (equiv, GET_MODE (equiv))
5430#ifdef HAVE_cc0
5431		  && ! sets_cc0_p (PATTERN (insn))
5432#endif
5433		  && ! (icode != CODE_FOR_nothing
5434			&& ((*insn_data[icode].operand[0].predicate)
5435			    (equiv, Pmode))
5436			&& ((*insn_data[icode].operand[1].predicate)
5437			    (equiv, Pmode))))
5438		{
5439		  /* We use the original pseudo for loc, so that
5440		     emit_reload_insns() knows which pseudo this
5441		     reload refers to and updates the pseudo rtx, not
5442		     its equivalent memory location, as well as the
5443		     corresponding entry in reg_last_reload_reg.  */
5444		  loc = &XEXP (x_orig, 0);
5445		  x = XEXP (x, 0);
5446		  reloadnum
5447		    = push_reload (x, x, loc, loc,
5448				   (context ? INDEX_REG_CLASS :
5449				    MODE_BASE_REG_CLASS (mode)),
5450				   GET_MODE (x), GET_MODE (x), 0, 0,
5451				   opnum, RELOAD_OTHER);
5452		}
5453	      else
5454		{
5455		  reloadnum
5456		    = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5457				   (context ? INDEX_REG_CLASS :
5458				    MODE_BASE_REG_CLASS (mode)),
5459				   GET_MODE (x), GET_MODE (x), 0, 0,
5460				   opnum, type);
5461		  rld[reloadnum].inc
5462		    = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5463
5464		  value = 1;
5465		}
5466
5467	      update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5468				     reloadnum);
5469	    }
5470	  return value;
5471	}
5472
5473      else if (GET_CODE (XEXP (x, 0)) == MEM)
5474	{
5475	  /* This is probably the result of a substitution, by eliminate_regs,
5476	     of an equivalent address for a pseudo that was not allocated to a
5477	     hard register.  Verify that the specified address is valid and
5478	     reload it into a register.  */
5479	  /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE.  */
5480	  rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5481	  rtx link;
5482	  int reloadnum;
5483
5484	  /* Since we know we are going to reload this item, don't decrement
5485	     for the indirection level.
5486
5487	     Note that this is actually conservative:  it would be slightly
5488	     more efficient to use the value of SPILL_INDIRECT_LEVELS from
5489	     reload1.c here.  */
5490	  /* We can't use ADDR_TYPE (type) here, because we need to
5491	     write back the value after reading it, hence we actually
5492	     need two registers.  */
5493	  find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5494				XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5495				opnum, type, ind_levels, insn);
5496
5497	  reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5498				   (context ? INDEX_REG_CLASS :
5499				    MODE_BASE_REG_CLASS (mode)),
5500				   GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5501	  rld[reloadnum].inc
5502	    = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5503
5504	  link = FIND_REG_INC_NOTE (this_insn, tem);
5505	  if (link != 0)
5506	    push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5507
5508	  return 1;
5509	}
5510      return 0;
5511
5512    case MEM:
5513      /* This is probably the result of a substitution, by eliminate_regs, of
5514	 an equivalent address for a pseudo that was not allocated to a hard
5515	 register.  Verify that the specified address is valid and reload it
5516	 into a register.
5517
5518	 Since we know we are going to reload this item, don't decrement for
5519	 the indirection level.
5520
5521	 Note that this is actually conservative:  it would be slightly more
5522	 efficient to use the value of SPILL_INDIRECT_LEVELS from
5523	 reload1.c here.  */
5524
5525      find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5526			    opnum, ADDR_TYPE (type), ind_levels, insn);
5527      push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5528		   (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5529		   GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5530      return 1;
5531
5532    case REG:
5533      {
5534	int regno = REGNO (x);
5535
5536	if (reg_equiv_constant[regno] != 0)
5537	  {
5538	    find_reloads_address_part (reg_equiv_constant[regno], loc,
5539				       (context ? INDEX_REG_CLASS :
5540					MODE_BASE_REG_CLASS (mode)),
5541				       GET_MODE (x), opnum, type, ind_levels);
5542	    return 1;
5543	  }
5544
5545#if 0 /* This might screw code in reload1.c to delete prior output-reload
5546	 that feeds this insn.  */
5547	if (reg_equiv_mem[regno] != 0)
5548	  {
5549	    push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5550			 (context ? INDEX_REG_CLASS :
5551			  MODE_BASE_REG_CLASS (mode)),
5552			 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5553	    return 1;
5554	  }
5555#endif
5556
5557	if (reg_equiv_memory_loc[regno]
5558	    && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5559	  {
5560	    rtx tem = make_memloc (x, regno);
5561	    if (reg_equiv_address[regno] != 0
5562		|| ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5563	      {
5564		x = tem;
5565		find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5566				      &XEXP (x, 0), opnum, ADDR_TYPE (type),
5567				      ind_levels, insn);
5568	      }
5569	  }
5570
5571	if (reg_renumber[regno] >= 0)
5572	  regno = reg_renumber[regno];
5573
5574	if ((regno >= FIRST_PSEUDO_REGISTER
5575	     || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5576		  : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5577	  {
5578	    push_reload (x, NULL_RTX, loc, (rtx*) 0,
5579			 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5580			 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5581	    return 1;
5582	  }
5583
5584	/* If a register appearing in an address is the subject of a CLOBBER
5585	   in this insn, reload it into some other register to be safe.
