i386.h revision 255185
1156952Sume/* Definitions of target machine for GCC for IA-32.
2269867Sume   Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3269867Sume   2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4269867Sume
5269867SumeThis file is part of GCC.
6269867Sume
7269867SumeGCC is free software; you can redistribute it and/or modify
8269867Sumeit under the terms of the GNU General Public License as published by
9269867Sumethe Free Software Foundation; either version 2, or (at your option)
10269867Sumeany later version.
11269867Sume
12269867SumeGCC is distributed in the hope that it will be useful,
13269867Sumebut WITHOUT ANY WARRANTY; without even the implied warranty of
14269867SumeMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15269867SumeGNU General Public License for more details.
16269867Sume
17269867SumeYou should have received a copy of the GNU General Public License
18331722Seadleralong with GCC; see the file COPYING.  If not, write to
19156952Sumethe Free Software Foundation, 51 Franklin Street, Fifth Floor,
20156952SumeBoston, MA 02110-1301, USA.  */
21269867Sume
22156952Sume/* The purpose of this file is to define the characteristics of the i386,
23156952Sume   independent of assembler syntax or operating system.
24156952Sume
25156952Sume   Three other files build on this one to describe a specific assembler syntax:
26156952Sume   bsd386.h, att386.h, and sun386.h.
27156952Sume
28156952Sume   The actual tm.h file for a particular system should include
29156952Sume   this file, and then the file for the appropriate assembler syntax.
30156952Sume
31156952Sume   Many macros that specify assembler syntax are omitted entirely from
32156952Sume   this file because they really belong in the files for particular
33269867Sume   assemblers.  These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34156952Sume   ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35156952Sume   that start with ASM_ or end in ASM_OP.  */
36156952Sume
37156952Sume/* Define the specific costs for a given cpu */
38156952Sume
39156952Sumestruct processor_costs {
40156952Sume  const int add;		/* cost of an add instruction */
41156952Sume  const int lea;		/* cost of a lea instruction */
42156952Sume  const int shift_var;		/* variable shift costs */
43156952Sume  const int shift_const;	/* constant shift costs */
44156952Sume  const int mult_init[5];	/* cost of starting a multiply
45156952Sume				   in QImode, HImode, SImode, DImode, TImode*/
46156952Sume  const int mult_bit;		/* cost of multiply per each bit set */
47156952Sume  const int divide[5];		/* cost of a divide/mod
48156952Sume				   in QImode, HImode, SImode, DImode, TImode*/
49269867Sume  int movsx;			/* The cost of movsx operation.  */
50156952Sume  int movzx;			/* The cost of movzx operation.  */
51156952Sume  const int large_insn;		/* insns larger than this cost more */
52156952Sume  const int move_ratio;		/* The threshold of number of scalar
53156952Sume				   memory-to-memory move insns.  */
54156952Sume  const int movzbl_load;	/* cost of loading using movzbl */
55156952Sume  const int int_load[3];	/* cost of loading integer registers
56269867Sume				   in QImode, HImode and SImode relative
57156952Sume				   to reg-reg move (2).  */
58156952Sume  const int int_store[3];	/* cost of storing integer register
59156952Sume				   in QImode, HImode and SImode */
60156952Sume  const int fp_move;		/* cost of reg,reg fld/fst */
61156952Sume  const int fp_load[3];		/* cost of loading FP register
62156952Sume				   in SFmode, DFmode and XFmode */
63156952Sume  const int fp_store[3];	/* cost of storing FP register
64156952Sume				   in SFmode, DFmode and XFmode */
65156952Sume  const int mmx_move;		/* cost of moving MMX register.  */
66156952Sume  const int mmx_load[2];	/* cost of loading MMX register
67156952Sume				   in SImode and DImode */
68156952Sume  const int mmx_store[2];	/* cost of storing MMX register
69156952Sume				   in SImode and DImode */
70156952Sume  const int sse_move;		/* cost of moving SSE register.  */
71156952Sume  const int sse_load[3];	/* cost of loading SSE register
72156952Sume				   in SImode, DImode and TImode*/
73156952Sume  const int sse_store[3];	/* cost of storing SSE register
74156952Sume				   in SImode, DImode and TImode*/
75156952Sume  const int mmxsse_to_integer;	/* cost of moving mmxsse register to
76156952Sume				   integer and vice versa.  */
77156952Sume  const int prefetch_block;	/* bytes moved to cache for prefetch.  */
78156952Sume  const int simultaneous_prefetches; /* number of parallel prefetch
79156952Sume				   operations.  */
80156952Sume  const int branch_cost;	/* Default value for BRANCH_COST.  */
81156952Sume  const int fadd;		/* cost of FADD and FSUB instructions.  */
82156952Sume  const int fmul;		/* cost of FMUL instruction.  */
83156952Sume  const int fdiv;		/* cost of FDIV instruction.  */
84156952Sume  const int fabs;		/* cost of FABS instruction.  */
85156952Sume  const int fchs;		/* cost of FCHS instruction.  */
86156952Sume  const int fsqrt;		/* cost of FSQRT instruction.  */
87156952Sume};
88156952Sume
89156952Sumeextern const struct processor_costs *ix86_cost;
90156952Sume
91156952Sume/* Macros used in the machine description to test the flags.  */
92156952Sume
93156952Sume/* configure can arrange to make this 2, to force a 486.  */
94269867Sume
95156952Sume#ifndef TARGET_CPU_DEFAULT
96156956Sume#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
97156956Sume#endif
98156952Sume
99156952Sume#ifndef TARGET_FPMATH_DEFAULT
