reload.c revision 117404
1/* Search an insn for pseudo regs that must be in hard regs and are not.
2   Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3   1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA.  */
21
22/* This file contains subroutines used only from the file reload1.c.
23   It knows how to scan one insn for operands and values
24   that need to be copied into registers to make valid code.
25   It also finds other operands and values which are valid
26   but for which equivalent values in registers exist and
27   ought to be used instead.
28
29   Before processing the first insn of the function, call `init_reload'.
30
31   To scan an insn, call `find_reloads'.  This does two things:
32   1. sets up tables describing which values must be reloaded
33   for this insn, and what kind of hard regs they must be reloaded into;
34   2. optionally record the locations where those values appear in
35   the data, so they can be replaced properly later.
36   This is done only if the second arg to `find_reloads' is nonzero.
37
38   The third arg to `find_reloads' specifies the number of levels
39   of indirect addressing supported by the machine.  If it is zero,
40   indirect addressing is not valid.  If it is one, (MEM (REG n))
41   is valid even if (REG n) did not get a hard register; if it is two,
42   (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43   hard register, and similarly for higher values.
44
45   Then you must choose the hard regs to reload those pseudo regs into,
46   and generate appropriate load insns before this insn and perhaps
47   also store insns after this insn.  Set up the array `reload_reg_rtx'
48   to contain the REG rtx's for the registers you used.  In some
49   cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50   for certain reloads.  Then that tells you which register to use,
51   so you do not need to allocate one.  But you still do need to add extra
52   instructions to copy the value into and out of that register.
53
54   Finally you must call `subst_reloads' to substitute the reload reg rtx's
55   into the locations already recorded.
56
57NOTE SIDE EFFECTS:
58
59   find_reloads can alter the operands of the instruction it is called on.
60
61   1. Two operands of any sort may be interchanged, if they are in a
62   commutative instruction.
63   This happens only if find_reloads thinks the instruction will compile
64   better that way.
65
66   2. Pseudo-registers that are equivalent to constants are replaced
67   with those constants if they are not in hard registers.
68
691 happens every time find_reloads is called.
702 happens only when REPLACE is 1, which is only when
71actually doing the reloads, not when just counting them.
72
73Using a reload register for several reloads in one insn:
74
75When an insn has reloads, it is considered as having three parts:
76the input reloads, the insn itself after reloading, and the output reloads.
77Reloads of values used in memory addresses are often needed for only one part.
78
79When this is so, reload_when_needed records which part needs the reload.
80Two reloads for different parts of the insn can share the same reload
81register.
82
83When a reload is used for addresses in multiple parts, or when it is
84an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
85a register with any other reload.  */
86
87#define REG_OK_STRICT
88
89#include "config.h"
90#include "system.h"
91#include "rtl.h"
92#include "tm_p.h"
93#include "insn-config.h"
94#include "expr.h"
95#include "optabs.h"
96#include "recog.h"
97#include "reload.h"
98#include "regs.h"
99#include "hard-reg-set.h"
100#include "flags.h"
101#include "real.h"
102#include "output.h"
103#include "function.h"
104#include "toplev.h"
105
106#ifndef REGISTER_MOVE_COST
107#define REGISTER_MOVE_COST(m, x, y) 2
108#endif
109
110#ifndef REGNO_MODE_OK_FOR_BASE_P
111#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
112#endif
113
114#ifndef REG_MODE_OK_FOR_BASE_P
115#define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
116#endif
117
118/* All reloads of the current insn are recorded here.  See reload.h for
119   comments.  */
120int n_reloads;
121struct reload rld[MAX_RELOADS];
122
123/* All the "earlyclobber" operands of the current insn
124   are recorded here.  */
125int n_earlyclobbers;
126rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
127
128int reload_n_operands;
129
130/* Replacing reloads.
131
132   If `replace_reloads' is nonzero, then as each reload is recorded
133   an entry is made for it in the table `replacements'.
134   Then later `subst_reloads' can look through that table and
135   perform all the replacements needed.  */
136
137/* Nonzero means record the places to replace.  */
138static int replace_reloads;
139
140/* Each replacement is recorded with a structure like this.  */
141struct replacement
142{
143  rtx *where;			/* Location to store in */
144  rtx *subreg_loc;		/* Location of SUBREG if WHERE is inside
145				   a SUBREG; 0 otherwise.  */
146  int what;			/* which reload this is for */
147  enum machine_mode mode;	/* mode it must have */
148};
149
150static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
151
152/* Number of replacements currently recorded.  */
153static int n_replacements;
154
155/* Used to track what is modified by an operand.  */
156struct decomposition
157{
158  int reg_flag;		/* Nonzero if referencing a register.  */
159  int safe;		/* Nonzero if this can't conflict with anything.  */
160  rtx base;		/* Base address for MEM.  */
161  HOST_WIDE_INT start;	/* Starting offset or register number.  */
162  HOST_WIDE_INT end;	/* Ending offset or register number.  */
163};
164
165#ifdef SECONDARY_MEMORY_NEEDED
166
167/* Save MEMs needed to copy from one class of registers to another.  One MEM
168   is used per mode, but normally only one or two modes are ever used.
169
170   We keep two versions, before and after register elimination.  The one
171   after register elimination is record separately for each operand.  This
172   is done in case the address is not valid to be sure that we separately
173   reload each.  */
174
175static rtx secondary_memlocs[NUM_MACHINE_MODES];
176static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
177#endif
178
179/* The instruction we are doing reloads for;
180   so we can test whether a register dies in it.  */
181static rtx this_insn;
182
183/* Nonzero if this instruction is a user-specified asm with operands.  */
184static int this_insn_is_asm;
185
186/* If hard_regs_live_known is nonzero,
187   we can tell which hard regs are currently live,
188   at least enough to succeed in choosing dummy reloads.  */
189static int hard_regs_live_known;
190
191/* Indexed by hard reg number,
192   element is nonnegative if hard reg has been spilled.
193   This vector is passed to `find_reloads' as an argument
194   and is not changed here.  */
195static short *static_reload_reg_p;
196
197/* Set to 1 in subst_reg_equivs if it changes anything.  */
198static int subst_reg_equivs_changed;
199
200/* On return from push_reload, holds the reload-number for the OUT
201   operand, which can be different for that from the input operand.  */
202static int output_reloadnum;
203
204  /* Compare two RTX's.  */
205#define MATCHES(x, y) \
206 (x == y || (x != 0 && (GET_CODE (x) == REG				\
207			? GET_CODE (y) == REG && REGNO (x) == REGNO (y)	\
208			: rtx_equal_p (x, y) && ! side_effects_p (x))))
209
210  /* Indicates if two reloads purposes are for similar enough things that we
211     can merge their reloads.  */
212#define MERGABLE_RELOADS(when1, when2, op1, op2) \
213  ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER	\
214   || ((when1) == (when2) && (op1) == (op2))		\
215   || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
216   || ((when1) == RELOAD_FOR_OPERAND_ADDRESS		\
217       && (when2) == RELOAD_FOR_OPERAND_ADDRESS)	\
218   || ((when1) == RELOAD_FOR_OTHER_ADDRESS		\
219       && (when2) == RELOAD_FOR_OTHER_ADDRESS))
220
221  /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged.  */
222#define MERGE_TO_OTHER(when1, when2, op1, op2) \
223  ((when1) != (when2)					\
224   || ! ((op1) == (op2)					\
225	 || (when1) == RELOAD_FOR_INPUT			\
226	 || (when1) == RELOAD_FOR_OPERAND_ADDRESS	\
227	 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
228
229  /* If we are going to reload an address, compute the reload type to
230     use.  */
231#define ADDR_TYPE(type)					\
232  ((type) == RELOAD_FOR_INPUT_ADDRESS			\
233   ? RELOAD_FOR_INPADDR_ADDRESS				\
234   : ((type) == RELOAD_FOR_OUTPUT_ADDRESS		\
235      ? RELOAD_FOR_OUTADDR_ADDRESS			\
236      : (type)))
237
238#ifdef HAVE_SECONDARY_RELOADS
239static int push_secondary_reload PARAMS ((int, rtx, int, int, enum reg_class,
240					enum machine_mode, enum reload_type,
241					enum insn_code *));
242#endif
243static enum reg_class find_valid_class PARAMS ((enum machine_mode, int,
244						unsigned int));
245static int reload_inner_reg_of_subreg PARAMS ((rtx, enum machine_mode, int));
246static void push_replacement	PARAMS ((rtx *, int, enum machine_mode));
247static void dup_replacements	PARAMS ((rtx *, rtx *));
248static void combine_reloads	PARAMS ((void));
249static int find_reusable_reload	PARAMS ((rtx *, rtx, enum reg_class,
250				       enum reload_type, int, int));
251static rtx find_dummy_reload	PARAMS ((rtx, rtx, rtx *, rtx *,
252				       enum machine_mode, enum machine_mode,
253				       enum reg_class, int, int));
254static int hard_reg_set_here_p	PARAMS ((unsigned int, unsigned int, rtx));
255static struct decomposition decompose PARAMS ((rtx));
256static int immune_p		PARAMS ((rtx, rtx, struct decomposition));
257static int alternative_allows_memconst PARAMS ((const char *, int));
258static rtx find_reloads_toplev	PARAMS ((rtx, int, enum reload_type, int,
259					 int, rtx, int *));
260static rtx make_memloc		PARAMS ((rtx, int));
261static int maybe_memory_address_p PARAMS ((enum machine_mode, rtx, rtx *));
262static int find_reloads_address	PARAMS ((enum machine_mode, rtx *, rtx, rtx *,
263				       int, enum reload_type, int, rtx));
264static rtx subst_reg_equivs	PARAMS ((rtx, rtx));
265static rtx subst_indexed_address PARAMS ((rtx));
266static void update_auto_inc_notes PARAMS ((rtx, int, int));
267static int find_reloads_address_1 PARAMS ((enum machine_mode, rtx, int, rtx *,
268					 int, enum reload_type,int, rtx));
269static void find_reloads_address_part PARAMS ((rtx, rtx *, enum reg_class,
270					     enum machine_mode, int,
271					     enum reload_type, int));
272static rtx find_reloads_subreg_address PARAMS ((rtx, int, int,
273						enum reload_type, int, rtx));
274static void copy_replacements_1 PARAMS ((rtx *, rtx *, int));
275static int find_inc_amount	PARAMS ((rtx, rtx));
276
277#ifdef HAVE_SECONDARY_RELOADS
278
279/* Determine if any secondary reloads are needed for loading (if IN_P is
280   nonzero) or storing (if IN_P is zero) X to or from a reload register of
281   register class RELOAD_CLASS in mode RELOAD_MODE.  If secondary reloads
282   are needed, push them.
283
284   Return the reload number of the secondary reload we made, or -1 if
285   we didn't need one.  *PICODE is set to the insn_code to use if we do
286   need a secondary reload.  */
287
288static int
289push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
290		       type, picode)
291     int in_p;
292     rtx x;
293     int opnum;
294     int optional;
295     enum reg_class reload_class;
296     enum machine_mode reload_mode;
297     enum reload_type type;
298     enum insn_code *picode;
299{
300  enum reg_class class = NO_REGS;
301  enum machine_mode mode = reload_mode;
302  enum insn_code icode = CODE_FOR_nothing;
303  enum reg_class t_class = NO_REGS;
304  enum machine_mode t_mode = VOIDmode;
305  enum insn_code t_icode = CODE_FOR_nothing;
306  enum reload_type secondary_type;
307  int s_reload, t_reload = -1;
308
309  if (type == RELOAD_FOR_INPUT_ADDRESS
310      || type == RELOAD_FOR_OUTPUT_ADDRESS
311      || type == RELOAD_FOR_INPADDR_ADDRESS
312      || type == RELOAD_FOR_OUTADDR_ADDRESS)
313    secondary_type = type;
314  else
315    secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
316
317  *picode = CODE_FOR_nothing;
318
319  /* If X is a paradoxical SUBREG, use the inner value to determine both the
320     mode and object being reloaded.  */
321  if (GET_CODE (x) == SUBREG
322      && (GET_MODE_SIZE (GET_MODE (x))
323	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
324    {
325      x = SUBREG_REG (x);
326      reload_mode = GET_MODE (x);
327    }
328
329  /* If X is a pseudo-register that has an equivalent MEM (actually, if it
330     is still a pseudo-register by now, it *must* have an equivalent MEM
331     but we don't want to assume that), use that equivalent when seeing if
332     a secondary reload is needed since whether or not a reload is needed
333     might be sensitive to the form of the MEM.  */
334
335  if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
336      && reg_equiv_mem[REGNO (x)] != 0)
337    x = reg_equiv_mem[REGNO (x)];
338
339#ifdef SECONDARY_INPUT_RELOAD_CLASS
340  if (in_p)
341    class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
342#endif
343
344#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
345  if (! in_p)
346    class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
347#endif
348
349  /* If we don't need any secondary registers, done.  */
350  if (class == NO_REGS)
351    return -1;
352
353  /* Get a possible insn to use.  If the predicate doesn't accept X, don't
354     use the insn.  */
355
356  icode = (in_p ? reload_in_optab[(int) reload_mode]
357	   : reload_out_optab[(int) reload_mode]);
358
359  if (icode != CODE_FOR_nothing
360      && insn_data[(int) icode].operand[in_p].predicate
361      && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
362    icode = CODE_FOR_nothing;
363
364  /* If we will be using an insn, see if it can directly handle the reload
365     register we will be using.  If it can, the secondary reload is for a
366     scratch register.  If it can't, we will use the secondary reload for
367     an intermediate register and require a tertiary reload for the scratch
368     register.  */
369
370  if (icode != CODE_FOR_nothing)
371    {
372      /* If IN_P is nonzero, the reload register will be the output in
373	 operand 0.  If IN_P is zero, the reload register will be the input
374	 in operand 1.  Outputs should have an initial "=", which we must
375	 skip.  */
376
377      enum reg_class insn_class;
378
379      if (insn_data[(int) icode].operand[!in_p].constraint[0] == 0)
380	insn_class = ALL_REGS;
381      else
382	{
383	  char insn_letter
384	    = insn_data[(int) icode].operand[!in_p].constraint[in_p];
385	  insn_class
386	    = (insn_letter == 'r' ? GENERAL_REGS
387	       : REG_CLASS_FROM_LETTER ((unsigned char) insn_letter));
388
389          if (insn_class == NO_REGS)
390	    abort ();
391	  if (in_p
392	      && insn_data[(int) icode].operand[!in_p].constraint[0] != '=')
393	    abort ();
394	}
395
396      /* The scratch register's constraint must start with "=&".  */
397      if (insn_data[(int) icode].operand[2].constraint[0] != '='
398	  || insn_data[(int) icode].operand[2].constraint[1] != '&')
399	abort ();
400
401      if (reg_class_subset_p (reload_class, insn_class))
402	mode = insn_data[(int) icode].operand[2].mode;
403      else
404	{
405	  char t_letter = insn_data[(int) icode].operand[2].constraint[2];
406	  class = insn_class;
407	  t_mode = insn_data[(int) icode].operand[2].mode;
408	  t_class = (t_letter == 'r' ? GENERAL_REGS
409		     : REG_CLASS_FROM_LETTER ((unsigned char) t_letter));
410	  t_icode = icode;
411	  icode = CODE_FOR_nothing;
412	}
413    }
414
415  /* This case isn't valid, so fail.  Reload is allowed to use the same
416     register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
417     in the case of a secondary register, we actually need two different
418     registers for correct code.  We fail here to prevent the possibility of
419     silently generating incorrect code later.
420
421     The convention is that secondary input reloads are valid only if the
422     secondary_class is different from class.  If you have such a case, you
423     can not use secondary reloads, you must work around the problem some
424     other way.
425
426     Allow this when a reload_in/out pattern is being used.  I.e. assume
427     that the generated code handles this case.  */
428
429  if (in_p && class == reload_class && icode == CODE_FOR_nothing
430      && t_icode == CODE_FOR_nothing)
431    abort ();
432
433  /* If we need a tertiary reload, see if we have one we can reuse or else
434     make a new one.  */
435
436  if (t_class != NO_REGS)
437    {
438      for (t_reload = 0; t_reload < n_reloads; t_reload++)
439	if (rld[t_reload].secondary_p
440	    && (reg_class_subset_p (t_class, rld[t_reload].class)
441		|| reg_class_subset_p (rld[t_reload].class, t_class))
442	    && ((in_p && rld[t_reload].inmode == t_mode)
443		|| (! in_p && rld[t_reload].outmode == t_mode))
444	    && ((in_p && (rld[t_reload].secondary_in_icode
445			  == CODE_FOR_nothing))
446		|| (! in_p &&(rld[t_reload].secondary_out_icode
447			      == CODE_FOR_nothing)))
448	    && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
449	    && MERGABLE_RELOADS (secondary_type,
450				 rld[t_reload].when_needed,
451				 opnum, rld[t_reload].opnum))
452	  {
453	    if (in_p)
454	      rld[t_reload].inmode = t_mode;
455	    if (! in_p)
456	      rld[t_reload].outmode = t_mode;
457
458	    if (reg_class_subset_p (t_class, rld[t_reload].class))
459	      rld[t_reload].class = t_class;
460
461	    rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
462	    rld[t_reload].optional &= optional;
463	    rld[t_reload].secondary_p = 1;
464	    if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
465				opnum, rld[t_reload].opnum))
466	      rld[t_reload].when_needed = RELOAD_OTHER;
467	  }
468
469      if (t_reload == n_reloads)
470	{
471	  /* We need to make a new tertiary reload for this register class.  */
472	  rld[t_reload].in = rld[t_reload].out = 0;
473	  rld[t_reload].class = t_class;
474	  rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
475	  rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
476	  rld[t_reload].reg_rtx = 0;
477	  rld[t_reload].optional = optional;
478	  rld[t_reload].inc = 0;
479	  /* Maybe we could combine these, but it seems too tricky.  */
480	  rld[t_reload].nocombine = 1;
481	  rld[t_reload].in_reg = 0;
482	  rld[t_reload].out_reg = 0;
483	  rld[t_reload].opnum = opnum;
484	  rld[t_reload].when_needed = secondary_type;
485	  rld[t_reload].secondary_in_reload = -1;
486	  rld[t_reload].secondary_out_reload = -1;
487	  rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
488	  rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
489	  rld[t_reload].secondary_p = 1;
490
491	  n_reloads++;
492	}
493    }
494
495  /* See if we can reuse an existing secondary reload.  */
496  for (s_reload = 0; s_reload < n_reloads; s_reload++)
497    if (rld[s_reload].secondary_p
498	&& (reg_class_subset_p (class, rld[s_reload].class)
499	    || reg_class_subset_p (rld[s_reload].class, class))
500	&& ((in_p && rld[s_reload].inmode == mode)
501	    || (! in_p && rld[s_reload].outmode == mode))
502	&& ((in_p && rld[s_reload].secondary_in_reload == t_reload)
503	    || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
504	&& ((in_p && rld[s_reload].secondary_in_icode == t_icode)
505	    || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
506	&& (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
507	&& MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
508			     opnum, rld[s_reload].opnum))
509      {
510	if (in_p)
511	  rld[s_reload].inmode = mode;
512	if (! in_p)
513	  rld[s_reload].outmode = mode;
514
515	if (reg_class_subset_p (class, rld[s_reload].class))
516	  rld[s_reload].class = class;
517
518	rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
519	rld[s_reload].optional &= optional;
520	rld[s_reload].secondary_p = 1;
521	if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
522			    opnum, rld[s_reload].opnum))
523	  rld[s_reload].when_needed = RELOAD_OTHER;
524      }
525
526  if (s_reload == n_reloads)
527    {
528#ifdef SECONDARY_MEMORY_NEEDED
529      /* If we need a memory location to copy between the two reload regs,
530	 set it up now.  Note that we do the input case before making
531	 the reload and the output case after.  This is due to the
532	 way reloads are output.  */
533
534      if (in_p && icode == CODE_FOR_nothing
535	  && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
536	{
537	  get_secondary_mem (x, reload_mode, opnum, type);
538
539	  /* We may have just added new reloads.  Make sure we add
540	     the new reload at the end.  */
541	  s_reload = n_reloads;
542	}
543#endif
544
545      /* We need to make a new secondary reload for this register class.  */
546      rld[s_reload].in = rld[s_reload].out = 0;
547      rld[s_reload].class = class;
548
549      rld[s_reload].inmode = in_p ? mode : VOIDmode;
550      rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
551      rld[s_reload].reg_rtx = 0;
552      rld[s_reload].optional = optional;
553      rld[s_reload].inc = 0;
554      /* Maybe we could combine these, but it seems too tricky.  */
555      rld[s_reload].nocombine = 1;
556      rld[s_reload].in_reg = 0;
557      rld[s_reload].out_reg = 0;
558      rld[s_reload].opnum = opnum;
559      rld[s_reload].when_needed = secondary_type;
560      rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
561      rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
562      rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
563      rld[s_reload].secondary_out_icode
564	= ! in_p ? t_icode : CODE_FOR_nothing;
565      rld[s_reload].secondary_p = 1;
566
567      n_reloads++;
568
569#ifdef SECONDARY_MEMORY_NEEDED
570      if (! in_p && icode == CODE_FOR_nothing
571	  && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
572	get_secondary_mem (x, mode, opnum, type);
573#endif
574    }
575
576  *picode = icode;
577  return s_reload;
578}
579#endif /* HAVE_SECONDARY_RELOADS */
580
581#ifdef SECONDARY_MEMORY_NEEDED
582
583/* Return a memory location that will be used to copy X in mode MODE.
584   If we haven't already made a location for this mode in this insn,
585   call find_reloads_address on the location being returned.  */
586
587rtx
588get_secondary_mem (x, mode, opnum, type)
589     rtx x ATTRIBUTE_UNUSED;
590     enum machine_mode mode;
591     int opnum;
592     enum reload_type type;
593{
594  rtx loc;
595  int mem_valid;
596
597  /* By default, if MODE is narrower than a word, widen it to a word.
598     This is required because most machines that require these memory
599     locations do not support short load and stores from all registers
600     (e.g., FP registers).  */
601
602#ifdef SECONDARY_MEMORY_NEEDED_MODE
603  mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
604#else
605  if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
606    mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
607#endif
608
609  /* If we already have made a MEM for this operand in MODE, return it.  */
610  if (secondary_memlocs_elim[(int) mode][opnum] != 0)
611    return secondary_memlocs_elim[(int) mode][opnum];
612
613  /* If this is the first time we've tried to get a MEM for this mode,
614     allocate a new one.  `something_changed' in reload will get set
615     by noticing that the frame size has changed.  */
616
617  if (secondary_memlocs[(int) mode] == 0)
618    {
619#ifdef SECONDARY_MEMORY_NEEDED_RTX
620      secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
621#else
622      secondary_memlocs[(int) mode]
623	= assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
624#endif
625    }
626
627  /* Get a version of the address doing any eliminations needed.  If that
628     didn't give us a new MEM, make a new one if it isn't valid.  */
629
630  loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
631  mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
632
633  if (! mem_valid && loc == secondary_memlocs[(int) mode])
634    loc = copy_rtx (loc);
635
636  /* The only time the call below will do anything is if the stack
637     offset is too large.  In that case IND_LEVELS doesn't matter, so we
638     can just pass a zero.  Adjust the type to be the address of the
639     corresponding object.  If the address was valid, save the eliminated
640     address.  If it wasn't valid, we need to make a reload each time, so
641     don't save it.  */
642
643  if (! mem_valid)
644    {
645      type =  (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
646	       : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
647	       : RELOAD_OTHER);
648
649      find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
650			    opnum, type, 0, 0);
651    }
652
653  secondary_memlocs_elim[(int) mode][opnum] = loc;
654  return loc;
655}
656
657/* Clear any secondary memory locations we've made.  */
658
659void
660clear_secondary_mem ()
661{
662  memset ((char *) secondary_memlocs, 0, sizeof secondary_memlocs);
663}
664#endif /* SECONDARY_MEMORY_NEEDED */
665
666/* Find the largest class for which every register number plus N is valid in
667   M1 (if in range) and is cheap to move into REGNO.
668   Abort if no such class exists.  */
669
670static enum reg_class
671find_valid_class (m1, n, dest_regno)
672     enum machine_mode m1 ATTRIBUTE_UNUSED;
673     int n;
674     unsigned int dest_regno;
675{
676  int best_cost = -1;
677  int class;
678  int regno;
679  enum reg_class best_class = NO_REGS;
680  enum reg_class dest_class = REGNO_REG_CLASS (dest_regno);
681  unsigned int best_size = 0;
682  int cost;
683
684  for (class = 1; class < N_REG_CLASSES; class++)
685    {
686      int bad = 0;
687      for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
688	if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
689	    && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
690	    && ! HARD_REGNO_MODE_OK (regno + n, m1))
691	  bad = 1;
692
693      if (bad)
694	continue;
695      cost = REGISTER_MOVE_COST (m1, class, dest_class);
696
697      if ((reg_class_size[class] > best_size
698	   && (best_cost < 0 || best_cost >= cost))
699	  || best_cost > cost)
700	{
701	  best_class = class;
702	  best_size = reg_class_size[class];
703	  best_cost = REGISTER_MOVE_COST (m1, class, dest_class);
704	}
705    }
706
707  if (best_size == 0)
708    abort ();
709
710  return best_class;
711}
712
713/* Return the number of a previously made reload that can be combined with
714   a new one, or n_reloads if none of the existing reloads can be used.
715   OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
716   push_reload, they determine the kind of the new reload that we try to
717   combine.  P_IN points to the corresponding value of IN, which can be
718   modified by this function.
719   DONT_SHARE is nonzero if we can't share any input-only reload for IN.  */
720
721static int
722find_reusable_reload (p_in, out, class, type, opnum, dont_share)
723     rtx *p_in, out;
724     enum reg_class class;
725     enum reload_type type;
726     int opnum, dont_share;
727{
728  rtx in = *p_in;
729  int i;
730  /* We can't merge two reloads if the output of either one is
731     earlyclobbered.  */
732
733  if (earlyclobber_operand_p (out))
734    return n_reloads;
735
736  /* We can use an existing reload if the class is right
737     and at least one of IN and OUT is a match
738     and the other is at worst neutral.
739     (A zero compared against anything is neutral.)
740
741     If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
742     for the same thing since that can cause us to need more reload registers
743     than we otherwise would.  */
744
745  for (i = 0; i < n_reloads; i++)
746    if ((reg_class_subset_p (class, rld[i].class)
747	 || reg_class_subset_p (rld[i].class, class))
748	/* If the existing reload has a register, it must fit our class.  */
749	&& (rld[i].reg_rtx == 0
750	    || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
751				  true_regnum (rld[i].reg_rtx)))
752	&& ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
753	     && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
754	    || (out != 0 && MATCHES (rld[i].out, out)
755		&& (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
756	&& (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
757	&& (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
758	&& MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
759      return i;
760
761  /* Reloading a plain reg for input can match a reload to postincrement
762     that reg, since the postincrement's value is the right value.
763     Likewise, it can match a preincrement reload, since we regard
764     the preincrementation as happening before any ref in this insn
765     to that register.  */
766  for (i = 0; i < n_reloads; i++)
767    if ((reg_class_subset_p (class, rld[i].class)
768	 || reg_class_subset_p (rld[i].class, class))
769	/* If the existing reload has a register, it must fit our
770	   class.  */
771	&& (rld[i].reg_rtx == 0
772	    || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
773				  true_regnum (rld[i].reg_rtx)))
774	&& out == 0 && rld[i].out == 0 && rld[i].in != 0
775	&& ((GET_CODE (in) == REG
776	     && GET_RTX_CLASS (GET_CODE (rld[i].in)) == 'a'
777	     && MATCHES (XEXP (rld[i].in, 0), in))
778	    || (GET_CODE (rld[i].in) == REG
779		&& GET_RTX_CLASS (GET_CODE (in)) == 'a'
780		&& MATCHES (XEXP (in, 0), rld[i].in)))
781	&& (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
782	&& (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
783	&& MERGABLE_RELOADS (type, rld[i].when_needed,
784			     opnum, rld[i].opnum))
785      {
786	/* Make sure reload_in ultimately has the increment,
787	   not the plain register.  */
788	if (GET_CODE (in) == REG)
789	  *p_in = rld[i].in;
790	return i;
791      }
792  return n_reloads;
793}
794
795/* Return nonzero if X is a SUBREG which will require reloading of its
796   SUBREG_REG expression.  */
797
798static int
799reload_inner_reg_of_subreg (x, mode, output)
800     rtx x;
801     enum machine_mode mode;
802     int output;
803{
804  rtx inner;
805
806  /* Only SUBREGs are problematical.  */
807  if (GET_CODE (x) != SUBREG)
808    return 0;
809
810  inner = SUBREG_REG (x);
811
812  /* If INNER is a constant or PLUS, then INNER must be reloaded.  */
813  if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
814    return 1;
815
816  /* If INNER is not a hard register, then INNER will not need to
817     be reloaded.  */
818  if (GET_CODE (inner) != REG
819      || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
820    return 0;
821
822  if (!subreg_offset_representable_p
823	(REGNO (SUBREG_REG (x)),
824		GET_MODE (SUBREG_REG (x)),
825		SUBREG_BYTE (x),
826		GET_MODE (x)))
827    return 1;
828
829  /* If INNER is not ok for MODE, then INNER will need reloading.  */
830  if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
831    return 1;
832
833  /* If the outer part is a word or smaller, INNER larger than a
834     word and the number of regs for INNER is not the same as the
835     number of words in INNER, then INNER will need reloading.  */
836  return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
837	  && output
838	  && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
839	  && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
840	      != (int) HARD_REGNO_NREGS (REGNO (inner), GET_MODE (inner))));
841}
842
843/* Record one reload that needs to be performed.
844   IN is an rtx saying where the data are to be found before this instruction.
845   OUT says where they must be stored after the instruction.
846   (IN is zero for data not read, and OUT is zero for data not written.)
847   INLOC and OUTLOC point to the places in the instructions where
848   IN and OUT were found.
849   If IN and OUT are both nonzero, it means the same register must be used
850   to reload both IN and OUT.
851
852   CLASS is a register class required for the reloaded data.
853   INMODE is the machine mode that the instruction requires
854   for the reg that replaces IN and OUTMODE is likewise for OUT.
855
856   If IN is zero, then OUT's location and mode should be passed as
857   INLOC and INMODE.
858
859   STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
860
861   OPTIONAL nonzero means this reload does not need to be performed:
862   it can be discarded if that is more convenient.
863
864   OPNUM and TYPE say what the purpose of this reload is.
865
866   The return value is the reload-number for this reload.
867
868   If both IN and OUT are nonzero, in some rare cases we might
869   want to make two separate reloads.  (Actually we never do this now.)