5586	   The CLOBBER is supposed to make the register unavailable
5587	   from before this insn to after it.  */
5588	if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5589	  {
5590	    push_reload (x, NULL_RTX, loc, (rtx*) 0,
5591			 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5592			 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5593	    return 1;
5594	  }
5595      }
5596      return 0;
5597
5598    case SUBREG:
5599      if (GET_CODE (SUBREG_REG (x)) == REG)
5600	{
5601	  /* If this is a SUBREG of a hard register and the resulting register
5602	     is of the wrong class, reload the whole SUBREG.  This avoids
5603	     needless copies if SUBREG_REG is multi-word.  */
5604	  if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5605	    {
5606	      int regno = subreg_regno (x);
5607
5608	      if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5609		     : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5610		{
5611		  push_reload (x, NULL_RTX, loc, (rtx*) 0,
5612			       (context ? INDEX_REG_CLASS :
5613				MODE_BASE_REG_CLASS (mode)),
5614			       GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5615		  return 1;
5616		}
5617	    }
5618	  /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5619	     is larger than the class size, then reload the whole SUBREG.  */
5620	  else
5621	    {
5622	      enum reg_class class = (context ? INDEX_REG_CLASS
5623				      : MODE_BASE_REG_CLASS (mode));
5624	      if (CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5625		  > reg_class_size[class])
5626		{
5627		  x = find_reloads_subreg_address (x, 0, opnum, type,
5628						   ind_levels, insn);
5629		  push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5630			       GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5631		  return 1;
5632		}
5633	    }
5634	}
5635      break;
5636
5637    default:
5638      break;
5639    }
5640
5641  {
5642    const char *fmt = GET_RTX_FORMAT (code);
5643    int i;
5644
5645    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5646      {
5647	if (fmt[i] == 'e')
5648	  find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5649				  opnum, type, ind_levels, insn);
5650      }
5651  }
5652
5653  return 0;
5654}
5655
5656/* X, which is found at *LOC, is a part of an address that needs to be
5657   reloaded into a register of class CLASS.  If X is a constant, or if
5658   X is a PLUS that contains a constant, check that the constant is a
5659   legitimate operand and that we are supposed to be able to load
5660   it into the register.
5661
5662   If not, force the constant into memory and reload the MEM instead.
5663
5664   MODE is the mode to use, in case X is an integer constant.
5665
5666   OPNUM and TYPE describe the purpose of any reloads made.
5667
5668   IND_LEVELS says how many levels of indirect addressing this machine
5669   supports.  */
5670
5671static void
5672find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
5673     rtx x;
5674     rtx *loc;
5675     enum reg_class class;
5676     enum machine_mode mode;
5677     int opnum;
5678     enum reload_type type;
5679     int ind_levels;
5680{
5681  if (CONSTANT_P (x)
5682      && (! LEGITIMATE_CONSTANT_P (x)
5683	  || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5684    {
5685      rtx tem;
5686
5687      tem = x = force_const_mem (mode, x);
5688      find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5689			    opnum, type, ind_levels, 0);
5690    }
5691
5692  else if (GET_CODE (x) == PLUS
5693	   && CONSTANT_P (XEXP (x, 1))
5694	   && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5695	       || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5696    {
5697      rtx tem;
5698
5699      tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5700      x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5701      find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5702			    opnum, type, ind_levels, 0);
5703    }
5704
5705  push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5706	       mode, VOIDmode, 0, 0, opnum, type);
5707}
5708
5709/* X, a subreg of a pseudo, is a part of an address that needs to be
5710   reloaded.
5711
5712   If the pseudo is equivalent to a memory location that cannot be directly
5713   addressed, make the necessary address reloads.
5714
5715   If address reloads have been necessary, or if the address is changed
5716   by register elimination, return the rtx of the memory location;
5717   otherwise, return X.
5718
5719   If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5720   memory location.
5721
5722   OPNUM and TYPE identify the purpose of the reload.
5723
5724   IND_LEVELS says how many levels of indirect addressing are
5725   supported at this point in the address.
5726
5727   INSN, if nonzero, is the insn in which we do the reload.  It is used
5728   to determine where to put USEs for pseudos that we have to replace with
5729   stack slots.  */
5730
5731static rtx
5732find_reloads_subreg_address (x, force_replace, opnum, type,
5733			     ind_levels, insn)
5734     rtx x;
5735     int force_replace;
5736     int opnum;
5737     enum reload_type type;
5738     int ind_levels;
5739     rtx insn;
5740{
5741  int regno = REGNO (SUBREG_REG (x));
5742
5743  if (reg_equiv_memory_loc[regno])
5744    {
5745      /* If the address is not directly addressable, or if the address is not
5746	 offsettable, then it must be replaced.  */
5747      if (! force_replace
5748	  && (reg_equiv_address[regno]
5749	      || ! offsettable_memref_p (reg_equiv_mem[regno])))
5750	force_replace = 1;
5751
5752      if (force_replace || num_not_at_initial_offset)
5753	{
5754	  rtx tem = make_memloc (SUBREG_REG (x), regno);
5755
5756	  /* If the address changes because of register elimination, then
5757	     it must be replaced.  */
5758	  if (force_replace
5759	      || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5760	    {
5761	      int offset = SUBREG_BYTE (x);
5762	      unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5763	      unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5764
5765	      XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5766	      PUT_MODE (tem, GET_MODE (x));
5767
5768	      /* If this was a paradoxical subreg that we replaced, the
5769		 resulting memory must be sufficiently aligned to allow
5770		 us to widen the mode of the memory.  */
5771	      if (outer_size > inner_size && STRICT_ALIGNMENT)
5772		{
5773		  rtx base;
5774
5775		  base = XEXP (tem, 0);
5776		  if (GET_CODE (base) == PLUS)
5777		    {
5778		      if (GET_CODE (XEXP (base, 1)) == CONST_INT
5779			  && INTVAL (XEXP (base, 1)) % outer_size != 0)
5780			return x;
5781		      base = XEXP (base, 0);
5782		    }
5783		  if (GET_CODE (base) != REG
5784		      || (REGNO_POINTER_ALIGN (REGNO (base))
5785			  < outer_size * BITS_PER_UNIT))
5786		    return x;
5787		}
5788
5789	      find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5790				    &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5791				    ind_levels, insn);
5792
5793	      /* If this is not a toplevel operand, find_reloads doesn't see
5794		 this substitution.  We have to emit a USE of the pseudo so
5795		 that delete_output_reload can see it.  */
5796	      if (replace_reloads && recog_data.operand[opnum] != x)
5797		/* We mark the USE with QImode so that we recognize it
5798		   as one that can be safely deleted at the end of
5799		   reload.  */
5800		PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
5801							 SUBREG_REG (x)),
5802					    insn), QImode);
5803	      x = tem;
5804	    }
5805	}
5806    }
5807  return x;
5808}
5809
5810/* Substitute into the current INSN the registers into which we have reloaded
5811   the things that need reloading.  The array `replacements'
5812   contains the locations of all pointers that must be changed
5813   and says what to replace them with.
5814
5815   Return the rtx that X translates into; usually X, but modified.  */
5816
5817void
5818subst_reloads (insn)
5819     rtx insn;
5820{
5821  int i;
5822
5823  for (i = 0; i < n_replacements; i++)
5824    {
5825      struct replacement *r = &replacements[i];
5826      rtx reloadreg = rld[r->what].reg_rtx;
5827      if (reloadreg)
5828	{
5829#ifdef ENABLE_CHECKING
5830	  /* Internal consistency test.  Check that we don't modify
5831	     anything in the equivalence arrays.  Whenever something from
5832	     those arrays needs to be reloaded, it must be unshared before
5833	     being substituted into; the equivalence must not be modified.
