i386.h revision 96294
1/* Definitions of target machine for GNU compiler for IA-32.
2   Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3   2001, 2002 Free Software Foundation, Inc.
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING.  If not, write to
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA.  */
21
22/* The purpose of this file is to define the characteristics of the i386,
23   independent of assembler syntax or operating system.
24
25   Three other files build on this one to describe a specific assembler syntax:
26   bsd386.h, att386.h, and sun386.h.
27
28   The actual tm.h file for a particular system should include
29   this file, and then the file for the appropriate assembler syntax.
30
31   Many macros that specify assembler syntax are omitted entirely from
32   this file because they really belong in the files for particular
33   assemblers.  These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34   ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35   that start with ASM_ or end in ASM_OP.  */
36
37
38/* $FreeBSD: head/contrib/gcc/config/i386/i386.h 96294 2002-05-09 22:44:32Z obrien $ */
39
40
41/* Stubs for half-pic support if not OSF/1 reference platform.  */
42
43#ifndef HALF_PIC_P
44#define HALF_PIC_P() 0
45#define HALF_PIC_NUMBER_PTRS 0
46#define HALF_PIC_NUMBER_REFS 0
47#define HALF_PIC_ENCODE(DECL)
48#define HALF_PIC_DECLARE(NAME)
49#define HALF_PIC_INIT()	error ("half-pic init called on systems that don't support it")
50#define HALF_PIC_ADDRESS_P(X) 0
51#define HALF_PIC_PTR(X) (X)
52#define HALF_PIC_FINISH(STREAM)
53#endif
54
55/* Define the specific costs for a given cpu */
56
57struct processor_costs {
58  const int add;		/* cost of an add instruction */
59  const int lea;		/* cost of a lea instruction */
60  const int shift_var;		/* variable shift costs */
61  const int shift_const;	/* constant shift costs */
62  const int mult_init;		/* cost of starting a multiply */
63  const int mult_bit;		/* cost of multiply per each bit set */
64  const int divide;		/* cost of a divide/mod */
65  int movsx;			/* The cost of movsx operation.  */
66  int movzx;			/* The cost of movzx operation.  */
67  const int large_insn;		/* insns larger than this cost more */
68  const int move_ratio;		/* The threshold of number of scalar
69				   memory-to-memory move insns.  */
70  const int movzbl_load;	/* cost of loading using movzbl */
71  const int int_load[3];	/* cost of loading integer registers
72				   in QImode, HImode and SImode relative
73				   to reg-reg move (2).  */
74  const int int_store[3];	/* cost of storing integer register
75				   in QImode, HImode and SImode */
76  const int fp_move;		/* cost of reg,reg fld/fst */
77  const int fp_load[3];		/* cost of loading FP register
78				   in SFmode, DFmode and XFmode */
79  const int fp_store[3];	/* cost of storing FP register
80				   in SFmode, DFmode and XFmode */
81  const int mmx_move;		/* cost of moving MMX register.  */
82  const int mmx_load[2];	/* cost of loading MMX register
83				   in SImode and DImode */
84  const int mmx_store[2];	/* cost of storing MMX register
85				   in SImode and DImode */
86  const int sse_move;		/* cost of moving SSE register.  */
87  const int sse_load[3];	/* cost of loading SSE register
88				   in SImode, DImode and TImode*/
89  const int sse_store[3];	/* cost of storing SSE register
90				   in SImode, DImode and TImode*/
91  const int mmxsse_to_integer;	/* cost of moving mmxsse register to
92				   integer and vice versa.  */
93  const int prefetch_block;	/* bytes moved to cache for prefetch.  */
94  const int simultaneous_prefetches; /* number of parallel prefetch
95				   operations.  */
96};
97
98extern const struct processor_costs *ix86_cost;
99
100/* Run-time compilation parameters selecting different hardware subsets.  */
101
102extern int target_flags;
103
104/* Macros used in the machine description to test the flags.  */
105
106/* configure can arrange to make this 2, to force a 486.  */
107
108#ifndef TARGET_CPU_DEFAULT
109#define TARGET_CPU_DEFAULT 0
110#endif
111
112/* Masks for the -m switches */
113#define MASK_80387		0x00000001	/* Hardware floating point */
114#define MASK_RTD		0x00000002	/* Use ret that pops args */
115#define MASK_ALIGN_DOUBLE	0x00000004	/* align doubles to 2 word boundary */
116#define MASK_SVR3_SHLIB		0x00000008	/* Uninit locals into bss */
117#define MASK_IEEE_FP		0x00000010	/* IEEE fp comparisons */
118#define MASK_FLOAT_RETURNS	0x00000020	/* Return float in st(0) */
119#define MASK_NO_FANCY_MATH_387	0x00000040	/* Disable sin, cos, sqrt */
120#define MASK_OMIT_LEAF_FRAME_POINTER 0x080      /* omit leaf frame pointers */
121#define MASK_STACK_PROBE	0x00000100	/* Enable stack probing */
122#define MASK_NO_ALIGN_STROPS	0x00000200	/* Enable aligning of string ops.  */
123#define MASK_INLINE_ALL_STROPS	0x00000400	/* Inline stringops in all cases */
124#define MASK_NO_PUSH_ARGS	0x00000800	/* Use push instructions */
125#define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
126#define MASK_ACCUMULATE_OUTGOING_ARGS_SET 0x00002000
127#define MASK_MMX		0x00004000	/* Support MMX regs/builtins */
128#define MASK_MMX_SET		0x00008000
129#define MASK_SSE		0x00010000	/* Support SSE regs/builtins */
130#define MASK_SSE_SET		0x00020000
131#define MASK_SSE2		0x00040000	/* Support SSE2 regs/builtins */
132#define MASK_SSE2_SET		0x00080000
133#define MASK_3DNOW		0x00100000	/* Support 3Dnow builtins */
134#define MASK_3DNOW_SET		0x00200000
135#define MASK_3DNOW_A		0x00400000	/* Support Athlon 3Dnow builtins */
136#define MASK_3DNOW_A_SET	0x00800000
137#define MASK_128BIT_LONG_DOUBLE 0x01000000	/* long double size is 128bit */
138#define MASK_64BIT		0x02000000	/* Produce 64bit code */
139/* ... overlap with subtarget options starts by 0x04000000.  */
140#define MASK_NO_RED_ZONE	0x04000000	/* Do not use red zone */
141
142/* Use the floating point instructions */
143#define TARGET_80387 (target_flags & MASK_80387)
144
145/* Compile using ret insn that pops args.
146   This will not work unless you use prototypes at least
147   for all functions that can take varying numbers of args.  */
148#define TARGET_RTD (target_flags & MASK_RTD)
149
150/* Align doubles to a two word boundary.  This breaks compatibility with
151   the published ABI's for structures containing doubles, but produces
152   faster code on the pentium.  */
153#define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
154
155/* Use push instructions to save outgoing args.  */
156#define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
157
158/* Accumulate stack adjustments to prologue/epilogue.  */
159#define TARGET_ACCUMULATE_OUTGOING_ARGS \
160 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
161
162/* Put uninitialized locals into bss, not data.
163   Meaningful only on svr3.  */
164#define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
165
166/* Use IEEE floating point comparisons.  These handle correctly the cases
167   where the result of a comparison is unordered.  Normally SIGFPE is
168   generated in such cases, in which case this isn't needed.  */
169#define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
170
171/* Functions that return a floating point value may return that value
172   in the 387 FPU or in 386 integer registers.  If set, this flag causes
173   the 387 to be used, which is compatible with most calling conventions.  */
174#define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
175
176/* Long double is 128bit instead of 96bit, even when only 80bits are used.
177   This mode wastes cache, but avoid misaligned data accesses and simplifies
178   address calculations.  */
179#define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
180
181/* Disable generation of FP sin, cos and sqrt operations for 387.
182   This is because FreeBSD lacks these in the math-emulator-code */
183#define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
184
185/* Don't create frame pointers for leaf functions */
186#define TARGET_OMIT_LEAF_FRAME_POINTER \
187  (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
188
189/* Debug GO_IF_LEGITIMATE_ADDRESS */
190#define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
191
192/* Debug FUNCTION_ARG macros */
193#define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
194
195/* 64bit Sledgehammer mode */
196#ifdef TARGET_BI_ARCH
197#define TARGET_64BIT (target_flags & MASK_64BIT)
198#else
199#ifdef TARGET_64BIT_DEFAULT
200#define TARGET_64BIT 1
201#else
202#define TARGET_64BIT 0
203#endif
204#endif
205
206#define TARGET_386 (ix86_cpu == PROCESSOR_I386)
207#define TARGET_486 (ix86_cpu == PROCESSOR_I486)
208#define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM)
209#define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO)
210#define TARGET_K6 (ix86_cpu == PROCESSOR_K6)
211#define TARGET_ATHLON (ix86_cpu == PROCESSOR_ATHLON)
212#define TARGET_PENTIUM4 (ix86_cpu == PROCESSOR_PENTIUM4)
213
214#define CPUMASK (1 << ix86_cpu)
215extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
216extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
217extern const int x86_branch_hints, x86_unroll_strlen;
218extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
219extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
220extern const int x86_use_cltd, x86_read_modify_write;
221extern const int x86_read_modify, x86_split_long_moves;
222extern const int x86_promote_QImode, x86_single_stringop;
223extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
224extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
225extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
226extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
227extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
228extern const int x86_epilogue_using_move, x86_decompose_lea;
229extern const int x86_arch_always_fancy_math_387;
230extern int x86_prefetch_sse;
231
232#define TARGET_USE_LEAVE (x86_use_leave & CPUMASK)
233#define TARGET_PUSH_MEMORY (x86_push_memory & CPUMASK)
234#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & CPUMASK)
235#define TARGET_USE_BIT_TEST (x86_use_bit_test & CPUMASK)
236#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & CPUMASK)
237/* For sane SSE instruction set generation we need fcomi instruction.  It is
238   safe to enable all CMOVE instructions.  */
239#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
240#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & CPUMASK)
241#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & CPUMASK)
242#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & CPUMASK)
243#define TARGET_USE_SAHF ((x86_use_sahf & CPUMASK) && !TARGET_64BIT)
244#define TARGET_MOVX (x86_movx & CPUMASK)
245#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & CPUMASK)
246#define TARGET_USE_LOOP (x86_use_loop & CPUMASK)
247#define TARGET_USE_FIOP (x86_use_fiop & CPUMASK)
248#define TARGET_USE_MOV0 (x86_use_mov0 & CPUMASK)
249#define TARGET_USE_CLTD (x86_use_cltd & CPUMASK)
250#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & CPUMASK)
251#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & CPUMASK)
252#define TARGET_READ_MODIFY (x86_read_modify & CPUMASK)
253#define TARGET_PROMOTE_QImode (x86_promote_QImode & CPUMASK)
254#define TARGET_SINGLE_STRINGOP (x86_single_stringop & CPUMASK)
255#define TARGET_QIMODE_MATH (x86_qimode_math & CPUMASK)
256#define TARGET_HIMODE_MATH (x86_himode_math & CPUMASK)
257#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & CPUMASK)
258#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & CPUMASK)
259#define TARGET_ADD_ESP_4 (x86_add_esp_4 & CPUMASK)
260#define TARGET_ADD_ESP_8 (x86_add_esp_8 & CPUMASK)
261#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & CPUMASK)
262#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & CPUMASK)
263#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & CPUMASK)
264#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & CPUMASK)
265#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & CPUMASK)
266#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & CPUMASK)
267#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & CPUMASK)
268#define TARGET_DECOMPOSE_LEA (x86_decompose_lea & CPUMASK)
269#define TARGET_PREFETCH_SSE (x86_prefetch_sse)
270
271#define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
272
273#define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
274#define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
275
276#define ASSEMBLER_DIALECT (ix86_asm_dialect)
277
278#define TARGET_SSE ((target_flags & (MASK_SSE | MASK_SSE2)) != 0)
279#define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
280#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
281#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
282			     && (ix86_fpmath & FPMATH_387))
283#define TARGET_MMX ((target_flags & MASK_MMX) != 0)
284#define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
285#define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
286
287#define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
288
289/* WARNING: Do not mark empty strings for translation, as calling
290            gettext on an empty string does NOT return an empty
291            string. */
292
293
294#define TARGET_SWITCHES							      \
295{ { "80387",			 MASK_80387, N_("Use hardware fp") },	      \
296  { "no-80387",			-MASK_80387, N_("Do not use hardware fp") },  \
297  { "hard-float",		 MASK_80387, N_("Use hardware fp") },	      \
298  { "soft-float",		-MASK_80387, N_("Do not use hardware fp") },  \
299  { "no-soft-float",		 MASK_80387, N_("Use hardware fp") },	      \
300  { "386",			 0, "" /*Deprecated.*/},		      \
301  { "486",			 0, "" /*Deprecated.*/},		      \
302  { "pentium",			 0, "" /*Deprecated.*/},		      \
303  { "pentiumpro",		 0, "" /*Deprecated.*/},		      \
304  { "intel-syntax",		 0, "" /*Deprecated.*/},	 	      \
305  { "no-intel-syntax",		 0, "" /*Deprecated.*/},	 	      \
306  { "rtd",			 MASK_RTD,				      \
307    N_("Alternate calling convention") },				      \
308  { "no-rtd",			-MASK_RTD,				      \
309    N_("Use normal calling convention") },				      \
310  { "align-double",		 MASK_ALIGN_DOUBLE,			      \
311    N_("Align some doubles on dword boundary") },			      \
312  { "no-align-double",		-MASK_ALIGN_DOUBLE,			      \
313    N_("Align doubles on word boundary") },				      \
314  { "svr3-shlib",		 MASK_SVR3_SHLIB,			      \
315    N_("Uninitialized locals in .bss")  },				      \
316  { "no-svr3-shlib",		-MASK_SVR3_SHLIB,			      \
317    N_("Uninitialized locals in .data") },				      \
318  { "ieee-fp",			 MASK_IEEE_FP,				      \
319    N_("Use IEEE math for fp comparisons") },				      \
320  { "no-ieee-fp",		-MASK_IEEE_FP,				      \
321    N_("Do not use IEEE math for fp comparisons") },			      \
322  { "fp-ret-in-387",		 MASK_FLOAT_RETURNS,			      \
323    N_("Return values of functions in FPU registers") },		      \
324  { "no-fp-ret-in-387",		-MASK_FLOAT_RETURNS ,			      \
325    N_("Do not return values of functions in FPU registers")},		      \
326  { "no-fancy-math-387",	 MASK_NO_FANCY_MATH_387,		      \
327    N_("Do not generate sin, cos, sqrt for FPU") },			      \
328  { "fancy-math-387",		-MASK_NO_FANCY_MATH_387,		      \
329     N_("Generate sin, cos, sqrt for FPU")},				      \
330  { "omit-leaf-frame-pointer",	 MASK_OMIT_LEAF_FRAME_POINTER,		      \
331    N_("Omit the frame pointer in leaf functions") },			      \
332  { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" },	      \
333  { "stack-arg-probe",		 MASK_STACK_PROBE,			      \
334    N_("Enable stack probing") },					      \
335  { "no-stack-arg-probe",	-MASK_STACK_PROBE, "" },		      \
336  { "windows",			0, 0 /* undocumented */ },		      \
337  { "dll",			0,  0 /* undocumented */ },		      \
338  { "align-stringops",		-MASK_NO_ALIGN_STROPS,			      \
339    N_("Align destination of the string operations") },			      \
340  { "no-align-stringops",	 MASK_NO_ALIGN_STROPS,			      \
341    N_("Do not align destination of the string operations") },		      \
342  { "inline-all-stringops",	 MASK_INLINE_ALL_STROPS,		      \
343    N_("Inline all known string operations") },				      \
344  { "no-inline-all-stringops",	-MASK_INLINE_ALL_STROPS,		      \
345    N_("Do not inline all known string operations") },			      \
346  { "push-args",		-MASK_NO_PUSH_ARGS,			      \
347    N_("Use push instructions to save outgoing arguments") },		      \
348  { "no-push-args",		MASK_NO_PUSH_ARGS,			      \
349    N_("Do not use push instructions to save outgoing arguments") },	      \
350  { "accumulate-outgoing-args",	(MASK_ACCUMULATE_OUTGOING_ARGS		      \
351				 | MASK_ACCUMULATE_OUTGOING_ARGS_SET),	      \
352    N_("Use push instructions to save outgoing arguments") },		      \
353  { "no-accumulate-outgoing-args",MASK_ACCUMULATE_OUTGOING_ARGS_SET,	      \
354    N_("Do not use push instructions to save outgoing arguments") },	      \
355  { "mmx",			 MASK_MMX | MASK_MMX_SET,		      \
356    N_("Support MMX built-in functions") },				      \
357  { "no-mmx",			 -MASK_MMX,				      \
358    N_("Do not support MMX built-in functions") },			      \
359  { "no-mmx",			 MASK_MMX_SET, "" },			      \
360  { "3dnow",                     MASK_3DNOW | MASK_3DNOW_SET,		      \
361    N_("Support 3DNow! built-in functions") },				      \
362  { "no-3dnow",                  -MASK_3DNOW, "" },			      \
363  { "no-3dnow",                  MASK_3DNOW_SET,			      \
364    N_("Do not support 3DNow! built-in functions") },			      \
365  { "sse",			 MASK_SSE | MASK_SSE_SET,		      \
366    N_("Support MMX and SSE built-in functions and code generation") },	      \
367  { "no-sse",			 -MASK_SSE, "" },	 		      \
368  { "no-sse",			 MASK_SSE_SET,				      \
369    N_("Do not support MMX and SSE built-in functions and code generation") },\
370  { "sse2",			 MASK_SSE2 | MASK_SSE2_SET,		      \
371    N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
372  { "no-sse2",			 -MASK_SSE2, "" },			      \
373  { "no-sse2",			 MASK_SSE2_SET,				      \
374    N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") },    \
375  { "128bit-long-double",	 MASK_128BIT_LONG_DOUBLE,		      \
376    N_("sizeof(long double) is 16") },					      \
377  { "96bit-long-double",	-MASK_128BIT_LONG_DOUBLE,		      \
378    N_("sizeof(long double) is 12") },					      \
379  { "64",			MASK_64BIT,				      \
380    N_("Generate 64bit x86-64 code") },					      \
381  { "32",			-MASK_64BIT,				      \
382    N_("Generate 32bit i386 code") },					      \
383  { "red-zone",			-MASK_NO_RED_ZONE,			      \
384    N_("Use red-zone in the x86-64 code") },				      \
385  { "no-red-zone",		MASK_NO_RED_ZONE,			      \
386    N_("Do not use red-zone in the x86-64 code") },			      \
387  SUBTARGET_SWITCHES							      \
388  { "", TARGET_DEFAULT, 0 }}
389
390#ifdef TARGET_64BIT_DEFAULT
391#define TARGET_DEFAULT (MASK_64BIT | TARGET_SUBTARGET_DEFAULT)
392#else
393#define TARGET_DEFAULT TARGET_SUBTARGET_DEFAULT
394#endif
395
396/* Which processor to schedule for. The cpu attribute defines a list that
397   mirrors this list, so changes to i386.md must be made at the same time.  */
398
399enum processor_type
400{
401  PROCESSOR_I386,			/* 80386 */
402  PROCESSOR_I486,			/* 80486DX, 80486SX, 80486DX[24] */
403  PROCESSOR_PENTIUM,
404  PROCESSOR_PENTIUMPRO,
405  PROCESSOR_K6,
406  PROCESSOR_ATHLON,
407  PROCESSOR_PENTIUM4,
408  PROCESSOR_max
409};
410enum fpmath_unit
411{
412  FPMATH_387 = 1,
413  FPMATH_SSE = 2
414};
415
416extern enum processor_type ix86_cpu;
417extern enum fpmath_unit ix86_fpmath;
418
419extern int ix86_arch;
420
421/* This macro is similar to `TARGET_SWITCHES' but defines names of
422   command options that have values.  Its definition is an
423   initializer with a subgrouping for each command option.