870   Therefore, the reload-number for OUT is stored in
871   output_reloadnum when we return; the return value applies to IN.
872   Usually (presently always), when IN and OUT are nonzero,
873   the two reload-numbers are equal, but the caller should be careful to
874   distinguish them.  */
875
876int
877push_reload (in, out, inloc, outloc, class,
878	     inmode, outmode, strict_low, optional, opnum, type)
879     rtx in, out;
880     rtx *inloc, *outloc;
881     enum reg_class class;
882     enum machine_mode inmode, outmode;
883     int strict_low;
884     int optional;
885     int opnum;
886     enum reload_type type;
887{
888  int i;
889  int dont_share = 0;
890  int dont_remove_subreg = 0;
891  rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
892  int secondary_in_reload = -1, secondary_out_reload = -1;
893  enum insn_code secondary_in_icode = CODE_FOR_nothing;
894  enum insn_code secondary_out_icode = CODE_FOR_nothing;
895
896  /* INMODE and/or OUTMODE could be VOIDmode if no mode
897     has been specified for the operand.  In that case,
898     use the operand's mode as the mode to reload.  */
899  if (inmode == VOIDmode && in != 0)
900    inmode = GET_MODE (in);
901  if (outmode == VOIDmode && out != 0)
902    outmode = GET_MODE (out);
903
904  /* If IN is a pseudo register everywhere-equivalent to a constant, and
905     it is not in a hard register, reload straight from the constant,
906     since we want to get rid of such pseudo registers.
907     Often this is done earlier, but not always in find_reloads_address.  */
908  if (in != 0 && GET_CODE (in) == REG)
909    {
910      int regno = REGNO (in);
911
912      if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
913	  && reg_equiv_constant[regno] != 0)
914	in = reg_equiv_constant[regno];
915    }
916
917  /* Likewise for OUT.  Of course, OUT will never be equivalent to
918     an actual constant, but it might be equivalent to a memory location
919     (in the case of a parameter).  */
920  if (out != 0 && GET_CODE (out) == REG)
921    {
922      int regno = REGNO (out);
923
924      if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
925	  && reg_equiv_constant[regno] != 0)
926	out = reg_equiv_constant[regno];
927    }
928
929  /* If we have a read-write operand with an address side-effect,
930     change either IN or OUT so the side-effect happens only once.  */
931  if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
932    switch (GET_CODE (XEXP (in, 0)))
933      {
934      case POST_INC: case POST_DEC:   case POST_MODIFY:
935	in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
936	break;
937
938      case PRE_INC: case PRE_DEC: case PRE_MODIFY:
939	out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
940	break;
941
942      default:
943	break;
944      }
945
946  /* If we are reloading a (SUBREG constant ...), really reload just the
947     inside expression in its own mode.  Similarly for (SUBREG (PLUS ...)).
948     If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
949     a pseudo and hence will become a MEM) with M1 wider than M2 and the
950     register is a pseudo, also reload the inside expression.
951     For machines that extend byte loads, do this for any SUBREG of a pseudo
952     where both M1 and M2 are a word or smaller, M1 is wider than M2, and
953     M2 is an integral mode that gets extended when loaded.
954     Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
955     either M1 is not valid for R or M2 is wider than a word but we only
956     need one word to store an M2-sized quantity in R.
957     (However, if OUT is nonzero, we need to reload the reg *and*
958     the subreg, so do nothing here, and let following statement handle it.)
959
960     Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
961     we can't handle it here because CONST_INT does not indicate a mode.
962
963     Similarly, we must reload the inside expression if we have a
964     STRICT_LOW_PART (presumably, in == out in the cas).
965
966     Also reload the inner expression if it does not require a secondary
967     reload but the SUBREG does.
968
969     Finally, reload the inner expression if it is a register that is in
970     the class whose registers cannot be referenced in a different size
971     and M1 is not the same size as M2.  If subreg_lowpart_p is false, we
972     cannot reload just the inside since we might end up with the wrong
973     register class.  But if it is inside a STRICT_LOW_PART, we have
974     no choice, so we hope we do get the right register class there.  */
975
976  if (in != 0 && GET_CODE (in) == SUBREG
977      && (subreg_lowpart_p (in) || strict_low)
978#ifdef CANNOT_CHANGE_MODE_CLASS
979      && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
980#endif
981      && (CONSTANT_P (SUBREG_REG (in))
982	  || GET_CODE (SUBREG_REG (in)) == PLUS
983	  || strict_low
984	  || (((GET_CODE (SUBREG_REG (in)) == REG
985		&& REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
986	       || GET_CODE (SUBREG_REG (in)) == MEM)
987	      && ((GET_MODE_SIZE (inmode)
988		   > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
989#ifdef LOAD_EXTEND_OP
990		  || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
991		      && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
992			  <= UNITS_PER_WORD)
993		      && (GET_MODE_SIZE (inmode)
994			  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
995		      && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
996		      && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
997#endif
998#ifdef WORD_REGISTER_OPERATIONS
999		  || ((GET_MODE_SIZE (inmode)
1000		       < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1001		      && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1002			  ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1003			   / UNITS_PER_WORD)))
1004#endif
1005		  ))
1006	  || (GET_CODE (SUBREG_REG (in)) == REG
1007	      && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1008	      /* The case where out is nonzero
1009		 is handled differently in the following statement.  */
1010	      && (out == 0 || subreg_lowpart_p (in))
1011	      && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1012		   && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1013		       > UNITS_PER_WORD)
1014		   && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1015			/ UNITS_PER_WORD)
1016		       != (int) HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
1017						  GET_MODE (SUBREG_REG (in)))))
1018		  || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1019#ifdef SECONDARY_INPUT_RELOAD_CLASS
1020	  || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
1021	      && (SECONDARY_INPUT_RELOAD_CLASS (class,
1022						GET_MODE (SUBREG_REG (in)),
1023						SUBREG_REG (in))
1024		  == NO_REGS))
1025#endif
1026#ifdef CANNOT_CHANGE_MODE_CLASS
1027	  || (GET_CODE (SUBREG_REG (in)) == REG
1028	      && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1029	      && REG_CANNOT_CHANGE_MODE_P
1030	      (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1031#endif
1032	  ))
1033    {
1034      in_subreg_loc = inloc;
1035      inloc = &SUBREG_REG (in);
1036      in = *inloc;
1037#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1038      if (GET_CODE (in) == MEM)
1039	/* This is supposed to happen only for paradoxical subregs made by
1040	   combine.c.  (SUBREG (MEM)) isn't supposed to occur other ways.  */
1041	if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
1042	  abort ();
1043#endif
1044      inmode = GET_MODE (in);
1045    }
1046
1047  /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1048     either M1 is not valid for R or M2 is wider than a word but we only
1049     need one word to store an M2-sized quantity in R.
1050
1051     However, we must reload the inner reg *as well as* the subreg in
1052     that case.  */
1053
1054  /* Similar issue for (SUBREG constant ...) if it was not handled by the
1055     code above.  This can happen if SUBREG_BYTE != 0.  */
1056
1057  if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1058    {
1059      enum reg_class in_class = class;
1060
1061      if (GET_CODE (SUBREG_REG (in)) == REG)
1062	in_class
1063	  = find_valid_class (inmode,
1064			      subreg_regno_offset (REGNO (SUBREG_REG (in)),
1065						   GET_MODE (SUBREG_REG (in)),
1066						   SUBREG_BYTE (in),
1067						   GET_MODE (in)),
1068			      REGNO (SUBREG_REG (in)));
1069
1070      /* This relies on the fact that emit_reload_insns outputs the
1071	 instructions for input reloads of type RELOAD_OTHER in the same
1072	 order as the reloads.  Thus if the outer reload is also of type
1073	 RELOAD_OTHER, we are guaranteed that this inner reload will be
1074	 output before the outer reload.  */
1075      push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1076		   in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1077      dont_remove_subreg = 1;
1078    }
1079
1080  /* Similarly for paradoxical and problematical SUBREGs on the output.
1081     Note that there is no reason we need worry about the previous value
1082     of SUBREG_REG (out); even if wider than out,
1083     storing in a subreg is entitled to clobber it all
1084     (except in the case of STRICT_LOW_PART,
1085     and in that case the constraint should label it input-output.)  */
1086  if (out != 0 && GET_CODE (out) == SUBREG
1087      && (subreg_lowpart_p (out) || strict_low)
1088#ifdef CANNOT_CHANGE_MODE_CLASS
1089      && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
1090#endif
1091      && (CONSTANT_P (SUBREG_REG (out))
1092	  || strict_low
1093	  || (((GET_CODE (SUBREG_REG (out)) == REG
1094		&& REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1095	       || GET_CODE (SUBREG_REG (out)) == MEM)
1096	      && ((GET_MODE_SIZE (outmode)
1097		   > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1098#ifdef WORD_REGISTER_OPERATIONS
1099		  || ((GET_MODE_SIZE (outmode)
1100		       < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1101		      && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1102			  ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1103			   / UNITS_PER_WORD)))
1104#endif
1105		  ))
1106	  || (GET_CODE (SUBREG_REG (out)) == REG
1107	      && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1108	      && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1109		   && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1110		       > UNITS_PER_WORD)
1111		   && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1112			/ UNITS_PER_WORD)
1113		       != (int) HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1114						  GET_MODE (SUBREG_REG (out)))))
1115		  || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1116#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1117	  || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1118	      && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1119						 GET_MODE (SUBREG_REG (out)),
1120						 SUBREG_REG (out))
1121		  == NO_REGS))
1122#endif
1123#ifdef CANNOT_CHANGE_MODE_CLASS
1124	  || (GET_CODE (SUBREG_REG (out)) == REG
1125	      && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1126	      && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1127		   			   GET_MODE (SUBREG_REG (out)),
1128					   outmode))
1129#endif
1130	  ))
1131    {
1132      out_subreg_loc = outloc;
1133      outloc = &SUBREG_REG (out);
1134      out = *outloc;
1135#if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1136      if (GET_CODE (out) == MEM
1137	  && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1138	abort ();
1139#endif
1140      outmode = GET_MODE (out);
1141    }
1142
1143  /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1144     either M1 is not valid for R or M2 is wider than a word but we only
1145     need one word to store an M2-sized quantity in R.
1146
1147     However, we must reload the inner reg *as well as* the subreg in
1148     that case.  In this case, the inner reg is an in-out reload.  */
1149
1150  if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1151    {
1152      /* This relies on the fact that emit_reload_insns outputs the
1153	 instructions for output reloads of type RELOAD_OTHER in reverse
1154	 order of the reloads.  Thus if the outer reload is also of type
1155	 RELOAD_OTHER, we are guaranteed that this inner reload will be
1156	 output after the outer reload.  */
1157      dont_remove_subreg = 1;
1158      push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1159		   &SUBREG_REG (out),
1160		   find_valid_class (outmode,
1161				     subreg_regno_offset (REGNO (SUBREG_REG (out)),
1162							  GET_MODE (SUBREG_REG (out)),
1163							  SUBREG_BYTE (out),
1164							  GET_MODE (out)),
1165				     REGNO (SUBREG_REG (out))),
1166		   VOIDmode, VOIDmode, 0, 0,
1167		   opnum, RELOAD_OTHER);
1168    }
1169
1170  /* If IN appears in OUT, we can't share any input-only reload for IN.  */
1171  if (in != 0 && out != 0 && GET_CODE (out) == MEM
1172      && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
1173      && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1174    dont_share = 1;
1175
1176  /* If IN is a SUBREG of a hard register, make a new REG.  This
1177     simplifies some of the cases below.  */
1178
1179  if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
1180      && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1181      && ! dont_remove_subreg)
1182    in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1183
1184  /* Similarly for OUT.  */
1185  if (out != 0 && GET_CODE (out) == SUBREG
1186      && GET_CODE (SUBREG_REG (out)) == REG
1187      && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1188      && ! dont_remove_subreg)
1189    out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1190
1191  /* Narrow down the class of register wanted if that is
1192     desirable on this machine for efficiency.  */
1193  if (in != 0)
1194    class = PREFERRED_RELOAD_CLASS (in, class);
1195
1196  /* Output reloads may need analogous treatment, different in detail.  */
1197#ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1198  if (out != 0)
1199    class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1200#endif
1201
1202  /* Make sure we use a class that can handle the actual pseudo
1203     inside any subreg.  For example, on the 386, QImode regs
1204     can appear within SImode subregs.  Although GENERAL_REGS
1205     can handle SImode, QImode needs a smaller class.  */
1206#ifdef LIMIT_RELOAD_CLASS
1207  if (in_subreg_loc)
1208    class = LIMIT_RELOAD_CLASS (inmode, class);
1209  else if (in != 0 && GET_CODE (in) == SUBREG)
1210    class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1211
1212  if (out_subreg_loc)
1213    class = LIMIT_RELOAD_CLASS (outmode, class);
1214  if (out != 0 && GET_CODE (out) == SUBREG)
1215    class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1216#endif
1217
1218  /* Verify that this class is at least possible for the mode that
1219     is specified.  */
1220  if (this_insn_is_asm)
1221    {
1222      enum machine_mode mode;
1223      if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1224	mode = inmode;
1225      else
1226	mode = outmode;
1227      if (mode == VOIDmode)
1228	{
1229	  error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1230	  mode = word_mode;
1231	  if (in != 0)
1232	    inmode = word_mode;
1233	  if (out != 0)
1234	    outmode = word_mode;
1235	}
1236      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1237	if (HARD_REGNO_MODE_OK (i, mode)
1238	    && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1239	  {
1240	    int nregs = HARD_REGNO_NREGS (i, mode);
1241
1242	    int j;
1243	    for (j = 1; j < nregs; j++)
1244	      if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1245		break;
1246	    if (j == nregs)
1247	      break;
1248	  }
1249      if (i == FIRST_PSEUDO_REGISTER)
1250	{
1251	  error_for_asm (this_insn, "impossible register constraint in `asm'");
1252	  class = ALL_REGS;
1253	}
1254    }
1255
1256  /* Optional output reloads are always OK even if we have no register class,
1257     since the function of these reloads is only to have spill_reg_store etc.
1258     set, so that the storing insn can be deleted later.  */
1259  if (class == NO_REGS
1260      && (optional == 0 || type != RELOAD_FOR_OUTPUT))
1261    abort ();
1262
1263  i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1264
1265  if (i == n_reloads)
1266    {
1267      /* See if we need a secondary reload register to move between CLASS
1268	 and IN or CLASS and OUT.  Get the icode and push any required reloads
1269	 needed for each of them if so.  */
1270
1271#ifdef SECONDARY_INPUT_RELOAD_CLASS
1272      if (in != 0)
1273	secondary_in_reload
1274	  = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1275				   &secondary_in_icode);
1276#endif
1277
1278#ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1279      if (out != 0 && GET_CODE (out) != SCRATCH)
1280	secondary_out_reload
1281	  = push_secondary_reload (0, out, opnum, optional, class, outmode,
1282				   type, &secondary_out_icode);
1283#endif
1284
1285      /* We found no existing reload suitable for re-use.
1286	 So add an additional reload.  */
1287
1288#ifdef SECONDARY_MEMORY_NEEDED
1289      /* If a memory location is needed for the copy, make one.  */
1290      if (in != 0 && (GET_CODE (in) == REG || GET_CODE (in) == SUBREG)
1291	  && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1292	  && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1293				      class, inmode))
1294	get_secondary_mem (in, inmode, opnum, type);
1295#endif
1296
1297      i = n_reloads;
1298      rld[i].in = in;
1299      rld[i].out = out;
1300      rld[i].class = class;
1301      rld[i].inmode = inmode;
1302      rld[i].outmode = outmode;
1303      rld[i].reg_rtx = 0;
1304      rld[i].optional = optional;
1305      rld[i].inc = 0;
1306      rld[i].nocombine = 0;
1307      rld[i].in_reg = inloc ? *inloc : 0;
1308      rld[i].out_reg = outloc ? *outloc : 0;
1309      rld[i].opnum = opnum;
1310      rld[i].when_needed = type;
1311      rld[i].secondary_in_reload = secondary_in_reload;
1312      rld[i].secondary_out_reload = secondary_out_reload;
1313      rld[i].secondary_in_icode = secondary_in_icode;
1314      rld[i].secondary_out_icode = secondary_out_icode;
1315      rld[i].secondary_p = 0;
1316
1317      n_reloads++;
1318
1319#ifdef SECONDARY_MEMORY_NEEDED
1320      if (out != 0 && (GET_CODE (out) == REG || GET_CODE (out) == SUBREG)
1321	  && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1322	  && SECONDARY_MEMORY_NEEDED (class,
1323				      REGNO_REG_CLASS (reg_or_subregno (out)),
1324				      outmode))
1325	get_secondary_mem (out, outmode, opnum, type);
1326#endif
1327    }
1328  else
1329    {
1330      /* We are reusing an existing reload,
1331	 but we may have additional information for it.
1332	 For example, we may now have both IN and OUT
1333	 while the old one may have just one of them.  */
1334
1335      /* The modes can be different.  If they are, we want to reload in
1336	 the larger mode, so that the value is valid for both modes.  */
1337      if (inmode != VOIDmode
1338	  && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1339	rld[i].inmode = inmode;
1340      if (outmode != VOIDmode
1341	  && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1342	rld[i].outmode = outmode;
1343      if (in != 0)
1344	{
1345	  rtx in_reg = inloc ? *inloc : 0;
1346	  /* If we merge reloads for two distinct rtl expressions that
1347	     are identical in content, there might be duplicate address
1348	     reloads.  Remove the extra set now, so that if we later find
1349	     that we can inherit this reload, we can get rid of the
1350	     address reloads altogether.
1351
1352	     Do not do this if both reloads are optional since the result
1353	     would be an optional reload which could potentially leave
1354	     unresolved address replacements.
1355
1356	     It is not sufficient to call transfer_replacements since
1357	     choose_reload_regs will remove the replacements for address
1358	     reloads of inherited reloads which results in the same
1359	     problem.  */
1360	  if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1361	      && ! (rld[i].optional && optional))
1362	    {
1363	      /* We must keep the address reload with the lower operand
1364		 number alive.  */
1365	      if (opnum > rld[i].opnum)
1366		{
1367		  remove_address_replacements (in);
1368		  in = rld[i].in;
1369		  in_reg = rld[i].in_reg;
1370		}
1371	      else
1372		remove_address_replacements (rld[i].in);
1373	    }
1374	  rld[i].in = in;
1375	  rld[i].in_reg = in_reg;
1376	}
1377      if (out != 0)
1378	{
1379	  rld[i].out = out;
1380	  rld[i].out_reg = outloc ? *outloc : 0;
1381	}
1382      if (reg_class_subset_p (class, rld[i].class))
1383	rld[i].class = class;
1384      rld[i].optional &= optional;
1385      if (MERGE_TO_OTHER (type, rld[i].when_needed,
1386			  opnum, rld[i].opnum))
1387	rld[i].when_needed = RELOAD_OTHER;
1388      rld[i].opnum = MIN (rld[i].opnum, opnum);
1389    }
1390
1391  /* If the ostensible rtx being reloaded differs from the rtx found
1392     in the location to substitute, this reload is not safe to combine
1393     because we cannot reliably tell whether it appears in the insn.  */
1394
1395  if (in != 0 && in != *inloc)
1396    rld[i].nocombine = 1;
1397
1398#if 0
1399  /* This was replaced by changes in find_reloads_address_1 and the new
1400     function inc_for_reload, which go with a new meaning of reload_inc.  */
1401
1402  /* If this is an IN/OUT reload in an insn that sets the CC,
1403     it must be for an autoincrement.  It doesn't work to store
1404     the incremented value after the insn because that would clobber the CC.
1405     So we must do the increment of the value reloaded from,
1406     increment it, store it back, then decrement again.  */
1407  if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1408    {
1409      out = 0;
1410      rld[i].out = 0;
1411      rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1412      /* If we did not find a nonzero amount-to-increment-by,
1413	 that contradicts the belief that IN is being incremented
1414	 in an address in this insn.  */
1415      if (rld[i].inc == 0)
1416	abort ();
1417    }
1418#endif
1419
1420  /* If we will replace IN and OUT with the reload-reg,
1421     record where they are located so that substitution need
1422     not do a tree walk.  */
1423
1424  if (replace_reloads)
1425    {
1426      if (inloc != 0)
1427	{
1428	  struct replacement *r = &replacements[n_replacements++];
1429	  r->what = i;
1430	  r->subreg_loc = in_subreg_loc;
1431	  r->where = inloc;
1432	  r->mode = inmode;
1433	}
1434      if (outloc != 0 && outloc != inloc)
1435	{
1436	  struct replacement *r = &replacements[n_replacements++];
1437	  r->what = i;
1438	  r->where = outloc;
1439	  r->subreg_loc = out_subreg_loc;
1440	  r->mode = outmode;
1441	}
1442    }
1443
1444  /* If this reload is just being introduced and it has both
1445     an incoming quantity and an outgoing quantity that are
1446     supposed to be made to match, see if either one of the two
1447     can serve as the place to reload into.
1448
1449     If one of them is acceptable, set rld[i].reg_rtx
1450     to that one.  */
1451
1452  if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1453    {
1454      rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1455					  inmode, outmode,
1456					  rld[i].class, i,
1457					  earlyclobber_operand_p (out));
1458
1459      /* If the outgoing register already contains the same value
1460	 as the incoming one, we can dispense with loading it.
1461	 The easiest way to tell the caller that is to give a phony
1462	 value for the incoming operand (same as outgoing one).  */
1463      if (rld[i].reg_rtx == out
1464	  && (GET_CODE (in) == REG || CONSTANT_P (in))
1465	  && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1466				  static_reload_reg_p, i, inmode))
1467	rld[i].in = out;
1468    }
1469
1470  /* If this is an input reload and the operand contains a register that
1471     dies in this insn and is used nowhere else, see if it is the right class
1472     to be used for this reload.  Use it if so.  (This occurs most commonly
1473     in the case of paradoxical SUBREGs and in-out reloads).  We cannot do
1474     this if it is also an output reload that mentions the register unless
1475     the output is a SUBREG that clobbers an entire register.
1476
1477     Note that the operand might be one of the spill regs, if it is a
1478     pseudo reg and we are in a block where spilling has not taken place.
1479     But if there is no spilling in this block, that is OK.
1480     An explicitly used hard reg cannot be a spill reg.  */
1481
1482  if (rld[i].reg_rtx == 0 && in != 0)
1483    {
1484      rtx note;
1485      int regno;
1486      enum machine_mode rel_mode = inmode;
1487
1488      if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1489	rel_mode = outmode;
1490
1491      for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1492	if (REG_NOTE_KIND (note) == REG_DEAD
1493	    && GET_CODE (XEXP (note, 0)) == REG
1494	    && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1495	    && reg_mentioned_p (XEXP (note, 0), in)
1496	    && ! refers_to_regno_for_reload_p (regno,
1497					       (regno
1498						+ HARD_REGNO_NREGS (regno,
1499								    rel_mode)),
1500					       PATTERN (this_insn), inloc)
1501	    /* If this is also an output reload, IN cannot be used as
1502	       the reload register if it is set in this insn unless IN
1503	       is also OUT.  */
1504	    && (out == 0 || in == out
1505		|| ! hard_reg_set_here_p (regno,
1506					  (regno
1507					   + HARD_REGNO_NREGS (regno,
1508							       rel_mode)),
1509					  PATTERN (this_insn)))
1510	    /* ??? Why is this code so different from the previous?
1511	       Is there any simple coherent way to describe the two together?
1512	       What's going on here.  */
1513	    && (in != out
1514		|| (GET_CODE (in) == SUBREG
1515		    && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1516			 / UNITS_PER_WORD)
1517			== ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1518			     + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1519	    /* Make sure the operand fits in the reg that dies.  */
1520	    && (GET_MODE_SIZE (rel_mode)
1521		<= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1522	    && HARD_REGNO_MODE_OK (regno, inmode)
1523	    && HARD_REGNO_MODE_OK (regno, outmode))
1524	  {
1525	    unsigned int offs;
1526	    unsigned int nregs = MAX (HARD_REGNO_NREGS (regno, inmode),
1527				      HARD_REGNO_NREGS (regno, outmode));
1528
1529	    for (offs = 0; offs < nregs; offs++)
1530	      if (fixed_regs[regno + offs]
1531		  || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1532					  regno + offs))
1533		break;
1534
1535	    if (offs == nregs)
1536	      {
1537		rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1538		break;
1539	      }
1540	  }
1541    }
1542
1543  if (out)
1544    output_reloadnum = i;
1545
1546  return i;
1547}
1548
1549/* Record an additional place we must replace a value
1550   for which we have already recorded a reload.
1551   RELOADNUM is the value returned by push_reload
1552   when the reload was recorded.
1553   This is used in insn patterns that use match_dup.  */
1554
1555static void
1556push_replacement (loc, reloadnum, mode)
1557     rtx *loc;
1558     int reloadnum;
1559     enum machine_mode mode;
1560{
1561  if (replace_reloads)
1562    {
1563      struct replacement *r = &replacements[n_replacements++];
1564      r->what = reloadnum;
1565      r->where = loc;
1566      r->subreg_loc = 0;
1567      r->mode = mode;
1568    }
1569}
1570
1571/* Duplicate any replacement we have recorded to apply at
1572   location ORIG_LOC to also be performed at DUP_LOC.
1573   This is used in insn patterns that use match_dup.  */
1574
1575static void
1576dup_replacements (dup_loc, orig_loc)
1577     rtx *dup_loc;
1578     rtx *orig_loc;
1579{
1580  int i, n = n_replacements;
1581
1582  for (i = 0; i < n; i++)
1583    {
1584      struct replacement *r = &replacements[i];
1585      if (r->where == orig_loc)
1586	push_replacement (dup_loc, r->what, r->mode);
1587    }
1588}
1589
1590/* Transfer all replacements that used to be in reload FROM to be in
1591   reload TO.  */
1592
1593void
1594transfer_replacements (to, from)
1595     int to, from;
1596{
1597  int i;
1598
1599  for (i = 0; i < n_replacements; i++)
1600    if (replacements[i].what == from)
1601      replacements[i].what = to;
1602}
1603
1604/* IN_RTX is the value loaded by a reload that we now decided to inherit,
1605   or a subpart of it.  If we have any replacements registered for IN_RTX,
1606   cancel the reloads that were supposed to load them.
1607   Return nonzero if we canceled any reloads.  */
1608int
1609remove_address_replacements (in_rtx)
1610     rtx in_rtx;
1611{
1612  int i, j;
1613  char reload_flags[MAX_RELOADS];
1614  int something_changed = 0;
1615
1616  memset (reload_flags, 0, sizeof reload_flags);
1617  for (i = 0, j = 0; i < n_replacements; i++)
1618    {
1619      if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1620	reload_flags[replacements[i].what] |= 1;
1621      else
1622	{
1623	  replacements[j++] = replacements[i];
1624	  reload_flags[replacements[i].what] |= 2;
1625	}
1626    }
1627  /* Note that the following store must be done before the recursive calls.  */
1628  n_replacements = j;
1629
1630  for (i = n_reloads - 1; i >= 0; i--)
1631    {
1632      if (reload_flags[i] == 1)
1633	{
1634	  deallocate_reload_reg (i);
1635	  remove_address_replacements (rld[i].in);
1636	  rld[i].in = 0;
1637	  something_changed = 1;
1638	}
1639    }
1640  return something_changed;
1641}
1642
1643/* If there is only one output reload, and it is not for an earlyclobber
1644   operand, try to combine it with a (logically unrelated) input reload
1645   to reduce the number of reload registers needed.
1646
1647   This is safe if the input reload does not appear in
1648   the value being output-reloaded, because this implies
1649   it is not needed any more once the original insn completes.
1650
1651   If that doesn't work, see we can use any of the registers that
1652   die in this insn as a reload register.  We can if it is of the right
1653   class and does not appear in the value being output-reloaded.  */
1654
1655static void
1656combine_reloads ()
1657{
1658  int i;
1659  int output_reload = -1;
1660  int secondary_out = -1;
1661  rtx note;
1662
1663  /* Find the output reload; return unless there is exactly one
1664     and that one is mandatory.  */
1665
1666  for (i = 0; i < n_reloads; i++)
1667    if (rld[i].out != 0)
1668      {
1669	if (output_reload >= 0)
1670	  return;
1671	output_reload = i;
1672      }
1673
1674  if (output_reload < 0 || rld[output_reload].optional)
1675    return;
1676
1677  /* An input-output reload isn't combinable.  */
1678
1679  if (rld[output_reload].in != 0)
1680    return;
1681
1682  /* If this reload is for an earlyclobber operand, we can't do anything.  */
1683  if (earlyclobber_operand_p (rld[output_reload].out))
1684    return;
1685
1686  /* If there is a reload for part of the address of this operand, we would
1687     need to chnage it to RELOAD_FOR_OTHER_ADDRESS.  But that would extend
1688     its life to the point where doing this combine would not lower the
1689     number of spill registers needed.  */
1690  for (i = 0; i < n_reloads; i++)
1691    if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1692	 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1693	&& rld[i].opnum == rld[output_reload].opnum)
1694      return;
1695
1696  /* Check each input reload; can we combine it?  */
1697
1698  for (i = 0; i < n_reloads; i++)
1699    if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1700	/* Life span of this reload must not extend past main insn.  */
1701	&& rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1702	&& rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1703	&& rld[i].when_needed != RELOAD_OTHER
1704	&& (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1705	    == CLASS_MAX_NREGS (rld[output_reload].class,
1706				rld[output_reload].outmode))
1707	&& rld[i].inc == 0
1708	&& rld[i].reg_rtx == 0
1709#ifdef SECONDARY_MEMORY_NEEDED
1710	/* Don't combine two reloads with different secondary
1711	   memory locations.  */
1712	&& (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1713	    || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1714	    || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1715			    secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1716#endif
1717	&& (SMALL_REGISTER_CLASSES
1718	    ? (rld[i].class == rld[output_reload].class)
1719	    : (reg_class_subset_p (rld[i].class,
1720				   rld[output_reload].class)
1721	       || reg_class_subset_p (rld[output_reload].class,
1722				      rld[i].class)))
1723	&& (MATCHES (rld[i].in, rld[output_reload].out)
1724	    /* Args reversed because the first arg seems to be
1725	       the one that we imagine being modified
1726	       while the second is the one that might be affected.  */
1727	    || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1728						      rld[i].in)
1729		/* However, if the input is a register that appears inside
1730		   the output, then we also can't share.