100156952Sume#define TARGET_FPMATH_DEFAULT \
101156952Sume  (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
102156952Sume#endif
103156952Sume
104156952Sume#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
105156952Sume
106156952Sume/* 64bit Sledgehammer mode.  For libgcc2 we make sure this is a
107156952Sume   compile-time constant.  */
108156952Sume#ifdef IN_LIBGCC2
109156952Sume#undef TARGET_64BIT
110156952Sume#ifdef __x86_64__
111156952Sume#define TARGET_64BIT 1
112156952Sume#else
113156952Sume#define TARGET_64BIT 0
114156952Sume#endif
115156952Sume#else
116156952Sume#ifndef TARGET_BI_ARCH
117156952Sume#undef TARGET_64BIT
118156952Sume#if TARGET_64BIT_DEFAULT
119156952Sume#define TARGET_64BIT 1
120156952Sume#else
121156952Sume#define TARGET_64BIT 0
122156952Sume#endif
123156952Sume#endif
124156952Sume#endif
125156952Sume
126156952Sume#define HAS_LONG_COND_BRANCH 1
127156952Sume#define HAS_LONG_UNCOND_BRANCH 1
128156952Sume
129156952Sume#define TARGET_386 (ix86_tune == PROCESSOR_I386)
130170244Sume#define TARGET_486 (ix86_tune == PROCESSOR_I486)
131156952Sume#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
132156952Sume#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
133156952Sume#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
134156952Sume#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
135156952Sume#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
136156952Sume#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
137156952Sume#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
138156952Sume#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
139156952Sume#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
140156952Sume#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
141156952Sume#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
142156952Sume#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
143156952Sume#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
144156952Sume#define TARGET_AMDFAM10 (ix86_tune == PROCESSOR_AMDFAM10)
145156952Sume
146156952Sume#define TUNEMASK (1 << ix86_tune)
147156952Sumeextern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
148156952Sumeextern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
149156952Sumeextern const int x86_branch_hints, x86_unroll_strlen;
150156952Sumeextern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
151156952Sumeextern const int x86_use_himode_fiop, x86_use_simode_fiop;
152156952Sumeextern const int x86_use_mov0, x86_use_cltd, x86_read_modify_write;
153156952Sumeextern const int x86_read_modify, x86_split_long_moves;
154156952Sumeextern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
155156952Sumeextern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
156156952Sumeextern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
157156952Sumeextern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
158156952Sumeextern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
159156952Sumeextern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
160156952Sumeextern const int x86_epilogue_using_move, x86_decompose_lea;
161156952Sumeextern const int x86_arch_always_fancy_math_387, x86_shift1;
162156952Sumeextern const int x86_sse_partial_reg_dependency, x86_sse_split_regs;
163156952Sumeextern const int x86_sse_unaligned_move_optimal;
164156952Sumeextern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
165156952Sumeextern const int x86_use_ffreep;
166156952Sumeextern const int x86_inter_unit_moves, x86_schedule;
167156952Sumeextern const int x86_use_bt;
168156952Sumeextern const int x86_cmpxchg, x86_cmpxchg8b, x86_xadd;
169156952Sumeextern const int x86_use_incdec;
170156952Sumeextern const int x86_pad_returns;
171156952Sumeextern const int x86_partial_flag_reg_stall;
172156952Sumeextern int x86_prefetch_sse, x86_cmpxchg16b;
173156952Sume
174156952Sume#define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
175156952Sume#define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
176156952Sume#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
177156952Sume#define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
178156952Sume#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
179156952Sume/* For sane SSE instruction set generation we need fcomi instruction.  It is
180156952Sume   safe to enable all CMOVE instructions.  */
181156952Sume#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
182156952Sume#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
183156952Sume#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
184156952Sume#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
185156952Sume#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
186156952Sume#define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
187156952Sume#define TARGET_MOVX (x86_movx & TUNEMASK)
188156952Sume#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
189186090Sume#define TARGET_PARTIAL_FLAG_REG_STALL (x86_partial_flag_reg_stall & TUNEMASK)
190156952Sume#define TARGET_USE_HIMODE_FIOP (x86_use_himode_fiop & TUNEMASK)
191186090Sume#define TARGET_USE_SIMODE_FIOP (x86_use_simode_fiop & TUNEMASK)
192156952Sume#define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
193156952Sume#define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
194156952Sume#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
195186090Sume#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
196186090Sume#define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
197186090Sume#define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