424
425   Each subgrouping contains a string constant, that defines the
426   fixed part of the option name, and the address of a variable.  The
427   variable, type `char *', is set to the variable part of the given
428   option if the fixed part matches.  The actual option name is made
429   by appending `-m' to the specified name.  */
430#define TARGET_OPTIONS						\
431{ { "cpu=",		&ix86_cpu_string,			\
432    N_("Schedule code for given CPU")},				\
433  { "fpmath=",		&ix86_fpmath_string,			\
434    N_("Generate floating point mathematics using given instruction set")},\
435  { "arch=",		&ix86_arch_string,			\
436    N_("Generate code for given CPU")},				\
437  { "regparm=",		&ix86_regparm_string,			\
438    N_("Number of registers used to pass integer arguments") },	\
439  { "align-loops=",	&ix86_align_loops_string,		\
440    N_("Loop code aligned to this power of 2") },		\
441  { "align-jumps=",	&ix86_align_jumps_string,		\
442    N_("Jump targets are aligned to this power of 2") },	\
443  { "align-functions=",	&ix86_align_funcs_string,		\
444    N_("Function starts are aligned to this power of 2") },	\
445  { "preferred-stack-boundary=",				\
446    &ix86_preferred_stack_boundary_string,			\
447    N_("Attempt to keep stack aligned to this power of 2") },	\
448  { "branch-cost=",	&ix86_branch_cost_string,		\
449    N_("Branches are this expensive (1-5, arbitrary units)") },	\
450  { "cmodel=", &ix86_cmodel_string,				\
451    N_("Use given x86-64 code model") },			\
452  { "debug-arg", &ix86_debug_arg_string,			\
453    "" /* Undocumented. */ },					\
454  { "debug-addr", &ix86_debug_addr_string,			\
455    "" /* Undocumented. */ },					\
456  { "asm=", &ix86_asm_string,					\
457    N_("Use given assembler dialect") },			\
458  SUBTARGET_OPTIONS						\
459}
460
461/* Sometimes certain combinations of command options do not make
462   sense on a particular target machine.  You can define a macro
463   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
464   defined, is executed once just after all the command options have
465   been parsed.
466
467   Don't use this macro to turn on various extra optimizations for
468   `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */
469
470#define OVERRIDE_OPTIONS override_options ()
471
472/* These are meant to be redefined in the host dependent files */
473#define SUBTARGET_SWITCHES
474#define SUBTARGET_OPTIONS
475
476/* Define this to change the optimizations performed by default.  */
477#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
478  optimization_options ((LEVEL), (SIZE))
479
480/* Specs for the compiler proper */
481
482#ifndef CC1_CPU_SPEC
483#define CC1_CPU_SPEC "\
484%{!mcpu*: \
485%{m386:-mcpu=i386 \
486%n`-m386' is deprecated. Use `-march=i386' or `-mcpu=i386' instead.\n} \
487%{m486:-mcpu=i486 \
488%n`-m486' is deprecated. Use `-march=i486' or `-mcpu=i486' instead.\n} \
489%{mpentium:-mcpu=pentium \
490%n`-mpentium' is deprecated. Use `-march=pentium' or `-mcpu=pentium' instead.\n} \
491%{mpentiumpro:-mcpu=pentiumpro \
492%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mcpu=pentiumpro' instead.\n}} \
493%{mintel-syntax:-masm=intel \
494%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
495%{mno-intel-syntax:-masm=att \
496%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
497#endif
498
499#define TARGET_CPU_DEFAULT_i386 0
500#define TARGET_CPU_DEFAULT_i486 1
501#define TARGET_CPU_DEFAULT_pentium 2
502#define TARGET_CPU_DEFAULT_pentium_mmx 3
503#define TARGET_CPU_DEFAULT_pentiumpro 4
504#define TARGET_CPU_DEFAULT_pentium2 5
505#define TARGET_CPU_DEFAULT_pentium3 6
506#define TARGET_CPU_DEFAULT_pentium4 7
507#define TARGET_CPU_DEFAULT_k6 8
508#define TARGET_CPU_DEFAULT_k6_2 9
509#define TARGET_CPU_DEFAULT_k6_3 10
510#define TARGET_CPU_DEFAULT_athlon 11
511#define TARGET_CPU_DEFAULT_athlon_sse 12
512
513#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
514				  "pentiumpro", "pentium2", "pentium3", \
515				  "pentium4", "k6", "k6-2", "k6-3",\
516				  "athlon", "athlon-4"}
517#ifndef CPP_CPU_DEFAULT_SPEC
518#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_i486
519#define CPP_CPU_DEFAULT_SPEC "-D__tune_i486__"
520#endif
521#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium
522#define CPP_CPU_DEFAULT_SPEC "-D__tune_i586__ -D__tune_pentium__"
523#endif
524#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium_mmx
525#define CPP_CPU_DEFAULT_SPEC "-D__tune_i586__ -D__tune_pentium__ -D__tune_pentium_mmx__"
526#endif
527#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentiumpro
528#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__"
529#endif
530#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium2
531#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__\
532-D__tune_pentium2__"
533#endif
534#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium3
535#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__\
536-D__tune_pentium2__ -D__tune_pentium3__"
537#endif
538#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium4
539#define CPP_CPU_DEFAULT_SPEC "-D__tune_pentium4__"
540#endif
541#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6
542#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__"
543#endif
544#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6_2
545#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__ -D__tune_k6_2__"
546#endif
547#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6_3
548#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__ -D__tune_k6_3__"
549#endif
550#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_athlon
551#define CPP_CPU_DEFAULT_SPEC "-D__tune_athlon__"
552#endif
553#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_athlon_sse
554#define CPP_CPU_DEFAULT_SPEC "-D__tune_athlon__ -D__tune_athlon_sse__"
555#endif
556#ifndef CPP_CPU_DEFAULT_SPEC
557#define CPP_CPU_DEFAULT_SPEC "-D__tune_i386__"
558#endif
559#endif /* CPP_CPU_DEFAULT_SPEC */
560
561#ifdef TARGET_BI_ARCH
562#define NO_BUILTIN_SIZE_TYPE
563#define NO_BUILTIN_PTRDIFF_TYPE
564#endif
565
566#ifdef NO_BUILTIN_SIZE_TYPE
567#define CPP_CPU32_SIZE_TYPE_SPEC \
568  " -D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int"
569#define CPP_CPU64_SIZE_TYPE_SPEC \
570  " -D__SIZE_TYPE__=unsigned\\ long\\ int -D__PTRDIFF_TYPE__=long\\ int"
571#else
572#define CPP_CPU32_SIZE_TYPE_SPEC ""
573#define CPP_CPU64_SIZE_TYPE_SPEC ""
574#endif
575
576#define CPP_CPU32_SPEC \
577  "-Acpu=i386 -Amachine=i386 %{!ansi:%{!std=c*:%{!std=i*:-Di386}}} -D__i386 \
578-D__i386__ %(cpp_cpu32sizet)"
579
580#define CPP_CPU64_SPEC \
581  "-Acpu=x86_64 -Amachine=x86_64 -D__x86_64 -D__x86_64__ %(cpp_cpu64sizet)"
582
583#define CPP_CPUCOMMON_SPEC "\
584%{march=i386:%{!mcpu*:-D__tune_i386__ }}\
585%{march=i486:-D__i486 -D__i486__ %{!mcpu*:-D__tune_i486__ }}\
586%{march=pentium|march=i586:-D__i586 -D__i586__ -D__pentium -D__pentium__ \
587  %{!mcpu*:-D__tune_i586__ -D__tune_pentium__ }}\
588%{march=pentium-mmx:-D__i586 -D__i586__ -D__pentium -D__pentium__ \
589  -D__pentium__mmx__ \
590  %{!mcpu*:-D__tune_i586__ -D__tune_pentium__ -D__tune_pentium_mmx__}}\
591%{march=pentiumpro|march=i686:-D__i686 -D__i686__ \
592  -D__pentiumpro -D__pentiumpro__ \
593  %{!mcpu*:-D__tune_i686__ -D__tune_pentiumpro__ }}\
594%{march=k6:-D__k6 -D__k6__ %{!mcpu*:-D__tune_k6__ }}\
595%{march=k6-2:-D__k6 -D__k6__ -D__k6_2__ \
596  %{!mcpu*:-D__tune_k6__ -D__tune_k6_2__ }}\
597%{march=k6-3:-D__k6 -D__k6__ -D__k6_3__ \
598  %{!mcpu*:-D__tune_k6__ -D__tune_k6_3__ }}\
599%{march=athlon|march=athlon-tbird:-D__athlon -D__athlon__ \
600  %{!mcpu*:-D__tune_athlon__ }}\
601%{march=athlon-4|march=athlon-xp|march=athlon-mp:-D__athlon -D__athlon__ \
602  -D__athlon_sse__ \
603  %{!mcpu*:-D__tune_athlon__ -D__tune_athlon_sse__ }}\
604%{march=pentium4:-D__pentium4 -D__pentium4__ %{!mcpu*:-D__tune_pentium4__ }}\
605%{m386|mcpu=i386:-D__tune_i386__ }\
606%{m486|mcpu=i486:-D__tune_i486__ }\
607%{mpentium|mcpu=pentium|mcpu=i586|mcpu=pentium-mmx:-D__tune_i586__ -D__tune_pentium__ }\
608%{mpentiumpro|mcpu=pentiumpro|mcpu=i686|cpu=pentium2|cpu=pentium3:-D__tune_i686__ \
609-D__tune_pentiumpro__ }\
610%{mcpu=k6|mcpu=k6-2|mcpu=k6-3:-D__tune_k6__ }\
611%{mcpu=athlon|mcpu=athlon-tbird|mcpu=athlon-4|mcpu=athlon-xp|mcpu=athlon-mp:\
612-D__tune_athlon__ }\
613%{mcpu=athlon-4|mcpu=athlon-xp|mcpu=athlon-mp:\
614-D__tune_athlon_sse__ }\
615%{mcpu=pentium4:-D__tune_pentium4__ }\
616%{march=athlon-tbird|march=athlon-xp|march=athlon-mp|march=pentium3|march=pentium4:\
617-D__SSE__ }\
618%{march=pentium-mmx|march=k6|march=k6-2|march=k6-3\
619|march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\
620|march=athlon-mp|march=pentium2|march=pentium3|march=pentium4: -D__MMX__ }\
621%{march=k6-2|march=k6-3\
622|march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\
623|march=athlon-mp: -D__3dNOW__ }\
624%{march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\
625|march=athlon-mp: -D__3dNOW_A__ }\
626%{march=pentium4: -D__SSE2__ }\
627%{!march*:%{!mcpu*:%{!m386:%{!m486:%{!mpentium*:%(cpp_cpu_default)}}}}}"
628
629#ifndef CPP_CPU_SPEC
630#ifdef TARGET_BI_ARCH
631#ifdef TARGET_64BIT_DEFAULT
632#define CPP_CPU_SPEC "%{m32:%(cpp_cpu32)}%{!m32:%(cpp_cpu64)} %(cpp_cpucommon)"
633#else
634#define CPP_CPU_SPEC "%{m64:%(cpp_cpu64)}%{!m64:%(cpp_cpu32)} %(cpp_cpucommon)"
635#endif
636#else
637#ifdef TARGET_64BIT_DEFAULT
638#define CPP_CPU_SPEC "%(cpp_cpu64) %(cpp_cpucommon)"
639#else
640#define CPP_CPU_SPEC "%(cpp_cpu32) %(cpp_cpucommon)"
641#endif
642#endif
643#endif
644
645#ifndef CC1_SPEC
646#define CC1_SPEC "%(cc1_cpu) "
647#endif
648
649/* This macro defines names of additional specifications to put in the
650   specs that can be used in various specifications like CC1_SPEC.  Its
651   definition is an initializer with a subgrouping for each command option.
652
653   Each subgrouping contains a string constant, that defines the
654   specification name, and a string constant that used by the GNU CC driver
655   program.
656
657   Do not define this macro if it does not need to do anything.  */
658
659#ifndef SUBTARGET_EXTRA_SPECS
660#define SUBTARGET_EXTRA_SPECS
661#endif
662
663#define EXTRA_SPECS							\
664  { "cpp_cpu_default",	CPP_CPU_DEFAULT_SPEC },				\
665  { "cpp_cpu",	CPP_CPU_SPEC },						\
666  { "cpp_cpu32", CPP_CPU32_SPEC },					\
667  { "cpp_cpu64", CPP_CPU64_SPEC },					\
668  { "cpp_cpu32sizet", CPP_CPU32_SIZE_TYPE_SPEC },			\
669  { "cpp_cpu64sizet", CPP_CPU64_SIZE_TYPE_SPEC },			\
670  { "cpp_cpucommon", CPP_CPUCOMMON_SPEC },				\
671  { "cc1_cpu",  CC1_CPU_SPEC },						\
672  SUBTARGET_EXTRA_SPECS
673
674/* target machine storage layout */
675
676/* Define for XFmode or TFmode extended real floating point support.
677   This will automatically cause REAL_ARITHMETIC to be defined.
678
679   The XFmode is specified by i386 ABI, while TFmode may be faster
680   due to alignment and simplifications in the address calculations.