1731		   Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1732		   If the same reload reg is used for both reg 69 and the
1733		   result to be stored in memory, then that result
1734		   will clobber the address of the memory ref.  */
1735		&& ! (GET_CODE (rld[i].in) == REG
1736		      && reg_overlap_mentioned_for_reload_p (rld[i].in,
1737							     rld[output_reload].out))))
1738	&& ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1739					 rld[i].when_needed != RELOAD_FOR_INPUT)
1740	&& (reg_class_size[(int) rld[i].class]
1741	    || SMALL_REGISTER_CLASSES)
1742	/* We will allow making things slightly worse by combining an
1743	   input and an output, but no worse than that.  */
1744	&& (rld[i].when_needed == RELOAD_FOR_INPUT
1745	    || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1746      {
1747	int j;
1748
1749	/* We have found a reload to combine with!  */
1750	rld[i].out = rld[output_reload].out;
1751	rld[i].out_reg = rld[output_reload].out_reg;
1752	rld[i].outmode = rld[output_reload].outmode;
1753	/* Mark the old output reload as inoperative.  */
1754	rld[output_reload].out = 0;
1755	/* The combined reload is needed for the entire insn.  */
1756	rld[i].when_needed = RELOAD_OTHER;
1757	/* If the output reload had a secondary reload, copy it.  */
1758	if (rld[output_reload].secondary_out_reload != -1)
1759	  {
1760	    rld[i].secondary_out_reload
1761	      = rld[output_reload].secondary_out_reload;
1762	    rld[i].secondary_out_icode
1763	      = rld[output_reload].secondary_out_icode;
1764	  }
1765
1766#ifdef SECONDARY_MEMORY_NEEDED
1767	/* Copy any secondary MEM.  */
1768	if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1769	  secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1770	    = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1771#endif
1772	/* If required, minimize the register class.  */
1773	if (reg_class_subset_p (rld[output_reload].class,
1774				rld[i].class))
1775	  rld[i].class = rld[output_reload].class;
1776
1777	/* Transfer all replacements from the old reload to the combined.  */
1778	for (j = 0; j < n_replacements; j++)
1779	  if (replacements[j].what == output_reload)
1780	    replacements[j].what = i;
1781
1782	return;
1783      }
1784
1785  /* If this insn has only one operand that is modified or written (assumed
1786     to be the first),  it must be the one corresponding to this reload.  It
1787     is safe to use anything that dies in this insn for that output provided
1788     that it does not occur in the output (we already know it isn't an
1789     earlyclobber.  If this is an asm insn, give up.  */
1790
1791  if (INSN_CODE (this_insn) == -1)
1792    return;
1793
1794  for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1795    if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1796	|| insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1797      return;
1798
1799  /* See if some hard register that dies in this insn and is not used in
1800     the output is the right class.  Only works if the register we pick
1801     up can fully hold our output reload.  */
1802  for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1803    if (REG_NOTE_KIND (note) == REG_DEAD
1804	&& GET_CODE (XEXP (note, 0)) == REG
1805	&& ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1806						 rld[output_reload].out)
1807	&& REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1808	&& HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1809	&& TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1810			      REGNO (XEXP (note, 0)))
1811	&& (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1812	    <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
1813	/* Ensure that a secondary or tertiary reload for this output
1814	   won't want this register.  */
1815	&& ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1816	    || (! (TEST_HARD_REG_BIT
1817		   (reg_class_contents[(int) rld[secondary_out].class],
1818		    REGNO (XEXP (note, 0))))
1819		&& ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1820		    ||  ! (TEST_HARD_REG_BIT
1821			   (reg_class_contents[(int) rld[secondary_out].class],
1822			    REGNO (XEXP (note, 0)))))))
1823	&& ! fixed_regs[REGNO (XEXP (note, 0))])
1824      {
1825	rld[output_reload].reg_rtx
1826	  = gen_rtx_REG (rld[output_reload].outmode,
1827			 REGNO (XEXP (note, 0)));
1828	return;
1829      }
1830}
1831
1832/* Try to find a reload register for an in-out reload (expressions IN and OUT).
1833   See if one of IN and OUT is a register that may be used;
1834   this is desirable since a spill-register won't be needed.
1835   If so, return the register rtx that proves acceptable.
1836
1837   INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1838   CLASS is the register class required for the reload.
1839
1840   If FOR_REAL is >= 0, it is the number of the reload,
1841   and in some cases when it can be discovered that OUT doesn't need
1842   to be computed, clear out rld[FOR_REAL].out.
1843
1844   If FOR_REAL is -1, this should not be done, because this call
1845   is just to see if a register can be found, not to find and install it.
1846
1847   EARLYCLOBBER is nonzero if OUT is an earlyclobber operand.  This
1848   puts an additional constraint on being able to use IN for OUT since
1849   IN must not appear elsewhere in the insn (it is assumed that IN itself
1850   is safe from the earlyclobber).  */
1851
1852static rtx
1853find_dummy_reload (real_in, real_out, inloc, outloc,
1854		   inmode, outmode, class, for_real, earlyclobber)
1855     rtx real_in, real_out;
1856     rtx *inloc, *outloc;
1857     enum machine_mode inmode, outmode;
1858     enum reg_class class;
1859     int for_real;
1860     int earlyclobber;
1861{
1862  rtx in = real_in;
1863  rtx out = real_out;
1864  int in_offset = 0;
1865  int out_offset = 0;
1866  rtx value = 0;
1867
1868  /* If operands exceed a word, we can't use either of them
1869     unless they have the same size.  */
1870  if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1871      && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1872	  || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1873    return 0;
1874
1875  /* Note that {in,out}_offset are needed only when 'in' or 'out'
1876     respectively refers to a hard register.  */
1877
1878  /* Find the inside of any subregs.  */
1879  while (GET_CODE (out) == SUBREG)
1880    {
1881      if (GET_CODE (SUBREG_REG (out)) == REG
1882	  && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1883	out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1884					   GET_MODE (SUBREG_REG (out)),
1885					   SUBREG_BYTE (out),
1886					   GET_MODE (out));
1887      out = SUBREG_REG (out);
1888    }
1889  while (GET_CODE (in) == SUBREG)
1890    {
1891      if (GET_CODE (SUBREG_REG (in)) == REG
1892	  && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1893	in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1894					  GET_MODE (SUBREG_REG (in)),
1895					  SUBREG_BYTE (in),
1896					  GET_MODE (in));
1897      in = SUBREG_REG (in);
1898    }
1899
1900  /* Narrow down the reg class, the same way push_reload will;
1901     otherwise we might find a dummy now, but push_reload won't.  */
1902  class = PREFERRED_RELOAD_CLASS (in, class);
1903
1904  /* See if OUT will do.  */
1905  if (GET_CODE (out) == REG
1906      && REGNO (out) < FIRST_PSEUDO_REGISTER)
1907    {
1908      unsigned int regno = REGNO (out) + out_offset;
1909      unsigned int nwords = HARD_REGNO_NREGS (regno, outmode);
1910      rtx saved_rtx;
1911
1912      /* When we consider whether the insn uses OUT,
1913	 ignore references within IN.  They don't prevent us
1914	 from copying IN into OUT, because those refs would
1915	 move into the insn that reloads IN.
1916
1917	 However, we only ignore IN in its role as this reload.
1918	 If the insn uses IN elsewhere and it contains OUT,
1919	 that counts.  We can't be sure it's the "same" operand
1920	 so it might not go through this reload.  */
1921      saved_rtx = *inloc;
1922      *inloc = const0_rtx;
1923
1924      if (regno < FIRST_PSEUDO_REGISTER
1925	  && HARD_REGNO_MODE_OK (regno, outmode)
1926	  && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1927					     PATTERN (this_insn), outloc))
1928	{
1929	  unsigned int i;
1930
1931	  for (i = 0; i < nwords; i++)
1932	    if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1933				     regno + i))
1934	      break;
1935
1936	  if (i == nwords)
1937	    {
1938	      if (GET_CODE (real_out) == REG)
1939		value = real_out;
1940	      else
1941		value = gen_rtx_REG (outmode, regno);
1942	    }
1943	}
1944
1945      *inloc = saved_rtx;
1946    }
1947
1948  /* Consider using IN if OUT was not acceptable
1949     or if OUT dies in this insn (like the quotient in a divmod insn).
1950     We can't use IN unless it is dies in this insn,
1951     which means we must know accurately which hard regs are live.
1952     Also, the result can't go in IN if IN is used within OUT,
1953     or if OUT is an earlyclobber and IN appears elsewhere in the insn.  */
1954  if (hard_regs_live_known
1955      && GET_CODE (in) == REG
1956      && REGNO (in) < FIRST_PSEUDO_REGISTER
1957      && (value == 0
1958	  || find_reg_note (this_insn, REG_UNUSED, real_out))
1959      && find_reg_note (this_insn, REG_DEAD, real_in)
1960      && !fixed_regs[REGNO (in)]
1961      && HARD_REGNO_MODE_OK (REGNO (in),
1962			     /* The only case where out and real_out might
1963				have different modes is where real_out
1964				is a subreg, and in that case, out
1965				has a real mode.  */
1966			     (GET_MODE (out) != VOIDmode
1967			      ? GET_MODE (out) : outmode)))
1968    {
1969      unsigned int regno = REGNO (in) + in_offset;
1970      unsigned int nwords = HARD_REGNO_NREGS (regno, inmode);
1971
1972      if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
1973	  && ! hard_reg_set_here_p (regno, regno + nwords,
1974				    PATTERN (this_insn))
1975	  && (! earlyclobber
1976	      || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1977						 PATTERN (this_insn), inloc)))
1978	{
1979	  unsigned int i;
1980
1981	  for (i = 0; i < nwords; i++)
1982	    if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1983				     regno + i))
1984	      break;
1985
1986	  if (i == nwords)
1987	    {
1988	      /* If we were going to use OUT as the reload reg
1989		 and changed our mind, it means OUT is a dummy that
1990		 dies here.  So don't bother copying value to it.  */
1991	      if (for_real >= 0 && value == real_out)
1992		rld[for_real].out = 0;
1993	      if (GET_CODE (real_in) == REG)
1994		value = real_in;
1995	      else
1996		value = gen_rtx_REG (inmode, regno);
1997	    }
1998	}
1999    }
2000
2001  return value;
2002}
2003
2004/* This page contains subroutines used mainly for determining
2005   whether the IN or an OUT of a reload can serve as the
2006   reload register.  */
2007
2008/* Return 1 if X is an operand of an insn that is being earlyclobbered.  */
2009
2010int
2011earlyclobber_operand_p (x)
2012     rtx x;
2013{
2014  int i;
2015
2016  for (i = 0; i < n_earlyclobbers; i++)
2017    if (reload_earlyclobbers[i] == x)
2018      return 1;
2019
2020  return 0;
2021}
2022
2023/* Return 1 if expression X alters a hard reg in the range
2024   from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2025   either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2026   X should be the body of an instruction.  */
2027
2028static int
2029hard_reg_set_here_p (beg_regno, end_regno, x)
2030     unsigned int beg_regno, end_regno;
2031     rtx x;
2032{
2033  if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2034    {
2035      rtx op0 = SET_DEST (x);
2036
2037      while (GET_CODE (op0) == SUBREG)
2038	op0 = SUBREG_REG (op0);
2039      if (GET_CODE (op0) == REG)
2040	{
2041	  unsigned int r = REGNO (op0);
2042
2043	  /* See if this reg overlaps range under consideration.  */
2044	  if (r < end_regno
2045	      && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
2046	    return 1;
2047	}
2048    }
2049  else if (GET_CODE (x) == PARALLEL)
2050    {
2051      int i = XVECLEN (x, 0) - 1;
2052
2053      for (; i >= 0; i--)
2054	if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2055	  return 1;
2056    }
2057
2058  return 0;
2059}
2060
2061/* Return 1 if ADDR is a valid memory address for mode MODE,
2062   and check that each pseudo reg has the proper kind of
2063   hard reg.  */
2064
2065int
2066strict_memory_address_p (mode, addr)
2067     enum machine_mode mode ATTRIBUTE_UNUSED;
2068     rtx addr;
2069{
2070  GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2071  return 0;
2072
2073 win:
2074  return 1;
2075}
2076
2077/* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2078   if they are the same hard reg, and has special hacks for
2079   autoincrement and autodecrement.
2080   This is specifically intended for find_reloads to use
2081   in determining whether two operands match.
2082   X is the operand whose number is the lower of the two.
2083
2084   The value is 2 if Y contains a pre-increment that matches
2085   a non-incrementing address in X.  */
2086
2087/* ??? To be completely correct, we should arrange to pass
2088   for X the output operand and for Y the input operand.
2089   For now, we assume that the output operand has the lower number
2090   because that is natural in (SET output (... input ...)).  */
2091
2092int
2093operands_match_p (x, y)
2094     rtx x, y;
2095{
2096  int i;
2097  RTX_CODE code = GET_CODE (x);
2098  const char *fmt;
2099  int success_2;
2100
2101  if (x == y)
2102    return 1;
2103  if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
2104      && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
2105				  && GET_CODE (SUBREG_REG (y)) == REG)))
2106    {
2107      int j;
2108
2109      if (code == SUBREG)
2110	{
2111	  i = REGNO (SUBREG_REG (x));
2112	  if (i >= FIRST_PSEUDO_REGISTER)
2113	    goto slow;
2114	  i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2115				    GET_MODE (SUBREG_REG (x)),
2116				    SUBREG_BYTE (x),
2117				    GET_MODE (x));
2118	}
2119      else
2120	i = REGNO (x);
2121
2122      if (GET_CODE (y) == SUBREG)
2123	{
2124	  j = REGNO (SUBREG_REG (y));
2125	  if (j >= FIRST_PSEUDO_REGISTER)
2126	    goto slow;
2127	  j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2128				    GET_MODE (SUBREG_REG (y)),
2129				    SUBREG_BYTE (y),
2130				    GET_MODE (y));
2131	}
2132      else
2133	j = REGNO (y);
2134
2135      /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2136	 multiple hard register group, so that for example (reg:DI 0) and
2137	 (reg:SI 1) will be considered the same register.  */
2138      if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2139	  && i < FIRST_PSEUDO_REGISTER)
2140	i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
2141      if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2142	  && j < FIRST_PSEUDO_REGISTER)
2143	j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
2144
2145      return i == j;
2146    }
2147  /* If two operands must match, because they are really a single
2148     operand of an assembler insn, then two postincrements are invalid
2149     because the assembler insn would increment only once.
2150     On the other hand, a postincrement matches ordinary indexing
2151     if the postincrement is the output operand.  */
2152  if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2153    return operands_match_p (XEXP (x, 0), y);
2154  /* Two preincrements are invalid
2155     because the assembler insn would increment only once.
2156     On the other hand, a preincrement matches ordinary indexing
2157     if the preincrement is the input operand.
2158     In this case, return 2, since some callers need to do special
2159     things when this happens.  */
2160  if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2161      || GET_CODE (y) == PRE_MODIFY)
2162    return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2163
2164 slow:
2165
2166  /* Now we have disposed of all the cases
2167     in which different rtx codes can match.  */
2168  if (code != GET_CODE (y))
2169    return 0;
2170  if (code == LABEL_REF)
2171    return XEXP (x, 0) == XEXP (y, 0);
2172  if (code == SYMBOL_REF)
2173    return XSTR (x, 0) == XSTR (y, 0);
2174
2175  /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
2176
2177  if (GET_MODE (x) != GET_MODE (y))
2178    return 0;
2179
2180  /* Compare the elements.  If any pair of corresponding elements
2181     fail to match, return 0 for the whole things.  */
2182
2183  success_2 = 0;
2184  fmt = GET_RTX_FORMAT (code);
2185  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2186    {
2187      int val, j;
2188      switch (fmt[i])
2189	{
2190	case 'w':
2191	  if (XWINT (x, i) != XWINT (y, i))
2192	    return 0;
2193	  break;
2194
2195	case 'i':
2196	  if (XINT (x, i) != XINT (y, i))
2197	    return 0;
2198	  break;
2199
2200	case 'e':
2201	  val = operands_match_p (XEXP (x, i), XEXP (y, i));
2202	  if (val == 0)
2203	    return 0;
2204	  /* If any subexpression returns 2,
2205	     we should return 2 if we are successful.  */
2206	  if (val == 2)
2207	    success_2 = 1;
2208	  break;
2209
2210	case '0':
2211	  break;
2212
2213	case 'E':
2214	  if (XVECLEN (x, i) != XVECLEN (y, i))
2215	    return 0;
2216	  for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2217	    {
2218	      val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2219	      if (val == 0)
2220		return 0;
2221	      if (val == 2)
2222		success_2 = 1;
2223	    }
2224	  break;
2225
2226	  /* It is believed that rtx's at this level will never
2227	     contain anything but integers and other rtx's,
2228	     except for within LABEL_REFs and SYMBOL_REFs.  */
2229	default:
2230	  abort ();
2231	}
2232    }
2233  return 1 + success_2;
2234}
2235
2236/* Describe the range of registers or memory referenced by X.
2237   If X is a register, set REG_FLAG and put the first register
2238   number into START and the last plus one into END.
2239   If X is a memory reference, put a base address into BASE
2240   and a range of integer offsets into START and END.
2241   If X is pushing on the stack, we can assume it causes no trouble,
2242   so we set the SAFE field.  */
2243
2244static struct decomposition
2245decompose (x)
2246     rtx x;
2247{
2248  struct decomposition val;
2249  int all_const = 0;
2250
2251  val.reg_flag = 0;
2252  val.safe = 0;
2253  val.base = 0;
2254  if (GET_CODE (x) == MEM)
2255    {
2256      rtx base = NULL_RTX, offset = 0;
2257      rtx addr = XEXP (x, 0);
2258
2259      if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2260	  || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2261	{
2262	  val.base = XEXP (addr, 0);
2263	  val.start = -GET_MODE_SIZE (GET_MODE (x));
2264	  val.end = GET_MODE_SIZE (GET_MODE (x));
2265	  val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2266	  return val;
2267	}
2268
2269      if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2270	{
2271	  if (GET_CODE (XEXP (addr, 1)) == PLUS
2272	      && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2273	      && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2274	    {
2275	      val.base  = XEXP (addr, 0);
2276	      val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2277	      val.end   = INTVAL (XEXP (XEXP (addr, 1), 1));
2278	      val.safe  = REGNO (val.base) == STACK_POINTER_REGNUM;
2279	      return val;
2280	    }
2281	}
2282
2283      if (GET_CODE (addr) == CONST)
2284	{
2285	  addr = XEXP (addr, 0);
2286	  all_const = 1;
2287	}
2288      if (GET_CODE (addr) == PLUS)
2289	{
2290	  if (CONSTANT_P (XEXP (addr, 0)))
2291	    {
2292	      base = XEXP (addr, 1);
2293	      offset = XEXP (addr, 0);
2294	    }
2295	  else if (CONSTANT_P (XEXP (addr, 1)))
2296	    {
2297	      base = XEXP (addr, 0);
2298	      offset = XEXP (addr, 1);
2299	    }
2300	}
2301
2302      if (offset == 0)
2303	{
2304	  base = addr;
2305	  offset = const0_rtx;
2306	}
2307      if (GET_CODE (offset) == CONST)
2308	offset = XEXP (offset, 0);
2309      if (GET_CODE (offset) == PLUS)
2310	{
2311	  if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2312	    {
2313	      base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2314	      offset = XEXP (offset, 0);
2315	    }
2316	  else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2317	    {
2318	      base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2319	      offset = XEXP (offset, 1);
2320	    }
2321	  else
2322	    {
2323	      base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2324	      offset = const0_rtx;
2325	    }
2326	}
2327      else if (GET_CODE (offset) != CONST_INT)
2328	{
2329	  base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2330	  offset = const0_rtx;
2331	}
2332
2333      if (all_const && GET_CODE (base) == PLUS)
2334	base = gen_rtx_CONST (GET_MODE (base), base);
2335
2336      if (GET_CODE (offset) != CONST_INT)
2337	abort ();
2338
2339      val.start = INTVAL (offset);
2340      val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2341      val.base = base;
2342      return val;
2343    }
2344  else if (GET_CODE (x) == REG)
2345    {
2346      val.reg_flag = 1;
2347      val.start = true_regnum (x);
2348      if (val.start < 0)
2349	{
2350	  /* A pseudo with no hard reg.  */
2351	  val.start = REGNO (x);
2352	  val.end = val.start + 1;
2353	}
2354      else
2355	/* A hard reg.  */
2356	val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2357    }
2358  else if (GET_CODE (x) == SUBREG)
2359    {
2360      if (GET_CODE (SUBREG_REG (x)) != REG)
2361	/* This could be more precise, but it's good enough.  */
2362	return decompose (SUBREG_REG (x));
2363      val.reg_flag = 1;
2364      val.start = true_regnum (x);
2365      if (val.start < 0)
2366	return decompose (SUBREG_REG (x));
2367      else
2368	/* A hard reg.  */
2369	val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2370    }
2371  else if (CONSTANT_P (x)
2372	   /* This hasn't been assigned yet, so it can't conflict yet.  */
2373	   || GET_CODE (x) == SCRATCH)
2374    val.safe = 1;
2375  else
2376    abort ();
2377  return val;
2378}
2379
2380/* Return 1 if altering Y will not modify the value of X.
2381   Y is also described by YDATA, which should be decompose (Y).  */
2382
2383static int
2384immune_p (x, y, ydata)
2385     rtx x, y;
2386     struct decomposition ydata;
2387{
2388  struct decomposition xdata;
2389
2390  if (ydata.reg_flag)
2391    return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2392  if (ydata.safe)
2393    return 1;
2394
2395  if (GET_CODE (y) != MEM)
2396    abort ();
2397  /* If Y is memory and X is not, Y can't affect X.  */
2398  if (GET_CODE (x) != MEM)
2399    return 1;
2400
2401  xdata = decompose (x);
2402
2403  if (! rtx_equal_p (xdata.base, ydata.base))
2404    {
2405      /* If bases are distinct symbolic constants, there is no overlap.  */
2406      if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2407	return 1;
2408      /* Constants and stack slots never overlap.  */
2409      if (CONSTANT_P (xdata.base)
2410	  && (ydata.base == frame_pointer_rtx
2411	      || ydata.base == hard_frame_pointer_rtx
2412	      || ydata.base == stack_pointer_rtx))
2413	return 1;
2414      if (CONSTANT_P (ydata.base)
2415	  && (xdata.base == frame_pointer_rtx
2416	      || xdata.base == hard_frame_pointer_rtx
2417	      || xdata.base == stack_pointer_rtx))
2418	return 1;
2419      /* If either base is variable, we don't know anything.  */
2420      return 0;
2421    }
2422
2423  return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2424}
2425
2426/* Similar, but calls decompose.  */
2427
2428int
2429safe_from_earlyclobber (op, clobber)
2430     rtx op, clobber;
2431{
2432  struct decomposition early_data;
2433
2434  early_data = decompose (clobber);
2435  return immune_p (op, clobber, early_data);
2436}
2437
2438/* Main entry point of this file: search the body of INSN
2439   for values that need reloading and record them with push_reload.
2440   REPLACE nonzero means record also where the values occur
2441   so that subst_reloads can be used.
2442
2443   IND_LEVELS says how many levels of indirection are supported by this
2444   machine; a value of zero means that a memory reference is not a valid
2445   memory address.
2446
2447   LIVE_KNOWN says we have valid information about which hard
2448   regs are live at each point in the program; this is true when
2449   we are called from global_alloc but false when stupid register
2450   allocation has been done.
2451
2452   RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2453   which is nonnegative if the reg has been commandeered for reloading into.
2454   It is copied into STATIC_RELOAD_REG_P and referenced from there
2455   by various subroutines.
2456
2457   Return TRUE if some operands need to be changed, because of swapping
2458   commutative operands, reg_equiv_address substitution, or whatever.  */
2459
2460int
2461find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2462     rtx insn;
2463     int replace, ind_levels;
2464     int live_known;
2465     short *reload_reg_p;
2466{
2467  int insn_code_number;
2468  int i, j;
2469  int noperands;
2470  /* These start out as the constraints for the insn
2471     and they are chewed up as we consider alternatives.  */
2472  char *constraints[MAX_RECOG_OPERANDS];
2473  /* These are the preferred classes for an operand, or NO_REGS if it isn't
2474     a register.  */
2475  enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2476  char pref_or_nothing[MAX_RECOG_OPERANDS];
2477  /* Nonzero for a MEM operand whose entire address needs a reload.  */
2478  int address_reloaded[MAX_RECOG_OPERANDS];
2479  /* Nonzero for an address operand that needs to be completely reloaded.  */
2480  int address_operand_reloaded[MAX_RECOG_OPERANDS];
2481  /* Value of enum reload_type to use for operand.  */
2482  enum reload_type operand_type[MAX_RECOG_OPERANDS];
2483  /* Value of enum reload_type to use within address of operand.  */
2484  enum reload_type address_type[MAX_RECOG_OPERANDS];
2485  /* Save the usage of each operand.  */
2486  enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2487  int no_input_reloads = 0, no_output_reloads = 0;
2488  int n_alternatives;
2489  int this_alternative[MAX_RECOG_OPERANDS];
2490  char this_alternative_match_win[MAX_RECOG_OPERANDS];
2491  char this_alternative_win[MAX_RECOG_OPERANDS];
2492  char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2493  char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2494  int this_alternative_matches[MAX_RECOG_OPERANDS];
2495  int swapped;
2496  int goal_alternative[MAX_RECOG_OPERANDS];
2497  int this_alternative_number;
2498  int goal_alternative_number = 0;
2499  int operand_reloadnum[MAX_RECOG_OPERANDS];
2500  int goal_alternative_matches[MAX_RECOG_OPERANDS];
2501  int goal_alternative_matched[MAX_RECOG_OPERANDS];
2502  char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2503  char goal_alternative_win[MAX_RECOG_OPERANDS];
2504  char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2505  char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2506  int goal_alternative_swapped;
2507  int best;
2508  int commutative;
2509  char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2510  rtx substed_operand[MAX_RECOG_OPERANDS];
2511  rtx body = PATTERN (insn);
2512  rtx set = single_set (insn);
2513  int goal_earlyclobber = 0, this_earlyclobber;
2514  enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2515  int retval = 0;
2516
2517  this_insn = insn;
2518  n_reloads = 0;
2519  n_replacements = 0;
2520  n_earlyclobbers = 0;
2521  replace_reloads = replace;
2522  hard_regs_live_known = live_known;
2523  static_reload_reg_p = reload_reg_p;
2524
2525  /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2526     neither are insns that SET cc0.  Insns that use CC0 are not allowed
2527     to have any input reloads.  */
2528  if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2529    no_output_reloads = 1;
2530
2531#ifdef HAVE_cc0
2532  if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2533    no_input_reloads = 1;
2534  if (reg_set_p (cc0_rtx, PATTERN (insn)))
2535    no_output_reloads = 1;
2536#endif
2537
2538#ifdef SECONDARY_MEMORY_NEEDED
2539  /* The eliminated forms of any secondary memory locations are per-insn, so
2540     clear them out here.  */
2541
2542  memset ((char *) secondary_memlocs_elim, 0, sizeof secondary_memlocs_elim);
2543#endif
2544
2545  /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2546     is cheap to move between them.  If it is not, there may not be an insn
2547     to do the copy, so we may need a reload.  */
2548  if (GET_CODE (body) == SET
2549      && GET_CODE (SET_DEST (body)) == REG
2550      && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2551      && GET_CODE (SET_SRC (body)) == REG
2552      && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2553      && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2554			     REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2555			     REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2556    return 0;
2557
2558  extract_insn (insn);
2559
2560  noperands = reload_n_operands = recog_data.n_operands;
2561  n_alternatives = recog_data.n_alternatives;
2562
2563  /* Just return "no reloads" if insn has no operands with constraints.  */
2564  if (noperands == 0 || n_alternatives == 0)
2565    return 0;
2566
2567  insn_code_number = INSN_CODE (insn);
2568  this_insn_is_asm = insn_code_number < 0;
2569
2570  memcpy (operand_mode, recog_data.operand_mode,
2571	  noperands * sizeof (enum machine_mode));
2572  memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2573
2574  commutative = -1;
2575
2576  /* If we will need to know, later, whether some pair of operands
2577     are the same, we must compare them now and save the result.
2578     Reloading the base and index registers will clobber them
2579     and afterward they will fail to match.  */
2580
2581  for (i = 0; i < noperands; i++)
2582    {
2583      char *p;
2584      int c;
2585
2586      substed_operand[i] = recog_data.operand[i];
2587      p = constraints[i];
2588
2589      modified[i] = RELOAD_READ;
2590
2591      /* Scan this operand's constraint to see if it is an output operand,
2592	 an in-out operand, is commutative, or should match another.  */
2593
2594      while ((c = *p++))
2595	{
2596	  if (c == '=')
2597	    modified[i] = RELOAD_WRITE;
2598	  else if (c == '+')
2599	    modified[i] = RELOAD_READ_WRITE;
2600	  else if (c == '%')
2601	    {
2602	      /* The last operand should not be marked commutative.  */
2603	      if (i == noperands - 1)
2604		abort ();
2605
2606	      commutative = i;
2607	    }
2608	  else if (ISDIGIT (c))
2609	    {
2610	      c = strtoul (p - 1, &p, 10);
2611
2612	      operands_match[c][i]
2613		= operands_match_p (recog_data.operand[c],
2614				    recog_data.operand[i]);
2615
2616	      /* An operand may not match itself.  */
2617	      if (c == i)
2618		abort ();
2619
2620	      /* If C can be commuted with C+1, and C might need to match I,
2621		 then C+1 might also need to match I.  */
2622	      if (commutative >= 0)
2623		{
2624		  if (c == commutative || c == commutative + 1)
2625		    {
2626		      int other = c + (c == commutative ? 1 : -1);
2627		      operands_match[other][i]
2628			= operands_match_p (recog_data.operand[other],
2629					    recog_data.operand[i]);
2630		    }
2631		  if (i == commutative || i == commutative + 1)
2632		    {
2633		      int other = i + (i == commutative ? 1 : -1);
2634		      operands_match[c][other]
2635			= operands_match_p (recog_data.operand[c],
2636					    recog_data.operand[other]);
2637		    }
2638		  /* Note that C is supposed to be less than I.
2639		     No need to consider altering both C and I because in
2640		     that case we would alter one into the other.  */
2641		}
2642	    }
2643	}
2644    }
2645
2646  /* Examine each operand that is a memory reference or memory address
2647     and reload parts of the addresses into index registers.
2648     Also here any references to pseudo regs that didn't get hard regs
2649     but are equivalent to constants get replaced in the insn itself
2650     with those constants.  Nobody will ever see them again.