198186090Sume#define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
199186090Sume#define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
200186090Sume#define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
201186090Sume#define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
202186090Sume#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
203186090Sume#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
204186090Sume#define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
205186090Sume#define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
206186090Sume#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
207186090Sume#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
208186090Sume#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
209186090Sume#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
210186090Sume#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
211186090Sume				      (x86_sse_partial_reg_dependency & TUNEMASK)
212186090Sume#define TARGET_SSE_UNALIGNED_MOVE_OPTIMAL \
213186090Sume				      (x86_sse_unaligned_move_optimal & TUNEMASK)
214186090Sume#define TARGET_SSE_SPLIT_REGS (x86_sse_split_regs & TUNEMASK)
215186090Sume#define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
216186090Sume#define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
217186090Sume#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
218186090Sume#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
219186090Sume#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
220186090Sume#define TARGET_PREFETCH_SSE (x86_prefetch_sse)
221186090Sume#define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
222186090Sume#define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
223186090Sume#define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
224186090Sume#define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
225186090Sume#define TARGET_FOUR_JUMP_LIMIT (x86_four_jump_limit & TUNEMASK)
226186090Sume#define TARGET_SCHEDULE (x86_schedule & TUNEMASK)
227186090Sume#define TARGET_USE_BT (x86_use_bt & TUNEMASK)
228186090Sume#define TARGET_USE_INCDEC (x86_use_incdec & TUNEMASK)
229186090Sume#define TARGET_PAD_RETURNS (x86_pad_returns & TUNEMASK)
230186090Sume
231186090Sume#define ASSEMBLER_DIALECT (ix86_asm_dialect)
232186090Sume
233186090Sume#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
234186090Sume#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
235186090Sume			     && (ix86_fpmath & FPMATH_387))
236186090Sume
237186090Sume#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
238186090Sume#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
239156952Sume#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
240156952Sume#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
241156952Sume
242156952Sume#define TARGET_CMPXCHG (x86_cmpxchg & (1 << ix86_arch))
243156952Sume#define TARGET_CMPXCHG8B (x86_cmpxchg8b & (1 << ix86_arch))
244156952Sume#define TARGET_CMPXCHG16B (x86_cmpxchg16b)
245156952Sume#define TARGET_XADD (x86_xadd & (1 << ix86_arch))
246156952Sume
247156952Sume#ifndef TARGET_64BIT_DEFAULT
248156952Sume#define TARGET_64BIT_DEFAULT 0
249156952Sume#endif
250186090Sume#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
251156952Sume#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
252156952Sume#endif
253156952Sume
254156952Sume/* Once GDB has been enhanced to deal with functions without frame
255156952Sume   pointers, we can change this to allow for elimination of
256156952Sume   the frame pointer in leaf functions.  */
257156952Sume#define TARGET_DEFAULT 0
258156952Sume
259156952Sume/* This is not really a target flag, but is done this way so that
260156952Sume   it's analogous to similar code for Mach-O on PowerPC.  darwin.h
261156952Sume   redefines this to 1.  */
262156952Sume#define TARGET_MACHO 0
263156952Sume
264156952Sume/* Subtargets may reset this to 1 in order to enable 96-bit long double
265156952Sume   with the rounding mode forced to 53 bits.  */
266156952Sume#define TARGET_96_ROUND_53_LONG_DOUBLE 0
267156952Sume
268156952Sume/* Sometimes certain combinations of command options do not make
269170244Sume   sense on a particular target machine.  You can define a macro
270156952Sume   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
271156952Sume   defined, is executed once just after all the command options have
272156952Sume   been parsed.
273156952Sume
274156952Sume   Don't use this macro to turn on various extra optimizations for
275156952Sume   `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */
276156952Sume
277156952Sume#define OVERRIDE_OPTIONS override_options ()
278156952Sume
279156952Sume/* Define this to change the optimizations performed by default.  */
280156952Sume#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
281156952Sume  optimization_options ((LEVEL), (SIZE))
282156952Sume
283156952Sume/* -march=native handling only makes sense with compiler running on
284156952Sume   an x86 or x86_64 chip.  If changing this condition, also change
285156952Sume   the condition in driver-i386.c.  */
286156952Sume#if defined(__i386__) || defined(__x86_64__)
287156952Sume/* In driver-i386.c.  */
288156952Sumeextern const char *host_detect_local_cpu (int argc, const char **argv);
289156952Sume#define EXTRA_SPEC_FUNCTIONS \
290156952Sume  { "local_cpu_detect", host_detect_local_cpu },
291156952Sume#define HAVE_LOCAL_CPU_DETECT
292156952Sume#endif
293156952Sume
294156952Sume/* Support for configure-time defaults of some command line options.