681 */
682#define LONG_DOUBLE_TYPE_SIZE (TARGET_128BIT_LONG_DOUBLE ? 128 : 96)
683#define MAX_LONG_DOUBLE_TYPE_SIZE 128
684#ifdef __x86_64__
685#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
686#else
687#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 96
688#endif
689/* Tell real.c that this is the 80-bit Intel extended float format
690   packaged in a 128-bit or 96bit entity.  */
691#define INTEL_EXTENDED_IEEE_FORMAT 1
692
693
694#define SHORT_TYPE_SIZE 16
695#define INT_TYPE_SIZE 32
696#define FLOAT_TYPE_SIZE 32
697#define LONG_TYPE_SIZE BITS_PER_WORD
698#define MAX_WCHAR_TYPE_SIZE 32
699#define DOUBLE_TYPE_SIZE 64
700#define LONG_LONG_TYPE_SIZE 64
701
702#if defined (TARGET_BI_ARCH) || defined (TARGET_64BIT_DEFAULT)
703#define MAX_BITS_PER_WORD 64
704#define MAX_LONG_TYPE_SIZE 64
705#else
706#define MAX_BITS_PER_WORD 32
707#define MAX_LONG_TYPE_SIZE 32
708#endif
709
710/* Define if you don't want extended real, but do want to use the
711   software floating point emulator for REAL_ARITHMETIC and
712   decimal <-> binary conversion.  */
713/* #define REAL_ARITHMETIC */
714
715/* Define this if most significant byte of a word is the lowest numbered.  */
716/* That is true on the 80386.  */
717
718#define BITS_BIG_ENDIAN 0
719
720/* Define this if most significant byte of a word is the lowest numbered.  */
721/* That is not true on the 80386.  */
722#define BYTES_BIG_ENDIAN 0
723
724/* Define this if most significant word of a multiword number is the lowest
725   numbered.  */
726/* Not true for 80386 */
727#define WORDS_BIG_ENDIAN 0
728
729/* number of bits in an addressable storage unit */
730#define BITS_PER_UNIT 8
731
732/* Width in bits of a "word", which is the contents of a machine register.
733   Note that this is not necessarily the width of data type `int';
734   if using 16-bit ints on a 80386, this would still be 32.
735   But on a machine with 16-bit registers, this would be 16.  */
736#define BITS_PER_WORD (TARGET_64BIT ? 64 : 32)
737
738/* Width of a word, in units (bytes).  */
739#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
740#define MIN_UNITS_PER_WORD 4
741
742/* Width in bits of a pointer.
743   See also the macro `Pmode' defined below.  */
744#define POINTER_SIZE BITS_PER_WORD
745
746/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
747#define PARM_BOUNDARY BITS_PER_WORD
748
749/* Boundary (in *bits*) on which stack pointer should be aligned.  */
750#define STACK_BOUNDARY BITS_PER_WORD
751
752/* Boundary (in *bits*) on which the stack pointer preferrs to be
753   aligned; the compiler cannot rely on having this alignment.  */
754#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
755
756/* As of July 2001, many runtimes to not align the stack properly when
757   entering main.  This causes expand_main_function to forcably align
758   the stack, which results in aligned frames for functions called from
759   main, though it does nothing for the alignment of main itself.  */
760#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
761  (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
762
763/* Allocation boundary for the code of a function.  */
764#define FUNCTION_BOUNDARY 16
765
766/* Alignment of field after `int : 0' in a structure.  */
767
768#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
769
770/* Minimum size in bits of the largest boundary to which any
771   and all fundamental data types supported by the hardware
772   might need to be aligned. No data type wants to be aligned
773   rounder than this.
774
775   Pentium+ preferrs DFmode values to be aligned to 64 bit boundary
776   and Pentium Pro XFmode values at 128 bit boundaries.  */
777
778#define BIGGEST_ALIGNMENT 128
779
780/* Decide whether a variable of mode MODE must be 128 bit aligned.  */
781#define ALIGN_MODE_128(MODE) \
782 ((MODE) == XFmode || (MODE) == TFmode || ((MODE) == TImode) \
783  || (MODE) == V4SFmode	|| (MODE) == V4SImode)
784
785/* The published ABIs say that doubles should be aligned on word
786   boundaries, so lower the aligment for structure fields unless
787   -malign-double is set.  */
788/* BIGGEST_FIELD_ALIGNMENT is also used in libobjc, where it must be
789   constant.  Use the smaller value in that context.  */
790#ifndef IN_TARGET_LIBS
791#define BIGGEST_FIELD_ALIGNMENT (TARGET_64BIT ? 128 : (TARGET_ALIGN_DOUBLE ? 64 : 32))
792#else
793#define BIGGEST_FIELD_ALIGNMENT 32
794#endif
795
796/* If defined, a C expression to compute the alignment given to a
797   constant that is being placed in memory.  EXP is the constant
798   and ALIGN is the alignment that the object would ordinarily have.
799   The value of this macro is used instead of that alignment to align
800   the object.
801
802   If this macro is not defined, then ALIGN is used.
803
804   The typical use of this macro is to increase alignment for string
805   constants to be word aligned so that `strcpy' calls that copy
806   constants can be done inline.  */
807
808#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
809
810/* If defined, a C expression to compute the alignment for a static
811   variable.  TYPE is the data type, and ALIGN is the alignment that
812   the object would ordinarily have.  The value of this macro is used
813   instead of that alignment to align the object.
814
815   If this macro is not defined, then ALIGN is used.
816
817   One use of this macro is to increase alignment of medium-size
818   data to make it all fit in fewer cache lines.  Another is to
819   cause character arrays to be word-aligned so that `strcpy' calls
820   that copy constants to character arrays can be done inline.  */
821
822#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
823
824/* If defined, a C expression to compute the alignment for a local
825   variable.  TYPE is the data type, and ALIGN is the alignment that
826   the object would ordinarily have.  The value of this macro is used
827   instead of that alignment to align the object.
828
829   If this macro is not defined, then ALIGN is used.
830
831   One use of this macro is to increase alignment of medium-size
832   data to make it all fit in fewer cache lines.  */
833
834#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
835
836/* If defined, a C expression that gives the alignment boundary, in
837   bits, of an argument with the specified mode and type.  If it is
838   not defined, `PARM_BOUNDARY' is used for all arguments.  */
839
840#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
841  ix86_function_arg_boundary ((MODE), (TYPE))
842
843/* Set this non-zero if move instructions will actually fail to work
844   when given unaligned data.  */
845#define STRICT_ALIGNMENT 0
846
847/* If bit field type is int, don't let it cross an int,
848   and give entire struct the alignment of an int.  */
849/* Required on the 386 since it doesn't have bitfield insns.  */
850#define PCC_BITFIELD_TYPE_MATTERS 1
851
852/* Standard register usage.  */
853
854/* This processor has special stack-like registers.  See reg-stack.c
855   for details.  */
856
857#define STACK_REGS
858#define IS_STACK_MODE(MODE)					\
859  ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode	\
860   || (MODE) == TFmode)
861
862/* Number of actual hardware registers.
863   The hardware registers are assigned numbers for the compiler
864   from 0 to just below FIRST_PSEUDO_REGISTER.
865   All registers that the compiler knows about must be given numbers,
866   even those that are not normally considered general registers.
867
868   In the 80386 we give the 8 general purpose registers the numbers 0-7.
869   We number the floating point registers 8-15.
870   Note that registers 0-7 can be accessed as a  short or int,
871   while only 0-3 may be used with byte `mov' instructions.
872
873   Reg 16 does not correspond to any hardware register, but instead
874   appears in the RTL as an argument pointer prior to reload, and is
875   eliminated during reloading in favor of either the stack or frame
876   pointer.  */
877
878#define FIRST_PSEUDO_REGISTER 53
879
880/* Number of hardware registers that go into the DWARF-2 unwind info.
881   If not defined, equals FIRST_PSEUDO_REGISTER.  */
882
883#define DWARF_FRAME_REGISTERS 17
884
885/* 1 for registers that have pervasive standard uses
886   and are not available for the register allocator.
887   On the 80386, the stack pointer is such, as is the arg pointer.
888
889   The value is an mask - bit 1 is set for fixed registers
890   for 32bit target, while 2 is set for fixed registers for 64bit.
891   Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
892 */
893#define FIXED_REGISTERS						\
894/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
895{  0, 0, 0, 0, 0, 0, 0, 3, 0,  0,  0,  0,  0,  0,  0,  0,	\
896/*arg,flags,fpsr,dir,frame*/					\
897    3,    3,   3,  3,    3,					\
898/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
899     0,   0,   0,   0,   0,   0,   0,   0,			\
900/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
901     0,   0,   0,   0,   0,   0,   0,   0,			\
902/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
903     1,   1,   1,   1,   1,   1,   1,   1,			\
904/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
905     1,   1,    1,    1,    1,    1,    1,    1}
906
907
908/* 1 for registers not available across function calls.
909   These must include the FIXED_REGISTERS and also any
910   registers that can be used without being saved.
911   The latter must include the registers where values are returned
912   and the register where structure-value addresses are passed.
913   Aside from that, you can include as many other registers as you like.
914
915   The value is an mask - bit 1 is set for call used
916   for 32bit target, while 2 is set for call used for 64bit.
917   Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
918*/
919#define CALL_USED_REGISTERS					\
920/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
921{  3, 3, 3, 0, 2, 2, 0, 3, 3,  3,  3,  3,  3,  3,  3,  3,	\
922/*arg,flags,fpsr,dir,frame*/					\
923     3,   3,   3,  3,    3,					\
924/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
925     3,   3,   3,   3,   3,  3,    3,   3,			\
926/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
927     3,   3,   3,   3,   3,   3,   3,   3,			\
928/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
929     3,   3,   3,   3,   1,   1,   1,   1,			\
930/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
931     3,   3,    3,    3,    3,    3,    3,    3}		\
932
933/* Order in which to allocate registers.  Each register must be
934   listed once, even those in FIXED_REGISTERS.  List frame pointer
935   late and fixed registers last.  Note that, in general, we prefer
936   registers listed in CALL_USED_REGISTERS, keeping the others
937   available for storage of persistent values.
938
939   The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
940   so this is just empty initializer for array.  */
941
942#define REG_ALLOC_ORDER 					\
943{  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
944   18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,	\
945   33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,  \
946   48, 49, 50, 51, 52 }
947
948/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
949   to be rearranged based on a particular function.  When using sse math,
950   we want to allocase SSE before x87 registers and vice vera.  */
951
952#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
953
954
955/* Macro to conditionally modify fixed_regs/call_used_regs.  */
956#define CONDITIONAL_REGISTER_USAGE					\
957do {									\
958    int i;								\
959    for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)				\
960      {									\
961        fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0;	\
962        call_used_regs[i] = (call_used_regs[i]				\
963			     & (TARGET_64BIT ? 2 : 1)) != 0;		\
964      }									\
965    if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)			\
966      {									\
967	fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
968	call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
969      }									\
970    if (! TARGET_MMX)							\
971      {									\
972	int i;								\
973        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
974          if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i))	\
975	    fixed_regs[i] = call_used_regs[i] = 1;		 	\
976      }									\
977    if (! TARGET_SSE)							\
978      {									\
979	int i;								\
980        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
981          if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i))	\
982	    fixed_regs[i] = call_used_regs[i] = 1;		 	\
983      }									\
984    if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387)		\
985      {									\
986	int i;								\
987	HARD_REG_SET x;							\
988        COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]);	\
989        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
990          if (TEST_HARD_REG_BIT (x, i)) 				\
991	    fixed_regs[i] = call_used_regs[i] = 1;			\
992      }									\
993  } while (0)
994
995/* Return number of consecutive hard regs needed starting at reg REGNO
996   to hold something of mode MODE.
997   This is ordinarily the length in words of a value of mode MODE
998   but can be less for certain modes in special long registers.
999
1000   Actually there are no two word move instructions for consecutive
1001   registers.  And only registers 0-3 may have mov byte instructions
1002   applied to them.
1003   */
1004
1005#define HARD_REGNO_NREGS(REGNO, MODE)   \
1006  (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)	\
1007   ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
1008   : ((MODE) == TFmode							\
1009      ? (TARGET_64BIT ? 2 : 3)						\
1010      : (MODE) == TCmode						\
1011      ? (TARGET_64BIT ? 4 : 6)						\
1012      : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1013
1014#define VALID_SSE_REG_MODE(MODE)					\
1015    ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode	\
1016     || (MODE) == SFmode						\
1017     || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
1018
1019#define VALID_MMX_REG_MODE_3DNOW(MODE) \
1020    ((MODE) == V2SFmode || (MODE) == SFmode)
1021
1022#define VALID_MMX_REG_MODE(MODE)					\
1023    ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode	\
1024     || (MODE) == V2SImode || (MODE) == SImode)
1025
1026#define VECTOR_MODE_SUPPORTED_P(MODE)					\
1027    (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1			\
1028     : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1			\
1029     : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
1030
1031#define VALID_FP_MODE_P(MODE)						\
1032    ((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode		\
1033     || (!TARGET_64BIT && (MODE) == XFmode)				\
1034     || (MODE) == SCmode || (MODE) == DCmode || (MODE) == TCmode	\
1035     || (!TARGET_64BIT && (MODE) == XCmode))
1036
1037#define VALID_INT_MODE_P(MODE)						\
1038    ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode		\
1039     || (MODE) == DImode						\
1040     || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode	\
1041     || (MODE) == CDImode						\
1042     || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode)))
1043
1044/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.  */
1045
1046#define HARD_REGNO_MODE_OK(REGNO, MODE)	\
1047   ix86_hard_regno_mode_ok ((REGNO), (MODE))
1048
1049/* Value is 1 if it is a good idea to tie two pseudo registers
1050   when one has mode MODE1 and one has mode MODE2.
1051   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1052   for any hard reg, then this must be 0 for correct output.  */
1053
1054#define MODES_TIEABLE_P(MODE1, MODE2)				\
1055  ((MODE1) == (MODE2)						\
1056   || (((MODE1) == HImode || (MODE1) == SImode			\
1057	|| ((MODE1) == QImode					\
1058	    && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL))	\
1059        || ((MODE1) == DImode && TARGET_64BIT))			\
1060       && ((MODE2) == HImode || (MODE2) == SImode		\
1061	   || ((MODE1) == QImode				\
1062	       && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL))	\
1063	   || ((MODE2) == DImode && TARGET_64BIT))))
1064
1065
1066/* Specify the modes required to caller save a given hard regno.
1067   We do this on i386 to prevent flags from being saved at all.
1068
1069   Kill any attempts to combine saving of modes.  */
1070
1071#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)			\
1072  (CC_REGNO_P (REGNO) ? VOIDmode					\
1073   : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode			\
1074   : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS))	\
1075   : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode		\
1076   : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode 	\
1077   : (MODE))
1078/* Specify the registers used for certain standard purposes.
1079   The values of these macros are register numbers.  */
1080
1081/* on the 386 the pc register is %eip, and is not usable as a general
1082   register.  The ordinary mov instructions won't work */
1083/* #define PC_REGNUM  */
1084
1085/* Register to use for pushing function arguments.  */
1086#define STACK_POINTER_REGNUM 7
1087
1088/* Base register for access to local variables of the function.  */
1089#define HARD_FRAME_POINTER_REGNUM 6
1090
1091/* Base register for access to local variables of the function.  */
1092#define FRAME_POINTER_REGNUM 20
1093
1094/* First floating point reg */
1095#define FIRST_FLOAT_REG 8
1096
1097/* First & last stack-like regs */
1098#define FIRST_STACK_REG FIRST_FLOAT_REG
1099#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1100
1101#define FLAGS_REG 17
1102#define FPSR_REG 18
1103#define DIRFLAG_REG 19
1104
1105#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1106#define LAST_SSE_REG  (FIRST_SSE_REG + 7)
1107
1108#define FIRST_MMX_REG  (LAST_SSE_REG + 1)
1109#define LAST_MMX_REG   (FIRST_MMX_REG + 7)
1110
1111#define FIRST_REX_INT_REG  (LAST_MMX_REG + 1)
1112#define LAST_REX_INT_REG   (FIRST_REX_INT_REG + 7)
1113
1114#define FIRST_REX_SSE_REG  (LAST_REX_INT_REG + 1)
1115#define LAST_REX_SSE_REG   (FIRST_REX_SSE_REG + 7)
1116
1117/* Value should be nonzero if functions must have frame pointers.
1118   Zero means the frame pointer need not be set up (and parms
1119   may be accessed via the stack pointer) in functions that seem suitable.
1120   This is computed in `reload', in reload1.c.  */
1121#define FRAME_POINTER_REQUIRED  ix86_frame_pointer_required ()
1122
1123/* Override this in other tm.h files to cope with various OS losage
1124   requiring a frame pointer.  */
1125#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1126#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1127#endif
1128
1129/* Make sure we can access arbitrary call frames.  */
1130#define SETUP_FRAME_ADDRESSES()  ix86_setup_frame_addresses ()
1131
1132/* Base register for access to arguments of the function.  */
1133#define ARG_POINTER_REGNUM 16
1134
1135/* Register in which static-chain is passed to a function.
1136   We do use ECX as static chain register for 32 bit ABI.  On the
1137   64bit ABI, ECX is an argument register, so we use R10 instead.  */
1138#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1139
1140/* Register to hold the addressing base for position independent
1141   code access to data items.  We don't use PIC pointer for 64bit
1142   mode.  Define the regnum to dummy value to prevent gcc from
1143   pessimizing code dealing with EBX.  */
1144#define PIC_OFFSET_TABLE_REGNUM \
1145  (TARGET_64BIT || !flag_pic ? INVALID_REGNUM : 3)
1146
1147/* Register in which address to store a structure value
1148   arrives in the function.  On the 386, the prologue
1149   copies this from the stack to register %eax.  */
1150#define STRUCT_VALUE_INCOMING 0
1151
1152/* Place in which caller passes the structure value address.