2651
2652     Finally, set up the preferred classes of each operand.  */
2653
2654  for (i = 0; i < noperands; i++)
2655    {
2656      RTX_CODE code = GET_CODE (recog_data.operand[i]);
2657
2658      address_reloaded[i] = 0;
2659      address_operand_reloaded[i] = 0;
2660      operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2661			 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2662			 : RELOAD_OTHER);
2663      address_type[i]
2664	= (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2665	   : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2666	   : RELOAD_OTHER);
2667
2668      if (*constraints[i] == 0)
2669	/* Ignore things like match_operator operands.  */
2670	;
2671      else if (constraints[i][0] == 'p'
2672	       || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0]))
2673	{
2674	  address_operand_reloaded[i]
2675	    = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2676				    recog_data.operand[i],
2677				    recog_data.operand_loc[i],
2678				    i, operand_type[i], ind_levels, insn);
2679
2680	  /* If we now have a simple operand where we used to have a
2681	     PLUS or MULT, re-recognize and try again.  */
2682	  if ((GET_RTX_CLASS (GET_CODE (*recog_data.operand_loc[i])) == 'o'
2683	       || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2684	      && (GET_CODE (recog_data.operand[i]) == MULT
2685		  || GET_CODE (recog_data.operand[i]) == PLUS))
2686	    {
2687	      INSN_CODE (insn) = -1;
2688	      retval = find_reloads (insn, replace, ind_levels, live_known,
2689				     reload_reg_p);
2690	      return retval;
2691	    }
2692
2693	  recog_data.operand[i] = *recog_data.operand_loc[i];
2694	  substed_operand[i] = recog_data.operand[i];
2695
2696	  /* Address operands are reloaded in their existing mode,
2697	     no matter what is specified in the machine description.  */
2698	  operand_mode[i] = GET_MODE (recog_data.operand[i]);
2699	}
2700      else if (code == MEM)
2701	{
2702	  address_reloaded[i]
2703	    = find_reloads_address (GET_MODE (recog_data.operand[i]),
2704				    recog_data.operand_loc[i],
2705				    XEXP (recog_data.operand[i], 0),
2706				    &XEXP (recog_data.operand[i], 0),
2707				    i, address_type[i], ind_levels, insn);
2708	  recog_data.operand[i] = *recog_data.operand_loc[i];
2709	  substed_operand[i] = recog_data.operand[i];
2710	}
2711      else if (code == SUBREG)
2712	{
2713	  rtx reg = SUBREG_REG (recog_data.operand[i]);
2714	  rtx op
2715	    = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2716				   ind_levels,
2717				   set != 0
2718				   && &SET_DEST (set) == recog_data.operand_loc[i],
2719				   insn,
2720				   &address_reloaded[i]);
2721
2722	  /* If we made a MEM to load (a part of) the stackslot of a pseudo
2723	     that didn't get a hard register, emit a USE with a REG_EQUAL
2724	     note in front so that we might inherit a previous, possibly
2725	     wider reload.  */
2726
2727	  if (replace
2728	      && GET_CODE (op) == MEM
2729	      && GET_CODE (reg) == REG
2730	      && (GET_MODE_SIZE (GET_MODE (reg))
2731		  >= GET_MODE_SIZE (GET_MODE (op))))
2732	    set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2733						   insn),
2734				 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2735
2736	  substed_operand[i] = recog_data.operand[i] = op;
2737	}
2738      else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2739	/* We can get a PLUS as an "operand" as a result of register
2740	   elimination.  See eliminate_regs and gen_reload.  We handle
2741	   a unary operator by reloading the operand.  */
2742	substed_operand[i] = recog_data.operand[i]
2743	  = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2744				 ind_levels, 0, insn,
2745				 &address_reloaded[i]);
2746      else if (code == REG)
2747	{
2748	  /* This is equivalent to calling find_reloads_toplev.
2749	     The code is duplicated for speed.
2750	     When we find a pseudo always equivalent to a constant,
2751	     we replace it by the constant.  We must be sure, however,
2752	     that we don't try to replace it in the insn in which it
2753	     is being set.  */
2754	  int regno = REGNO (recog_data.operand[i]);
2755	  if (reg_equiv_constant[regno] != 0
2756	      && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2757	    {
2758	      /* Record the existing mode so that the check if constants are
2759		 allowed will work when operand_mode isn't specified.  */
2760
2761	      if (operand_mode[i] == VOIDmode)
2762		operand_mode[i] = GET_MODE (recog_data.operand[i]);
2763
2764	      substed_operand[i] = recog_data.operand[i]
2765		= reg_equiv_constant[regno];
2766	    }
2767	  if (reg_equiv_memory_loc[regno] != 0
2768	      && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2769	    /* We need not give a valid is_set_dest argument since the case
2770	       of a constant equivalence was checked above.  */
2771	    substed_operand[i] = recog_data.operand[i]
2772	      = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2773				     ind_levels, 0, insn,
2774				     &address_reloaded[i]);
2775	}
2776      /* If the operand is still a register (we didn't replace it with an
2777	 equivalent), get the preferred class to reload it into.  */
2778      code = GET_CODE (recog_data.operand[i]);
2779      preferred_class[i]
2780	= ((code == REG && REGNO (recog_data.operand[i])
2781	    >= FIRST_PSEUDO_REGISTER)
2782	   ? reg_preferred_class (REGNO (recog_data.operand[i]))
2783	   : NO_REGS);
2784      pref_or_nothing[i]
2785	= (code == REG
2786	   && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2787	   && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2788    }
2789
2790  /* If this is simply a copy from operand 1 to operand 0, merge the
2791     preferred classes for the operands.  */
2792  if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2793      && recog_data.operand[1] == SET_SRC (set))
2794    {
2795      preferred_class[0] = preferred_class[1]
2796	= reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2797      pref_or_nothing[0] |= pref_or_nothing[1];
2798      pref_or_nothing[1] |= pref_or_nothing[0];
2799    }
2800
2801  /* Now see what we need for pseudo-regs that didn't get hard regs
2802     or got the wrong kind of hard reg.  For this, we must consider
2803     all the operands together against the register constraints.  */
2804
2805  best = MAX_RECOG_OPERANDS * 2 + 600;
2806
2807  swapped = 0;
2808  goal_alternative_swapped = 0;
2809 try_swapped:
2810
2811  /* The constraints are made of several alternatives.
2812     Each operand's constraint looks like foo,bar,... with commas
2813     separating the alternatives.  The first alternatives for all
2814     operands go together, the second alternatives go together, etc.
2815
2816     First loop over alternatives.  */
2817
2818  for (this_alternative_number = 0;
2819       this_alternative_number < n_alternatives;
2820       this_alternative_number++)
2821    {
2822      /* Loop over operands for one constraint alternative.  */
2823      /* LOSERS counts those that don't fit this alternative
2824	 and would require loading.  */
2825      int losers = 0;
2826      /* BAD is set to 1 if it some operand can't fit this alternative
2827	 even after reloading.  */
2828      int bad = 0;
2829      /* REJECT is a count of how undesirable this alternative says it is
2830	 if any reloading is required.  If the alternative matches exactly
2831	 then REJECT is ignored, but otherwise it gets this much
2832	 counted against it in addition to the reloading needed.  Each
2833	 ? counts three times here since we want the disparaging caused by
2834	 a bad register class to only count 1/3 as much.  */
2835      int reject = 0;
2836
2837      this_earlyclobber = 0;
2838
2839      for (i = 0; i < noperands; i++)
2840	{
2841	  char *p = constraints[i];
2842	  int win = 0;
2843	  int did_match = 0;
2844	  /* 0 => this operand can be reloaded somehow for this alternative.  */
2845	  int badop = 1;
2846	  /* 0 => this operand can be reloaded if the alternative allows regs.  */
2847	  int winreg = 0;
2848	  int c;
2849	  rtx operand = recog_data.operand[i];
2850	  int offset = 0;
2851	  /* Nonzero means this is a MEM that must be reloaded into a reg
2852	     regardless of what the constraint says.  */
2853	  int force_reload = 0;
2854	  int offmemok = 0;
2855	  /* Nonzero if a constant forced into memory would be OK for this
2856	     operand.  */
2857	  int constmemok = 0;
2858	  int earlyclobber = 0;
2859
2860	  /* If the predicate accepts a unary operator, it means that
2861	     we need to reload the operand, but do not do this for
2862	     match_operator and friends.  */
2863	  if (GET_RTX_CLASS (GET_CODE (operand)) == '1' && *p != 0)
2864	    operand = XEXP (operand, 0);
2865
2866	  /* If the operand is a SUBREG, extract
2867	     the REG or MEM (or maybe even a constant) within.
2868	     (Constants can occur as a result of reg_equiv_constant.)  */
2869
2870	  while (GET_CODE (operand) == SUBREG)
2871	    {
2872	      /* Offset only matters when operand is a REG and
2873		 it is a hard reg.  This is because it is passed
2874		 to reg_fits_class_p if it is a REG and all pseudos
2875		 return 0 from that function.  */
2876	      if (GET_CODE (SUBREG_REG (operand)) == REG
2877		  && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2878		{
2879		  if (!subreg_offset_representable_p
2880			(REGNO (SUBREG_REG (operand)),
2881			 GET_MODE (SUBREG_REG (operand)),
2882			 SUBREG_BYTE (operand),
2883			 GET_MODE (operand)))
2884		     force_reload = 1;
2885		  offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2886						 GET_MODE (SUBREG_REG (operand)),
2887						 SUBREG_BYTE (operand),
2888						 GET_MODE (operand));
2889		}
2890	      operand = SUBREG_REG (operand);
2891	      /* Force reload if this is a constant or PLUS or if there may
2892		 be a problem accessing OPERAND in the outer mode.  */
2893	      if (CONSTANT_P (operand)
2894		  || GET_CODE (operand) == PLUS
2895		  /* We must force a reload of paradoxical SUBREGs
2896		     of a MEM because the alignment of the inner value
2897		     may not be enough to do the outer reference.  On
2898		     big-endian machines, it may also reference outside
2899		     the object.
2900
2901		     On machines that extend byte operations and we have a
2902		     SUBREG where both the inner and outer modes are no wider
2903		     than a word and the inner mode is narrower, is integral,
2904		     and gets extended when loaded from memory, combine.c has
2905		     made assumptions about the behavior of the machine in such
2906		     register access.  If the data is, in fact, in memory we
2907		     must always load using the size assumed to be in the
2908		     register and let the insn do the different-sized
2909		     accesses.
2910
2911		     This is doubly true if WORD_REGISTER_OPERATIONS.  In
2912		     this case eliminate_regs has left non-paradoxical
2913		     subregs for push_reloads to see.  Make sure it does
2914		     by forcing the reload.
2915
2916		     ??? When is it right at this stage to have a subreg
2917		     of a mem that is _not_ to be handled specialy?  IMO
2918		     those should have been reduced to just a mem.  */
2919		  || ((GET_CODE (operand) == MEM
2920		       || (GET_CODE (operand)== REG
2921			   && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2922#ifndef WORD_REGISTER_OPERATIONS
2923		      && (((GET_MODE_BITSIZE (GET_MODE (operand))
2924			    < BIGGEST_ALIGNMENT)
2925			   && (GET_MODE_SIZE (operand_mode[i])
2926			       > GET_MODE_SIZE (GET_MODE (operand))))
2927			  || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
2928#ifdef LOAD_EXTEND_OP
2929			  || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2930			      && (GET_MODE_SIZE (GET_MODE (operand))
2931				  <= UNITS_PER_WORD)
2932			      && (GET_MODE_SIZE (operand_mode[i])
2933				  > GET_MODE_SIZE (GET_MODE (operand)))
2934			      && INTEGRAL_MODE_P (GET_MODE (operand))
2935			      && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2936#endif
2937			  )
2938#endif
2939		      )
2940		  )
2941		force_reload = 1;
2942	    }
2943
2944	  this_alternative[i] = (int) NO_REGS;
2945	  this_alternative_win[i] = 0;
2946	  this_alternative_match_win[i] = 0;
2947	  this_alternative_offmemok[i] = 0;
2948	  this_alternative_earlyclobber[i] = 0;
2949	  this_alternative_matches[i] = -1;
2950
2951	  /* An empty constraint or empty alternative
2952	     allows anything which matched the pattern.  */
2953	  if (*p == 0 || *p == ',')
2954	    win = 1, badop = 0;
2955
2956	  /* Scan this alternative's specs for this operand;
2957	     set WIN if the operand fits any letter in this alternative.
2958	     Otherwise, clear BADOP if this operand could
2959	     fit some letter after reloads,
2960	     or set WINREG if this operand could fit after reloads
2961	     provided the constraint allows some registers.  */
2962
2963	  while (*p && (c = *p++) != ',')
2964	    switch (c)
2965	      {
2966	      case '=':  case '+':  case '*':
2967		break;
2968
2969	      case '%':
2970		/* The last operand should not be marked commutative.  */
2971		if (i != noperands - 1)
2972		  commutative = i;
2973		break;
2974
2975	      case '?':
2976		reject += 6;
2977		break;
2978
2979	      case '!':
2980		reject = 600;
2981		break;
2982
2983	      case '#':
2984		/* Ignore rest of this alternative as far as
2985		   reloading is concerned.  */
2986		while (*p && *p != ',')
2987		  p++;
2988		break;
2989
2990	      case '0':  case '1':  case '2':  case '3':  case '4':
2991	      case '5':  case '6':  case '7':  case '8':  case '9':
2992		c = strtoul (p - 1, &p, 10);
2993
2994		this_alternative_matches[i] = c;
2995		/* We are supposed to match a previous operand.
2996		   If we do, we win if that one did.
2997		   If we do not, count both of the operands as losers.
2998		   (This is too conservative, since most of the time
2999		   only a single reload insn will be needed to make
3000		   the two operands win.  As a result, this alternative
3001		   may be rejected when it is actually desirable.)  */
3002		if ((swapped && (c != commutative || i != commutative + 1))
3003		    /* If we are matching as if two operands were swapped,
3004		       also pretend that operands_match had been computed
3005		       with swapped.
3006		       But if I is the second of those and C is the first,
3007		       don't exchange them, because operands_match is valid
3008		       only on one side of its diagonal.  */
3009		    ? (operands_match
3010		       [(c == commutative || c == commutative + 1)
3011		       ? 2 * commutative + 1 - c : c]
3012		       [(i == commutative || i == commutative + 1)
3013		       ? 2 * commutative + 1 - i : i])
3014		    : operands_match[c][i])
3015		  {
3016		    /* If we are matching a non-offsettable address where an
3017		       offsettable address was expected, then we must reject
3018		       this combination, because we can't reload it.  */
3019		    if (this_alternative_offmemok[c]
3020			&& GET_CODE (recog_data.operand[c]) == MEM
3021			&& this_alternative[c] == (int) NO_REGS
3022			&& ! this_alternative_win[c])
3023		      bad = 1;
3024
3025		    did_match = this_alternative_win[c];
3026		  }
3027		else
3028		  {
3029		    /* Operands don't match.  */
3030		    rtx value;
3031		    /* Retroactively mark the operand we had to match
3032		       as a loser, if it wasn't already.  */
3033		    if (this_alternative_win[c])
3034		      losers++;
3035		    this_alternative_win[c] = 0;
3036		    if (this_alternative[c] == (int) NO_REGS)
3037		      bad = 1;
3038		    /* But count the pair only once in the total badness of
3039		       this alternative, if the pair can be a dummy reload.  */
3040		    value
3041		      = find_dummy_reload (recog_data.operand[i],
3042					   recog_data.operand[c],
3043					   recog_data.operand_loc[i],
3044					   recog_data.operand_loc[c],
3045					   operand_mode[i], operand_mode[c],
3046					   this_alternative[c], -1,
3047					   this_alternative_earlyclobber[c]);
3048
3049		    if (value != 0)
3050		      losers--;
3051		  }
3052		/* This can be fixed with reloads if the operand
3053		   we are supposed to match can be fixed with reloads.  */
3054		badop = 0;
3055		this_alternative[i] = this_alternative[c];
3056
3057		/* If we have to reload this operand and some previous
3058		   operand also had to match the same thing as this
3059		   operand, we don't know how to do that.  So reject this
3060		   alternative.  */
3061		if (! did_match || force_reload)
3062		  for (j = 0; j < i; j++)
3063		    if (this_alternative_matches[j]
3064			== this_alternative_matches[i])
3065		      badop = 1;
3066		break;
3067
3068	      case 'p':
3069		/* All necessary reloads for an address_operand
3070		   were handled in find_reloads_address.  */
3071		this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3072		win = 1;
3073		badop = 0;
3074		break;
3075
3076	      case 'm':
3077		if (force_reload)
3078		  break;
3079		if (GET_CODE (operand) == MEM
3080		    || (GET_CODE (operand) == REG
3081			&& REGNO (operand) >= FIRST_PSEUDO_REGISTER
3082			&& reg_renumber[REGNO (operand)] < 0))
3083		  win = 1;
3084		if (CONSTANT_P (operand)
3085		    /* force_const_mem does not accept HIGH.  */
3086		    && GET_CODE (operand) != HIGH)
3087		  badop = 0;
3088		constmemok = 1;
3089		break;
3090
3091	      case '<':
3092		if (GET_CODE (operand) == MEM
3093		    && ! address_reloaded[i]
3094		    && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3095			|| GET_CODE (XEXP (operand, 0)) == POST_DEC))
3096		  win = 1;
3097		break;
3098
3099	      case '>':
3100		if (GET_CODE (operand) == MEM
3101		    && ! address_reloaded[i]
3102		    && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3103			|| GET_CODE (XEXP (operand, 0)) == POST_INC))
3104		  win = 1;
3105		break;
3106
3107		/* Memory operand whose address is not offsettable.  */
3108	      case 'V':
3109		if (force_reload)
3110		  break;
3111		if (GET_CODE (operand) == MEM
3112		    && ! (ind_levels ? offsettable_memref_p (operand)
3113			  : offsettable_nonstrict_memref_p (operand))
3114		    /* Certain mem addresses will become offsettable
3115		       after they themselves are reloaded.  This is important;
3116		       we don't want our own handling of unoffsettables
3117		       to override the handling of reg_equiv_address.  */
3118		    && !(GET_CODE (XEXP (operand, 0)) == REG
3119			 && (ind_levels == 0
3120			     || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3121		  win = 1;
3122		break;
3123
3124		/* Memory operand whose address is offsettable.  */
3125	      case 'o':
3126		if (force_reload)
3127		  break;
3128		if ((GET_CODE (operand) == MEM
3129		     /* If IND_LEVELS, find_reloads_address won't reload a
3130			pseudo that didn't get a hard reg, so we have to
3131			reject that case.  */
3132		     && ((ind_levels ? offsettable_memref_p (operand)
3133			  : offsettable_nonstrict_memref_p (operand))
3134			 /* A reloaded address is offsettable because it is now
3135			    just a simple register indirect.  */
3136			 || address_reloaded[i]))
3137		    || (GET_CODE (operand) == REG
3138			&& REGNO (operand) >= FIRST_PSEUDO_REGISTER
3139			&& reg_renumber[REGNO (operand)] < 0
3140			/* If reg_equiv_address is nonzero, we will be
3141			   loading it into a register; hence it will be
3142			   offsettable, but we cannot say that reg_equiv_mem
3143			   is offsettable without checking.  */
3144			&& ((reg_equiv_mem[REGNO (operand)] != 0
3145			     && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3146			    || (reg_equiv_address[REGNO (operand)] != 0))))
3147		  win = 1;
3148		/* force_const_mem does not accept HIGH.  */
3149		if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3150		    || GET_CODE (operand) == MEM)
3151		  badop = 0;
3152		constmemok = 1;
3153		offmemok = 1;
3154		break;
3155
3156	      case '&':
3157		/* Output operand that is stored before the need for the
3158		   input operands (and their index registers) is over.  */
3159		earlyclobber = 1, this_earlyclobber = 1;
3160		break;
3161
3162	      case 'E':
3163	      case 'F':
3164		if (GET_CODE (operand) == CONST_DOUBLE
3165		    || (GET_CODE (operand) == CONST_VECTOR
3166			&& (GET_MODE_CLASS (GET_MODE (operand))
3167			    == MODE_VECTOR_FLOAT)))
3168		  win = 1;
3169		break;
3170
3171	      case 'G':
3172	      case 'H':
3173		if (GET_CODE (operand) == CONST_DOUBLE
3174		    && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
3175		  win = 1;
3176		break;
3177
3178	      case 's':
3179		if (GET_CODE (operand) == CONST_INT
3180		    || (GET_CODE (operand) == CONST_DOUBLE
3181			&& GET_MODE (operand) == VOIDmode))
3182		  break;
3183	      case 'i':
3184		if (CONSTANT_P (operand)
3185#ifdef LEGITIMATE_PIC_OPERAND_P
3186		    && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3187#endif
3188		    )
3189		  win = 1;
3190		break;
3191
3192	      case 'n':
3193		if (GET_CODE (operand) == CONST_INT
3194		    || (GET_CODE (operand) == CONST_DOUBLE
3195			&& GET_MODE (operand) == VOIDmode))
3196		  win = 1;
3197		break;
3198
3199	      case 'I':
3200	      case 'J':
3201	      case 'K':
3202	      case 'L':
3203	      case 'M':
3204	      case 'N':
3205	      case 'O':
3206	      case 'P':
3207		if (GET_CODE (operand) == CONST_INT
3208		    && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
3209		  win = 1;
3210		break;
3211
3212	      case 'X':
3213		win = 1;
3214		break;
3215
3216	      case 'g':
3217		if (! force_reload
3218		    /* A PLUS is never a valid operand, but reload can make
3219		       it from a register when eliminating registers.  */
3220		    && GET_CODE (operand) != PLUS
3221		    /* A SCRATCH is not a valid operand.  */
3222		    && GET_CODE (operand) != SCRATCH
3223#ifdef LEGITIMATE_PIC_OPERAND_P
3224		    && (! CONSTANT_P (operand)
3225			|| ! flag_pic
3226			|| LEGITIMATE_PIC_OPERAND_P (operand))
3227#endif
3228		    && (GENERAL_REGS == ALL_REGS
3229			|| GET_CODE (operand) != REG
3230			|| (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3231			    && reg_renumber[REGNO (operand)] < 0)))
3232		  win = 1;
3233		/* Drop through into 'r' case.  */
3234
3235	      case 'r':
3236		this_alternative[i]
3237		  = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3238		goto reg;
3239
3240	      default:
3241		if (REG_CLASS_FROM_LETTER (c) == NO_REGS)
3242		  {
3243#ifdef EXTRA_CONSTRAINT
3244		    if (EXTRA_MEMORY_CONSTRAINT (c))
3245		      {
3246			if (force_reload)
3247			  break;
3248		        if (EXTRA_CONSTRAINT (operand, c))
3249		          win = 1;
3250			/* If the address was already reloaded,
3251			   we win as well.  */
3252			if (GET_CODE (operand) == MEM && address_reloaded[i])
3253			  win = 1;
3254			/* Likewise if the address will be reloaded because
3255			   reg_equiv_address is nonzero.  For reg_equiv_mem
3256			   we have to check.  */
3257		        if (GET_CODE (operand) == REG
3258			    && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3259			    && reg_renumber[REGNO (operand)] < 0
3260			    && ((reg_equiv_mem[REGNO (operand)] != 0
3261			         && EXTRA_CONSTRAINT (reg_equiv_mem[REGNO (operand)], c))
3262			        || (reg_equiv_address[REGNO (operand)] != 0)))
3263			  win = 1;
3264
3265			/* If we didn't already win, we can reload
3266			   constants via force_const_mem, and other
3267			   MEMs by reloading the address like for 'o'.  */
3268			if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3269			    || GET_CODE (operand) == MEM)
3270			  badop = 0;
3271			constmemok = 1;
3272			offmemok = 1;
3273			break;
3274		      }
3275		    if (EXTRA_ADDRESS_CONSTRAINT (c))
3276		      {
3277		        if (EXTRA_CONSTRAINT (operand, c))
3278		          win = 1;
3279
3280			/* If we didn't already win, we can reload
3281			   the address into a base register.  */
3282			this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3283			badop = 0;
3284			break;
3285		      }
3286
3287		    if (EXTRA_CONSTRAINT (operand, c))
3288		      win = 1;
3289#endif
3290		    break;
3291		  }
3292
3293		this_alternative[i]
3294		  = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
3295	      reg:
3296		if (GET_MODE (operand) == BLKmode)
3297		  break;
3298		winreg = 1;
3299		if (GET_CODE (operand) == REG
3300		    && reg_fits_class_p (operand, this_alternative[i],
3301					 offset, GET_MODE (recog_data.operand[i])))
3302		  win = 1;
3303		break;
3304	      }
3305
3306	  constraints[i] = p;
3307
3308	  /* If this operand could be handled with a reg,
3309	     and some reg is allowed, then this operand can be handled.  */
3310	  if (winreg && this_alternative[i] != (int) NO_REGS)
3311	    badop = 0;
3312
3313	  /* Record which operands fit this alternative.  */
3314	  this_alternative_earlyclobber[i] = earlyclobber;
3315	  if (win && ! force_reload)
3316	    this_alternative_win[i] = 1;
3317	  else if (did_match && ! force_reload)
3318	    this_alternative_match_win[i] = 1;
3319	  else
3320	    {
3321	      int const_to_mem = 0;
3322
3323	      this_alternative_offmemok[i] = offmemok;
3324	      losers++;
3325	      if (badop)
3326		bad = 1;
3327	      /* Alternative loses if it has no regs for a reg operand.  */
3328	      if (GET_CODE (operand) == REG
3329		  && this_alternative[i] == (int) NO_REGS
3330		  && this_alternative_matches[i] < 0)
3331		bad = 1;
3332
3333	      /* If this is a constant that is reloaded into the desired
3334		 class by copying it to memory first, count that as another
3335		 reload.  This is consistent with other code and is
3336		 required to avoid choosing another alternative when
3337		 the constant is moved into memory by this function on
3338		 an early reload pass.  Note that the test here is
3339		 precisely the same as in the code below that calls
3340		 force_const_mem.  */
3341	      if (CONSTANT_P (operand)
3342		  /* force_const_mem does not accept HIGH.  */
3343		  && GET_CODE (operand) != HIGH
3344		  && ((PREFERRED_RELOAD_CLASS (operand,
3345					       (enum reg_class) this_alternative[i])
3346		       == NO_REGS)
3347		      || no_input_reloads)
3348		  && operand_mode[i] != VOIDmode)
3349		{
3350		  const_to_mem = 1;
3351		  if (this_alternative[i] != (int) NO_REGS)
3352		    losers++;
3353		}
3354
3355	      /* If we can't reload this value at all, reject this
3356		 alternative.  Note that we could also lose due to
3357		 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3358		 here.  */
3359
3360	      if (! CONSTANT_P (operand)
3361		  && (enum reg_class) this_alternative[i] != NO_REGS
3362		  && (PREFERRED_RELOAD_CLASS (operand,
3363					      (enum reg_class) this_alternative[i])
3364		      == NO_REGS))
3365		bad = 1;
3366
3367	      /* Alternative loses if it requires a type of reload not
3368		 permitted for this insn.  We can always reload SCRATCH
3369		 and objects with a REG_UNUSED note.  */
3370	      else if (GET_CODE (operand) != SCRATCH
3371		       && modified[i] != RELOAD_READ && no_output_reloads
3372		       && ! find_reg_note (insn, REG_UNUSED, operand))
3373		bad = 1;
3374	      else if (modified[i] != RELOAD_WRITE && no_input_reloads
3375		       && ! const_to_mem)
3376		bad = 1;
3377
3378	      /* We prefer to reload pseudos over reloading other things,
3379		 since such reloads may be able to be eliminated later.
3380		 If we are reloading a SCRATCH, we won't be generating any
3381		 insns, just using a register, so it is also preferred.
3382		 So bump REJECT in other cases.  Don't do this in the
3383		 case where we are forcing a constant into memory and
3384		 it will then win since we don't want to have a different
3385		 alternative match then.  */
3386	      if (! (GET_CODE (operand) == REG
3387		     && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3388		  && GET_CODE (operand) != SCRATCH
3389		  && ! (const_to_mem && constmemok))
3390		reject += 2;
3391
3392	      /* Input reloads can be inherited more often than output
3393		 reloads can be removed, so penalize output reloads.  */
3394	      if (operand_type[i] != RELOAD_FOR_INPUT
3395		  && GET_CODE (operand) != SCRATCH)
3396		reject++;
3397	    }
3398
3399	  /* If this operand is a pseudo register that didn't get a hard
3400	     reg and this alternative accepts some register, see if the
3401	     class that we want is a subset of the preferred class for this
3402	     register.  If not, but it intersects that class, use the
3403	     preferred class instead.  If it does not intersect the preferred
3404	     class, show that usage of this alternative should be discouraged;
3405	     it will be discouraged more still if the register is `preferred
3406	     or nothing'.  We do this because it increases the chance of
3407	     reusing our spill register in a later insn and avoiding a pair
3408	     of memory stores and loads.
3409
3410	     Don't bother with this if this alternative will accept this
3411	     operand.
3412
3413	     Don't do this for a multiword operand, since it is only a
3414	     small win and has the risk of requiring more spill registers,
3415	     which could cause a large loss.