5834	     Otherwise, if the equivalence is used after that, it will
5835	     have been modified, and the thing substituted (probably a
5836	     register) is likely overwritten and not a usable equivalence.  */
5837	  int check_regno;
5838
5839	  for (check_regno = 0; check_regno < max_regno; check_regno++)
5840	    {
5841#define CHECK_MODF(ARRAY)						\
5842	      if (ARRAY[check_regno]					\
5843		  && loc_mentioned_in_p (r->where,			\
5844					 ARRAY[check_regno]))		\
5845		abort ()
5846
5847	      CHECK_MODF (reg_equiv_constant);
5848	      CHECK_MODF (reg_equiv_memory_loc);
5849	      CHECK_MODF (reg_equiv_address);
5850	      CHECK_MODF (reg_equiv_mem);
5851#undef CHECK_MODF
5852	    }
5853#endif /* ENABLE_CHECKING */
5854
5855	  /* If we're replacing a LABEL_REF with a register, add a
5856	     REG_LABEL note to indicate to flow which label this
5857	     register refers to.  */
5858	  if (GET_CODE (*r->where) == LABEL_REF
5859	      && GET_CODE (insn) == JUMP_INSN)
5860	    REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
5861						  XEXP (*r->where, 0),
5862						  REG_NOTES (insn));
5863
5864	  /* Encapsulate RELOADREG so its machine mode matches what
5865	     used to be there.  Note that gen_lowpart_common will
5866	     do the wrong thing if RELOADREG is multi-word.  RELOADREG
5867	     will always be a REG here.  */
5868	  if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5869	    reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5870
5871	  /* If we are putting this into a SUBREG and RELOADREG is a
5872	     SUBREG, we would be making nested SUBREGs, so we have to fix
5873	     this up.  Note that r->where == &SUBREG_REG (*r->subreg_loc).  */
5874
5875	  if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5876	    {
5877	      if (GET_MODE (*r->subreg_loc)
5878		  == GET_MODE (SUBREG_REG (reloadreg)))
5879		*r->subreg_loc = SUBREG_REG (reloadreg);
5880	      else
5881		{
5882		  int final_offset =
5883		    SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
5884
5885		  /* When working with SUBREGs the rule is that the byte
5886		     offset must be a multiple of the SUBREG's mode.  */
5887		  final_offset = (final_offset /
5888				  GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5889		  final_offset = (final_offset *
5890				  GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5891
5892		  *r->where = SUBREG_REG (reloadreg);
5893		  SUBREG_BYTE (*r->subreg_loc) = final_offset;
5894		}
5895	    }
5896	  else
5897	    *r->where = reloadreg;
5898	}
5899      /* If reload got no reg and isn't optional, something's wrong.  */
5900      else if (! rld[r->what].optional)
5901	abort ();
5902    }
5903}
5904
5905/* Make a copy of any replacements being done into X and move those copies
5906   to locations in Y, a copy of X.  We only look at the highest level of
5907   the RTL.  */
5908
5909void
5910copy_replacements (x, y)
5911     rtx x;
5912     rtx y;
5913{
5914  int i, j;
5915  enum rtx_code code = GET_CODE (x);
5916  const char *fmt = GET_RTX_FORMAT (code);
5917  struct replacement *r;
5918
5919  /* We can't support X being a SUBREG because we might then need to know its
5920     location if something inside it was replaced.  */
5921  if (code == SUBREG)
5922    abort ();
5923
5924  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5925    if (fmt[i] == 'e')
5926      for (j = 0; j < n_replacements; j++)
5927	{
5928	  if (replacements[j].subreg_loc == &XEXP (x, i))
5929	    {
5930	      r = &replacements[n_replacements++];
5931	      r->where = replacements[j].where;
5932	      r->subreg_loc = &XEXP (y, i);
5933	      r->what = replacements[j].what;
5934	      r->mode = replacements[j].mode;
5935	    }
5936	  else if (replacements[j].where == &XEXP (x, i))
5937	    {
5938	      r = &replacements[n_replacements++];
5939	      r->where = &XEXP (y, i);
5940	      r->subreg_loc = 0;
5941	      r->what = replacements[j].what;
5942	      r->mode = replacements[j].mode;
5943	    }
5944	}
5945}
5946
5947/* Change any replacements being done to *X to be done to *Y */
5948
5949void
5950move_replacements (x, y)
5951     rtx *x;
5952     rtx *y;
5953{
5954  int i;
5955
5956  for (i = 0; i < n_replacements; i++)
5957    if (replacements[i].subreg_loc == x)
5958      replacements[i].subreg_loc = y;
5959    else if (replacements[i].where == x)
5960      {
5961	replacements[i].where = y;
5962	replacements[i].subreg_loc = 0;
5963      }
5964}
5965
5966/* If LOC was scheduled to be replaced by something, return the replacement.
5967   Otherwise, return *LOC.  */
5968
5969rtx
5970find_replacement (loc)
5971     rtx *loc;
5972{
5973  struct replacement *r;
5974
5975  for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
5976    {
5977      rtx reloadreg = rld[r->what].reg_rtx;
5978
5979      if (reloadreg && r->where == loc)
5980	{
5981	  if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
5982	    reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5983
5984	  return reloadreg;
5985	}
5986      else if (reloadreg && r->subreg_loc == loc)
5987	{
5988	  /* RELOADREG must be either a REG or a SUBREG.
5989
5990	     ??? Is it actually still ever a SUBREG?  If so, why?  */
5991
5992	  if (GET_CODE (reloadreg) == REG)
5993	    return gen_rtx_REG (GET_MODE (*loc),
5994				(REGNO (reloadreg) +
5995				 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
5996						      GET_MODE (SUBREG_REG (*loc)),
5997						      SUBREG_BYTE (*loc),
5998						      GET_MODE (*loc))));
5999	  else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6000	    return reloadreg;
6001	  else
6002	    {
6003	      int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6004
6005	      /* When working with SUBREGs the rule is that the byte
6006		 offset must be a multiple of the SUBREG's mode.  */
6007	      final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6008	      final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6009	      return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6010				     final_offset);
6011	    }
6012	}
6013    }
6014
6015  /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6016     what's inside and make a new rtl if so.  */
6017  if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6018      || GET_CODE (*loc) == MULT)
6019    {
6020      rtx x = find_replacement (&XEXP (*loc, 0));
6021      rtx y = find_replacement (&XEXP (*loc, 1));
6022
6023      if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6024	return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6025    }
6026
6027  return *loc;
6028}
6029
6030/* Return nonzero if register in range [REGNO, ENDREGNO)
6031   appears either explicitly or implicitly in X
6032   other than being stored into (except for earlyclobber operands).