1153   0 means push the value on the stack like an argument.  */
1154#define STRUCT_VALUE 0
1155
1156/* A C expression which can inhibit the returning of certain function
1157   values in registers, based on the type of value.  A nonzero value
1158   says to return the function value in memory, just as large
1159   structures are always returned.  Here TYPE will be a C expression
1160   of type `tree', representing the data type of the value.
1161
1162   Note that values of mode `BLKmode' must be explicitly handled by
1163   this macro.  Also, the option `-fpcc-struct-return' takes effect
1164   regardless of this macro.  On most systems, it is possible to
1165   leave the macro undefined; this causes a default definition to be
1166   used, whose value is the constant 1 for `BLKmode' values, and 0
1167   otherwise.
1168
1169   Do not use this macro to indicate that structures and unions
1170   should always be returned in memory.  You should instead use
1171   `DEFAULT_PCC_STRUCT_RETURN' to indicate this.  */
1172
1173#define RETURN_IN_MEMORY(TYPE) \
1174  ix86_return_in_memory (TYPE)
1175
1176
1177/* Define the classes of registers for register constraints in the
1178   machine description.  Also define ranges of constants.
1179
1180   One of the classes must always be named ALL_REGS and include all hard regs.
1181   If there is more than one class, another class must be named NO_REGS
1182   and contain no registers.
1183
1184   The name GENERAL_REGS must be the name of a class (or an alias for
1185   another name such as ALL_REGS).  This is the class of registers
1186   that is allowed by "g" or "r" in a register constraint.
1187   Also, registers outside this class are allocated only when
1188   instructions express preferences for them.
1189
1190   The classes must be numbered in nondecreasing order; that is,
1191   a larger-numbered class must never be contained completely
1192   in a smaller-numbered class.
1193
1194   For any two classes, it is very desirable that there be another
1195   class that represents their union.
1196
1197   It might seem that class BREG is unnecessary, since no useful 386
1198   opcode needs reg %ebx.  But some systems pass args to the OS in ebx,
1199   and the "b" register constraint is useful in asms for syscalls.
1200
1201   The flags and fpsr registers are in no class.  */
1202
1203enum reg_class
1204{
1205  NO_REGS,
1206  AREG, DREG, CREG, BREG, SIREG, DIREG,
1207  AD_REGS,			/* %eax/%edx for DImode */
1208  Q_REGS,			/* %eax %ebx %ecx %edx */
1209  NON_Q_REGS,			/* %esi %edi %ebp %esp */
1210  INDEX_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp */
1211  LEGACY_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1212  GENERAL_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1213  FP_TOP_REG, FP_SECOND_REG,	/* %st(0) %st(1) */
1214  FLOAT_REGS,
1215  SSE_REGS,
1216  MMX_REGS,
1217  FP_TOP_SSE_REGS,
1218  FP_SECOND_SSE_REGS,
1219  FLOAT_SSE_REGS,
1220  FLOAT_INT_REGS,
1221  INT_SSE_REGS,
1222  FLOAT_INT_SSE_REGS,
1223  ALL_REGS, LIM_REG_CLASSES
1224};
1225
1226#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1227
1228#define INTEGER_CLASS_P(CLASS) \
1229  reg_class_subset_p ((CLASS), GENERAL_REGS)
1230#define FLOAT_CLASS_P(CLASS) \
1231  reg_class_subset_p ((CLASS), FLOAT_REGS)
1232#define SSE_CLASS_P(CLASS) \
1233  reg_class_subset_p ((CLASS), SSE_REGS)
1234#define MMX_CLASS_P(CLASS) \
1235  reg_class_subset_p ((CLASS), MMX_REGS)
1236#define MAYBE_INTEGER_CLASS_P(CLASS) \
1237  reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1238#define MAYBE_FLOAT_CLASS_P(CLASS) \
1239  reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1240#define MAYBE_SSE_CLASS_P(CLASS) \
1241  reg_classes_intersect_p (SSE_REGS, (CLASS))
1242#define MAYBE_MMX_CLASS_P(CLASS) \
1243  reg_classes_intersect_p (MMX_REGS, (CLASS))
1244
1245#define Q_CLASS_P(CLASS) \
1246  reg_class_subset_p ((CLASS), Q_REGS)
1247
1248/* Give names of register classes as strings for dump file.   */
1249
1250#define REG_CLASS_NAMES \
1251{  "NO_REGS",				\
1252   "AREG", "DREG", "CREG", "BREG",	\
1253   "SIREG", "DIREG",			\
1254   "AD_REGS",				\
1255   "Q_REGS", "NON_Q_REGS",		\
1256   "INDEX_REGS",			\
1257   "LEGACY_REGS",			\
1258   "GENERAL_REGS",			\
1259   "FP_TOP_REG", "FP_SECOND_REG",	\
1260   "FLOAT_REGS",			\
1261   "SSE_REGS",				\
1262   "MMX_REGS",				\
1263   "FP_TOP_SSE_REGS",			\
1264   "FP_SECOND_SSE_REGS",		\
1265   "FLOAT_SSE_REGS",			\
1266   "FLOAT_INT_REGS",			\
1267   "INT_SSE_REGS",			\
1268   "FLOAT_INT_SSE_REGS",		\
1269   "ALL_REGS" }
1270
1271/* Define which registers fit in which classes.
1272   This is an initializer for a vector of HARD_REG_SET
1273   of length N_REG_CLASSES.  */
1274
1275#define REG_CLASS_CONTENTS						\
1276{     { 0x00,     0x0 },						\
1277      { 0x01,     0x0 }, { 0x02, 0x0 },	/* AREG, DREG */		\
1278      { 0x04,     0x0 }, { 0x08, 0x0 },	/* CREG, BREG */		\
1279      { 0x10,     0x0 }, { 0x20, 0x0 },	/* SIREG, DIREG */		\
1280      { 0x03,     0x0 },		/* AD_REGS */			\
1281      { 0x0f,     0x0 },		/* Q_REGS */			\
1282  { 0x1100f0,  0x1fe0 },		/* NON_Q_REGS */		\
1283      { 0x7f,  0x1fe0 },		/* INDEX_REGS */		\
1284  { 0x1100ff,  0x0 },			/* LEGACY_REGS */		\
1285  { 0x1100ff,  0x1fe0 },		/* GENERAL_REGS */		\
1286     { 0x100,     0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1287    { 0xff00,     0x0 },		/* FLOAT_REGS */		\
1288{ 0x1fe00000,0x1fe000 },		/* SSE_REGS */			\
1289{ 0xe0000000,    0x1f },		/* MMX_REGS */			\
1290{ 0x1fe00100,0x1fe000 },		/* FP_TOP_SSE_REG */		\
1291{ 0x1fe00200,0x1fe000 },		/* FP_SECOND_SSE_REG */		\
1292{ 0x1fe0ff00,0x1fe000 },		/* FLOAT_SSE_REGS */		\
1293   { 0x1ffff,  0x1fe0 },		/* FLOAT_INT_REGS */		\
1294{ 0x1fe100ff,0x1fffe0 },		/* INT_SSE_REGS */		\
1295{ 0x1fe1ffff,0x1fffe0 },		/* FLOAT_INT_SSE_REGS */	\
1296{ 0xffffffff,0x1fffff }							\
1297}
1298
1299/* The same information, inverted:
1300   Return the class number of the smallest class containing
1301   reg number REGNO.  This could be a conditional expression
1302   or could index an array.  */
1303
1304#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1305
1306/* When defined, the compiler allows registers explicitly used in the
1307   rtl to be used as spill registers but prevents the compiler from
1308   extending the lifetime of these registers.  */
1309
1310#define SMALL_REGISTER_CLASSES 1
1311
1312#define QI_REG_P(X) \
1313  (REG_P (X) && REGNO (X) < 4)
1314
1315#define GENERAL_REGNO_P(N) \
1316  ((N) < 8 || REX_INT_REGNO_P (N))
1317
1318#define GENERAL_REG_P(X) \
1319  (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1320
1321#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1322
1323#define NON_QI_REG_P(X) \
1324  (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1325
1326#define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1327#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1328
1329#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1330#define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1331#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1332#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1333
1334#define SSE_REGNO_P(N) \
1335  (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1336   || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1337
1338#define SSE_REGNO(N) \
1339  ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1340#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1341
1342#define SSE_FLOAT_MODE_P(MODE) \
1343  ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1344
1345#define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1346#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1347
1348#define STACK_REG_P(XOP)		\
1349  (REG_P (XOP) &&		       	\
1350   REGNO (XOP) >= FIRST_STACK_REG &&	\
1351   REGNO (XOP) <= LAST_STACK_REG)
1352
1353#define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1354
1355#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1356
1357#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1358#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1359
1360/* Indicate whether hard register numbered REG_NO should be converted
1361   to SSA form.  */
1362#define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \
1363  ((REG_NO) == FLAGS_REG || (REG_NO) == ARG_POINTER_REGNUM)
1364
1365/* The class value for index registers, and the one for base regs.  */
1366
1367#define INDEX_REG_CLASS INDEX_REGS
1368#define BASE_REG_CLASS GENERAL_REGS
1369
1370/* Get reg_class from a letter such as appears in the machine description.  */
1371
1372#define REG_CLASS_FROM_LETTER(C)	\
1373  ((C) == 'r' ? GENERAL_REGS :					\
1374   (C) == 'R' ? LEGACY_REGS :					\
1375   (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS :		\
1376   (C) == 'Q' ? Q_REGS :					\
1377   (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387	\
1378		 ? FLOAT_REGS					\
1379		 : NO_REGS) :					\
1380   (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387	\
1381		 ? FP_TOP_REG					\
1382		 : NO_REGS) :					\
1383   (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387	\
1384		 ? FP_SECOND_REG				\
1385		 : NO_REGS) :					\
1386   (C) == 'a' ? AREG :						\
1387   (C) == 'b' ? BREG :						\
1388   (C) == 'c' ? CREG :						\
1389   (C) == 'd' ? DREG :						\
1390   (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS :		\
1391   (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS :		\
1392   (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS :		\
1393   (C) == 'A' ? AD_REGS :					\
1394   (C) == 'D' ? DIREG :						\
1395   (C) == 'S' ? SIREG : NO_REGS)
1396
1397/* The letters I, J, K, L and M in a register constraint string
1398   can be used to stand for particular ranges of immediate operands.
1399   This macro defines what the ranges are.
1400   C is the letter, and VALUE is a constant value.
1401   Return 1 if VALUE is in the range specified by C.
1402
1403   I is for non-DImode shifts.
1404   J is for DImode shifts.
1405   K is for signed imm8 operands.
1406   L is for andsi as zero-extending move.
1407   M is for shifts that can be executed by the "lea" opcode.
1408   N is for immedaite operands for out/in instructions (0-255)
1409   */
1410
1411#define CONST_OK_FOR_LETTER_P(VALUE, C)				\
1412  ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31			\
1413   : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63			\
1414   : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127		\
1415   : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff		\
1416   : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3			\
1417   : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255		\
1418   : 0)
1419
1420/* Similar, but for floating constants, and defining letters G and H.
1421   Here VALUE is the CONST_DOUBLE rtx itself.  We allow constants even if
1422   TARGET_387 isn't set, because the stack register converter may need to
1423   load 0.0 into the function value register.  */
1424
1425#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  \
1426  ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1427   : ((C) == 'H' ? standard_sse_constant_p (VALUE) : 0))
1428
1429/* A C expression that defines the optional machine-dependent
1430   constraint letters that can be used to segregate specific types of
1431   operands, usually memory references, for the target machine.  Any
1432   letter that is not elsewhere defined and not matched by
1433   `REG_CLASS_FROM_LETTER' may be used.  Normally this macro will not
1434   be defined.
1435
1436   If it is required for a particular target machine, it should
1437   return 1 if VALUE corresponds to the operand type represented by
1438   the constraint letter C.  If C is not defined as an extra
1439   constraint, the value returned should be 0 regardless of VALUE.  */
1440
1441#define EXTRA_CONSTRAINT(VALUE, C)				\
1442  ((C) == 'e' ? x86_64_sign_extended_value (VALUE)		\
1443   : (C) == 'Z' ? x86_64_zero_extended_value (VALUE)		\
1444   : 0)
1445
1446/* Place additional restrictions on the register class to use when it
1447   is necessary to be able to hold a value of mode MODE in a reload
1448   register for which class CLASS would ordinarily be used.  */
1449
1450#define LIMIT_RELOAD_CLASS(MODE, CLASS) 			\
1451  ((MODE) == QImode && !TARGET_64BIT				\
1452   && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS		\
1453       || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS)	\
1454   ? Q_REGS : (CLASS))
1455
1456/* Given an rtx X being reloaded into a reg required to be
1457   in class CLASS, return the class of reg to actually use.
1458   In general this is just CLASS; but on some machines
1459   in some cases it is preferable to use a more restrictive class.
1460   On the 80386 series, we prevent floating constants from being
1461   reloaded into floating registers (since no move-insn can do that)
1462   and we ensure that QImodes aren't reloaded into the esi or edi reg.  */
1463
1464/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1465   QImode must go into class Q_REGS.
1466   Narrow ALL_REGS to GENERAL_REGS.  This supports allowing movsf and
1467   movdf to do mem-to-mem moves through integer regs.  */
1468
1469#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1470   ix86_preferred_reload_class ((X), (CLASS))
1471
1472/* If we are copying between general and FP registers, we need a memory
1473   location. The same is true for SSE and MMX registers.  */
1474#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1475  ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1476
1477/* QImode spills from non-QI registers need a scratch.  This does not
1478   happen often -- the only example so far requires an uninitialized
1479   pseudo.  */
1480
1481#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT)			\
1482  (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS			\
1483    || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode	\
1484   ? Q_REGS : NO_REGS)
1485
1486/* Return the maximum number of consecutive registers
1487   needed to represent mode MODE in a register of class CLASS.  */
1488/* On the 80386, this is the size of MODE in words,
1489   except in the FP regs, where a single reg is always enough.
1490   The TFmodes are really just 80bit values, so we use only 3 registers
1491   to hold them, instead of 4, as the size would suggest.
1492 */
1493#define CLASS_MAX_NREGS(CLASS, MODE)					\
1494 (!MAYBE_INTEGER_CLASS_P (CLASS)					\
1495  ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
1496  : ((GET_MODE_SIZE ((MODE) == TFmode ? XFmode : (MODE))		\
1497     + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1498
1499/* A C expression whose value is nonzero if pseudos that have been
1500   assigned to registers of class CLASS would likely be spilled
1501   because registers of CLASS are needed for spill registers.
1502
1503   The default value of this macro returns 1 if CLASS has exactly one
1504   register and zero otherwise.  On most machines, this default
1505   should be used.  Only define this macro to some other expression
1506   if pseudo allocated by `local-alloc.c' end up in memory because
1507   their hard registers were needed for spill registers.  If this
1508   macro returns nonzero for those classes, those pseudos will only
1509   be allocated by `global.c', which knows how to reallocate the
1510   pseudo to another register.  If there would not be another
1511   register available for reallocation, you should not change the
1512   definition of this macro since the only effect of such a
1513   definition would be to slow down register allocation.  */
1514
1515#define CLASS_LIKELY_SPILLED_P(CLASS)					\
1516  (((CLASS) == AREG)							\
1517   || ((CLASS) == DREG)							\
1518   || ((CLASS) == CREG)							\
1519   || ((CLASS) == BREG)							\
1520   || ((CLASS) == AD_REGS)						\
1521   || ((CLASS) == SIREG)						\
1522   || ((CLASS) == DIREG))
1523
1524/* A C statement that adds to CLOBBERS any hard regs the port wishes
1525   to automatically clobber for all asms.
1526
1527   We do this in the new i386 backend to maintain source compatibility
1528   with the old cc0-based compiler.  */
1529
1530#define MD_ASM_CLOBBERS(CLOBBERS)					\
1531  do {									\
1532    (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"),	\
1533			    (CLOBBERS));				\
1534    (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"),	\
1535			    (CLOBBERS));				\
1536    (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"),	\
1537			    (CLOBBERS));				\
1538  } while (0)
1539
1540/* Stack layout; function entry, exit and calling.  */
1541
1542/* Define this if pushing a word on the stack
1543   makes the stack pointer a smaller address.  */
1544#define STACK_GROWS_DOWNWARD
1545
1546/* Define this if the nominal address of the stack frame
1547   is at the high-address end of the local variables;
1548   that is, each additional local variable allocated
1549   goes at a more negative offset in the frame.  */
1550#define FRAME_GROWS_DOWNWARD
1551
1552/* Offset within stack frame to start allocating local variables at.
1553   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1554   first local allocated.  Otherwise, it is the offset to the BEGINNING
1555   of the first local allocated.  */
1556#define STARTING_FRAME_OFFSET 0
1557
1558/* If we generate an insn to push BYTES bytes,
1559   this says how many the stack pointer really advances by.