3416
3417	     Don't do this if the preferred class has only one register
3418	     because we might otherwise exhaust the class.  */
3419
3420	  if (! win && ! did_match
3421	      && this_alternative[i] != (int) NO_REGS
3422	      && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3423	      && reg_class_size[(int) preferred_class[i]] > 1)
3424	    {
3425	      if (! reg_class_subset_p (this_alternative[i],
3426					preferred_class[i]))
3427		{
3428		  /* Since we don't have a way of forming the intersection,
3429		     we just do something special if the preferred class
3430		     is a subset of the class we have; that's the most
3431		     common case anyway.  */
3432		  if (reg_class_subset_p (preferred_class[i],
3433					  this_alternative[i]))
3434		    this_alternative[i] = (int) preferred_class[i];
3435		  else
3436		    reject += (2 + 2 * pref_or_nothing[i]);
3437		}
3438	    }
3439	}
3440
3441      /* Now see if any output operands that are marked "earlyclobber"
3442	 in this alternative conflict with any input operands
3443	 or any memory addresses.  */
3444
3445      for (i = 0; i < noperands; i++)
3446	if (this_alternative_earlyclobber[i]
3447	    && (this_alternative_win[i] || this_alternative_match_win[i]))
3448	  {
3449	    struct decomposition early_data;
3450
3451	    early_data = decompose (recog_data.operand[i]);
3452
3453	    if (modified[i] == RELOAD_READ)
3454	      abort ();
3455
3456	    if (this_alternative[i] == NO_REGS)
3457	      {
3458		this_alternative_earlyclobber[i] = 0;
3459		if (this_insn_is_asm)
3460		  error_for_asm (this_insn,
3461				 "`&' constraint used with no register class");
3462		else
3463		  abort ();
3464	      }
3465
3466	    for (j = 0; j < noperands; j++)
3467	      /* Is this an input operand or a memory ref?  */
3468	      if ((GET_CODE (recog_data.operand[j]) == MEM
3469		   || modified[j] != RELOAD_WRITE)
3470		  && j != i
3471		  /* Ignore things like match_operator operands.  */
3472		  && *recog_data.constraints[j] != 0
3473		  /* Don't count an input operand that is constrained to match
3474		     the early clobber operand.  */
3475		  && ! (this_alternative_matches[j] == i
3476			&& rtx_equal_p (recog_data.operand[i],
3477					recog_data.operand[j]))
3478		  /* Is it altered by storing the earlyclobber operand?  */
3479		  && !immune_p (recog_data.operand[j], recog_data.operand[i],
3480				early_data))
3481		{
3482		  /* If the output is in a single-reg class,
3483		     it's costly to reload it, so reload the input instead.  */
3484		  if (reg_class_size[this_alternative[i]] == 1
3485		      && (GET_CODE (recog_data.operand[j]) == REG
3486			  || GET_CODE (recog_data.operand[j]) == SUBREG))
3487		    {
3488		      losers++;
3489		      this_alternative_win[j] = 0;
3490		      this_alternative_match_win[j] = 0;
3491		    }
3492		  else
3493		    break;
3494		}
3495	    /* If an earlyclobber operand conflicts with something,
3496	       it must be reloaded, so request this and count the cost.  */
3497	    if (j != noperands)
3498	      {
3499		losers++;
3500		this_alternative_win[i] = 0;
3501		this_alternative_match_win[j] = 0;
3502		for (j = 0; j < noperands; j++)
3503		  if (this_alternative_matches[j] == i
3504		      && this_alternative_match_win[j])
3505		    {
3506		      this_alternative_win[j] = 0;
3507		      this_alternative_match_win[j] = 0;
3508		      losers++;
3509		    }
3510	      }
3511	  }
3512
3513      /* If one alternative accepts all the operands, no reload required,
3514	 choose that alternative; don't consider the remaining ones.  */
3515      if (losers == 0)
3516	{
3517	  /* Unswap these so that they are never swapped at `finish'.  */
3518	  if (commutative >= 0)
3519	    {
3520	      recog_data.operand[commutative] = substed_operand[commutative];
3521	      recog_data.operand[commutative + 1]
3522		= substed_operand[commutative + 1];
3523	    }
3524	  for (i = 0; i < noperands; i++)
3525	    {
3526	      goal_alternative_win[i] = this_alternative_win[i];
3527	      goal_alternative_match_win[i] = this_alternative_match_win[i];
3528	      goal_alternative[i] = this_alternative[i];
3529	      goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3530	      goal_alternative_matches[i] = this_alternative_matches[i];
3531	      goal_alternative_earlyclobber[i]
3532		= this_alternative_earlyclobber[i];
3533	    }
3534	  goal_alternative_number = this_alternative_number;
3535	  goal_alternative_swapped = swapped;
3536	  goal_earlyclobber = this_earlyclobber;
3537	  goto finish;
3538	}
3539
3540      /* REJECT, set by the ! and ? constraint characters and when a register
3541	 would be reloaded into a non-preferred class, discourages the use of
3542	 this alternative for a reload goal.  REJECT is incremented by six
3543	 for each ? and two for each non-preferred class.  */
3544      losers = losers * 6 + reject;
3545
3546      /* If this alternative can be made to work by reloading,
3547	 and it needs less reloading than the others checked so far,
3548	 record it as the chosen goal for reloading.  */
3549      if (! bad && best > losers)
3550	{
3551	  for (i = 0; i < noperands; i++)
3552	    {
3553	      goal_alternative[i] = this_alternative[i];
3554	      goal_alternative_win[i] = this_alternative_win[i];
3555	      goal_alternative_match_win[i] = this_alternative_match_win[i];
3556	      goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3557	      goal_alternative_matches[i] = this_alternative_matches[i];
3558	      goal_alternative_earlyclobber[i]
3559		= this_alternative_earlyclobber[i];
3560	    }
3561	  goal_alternative_swapped = swapped;
3562	  best = losers;
3563	  goal_alternative_number = this_alternative_number;
3564	  goal_earlyclobber = this_earlyclobber;
3565	}
3566    }
3567
3568  /* If insn is commutative (it's safe to exchange a certain pair of operands)
3569     then we need to try each alternative twice,
3570     the second time matching those two operands
3571     as if we had exchanged them.
3572     To do this, really exchange them in operands.
3573
3574     If we have just tried the alternatives the second time,
3575     return operands to normal and drop through.  */
3576
3577  if (commutative >= 0)
3578    {
3579      swapped = !swapped;
3580      if (swapped)
3581	{
3582	  enum reg_class tclass;
3583	  int t;
3584
3585	  recog_data.operand[commutative] = substed_operand[commutative + 1];
3586	  recog_data.operand[commutative + 1] = substed_operand[commutative];
3587	  /* Swap the duplicates too.  */
3588	  for (i = 0; i < recog_data.n_dups; i++)
3589	    if (recog_data.dup_num[i] == commutative
3590		|| recog_data.dup_num[i] == commutative + 1)
3591	      *recog_data.dup_loc[i]
3592		 = recog_data.operand[(int) recog_data.dup_num[i]];
3593
3594	  tclass = preferred_class[commutative];
3595	  preferred_class[commutative] = preferred_class[commutative + 1];
3596	  preferred_class[commutative + 1] = tclass;
3597
3598	  t = pref_or_nothing[commutative];
3599	  pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3600	  pref_or_nothing[commutative + 1] = t;
3601
3602	  memcpy (constraints, recog_data.constraints,
3603		  noperands * sizeof (char *));
3604	  goto try_swapped;
3605	}
3606      else
3607	{
3608	  recog_data.operand[commutative] = substed_operand[commutative];
3609	  recog_data.operand[commutative + 1]
3610	    = substed_operand[commutative + 1];
3611	  /* Unswap the duplicates too.  */
3612	  for (i = 0; i < recog_data.n_dups; i++)
3613	    if (recog_data.dup_num[i] == commutative
3614		|| recog_data.dup_num[i] == commutative + 1)
3615	      *recog_data.dup_loc[i]
3616		 = recog_data.operand[(int) recog_data.dup_num[i]];
3617	}
3618    }
3619
3620  /* The operands don't meet the constraints.
3621     goal_alternative describes the alternative
3622     that we could reach by reloading the fewest operands.
3623     Reload so as to fit it.  */
3624
3625  if (best == MAX_RECOG_OPERANDS * 2 + 600)
3626    {
3627      /* No alternative works with reloads??  */
3628      if (insn_code_number >= 0)
3629	fatal_insn ("unable to generate reloads for:", insn);
3630      error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3631      /* Avoid further trouble with this insn.  */
3632      PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3633      n_reloads = 0;
3634      return 0;
3635    }
3636
3637  /* Jump to `finish' from above if all operands are valid already.
3638     In that case, goal_alternative_win is all 1.  */
3639 finish:
3640
3641  /* Right now, for any pair of operands I and J that are required to match,
3642     with I < J,
3643     goal_alternative_matches[J] is I.
3644     Set up goal_alternative_matched as the inverse function:
3645     goal_alternative_matched[I] = J.  */
3646
3647  for (i = 0; i < noperands; i++)
3648    goal_alternative_matched[i] = -1;
3649
3650  for (i = 0; i < noperands; i++)
3651    if (! goal_alternative_win[i]
3652	&& goal_alternative_matches[i] >= 0)
3653      goal_alternative_matched[goal_alternative_matches[i]] = i;
3654
3655  for (i = 0; i < noperands; i++)
3656    goal_alternative_win[i] |= goal_alternative_match_win[i];
3657
3658  /* If the best alternative is with operands 1 and 2 swapped,
3659     consider them swapped before reporting the reloads.  Update the
3660     operand numbers of any reloads already pushed.  */
3661
3662  if (goal_alternative_swapped)
3663    {
3664      rtx tem;
3665
3666      tem = substed_operand[commutative];
3667      substed_operand[commutative] = substed_operand[commutative + 1];
3668      substed_operand[commutative + 1] = tem;
3669      tem = recog_data.operand[commutative];
3670      recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3671      recog_data.operand[commutative + 1] = tem;
3672      tem = *recog_data.operand_loc[commutative];
3673      *recog_data.operand_loc[commutative]
3674	= *recog_data.operand_loc[commutative + 1];
3675      *recog_data.operand_loc[commutative + 1] = tem;
3676
3677      for (i = 0; i < n_reloads; i++)
3678	{
3679	  if (rld[i].opnum == commutative)
3680	    rld[i].opnum = commutative + 1;
3681	  else if (rld[i].opnum == commutative + 1)
3682	    rld[i].opnum = commutative;
3683	}
3684    }
3685
3686  for (i = 0; i < noperands; i++)
3687    {
3688      operand_reloadnum[i] = -1;
3689
3690      /* If this is an earlyclobber operand, we need to widen the scope.
3691	 The reload must remain valid from the start of the insn being
3692	 reloaded until after the operand is stored into its destination.
3693	 We approximate this with RELOAD_OTHER even though we know that we
3694	 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3695
3696	 One special case that is worth checking is when we have an
3697	 output that is earlyclobber but isn't used past the insn (typically
3698	 a SCRATCH).  In this case, we only need have the reload live
3699	 through the insn itself, but not for any of our input or output
3700	 reloads.
3701	 But we must not accidentally narrow the scope of an existing
3702	 RELOAD_OTHER reload - leave these alone.
3703
3704	 In any case, anything needed to address this operand can remain
3705	 however they were previously categorized.  */
3706
3707      if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3708	operand_type[i]
3709	  = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3710	     ? RELOAD_FOR_INSN : RELOAD_OTHER);
3711    }
3712
3713  /* Any constants that aren't allowed and can't be reloaded
3714     into registers are here changed into memory references.  */
3715  for (i = 0; i < noperands; i++)
3716    if (! goal_alternative_win[i]
3717	&& CONSTANT_P (recog_data.operand[i])
3718	/* force_const_mem does not accept HIGH.  */
3719	&& GET_CODE (recog_data.operand[i]) != HIGH
3720	&& ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3721				     (enum reg_class) goal_alternative[i])
3722	     == NO_REGS)
3723	    || no_input_reloads)
3724	&& operand_mode[i] != VOIDmode)
3725      {
3726	substed_operand[i] = recog_data.operand[i]
3727	  = find_reloads_toplev (force_const_mem (operand_mode[i],
3728						  recog_data.operand[i]),
3729				 i, address_type[i], ind_levels, 0, insn,
3730				 NULL);
3731	if (alternative_allows_memconst (recog_data.constraints[i],
3732					 goal_alternative_number))
3733	  goal_alternative_win[i] = 1;
3734      }
3735
3736  /* Record the values of the earlyclobber operands for the caller.  */
3737  if (goal_earlyclobber)
3738    for (i = 0; i < noperands; i++)
3739      if (goal_alternative_earlyclobber[i])
3740	reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3741
3742  /* Now record reloads for all the operands that need them.  */
3743  for (i = 0; i < noperands; i++)
3744    if (! goal_alternative_win[i])
3745      {
3746	/* Operands that match previous ones have already been handled.  */
3747	if (goal_alternative_matches[i] >= 0)
3748	  ;
3749	/* Handle an operand with a nonoffsettable address
3750	   appearing where an offsettable address will do
3751	   by reloading the address into a base register.
3752
3753	   ??? We can also do this when the operand is a register and
3754	   reg_equiv_mem is not offsettable, but this is a bit tricky,
3755	   so we don't bother with it.  It may not be worth doing.  */
3756	else if (goal_alternative_matched[i] == -1
3757		 && goal_alternative_offmemok[i]
3758		 && GET_CODE (recog_data.operand[i]) == MEM)
3759	  {
3760	    operand_reloadnum[i]
3761	      = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3762			     &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3763			     MODE_BASE_REG_CLASS (VOIDmode),
3764			     GET_MODE (XEXP (recog_data.operand[i], 0)),
3765			     VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3766	    rld[operand_reloadnum[i]].inc
3767	      = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3768
3769	    /* If this operand is an output, we will have made any
3770	       reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3771	       now we are treating part of the operand as an input, so
3772	       we must change these to RELOAD_FOR_INPUT_ADDRESS.  */
3773
3774	    if (modified[i] == RELOAD_WRITE)
3775	      {
3776		for (j = 0; j < n_reloads; j++)
3777		  {
3778		    if (rld[j].opnum == i)
3779		      {
3780			if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3781			  rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3782			else if (rld[j].when_needed
3783				 == RELOAD_FOR_OUTADDR_ADDRESS)
3784			  rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3785		      }
3786		  }
3787	      }
3788	  }
3789	else if (goal_alternative_matched[i] == -1)
3790	  {
3791	    operand_reloadnum[i]
3792	      = push_reload ((modified[i] != RELOAD_WRITE
3793			      ? recog_data.operand[i] : 0),
3794			     (modified[i] != RELOAD_READ
3795			      ? recog_data.operand[i] : 0),
3796			     (modified[i] != RELOAD_WRITE
3797			      ? recog_data.operand_loc[i] : 0),
3798			     (modified[i] != RELOAD_READ
3799			      ? recog_data.operand_loc[i] : 0),
3800			     (enum reg_class) goal_alternative[i],
3801			     (modified[i] == RELOAD_WRITE
3802			      ? VOIDmode : operand_mode[i]),
3803			     (modified[i] == RELOAD_READ
3804			      ? VOIDmode : operand_mode[i]),
3805			     (insn_code_number < 0 ? 0
3806			      : insn_data[insn_code_number].operand[i].strict_low),
3807			     0, i, operand_type[i]);
3808	  }
3809	/* In a matching pair of operands, one must be input only
3810	   and the other must be output only.
3811	   Pass the input operand as IN and the other as OUT.  */
3812	else if (modified[i] == RELOAD_READ
3813		 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3814	  {
3815	    operand_reloadnum[i]
3816	      = push_reload (recog_data.operand[i],
3817			     recog_data.operand[goal_alternative_matched[i]],
3818			     recog_data.operand_loc[i],
3819			     recog_data.operand_loc[goal_alternative_matched[i]],
3820			     (enum reg_class) goal_alternative[i],
3821			     operand_mode[i],
3822			     operand_mode[goal_alternative_matched[i]],
3823			     0, 0, i, RELOAD_OTHER);
3824	    operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3825	  }
3826	else if (modified[i] == RELOAD_WRITE
3827		 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3828	  {
3829	    operand_reloadnum[goal_alternative_matched[i]]
3830	      = push_reload (recog_data.operand[goal_alternative_matched[i]],
3831			     recog_data.operand[i],
3832			     recog_data.operand_loc[goal_alternative_matched[i]],
3833			     recog_data.operand_loc[i],
3834			     (enum reg_class) goal_alternative[i],
3835			     operand_mode[goal_alternative_matched[i]],
3836			     operand_mode[i],
3837			     0, 0, i, RELOAD_OTHER);
3838	    operand_reloadnum[i] = output_reloadnum;
3839	  }
3840	else if (insn_code_number >= 0)
3841	  abort ();
3842	else
3843	  {
3844	    error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3845	    /* Avoid further trouble with this insn.  */
3846	    PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3847	    n_reloads = 0;
3848	    return 0;
3849	  }
3850      }
3851    else if (goal_alternative_matched[i] < 0
3852	     && goal_alternative_matches[i] < 0
3853	     && !address_operand_reloaded[i]
3854	     && optimize)
3855      {
3856	/* For each non-matching operand that's a MEM or a pseudo-register
3857	   that didn't get a hard register, make an optional reload.
3858	   This may get done even if the insn needs no reloads otherwise.  */
3859
3860	rtx operand = recog_data.operand[i];
3861
3862	while (GET_CODE (operand) == SUBREG)
3863	  operand = SUBREG_REG (operand);
3864	if ((GET_CODE (operand) == MEM
3865	     || (GET_CODE (operand) == REG
3866		 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3867	    /* If this is only for an output, the optional reload would not
3868	       actually cause us to use a register now, just note that
3869	       something is stored here.  */
3870	    && ((enum reg_class) goal_alternative[i] != NO_REGS
3871		|| modified[i] == RELOAD_WRITE)
3872	    && ! no_input_reloads
3873	    /* An optional output reload might allow to delete INSN later.
3874	       We mustn't make in-out reloads on insns that are not permitted
3875	       output reloads.
3876	       If this is an asm, we can't delete it; we must not even call
3877	       push_reload for an optional output reload in this case,
3878	       because we can't be sure that the constraint allows a register,
3879	       and push_reload verifies the constraints for asms.  */
3880	    && (modified[i] == RELOAD_READ
3881		|| (! no_output_reloads && ! this_insn_is_asm)))
3882	  operand_reloadnum[i]
3883	    = push_reload ((modified[i] != RELOAD_WRITE
3884			    ? recog_data.operand[i] : 0),
3885			   (modified[i] != RELOAD_READ
3886			    ? recog_data.operand[i] : 0),
3887			   (modified[i] != RELOAD_WRITE
3888			    ? recog_data.operand_loc[i] : 0),
3889			   (modified[i] != RELOAD_READ
3890			    ? recog_data.operand_loc[i] : 0),
3891			   (enum reg_class) goal_alternative[i],
3892			   (modified[i] == RELOAD_WRITE
3893			    ? VOIDmode : operand_mode[i]),
3894			   (modified[i] == RELOAD_READ
3895			    ? VOIDmode : operand_mode[i]),
3896			   (insn_code_number < 0 ? 0
3897			    : insn_data[insn_code_number].operand[i].strict_low),
3898			   1, i, operand_type[i]);
3899	/* If a memory reference remains (either as a MEM or a pseudo that
3900	   did not get a hard register), yet we can't make an optional
3901	   reload, check if this is actually a pseudo register reference;
3902	   we then need to emit a USE and/or a CLOBBER so that reload
3903	   inheritance will do the right thing.  */
3904	else if (replace
3905		 && (GET_CODE (operand) == MEM
3906		     || (GET_CODE (operand) == REG
3907			 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3908			 && reg_renumber [REGNO (operand)] < 0)))
3909	  {
3910	    operand = *recog_data.operand_loc[i];
3911
3912	    while (GET_CODE (operand) == SUBREG)
3913	      operand = SUBREG_REG (operand);
3914	    if (GET_CODE (operand) == REG)
3915	      {
3916		if (modified[i] != RELOAD_WRITE)
3917		  /* We mark the USE with QImode so that we recognize
3918		     it as one that can be safely deleted at the end
3919		     of reload.  */
3920		  PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
3921					      insn), QImode);
3922		if (modified[i] != RELOAD_READ)
3923		  emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3924	      }
3925	  }
3926      }
3927    else if (goal_alternative_matches[i] >= 0
3928	     && goal_alternative_win[goal_alternative_matches[i]]
3929	     && modified[i] == RELOAD_READ
3930	     && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3931	     && ! no_input_reloads && ! no_output_reloads
3932	     && optimize)
3933      {
3934	/* Similarly, make an optional reload for a pair of matching
3935	   objects that are in MEM or a pseudo that didn't get a hard reg.  */
3936
3937	rtx operand = recog_data.operand[i];
3938
3939	while (GET_CODE (operand) == SUBREG)
3940	  operand = SUBREG_REG (operand);
3941	if ((GET_CODE (operand) == MEM
3942	     || (GET_CODE (operand) == REG
3943		 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3944	    && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3945		!= NO_REGS))
3946	  operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3947	    = push_reload (recog_data.operand[goal_alternative_matches[i]],
3948			   recog_data.operand[i],
3949			   recog_data.operand_loc[goal_alternative_matches[i]],
3950			   recog_data.operand_loc[i],
3951			   (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3952			   operand_mode[goal_alternative_matches[i]],
3953			   operand_mode[i],
3954			   0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3955      }
3956
3957  /* Perform whatever substitutions on the operands we are supposed
3958     to make due to commutativity or replacement of registers
3959     with equivalent constants or memory slots.  */
3960
3961  for (i = 0; i < noperands; i++)
3962    {
3963      /* We only do this on the last pass through reload, because it is
3964	 possible for some data (like reg_equiv_address) to be changed during
3965	 later passes.  Moreover, we loose the opportunity to get a useful
3966	 reload_{in,out}_reg when we do these replacements.  */
3967
3968      if (replace)
3969	{
3970	  rtx substitution = substed_operand[i];
3971
3972	  *recog_data.operand_loc[i] = substitution;
3973
3974	  /* If we're replacing an operand with a LABEL_REF, we need
3975	     to make sure that there's a REG_LABEL note attached to
3976	     this instruction.  */
3977	  if (GET_CODE (insn) != JUMP_INSN
3978	      && GET_CODE (substitution) == LABEL_REF
3979	      && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
3980	    REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
3981						  XEXP (substitution, 0),
3982						  REG_NOTES (insn));
3983	}
3984      else
3985	retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
3986    }
3987
3988  /* If this insn pattern contains any MATCH_DUP's, make sure that
3989     they will be substituted if the operands they match are substituted.
3990     Also do now any substitutions we already did on the operands.
3991
3992     Don't do this if we aren't making replacements because we might be
3993     propagating things allocated by frame pointer elimination into places
3994     it doesn't expect.  */
3995
3996  if (insn_code_number >= 0 && replace)
3997    for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
3998      {
3999	int opno = recog_data.dup_num[i];
4000	*recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4001	dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4002      }
4003
4004#if 0
4005  /* This loses because reloading of prior insns can invalidate the equivalence
4006     (or at least find_equiv_reg isn't smart enough to find it any more),
4007     causing this insn to need more reload regs than it needed before.
4008     It may be too late to make the reload regs available.
4009     Now this optimization is done safely in choose_reload_regs.  */
4010
4011  /* For each reload of a reg into some other class of reg,
4012     search for an existing equivalent reg (same value now) in the right class.
4013     We can use it as long as we don't need to change its contents.  */
4014  for (i = 0; i < n_reloads; i++)
4015    if (rld[i].reg_rtx == 0
4016	&& rld[i].in != 0
4017	&& GET_CODE (rld[i].in) == REG
4018	&& rld[i].out == 0)
4019      {
4020	rld[i].reg_rtx
4021	  = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4022			    static_reload_reg_p, 0, rld[i].inmode);
4023	/* Prevent generation of insn to load the value
4024	   because the one we found already has the value.  */
4025	if (rld[i].reg_rtx)
4026	  rld[i].in = rld[i].reg_rtx;
4027      }
4028#endif
4029
4030  /* Perhaps an output reload can be combined with another
4031     to reduce needs by one.  */
4032  if (!goal_earlyclobber)
4033    combine_reloads ();
4034
4035  /* If we have a pair of reloads for parts of an address, they are reloading
4036     the same object, the operands themselves were not reloaded, and they
4037     are for two operands that are supposed to match, merge the reloads and
4038     change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS.  */
4039
4040  for (i = 0; i < n_reloads; i++)
4041    {
4042      int k;
4043
4044      for (j = i + 1; j < n_reloads; j++)
4045	if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4046	     || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4047	     || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4048	     || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4049	    && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4050		|| rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4051		|| rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4052		|| rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4053	    && rtx_equal_p (rld[i].in, rld[j].in)
4054	    && (operand_reloadnum[rld[i].opnum] < 0
4055		|| rld[operand_reloadnum[rld[i].opnum]].optional)
4056	    && (operand_reloadnum[rld[j].opnum] < 0
4057		|| rld[operand_reloadnum[rld[j].opnum]].optional)
4058	    && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4059		|| (goal_alternative_matches[rld[j].opnum]
4060		    == rld[i].opnum)))
4061	  {
4062	    for (k = 0; k < n_replacements; k++)
4063	      if (replacements[k].what == j)
4064		replacements[k].what = i;
4065
4066	    if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4067		|| rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4068	      rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4069	    else
4070	      rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4071	    rld[j].in = 0;
4072	  }
4073    }
4074
4075  /* Scan all the reloads and update their type.
4076     If a reload is for the address of an operand and we didn't reload
4077     that operand, change the type.  Similarly, change the operand number
4078     of a reload when two operands match.  If a reload is optional, treat it
4079     as though the operand isn't reloaded.
4080
4081     ??? This latter case is somewhat odd because if we do the optional
4082     reload, it means the object is hanging around.  Thus we need only
4083     do the address reload if the optional reload was NOT done.
4084
4085     Change secondary reloads to be the address type of their operand, not
4086     the normal type.
4087
4088     If an operand's reload is now RELOAD_OTHER, change any
4089     RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4090     RELOAD_FOR_OTHER_ADDRESS.  */
4091
4092  for (i = 0; i < n_reloads; i++)
4093    {
4094      if (rld[i].secondary_p
4095	  && rld[i].when_needed == operand_type[rld[i].opnum])
4096	rld[i].when_needed = address_type[rld[i].opnum];
4097
4098      if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4099	   || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4100	   || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4101	   || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4102	  && (operand_reloadnum[rld[i].opnum] < 0
4103	      || rld[operand_reloadnum[rld[i].opnum]].optional))
4104	{
4105	  /* If we have a secondary reload to go along with this reload,
4106	     change its type to RELOAD_FOR_OPADDR_ADDR.  */
4107
4108	  if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4109	       || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4110	      && rld[i].secondary_in_reload != -1)
4111	    {
4112	      int secondary_in_reload = rld[i].secondary_in_reload;
4113
4114	      rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4115
4116	      /* If there's a tertiary reload we have to change it also.  */
4117	      if (secondary_in_reload > 0
4118		  && rld[secondary_in_reload].secondary_in_reload != -1)
4119		rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4120		  = RELOAD_FOR_OPADDR_ADDR;
4121	    }
4122
4123	  if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4124	       || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4125	      && rld[i].secondary_out_reload != -1)
4126	    {
4127	      int secondary_out_reload = rld[i].secondary_out_reload;
4128
4129	      rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4130
4131	      /* If there's a tertiary reload we have to change it also.  */
4132	      if (secondary_out_reload
4133		  && rld[secondary_out_reload].secondary_out_reload != -1)
4134		rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4135		  = RELOAD_FOR_OPADDR_ADDR;
4136	    }
4137
4138	  if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4139	      || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4140	    rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4141	  else
4142	    rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4143	}
4144
4145      if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4146	   || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4147	  && operand_reloadnum[rld[i].opnum] >= 0
4148	  && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4149	      == RELOAD_OTHER))
4150	rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4151
4152      if (goal_alternative_matches[rld[i].opnum] >= 0)
4153	rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4154    }
4155
4156  /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4157     If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4158     reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4159
4160     choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4161     conflict with RELOAD_FOR_OPERAND_ADDRESS reloads.  This is true for a
4162     single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4163     However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4164     then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4165     RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4166     This is complicated by the fact that a single operand can have more
4167     than one RELOAD_FOR_OPERAND_ADDRESS reload.  It is very difficult to fix
4168     choose_reload_regs without affecting code quality, and cases that
4169     actually fail are extremely rare, so it turns out to be better to fix
4170     the problem here by not generating cases that choose_reload_regs will
4171     fail for.  */
4172  /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4173     RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4174     a single operand.
4175     We can reduce the register pressure by exploiting that a
4176     RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4177     does not conflict with any of them, if it is only used for the first of
4178     the RELOAD_FOR_X_ADDRESS reloads.  */
4179  {
4180    int first_op_addr_num = -2;
4181    int first_inpaddr_num[MAX_RECOG_OPERANDS];
4182    int first_outpaddr_num[MAX_RECOG_OPERANDS];
4183    int need_change = 0;
4184    /* We use last_op_addr_reload and the contents of the above arrays
4185       first as flags - -2 means no instance encountered, -1 means exactly
4186       one instance encountered.