6033
6034   References contained within the substructure at LOC do not count.
6035   LOC may be zero, meaning don't ignore anything.
6036
6037   This is similar to refers_to_regno_p in rtlanal.c except that we
6038   look at equivalences for pseudos that didn't get hard registers.  */
6039
6040int
6041refers_to_regno_for_reload_p (regno, endregno, x, loc)
6042     unsigned int regno, endregno;
6043     rtx x;
6044     rtx *loc;
6045{
6046  int i;
6047  unsigned int r;
6048  RTX_CODE code;
6049  const char *fmt;
6050
6051  if (x == 0)
6052    return 0;
6053
6054 repeat:
6055  code = GET_CODE (x);
6056
6057  switch (code)
6058    {
6059    case REG:
6060      r = REGNO (x);
6061
6062      /* If this is a pseudo, a hard register must not have been allocated.
6063	 X must therefore either be a constant or be in memory.  */
6064      if (r >= FIRST_PSEUDO_REGISTER)
6065	{
6066	  if (reg_equiv_memory_loc[r])
6067	    return refers_to_regno_for_reload_p (regno, endregno,
6068						 reg_equiv_memory_loc[r],
6069						 (rtx*) 0);
6070
6071	  if (reg_equiv_constant[r])
6072	    return 0;
6073
6074	  abort ();
6075	}
6076
6077      return (endregno > r
6078	      && regno < r + (r < FIRST_PSEUDO_REGISTER
6079			      ? HARD_REGNO_NREGS (r, GET_MODE (x))
6080			      : 1));
6081
6082    case SUBREG:
6083      /* If this is a SUBREG of a hard reg, we can see exactly which
6084	 registers are being modified.  Otherwise, handle normally.  */
6085      if (GET_CODE (SUBREG_REG (x)) == REG
6086	  && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6087	{
6088	  unsigned int inner_regno = subreg_regno (x);
6089	  unsigned int inner_endregno
6090	    = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6091			     ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6092
6093	  return endregno > inner_regno && regno < inner_endregno;
6094	}
6095      break;
6096
6097    case CLOBBER:
6098    case SET:
6099      if (&SET_DEST (x) != loc
6100	  /* Note setting a SUBREG counts as referring to the REG it is in for
6101	     a pseudo but not for hard registers since we can
6102	     treat each word individually.  */
6103	  && ((GET_CODE (SET_DEST (x)) == SUBREG
6104	       && loc != &SUBREG_REG (SET_DEST (x))
6105	       && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
6106	       && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6107	       && refers_to_regno_for_reload_p (regno, endregno,
6108						SUBREG_REG (SET_DEST (x)),
6109						loc))
6110	      /* If the output is an earlyclobber operand, this is
6111		 a conflict.  */
6112	      || ((GET_CODE (SET_DEST (x)) != REG
6113		   || earlyclobber_operand_p (SET_DEST (x)))
6114		  && refers_to_regno_for_reload_p (regno, endregno,
6115						   SET_DEST (x), loc))))
6116	return 1;
6117
6118      if (code == CLOBBER || loc == &SET_SRC (x))
6119	return 0;
6120      x = SET_SRC (x);
6121      goto repeat;
6122
6123    default:
6124      break;
6125    }
6126
6127  /* X does not match, so try its subexpressions.  */
6128
6129  fmt = GET_RTX_FORMAT (code);
6130  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6131    {
6132      if (fmt[i] == 'e' && loc != &XEXP (x, i))
6133	{
6134	  if (i == 0)
6135	    {
6136	      x = XEXP (x, 0);
6137	      goto repeat;
6138	    }
6139	  else
6140	    if (refers_to_regno_for_reload_p (regno, endregno,
6141					      XEXP (x, i), loc))
6142	      return 1;
6143	}
6144      else if (fmt[i] == 'E')
6145	{
6146	  int j;
6147	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6148	    if (loc != &XVECEXP (x, i, j)
6149		&& refers_to_regno_for_reload_p (regno, endregno,
6150						 XVECEXP (x, i, j), loc))
6151	      return 1;
6152	}
6153    }
6154  return 0;
6155}
6156
6157/* Nonzero if modifying X will affect IN.  If X is a register or a SUBREG,
6158   we check if any register number in X conflicts with the relevant register
6159   numbers.  If X is a constant, return 0.  If X is a MEM, return 1 iff IN
6160   contains a MEM (we don't bother checking for memory addresses that can't
6161   conflict because we expect this to be a rare case.
6162
6163   This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6164   that we look at equivalences for pseudos that didn't get hard registers.  */
6165
6166int
6167reg_overlap_mentioned_for_reload_p (x, in)
6168     rtx x, in;
6169{
6170  int regno, endregno;
6171
6172  /* Overly conservative.  */
6173  if (GET_CODE (x) == STRICT_LOW_PART
6174      || GET_RTX_CLASS (GET_CODE (x)) == 'a')
6175    x = XEXP (x, 0);
6176
6177  /* If either argument is a constant, then modifying X can not affect IN.  */
6178  if (CONSTANT_P (x) || CONSTANT_P (in))
6179    return 0;
6180  else if (GET_CODE (x) == SUBREG)
6181    {
6182      regno = REGNO (SUBREG_REG (x));
6183      if (regno < FIRST_PSEUDO_REGISTER)
6184	regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6185				      GET_MODE (SUBREG_REG (x)),
6186				      SUBREG_BYTE (x),
6187				      GET_MODE (x));
6188    }
6189  else if (GET_CODE (x) == REG)
6190    {
6191      regno = REGNO (x);
6192
6193      /* If this is a pseudo, it must not have been assigned a hard register.