1560   On 386 pushw decrements by exactly 2 no matter what the position was.
1561   On the 386 there is no pushb; we use pushw instead, and this
1562   has the effect of rounding up to 2.
1563
1564   For 64bit ABI we round up to 8 bytes.
1565 */
1566
1567#define PUSH_ROUNDING(BYTES) \
1568  (TARGET_64BIT		     \
1569   ? (((BYTES) + 7) & (-8))  \
1570   : (((BYTES) + 1) & (-2)))
1571
1572/* If defined, the maximum amount of space required for outgoing arguments will
1573   be computed and placed into the variable
1574   `current_function_outgoing_args_size'.  No space will be pushed onto the
1575   stack for each call; instead, the function prologue should increase the stack
1576   frame size by this amount.  */
1577
1578#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1579
1580/* If defined, a C expression whose value is nonzero when we want to use PUSH
1581   instructions to pass outgoing arguments.  */
1582
1583#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1584
1585/* Offset of first parameter from the argument pointer register value.  */
1586#define FIRST_PARM_OFFSET(FNDECL) 0
1587
1588/* Define this macro if functions should assume that stack space has been
1589   allocated for arguments even when their values are passed in registers.
1590
1591   The value of this macro is the size, in bytes, of the area reserved for
1592   arguments passed in registers for the function represented by FNDECL.
1593
1594   This space can be allocated by the caller, or be a part of the
1595   machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1596   which.  */
1597#define REG_PARM_STACK_SPACE(FNDECL) 0
1598
1599/* Define as a C expression that evaluates to nonzero if we do not know how
1600   to pass TYPE solely in registers.  The file expr.h defines a
1601   definition that is usually appropriate, refer to expr.h for additional
1602   documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1603   computed in the stack and then loaded into a register.  */
1604#define MUST_PASS_IN_STACK(MODE, TYPE)				\
1605  ((TYPE) != 0							\
1606   && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST		\
1607       || TREE_ADDRESSABLE (TYPE)				\
1608       || ((MODE) == TImode)					\
1609       || ((MODE) == BLKmode 					\
1610	   && ! ((TYPE) != 0					\
1611		 && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
1612		 && 0 == (int_size_in_bytes (TYPE)		\
1613			  % (PARM_BOUNDARY / BITS_PER_UNIT)))	\
1614	   && (FUNCTION_ARG_PADDING (MODE, TYPE)		\
1615	       == (BYTES_BIG_ENDIAN ? upward : downward)))))
1616
1617/* Value is the number of bytes of arguments automatically
1618   popped when returning from a subroutine call.
1619   FUNDECL is the declaration node of the function (as a tree),
1620   FUNTYPE is the data type of the function (as a tree),
1621   or for a library call it is an identifier node for the subroutine name.
1622   SIZE is the number of bytes of arguments passed on the stack.
1623
1624   On the 80386, the RTD insn may be used to pop them if the number
1625     of args is fixed, but if the number is variable then the caller
1626     must pop them all.  RTD can't be used for library calls now
1627     because the library is compiled with the Unix compiler.
1628   Use of RTD is a selectable option, since it is incompatible with
1629   standard Unix calling sequences.  If the option is not selected,
1630   the caller must always pop the args.
1631
1632   The attribute stdcall is equivalent to RTD on a per module basis.  */
1633
1634#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1635  ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1636
1637/* Define how to find the value returned by a function.
1638   VALTYPE is the data type of the value (as a tree).
1639   If the precise function being called is known, FUNC is its FUNCTION_DECL;
1640   otherwise, FUNC is 0.  */
1641#define FUNCTION_VALUE(VALTYPE, FUNC)  \
1642   ix86_function_value (VALTYPE)
1643
1644#define FUNCTION_VALUE_REGNO_P(N) \
1645  ix86_function_value_regno_p (N)
1646
1647/* Define how to find the value returned by a library function
1648   assuming the value has mode MODE.  */
1649
1650#define LIBCALL_VALUE(MODE) \
1651  ix86_libcall_value (MODE)
1652
1653/* Define the size of the result block used for communication between
1654   untyped_call and untyped_return.  The block contains a DImode value
1655   followed by the block used by fnsave and frstor.  */
1656
1657#define APPLY_RESULT_SIZE (8+108)
1658
1659/* 1 if N is a possible register number for function argument passing.  */
1660#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1661
1662/* Define a data type for recording info about an argument list
1663   during the scan of that argument list.  This data type should
1664   hold all necessary information about the function itself
1665   and about the args processed so far, enough to enable macros
1666   such as FUNCTION_ARG to determine where the next arg should go.  */
1667
1668typedef struct ix86_args {
1669  int words;			/* # words passed so far */
1670  int nregs;			/* # registers available for passing */
1671  int regno;			/* next available register number */
1672  int sse_words;		/* # sse words passed so far */
1673  int sse_nregs;		/* # sse registers available for passing */
1674  int sse_regno;		/* next available sse register number */
1675  int maybe_vaarg;		/* true for calls to possibly vardic fncts.  */
1676} CUMULATIVE_ARGS;
1677
1678/* Initialize a variable CUM of type CUMULATIVE_ARGS
1679   for a call to a function whose data type is FNTYPE.
1680   For a library call, FNTYPE is 0.  */
1681
1682#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1683  init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME))
1684
1685/* Update the data in CUM to advance over an argument
1686   of mode MODE and data type TYPE.
1687   (TYPE is null for libcalls where that information may not be available.)  */
1688
1689#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1690  function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1691
1692/* Define where to put the arguments to a function.
1693   Value is zero to push the argument on the stack,
1694   or a hard register in which to store the argument.
1695
1696   MODE is the argument's machine mode.
1697   TYPE is the data type of the argument (as a tree).
1698    This is null for libcalls where that information may
1699    not be available.
1700   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1701    the preceding args and about the function being called.
1702   NAMED is nonzero if this argument is a named parameter
1703    (otherwise it is an extra parameter matching an ellipsis).  */
1704
1705#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1706  function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1707
1708/* For an arg passed partly in registers and partly in memory,
1709   this is the number of registers used.
1710   For args passed entirely in registers or entirely in memory, zero.  */
1711
1712#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
1713
1714/* If PIC, we cannot make sibling calls to global functions
1715   because the PLT requires %ebx live.
1716   If we are returning floats on the register stack, we cannot make
1717   sibling calls to functions that return floats.  (The stack adjust
1718   instruction will wind up after the sibcall jump, and not be executed.) */
1719#define FUNCTION_OK_FOR_SIBCALL(DECL)					\
1720  ((DECL)								\
1721   && (! flag_pic || ! TREE_PUBLIC (DECL))				\
1722   && (! TARGET_FLOAT_RETURNS_IN_80387					\
1723       || ! FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (DECL))))	\
1724       || FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (cfun->decl))))))
1725
1726/* Perform any needed actions needed for a function that is receiving a
1727   variable number of arguments.
1728
1729   CUM is as above.
1730
1731   MODE and TYPE are the mode and type of the current parameter.
1732
1733   PRETEND_SIZE is a variable that should be set to the amount of stack
1734   that must be pushed by the prolog to pretend that our caller pushed
1735   it.
1736
1737   Normally, this macro will push all remaining incoming registers on the
1738   stack and set PRETEND_SIZE to the length of the registers pushed.  */
1739
1740#define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL)	\
1741  ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \
1742			       (NO_RTL))
1743
1744/* Define the `__builtin_va_list' type for the ABI.  */
1745#define BUILD_VA_LIST_TYPE(VALIST) \
1746  ((VALIST) = ix86_build_va_list ())
1747
1748/* Implement `va_start' for varargs and stdarg.  */
1749#define EXPAND_BUILTIN_VA_START(STDARG, VALIST, NEXTARG) \
1750  ix86_va_start ((STDARG), (VALIST), (NEXTARG))
1751
1752/* Implement `va_arg'.  */
1753#define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
1754  ix86_va_arg ((VALIST), (TYPE))
1755
1756/* This macro is invoked at the end of compilation.  It is used here to
1757   output code for -fpic that will load the return address into %ebx.  */
1758
1759#undef ASM_FILE_END
1760#define ASM_FILE_END(FILE)  ix86_asm_file_end (FILE)
1761
1762/* Output assembler code to FILE to increment profiler label # LABELNO
1763   for profiling a function entry.  */
1764
1765#define FUNCTION_PROFILER(FILE, LABELNO)				\
1766do {									\
1767  if (flag_pic)								\
1768    {									\
1769      fprintf ((FILE), "\tleal\t%sP%d@GOTOFF(%%ebx),%%edx\n",		\
1770	       LPREFIX, (LABELNO));					\
1771      fprintf ((FILE), "\tcall\t*_mcount@GOT(%%ebx)\n");		\
1772    }									\
1773  else									\
1774    {									\
1775      fprintf ((FILE), "\tmovl\t$%sP%d,%%edx\n", LPREFIX, (LABELNO));	\
1776      fprintf ((FILE), "\tcall\t_mcount\n");				\
1777    }									\
1778} while (0)
1779
1780/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1781   the stack pointer does not matter.  The value is tested only in
1782   functions that have frame pointers.
1783   No definition is equivalent to always zero.  */
1784/* Note on the 386 it might be more efficient not to define this since
1785   we have to restore it ourselves from the frame pointer, in order to
1786   use pop */
1787
1788#define EXIT_IGNORE_STACK 1
1789
1790/* Output assembler code for a block containing the constant parts
1791   of a trampoline, leaving space for the variable parts.  */
1792
1793/* On the 386, the trampoline contains two instructions:
1794     mov #STATIC,ecx
1795     jmp FUNCTION
1796   The trampoline is generated entirely at runtime.  The operand of JMP
1797   is the address of FUNCTION relative to the instruction following the
1798   JMP (which is 5 bytes long).  */
1799
1800/* Length in units of the trampoline for entering a nested function.  */
1801
1802#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1803
1804/* Emit RTL insns to initialize the variable parts of a trampoline.
1805   FNADDR is an RTX for the address of the function's pure code.
1806   CXT is an RTX for the static chain value for the function.  */
1807
1808#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1809  x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1810
1811/* Definitions for register eliminations.
1812
1813   This is an array of structures.  Each structure initializes one pair
1814   of eliminable registers.  The "from" register number is given first,
1815   followed by "to".  Eliminations of the same "from" register are listed
1816   in order of preference.
1817
1818   There are two registers that can always be eliminated on the i386.
1819   The frame pointer and the arg pointer can be replaced by either the
1820   hard frame pointer or to the stack pointer, depending upon the
1821   circumstances.  The hard frame pointer is not used before reload and
1822   so it is not eligible for elimination.  */
1823
1824#define ELIMINABLE_REGS					\
1825{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1826 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1827 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1828 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}	\
1829
1830/* Given FROM and TO register numbers, say whether this elimination is
1831   allowed.  Frame pointer elimination is automatically handled.
1832
1833   All other eliminations are valid.  */
1834
1835#define CAN_ELIMINATE(FROM, TO) \
1836  ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1837
1838/* Define the offset between two registers, one to be eliminated, and the other
1839   its replacement, at the start of a routine.  */
1840
1841#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1842  ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1843
1844/* Addressing modes, and classification of registers for them.  */
1845
1846/* #define HAVE_POST_INCREMENT 0 */
1847/* #define HAVE_POST_DECREMENT 0 */
1848
1849/* #define HAVE_PRE_DECREMENT 0 */
1850/* #define HAVE_PRE_INCREMENT 0 */
1851
1852/* Macros to check register numbers against specific register classes.  */
1853
1854/* These assume that REGNO is a hard or pseudo reg number.
1855   They give nonzero only if REGNO is a hard reg of the suitable class
1856   or a pseudo reg currently allocated to a suitable hard reg.
1857   Since they use reg_renumber, they are safe only once reg_renumber
1858   has been allocated, which happens in local-alloc.c.  */
1859
1860#define REGNO_OK_FOR_INDEX_P(REGNO) 					\
1861  ((REGNO) < STACK_POINTER_REGNUM 					\
1862   || (REGNO >= FIRST_REX_INT_REG					\
1863       && (REGNO) <= LAST_REX_INT_REG)					\
1864   || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1865       && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1866   || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1867
1868#define REGNO_OK_FOR_BASE_P(REGNO) 					\
1869  ((REGNO) <= STACK_POINTER_REGNUM 					\
1870   || (REGNO) == ARG_POINTER_REGNUM 					\
1871   || (REGNO) == FRAME_POINTER_REGNUM 					\
1872   || (REGNO >= FIRST_REX_INT_REG					\
1873       && (REGNO) <= LAST_REX_INT_REG)					\
1874   || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1875       && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1876   || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1877
1878#define REGNO_OK_FOR_SIREG_P(REGNO) \
1879  ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1880#define REGNO_OK_FOR_DIREG_P(REGNO) \
1881  ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1882
1883/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1884   and check its validity for a certain class.
1885   We have two alternate definitions for each of them.
1886   The usual definition accepts all pseudo regs; the other rejects
1887   them unless they have been allocated suitable hard regs.
1888   The symbol REG_OK_STRICT causes the latter definition to be used.
1889
1890   Most source files want to accept pseudo regs in the hope that
1891   they will get allocated to the class that the insn wants them to be in.
1892   Source files for reload pass need to be strict.
1893   After reload, it makes no difference, since pseudo regs have
1894   been eliminated by then.  */
1895
1896
1897/* Non strict versions, pseudos are ok */
1898#define REG_OK_FOR_INDEX_NONSTRICT_P(X)					\
1899  (REGNO (X) < STACK_POINTER_REGNUM					\
1900   || (REGNO (X) >= FIRST_REX_INT_REG					\
1901       && REGNO (X) <= LAST_REX_INT_REG)				\
1902   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1903
1904#define REG_OK_FOR_BASE_NONSTRICT_P(X)					\
1905  (REGNO (X) <= STACK_POINTER_REGNUM					\
1906   || REGNO (X) == ARG_POINTER_REGNUM					\
1907   || REGNO (X) == FRAME_POINTER_REGNUM 				\
1908   || (REGNO (X) >= FIRST_REX_INT_REG					\
1909       && REGNO (X) <= LAST_REX_INT_REG)				\
1910   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1911
1912/* Strict versions, hard registers only */
1913#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1914#define REG_OK_FOR_BASE_STRICT_P(X)  REGNO_OK_FOR_BASE_P (REGNO (X))
1915
1916#ifndef REG_OK_STRICT
1917#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_NONSTRICT_P (X)
1918#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_NONSTRICT_P (X)
1919
1920#else
1921#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_STRICT_P (X)
1922#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_STRICT_P (X)
1923#endif
1924
1925/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1926   that is a valid memory address for an instruction.
1927   The MODE argument is the machine mode for the MEM expression
1928   that wants to use this address.
1929
1930   The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1931   except for CONSTANT_ADDRESS_P which is usually machine-independent.
1932
1933   See legitimize_pic_address in i386.c for details as to what
1934   constitutes a legitimate address when -fpic is used.  */
1935
1936#define MAX_REGS_PER_ADDRESS 2
1937
1938#define CONSTANT_ADDRESS_P(X)					\
1939  (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF	\
1940   || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST	\
1941   || GET_CODE (X) == CONST_DOUBLE)
1942
1943/* Nonzero if the constant value X is a legitimate general operand.
1944   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1945
1946#define LEGITIMATE_CONSTANT_P(X) 1
1947
1948#ifdef REG_OK_STRICT
1949#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
1950do {									\
1951  if (legitimate_address_p ((MODE), (X), 1))				\
1952    goto ADDR;								\
1953} while (0)
1954
1955#else
1956#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
1957do {									\
1958  if (legitimate_address_p ((MODE), (X), 0))				\
1959    goto ADDR;								\
1960} while (0)
1961
1962#endif
1963
1964/* If defined, a C expression to determine the base term of address X.
1965   This macro is used in only one place: `find_base_term' in alias.c.
1966
1967   It is always safe for this macro to not be defined.  It exists so
1968   that alias analysis can understand machine-dependent addresses.
1969
1970   The typical use of this macro is to handle addresses containing
1971   a label_ref or symbol_ref within an UNSPEC.  */
1972
1973#define FIND_BASE_TERM(X) ix86_find_base_term (X)
1974
1975/* Try machine-dependent ways of modifying an illegitimate address
1976   to be legitimate.  If we find one, return the new, valid address.
1977   This macro is used in only one place: `memory_address' in explow.c.
1978
1979   OLDX is the address as it was before break_out_memory_refs was called.
1980   In some cases it is useful to look at this to decide what needs to be done.
1981
1982   MODE and WIN are passed so that this macro can use
1983   GO_IF_LEGITIMATE_ADDRESS.
1984
1985   It is always safe for this macro to do nothing.  It exists to recognize
1986   opportunities to optimize the output.
1987
1988   For the 80386, we handle X+REG by loading X into a register R and
1989   using R+REG.  R will go in a general reg and indexing will be used.
1990   However, if REG is a broken-out memory address or multiplication,
1991   nothing needs to be done because REG can certainly go in a general reg.