4187       If more than one instance has been encountered, we store the reload
4188       number of the first reload of the kind in question; reload numbers
4189       are known to be non-negative.  */
4190    for (i = 0; i < noperands; i++)
4191      first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4192    for (i = n_reloads - 1; i >= 0; i--)
4193      {
4194	switch (rld[i].when_needed)
4195	  {
4196	  case RELOAD_FOR_OPERAND_ADDRESS:
4197	    if (++first_op_addr_num >= 0)
4198	      {
4199		first_op_addr_num = i;
4200		need_change = 1;
4201	      }
4202	    break;
4203	  case RELOAD_FOR_INPUT_ADDRESS:
4204	    if (++first_inpaddr_num[rld[i].opnum] >= 0)
4205	      {
4206		first_inpaddr_num[rld[i].opnum] = i;
4207		need_change = 1;
4208	      }
4209	    break;
4210	  case RELOAD_FOR_OUTPUT_ADDRESS:
4211	    if (++first_outpaddr_num[rld[i].opnum] >= 0)
4212	      {
4213		first_outpaddr_num[rld[i].opnum] = i;
4214		need_change = 1;
4215	      }
4216	    break;
4217	  default:
4218	    break;
4219	  }
4220      }
4221
4222    if (need_change)
4223      {
4224	for (i = 0; i < n_reloads; i++)
4225	  {
4226	    int first_num;
4227	    enum reload_type type;
4228
4229	    switch (rld[i].when_needed)
4230	      {
4231	      case RELOAD_FOR_OPADDR_ADDR:
4232		first_num = first_op_addr_num;
4233		type = RELOAD_FOR_OPERAND_ADDRESS;
4234		break;
4235	      case RELOAD_FOR_INPADDR_ADDRESS:
4236		first_num = first_inpaddr_num[rld[i].opnum];
4237		type = RELOAD_FOR_INPUT_ADDRESS;
4238		break;
4239	      case RELOAD_FOR_OUTADDR_ADDRESS:
4240		first_num = first_outpaddr_num[rld[i].opnum];
4241		type = RELOAD_FOR_OUTPUT_ADDRESS;
4242		break;
4243	      default:
4244		continue;
4245	      }
4246	    if (first_num < 0)
4247	      continue;
4248	    else if (i > first_num)
4249	      rld[i].when_needed = type;
4250	    else
4251	      {
4252		/* Check if the only TYPE reload that uses reload I is
4253		   reload FIRST_NUM.  */
4254		for (j = n_reloads - 1; j > first_num; j--)
4255		  {
4256		    if (rld[j].when_needed == type
4257			&& (rld[i].secondary_p
4258			    ? rld[j].secondary_in_reload == i
4259			    : reg_mentioned_p (rld[i].in, rld[j].in)))
4260		      {
4261			rld[i].when_needed = type;
4262			break;
4263		      }
4264		  }
4265	      }
4266	  }
4267      }
4268  }
4269
4270  /* See if we have any reloads that are now allowed to be merged
4271     because we've changed when the reload is needed to
4272     RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS.  Only
4273     check for the most common cases.  */
4274
4275  for (i = 0; i < n_reloads; i++)
4276    if (rld[i].in != 0 && rld[i].out == 0
4277	&& (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4278	    || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4279	    || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4280      for (j = 0; j < n_reloads; j++)
4281	if (i != j && rld[j].in != 0 && rld[j].out == 0
4282	    && rld[j].when_needed == rld[i].when_needed
4283	    && MATCHES (rld[i].in, rld[j].in)
4284	    && rld[i].class == rld[j].class
4285	    && !rld[i].nocombine && !rld[j].nocombine
4286	    && rld[i].reg_rtx == rld[j].reg_rtx)
4287	  {
4288	    rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4289	    transfer_replacements (i, j);
4290	    rld[j].in = 0;
4291	  }
4292
4293#ifdef HAVE_cc0
4294  /* If we made any reloads for addresses, see if they violate a
4295     "no input reloads" requirement for this insn.  But loads that we
4296     do after the insn (such as for output addresses) are fine.  */
4297  if (no_input_reloads)
4298    for (i = 0; i < n_reloads; i++)
4299      if (rld[i].in != 0
4300	  && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
4301	  && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS)
4302	abort ();
4303#endif
4304
4305  /* Compute reload_mode and reload_nregs.  */
4306  for (i = 0; i < n_reloads; i++)
4307    {
4308      rld[i].mode
4309	= (rld[i].inmode == VOIDmode
4310	   || (GET_MODE_SIZE (rld[i].outmode)
4311	       > GET_MODE_SIZE (rld[i].inmode)))
4312	  ? rld[i].outmode : rld[i].inmode;
4313
4314      rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4315    }
4316
4317  /* Special case a simple move with an input reload and a
4318     destination of a hard reg, if the hard reg is ok, use it.  */
4319  for (i = 0; i < n_reloads; i++)
4320    if (rld[i].when_needed == RELOAD_FOR_INPUT
4321	&& GET_CODE (PATTERN (insn)) == SET
4322 	&& GET_CODE (SET_DEST (PATTERN (insn))) == REG
4323 	&& SET_SRC (PATTERN (insn)) == rld[i].in)
4324      {
4325 	rtx dest = SET_DEST (PATTERN (insn));
4326	unsigned int regno = REGNO (dest);
4327
4328 	if (regno < FIRST_PSEUDO_REGISTER
4329 	    && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4330 	    && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4331 	  rld[i].reg_rtx = dest;
4332      }
4333
4334  return retval;
4335}
4336
4337/* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4338   accepts a memory operand with constant address.  */
4339
4340static int
4341alternative_allows_memconst (constraint, altnum)
4342     const char *constraint;
4343     int altnum;
4344{
4345  int c;
4346  /* Skip alternatives before the one requested.  */
4347  while (altnum > 0)
4348    {
4349      while (*constraint++ != ',');
4350      altnum--;
4351    }
4352  /* Scan the requested alternative for 'm' or 'o'.
4353     If one of them is present, this alternative accepts memory constants.  */
4354  while ((c = *constraint++) && c != ',' && c != '#')
4355    if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c))
4356      return 1;
4357  return 0;
4358}
4359
4360/* Scan X for memory references and scan the addresses for reloading.
4361   Also checks for references to "constant" regs that we want to eliminate
4362   and replaces them with the values they stand for.
4363   We may alter X destructively if it contains a reference to such.
4364   If X is just a constant reg, we return the equivalent value
4365   instead of X.
4366
4367   IND_LEVELS says how many levels of indirect addressing this machine
4368   supports.
4369
4370   OPNUM and TYPE identify the purpose of the reload.
4371
4372   IS_SET_DEST is true if X is the destination of a SET, which is not
4373   appropriate to be replaced by a constant.
4374
4375   INSN, if nonzero, is the insn in which we do the reload.  It is used
4376   to determine if we may generate output reloads, and where to put USEs
4377   for pseudos that we have to replace with stack slots.
4378
4379   ADDRESS_RELOADED.  If nonzero, is a pointer to where we put the
4380   result of find_reloads_address.  */
4381
4382static rtx
4383find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest, insn,
4384		     address_reloaded)
4385     rtx x;
4386     int opnum;
4387     enum reload_type type;
4388     int ind_levels;
4389     int is_set_dest;
4390     rtx insn;
4391     int *address_reloaded;
4392{
4393  RTX_CODE code = GET_CODE (x);
4394
4395  const char *fmt = GET_RTX_FORMAT (code);
4396  int i;
4397  int copied;
4398
4399  if (code == REG)
4400    {
4401      /* This code is duplicated for speed in find_reloads.  */
4402      int regno = REGNO (x);
4403      if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4404	x = reg_equiv_constant[regno];
4405#if 0
4406      /*  This creates (subreg (mem...)) which would cause an unnecessary
4407	  reload of the mem.  */
4408      else if (reg_equiv_mem[regno] != 0)
4409	x = reg_equiv_mem[regno];
4410#endif
4411      else if (reg_equiv_memory_loc[regno]
4412	       && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4413	{
4414	  rtx mem = make_memloc (x, regno);
4415	  if (reg_equiv_address[regno]
4416	      || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4417	    {
4418	      /* If this is not a toplevel operand, find_reloads doesn't see
4419		 this substitution.  We have to emit a USE of the pseudo so
4420		 that delete_output_reload can see it.  */
4421	      if (replace_reloads && recog_data.operand[opnum] != x)
4422		/* We mark the USE with QImode so that we recognize it
4423		   as one that can be safely deleted at the end of
4424		   reload.  */
4425		PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4426			  QImode);
4427	      x = mem;
4428	      i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4429					opnum, type, ind_levels, insn);
4430	      if (address_reloaded)
4431		*address_reloaded = i;
4432	    }
4433	}
4434      return x;
4435    }
4436  if (code == MEM)
4437    {
4438      rtx tem = x;
4439
4440      i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4441				opnum, type, ind_levels, insn);
4442      if (address_reloaded)
4443	*address_reloaded = i;
4444
4445      return tem;
4446    }
4447
4448  if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4449    {
4450      /* Check for SUBREG containing a REG that's equivalent to a constant.
4451	 If the constant has a known value, truncate it right now.
4452	 Similarly if we are extracting a single-word of a multi-word
4453	 constant.  If the constant is symbolic, allow it to be substituted
4454	 normally.  push_reload will strip the subreg later.  If the
4455	 constant is VOIDmode, abort because we will lose the mode of
4456	 the register (this should never happen because one of the cases
4457	 above should handle it).  */
4458
4459      int regno = REGNO (SUBREG_REG (x));
4460      rtx tem;
4461
4462      if (subreg_lowpart_p (x)
4463	  && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4464	  && reg_equiv_constant[regno] != 0
4465	  && (tem = gen_lowpart_common (GET_MODE (x),
4466					reg_equiv_constant[regno])) != 0)
4467	return tem;
4468
4469      if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4470	  && reg_equiv_constant[regno] != 0)
4471	{
4472	  tem =
4473	    simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4474				 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4475	  if (!tem)
4476	    abort ();
4477	  return tem;
4478	}
4479
4480      /* If the subreg contains a reg that will be converted to a mem,
4481	 convert the subreg to a narrower memref now.
4482	 Otherwise, we would get (subreg (mem ...) ...),
4483	 which would force reload of the mem.
4484
4485	 We also need to do this if there is an equivalent MEM that is
4486	 not offsettable.  In that case, alter_subreg would produce an
4487	 invalid address on big-endian machines.
4488
4489	 For machines that extend byte loads, we must not reload using
4490	 a wider mode if we have a paradoxical SUBREG.  find_reloads will
4491	 force a reload in that case.  So we should not do anything here.  */
4492
4493      else if (regno >= FIRST_PSEUDO_REGISTER
4494#ifdef LOAD_EXTEND_OP
4495	       && (GET_MODE_SIZE (GET_MODE (x))
4496		   <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4497#endif
4498	       && (reg_equiv_address[regno] != 0
4499		   || (reg_equiv_mem[regno] != 0
4500		       && (! strict_memory_address_p (GET_MODE (x),
4501						      XEXP (reg_equiv_mem[regno], 0))
4502			   || ! offsettable_memref_p (reg_equiv_mem[regno])
4503			   || num_not_at_initial_offset))))
4504	x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4505					 insn);
4506    }
4507
4508  for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4509    {
4510      if (fmt[i] == 'e')
4511	{
4512	  rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4513					      ind_levels, is_set_dest, insn,
4514					      address_reloaded);
4515	  /* If we have replaced a reg with it's equivalent memory loc -
4516	     that can still be handled here e.g. if it's in a paradoxical
4517	     subreg - we must make the change in a copy, rather than using
4518	     a destructive change.  This way, find_reloads can still elect
4519	     not to do the change.  */
4520	  if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4521	    {
4522	      x = shallow_copy_rtx (x);
4523	      copied = 1;
4524	    }
4525	  XEXP (x, i) = new_part;
4526	}
4527    }
4528  return x;
4529}
4530
4531/* Return a mem ref for the memory equivalent of reg REGNO.
4532   This mem ref is not shared with anything.  */
4533
4534static rtx
4535make_memloc (ad, regno)
4536     rtx ad;
4537     int regno;
4538{
4539  /* We must rerun eliminate_regs, in case the elimination
4540     offsets have changed.  */
4541  rtx tem
4542    = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4543
4544  /* If TEM might contain a pseudo, we must copy it to avoid
4545     modifying it when we do the substitution for the reload.  */
4546  if (rtx_varies_p (tem, 0))
4547    tem = copy_rtx (tem);
4548
4549  tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4550  tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4551
4552  /* Copy the result if it's still the same as the equivalence, to avoid
4553     modifying it when we do the substitution for the reload.  */
4554  if (tem == reg_equiv_memory_loc[regno])
4555    tem = copy_rtx (tem);
4556  return tem;
4557}
4558
4559/* Returns true if AD could be turned into a valid memory reference
4560   to mode MODE by reloading the part pointed to by PART into a
4561   register.  */
4562
4563static int
4564maybe_memory_address_p (mode, ad, part)
4565     enum machine_mode mode;
4566     rtx ad;
4567     rtx *part;
4568{
4569  int retv;
4570  rtx tem = *part;
4571  rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4572
4573  *part = reg;
4574  retv = memory_address_p (mode, ad);
4575  *part = tem;
4576
4577  return retv;
4578}
4579
4580/* Record all reloads needed for handling memory address AD
4581   which appears in *LOC in a memory reference to mode MODE
4582   which itself is found in location  *MEMREFLOC.
4583   Note that we take shortcuts assuming that no multi-reg machine mode
4584   occurs as part of an address.
4585
4586   OPNUM and TYPE specify the purpose of this reload.
4587
4588   IND_LEVELS says how many levels of indirect addressing this machine
4589   supports.
4590
4591   INSN, if nonzero, is the insn in which we do the reload.  It is used
4592   to determine if we may generate output reloads, and where to put USEs
4593   for pseudos that we have to replace with stack slots.
4594
4595   Value is nonzero if this address is reloaded or replaced as a whole.
4596   This is interesting to the caller if the address is an autoincrement.
4597
4598   Note that there is no verification that the address will be valid after
4599   this routine does its work.  Instead, we rely on the fact that the address
4600   was valid when reload started.  So we need only undo things that reload
4601   could have broken.  These are wrong register types, pseudos not allocated
4602   to a hard register, and frame pointer elimination.  */
4603
4604static int
4605find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
4606     enum machine_mode mode;
4607     rtx *memrefloc;
4608     rtx ad;
4609     rtx *loc;
4610     int opnum;
4611     enum reload_type type;
4612     int ind_levels;
4613     rtx insn;
4614{
4615  int regno;
4616  int removed_and = 0;
4617  rtx tem;
4618
4619  /* If the address is a register, see if it is a legitimate address and
4620     reload if not.  We first handle the cases where we need not reload
4621     or where we must reload in a non-standard way.  */
4622
4623  if (GET_CODE (ad) == REG)
4624    {
4625      regno = REGNO (ad);
4626
4627      /* If the register is equivalent to an invariant expression, substitute
4628	 the invariant, and eliminate any eliminable register references.  */
4629      tem = reg_equiv_constant[regno];
4630      if (tem != 0
4631	  && (tem = eliminate_regs (tem, mode, insn))
4632	  && strict_memory_address_p (mode, tem))
4633	{
4634	  *loc = ad = tem;
4635	  return 0;
4636	}
4637
4638      tem = reg_equiv_memory_loc[regno];
4639      if (tem != 0)
4640	{
4641	  if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4642	    {
4643	      tem = make_memloc (ad, regno);
4644	      if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4645		{
4646		  find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4647					&XEXP (tem, 0), opnum,
4648					ADDR_TYPE (type), ind_levels, insn);
4649		}
4650	      /* We can avoid a reload if the register's equivalent memory
4651		 expression is valid as an indirect memory address.
4652		 But not all addresses are valid in a mem used as an indirect
4653		 address: only reg or reg+constant.  */
4654
4655	      if (ind_levels > 0
4656		  && strict_memory_address_p (mode, tem)
4657		  && (GET_CODE (XEXP (tem, 0)) == REG
4658		      || (GET_CODE (XEXP (tem, 0)) == PLUS
4659			  && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4660			  && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4661		{
4662		  /* TEM is not the same as what we'll be replacing the
4663		     pseudo with after reload, put a USE in front of INSN
4664		     in the final reload pass.  */
4665		  if (replace_reloads
4666		      && num_not_at_initial_offset
4667		      && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4668		    {
4669		      *loc = tem;
4670		      /* We mark the USE with QImode so that we
4671			 recognize it as one that can be safely
4672			 deleted at the end of reload.  */
4673		      PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4674						  insn), QImode);
4675
4676		      /* This doesn't really count as replacing the address
4677			 as a whole, since it is still a memory access.  */
4678		    }
4679		  return 0;
4680		}
4681	      ad = tem;
4682	    }
4683	}
4684
4685      /* The only remaining case where we can avoid a reload is if this is a
4686	 hard register that is valid as a base register and which is not the
4687	 subject of a CLOBBER in this insn.  */
4688
4689      else if (regno < FIRST_PSEUDO_REGISTER
4690	       && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4691	       && ! regno_clobbered_p (regno, this_insn, mode, 0))
4692	return 0;
4693
4694      /* If we do not have one of the cases above, we must do the reload.  */
4695      push_reload (ad, NULL_RTX, loc, (rtx*) 0, MODE_BASE_REG_CLASS (mode),
4696		   GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4697      return 1;
4698    }
4699
4700  if (strict_memory_address_p (mode, ad))
4701    {
4702      /* The address appears valid, so reloads are not needed.
4703	 But the address may contain an eliminable register.
4704	 This can happen because a machine with indirect addressing
4705	 may consider a pseudo register by itself a valid address even when
4706	 it has failed to get a hard reg.
4707	 So do a tree-walk to find and eliminate all such regs.  */
4708
4709      /* But first quickly dispose of a common case.  */
4710      if (GET_CODE (ad) == PLUS
4711	  && GET_CODE (XEXP (ad, 1)) == CONST_INT
4712	  && GET_CODE (XEXP (ad, 0)) == REG
4713	  && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4714	return 0;
4715
4716      subst_reg_equivs_changed = 0;
4717      *loc = subst_reg_equivs (ad, insn);
4718
4719      if (! subst_reg_equivs_changed)
4720	return 0;
4721
4722      /* Check result for validity after substitution.  */
4723      if (strict_memory_address_p (mode, ad))
4724	return 0;
4725    }
4726
4727#ifdef LEGITIMIZE_RELOAD_ADDRESS
4728  do
4729    {
4730      if (memrefloc)
4731	{
4732	  LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4733				     ind_levels, win);
4734	}
4735      break;
4736    win:
4737      *memrefloc = copy_rtx (*memrefloc);
4738      XEXP (*memrefloc, 0) = ad;
4739      move_replacements (&ad, &XEXP (*memrefloc, 0));
4740      return 1;
4741    }
4742  while (0);
4743#endif
4744
4745  /* The address is not valid.  We have to figure out why.  First see if
4746     we have an outer AND and remove it if so.  Then analyze what's inside.  */
4747
4748  if (GET_CODE (ad) == AND)
4749    {
4750      removed_and = 1;
4751      loc = &XEXP (ad, 0);
4752      ad = *loc;
4753    }
4754
4755  /* One possibility for why the address is invalid is that it is itself
4756     a MEM.  This can happen when the frame pointer is being eliminated, a
4757     pseudo is not allocated to a hard register, and the offset between the
4758     frame and stack pointers is not its initial value.  In that case the
4759     pseudo will have been replaced by a MEM referring to the
4760     stack pointer.  */
4761  if (GET_CODE (ad) == MEM)
4762    {
4763      /* First ensure that the address in this MEM is valid.  Then, unless
4764	 indirect addresses are valid, reload the MEM into a register.  */
4765      tem = ad;
4766      find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4767			    opnum, ADDR_TYPE (type),
4768			    ind_levels == 0 ? 0 : ind_levels - 1, insn);
4769
4770      /* If tem was changed, then we must create a new memory reference to
4771	 hold it and store it back into memrefloc.  */
4772      if (tem != ad && memrefloc)
4773	{
4774	  *memrefloc = copy_rtx (*memrefloc);
4775	  copy_replacements (tem, XEXP (*memrefloc, 0));
4776	  loc = &XEXP (*memrefloc, 0);
4777	  if (removed_and)
4778	    loc = &XEXP (*loc, 0);
4779	}
4780
4781      /* Check similar cases as for indirect addresses as above except
4782	 that we can allow pseudos and a MEM since they should have been
4783	 taken care of above.  */
4784
4785      if (ind_levels == 0
4786	  || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4787	  || GET_CODE (XEXP (tem, 0)) == MEM
4788	  || ! (GET_CODE (XEXP (tem, 0)) == REG
4789		|| (GET_CODE (XEXP (tem, 0)) == PLUS
4790		    && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4791		    && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4792	{
4793	  /* Must use TEM here, not AD, since it is the one that will
4794	     have any subexpressions reloaded, if needed.  */
4795	  push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4796		       MODE_BASE_REG_CLASS (mode), GET_MODE (tem),
4797		       VOIDmode, 0,
4798		       0, opnum, type);
4799	  return ! removed_and;
4800	}
4801      else
4802	return 0;
4803    }
4804
4805  /* If we have address of a stack slot but it's not valid because the
4806     displacement is too large, compute the sum in a register.
4807     Handle all base registers here, not just fp/ap/sp, because on some
4808     targets (namely SH) we can also get too large displacements from
4809     big-endian corrections.  */
4810  else if (GET_CODE (ad) == PLUS
4811	   && GET_CODE (XEXP (ad, 0)) == REG
4812	   && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4813	   && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4814	   && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4815    {
4816      /* Unshare the MEM rtx so we can safely alter it.  */
4817      if (memrefloc)
4818	{
4819	  *memrefloc = copy_rtx (*memrefloc);
4820	  loc = &XEXP (*memrefloc, 0);
4821	  if (removed_and)
4822	    loc = &XEXP (*loc, 0);
4823	}
4824
4825      if (double_reg_address_ok)
4826	{
4827	  /* Unshare the sum as well.  */
4828	  *loc = ad = copy_rtx (ad);
4829
4830	  /* Reload the displacement into an index reg.
4831	     We assume the frame pointer or arg pointer is a base reg.  */
4832	  find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4833				     INDEX_REG_CLASS, GET_MODE (ad), opnum,
4834				     type, ind_levels);
4835	  return 0;
4836	}
4837      else
4838	{
4839	  /* If the sum of two regs is not necessarily valid,
4840	     reload the sum into a base reg.
4841	     That will at least work.  */
4842	  find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4843				     Pmode, opnum, type, ind_levels);
4844	}
4845      return ! removed_and;
4846    }
4847
4848  /* If we have an indexed stack slot, there are three possible reasons why
4849     it might be invalid: The index might need to be reloaded, the address
4850     might have been made by frame pointer elimination and hence have a
4851     constant out of range, or both reasons might apply.
4852
4853     We can easily check for an index needing reload, but even if that is the
4854     case, we might also have an invalid constant.  To avoid making the
4855     conservative assumption and requiring two reloads, we see if this address
4856     is valid when not interpreted strictly.  If it is, the only problem is
4857     that the index needs a reload and find_reloads_address_1 will take care
4858     of it.
4859
4860     Handle all base registers here, not just fp/ap/sp, because on some
4861     targets (namely Sparc) we can also get invalid addresses from preventive
4862     subreg big-endian corrections made by find_reloads_toplev.
4863
4864     If we decide to do something, it must be that `double_reg_address_ok'
4865     is true.  We generate a reload of the base register + constant and
4866     rework the sum so that the reload register will be added to the index.
4867     This is safe because we know the address isn't shared.
4868
4869     We check for the base register as both the first and second operand of
4870     the innermost PLUS.  */
4871
4872  else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4873	   && GET_CODE (XEXP (ad, 0)) == PLUS
4874	   && GET_CODE (XEXP (XEXP (ad, 0), 0)) == REG
4875	   && REGNO (XEXP (XEXP (ad, 0), 0)) < FIRST_PSEUDO_REGISTER
4876	   && REG_MODE_OK_FOR_BASE_P (XEXP (XEXP (ad, 0), 0), mode)
4877	   && ! maybe_memory_address_p (mode, ad, &XEXP (XEXP (ad, 0), 1)))
4878    {
4879      *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4880				plus_constant (XEXP (XEXP (ad, 0), 0),
4881					       INTVAL (XEXP (ad, 1))),
4882				XEXP (XEXP (ad, 0), 1));
4883      find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0),
4884				 MODE_BASE_REG_CLASS (mode),
4885				 GET_MODE (ad), opnum, type, ind_levels);
4886      find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4887			      type, 0, insn);
4888
4889      return 0;
4890    }
4891
4892  else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4893	   && GET_CODE (XEXP (ad, 0)) == PLUS
4894	   && GET_CODE (XEXP (XEXP (ad, 0), 1)) == REG
4895	   && REGNO (XEXP (XEXP (ad, 0), 1)) < FIRST_PSEUDO_REGISTER
4896	   && REG_MODE_OK_FOR_BASE_P (XEXP (XEXP (ad, 0), 1), mode)
4897	   && ! maybe_memory_address_p (mode, ad, &XEXP (XEXP (ad, 0), 0)))
4898    {
4899      *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4900				XEXP (XEXP (ad, 0), 0),
4901				plus_constant (XEXP (XEXP (ad, 0), 1),
4902					       INTVAL (XEXP (ad, 1))));
4903      find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4904				 MODE_BASE_REG_CLASS (mode),
4905				 GET_MODE (ad), opnum, type, ind_levels);
4906      find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4907			      type, 0, insn);
4908
4909      return 0;
4910    }
4911
4912  /* See if address becomes valid when an eliminable register
4913     in a sum is replaced.  */
4914
4915  tem = ad;
4916  if (GET_CODE (ad) == PLUS)
4917    tem = subst_indexed_address (ad);
4918  if (tem != ad && strict_memory_address_p (mode, tem))
4919    {
4920      /* Ok, we win that way.  Replace any additional eliminable
4921	 registers.  */
4922
4923      subst_reg_equivs_changed = 0;
4924      tem = subst_reg_equivs (tem, insn);
4925
4926      /* Make sure that didn't make the address invalid again.  */
4927
4928      if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4929	{
4930	  *loc = tem;
4931	  return 0;
4932	}
4933    }
4934
4935  /* If constants aren't valid addresses, reload the constant address
4936     into a register.  */
4937  if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4938    {
4939      /* If AD is an address in the constant pool, the MEM rtx may be shared.
4940	 Unshare it so we can safely alter it.  */
4941      if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4942	  && CONSTANT_POOL_ADDRESS_P (ad))
4943	{
4944	  *memrefloc = copy_rtx (*memrefloc);
4945	  loc = &XEXP (*memrefloc, 0);
4946	  if (removed_and)
4947	    loc = &XEXP (*loc, 0);
4948	}
4949
4950      find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4951				 Pmode, opnum, type, ind_levels);
4952      return ! removed_and;
4953    }
4954
4955  return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4956				 insn);
4957}
4958
4959/* Find all pseudo regs appearing in AD
4960   that are eliminable in favor of equivalent values
4961   and do not have hard regs; replace them by their equivalents.
4962   INSN, if nonzero, is the insn in which we do the reload.  We put USEs in
4963   front of it for pseudos that we have to replace with stack slots.  */
4964
4965static rtx
4966subst_reg_equivs (ad, insn)
4967     rtx ad;
4968     rtx insn;
4969{
4970  RTX_CODE code = GET_CODE (ad);
4971  int i;
4972  const char *fmt;
4973
4974  switch (code)
4975    {
4976    case HIGH:
4977    case CONST_INT:
4978    case CONST:
4979    case CONST_DOUBLE:
4980    case CONST_VECTOR:
4981    case SYMBOL_REF:
4982    case LABEL_REF:
4983    case PC:
4984    case CC0:
4985      return ad;
4986
4987    case REG:
4988      {
4989	int regno = REGNO (ad);
4990
4991	if (reg_equiv_constant[regno] != 0)
4992	  {
4993	    subst_reg_equivs_changed = 1;
4994	    return reg_equiv_constant[regno];
4995	  }
4996	if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
4997	  {
4998	    rtx mem = make_memloc (ad, regno);
4999	    if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5000	      {
5001		subst_reg_equivs_changed = 1;
5002		/* We mark the USE with QImode so that we recognize it
5003		   as one that can be safely deleted at the end of
5004		   reload.  */
5005		PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5006			  QImode);
5007		return mem;
5008	      }
5009	  }
5010      }
5011      return ad;
5012
5013    case PLUS:
5014      /* Quickly dispose of a common case.  */
5015      if (XEXP (ad, 0) == frame_pointer_rtx
5016	  && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5017	return ad;
5018      break;
5019
5020    default:
5021      break;
5022    }
5023
5024  fmt = GET_RTX_FORMAT (code);
5025  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5026    if (fmt[i] == 'e')
5027      XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5028  return ad;
5029}
5030
5031/* Compute the sum of X and Y, making canonicalizations assumed in an
5032   address, namely: sum constant integers, surround the sum of two
5033   constants with a CONST, put the constant as the second operand, and
5034   group the constant on the outermost sum.
5035
5036   This routine assumes both inputs are already in canonical form.  */
5037
5038rtx
5039form_sum (x, y)
5040     rtx x, y;
5041{
5042  rtx tem;
5043  enum machine_mode mode = GET_MODE (x);
5044
5045  if (mode == VOIDmode)
5046    mode = GET_MODE (y);
5047
5048  if (mode == VOIDmode)
5049    mode = Pmode;
5050
5051  if (GET_CODE (x) == CONST_INT)
5052    return plus_constant (y, INTVAL (x));
5053  else if (GET_CODE (y) == CONST_INT)
5054    return plus_constant (x, INTVAL (y));
5055  else if (CONSTANT_P (x))
5056    tem = x, x = y, y = tem;
5057
5058  if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5059    return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5060
5061  /* Note that if the operands of Y are specified in the opposite
5062     order in the recursive calls below, infinite recursion will occur.  */
5063  if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5064    return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5065
5066  /* If both constant, encapsulate sum.  Otherwise, just form sum.  A
5067     constant will have been placed second.  */
5068  if (CONSTANT_P (x) && CONSTANT_P (y))
5069    {
5070      if (GET_CODE (x) == CONST)
5071	x = XEXP (x, 0);
5072      if (GET_CODE (y) == CONST)
5073	y = XEXP (y, 0);
5074
5075      return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5076    }
5077
5078  return gen_rtx_PLUS (mode, x, y);
5079}
5080
5081/* If ADDR is a sum containing a pseudo register that should be
5082   replaced with a constant (from reg_equiv_constant),
5083   return the result of doing so, and also apply the associative
5084   law so that the result is more likely to be a valid address.
5085   (But it is not guaranteed to be one.)
5086
5087   Note that at most one register is replaced, even if more are
5088   replaceable.  Also, we try to put the result into a canonical form
5089   so it is more likely to be a valid address.
5090
5091   In all other cases, return ADDR.  */
5092
5093static rtx
5094subst_indexed_address (addr)
5095     rtx addr;
5096{
5097  rtx op0 = 0, op1 = 0, op2 = 0;
5098  rtx tem;
5099  int regno;
5100
5101  if (GET_CODE (addr) == PLUS)
5102    {
5103      /* Try to find a register to replace.  */
5104      op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5105      if (GET_CODE (op0) == REG
5106	  && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5107	  && reg_renumber[regno] < 0
5108	  && reg_equiv_constant[regno] != 0)
5109	op0 = reg_equiv_constant[regno];
5110      else if (GET_CODE (op1) == REG
5111	       && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5112	       && reg_renumber[regno] < 0
5113	       && reg_equiv_constant[regno] != 0)
5114	op1 = reg_equiv_constant[regno];
5115      else if (GET_CODE (op0) == PLUS
5116	       && (tem = subst_indexed_address (op0)) != op0)
5117	op0 = tem;
5118      else if (GET_CODE (op1) == PLUS
5119	       && (tem = subst_indexed_address (op1)) != op1)
5120	op1 = tem;
5121      else
5122	return addr;
5123
5124      /* Pick out up to three things to add.  */
5125      if (GET_CODE (op1) == PLUS)
5126	op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5127      else if (GET_CODE (op0) == PLUS)
5128	op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5129
5130      /* Compute the sum.  */
5131      if (op2 != 0)
5132	op1 = form_sum (op1, op2);
5133      if (op1 != 0)
5134	op0 = form_sum (op0, op1);
5135
5136      return op0;
5137    }
5138  return addr;
5139}
5140
5141/* Update the REG_INC notes for an insn.  It updates all REG_INC
5142   notes for the instruction which refer to REGNO the to refer
5143   to the reload number.
5144
5145   INSN is the insn for which any REG_INC notes need updating.
5146
5147   REGNO is the register number which has been reloaded.
5148
5149   RELOADNUM is the reload number.  */
5150
5151static void
5152update_auto_inc_notes (insn, regno, reloadnum)
5153     rtx insn ATTRIBUTE_UNUSED;
5154     int regno ATTRIBUTE_UNUSED;
5155     int reloadnum ATTRIBUTE_UNUSED;
5156{
5157#ifdef AUTO_INC_DEC
5158  rtx link;
5159
5160  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5161    if (REG_NOTE_KIND (link) == REG_INC
5162        && REGNO (XEXP (link, 0)) == regno)
5163      push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5164#endif
5165}
5166
5167/* Record the pseudo registers we must reload into hard registers in a
5168   subexpression of a would-be memory address, X referring to a value
5169   in mode MODE.  (This function is not called if the address we find
5170   is strictly valid.)