6194	 Therefore, it must either be in memory or be a constant.  */
6195
6196      if (regno >= FIRST_PSEUDO_REGISTER)
6197	{
6198	  if (reg_equiv_memory_loc[regno])
6199	    return refers_to_mem_for_reload_p (in);
6200	  else if (reg_equiv_constant[regno])
6201	    return 0;
6202	  abort ();
6203	}
6204    }
6205  else if (GET_CODE (x) == MEM)
6206    return refers_to_mem_for_reload_p (in);
6207  else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6208	   || GET_CODE (x) == CC0)
6209    return reg_mentioned_p (x, in);
6210  else if (GET_CODE (x) == PLUS)
6211    return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6212	    || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6213  else
6214    abort ();
6215
6216  endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6217		      ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6218
6219  return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6220}
6221
6222/* Return nonzero if anything in X contains a MEM.  Look also for pseudo
6223   registers.  */
6224
6225int
6226refers_to_mem_for_reload_p (x)
6227     rtx x;
6228{
6229  const char *fmt;
6230  int i;
6231
6232  if (GET_CODE (x) == MEM)
6233    return 1;
6234
6235  if (GET_CODE (x) == REG)
6236    return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6237	    && reg_equiv_memory_loc[REGNO (x)]);
6238
6239  fmt = GET_RTX_FORMAT (GET_CODE (x));
6240  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6241    if (fmt[i] == 'e'
6242	&& (GET_CODE (XEXP (x, i)) == MEM
6243	    || refers_to_mem_for_reload_p (XEXP (x, i))))
6244      return 1;
6245
6246  return 0;
6247}
6248
6249/* Check the insns before INSN to see if there is a suitable register
6250   containing the same value as GOAL.
6251   If OTHER is -1, look for a register in class CLASS.
6252   Otherwise, just see if register number OTHER shares GOAL's value.
6253
6254   Return an rtx for the register found, or zero if none is found.
6255
6256   If RELOAD_REG_P is (short *)1,
6257   we reject any hard reg that appears in reload_reg_rtx
6258   because such a hard reg is also needed coming into this insn.
6259
6260   If RELOAD_REG_P is any other nonzero value,
6261   it is a vector indexed by hard reg number
6262   and we reject any hard reg whose element in the vector is nonnegative
6263   as well as any that appears in reload_reg_rtx.
6264
6265   If GOAL is zero, then GOALREG is a register number; we look
6266   for an equivalent for that register.
6267
6268   MODE is the machine mode of the value we want an equivalence for.
6269   If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6270
6271   This function is used by jump.c as well as in the reload pass.
6272
6273   If GOAL is the sum of the stack pointer and a constant, we treat it
6274   as if it were a constant except that sp is required to be unchanging.  */
6275
6276rtx
6277find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
6278     rtx goal;
6279     rtx insn;
6280     enum reg_class class;
6281     int other;
6282     short *reload_reg_p;
6283     int goalreg;
6284     enum machine_mode mode;
6285{
6286  rtx p = insn;
6287  rtx goaltry, valtry, value, where;
6288  rtx pat;
6289  int regno = -1;
6290  int valueno;
6291  int goal_mem = 0;
6292  int goal_const = 0;
6293  int goal_mem_addr_varies = 0;
6294  int need_stable_sp = 0;
6295  int nregs;
6296  int valuenregs;
6297
6298  if (goal == 0)
6299    regno = goalreg;
6300  else if (GET_CODE (goal) == REG)
6301    regno = REGNO (goal);
6302  else if (GET_CODE (goal) == MEM)
6303    {
6304      enum rtx_code code = GET_CODE (XEXP (goal, 0));
6305      if (MEM_VOLATILE_P (goal))
6306	return 0;
6307      if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6308	return 0;
6309      /* An address with side effects must be reexecuted.  */
6310      switch (code)
6311	{
6312	case POST_INC:
6313	case PRE_INC:
6314	case POST_DEC:
6315	case PRE_DEC:
6316	case POST_MODIFY:
6317	case PRE_MODIFY:
6318	  return 0;
6319	default:
6320	  break;
6321	}
6322      goal_mem = 1;
6323    }
6324  else if (CONSTANT_P (goal))
6325    goal_const = 1;
6326  else if (GET_CODE (goal) == PLUS
6327	   && XEXP (goal, 0) == stack_pointer_rtx
6328	   && CONSTANT_P (XEXP (goal, 1)))
6329    goal_const = need_stable_sp = 1;
6330  else if (GET_CODE (goal) == PLUS
6331	   && XEXP (goal, 0) == frame_pointer_rtx
6332	   && CONSTANT_P (XEXP (goal, 1)))
6333    goal_const = 1;
6334  else
6335    return 0;
6336
6337  /* Scan insns back from INSN, looking for one that copies
6338     a value into or out of GOAL.
6339     Stop and give up if we reach a label.  */
6340
6341  while (1)
6342    {
6343      p = PREV_INSN (p);
6344      if (p == 0 || GET_CODE (p) == CODE_LABEL)
6345	return 0;
6346
6347      if (GET_CODE (p) == INSN
6348	  /* If we don't want spill regs ...  */
6349	  && (! (reload_reg_p != 0
6350		 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6351	      /* ... then ignore insns introduced by reload; they aren't
6352		 useful and can cause results in reload_as_needed to be
6353		 different from what they were when calculating the need for
6354		 spills.  If we notice an input-reload insn here, we will
6355		 reject it below, but it might hide a usable equivalent.