1992
1993   When -fpic is used, special handling is needed for symbolic references.
1994   See comments by legitimize_pic_address in i386.c for details.  */
1995
1996#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)				\
1997do {									\
1998  (X) = legitimize_address ((X), (OLDX), (MODE));			\
1999  if (memory_address_p ((MODE), (X)))					\
2000    goto WIN;								\
2001} while (0)
2002
2003#define REWRITE_ADDRESS(X) rewrite_address (X)
2004
2005/* Nonzero if the constant value X is a legitimate general operand
2006   when generating PIC code.  It is given that flag_pic is on and
2007   that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
2008
2009#define LEGITIMATE_PIC_OPERAND_P(X)		\
2010  (! SYMBOLIC_CONST (X)				\
2011   || legitimate_pic_address_disp_p (X))
2012
2013#define SYMBOLIC_CONST(X)	\
2014  (GET_CODE (X) == SYMBOL_REF						\
2015   || GET_CODE (X) == LABEL_REF						\
2016   || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
2017
2018/* Go to LABEL if ADDR (a legitimate address expression)
2019   has an effect that depends on the machine mode it is used for.
2020   On the 80386, only postdecrement and postincrement address depend thus
2021   (the amount of decrement or increment being the length of the operand).  */
2022#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)	\
2023do {							\
2024 if (GET_CODE (ADDR) == POST_INC			\
2025     || GET_CODE (ADDR) == POST_DEC)			\
2026   goto LABEL;						\
2027} while (0)
2028
2029/* Codes for all the SSE/MMX builtins.  */
2030enum ix86_builtins
2031{
2032  IX86_BUILTIN_ADDPS,
2033  IX86_BUILTIN_ADDSS,
2034  IX86_BUILTIN_DIVPS,
2035  IX86_BUILTIN_DIVSS,
2036  IX86_BUILTIN_MULPS,
2037  IX86_BUILTIN_MULSS,
2038  IX86_BUILTIN_SUBPS,
2039  IX86_BUILTIN_SUBSS,
2040
2041  IX86_BUILTIN_CMPEQPS,
2042  IX86_BUILTIN_CMPLTPS,
2043  IX86_BUILTIN_CMPLEPS,
2044  IX86_BUILTIN_CMPGTPS,
2045  IX86_BUILTIN_CMPGEPS,
2046  IX86_BUILTIN_CMPNEQPS,
2047  IX86_BUILTIN_CMPNLTPS,
2048  IX86_BUILTIN_CMPNLEPS,
2049  IX86_BUILTIN_CMPNGTPS,
2050  IX86_BUILTIN_CMPNGEPS,
2051  IX86_BUILTIN_CMPORDPS,
2052  IX86_BUILTIN_CMPUNORDPS,
2053  IX86_BUILTIN_CMPNEPS,
2054  IX86_BUILTIN_CMPEQSS,
2055  IX86_BUILTIN_CMPLTSS,
2056  IX86_BUILTIN_CMPLESS,
2057  IX86_BUILTIN_CMPGTSS,
2058  IX86_BUILTIN_CMPGESS,
2059  IX86_BUILTIN_CMPNEQSS,
2060  IX86_BUILTIN_CMPNLTSS,
2061  IX86_BUILTIN_CMPNLESS,
2062  IX86_BUILTIN_CMPNGTSS,
2063  IX86_BUILTIN_CMPNGESS,
2064  IX86_BUILTIN_CMPORDSS,
2065  IX86_BUILTIN_CMPUNORDSS,
2066  IX86_BUILTIN_CMPNESS,
2067
2068  IX86_BUILTIN_COMIEQSS,
2069  IX86_BUILTIN_COMILTSS,
2070  IX86_BUILTIN_COMILESS,
2071  IX86_BUILTIN_COMIGTSS,
2072  IX86_BUILTIN_COMIGESS,
2073  IX86_BUILTIN_COMINEQSS,
2074  IX86_BUILTIN_UCOMIEQSS,
2075  IX86_BUILTIN_UCOMILTSS,
2076  IX86_BUILTIN_UCOMILESS,
2077  IX86_BUILTIN_UCOMIGTSS,
2078  IX86_BUILTIN_UCOMIGESS,
2079  IX86_BUILTIN_UCOMINEQSS,
2080
2081  IX86_BUILTIN_CVTPI2PS,
2082  IX86_BUILTIN_CVTPS2PI,
2083  IX86_BUILTIN_CVTSI2SS,
2084  IX86_BUILTIN_CVTSS2SI,
2085  IX86_BUILTIN_CVTTPS2PI,
2086  IX86_BUILTIN_CVTTSS2SI,
2087
2088  IX86_BUILTIN_MAXPS,
2089  IX86_BUILTIN_MAXSS,
2090  IX86_BUILTIN_MINPS,
2091  IX86_BUILTIN_MINSS,
2092
2093  IX86_BUILTIN_LOADAPS,
2094  IX86_BUILTIN_LOADUPS,
2095  IX86_BUILTIN_STOREAPS,
2096  IX86_BUILTIN_STOREUPS,
2097  IX86_BUILTIN_LOADSS,
2098  IX86_BUILTIN_STORESS,
2099  IX86_BUILTIN_MOVSS,
2100
2101  IX86_BUILTIN_MOVHLPS,
2102  IX86_BUILTIN_MOVLHPS,
2103  IX86_BUILTIN_LOADHPS,
2104  IX86_BUILTIN_LOADLPS,
2105  IX86_BUILTIN_STOREHPS,
2106  IX86_BUILTIN_STORELPS,
2107
2108  IX86_BUILTIN_MASKMOVQ,
2109  IX86_BUILTIN_MOVMSKPS,
2110  IX86_BUILTIN_PMOVMSKB,
2111
2112  IX86_BUILTIN_MOVNTPS,
2113  IX86_BUILTIN_MOVNTQ,
2114
2115  IX86_BUILTIN_PACKSSWB,
2116  IX86_BUILTIN_PACKSSDW,
2117  IX86_BUILTIN_PACKUSWB,
2118
2119  IX86_BUILTIN_PADDB,
2120  IX86_BUILTIN_PADDW,
2121  IX86_BUILTIN_PADDD,
2122  IX86_BUILTIN_PADDSB,
2123  IX86_BUILTIN_PADDSW,
2124  IX86_BUILTIN_PADDUSB,
2125  IX86_BUILTIN_PADDUSW,
2126  IX86_BUILTIN_PSUBB,
2127  IX86_BUILTIN_PSUBW,
2128  IX86_BUILTIN_PSUBD,
2129  IX86_BUILTIN_PSUBSB,
2130  IX86_BUILTIN_PSUBSW,
2131  IX86_BUILTIN_PSUBUSB,
2132  IX86_BUILTIN_PSUBUSW,
2133
2134  IX86_BUILTIN_PAND,
2135  IX86_BUILTIN_PANDN,
2136  IX86_BUILTIN_POR,
2137  IX86_BUILTIN_PXOR,
2138
2139  IX86_BUILTIN_PAVGB,
2140  IX86_BUILTIN_PAVGW,
2141
2142  IX86_BUILTIN_PCMPEQB,
2143  IX86_BUILTIN_PCMPEQW,
2144  IX86_BUILTIN_PCMPEQD,
2145  IX86_BUILTIN_PCMPGTB,
2146  IX86_BUILTIN_PCMPGTW,
2147  IX86_BUILTIN_PCMPGTD,
2148
2149  IX86_BUILTIN_PEXTRW,
2150  IX86_BUILTIN_PINSRW,
2151
2152  IX86_BUILTIN_PMADDWD,
2153
2154  IX86_BUILTIN_PMAXSW,
2155  IX86_BUILTIN_PMAXUB,
2156  IX86_BUILTIN_PMINSW,
2157  IX86_BUILTIN_PMINUB,
2158
2159  IX86_BUILTIN_PMULHUW,
2160  IX86_BUILTIN_PMULHW,
2161  IX86_BUILTIN_PMULLW,
2162
2163  IX86_BUILTIN_PSADBW,
2164  IX86_BUILTIN_PSHUFW,
2165
2166  IX86_BUILTIN_PSLLW,
2167  IX86_BUILTIN_PSLLD,
2168  IX86_BUILTIN_PSLLQ,
2169  IX86_BUILTIN_PSRAW,
2170  IX86_BUILTIN_PSRAD,
2171  IX86_BUILTIN_PSRLW,
2172  IX86_BUILTIN_PSRLD,
2173  IX86_BUILTIN_PSRLQ,
2174  IX86_BUILTIN_PSLLWI,
2175  IX86_BUILTIN_PSLLDI,
2176  IX86_BUILTIN_PSLLQI,
2177  IX86_BUILTIN_PSRAWI,
2178  IX86_BUILTIN_PSRADI,
2179  IX86_BUILTIN_PSRLWI,
2180  IX86_BUILTIN_PSRLDI,
2181  IX86_BUILTIN_PSRLQI,
2182
2183  IX86_BUILTIN_PUNPCKHBW,
2184  IX86_BUILTIN_PUNPCKHWD,
2185  IX86_BUILTIN_PUNPCKHDQ,
2186  IX86_BUILTIN_PUNPCKLBW,
2187  IX86_BUILTIN_PUNPCKLWD,
2188  IX86_BUILTIN_PUNPCKLDQ,
2189
2190  IX86_BUILTIN_SHUFPS,
2191
2192  IX86_BUILTIN_RCPPS,
2193  IX86_BUILTIN_RCPSS,
2194  IX86_BUILTIN_RSQRTPS,
2195  IX86_BUILTIN_RSQRTSS,
2196  IX86_BUILTIN_SQRTPS,
2197  IX86_BUILTIN_SQRTSS,
2198
2199  IX86_BUILTIN_UNPCKHPS,
2200  IX86_BUILTIN_UNPCKLPS,
2201
2202  IX86_BUILTIN_ANDPS,
2203  IX86_BUILTIN_ANDNPS,
2204  IX86_BUILTIN_ORPS,
2205  IX86_BUILTIN_XORPS,
2206
2207  IX86_BUILTIN_EMMS,
2208  IX86_BUILTIN_LDMXCSR,
2209  IX86_BUILTIN_STMXCSR,
2210  IX86_BUILTIN_SFENCE,
2211
2212  /* 3DNow! Original */
2213  IX86_BUILTIN_FEMMS,
2214  IX86_BUILTIN_PAVGUSB,
2215  IX86_BUILTIN_PF2ID,
2216  IX86_BUILTIN_PFACC,
2217  IX86_BUILTIN_PFADD,
2218  IX86_BUILTIN_PFCMPEQ,
2219  IX86_BUILTIN_PFCMPGE,
2220  IX86_BUILTIN_PFCMPGT,
2221  IX86_BUILTIN_PFMAX,
2222  IX86_BUILTIN_PFMIN,
2223  IX86_BUILTIN_PFMUL,
2224  IX86_BUILTIN_PFRCP,
2225  IX86_BUILTIN_PFRCPIT1,
2226  IX86_BUILTIN_PFRCPIT2,
2227  IX86_BUILTIN_PFRSQIT1,
2228  IX86_BUILTIN_PFRSQRT,
2229  IX86_BUILTIN_PFSUB,
2230  IX86_BUILTIN_PFSUBR,
2231  IX86_BUILTIN_PI2FD,
2232  IX86_BUILTIN_PMULHRW,
2233
2234  /* 3DNow! Athlon Extensions */
2235  IX86_BUILTIN_PF2IW,
2236  IX86_BUILTIN_PFNACC,
2237  IX86_BUILTIN_PFPNACC,
2238  IX86_BUILTIN_PI2FW,
2239  IX86_BUILTIN_PSWAPDSI,
2240  IX86_BUILTIN_PSWAPDSF,
2241
2242  IX86_BUILTIN_SSE_ZERO,
2243  IX86_BUILTIN_MMX_ZERO,
2244
2245  IX86_BUILTIN_MAX
2246};
2247
2248/* Define this macro if references to a symbol must be treated
2249   differently depending on something about the variable or
2250   function named by the symbol (such as what section it is in).
2251
2252   On i386, if using PIC, mark a SYMBOL_REF for a non-global symbol
2253   so that we may access it directly in the GOT.  */
2254
2255#define ENCODE_SECTION_INFO(DECL)				\
2256do {								\
2257    if (flag_pic)						\
2258      {								\
2259	rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd'	\
2260		   ? TREE_CST_RTL (DECL) : DECL_RTL (DECL));	\
2261								\
2262	if (GET_CODE (rtl) == MEM)				\
2263	  {							\
2264	    if (TARGET_DEBUG_ADDR				\
2265		&& TREE_CODE_CLASS (TREE_CODE (DECL)) == 'd')	\
2266	      {							\
2267		fprintf (stderr, "Encode %s, public = %d\n",	\
2268			 IDENTIFIER_POINTER (DECL_NAME (DECL)),	\
2269			 TREE_PUBLIC (DECL));			\
2270	      }							\
2271	    							\
2272	    SYMBOL_REF_FLAG (XEXP (rtl, 0))			\
2273	      = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd'	\
2274		 || ! TREE_PUBLIC (DECL));			\
2275	  }							\
2276      }								\
2277} while (0)
2278
2279/* The `FINALIZE_PIC' macro serves as a hook to emit these special
2280   codes once the function is being compiled into assembly code, but
2281   not before.  (It is not done before, because in the case of
2282   compiling an inline function, it would lead to multiple PIC
2283   prologues being included in functions which used inline functions
2284   and were compiled to assembly language.)  */
2285
2286#define FINALIZE_PIC \
2287  (current_function_uses_pic_offset_table |= current_function_profile)
2288
2289
2290/* Max number of args passed in registers.  If this is more than 3, we will
2291   have problems with ebx (register #4), since it is a caller save register and
2292   is also used as the pic register in ELF.  So for now, don't allow more than
2293   3 registers to be passed in registers.  */
2294
2295#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2296
2297#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : 0)
2298
2299
2300/* Specify the machine mode that this machine uses
2301   for the index in the tablejump instruction.  */
2302#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
2303
2304/* Define as C expression which evaluates to nonzero if the tablejump
2305   instruction expects the table to contain offsets from the address of the
2306   table.
2307   Do not define this if the table should contain absolute addresses.  */
2308/* #define CASE_VECTOR_PC_RELATIVE 1 */
2309
2310/* Define this as 1 if `char' should by default be signed; else as 0.  */
2311#define DEFAULT_SIGNED_CHAR 1
2312
2313/* Number of bytes moved into a data cache for a single prefetch operation.  */
2314#define PREFETCH_BLOCK ix86_cost->prefetch_block
2315
2316/* Number of prefetch operations that can be done in parallel.  */
2317#define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2318
2319/* Max number of bytes we can move from memory to memory
2320   in one reasonably fast instruction.  */
2321#define MOVE_MAX 16
2322
2323/* MOVE_MAX_PIECES is the number of bytes at a time which we can
2324   move efficiently, as opposed to  MOVE_MAX which is the maximum
2325   number of bytes we can move with a single instruction.  */
2326#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
2327
2328/* If a memory-to-memory move would take MOVE_RATIO or more simple
2329   move-instruction pairs, we will do a movstr or libcall instead.
2330   Increasing the value will always make code faster, but eventually
2331   incurs high cost in increased code size.
2332
2333   If you don't define this, a reasonable default is used.  */
2334
2335#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
2336
2337/* Define if shifts truncate the shift count
2338   which implies one can omit a sign-extension or zero-extension
2339   of a shift count.  */
2340/* On i386, shifts do truncate the count.  But bit opcodes don't.  */
2341
2342/* #define SHIFT_COUNT_TRUNCATED */
2343
2344/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2345   is done just by pretending it is already truncated.  */
2346#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2347
2348/* We assume that the store-condition-codes instructions store 0 for false
2349   and some other value for true.  This is the value stored for true.  */
2350
2351#define STORE_FLAG_VALUE 1
2352
2353/* When a prototype says `char' or `short', really pass an `int'.
2354   (The 386 can't easily push less than an int.)  */
2355
2356#define PROMOTE_PROTOTYPES (!TARGET_64BIT)
2357
2358/* A macro to update M and UNSIGNEDP when an object whose type is
2359   TYPE and which has the specified mode and signedness is to be
2360   stored in a register.  This macro is only called when TYPE is a
2361   scalar type.
2362
2363   On i386 it is sometimes useful to promote HImode and QImode
2364   quantities to SImode.  The choice depends on target type.  */
2365
2366#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) 		\
2367do {							\
2368  if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS)	\
2369      || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS))	\
2370    (MODE) = SImode;					\
2371} while (0)
2372
2373/* Specify the machine mode that pointers have.