5171
5172   CONTEXT = 1 means we are considering regs as index regs,
5173   = 0 means we are considering them as base regs.
5174
5175   OPNUM and TYPE specify the purpose of any reloads made.
5176
5177   IND_LEVELS says how many levels of indirect addressing are
5178   supported at this point in the address.
5179
5180   INSN, if nonzero, is the insn in which we do the reload.  It is used
5181   to determine if we may generate output reloads.
5182
5183   We return nonzero if X, as a whole, is reloaded or replaced.  */
5184
5185/* Note that we take shortcuts assuming that no multi-reg machine mode
5186   occurs as part of an address.
5187   Also, this is not fully machine-customizable; it works for machines
5188   such as VAXen and 68000's and 32000's, but other possible machines
5189   could have addressing modes that this does not handle right.  */
5190
5191static int
5192find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
5193     enum machine_mode mode;
5194     rtx x;
5195     int context;
5196     rtx *loc;
5197     int opnum;
5198     enum reload_type type;
5199     int ind_levels;
5200     rtx insn;
5201{
5202  RTX_CODE code = GET_CODE (x);
5203
5204  switch (code)
5205    {
5206    case PLUS:
5207      {
5208	rtx orig_op0 = XEXP (x, 0);
5209	rtx orig_op1 = XEXP (x, 1);
5210	RTX_CODE code0 = GET_CODE (orig_op0);
5211	RTX_CODE code1 = GET_CODE (orig_op1);
5212	rtx op0 = orig_op0;
5213	rtx op1 = orig_op1;
5214
5215	if (GET_CODE (op0) == SUBREG)
5216	  {
5217	    op0 = SUBREG_REG (op0);
5218	    code0 = GET_CODE (op0);
5219	    if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5220	      op0 = gen_rtx_REG (word_mode,
5221				 (REGNO (op0) +
5222				  subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5223						       GET_MODE (SUBREG_REG (orig_op0)),
5224						       SUBREG_BYTE (orig_op0),
5225						       GET_MODE (orig_op0))));
5226	  }
5227
5228	if (GET_CODE (op1) == SUBREG)
5229	  {
5230	    op1 = SUBREG_REG (op1);
5231	    code1 = GET_CODE (op1);
5232	    if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5233	      /* ??? Why is this given op1's mode and above for
5234		 ??? op0 SUBREGs we use word_mode?  */
5235	      op1 = gen_rtx_REG (GET_MODE (op1),
5236				 (REGNO (op1) +
5237				  subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5238						       GET_MODE (SUBREG_REG (orig_op1)),
5239						       SUBREG_BYTE (orig_op1),
5240						       GET_MODE (orig_op1))));
5241	  }
5242	/* Plus in the index register may be created only as a result of
5243	   register remateralization for expresion like &localvar*4.  Reload it.
5244	   It may be possible to combine the displacement on the outer level,
5245	   but it is probably not worthwhile to do so.  */
5246	if (context)
5247	  {
5248	    find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5249				  opnum, ADDR_TYPE (type), ind_levels, insn);
5250	    push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5251			 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5252			 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5253	    return 1;
5254	  }
5255
5256	if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5257	    || code0 == ZERO_EXTEND || code1 == MEM)
5258	  {
5259	    find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5260				    type, ind_levels, insn);
5261	    find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5262				    type, ind_levels, insn);
5263	  }
5264
5265	else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5266		 || code1 == ZERO_EXTEND || code0 == MEM)
5267	  {
5268	    find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5269				    type, ind_levels, insn);
5270	    find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5271				    type, ind_levels, insn);
5272	  }
5273
5274	else if (code0 == CONST_INT || code0 == CONST
5275		 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5276	  find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5277				  type, ind_levels, insn);
5278
5279	else if (code1 == CONST_INT || code1 == CONST
5280		 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5281	  find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5282				  type, ind_levels, insn);
5283
5284	else if (code0 == REG && code1 == REG)
5285	  {
5286	    if (REG_OK_FOR_INDEX_P (op0)
5287		&& REG_MODE_OK_FOR_BASE_P (op1, mode))
5288	      return 0;
5289	    else if (REG_OK_FOR_INDEX_P (op1)
5290		     && REG_MODE_OK_FOR_BASE_P (op0, mode))
5291	      return 0;
5292	    else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5293	      find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5294				      type, ind_levels, insn);
5295	    else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5296	      find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5297				      type, ind_levels, insn);
5298	    else if (REG_OK_FOR_INDEX_P (op1))
5299	      find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5300				      type, ind_levels, insn);
5301	    else if (REG_OK_FOR_INDEX_P (op0))
5302	      find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5303				      type, ind_levels, insn);
5304	    else
5305	      {
5306		find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5307					type, ind_levels, insn);
5308		find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5309					type, ind_levels, insn);
5310	      }
5311	  }
5312
5313	else if (code0 == REG)
5314	  {
5315	    find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5316				    type, ind_levels, insn);
5317	    find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5318				    type, ind_levels, insn);
5319	  }
5320
5321	else if (code1 == REG)
5322	  {
5323	    find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5324				    type, ind_levels, insn);
5325	    find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5326				    type, ind_levels, insn);
5327	  }
5328      }
5329
5330      return 0;
5331
5332    case POST_MODIFY:
5333    case PRE_MODIFY:
5334      {
5335	rtx op0 = XEXP (x, 0);
5336	rtx op1 = XEXP (x, 1);
5337
5338	if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5339	  return 0;
5340
5341	/* Currently, we only support {PRE,POST}_MODIFY constructs
5342	   where a base register is {inc,dec}remented by the contents
5343	   of another register or by a constant value.  Thus, these
5344	   operands must match.  */
5345	if (op0 != XEXP (op1, 0))
5346	  abort ();
5347
5348	/* Require index register (or constant).  Let's just handle the
5349	   register case in the meantime... If the target allows
5350	   auto-modify by a constant then we could try replacing a pseudo
5351	   register with its equivalent constant where applicable.  */
5352	if (REG_P (XEXP (op1, 1)))
5353	  if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5354	    find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5355				    opnum, type, ind_levels, insn);
5356
5357	if (REG_P (XEXP (op1, 0)))
5358	  {
5359	    int regno = REGNO (XEXP (op1, 0));
5360	    int reloadnum;
5361
5362	    /* A register that is incremented cannot be constant!  */
5363	    if (regno >= FIRST_PSEUDO_REGISTER
5364		&& reg_equiv_constant[regno] != 0)
5365	      abort ();
5366
5367	    /* Handle a register that is equivalent to a memory location
5368	       which cannot be addressed directly.  */
5369 	    if (reg_equiv_memory_loc[regno] != 0
5370		&& (reg_equiv_address[regno] != 0
5371		    || num_not_at_initial_offset))
5372	      {
5373		rtx tem = make_memloc (XEXP (x, 0), regno);
5374
5375		if (reg_equiv_address[regno]
5376		    || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5377		  {
5378		    /* First reload the memory location's address.
5379		       We can't use ADDR_TYPE (type) here, because we need to
5380		       write back the value after reading it, hence we actually
5381		       need two registers.  */
5382		    find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5383					  &XEXP (tem, 0), opnum,
5384					  RELOAD_OTHER,
5385					  ind_levels, insn);
5386
5387		    /* Then reload the memory location into a base
5388		       register.  */
5389		    reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5390					     &XEXP (op1, 0),
5391					     MODE_BASE_REG_CLASS (mode),
5392					     GET_MODE (x), GET_MODE (x), 0,
5393					     0, opnum, RELOAD_OTHER);
5394
5395		    update_auto_inc_notes (this_insn, regno, reloadnum);
5396		    return 0;
5397		  }
5398	      }
5399
5400	    if (reg_renumber[regno] >= 0)
5401	      regno = reg_renumber[regno];
5402
5403	    /* We require a base register here...  */
5404	    if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5405	      {
5406		reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5407					 &XEXP (op1, 0), &XEXP (x, 0),
5408					 MODE_BASE_REG_CLASS (mode),
5409					 GET_MODE (x), GET_MODE (x), 0, 0,
5410					 opnum, RELOAD_OTHER);
5411
5412		update_auto_inc_notes (this_insn, regno, reloadnum);
5413		return 0;
5414	      }
5415	  }
5416	else
5417	  abort ();
5418      }
5419      return 0;
5420
5421    case POST_INC:
5422    case POST_DEC:
5423    case PRE_INC:
5424    case PRE_DEC:
5425      if (GET_CODE (XEXP (x, 0)) == REG)
5426	{
5427	  int regno = REGNO (XEXP (x, 0));
5428	  int value = 0;
5429	  rtx x_orig = x;
5430
5431	  /* A register that is incremented cannot be constant!  */
5432	  if (regno >= FIRST_PSEUDO_REGISTER
5433	      && reg_equiv_constant[regno] != 0)
5434	    abort ();
5435
5436	  /* Handle a register that is equivalent to a memory location
5437	     which cannot be addressed directly.  */
5438	  if (reg_equiv_memory_loc[regno] != 0
5439	      && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5440	    {
5441	      rtx tem = make_memloc (XEXP (x, 0), regno);
5442	      if (reg_equiv_address[regno]
5443		  || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5444		{
5445		  /* First reload the memory location's address.
5446		     We can't use ADDR_TYPE (type) here, because we need to
5447		     write back the value after reading it, hence we actually
5448		     need two registers.  */
5449		  find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5450					&XEXP (tem, 0), opnum, type,
5451					ind_levels, insn);
5452		  /* Put this inside a new increment-expression.  */
5453		  x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5454		  /* Proceed to reload that, as if it contained a register.  */
5455		}
5456	    }
5457
5458	  /* If we have a hard register that is ok as an index,
5459	     don't make a reload.  If an autoincrement of a nice register
5460	     isn't "valid", it must be that no autoincrement is "valid".
5461	     If that is true and something made an autoincrement anyway,
5462	     this must be a special context where one is allowed.
5463	     (For example, a "push" instruction.)
5464	     We can't improve this address, so leave it alone.  */
5465
5466	  /* Otherwise, reload the autoincrement into a suitable hard reg
5467	     and record how much to increment by.  */
5468
5469	  if (reg_renumber[regno] >= 0)
5470	    regno = reg_renumber[regno];
5471	  if ((regno >= FIRST_PSEUDO_REGISTER
5472	       || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5473		    : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5474	    {
5475	      int reloadnum;
5476
5477	      /* If we can output the register afterwards, do so, this
5478		 saves the extra update.
5479		 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5480		 CALL_INSN - and it does not set CC0.
5481		 But don't do this if we cannot directly address the
5482		 memory location, since this will make it harder to
5483		 reuse address reloads, and increases register pressure.
5484		 Also don't do this if we can probably update x directly.  */
5485	      rtx equiv = (GET_CODE (XEXP (x, 0)) == MEM
5486			   ? XEXP (x, 0)
5487			   : reg_equiv_mem[regno]);
5488	      int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5489	      if (insn && GET_CODE (insn) == INSN && equiv
5490		  && memory_operand (equiv, GET_MODE (equiv))
5491#ifdef HAVE_cc0
5492		  && ! sets_cc0_p (PATTERN (insn))
5493#endif
5494		  && ! (icode != CODE_FOR_nothing
5495			&& ((*insn_data[icode].operand[0].predicate)
5496			    (equiv, Pmode))
5497			&& ((*insn_data[icode].operand[1].predicate)
5498			    (equiv, Pmode))))
5499		{
5500		  /* We use the original pseudo for loc, so that
5501		     emit_reload_insns() knows which pseudo this
5502		     reload refers to and updates the pseudo rtx, not
5503		     its equivalent memory location, as well as the
5504		     corresponding entry in reg_last_reload_reg.  */
5505		  loc = &XEXP (x_orig, 0);
5506		  x = XEXP (x, 0);
5507		  reloadnum
5508		    = push_reload (x, x, loc, loc,
5509				   (context ? INDEX_REG_CLASS :
5510				    MODE_BASE_REG_CLASS (mode)),
5511				   GET_MODE (x), GET_MODE (x), 0, 0,
5512				   opnum, RELOAD_OTHER);
5513		}
5514	      else
5515		{
5516		  reloadnum
5517		    = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5518				   (context ? INDEX_REG_CLASS :
5519				    MODE_BASE_REG_CLASS (mode)),
5520				   GET_MODE (x), GET_MODE (x), 0, 0,
5521				   opnum, type);
5522		  rld[reloadnum].inc
5523		    = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5524
5525		  value = 1;
5526		}
5527
5528	      update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5529				     reloadnum);
5530	    }
5531	  return value;
5532	}
5533
5534      else if (GET_CODE (XEXP (x, 0)) == MEM)
5535	{
5536	  /* This is probably the result of a substitution, by eliminate_regs,
5537	     of an equivalent address for a pseudo that was not allocated to a
5538	     hard register.  Verify that the specified address is valid and
5539	     reload it into a register.  */
5540	  /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE.  */
5541	  rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5542	  rtx link;
5543	  int reloadnum;
5544
5545	  /* Since we know we are going to reload this item, don't decrement
5546	     for the indirection level.
5547
5548	     Note that this is actually conservative:  it would be slightly
5549	     more efficient to use the value of SPILL_INDIRECT_LEVELS from
5550	     reload1.c here.  */
5551	  /* We can't use ADDR_TYPE (type) here, because we need to
5552	     write back the value after reading it, hence we actually
5553	     need two registers.  */
5554	  find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5555				XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5556				opnum, type, ind_levels, insn);
5557
5558	  reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5559				   (context ? INDEX_REG_CLASS :
5560				    MODE_BASE_REG_CLASS (mode)),
5561				   GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5562	  rld[reloadnum].inc
5563	    = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5564
5565	  link = FIND_REG_INC_NOTE (this_insn, tem);
5566	  if (link != 0)
5567	    push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5568
5569	  return 1;
5570	}
5571      return 0;
5572
5573    case MEM:
5574      /* This is probably the result of a substitution, by eliminate_regs, of
5575	 an equivalent address for a pseudo that was not allocated to a hard
5576	 register.  Verify that the specified address is valid and reload it
5577	 into a register.
5578
5579	 Since we know we are going to reload this item, don't decrement for
5580	 the indirection level.
5581
5582	 Note that this is actually conservative:  it would be slightly more
5583	 efficient to use the value of SPILL_INDIRECT_LEVELS from
5584	 reload1.c here.  */
5585
5586      find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5587			    opnum, ADDR_TYPE (type), ind_levels, insn);
5588      push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5589		   (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5590		   GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5591      return 1;
5592
5593    case REG:
5594      {
5595	int regno = REGNO (x);
5596
5597	if (reg_equiv_constant[regno] != 0)
5598	  {
5599	    find_reloads_address_part (reg_equiv_constant[regno], loc,
5600				       (context ? INDEX_REG_CLASS :
5601					MODE_BASE_REG_CLASS (mode)),
5602				       GET_MODE (x), opnum, type, ind_levels);
5603	    return 1;
5604	  }
5605
5606#if 0 /* This might screw code in reload1.c to delete prior output-reload
5607	 that feeds this insn.  */
5608	if (reg_equiv_mem[regno] != 0)
5609	  {
5610	    push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5611			 (context ? INDEX_REG_CLASS :
5612			  MODE_BASE_REG_CLASS (mode)),
5613			 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5614	    return 1;
5615	  }
5616#endif
5617
5618	if (reg_equiv_memory_loc[regno]
5619	    && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5620	  {
5621	    rtx tem = make_memloc (x, regno);
5622	    if (reg_equiv_address[regno] != 0
5623		|| ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5624	      {
5625		x = tem;
5626		find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5627				      &XEXP (x, 0), opnum, ADDR_TYPE (type),
5628				      ind_levels, insn);
5629	      }
5630	  }
5631
5632	if (reg_renumber[regno] >= 0)
5633	  regno = reg_renumber[regno];
5634
5635	if ((regno >= FIRST_PSEUDO_REGISTER
5636	     || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5637		  : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5638	  {
5639	    push_reload (x, NULL_RTX, loc, (rtx*) 0,
5640			 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5641			 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5642	    return 1;
5643	  }
5644
5645	/* If a register appearing in an address is the subject of a CLOBBER
5646	   in this insn, reload it into some other register to be safe.
5647	   The CLOBBER is supposed to make the register unavailable
5648	   from before this insn to after it.  */
5649	if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5650	  {
5651	    push_reload (x, NULL_RTX, loc, (rtx*) 0,
5652			 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5653			 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5654	    return 1;
5655	  }
5656      }
5657      return 0;
5658
5659    case SUBREG:
5660      if (GET_CODE (SUBREG_REG (x)) == REG)
5661	{
5662	  /* If this is a SUBREG of a hard register and the resulting register
5663	     is of the wrong class, reload the whole SUBREG.  This avoids
5664	     needless copies if SUBREG_REG is multi-word.  */
5665	  if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5666	    {
5667	      int regno = subreg_regno (x);
5668
5669	      if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5670		     : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5671		{
5672		  push_reload (x, NULL_RTX, loc, (rtx*) 0,
5673			       (context ? INDEX_REG_CLASS :
5674				MODE_BASE_REG_CLASS (mode)),
5675			       GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5676		  return 1;
5677		}
5678	    }
5679	  /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5680	     is larger than the class size, then reload the whole SUBREG.  */
5681	  else
5682	    {
5683	      enum reg_class class = (context ? INDEX_REG_CLASS
5684				      : MODE_BASE_REG_CLASS (mode));
5685	      if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5686		  > reg_class_size[class])
5687		{
5688		  x = find_reloads_subreg_address (x, 0, opnum, type,
5689						   ind_levels, insn);
5690		  push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5691			       GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5692		  return 1;
5693		}
5694	    }
5695	}
5696      break;
5697
5698    default:
5699      break;
5700    }
5701
5702  {
5703    const char *fmt = GET_RTX_FORMAT (code);
5704    int i;
5705
5706    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5707      {
5708	if (fmt[i] == 'e')
5709	  find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5710				  opnum, type, ind_levels, insn);
5711      }
5712  }
5713
5714  return 0;
5715}
5716
5717/* X, which is found at *LOC, is a part of an address that needs to be
5718   reloaded into a register of class CLASS.  If X is a constant, or if
5719   X is a PLUS that contains a constant, check that the constant is a
5720   legitimate operand and that we are supposed to be able to load
5721   it into the register.
5722
5723   If not, force the constant into memory and reload the MEM instead.
5724
5725   MODE is the mode to use, in case X is an integer constant.
5726
5727   OPNUM and TYPE describe the purpose of any reloads made.
5728
5729   IND_LEVELS says how many levels of indirect addressing this machine
5730   supports.  */
5731
5732static void
5733find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
5734     rtx x;
5735     rtx *loc;
5736     enum reg_class class;
5737     enum machine_mode mode;
5738     int opnum;
5739     enum reload_type type;
5740     int ind_levels;
5741{
5742  if (CONSTANT_P (x)
5743      && (! LEGITIMATE_CONSTANT_P (x)
5744	  || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5745    {
5746      rtx tem;
5747
5748      tem = x = force_const_mem (mode, x);
5749      find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5750			    opnum, type, ind_levels, 0);
5751    }
5752
5753  else if (GET_CODE (x) == PLUS
5754	   && CONSTANT_P (XEXP (x, 1))
5755	   && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5756	       || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5757    {
5758      rtx tem;
5759
5760      tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5761      x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5762      find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5763			    opnum, type, ind_levels, 0);
5764    }
5765
5766  push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5767	       mode, VOIDmode, 0, 0, opnum, type);
5768}
5769
5770/* X, a subreg of a pseudo, is a part of an address that needs to be
5771   reloaded.
5772
5773   If the pseudo is equivalent to a memory location that cannot be directly
5774   addressed, make the necessary address reloads.
5775
5776   If address reloads have been necessary, or if the address is changed
5777   by register elimination, return the rtx of the memory location;
5778   otherwise, return X.
5779
5780   If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5781   memory location.
5782
5783   OPNUM and TYPE identify the purpose of the reload.
5784
5785   IND_LEVELS says how many levels of indirect addressing are
5786   supported at this point in the address.
5787
5788   INSN, if nonzero, is the insn in which we do the reload.  It is used
5789   to determine where to put USEs for pseudos that we have to replace with
5790   stack slots.  */
5791
5792static rtx
5793find_reloads_subreg_address (x, force_replace, opnum, type,
5794			     ind_levels, insn)
5795     rtx x;
5796     int force_replace;
5797     int opnum;
5798     enum reload_type type;
5799     int ind_levels;
5800     rtx insn;
5801{
5802  int regno = REGNO (SUBREG_REG (x));
5803
5804  if (reg_equiv_memory_loc[regno])
5805    {
5806      /* If the address is not directly addressable, or if the address is not
5807	 offsettable, then it must be replaced.  */
5808      if (! force_replace
5809	  && (reg_equiv_address[regno]
5810	      || ! offsettable_memref_p (reg_equiv_mem[regno])))
5811	force_replace = 1;
5812
5813      if (force_replace || num_not_at_initial_offset)
5814	{
5815	  rtx tem = make_memloc (SUBREG_REG (x), regno);
5816
5817	  /* If the address changes because of register elimination, then
5818	     it must be replaced.  */
5819	  if (force_replace
5820	      || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5821	    {
5822	      int offset = SUBREG_BYTE (x);
5823	      unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5824	      unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5825
5826	      XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5827	      PUT_MODE (tem, GET_MODE (x));
5828
5829	      /* If this was a paradoxical subreg that we replaced, the
5830		 resulting memory must be sufficiently aligned to allow
5831		 us to widen the mode of the memory.  */
5832	      if (outer_size > inner_size && STRICT_ALIGNMENT)
5833		{
5834		  rtx base;
5835
5836		  base = XEXP (tem, 0);
5837		  if (GET_CODE (base) == PLUS)
5838		    {
5839		      if (GET_CODE (XEXP (base, 1)) == CONST_INT
5840			  && INTVAL (XEXP (base, 1)) % outer_size != 0)
5841			return x;
5842		      base = XEXP (base, 0);
5843		    }
5844		  if (GET_CODE (base) != REG
5845		      || (REGNO_POINTER_ALIGN (REGNO (base))
5846			  < outer_size * BITS_PER_UNIT))
5847		    return x;
5848		}
5849
5850	      find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5851				    &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5852				    ind_levels, insn);
5853
5854	      /* If this is not a toplevel operand, find_reloads doesn't see
5855		 this substitution.  We have to emit a USE of the pseudo so
5856		 that delete_output_reload can see it.  */
5857	      if (replace_reloads && recog_data.operand[opnum] != x)
5858		/* We mark the USE with QImode so that we recognize it
5859		   as one that can be safely deleted at the end of
5860		   reload.  */
5861		PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
5862							 SUBREG_REG (x)),
5863					    insn), QImode);
5864	      x = tem;
5865	    }
5866	}
5867    }
5868  return x;
5869}
5870
5871/* Substitute into the current INSN the registers into which we have reloaded
5872   the things that need reloading.  The array `replacements'
5873   contains the locations of all pointers that must be changed
5874   and says what to replace them with.
5875
5876   Return the rtx that X translates into; usually X, but modified.  */
5877
5878void
5879subst_reloads (insn)
5880     rtx insn;
5881{
5882  int i;
5883
5884  for (i = 0; i < n_replacements; i++)
5885    {
5886      struct replacement *r = &replacements[i];
5887      rtx reloadreg = rld[r->what].reg_rtx;
5888      if (reloadreg)
5889	{
5890#ifdef ENABLE_CHECKING
5891	  /* Internal consistency test.  Check that we don't modify
5892	     anything in the equivalence arrays.  Whenever something from
5893	     those arrays needs to be reloaded, it must be unshared before
5894	     being substituted into; the equivalence must not be modified.
5895	     Otherwise, if the equivalence is used after that, it will
5896	     have been modified, and the thing substituted (probably a
5897	     register) is likely overwritten and not a usable equivalence.  */
5898	  int check_regno;
5899
5900	  for (check_regno = 0; check_regno < max_regno; check_regno++)
5901	    {
5902#define CHECK_MODF(ARRAY)						\
5903	      if (ARRAY[check_regno]					\
5904		  && loc_mentioned_in_p (r->where,			\
5905					 ARRAY[check_regno]))		\
5906		abort ()
5907
5908	      CHECK_MODF (reg_equiv_constant);
5909	      CHECK_MODF (reg_equiv_memory_loc);
5910	      CHECK_MODF (reg_equiv_address);
5911	      CHECK_MODF (reg_equiv_mem);
5912#undef CHECK_MODF
5913	    }
5914#endif /* ENABLE_CHECKING */
5915
5916	  /* If we're replacing a LABEL_REF with a register, add a
5917	     REG_LABEL note to indicate to flow which label this
5918	     register refers to.  */
5919	  if (GET_CODE (*r->where) == LABEL_REF
5920	      && GET_CODE (insn) == JUMP_INSN)
5921	    REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
5922						  XEXP (*r->where, 0),
5923						  REG_NOTES (insn));
5924
5925	  /* Encapsulate RELOADREG so its machine mode matches what
5926	     used to be there.  Note that gen_lowpart_common will
5927	     do the wrong thing if RELOADREG is multi-word.  RELOADREG
5928	     will always be a REG here.  */
5929	  if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5930	    reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5931
5932	  /* If we are putting this into a SUBREG and RELOADREG is a
5933	     SUBREG, we would be making nested SUBREGs, so we have to fix
5934	     this up.  Note that r->where == &SUBREG_REG (*r->subreg_loc).  */
5935
5936	  if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5937	    {
5938	      if (GET_MODE (*r->subreg_loc)
5939		  == GET_MODE (SUBREG_REG (reloadreg)))
5940		*r->subreg_loc = SUBREG_REG (reloadreg);
5941	      else
5942		{
5943		  int final_offset =
5944		    SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
5945
5946		  /* When working with SUBREGs the rule is that the byte
5947		     offset must be a multiple of the SUBREG's mode.  */
5948		  final_offset = (final_offset /
5949				  GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5950		  final_offset = (final_offset *
5951				  GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5952
5953		  *r->where = SUBREG_REG (reloadreg);
5954		  SUBREG_BYTE (*r->subreg_loc) = final_offset;
5955		}
5956	    }
5957	  else
5958	    *r->where = reloadreg;
5959	}
5960      /* If reload got no reg and isn't optional, something's wrong.  */
5961      else if (! rld[r->what].optional)
5962	abort ();
5963    }
5964}
5965
5966/* Make a copy of any replacements being done into X and move those
5967   copies to locations in Y, a copy of X.  */
5968
5969void
5970copy_replacements (x, y)
5971     rtx x, y;
5972{
5973  /* We can't support X being a SUBREG because we might then need to know its
5974     location if something inside it was replaced.  */
5975  if (GET_CODE (x) == SUBREG)
5976    abort ();
5977
5978  copy_replacements_1 (&x, &y, n_replacements);
5979}
5980
5981static void
5982copy_replacements_1 (px, py, orig_replacements)
5983     rtx *px;
5984     rtx *py;
5985     int orig_replacements;
5986{
5987  int i, j;
5988  rtx x, y;
5989  struct replacement *r;
5990  enum rtx_code code;
5991  const char *fmt;
5992
5993  for (j = 0; j < orig_replacements; j++)
5994    {
5995      if (replacements[j].subreg_loc == px)
5996	{
5997	  r = &replacements[n_replacements++];
5998	  r->where = replacements[j].where;
5999	  r->subreg_loc = py;
6000	  r->what = replacements[j].what;
6001	  r->mode = replacements[j].mode;
6002	}
6003      else if (replacements[j].where == px)
6004	{
6005	  r = &replacements[n_replacements++];
6006	  r->where = py;
6007	  r->subreg_loc = 0;
6008	  r->what = replacements[j].what;
6009	  r->mode = replacements[j].mode;
6010	}
6011    }
6012
6013  x = *px;
6014  y = *py;
6015  code = GET_CODE (x);
6016  fmt = GET_RTX_FORMAT (code);
6017
6018  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6019    {
6020      if (fmt[i] == 'e')
6021	copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6022      else if (fmt[i] == 'E')
6023	for (j = XVECLEN (x, i); --j >= 0; )
6024	  copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6025			       orig_replacements);
6026    }
6027}
6028
6029/* Change any replacements being done to *X to be done to *Y.  */
6030
6031void
6032move_replacements (x, y)
6033     rtx *x;
6034     rtx *y;
6035{
6036  int i;
6037
6038  for (i = 0; i < n_replacements; i++)
6039    if (replacements[i].subreg_loc == x)
6040      replacements[i].subreg_loc = y;
6041    else if (replacements[i].where == x)
6042      {
6043	replacements[i].where = y;
6044	replacements[i].subreg_loc = 0;
6045      }
6046}
6047
6048/* If LOC was scheduled to be replaced by something, return the replacement.
6049   Otherwise, return *LOC.  */
6050
6051rtx
6052find_replacement (loc)
6053     rtx *loc;
6054{
6055  struct replacement *r;
6056
6057  for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6058    {
6059      rtx reloadreg = rld[r->what].reg_rtx;
6060
6061      if (reloadreg && r->where == loc)
6062	{
6063	  if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6064	    reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6065
6066	  return reloadreg;
6067	}
6068      else if (reloadreg && r->subreg_loc == loc)
6069	{
6070	  /* RELOADREG must be either a REG or a SUBREG.
6071
6072	     ??? Is it actually still ever a SUBREG?  If so, why?  */
6073
6074	  if (GET_CODE (reloadreg) == REG)
6075	    return gen_rtx_REG (GET_MODE (*loc),
6076				(REGNO (reloadreg) +
6077				 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6078						      GET_MODE (SUBREG_REG (*loc)),
6079						      SUBREG_BYTE (*loc),
6080						      GET_MODE (*loc))));
6081	  else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6082	    return reloadreg;
6083	  else
6084	    {
6085	      int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6086
6087	      /* When working with SUBREGs the rule is that the byte
6088		 offset must be a multiple of the SUBREG's mode.  */
6089	      final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6090	      final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6091	      return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6092				     final_offset);
6093	    }
6094	}
6095    }
6096
6097  /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6098     what's inside and make a new rtl if so.  */
6099  if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6100      || GET_CODE (*loc) == MULT)
6101    {
6102      rtx x = find_replacement (&XEXP (*loc, 0));
6103      rtx y = find_replacement (&XEXP (*loc, 1));
6104
6105      if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6106	return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6107    }
6108
6109  return *loc;
6110}
6111
6112/* Return nonzero if register in range [REGNO, ENDREGNO)
6113   appears either explicitly or implicitly in X
6114   other than being stored into (except for earlyclobber operands).