6356		 That makes bad code.  It may even abort: perhaps no reg was
6357		 spilled for this insn because it was assumed we would find
6358		 that equivalent.  */
6359	      || INSN_UID (p) < reload_first_uid))
6360	{
6361	  rtx tem;
6362	  pat = single_set (p);
6363
6364	  /* First check for something that sets some reg equal to GOAL.  */
6365	  if (pat != 0
6366	      && ((regno >= 0
6367		   && true_regnum (SET_SRC (pat)) == regno
6368		   && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6369		  ||
6370		  (regno >= 0
6371		   && true_regnum (SET_DEST (pat)) == regno
6372		   && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6373		  ||
6374		  (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6375		   /* When looking for stack pointer + const,
6376		      make sure we don't use a stack adjust.  */
6377		   && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6378		   && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6379		  || (goal_mem
6380		      && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6381		      && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6382		  || (goal_mem
6383		      && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6384		      && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6385		  /* If we are looking for a constant,
6386		     and something equivalent to that constant was copied
6387		     into a reg, we can use that reg.  */
6388		  || (goal_const && REG_NOTES (p) != 0
6389		      && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6390		      && ((rtx_equal_p (XEXP (tem, 0), goal)
6391			   && (valueno
6392			       = true_regnum (valtry = SET_DEST (pat))) >= 0)
6393			  || (GET_CODE (SET_DEST (pat)) == REG
6394			      && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6395			      && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6396				  == MODE_FLOAT)
6397			      && GET_CODE (goal) == CONST_INT
6398			      && 0 != (goaltry
6399				       = operand_subword (XEXP (tem, 0), 0, 0,
6400							  VOIDmode))
6401			      && rtx_equal_p (goal, goaltry)
6402			      && (valtry
6403				  = operand_subword (SET_DEST (pat), 0, 0,
6404						     VOIDmode))
6405			      && (valueno = true_regnum (valtry)) >= 0)))
6406		  || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6407							  NULL_RTX))
6408		      && GET_CODE (SET_DEST (pat)) == REG
6409		      && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6410		      && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6411			  == MODE_FLOAT)
6412		      && GET_CODE (goal) == CONST_INT
6413		      && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6414							  VOIDmode))
6415		      && rtx_equal_p (goal, goaltry)
6416		      && (valtry
6417			  = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6418		      && (valueno = true_regnum (valtry)) >= 0)))
6419	    {
6420	      if (other >= 0)
6421		{
6422		  if (valueno != other)
6423		    continue;
6424		}
6425	      else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6426		continue;
6427	      else
6428		{
6429		  int i;
6430
6431		  for (i = HARD_REGNO_NREGS (valueno, mode) - 1; i >= 0; i--)
6432		    if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6433					     valueno + i))
6434		      break;
6435		  if (i >= 0)
6436		    continue;
6437		}
6438	      value = valtry;
6439	      where = p;
6440	      break;
6441	    }
6442	}
6443    }
6444
6445  /* We found a previous insn copying GOAL into a suitable other reg VALUE
6446     (or copying VALUE into GOAL, if GOAL is also a register).
6447     Now verify that VALUE is really valid.  */
6448
6449  /* VALUENO is the register number of VALUE; a hard register.  */
6450
6451  /* Don't try to re-use something that is killed in this insn.  We want
6452     to be able to trust REG_UNUSED notes.  */
6453  if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6454    return 0;
6455
6456  /* If we propose to get the value from the stack pointer or if GOAL is
6457     a MEM based on the stack pointer, we need a stable SP.  */
6458  if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6459      || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6460							  goal)))
6461    need_stable_sp = 1;
6462
6463  /* Reject VALUE if the copy-insn moved the wrong sort of datum.  */
6464  if (GET_MODE (value) != mode)
6465    return 0;
6466
6467  /* Reject VALUE if it was loaded from GOAL
6468     and is also a register that appears in the address of GOAL.  */
6469
6470  if (goal_mem && value == SET_DEST (single_set (where))
6471      && refers_to_regno_for_reload_p (valueno,
6472				       (valueno
6473					+ HARD_REGNO_NREGS (valueno, mode)),
6474				       goal, (rtx*) 0))
6475    return 0;
6476
6477  /* Reject registers that overlap GOAL.  */
6478
6479  if (!goal_mem && !goal_const
6480      && regno + (int) HARD_REGNO_NREGS (regno, mode) > valueno
6481      && regno < valueno + (int) HARD_REGNO_NREGS (valueno, mode))
6482    return 0;
6483
6484  nregs = HARD_REGNO_NREGS (regno, mode);
6485  valuenregs = HARD_REGNO_NREGS (valueno, mode);
6486
6487  /* Reject VALUE if it is one of the regs reserved for reloads.
6488     Reload1 knows how to reuse them anyway, and it would get
6489     confused if we allocated one without its knowledge.
6490     (Now that insns introduced by reload are ignored above,
6491     this case shouldn't happen, but I'm not positive.)  */
6492
6493  if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6494    {
6495      int i;
6496      for (i = 0; i < valuenregs; ++i)
6497	if (reload_reg_p[valueno + i] >= 0)
6498	  return 0;
6499    }
6500
6501  /* Reject VALUE if it is a register being used for an input reload
6502     even if it is not one of those reserved.  */
6503
6504  if (reload_reg_p != 0)
6505    {
6506      int i;
6507      for (i = 0; i < n_reloads; i++)
6508	if (rld[i].reg_rtx != 0 && rld[i].in)
6509	  {
6510	    int regno1 = REGNO (rld[i].reg_rtx);
6511	    int nregs1 = HARD_REGNO_NREGS (regno1,
6512					   GET_MODE (rld[i].reg_rtx));
6513	    if (regno1 < valueno + valuenregs
6514		&& regno1 + nregs1 > valueno)
6515	      return 0;
6516	  }
6517    }
6518
6519  if (goal_mem)
6520    /* We must treat frame pointer as varying here,
6521       since it can vary--in a nonlocal goto as generated by expand_goto.  */
6522    goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6523
6524  /* Now verify that the values of GOAL and VALUE remain unaltered
6525     until INSN is reached.  */
6526
6527  p = insn;
6528  while (1)
6529    {
6530      p = PREV_INSN (p);
6531      if (p == where)
6532	return value;
6533
6534      /* Don't trust the conversion past a function call
6535	 if either of the two is in a call-clobbered register, or memory.  */
6536      if (GET_CODE (p) == CALL_INSN)
6537	{
6538	  int i;
6539
6540	  if (goal_mem || need_stable_sp)
6541	    return 0;
6542
6543	  if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6544	    for (i = 0; i < nregs; ++i)
6545	      if (call_used_regs[regno + i])
6546		return 0;
6547
6548	  if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6549	    for (i = 0; i < valuenregs; ++i)
6550	      if (call_used_regs[valueno + i])
6551		return 0;
6552#ifdef NON_SAVING_SETJMP
6553	  if (NON_SAVING_SETJMP && find_reg_note (p, REG_SETJMP, NULL))
6554	    return 0;
6555#endif
6556	}
6557
6558      if (INSN_P (p))
6559	{
6560	  pat = PATTERN (p);
6561
6562	  /* Watch out for unspec_volatile, and volatile asms.  */
6563	  if (volatile_insn_p (pat))
6564	    return 0;
6565
6566	  /* If this insn P stores in either GOAL or VALUE, return 0.