2374   After generation of rtl, the compiler makes no further distinction
2375   between pointers and any other objects of this machine mode.  */
2376#define Pmode (TARGET_64BIT ? DImode : SImode)
2377
2378/* A function address in a call instruction
2379   is a byte address (for indexing purposes)
2380   so give the MEM rtx a byte's mode.  */
2381#define FUNCTION_MODE QImode
2382
2383/* A part of a C `switch' statement that describes the relative costs
2384   of constant RTL expressions.  It must contain `case' labels for
2385   expression codes `const_int', `const', `symbol_ref', `label_ref'
2386   and `const_double'.  Each case must ultimately reach a `return'
2387   statement to return the relative cost of the use of that kind of
2388   constant value in an expression.  The cost may depend on the
2389   precise value of the constant, which is available for examination
2390   in X, and the rtx code of the expression in which it is contained,
2391   found in OUTER_CODE.
2392
2393   CODE is the expression code--redundant, since it can be obtained
2394   with `GET_CODE (X)'.  */
2395
2396#define CONST_COSTS(RTX, CODE, OUTER_CODE)			\
2397  case CONST_INT:						\
2398  case CONST:							\
2399  case LABEL_REF:						\
2400  case SYMBOL_REF:						\
2401    if (TARGET_64BIT && !x86_64_sign_extended_value (RTX))	\
2402      return 3;							\
2403    if (TARGET_64BIT && !x86_64_zero_extended_value (RTX))	\
2404      return 2;							\
2405    return flag_pic && SYMBOLIC_CONST (RTX) ? 1 : 0;		\
2406								\
2407  case CONST_DOUBLE:						\
2408    {								\
2409      int code;							\
2410      if (GET_MODE (RTX) == VOIDmode)				\
2411	return 0;						\
2412								\
2413      code = standard_80387_constant_p (RTX);			\
2414      return code == 1 ? 1 :					\
2415	     code == 2 ? 2 :					\
2416			 3;					\
2417    }
2418
2419/* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */
2420#define TOPLEVEL_COSTS_N_INSNS(N) \
2421  do { total = COSTS_N_INSNS (N); goto egress_rtx_costs; } while (0)
2422
2423/* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
2424   This can be used, for example, to indicate how costly a multiply
2425   instruction is.  In writing this macro, you can use the construct
2426   `COSTS_N_INSNS (N)' to specify a cost equal to N fast
2427   instructions.  OUTER_CODE is the code of the expression in which X
2428   is contained.
2429
2430   This macro is optional; do not define it if the default cost
2431   assumptions are adequate for the target machine.  */
2432
2433#define RTX_COSTS(X, CODE, OUTER_CODE)					\
2434  case ZERO_EXTEND:							\
2435    /* The zero extensions is often completely free on x86_64, so make	\
2436       it as cheap as possible.  */					\
2437    if (TARGET_64BIT && GET_MODE (X) == DImode				\
2438	&& GET_MODE (XEXP (X, 0)) == SImode)				\
2439      {									\
2440	total = 1; goto egress_rtx_costs;				\
2441      } 								\
2442    else								\
2443      TOPLEVEL_COSTS_N_INSNS (TARGET_ZERO_EXTEND_WITH_AND ?		\
2444			      ix86_cost->add : ix86_cost->movzx);	\
2445    break;								\
2446  case SIGN_EXTEND:							\
2447    TOPLEVEL_COSTS_N_INSNS (ix86_cost->movsx);				\
2448    break;								\
2449  case ASHIFT:								\
2450    if (GET_CODE (XEXP (X, 1)) == CONST_INT				\
2451	&& (GET_MODE (XEXP (X, 0)) != DImode || TARGET_64BIT))		\
2452      {									\
2453	HOST_WIDE_INT value = INTVAL (XEXP (X, 1));			\
2454	if (value == 1)							\
2455	  TOPLEVEL_COSTS_N_INSNS (ix86_cost->add);			\
2456	if ((value == 2 || value == 3)					\
2457	    && !TARGET_DECOMPOSE_LEA					\
2458	    && ix86_cost->lea <= ix86_cost->shift_const)		\
2459	  TOPLEVEL_COSTS_N_INSNS (ix86_cost->lea);			\
2460      }									\
2461    /* fall through */							\
2462		  							\
2463  case ROTATE:								\
2464  case ASHIFTRT:							\
2465  case LSHIFTRT:							\
2466  case ROTATERT:							\
2467    if (!TARGET_64BIT && GET_MODE (XEXP (X, 0)) == DImode)		\
2468      {									\
2469	if (GET_CODE (XEXP (X, 1)) == CONST_INT)			\
2470	  {								\
2471	    if (INTVAL (XEXP (X, 1)) > 32)				\
2472	      TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const + 2);	\
2473	    else							\
2474	      TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const * 2);	\
2475	  }								\
2476	else								\
2477	  {								\
2478	    if (GET_CODE (XEXP (X, 1)) == AND)				\
2479	      TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 2);		\
2480	    else							\
2481	      TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2);	\
2482	  }								\
2483      }									\
2484    else								\
2485      {									\
2486	if (GET_CODE (XEXP (X, 1)) == CONST_INT)			\
2487	  TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_const);		\
2488	else								\
2489	  TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_var);		\
2490      }									\
2491    break;								\
2492									\
2493  case MULT:								\
2494    if (GET_CODE (XEXP (X, 1)) == CONST_INT)				\
2495      {									\
2496	unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1));		\
2497	int nbits = 0;							\
2498									\
2499	while (value != 0)						\
2500	  {								\
2501	    nbits++;							\
2502	    value >>= 1;						\
2503	  } 								\
2504									\
2505	TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init			\
2506			        + nbits * ix86_cost->mult_bit);		\
2507      }									\
2508    else			/* This is arbitrary */			\
2509      TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init			\
2510			      + 7 * ix86_cost->mult_bit);		\
2511									\
2512  case DIV:								\
2513  case UDIV:								\
2514  case MOD:								\
2515  case UMOD:								\
2516    TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide);				\
2517									\
2518  case PLUS:								\
2519    if (!TARGET_DECOMPOSE_LEA						\
2520	&& INTEGRAL_MODE_P (GET_MODE (X))				\
2521	&& GET_MODE_BITSIZE (GET_MODE (X)) <= GET_MODE_BITSIZE (Pmode))	\
2522      {									\
2523        if (GET_CODE (XEXP (X, 0)) == PLUS				\
2524	    && GET_CODE (XEXP (XEXP (X, 0), 0)) == MULT			\
2525	    && GET_CODE (XEXP (XEXP (XEXP (X, 0), 0), 1)) == CONST_INT	\
2526	    && CONSTANT_P (XEXP (X, 1)))				\
2527	  {								\
2528	    HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 0), 0), 1));\
2529	    if (val == 2 || val == 4 || val == 8)			\
2530	      {								\
2531		return (COSTS_N_INSNS (ix86_cost->lea)			\
2532			+ rtx_cost (XEXP (XEXP (X, 0), 1),		\
2533				    (OUTER_CODE))			\
2534			+ rtx_cost (XEXP (XEXP (XEXP (X, 0), 0), 0),	\
2535				    (OUTER_CODE))			\
2536			+ rtx_cost (XEXP (X, 1), (OUTER_CODE)));	\
2537	      }								\
2538	  }								\
2539	else if (GET_CODE (XEXP (X, 0)) == MULT				\
2540		 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT)	\
2541	  {								\
2542	    HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1));		\
2543	    if (val == 2 || val == 4 || val == 8)			\
2544	      {								\
2545		return (COSTS_N_INSNS (ix86_cost->lea)			\
2546			+ rtx_cost (XEXP (XEXP (X, 0), 0),		\
2547				    (OUTER_CODE))			\
2548			+ rtx_cost (XEXP (X, 1), (OUTER_CODE)));	\
2549	      }								\
2550	  }								\
2551	else if (GET_CODE (XEXP (X, 0)) == PLUS)			\
2552	  {								\
2553	    return (COSTS_N_INSNS (ix86_cost->lea)			\
2554		    + rtx_cost (XEXP (XEXP (X, 0), 0), (OUTER_CODE))	\
2555		    + rtx_cost (XEXP (XEXP (X, 0), 1), (OUTER_CODE))	\
2556		    + rtx_cost (XEXP (X, 1), (OUTER_CODE)));		\
2557	  }								\
2558      }									\
2559									\
2560    /* fall through */							\
2561  case AND:								\
2562  case IOR:								\
2563  case XOR:								\
2564  case MINUS:								\
2565    if (!TARGET_64BIT && GET_MODE (X) == DImode)			\
2566      return (COSTS_N_INSNS (ix86_cost->add) * 2			\
2567	      + (rtx_cost (XEXP (X, 0), (OUTER_CODE))			\
2568	         << (GET_MODE (XEXP (X, 0)) != DImode))			\
2569	      + (rtx_cost (XEXP (X, 1), (OUTER_CODE))			\
2570 	         << (GET_MODE (XEXP (X, 1)) != DImode)));		\
2571									\
2572    /* fall through */							\
2573  case NEG:								\
2574  case NOT:								\
2575    if (!TARGET_64BIT && GET_MODE (X) == DImode)			\
2576      TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2);			\
2577    TOPLEVEL_COSTS_N_INSNS (ix86_cost->add);				\
2578									\
2579  egress_rtx_costs:							\
2580    break;
2581
2582
2583/* An expression giving the cost of an addressing mode that contains
2584   ADDRESS.  If not defined, the cost is computed from the ADDRESS
2585   expression and the `CONST_COSTS' values.
2586
2587   For most CISC machines, the default cost is a good approximation
2588   of the true cost of the addressing mode.  However, on RISC
2589   machines, all instructions normally have the same length and
2590   execution time.  Hence all addresses will have equal costs.
2591
2592   In cases where more than one form of an address is known, the form
2593   with the lowest cost will be used.  If multiple forms have the
2594   same, lowest, cost, the one that is the most complex will be used.
2595
2596   For example, suppose an address that is equal to the sum of a
2597   register and a constant is used twice in the same basic block.
2598   When this macro is not defined, the address will be computed in a
2599   register and memory references will be indirect through that
2600   register.  On machines where the cost of the addressing mode
2601   containing the sum is no higher than that of a simple indirect
2602   reference, this will produce an additional instruction and
2603   possibly require an additional register.  Proper specification of
2604   this macro eliminates this overhead for such machines.
2605
2606   Similar use of this macro is made in strength reduction of loops.
2607
2608   ADDRESS need not be valid as an address.  In such a case, the cost
2609   is not relevant and can be any value; invalid addresses need not be
2610   assigned a different cost.
2611
2612   On machines where an address involving more than one register is as
2613   cheap as an address computation involving only one register,
2614   defining `ADDRESS_COST' to reflect this can cause two registers to
2615   be live over a region of code where only one would have been if
2616   `ADDRESS_COST' were not defined in that manner.  This effect should
2617   be considered in the definition of this macro.  Equivalent costs
2618   should probably only be given to addresses with different numbers
2619   of registers on machines with lots of registers.
2620
2621   This macro will normally either not be defined or be defined as a
2622   constant.
2623
2624   For i386, it is better to use a complex address than let gcc copy
2625   the address into a reg and make a new pseudo.  But not if the address
2626   requires to two regs - that would mean more pseudos with longer
2627   lifetimes.  */
2628
2629#define ADDRESS_COST(RTX) \
2630  ix86_address_cost (RTX)
2631
2632/* A C expression for the cost of moving data from a register in class FROM to
2633   one in class TO.  The classes are expressed using the enumeration values
2634   such as `GENERAL_REGS'.  A value of 2 is the default; other values are
2635   interpreted relative to that.
2636
2637   It is not required that the cost always equal 2 when FROM is the same as TO;
2638   on some machines it is expensive to move between registers if they are not
2639   general registers.  */
2640
2641#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2642   ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
2643
2644/* A C expression for the cost of moving data of mode M between a
2645   register and memory.  A value of 2 is the default; this cost is
2646   relative to those in `REGISTER_MOVE_COST'.
2647
2648   If moving between registers and memory is more expensive than
2649   between two registers, you should define this macro to express the
2650   relative cost.  */
2651
2652#define MEMORY_MOVE_COST(MODE, CLASS, IN)	\
2653  ix86_memory_move_cost ((MODE), (CLASS), (IN))
2654
2655/* A C expression for the cost of a branch instruction.  A value of 1
2656   is the default; other values are interpreted relative to that.  */
2657
2658#define BRANCH_COST ix86_branch_cost
2659
2660/* Define this macro as a C expression which is nonzero if accessing
2661   less than a word of memory (i.e. a `char' or a `short') is no
2662   faster than accessing a word of memory, i.e., if such access
2663   require more than one instruction or if there is no difference in
2664   cost between byte and (aligned) word loads.
2665
2666   When this macro is not defined, the compiler will access a field by
2667   finding the smallest containing object; when it is defined, a
2668   fullword load will be used if alignment permits.  Unless bytes
2669   accesses are faster than word accesses, using word accesses is
2670   preferable since it may eliminate subsequent memory access if
2671   subsequent accesses occur to other fields in the same word of the
2672   structure, but to different bytes.  */
2673
2674#define SLOW_BYTE_ACCESS 0
2675
2676/* Nonzero if access to memory by shorts is slow and undesirable.  */
2677#define SLOW_SHORT_ACCESS 0
2678
2679/* Define this macro to be the value 1 if unaligned accesses have a
2680   cost many times greater than aligned accesses, for example if they
2681   are emulated in a trap handler.
2682
2683   When this macro is non-zero, the compiler will act as if
2684   `STRICT_ALIGNMENT' were non-zero when generating code for block
2685   moves.  This can cause significantly more instructions to be
2686   produced.  Therefore, do not set this macro non-zero if unaligned
2687   accesses only add a cycle or two to the time for a memory access.
2688
2689   If the value of this macro is always zero, it need not be defined.  */
2690
2691/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2692
2693/* Define this macro to inhibit strength reduction of memory
2694   addresses.  (On some machines, such strength reduction seems to do
2695   harm rather than good.)  */
2696
2697/* #define DONT_REDUCE_ADDR */
2698
2699/* Define this macro if it is as good or better to call a constant
2700   function address than to call an address kept in a register.
2701
2702   Desirable on the 386 because a CALL with a constant address is
2703   faster than one with a register address.  */
2704
2705#define NO_FUNCTION_CSE
2706
2707/* Define this macro if it is as good or better for a function to call
2708   itself with an explicit address than to call an address kept in a
2709   register.  */
2710
2711#define NO_RECURSIVE_FUNCTION_CSE
2712
2713/* Add any extra modes needed to represent the condition code.
2714
2715   For the i386, we need separate modes when floating-point
2716   equality comparisons are being done.
2717
2718   Add CCNO to indicate comparisons against zero that requires
2719   Overflow flag to be unset.  Sign bit test is used instead and
2720   thus can be used to form "a&b>0" type of tests.
2721
2722   Add CCGC to indicate comparisons agains zero that allows
2723   unspecified garbage in the Carry flag.  This mode is used
2724   by inc/dec instructions.
2725
2726   Add CCGOC to indicate comparisons agains zero that allows
2727   unspecified garbage in the Carry and Overflow flag. This
2728   mode is used to simulate comparisons of (a-b) and (a+b)
2729   against zero using sub/cmp/add operations.
2730
2731   Add CCZ to indicate that only the Zero flag is valid.  */
2732
2733#define EXTRA_CC_MODES		\
2734	CC (CCGCmode, "CCGC")	\
2735	CC (CCGOCmode, "CCGOC")	\
2736	CC (CCNOmode, "CCNO")	\
2737	CC (CCZmode, "CCZ")	\
2738	CC (CCFPmode, "CCFP")	\
2739	CC (CCFPUmode, "CCFPU")
2740
2741/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2742   return the mode to be used for the comparison.
2743
2744   For floating-point equality comparisons, CCFPEQmode should be used.
2745   VOIDmode should be used in all other cases.
2746
2747   For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2748   possible, to allow for more combinations.  */
2749
2750#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2751
2752/* Return non-zero if MODE implies a floating point inequality can be
2753   reversed.  */
2754
2755#define REVERSIBLE_CC_MODE(MODE) 1
2756
2757/* A C expression whose value is reversed condition code of the CODE for
2758   comparison done in CC_MODE mode.  */
2759#define REVERSE_CONDITION(CODE, MODE) \
2760  ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
2761   : reverse_condition_maybe_unordered (CODE))
2762
2763
2764/* Control the assembler format that we output, to the extent
2765   this does not vary between assemblers.  */
2766
2767/* How to refer to registers in assembler output.
2768   This sequence is indexed by compiler's hard-register-number (see above).  */
2769
2770/* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2771   For non floating point regs, the following are the HImode names.
2772
2773   For float regs, the stack top is sometimes referred to as "%st(0)"
2774   instead of just "%st".  PRINT_REG handles this with the "y" code.  */
2775
2776#undef  HI_REGISTER_NAMES
2777#define HI_REGISTER_NAMES						\
2778{"ax","dx","cx","bx","si","di","bp","sp",				\
2779 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","",	\
2780 "flags","fpsr", "dirflag", "frame",					\
2781 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7",		\
2782 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7"	,		\
2783 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",			\
2784 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
2785
2786#define REGISTER_NAMES HI_REGISTER_NAMES
2787
2788/* Table of additional register names to use in user input.  */
2789
2790#define ADDITIONAL_REGISTER_NAMES \
2791{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 },	\
2792  { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 },	\
2793  { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 },	\
2794  { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 },	\
2795  { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 },		\
2796  { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 },		\
2797  { "mm0", 8},  { "mm1", 9},  { "mm2", 10}, { "mm3", 11},	\
2798  { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
2799
2800/* Note we are omitting these since currently I don't know how
2801to get gcc to use these, since they want the same but different
2802number as al, and ax.