6115
6116   References contained within the substructure at LOC do not count.
6117   LOC may be zero, meaning don't ignore anything.
6118
6119   This is similar to refers_to_regno_p in rtlanal.c except that we
6120   look at equivalences for pseudos that didn't get hard registers.  */
6121
6122int
6123refers_to_regno_for_reload_p (regno, endregno, x, loc)
6124     unsigned int regno, endregno;
6125     rtx x;
6126     rtx *loc;
6127{
6128  int i;
6129  unsigned int r;
6130  RTX_CODE code;
6131  const char *fmt;
6132
6133  if (x == 0)
6134    return 0;
6135
6136 repeat:
6137  code = GET_CODE (x);
6138
6139  switch (code)
6140    {
6141    case REG:
6142      r = REGNO (x);
6143
6144      /* If this is a pseudo, a hard register must not have been allocated.
6145	 X must therefore either be a constant or be in memory.  */
6146      if (r >= FIRST_PSEUDO_REGISTER)
6147	{
6148	  if (reg_equiv_memory_loc[r])
6149	    return refers_to_regno_for_reload_p (regno, endregno,
6150						 reg_equiv_memory_loc[r],
6151						 (rtx*) 0);
6152
6153	  if (reg_equiv_constant[r])
6154	    return 0;
6155
6156	  abort ();
6157	}
6158
6159      return (endregno > r
6160	      && regno < r + (r < FIRST_PSEUDO_REGISTER
6161			      ? HARD_REGNO_NREGS (r, GET_MODE (x))
6162			      : 1));
6163
6164    case SUBREG:
6165      /* If this is a SUBREG of a hard reg, we can see exactly which
6166	 registers are being modified.  Otherwise, handle normally.  */
6167      if (GET_CODE (SUBREG_REG (x)) == REG
6168	  && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6169	{
6170	  unsigned int inner_regno = subreg_regno (x);
6171	  unsigned int inner_endregno
6172	    = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6173			     ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6174
6175	  return endregno > inner_regno && regno < inner_endregno;
6176	}
6177      break;
6178
6179    case CLOBBER:
6180    case SET:
6181      if (&SET_DEST (x) != loc
6182	  /* Note setting a SUBREG counts as referring to the REG it is in for
6183	     a pseudo but not for hard registers since we can
6184	     treat each word individually.  */
6185	  && ((GET_CODE (SET_DEST (x)) == SUBREG
6186	       && loc != &SUBREG_REG (SET_DEST (x))
6187	       && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
6188	       && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6189	       && refers_to_regno_for_reload_p (regno, endregno,
6190						SUBREG_REG (SET_DEST (x)),
6191						loc))
6192	      /* If the output is an earlyclobber operand, this is
6193		 a conflict.  */
6194	      || ((GET_CODE (SET_DEST (x)) != REG
6195		   || earlyclobber_operand_p (SET_DEST (x)))
6196		  && refers_to_regno_for_reload_p (regno, endregno,
6197						   SET_DEST (x), loc))))
6198	return 1;
6199
6200      if (code == CLOBBER || loc == &SET_SRC (x))
6201	return 0;
6202      x = SET_SRC (x);
6203      goto repeat;
6204
6205    default:
6206      break;
6207    }
6208
6209  /* X does not match, so try its subexpressions.  */
6210
6211  fmt = GET_RTX_FORMAT (code);
6212  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6213    {
6214      if (fmt[i] == 'e' && loc != &XEXP (x, i))
6215	{
6216	  if (i == 0)
6217	    {
6218	      x = XEXP (x, 0);
6219	      goto repeat;
6220	    }
6221	  else
6222	    if (refers_to_regno_for_reload_p (regno, endregno,
6223					      XEXP (x, i), loc))
6224	      return 1;
6225	}
6226      else if (fmt[i] == 'E')
6227	{
6228	  int j;
6229	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6230	    if (loc != &XVECEXP (x, i, j)
6231		&& refers_to_regno_for_reload_p (regno, endregno,
6232						 XVECEXP (x, i, j), loc))
6233	      return 1;
6234	}
6235    }
6236  return 0;
6237}
6238
6239/* Nonzero if modifying X will affect IN.  If X is a register or a SUBREG,
6240   we check if any register number in X conflicts with the relevant register
6241   numbers.  If X is a constant, return 0.  If X is a MEM, return 1 iff IN
6242   contains a MEM (we don't bother checking for memory addresses that can't
6243   conflict because we expect this to be a rare case.
6244
6245   This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6246   that we look at equivalences for pseudos that didn't get hard registers.  */
6247
6248int
6249reg_overlap_mentioned_for_reload_p (x, in)
6250     rtx x, in;
6251{
6252  int regno, endregno;
6253
6254  /* Overly conservative.  */
6255  if (GET_CODE (x) == STRICT_LOW_PART
6256      || GET_RTX_CLASS (GET_CODE (x)) == 'a')
6257    x = XEXP (x, 0);
6258
6259  /* If either argument is a constant, then modifying X can not affect IN.  */
6260  if (CONSTANT_P (x) || CONSTANT_P (in))
6261    return 0;
6262  else if (GET_CODE (x) == SUBREG)
6263    {
6264      regno = REGNO (SUBREG_REG (x));
6265      if (regno < FIRST_PSEUDO_REGISTER)
6266	regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6267				      GET_MODE (SUBREG_REG (x)),
6268				      SUBREG_BYTE (x),
6269				      GET_MODE (x));
6270    }
6271  else if (GET_CODE (x) == REG)
6272    {
6273      regno = REGNO (x);
6274
6275      /* If this is a pseudo, it must not have been assigned a hard register.
6276	 Therefore, it must either be in memory or be a constant.  */
6277
6278      if (regno >= FIRST_PSEUDO_REGISTER)
6279	{
6280	  if (reg_equiv_memory_loc[regno])
6281	    return refers_to_mem_for_reload_p (in);
6282	  else if (reg_equiv_constant[regno])
6283	    return 0;
6284	  abort ();
6285	}
6286    }
6287  else if (GET_CODE (x) == MEM)
6288    return refers_to_mem_for_reload_p (in);
6289  else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6290	   || GET_CODE (x) == CC0)
6291    return reg_mentioned_p (x, in);
6292  else if (GET_CODE (x) == PLUS)
6293    return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6294	    || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6295  else
6296    abort ();
6297
6298  endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6299		      ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6300
6301  return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6302}
6303
6304/* Return nonzero if anything in X contains a MEM.  Look also for pseudo
6305   registers.  */
6306
6307int
6308refers_to_mem_for_reload_p (x)
6309     rtx x;
6310{
6311  const char *fmt;
6312  int i;
6313
6314  if (GET_CODE (x) == MEM)
6315    return 1;
6316
6317  if (GET_CODE (x) == REG)
6318    return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6319	    && reg_equiv_memory_loc[REGNO (x)]);
6320
6321  fmt = GET_RTX_FORMAT (GET_CODE (x));
6322  for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6323    if (fmt[i] == 'e'
6324	&& (GET_CODE (XEXP (x, i)) == MEM
6325	    || refers_to_mem_for_reload_p (XEXP (x, i))))
6326      return 1;
6327
6328  return 0;
6329}
6330
6331/* Check the insns before INSN to see if there is a suitable register
6332   containing the same value as GOAL.
6333   If OTHER is -1, look for a register in class CLASS.
6334   Otherwise, just see if register number OTHER shares GOAL's value.
6335
6336   Return an rtx for the register found, or zero if none is found.
6337
6338   If RELOAD_REG_P is (short *)1,
6339   we reject any hard reg that appears in reload_reg_rtx
6340   because such a hard reg is also needed coming into this insn.
6341
6342   If RELOAD_REG_P is any other nonzero value,
6343   it is a vector indexed by hard reg number
6344   and we reject any hard reg whose element in the vector is nonnegative
6345   as well as any that appears in reload_reg_rtx.
6346
6347   If GOAL is zero, then GOALREG is a register number; we look
6348   for an equivalent for that register.
6349
6350   MODE is the machine mode of the value we want an equivalence for.
6351   If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6352
6353   This function is used by jump.c as well as in the reload pass.
6354
6355   If GOAL is the sum of the stack pointer and a constant, we treat it
6356   as if it were a constant except that sp is required to be unchanging.  */
6357
6358rtx
6359find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
6360     rtx goal;
6361     rtx insn;
6362     enum reg_class class;
6363     int other;
6364     short *reload_reg_p;
6365     int goalreg;
6366     enum machine_mode mode;
6367{
6368  rtx p = insn;
6369  rtx goaltry, valtry, value, where;
6370  rtx pat;
6371  int regno = -1;
6372  int valueno;
6373  int goal_mem = 0;
6374  int goal_const = 0;
6375  int goal_mem_addr_varies = 0;
6376  int need_stable_sp = 0;
6377  int nregs;
6378  int valuenregs;
6379
6380  if (goal == 0)
6381    regno = goalreg;
6382  else if (GET_CODE (goal) == REG)
6383    regno = REGNO (goal);
6384  else if (GET_CODE (goal) == MEM)
6385    {
6386      enum rtx_code code = GET_CODE (XEXP (goal, 0));
6387      if (MEM_VOLATILE_P (goal))
6388	return 0;
6389      if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6390	return 0;
6391      /* An address with side effects must be reexecuted.  */
6392      switch (code)
6393	{
6394	case POST_INC:
6395	case PRE_INC:
6396	case POST_DEC:
6397	case PRE_DEC:
6398	case POST_MODIFY:
6399	case PRE_MODIFY:
6400	  return 0;
6401	default:
6402	  break;
6403	}
6404      goal_mem = 1;
6405    }
6406  else if (CONSTANT_P (goal))
6407    goal_const = 1;
6408  else if (GET_CODE (goal) == PLUS
6409	   && XEXP (goal, 0) == stack_pointer_rtx
6410	   && CONSTANT_P (XEXP (goal, 1)))
6411    goal_const = need_stable_sp = 1;
6412  else if (GET_CODE (goal) == PLUS
6413	   && XEXP (goal, 0) == frame_pointer_rtx
6414	   && CONSTANT_P (XEXP (goal, 1)))
6415    goal_const = 1;
6416  else
6417    return 0;
6418
6419  /* Scan insns back from INSN, looking for one that copies
6420     a value into or out of GOAL.
6421     Stop and give up if we reach a label.  */
6422
6423  while (1)
6424    {
6425      p = PREV_INSN (p);
6426      if (p == 0 || GET_CODE (p) == CODE_LABEL)
6427	return 0;
6428
6429      if (GET_CODE (p) == INSN
6430	  /* If we don't want spill regs ...  */
6431	  && (! (reload_reg_p != 0
6432		 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6433	      /* ... then ignore insns introduced by reload; they aren't
6434		 useful and can cause results in reload_as_needed to be
6435		 different from what they were when calculating the need for
6436		 spills.  If we notice an input-reload insn here, we will
6437		 reject it below, but it might hide a usable equivalent.
6438		 That makes bad code.  It may even abort: perhaps no reg was
6439		 spilled for this insn because it was assumed we would find
6440		 that equivalent.  */
6441	      || INSN_UID (p) < reload_first_uid))
6442	{
6443	  rtx tem;
6444	  pat = single_set (p);
6445
6446	  /* First check for something that sets some reg equal to GOAL.  */
6447	  if (pat != 0
6448	      && ((regno >= 0
6449		   && true_regnum (SET_SRC (pat)) == regno
6450		   && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6451		  ||
6452		  (regno >= 0
6453		   && true_regnum (SET_DEST (pat)) == regno
6454		   && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6455		  ||
6456		  (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6457		   /* When looking for stack pointer + const,
6458		      make sure we don't use a stack adjust.  */
6459		   && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6460		   && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6461		  || (goal_mem
6462		      && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6463		      && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6464		  || (goal_mem
6465		      && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6466		      && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6467		  /* If we are looking for a constant,
6468		     and something equivalent to that constant was copied
6469		     into a reg, we can use that reg.  */
6470		  || (goal_const && REG_NOTES (p) != 0
6471		      && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6472		      && ((rtx_equal_p (XEXP (tem, 0), goal)
6473			   && (valueno
6474			       = true_regnum (valtry = SET_DEST (pat))) >= 0)
6475			  || (GET_CODE (SET_DEST (pat)) == REG
6476			      && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6477			      && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6478				  == MODE_FLOAT)
6479			      && GET_CODE (goal) == CONST_INT
6480			      && 0 != (goaltry
6481				       = operand_subword (XEXP (tem, 0), 0, 0,
6482							  VOIDmode))
6483			      && rtx_equal_p (goal, goaltry)
6484			      && (valtry
6485				  = operand_subword (SET_DEST (pat), 0, 0,
6486						     VOIDmode))
6487			      && (valueno = true_regnum (valtry)) >= 0)))
6488		  || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6489							  NULL_RTX))
6490		      && GET_CODE (SET_DEST (pat)) == REG
6491		      && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6492		      && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6493			  == MODE_FLOAT)
6494		      && GET_CODE (goal) == CONST_INT
6495		      && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6496							  VOIDmode))
6497		      && rtx_equal_p (goal, goaltry)
6498		      && (valtry
6499			  = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6500		      && (valueno = true_regnum (valtry)) >= 0)))
6501	    {
6502	      if (other >= 0)
6503		{
6504		  if (valueno != other)
6505		    continue;
6506		}
6507	      else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6508		continue;
6509	      else
6510		{
6511		  int i;
6512
6513		  for (i = HARD_REGNO_NREGS (valueno, mode) - 1; i >= 0; i--)
6514		    if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6515					     valueno + i))
6516		      break;
6517		  if (i >= 0)
6518		    continue;
6519		}
6520	      value = valtry;
6521	      where = p;
6522	      break;
6523	    }
6524	}
6525    }
6526
6527  /* We found a previous insn copying GOAL into a suitable other reg VALUE
6528     (or copying VALUE into GOAL, if GOAL is also a register).
6529     Now verify that VALUE is really valid.  */
6530
6531  /* VALUENO is the register number of VALUE; a hard register.  */
6532
6533  /* Don't try to re-use something that is killed in this insn.  We want
6534     to be able to trust REG_UNUSED notes.  */
6535  if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6536    return 0;
6537
6538  /* If we propose to get the value from the stack pointer or if GOAL is
6539     a MEM based on the stack pointer, we need a stable SP.  */
6540  if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6541      || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6542							  goal)))
6543    need_stable_sp = 1;
6544
6545  /* Reject VALUE if the copy-insn moved the wrong sort of datum.  */
6546  if (GET_MODE (value) != mode)
6547    return 0;
6548
6549  /* Reject VALUE if it was loaded from GOAL
6550     and is also a register that appears in the address of GOAL.  */
6551
6552  if (goal_mem && value == SET_DEST (single_set (where))
6553      && refers_to_regno_for_reload_p (valueno,
6554				       (valueno
6555					+ HARD_REGNO_NREGS (valueno, mode)),
6556				       goal, (rtx*) 0))
6557    return 0;
6558
6559  /* Reject registers that overlap GOAL.  */
6560
6561  if (!goal_mem && !goal_const
6562      && regno + (int) HARD_REGNO_NREGS (regno, mode) > valueno
6563      && regno < valueno + (int) HARD_REGNO_NREGS (valueno, mode))
6564    return 0;
6565
6566  nregs = HARD_REGNO_NREGS (regno, mode);
6567  valuenregs = HARD_REGNO_NREGS (valueno, mode);
6568
6569  /* Reject VALUE if it is one of the regs reserved for reloads.
6570     Reload1 knows how to reuse them anyway, and it would get
6571     confused if we allocated one without its knowledge.
6572     (Now that insns introduced by reload are ignored above,
6573     this case shouldn't happen, but I'm not positive.)  */
6574
6575  if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6576    {
6577      int i;
6578      for (i = 0; i < valuenregs; ++i)
6579	if (reload_reg_p[valueno + i] >= 0)
6580	  return 0;
6581    }
6582
6583  /* Reject VALUE if it is a register being used for an input reload
6584     even if it is not one of those reserved.  */
6585
6586  if (reload_reg_p != 0)
6587    {
6588      int i;
6589      for (i = 0; i < n_reloads; i++)
6590	if (rld[i].reg_rtx != 0 && rld[i].in)
6591	  {
6592	    int regno1 = REGNO (rld[i].reg_rtx);
6593	    int nregs1 = HARD_REGNO_NREGS (regno1,
6594					   GET_MODE (rld[i].reg_rtx));
6595	    if (regno1 < valueno + valuenregs
6596		&& regno1 + nregs1 > valueno)
6597	      return 0;
6598	  }
6599    }
6600
6601  if (goal_mem)
6602    /* We must treat frame pointer as varying here,
6603       since it can vary--in a nonlocal goto as generated by expand_goto.  */
6604    goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6605
6606  /* Now verify that the values of GOAL and VALUE remain unaltered
6607     until INSN is reached.  */
6608
6609  p = insn;
6610  while (1)
6611    {
6612      p = PREV_INSN (p);
6613      if (p == where)
6614	return value;
6615
6616      /* Don't trust the conversion past a function call
6617	 if either of the two is in a call-clobbered register, or memory.  */
6618      if (GET_CODE (p) == CALL_INSN)
6619	{
6620	  int i;
6621
6622	  if (goal_mem || need_stable_sp)
6623	    return 0;
6624
6625	  if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6626	    for (i = 0; i < nregs; ++i)
6627	      if (call_used_regs[regno + i])
6628		return 0;
6629
6630	  if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6631	    for (i = 0; i < valuenregs; ++i)
6632	      if (call_used_regs[valueno + i])
6633		return 0;
6634#ifdef NON_SAVING_SETJMP
6635	  if (NON_SAVING_SETJMP && find_reg_note (p, REG_SETJMP, NULL))
6636	    return 0;
6637#endif
6638	}
6639
6640      if (INSN_P (p))
6641	{
6642	  pat = PATTERN (p);
6643
6644	  /* Watch out for unspec_volatile, and volatile asms.  */
6645	  if (volatile_insn_p (pat))
6646	    return 0;
6647
6648	  /* If this insn P stores in either GOAL or VALUE, return 0.
6649	     If GOAL is a memory ref and this insn writes memory, return 0.
6650	     If GOAL is a memory ref and its address is not constant,
6651	     and this insn P changes a register used in GOAL, return 0.  */
6652
6653	  if (GET_CODE (pat) == COND_EXEC)
6654	    pat = COND_EXEC_CODE (pat);
6655	  if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6656	    {
6657	      rtx dest = SET_DEST (pat);
6658	      while (GET_CODE (dest) == SUBREG
6659		     || GET_CODE (dest) == ZERO_EXTRACT
6660		     || GET_CODE (dest) == SIGN_EXTRACT
6661		     || GET_CODE (dest) == STRICT_LOW_PART)
6662		dest = XEXP (dest, 0);
6663	      if (GET_CODE (dest) == REG)
6664		{
6665		  int xregno = REGNO (dest);
6666		  int xnregs;
6667		  if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6668		    xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6669		  else
6670		    xnregs = 1;
6671		  if (xregno < regno + nregs && xregno + xnregs > regno)
6672		    return 0;
6673		  if (xregno < valueno + valuenregs
6674		      && xregno + xnregs > valueno)
6675		    return 0;
6676		  if (goal_mem_addr_varies
6677		      && reg_overlap_mentioned_for_reload_p (dest, goal))
6678		    return 0;
6679		  if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6680		    return 0;
6681		}
6682	      else if (goal_mem && GET_CODE (dest) == MEM
6683		       && ! push_operand (dest, GET_MODE (dest)))
6684		return 0;
6685	      else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6686		       && reg_equiv_memory_loc[regno] != 0)
6687		return 0;
6688	      else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6689		return 0;
6690	    }
6691	  else if (GET_CODE (pat) == PARALLEL)
6692	    {
6693	      int i;
6694	      for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6695		{
6696		  rtx v1 = XVECEXP (pat, 0, i);
6697		  if (GET_CODE (v1) == COND_EXEC)
6698		    v1 = COND_EXEC_CODE (v1);
6699		  if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6700		    {
6701		      rtx dest = SET_DEST (v1);
6702		      while (GET_CODE (dest) == SUBREG
6703			     || GET_CODE (dest) == ZERO_EXTRACT
6704			     || GET_CODE (dest) == SIGN_EXTRACT
6705			     || GET_CODE (dest) == STRICT_LOW_PART)
6706			dest = XEXP (dest, 0);
6707		      if (GET_CODE (dest) == REG)
6708			{
6709			  int xregno = REGNO (dest);
6710			  int xnregs;
6711			  if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6712			    xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6713			  else
6714			    xnregs = 1;
6715			  if (xregno < regno + nregs
6716			      && xregno + xnregs > regno)
6717			    return 0;
6718			  if (xregno < valueno + valuenregs
6719			      && xregno + xnregs > valueno)
6720			    return 0;
6721			  if (goal_mem_addr_varies
6722			      && reg_overlap_mentioned_for_reload_p (dest,
6723								     goal))
6724			    return 0;
6725			  if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6726			    return 0;
6727			}
6728		      else if (goal_mem && GET_CODE (dest) == MEM
6729			       && ! push_operand (dest, GET_MODE (dest)))
6730			return 0;
6731		      else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6732			       && reg_equiv_memory_loc[regno] != 0)
6733			return 0;
6734		      else if (need_stable_sp
6735			       && push_operand (dest, GET_MODE (dest)))
6736			return 0;
6737		    }
6738		}
6739	    }
6740
6741	  if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6742	    {
6743	      rtx link;
6744
6745	      for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6746		   link = XEXP (link, 1))
6747		{
6748		  pat = XEXP (link, 0);
6749		  if (GET_CODE (pat) == CLOBBER)
6750		    {
6751		      rtx dest = SET_DEST (pat);
6752
6753		      if (GET_CODE (dest) == REG)
6754			{
6755			  int xregno = REGNO (dest);
6756			  int xnregs
6757			    = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6758
6759			  if (xregno < regno + nregs
6760			      && xregno + xnregs > regno)
6761			    return 0;
6762			  else if (xregno < valueno + valuenregs
6763				   && xregno + xnregs > valueno)
6764			    return 0;
6765			  else if (goal_mem_addr_varies
6766				   && reg_overlap_mentioned_for_reload_p (dest,
6767								     goal))
6768			    return 0;
6769			}
6770
6771		      else if (goal_mem && GET_CODE (dest) == MEM
6772			       && ! push_operand (dest, GET_MODE (dest)))
6773			return 0;
6774		      else if (need_stable_sp
6775			       && push_operand (dest, GET_MODE (dest)))
6776			return 0;
6777		    }
6778		}
6779	    }
6780
6781#ifdef AUTO_INC_DEC
6782	  /* If this insn auto-increments or auto-decrements
6783	     either regno or valueno, return 0 now.
6784	     If GOAL is a memory ref and its address is not constant,
6785	     and this insn P increments a register used in GOAL, return 0.  */
6786	  {
6787	    rtx link;
6788
6789	    for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6790	      if (REG_NOTE_KIND (link) == REG_INC
6791		  && GET_CODE (XEXP (link, 0)) == REG)
6792		{
6793		  int incno = REGNO (XEXP (link, 0));
6794		  if (incno < regno + nregs && incno >= regno)
6795		    return 0;
6796		  if (incno < valueno + valuenregs && incno >= valueno)
6797		    return 0;
6798		  if (goal_mem_addr_varies
6799		      && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6800							     goal))
6801		    return 0;
6802		}
6803	  }
6804#endif
6805	}
6806    }
6807}
6808
6809/* Find a place where INCED appears in an increment or decrement operator
6810   within X, and return the amount INCED is incremented or decremented by.
6811   The value is always positive.  */
6812
6813static int
6814find_inc_amount (x, inced)
6815     rtx x, inced;
6816{
6817  enum rtx_code code = GET_CODE (x);
6818  const char *fmt;
6819  int i;
6820
6821  if (code == MEM)
6822    {
6823      rtx addr = XEXP (x, 0);
6824      if ((GET_CODE (addr) == PRE_DEC
6825	   || GET_CODE (addr) == POST_DEC
6826	   || GET_CODE (addr) == PRE_INC
6827	   || GET_CODE (addr) == POST_INC)
6828	  && XEXP (addr, 0) == inced)
6829	return GET_MODE_SIZE (GET_MODE (x));
6830      else if ((GET_CODE (addr) == PRE_MODIFY
6831		|| GET_CODE (addr) == POST_MODIFY)
6832	       && GET_CODE (XEXP (addr, 1)) == PLUS
6833	       && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6834	       && XEXP (addr, 0) == inced
6835	       && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6836	{
6837	  i = INTVAL (XEXP (XEXP (addr, 1), 1));
6838	  return i < 0 ? -i : i;
6839	}
6840    }
6841
6842  fmt = GET_RTX_FORMAT (code);
6843  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6844    {
6845      if (fmt[i] == 'e')
6846	{
6847	  int tem = find_inc_amount (XEXP (x, i), inced);
6848	  if (tem != 0)
6849	    return tem;
6850	}
6851      if (fmt[i] == 'E')
6852	{
6853	  int j;
6854	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6855	    {
6856	      int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6857	      if (tem != 0)
6858		return tem;
6859	    }
6860	}
6861    }
6862
6863  return 0;
6864}
6865
6866/* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6867   If SETS is nonzero, also consider SETs.  */
6868
6869int
6870regno_clobbered_p (regno, insn, mode, sets)
6871     unsigned int regno;
6872     rtx insn;
6873     enum machine_mode mode;
6874     int sets;
6875{
6876  unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
6877  unsigned int endregno = regno + nregs;
6878
6879  if ((GET_CODE (PATTERN (insn)) == CLOBBER
6880       || (sets && GET_CODE (PATTERN (insn)) == SET))
6881      && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6882    {
6883      unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
6884
6885      return test >= regno && test < endregno;
6886    }
6887
6888  if (GET_CODE (PATTERN (insn)) == PARALLEL)
6889    {
6890      int i = XVECLEN (PATTERN (insn), 0) - 1;
6891
6892      for (; i >= 0; i--)
6893	{
6894	  rtx elt = XVECEXP (PATTERN (insn), 0, i);
6895	  if ((GET_CODE (elt) == CLOBBER
6896	       || (sets && GET_CODE (PATTERN (insn)) == SET))
6897	      && GET_CODE (XEXP (elt, 0)) == REG)
6898	    {
6899	      unsigned int test = REGNO (XEXP (elt, 0));
6900
6901	      if (test >= regno && test < endregno)
6902		return 1;
6903	    }
6904	}
6905    }
6906
6907  return 0;
6908}
6909
6910static const char *const reload_when_needed_name[] =
6911{
6912  "RELOAD_FOR_INPUT",
6913  "RELOAD_FOR_OUTPUT",
6914  "RELOAD_FOR_INSN",
6915  "RELOAD_FOR_INPUT_ADDRESS",
6916  "RELOAD_FOR_INPADDR_ADDRESS",
6917  "RELOAD_FOR_OUTPUT_ADDRESS",
6918  "RELOAD_FOR_OUTADDR_ADDRESS",
6919  "RELOAD_FOR_OPERAND_ADDRESS",
6920  "RELOAD_FOR_OPADDR_ADDR",
6921  "RELOAD_OTHER",
6922  "RELOAD_FOR_OTHER_ADDRESS"
6923};
6924
6925static const char * const reg_class_names[] = REG_CLASS_NAMES;
6926
6927/* These functions are used to print the variables set by 'find_reloads' */
6928
6929void
6930debug_reload_to_stream (f)
6931     FILE *f;
6932{
6933  int r;
6934  const char *prefix;
6935
6936  if (! f)
6937    f = stderr;
6938  for (r = 0; r < n_reloads; r++)
6939    {
6940      fprintf (f, "Reload %d: ", r);
6941
6942      if (rld[r].in != 0)
6943	{
6944	  fprintf (f, "reload_in (%s) = ",
6945		   GET_MODE_NAME (rld[r].inmode));
6946	  print_inline_rtx (f, rld[r].in, 24);
6947	  fprintf (f, "\n\t");
6948	}
6949
6950      if (rld[r].out != 0)
6951	{
6952	  fprintf (f, "reload_out (%s) = ",
6953		   GET_MODE_NAME (rld[r].outmode));
6954	  print_inline_rtx (f, rld[r].out, 24);
6955	  fprintf (f, "\n\t");
6956	}
6957
6958      fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
6959
6960      fprintf (f, "%s (opnum = %d)",
6961	       reload_when_needed_name[(int) rld[r].when_needed],
6962	       rld[r].opnum);
6963
6964      if (rld[r].optional)
6965	fprintf (f, ", optional");
6966
6967      if (rld[r].nongroup)
6968	fprintf (f, ", nongroup");
6969
6970      if (rld[r].inc != 0)
6971	fprintf (f, ", inc by %d", rld[r].inc);
6972
6973      if (rld[r].nocombine)
6974	fprintf (f, ", can't combine");
6975
6976      if (rld[r].secondary_p)
6977	fprintf (f, ", secondary_reload_p");
6978
6979      if (rld[r].in_reg != 0)
6980	{
6981	  fprintf (f, "\n\treload_in_reg: ");
6982	  print_inline_rtx (f, rld[r].in_reg, 24);
6983	}
6984
6985      if (rld[r].out_reg != 0)
6986	{
6987	  fprintf (f, "\n\treload_out_reg: ");
6988	  print_inline_rtx (f, rld[r].out_reg, 24);
6989	}
6990
6991      if (rld[r].reg_rtx != 0)
6992	{
6993	  fprintf (f, "\n\treload_reg_rtx: ");
6994	  print_inline_rtx (f, rld[r].reg_rtx, 24);
6995	}
6996
6997      prefix = "\n\t";
6998      if (rld[r].secondary_in_reload != -1)
6999	{
7000	  fprintf (f, "%ssecondary_in_reload = %d",
7001		   prefix, rld[r].secondary_in_reload);
7002	  prefix = ", ";
7003	}
7004
7005      if (rld[r].secondary_out_reload != -1)
7006	fprintf (f, "%ssecondary_out_reload = %d\n",
7007		 prefix, rld[r].secondary_out_reload);
7008
7009      prefix = "\n\t";
7010      if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7011	{
7012	  fprintf (f, "%ssecondary_in_icode = %s", prefix,
7013		   insn_data[rld[r].secondary_in_icode].name);
7014	  prefix = ", ";
7015	}
7016
7017      if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7018	fprintf (f, "%ssecondary_out_icode = %s", prefix,
7019		 insn_data[rld[r].secondary_out_icode].name);
7020
7021      fprintf (f, "\n");
7022    }
7023}
7024
7025void
7026debug_reload ()
7027{
7028  debug_reload_to_stream (stderr);
7029}
7030