6567	     If GOAL is a memory ref and this insn writes memory, return 0.
6568	     If GOAL is a memory ref and its address is not constant,
6569	     and this insn P changes a register used in GOAL, return 0.  */
6570
6571	  if (GET_CODE (pat) == COND_EXEC)
6572	    pat = COND_EXEC_CODE (pat);
6573	  if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6574	    {
6575	      rtx dest = SET_DEST (pat);
6576	      while (GET_CODE (dest) == SUBREG
6577		     || GET_CODE (dest) == ZERO_EXTRACT
6578		     || GET_CODE (dest) == SIGN_EXTRACT
6579		     || GET_CODE (dest) == STRICT_LOW_PART)
6580		dest = XEXP (dest, 0);
6581	      if (GET_CODE (dest) == REG)
6582		{
6583		  int xregno = REGNO (dest);
6584		  int xnregs;
6585		  if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6586		    xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6587		  else
6588		    xnregs = 1;
6589		  if (xregno < regno + nregs && xregno + xnregs > regno)
6590		    return 0;
6591		  if (xregno < valueno + valuenregs
6592		      && xregno + xnregs > valueno)
6593		    return 0;
6594		  if (goal_mem_addr_varies
6595		      && reg_overlap_mentioned_for_reload_p (dest, goal))
6596		    return 0;
6597		  if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6598		    return 0;
6599		}
6600	      else if (goal_mem && GET_CODE (dest) == MEM
6601		       && ! push_operand (dest, GET_MODE (dest)))
6602		return 0;
6603	      else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6604		       && reg_equiv_memory_loc[regno] != 0)
6605		return 0;
6606	      else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6607		return 0;
6608	    }
6609	  else if (GET_CODE (pat) == PARALLEL)
6610	    {
6611	      int i;
6612	      for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6613		{
6614		  rtx v1 = XVECEXP (pat, 0, i);
6615		  if (GET_CODE (v1) == COND_EXEC)
6616		    v1 = COND_EXEC_CODE (v1);
6617		  if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6618		    {
6619		      rtx dest = SET_DEST (v1);
6620		      while (GET_CODE (dest) == SUBREG
6621			     || GET_CODE (dest) == ZERO_EXTRACT
6622			     || GET_CODE (dest) == SIGN_EXTRACT
6623			     || GET_CODE (dest) == STRICT_LOW_PART)
6624			dest = XEXP (dest, 0);
6625		      if (GET_CODE (dest) == REG)
6626			{
6627			  int xregno = REGNO (dest);
6628			  int xnregs;
6629			  if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6630			    xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6631			  else
6632			    xnregs = 1;
6633			  if (xregno < regno + nregs
6634			      && xregno + xnregs > regno)
6635			    return 0;
6636			  if (xregno < valueno + valuenregs
6637			      && xregno + xnregs > valueno)
6638			    return 0;
6639			  if (goal_mem_addr_varies
6640			      && reg_overlap_mentioned_for_reload_p (dest,
6641								     goal))
6642			    return 0;
6643			  if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6644			    return 0;
6645			}
6646		      else if (goal_mem && GET_CODE (dest) == MEM
6647			       && ! push_operand (dest, GET_MODE (dest)))
6648			return 0;
6649		      else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6650			       && reg_equiv_memory_loc[regno] != 0)
6651			return 0;
6652		      else if (need_stable_sp
6653			       && push_operand (dest, GET_MODE (dest)))
6654			return 0;
6655		    }
6656		}
6657	    }
6658
6659	  if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6660	    {
6661	      rtx link;
6662
6663	      for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6664		   link = XEXP (link, 1))
6665		{
6666		  pat = XEXP (link, 0);
6667		  if (GET_CODE (pat) == CLOBBER)
6668		    {
6669		      rtx dest = SET_DEST (pat);
6670
6671		      if (GET_CODE (dest) == REG)
6672			{
6673			  int xregno = REGNO (dest);
6674			  int xnregs
6675			    = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6676
6677			  if (xregno < regno + nregs
6678			      && xregno + xnregs > regno)
6679			    return 0;
6680			  else if (xregno < valueno + valuenregs
6681				   && xregno + xnregs > valueno)
6682			    return 0;
6683			  else if (goal_mem_addr_varies
6684				   && reg_overlap_mentioned_for_reload_p (dest,
6685								     goal))
6686			    return 0;
6687			}
6688
6689		      else if (goal_mem && GET_CODE (dest) == MEM
6690			       && ! push_operand (dest, GET_MODE (dest)))
6691			return 0;
6692		      else if (need_stable_sp
6693			       && push_operand (dest, GET_MODE (dest)))
6694			return 0;
6695		    }
6696		}
6697	    }
6698
6699#ifdef AUTO_INC_DEC
6700	  /* If this insn auto-increments or auto-decrements
6701	     either regno or valueno, return 0 now.
6702	     If GOAL is a memory ref and its address is not constant,
6703	     and this insn P increments a register used in GOAL, return 0.  */
6704	  {
6705	    rtx link;
6706
6707	    for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6708	      if (REG_NOTE_KIND (link) == REG_INC
6709		  && GET_CODE (XEXP (link, 0)) == REG)
6710		{
6711		  int incno = REGNO (XEXP (link, 0));
6712		  if (incno < regno + nregs && incno >= regno)
6713		    return 0;
6714		  if (incno < valueno + valuenregs && incno >= valueno)
6715		    return 0;
6716		  if (goal_mem_addr_varies
6717		      && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6718							     goal))
6719		    return 0;
6720		}
6721	  }
6722#endif
6723	}
6724    }
6725}
6726
6727/* Find a place where INCED appears in an increment or decrement operator
6728   within X, and return the amount INCED is incremented or decremented by.