2803*/
2804
2805#define QI_REGISTER_NAMES \
2806{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2807
2808/* These parallel the array above, and can be used to access bits 8:15
2809   of regs 0 through 3.  */
2810
2811#define QI_HIGH_REGISTER_NAMES \
2812{"ah", "dh", "ch", "bh", }
2813
2814/* How to renumber registers for dbx and gdb.  */
2815
2816#define DBX_REGISTER_NUMBER(N) \
2817  (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2818
2819extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2820extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2821extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2822
2823/* Before the prologue, RA is at 0(%esp).  */
2824#define INCOMING_RETURN_ADDR_RTX \
2825  gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2826
2827/* After the prologue, RA is at -4(AP) in the current frame.  */
2828#define RETURN_ADDR_RTX(COUNT, FRAME)					   \
2829  ((COUNT) == 0								   \
2830   ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2831   : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2832
2833/* PC is dbx register 8; let's use that column for RA.  */
2834#define DWARF_FRAME_RETURN_COLUMN 	(TARGET_64BIT ? 16 : 8)
2835
2836/* Before the prologue, the top of the frame is at 4(%esp).  */
2837#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2838
2839/* Describe how we implement __builtin_eh_return.  */
2840#define EH_RETURN_DATA_REGNO(N)	((N) < 2 ? (N) : INVALID_REGNUM)
2841#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 2)
2842
2843
2844/* Select a format to encode pointers in exception handling data.  CODE
2845   is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
2846   true if the symbol may be affected by dynamic relocations.
2847
2848   ??? All x86 object file formats are capable of representing this.
2849   After all, the relocation needed is the same as for the call insn.
2850   Whether or not a particular assembler allows us to enter such, I
2851   guess we'll have to see.  */
2852#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)       		\
2853  (flag_pic								\
2854    ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
2855   : DW_EH_PE_absptr)
2856
2857/* This is how to output the definition of a user-level label named NAME,
2858   such as the label on a static function or variable NAME.  */
2859
2860#define ASM_OUTPUT_LABEL(FILE, NAME)	\
2861  (assemble_name ((FILE), (NAME)), fputs (":\n", (FILE)))
2862
2863/* Store in OUTPUT a string (made with alloca) containing
2864   an assembler-name for a local static variable named NAME.
2865   LABELNO is an integer which is different for each call.  */
2866
2867#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)	\
2868( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),	\
2869  sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2870
2871/* This is how to output an insn to push a register on the stack.
2872   It need not be very fast code.  */
2873
2874#define ASM_OUTPUT_REG_PUSH(FILE, REGNO)  \
2875  asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)])
2876
2877/* This is how to output an insn to pop a register from the stack.
2878   It need not be very fast code.  */
2879
2880#define ASM_OUTPUT_REG_POP(FILE, REGNO)  \
2881  asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)])
2882
2883/* This is how to output an element of a case-vector that is absolute.  */
2884
2885#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
2886  ix86_output_addr_vec_elt ((FILE), (VALUE))
2887
2888/* This is how to output an element of a case-vector that is relative.  */
2889
2890#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2891  ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2892
2893/* Under some conditions we need jump tables in the text section, because
2894   the assembler cannot handle label differences between sections.  */
2895
2896#define JUMP_TABLES_IN_TEXT_SECTION \
2897  (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
2898
2899/* A C statement that outputs an address constant appropriate to
2900   for DWARF debugging.  */
2901
2902#define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
2903  i386_dwarf_output_addr_const ((FILE), (X))
2904
2905/* Either simplify a location expression, or return the original.  */
2906
2907#define ASM_SIMPLIFY_DWARF_ADDR(X) \
2908  i386_simplify_dwarf_addr (X)
2909
2910/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2911   and switch back.  For x86 we do this only to save a few bytes that
2912   would otherwise be unused in the text section.  */
2913#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
2914   asm (SECTION_OP "\n\t"				\
2915	"call " USER_LABEL_PREFIX #FUNC "\n"		\
2916	TEXT_SECTION_ASM_OP);
2917
2918/* Print operand X (an rtx) in assembler syntax to file FILE.
2919   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2920   Effect of various CODE letters is described in i386.c near
2921   print_operand function.  */
2922
2923#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2924  ((CODE) == '*' || (CODE) == '+')
2925
2926/* Print the name of a register based on its machine mode and number.
2927   If CODE is 'w', pretend the mode is HImode.
2928   If CODE is 'b', pretend the mode is QImode.
2929   If CODE is 'k', pretend the mode is SImode.
2930   If CODE is 'q', pretend the mode is DImode.
2931   If CODE is 'h', pretend the reg is the `high' byte register.
2932   If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op.  */
2933
2934#define PRINT_REG(X, CODE, FILE)  \
2935  print_reg ((X), (CODE), (FILE))
2936
2937#define PRINT_OPERAND(FILE, X, CODE)  \
2938  print_operand ((FILE), (X), (CODE))
2939
2940#define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
2941  print_operand_address ((FILE), (ADDR))
2942
2943/* Print the name of a register for based on its machine mode and number.
2944   This macro is used to print debugging output.
2945   This macro is different from PRINT_REG in that it may be used in
2946   programs that are not linked with aux-output.o.  */
2947
2948#define DEBUG_PRINT_REG(X, CODE, FILE)			\
2949  do { static const char * const hi_name[] = HI_REGISTER_NAMES;	\
2950       static const char * const qi_name[] = QI_REGISTER_NAMES;	\
2951       fprintf ((FILE), "%d ", REGNO (X));		\
2952       if (REGNO (X) == FLAGS_REG)			\
2953	 { fputs ("flags", (FILE)); break; }		\
2954       if (REGNO (X) == DIRFLAG_REG)			\
2955	 { fputs ("dirflag", (FILE)); break; }		\
2956       if (REGNO (X) == FPSR_REG)			\
2957	 { fputs ("fpsr", (FILE)); break; }		\
2958       if (REGNO (X) == ARG_POINTER_REGNUM)		\
2959	 { fputs ("argp", (FILE)); break; }		\
2960       if (REGNO (X) == FRAME_POINTER_REGNUM)		\
2961	 { fputs ("frame", (FILE)); break; }		\
2962       if (STACK_TOP_P (X))				\
2963	 { fputs ("st(0)", (FILE)); break; }		\
2964       if (FP_REG_P (X))				\
2965	 { fputs (hi_name[REGNO(X)], (FILE)); break; }	\
2966       if (REX_INT_REG_P (X))				\
2967	 {						\
2968	   switch (GET_MODE_SIZE (GET_MODE (X)))	\
2969	     {						\
2970	     default:					\
2971	     case 8:					\
2972	       fprintf ((FILE), "r%i", REGNO (X)	\
2973			- FIRST_REX_INT_REG + 8);	\
2974	       break;					\
2975	     case 4:					\
2976	       fprintf ((FILE), "r%id", REGNO (X)	\
2977			- FIRST_REX_INT_REG + 8);	\
2978	       break;					\
2979	     case 2:					\
2980	       fprintf ((FILE), "r%iw", REGNO (X)	\
2981			- FIRST_REX_INT_REG + 8);	\
2982	       break;					\
2983	     case 1:					\
2984	       fprintf ((FILE), "r%ib", REGNO (X)	\
2985			- FIRST_REX_INT_REG + 8);	\
2986	       break;					\
2987	     }						\
2988	   break;					\
2989	 }						\
2990       switch (GET_MODE_SIZE (GET_MODE (X)))		\
2991	 {						\
2992	 case 8:					\
2993	   fputs ("r", (FILE));				\
2994	   fputs (hi_name[REGNO (X)], (FILE));		\
2995	   break;					\
2996	 default:					\
2997	   fputs ("e", (FILE));				\
2998	 case 2:					\
2999	   fputs (hi_name[REGNO (X)], (FILE));		\
3000	   break;					\
3001	 case 1:					\
3002	   fputs (qi_name[REGNO (X)], (FILE));		\
3003	   break;					\
3004	 }						\
3005     } while (0)
3006
3007/* a letter which is not needed by the normal asm syntax, which
3008   we can use for operand syntax in the extended asm */
3009
3010#define ASM_OPERAND_LETTER '#'
3011#define RET return ""
3012#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
3013
3014/* Define the codes that are matched by predicates in i386.c.  */
3015
3016#define PREDICATE_CODES							\
3017  {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG,			\
3018				SYMBOL_REF, LABEL_REF, CONST}},		\
3019  {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG,			\
3020				SYMBOL_REF, LABEL_REF, CONST}},		\
3021  {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG,			\
3022				SYMBOL_REF, LABEL_REF, CONST}},		\
3023  {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG,		\
3024				     SYMBOL_REF, LABEL_REF, CONST}},	\
3025  {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM,		\
3026			      SYMBOL_REF, LABEL_REF, CONST}},		\
3027  {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM,	\
3028				   SYMBOL_REF, LABEL_REF, CONST}},	\
3029  {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST,	\
3030				       SYMBOL_REF, LABEL_REF}},		\
3031  {"shiftdi_operand", {SUBREG, REG, MEM}},				\
3032  {"const_int_1_operand", {CONST_INT}},					\
3033  {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}},			\
3034  {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,	\
3035		       LABEL_REF, SUBREG, REG, MEM}},			\
3036  {"pic_symbolic_operand", {CONST}},					\
3037  {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}},		\
3038  {"constant_call_address_operand", {SYMBOL_REF, CONST}},		\
3039  {"const0_operand", {CONST_INT, CONST_DOUBLE}},			\
3040  {"const1_operand", {CONST_INT}},					\
3041  {"const248_operand", {CONST_INT}},					\
3042  {"incdec_operand", {CONST_INT}},					\
3043  {"mmx_reg_operand", {REG}},						\
3044  {"reg_no_sp_operand", {SUBREG, REG}},					\
3045  {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST,		\
3046			SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}},	\
3047  {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}},		\
3048  {"q_regs_operand", {SUBREG, REG}},					\
3049  {"non_q_regs_operand", {SUBREG, REG}},				\
3050  {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
3051				 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE,	\
3052				 GE, UNGE, LTGT, UNEQ}},		\
3053  {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT,	\
3054			       ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT	\
3055			       }},					\
3056  {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU,	\
3057			       GTU, UNORDERED, ORDERED, UNLE, UNLT,	\
3058			       UNGE, UNGT, LTGT, UNEQ }},		\
3059  {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}},	\
3060  {"ext_register_operand", {SUBREG, REG}},				\
3061  {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}},			\
3062  {"mult_operator", {MULT}},						\
3063  {"div_operator", {DIV}},						\
3064  {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
3065				 UMIN, UMAX, COMPARE, MINUS, DIV, MOD,	\
3066				 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT,	\
3067				 LSHIFTRT, ROTATERT}},			\
3068  {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}},	\
3069  {"memory_displacement_operand", {MEM}},				\
3070  {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,	\
3071		     LABEL_REF, SUBREG, REG, MEM, AND}},		\
3072  {"long_memory_operand", {MEM}},
3073
3074/* A list of predicates that do special things with modes, and so
3075   should not elicit warnings for VOIDmode match_operand.  */
3076
3077#define SPECIAL_MODE_PREDICATES \
3078  "ext_register_operand",
3079
3080/* CM_32 is used by 32bit ABI
3081   CM_SMALL is small model assuming that all code and data fits in the first
3082   31bits of address space.
3083   CM_KERNEL is model assuming that all code and data fits in the negative
3084   31bits of address space.
3085   CM_MEDIUM is model assuming that code fits in the first 31bits of address
3086   space.  Size of data is unlimited.
3087   CM_LARGE is model making no assumptions about size of particular sections.
3088
3089   CM_SMALL_PIC is model for PIC libraries assuming that code+data+got/plt
3090   tables first in 31bits of address space.
3091 */
3092enum cmodel {
3093  CM_32,
3094  CM_SMALL,
3095  CM_KERNEL,
3096  CM_MEDIUM,
3097  CM_LARGE,
3098  CM_SMALL_PIC
3099};
3100
3101/* Size of the RED_ZONE area.  */
3102#define RED_ZONE_SIZE 128
3103/* Reserved area of the red zone for temporaries.  */
3104#define RED_ZONE_RESERVE 8
3105extern const char *ix86_debug_arg_string, *ix86_debug_addr_string;
3106
3107enum asm_dialect {
3108  ASM_ATT,
3109  ASM_INTEL
3110};
3111extern const char *ix86_asm_string;
3112extern enum asm_dialect ix86_asm_dialect;
3113/* Value of -mcmodel specified by user.  */
3114extern const char *ix86_cmodel_string;
3115extern enum cmodel ix86_cmodel;
3116
3117/* Variables in i386.c */
3118extern const char *ix86_cpu_string;		/* for -mcpu=<xxx> */
3119extern const char *ix86_arch_string;		/* for -march=<xxx> */
3120extern const char *ix86_fpmath_string;		/* for -mfpmath=<xxx> */
3121extern const char *ix86_regparm_string;		/* # registers to use to pass args */
3122extern const char *ix86_align_loops_string;	/* power of two alignment for loops */
3123extern const char *ix86_align_jumps_string;	/* power of two alignment for non-loop jumps */
3124extern const char *ix86_align_funcs_string;	/* power of two alignment for functions */
3125extern const char *ix86_preferred_stack_boundary_string;/* power of two alignment for stack boundary */
3126extern const char *ix86_branch_cost_string;	/* values 1-5: see jump.c */
3127extern int ix86_regparm;			/* ix86_regparm_string as a number */
3128extern int ix86_preferred_stack_boundary;	/* preferred stack boundary alignment in bits */
3129extern int ix86_branch_cost;			/* values 1-5: see jump.c */
3130extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER]; /* smalled class containing REGNO */
3131extern rtx ix86_compare_op0;	/* operand 0 for comparisons */
3132extern rtx ix86_compare_op1;	/* operand 1 for comparisons */
3133
3134/* To properly truncate FP values into integers, we need to set i387 control
3135   word.  We can't emit proper mode switching code before reload, as spills
3136   generated by reload may truncate values incorrectly, but we still can avoid
3137   redundant computation of new control word by the mode switching pass.
3138   The fldcw instructions are still emitted redundantly, but this is probably
3139   not going to be noticeable problem, as most CPUs do have fast path for
3140   the sequence.
3141
3142   The machinery is to emit simple truncation instructions and split them
3143   before reload to instructions having USEs of two memory locations that
3144   are filled by this code to old and new control word.
3145
3146   Post-reload pass may be later used to eliminate the redundant fildcw if
3147   needed.  */
3148
3149enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
3150
3151/* Define this macro if the port needs extra instructions inserted
3152   for mode switching in an optimizing compilation.  */
3153
3154#define OPTIMIZE_MODE_SWITCHING(ENTITY) 1
3155
3156/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
3157   initializer for an array of integers.  Each initializer element N
3158   refers to an entity that needs mode switching, and specifies the
3159   number of different modes that might need to be set for this
3160   entity.  The position of the initializer in the initializer -
3161   starting counting at zero - determines the integer that is used to
3162   refer to the mode-switched entity in question.  */
3163
3164#define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
3165
3166/* ENTITY is an integer specifying a mode-switched entity.  If
3167   `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
3168   return an integer value not larger than the corresponding element
3169   in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
3170   must be switched into prior to the execution of INSN.  */
3171
3172#define MODE_NEEDED(ENTITY, I)						\
3173  (GET_CODE (I) == CALL_INSN						\
3174   || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 	\
3175				|| GET_CODE (PATTERN (I)) == ASM_INPUT))\
3176   ? FP_CW_UNINITIALIZED						\
3177   : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP		\
3178   ? FP_CW_ANY								\
3179   : FP_CW_STORED)
3180
3181/* This macro specifies the order in which modes for ENTITY are
3182   processed.  0 is the highest priority.  */
3183
3184#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
3185
3186/* Generate one or more insns to set ENTITY to MODE.  HARD_REG_LIVE
3187   is the set of hard registers live at the point where the insn(s)
3188   are to be inserted.  */
3189
3190#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) 			\
3191  ((MODE) == FP_CW_STORED						\
3192   ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1),	\
3193				  assign_386_stack_local (HImode, 2)), 0\
3194   : 0)
3195
3196/* Avoid renaming of stack registers, as doing so in combination with
3197   scheduling just increases amount of live registers at time and in
3198   the turn amount of fxch instructions needed.
3199
3200   ??? Maybe Pentium chips benefits from renaming, someone can try...  */
3201
3202#define HARD_REGNO_RENAME_OK(SRC, TARGET)  \
3203   ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
3204
3205
3206/*
3207Local variables:
3208version-control: t
3209End:
3210*/
3211