6729   The value is always positive.  */
6730
6731static int
6732find_inc_amount (x, inced)
6733     rtx x, inced;
6734{
6735  enum rtx_code code = GET_CODE (x);
6736  const char *fmt;
6737  int i;
6738
6739  if (code == MEM)
6740    {
6741      rtx addr = XEXP (x, 0);
6742      if ((GET_CODE (addr) == PRE_DEC
6743	   || GET_CODE (addr) == POST_DEC
6744	   || GET_CODE (addr) == PRE_INC
6745	   || GET_CODE (addr) == POST_INC)
6746	  && XEXP (addr, 0) == inced)
6747	return GET_MODE_SIZE (GET_MODE (x));
6748      else if ((GET_CODE (addr) == PRE_MODIFY
6749		|| GET_CODE (addr) == POST_MODIFY)
6750	       && GET_CODE (XEXP (addr, 1)) == PLUS
6751	       && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6752	       && XEXP (addr, 0) == inced
6753	       && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6754	{
6755	  i = INTVAL (XEXP (XEXP (addr, 1), 1));
6756	  return i < 0 ? -i : i;
6757	}
6758    }
6759
6760  fmt = GET_RTX_FORMAT (code);
6761  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6762    {
6763      if (fmt[i] == 'e')
6764	{
6765	  int tem = find_inc_amount (XEXP (x, i), inced);
6766	  if (tem != 0)
6767	    return tem;
6768	}
6769      if (fmt[i] == 'E')
6770	{
6771	  int j;
6772	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6773	    {
6774	      int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6775	      if (tem != 0)
6776		return tem;
6777	    }
6778	}
6779    }
6780
6781  return 0;
6782}
6783
6784/* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6785   If SETS is nonzero, also consider SETs.  */
6786
6787int
6788regno_clobbered_p (regno, insn, mode, sets)
6789     unsigned int regno;
6790     rtx insn;
6791     enum machine_mode mode;
6792     int sets;
6793{
6794  unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
6795  unsigned int endregno = regno + nregs;
6796
6797  if ((GET_CODE (PATTERN (insn)) == CLOBBER
6798       || (sets && GET_CODE (PATTERN (insn)) == SET))
6799      && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6800    {
6801      unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
6802
6803      return test >= regno && test < endregno;
6804    }
6805
6806  if (GET_CODE (PATTERN (insn)) == PARALLEL)
6807    {
6808      int i = XVECLEN (PATTERN (insn), 0) - 1;
6809
6810      for (; i >= 0; i--)
6811	{
6812	  rtx elt = XVECEXP (PATTERN (insn), 0, i);
6813	  if ((GET_CODE (elt) == CLOBBER
6814	       || (sets && GET_CODE (PATTERN (insn)) == SET))
6815	      && GET_CODE (XEXP (elt, 0)) == REG)
6816	    {
6817	      unsigned int test = REGNO (XEXP (elt, 0));
6818
6819	      if (test >= regno && test < endregno)
6820		return 1;
6821	    }
6822	}
6823    }
6824
6825  return 0;
6826}
6827
6828static const char *const reload_when_needed_name[] =
6829{
6830  "RELOAD_FOR_INPUT",
6831  "RELOAD_FOR_OUTPUT",
6832  "RELOAD_FOR_INSN",
6833  "RELOAD_FOR_INPUT_ADDRESS",
6834  "RELOAD_FOR_INPADDR_ADDRESS",
6835  "RELOAD_FOR_OUTPUT_ADDRESS",
6836  "RELOAD_FOR_OUTADDR_ADDRESS",
6837  "RELOAD_FOR_OPERAND_ADDRESS",
6838  "RELOAD_FOR_OPADDR_ADDR",
6839  "RELOAD_OTHER",
6840  "RELOAD_FOR_OTHER_ADDRESS"
6841};
6842
6843static const char * const reg_class_names[] = REG_CLASS_NAMES;
6844
6845/* These functions are used to print the variables set by 'find_reloads' */
6846
6847void
6848debug_reload_to_stream (f)
6849     FILE *f;
6850{
6851  int r;
6852  const char *prefix;
6853
6854  if (! f)
6855    f = stderr;
6856  for (r = 0; r < n_reloads; r++)
6857    {
6858      fprintf (f, "Reload %d: ", r);
6859
6860      if (rld[r].in != 0)
6861	{
6862	  fprintf (f, "reload_in (%s) = ",
6863		   GET_MODE_NAME (rld[r].inmode));
6864	  print_inline_rtx (f, rld[r].in, 24);
6865	  fprintf (f, "\n\t");
6866	}
6867
6868      if (rld[r].out != 0)
6869	{
6870	  fprintf (f, "reload_out (%s) = ",
6871		   GET_MODE_NAME (rld[r].outmode));
6872	  print_inline_rtx (f, rld[r].out, 24);
6873	  fprintf (f, "\n\t");
6874	}
6875
6876      fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
6877
6878      fprintf (f, "%s (opnum = %d)",
6879	       reload_when_needed_name[(int) rld[r].when_needed],
6880	       rld[r].opnum);
6881
6882      if (rld[r].optional)
6883	fprintf (f, ", optional");
6884
6885      if (rld[r].nongroup)
6886	fprintf (f, ", nongroup");
6887
6888      if (rld[r].inc != 0)
6889	fprintf (f, ", inc by %d", rld[r].inc);
6890
6891      if (rld[r].nocombine)
6892	fprintf (f, ", can't combine");
6893
6894      if (rld[r].secondary_p)
6895	fprintf (f, ", secondary_reload_p");
6896
6897      if (rld[r].in_reg != 0)
6898	{
6899	  fprintf (f, "\n\treload_in_reg: ");
6900	  print_inline_rtx (f, rld[r].in_reg, 24);
6901	}
6902
6903      if (rld[r].out_reg != 0)
6904	{
6905	  fprintf (f, "\n\treload_out_reg: ");
6906	  print_inline_rtx (f, rld[r].out_reg, 24);
6907	}
6908
6909      if (rld[r].reg_rtx != 0)
6910	{
6911	  fprintf (f, "\n\treload_reg_rtx: ");
6912	  print_inline_rtx (f, rld[r].reg_rtx, 24);
6913	}
6914
6915      prefix = "\n\t";
6916      if (rld[r].secondary_in_reload != -1)
6917	{
6918	  fprintf (f, "%ssecondary_in_reload = %d",
6919		   prefix, rld[r].secondary_in_reload);
6920	  prefix = ", ";
6921	}
6922
6923      if (rld[r].secondary_out_reload != -1)
6924	fprintf (f, "%ssecondary_out_reload = %d\n",
6925		 prefix, rld[r].secondary_out_reload);
6926
6927      prefix = "\n\t";
6928      if (rld[r].secondary_in_icode != CODE_FOR_nothing)
6929	{
6930	  fprintf (f, "%ssecondary_in_icode = %s", prefix,
6931		   insn_data[rld[r].secondary_in_icode].name);
6932	  prefix = ", ";
6933	}
6934
6935      if (rld[r].secondary_out_icode != CODE_FOR_nothing)
6936	fprintf (f, "%ssecondary_out_icode = %s", prefix,
6937		 insn_data[rld[r].secondary_out_icode].name);
6938
6939      fprintf (f, "\n");
6940    }
6941}
6942
6943void
6944debug_reload ()
6945{
6946  debug_reload_to_stream (stderr);
6947}
6948