295156952Sume   The order here is important so that -march doesn't squash the
296156952Sume   tune or cpu values.  */
297156952Sume#define OPTION_DEFAULT_SPECS \
298156952Sume  {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
299156952Sume  {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
300156952Sume  {"arch", "%{!march=*:-march=%(VALUE)}"}
301156952Sume
302156952Sume/* Specs for the compiler proper */
303156952Sume
304156952Sume#ifndef CC1_CPU_SPEC
305156952Sume#define CC1_CPU_SPEC_1 "\
306156952Sume%{!mtune*: \
307156952Sume%{m386:mtune=i386 \
308156952Sume%n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
309156952Sume%{m486:-mtune=i486 \
310156952Sume%n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
311156952Sume%{mpentium:-mtune=pentium \
312156952Sume%n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
313156952Sume%{mpentiumpro:-mtune=pentiumpro \
314156952Sume%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
315156952Sume%{mcpu=*:-mtune=%* \
316156952Sume%n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
317156952Sume%<mcpu=* \
318156952Sume%{mintel-syntax:-masm=intel \
319156952Sume%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
320156952Sume%{mno-intel-syntax:-masm=att \
321156952Sume%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
322156952Sume
323156952Sume#ifndef HAVE_LOCAL_CPU_DETECT
324156952Sume#define CC1_CPU_SPEC CC1_CPU_SPEC_1
325156952Sume#else
326156952Sume#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
327156952Sume"%{march=native:%<march=native %:local_cpu_detect(arch) \
328156952Sume  %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
329269867Sume%{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
330156952Sume#endif
331156952Sume#endif
332156952Sume
333156952Sume/* Target CPU builtins.  */
334156952Sume#define TARGET_CPU_CPP_BUILTINS()				\
335156952Sume  do								\
336156952Sume    {								\
337156952Sume      size_t arch_len = strlen (ix86_arch_string);		\
338156952Sume      size_t tune_len = strlen (ix86_tune_string);		\
339156952Sume      int last_arch_char = ix86_arch_string[arch_len - 1];	\
340156952Sume      int last_tune_char = ix86_tune_string[tune_len - 1];		\
341156952Sume								\
342156952Sume      if (TARGET_64BIT)						\
343156952Sume	{							\
344156952Sume	  builtin_assert ("cpu=x86_64");			\
345156952Sume	  builtin_assert ("machine=x86_64");			\
346156952Sume	  builtin_define ("__amd64");				\
347156952Sume	  builtin_define ("__amd64__");				\
348156952Sume	  builtin_define ("__x86_64");				\
349156952Sume	  builtin_define ("__x86_64__");			\
350156952Sume	}							\
351156952Sume      else							\
352156952Sume	{							\
353156952Sume	  builtin_assert ("cpu=i386");				\
354156952Sume	  builtin_assert ("machine=i386");			\
355156952Sume	  builtin_define_std ("i386");				\
356156952Sume	}							\
357156952Sume								\
358156952Sume      /* Built-ins based on -mtune= (or -march= if no		\
359156952Sume	 -mtune= given).  */					\
360156952Sume      if (TARGET_386)						\
361156952Sume	builtin_define ("__tune_i386__");			\
362156952Sume      else if (TARGET_486)					\
363156952Sume	builtin_define ("__tune_i486__");			\
364170244Sume      else if (TARGET_PENTIUM)					\
365170244Sume	{							\
366156952Sume	  builtin_define ("__tune_i586__");			\
367156952Sume	  builtin_define ("__tune_pentium__");			\
368156952Sume	  if (last_tune_char == 'x')				\
369288114Srodrigc	    builtin_define ("__tune_pentium_mmx__");		\
370288114Srodrigc	}							\
371156952Sume      else if (TARGET_PENTIUMPRO)				\
372156952Sume	{							\
373156952Sume	  builtin_define ("__tune_i686__");			\
374156952Sume	  builtin_define ("__tune_pentiumpro__");		\
375156952Sume	  switch (last_tune_char)				\
376156952Sume	    {							\
377156952Sume	    case '3':						\
378170244Sume	      builtin_define ("__tune_pentium3__");		\
379156952Sume	      /* FALLTHRU */					\
380156952Sume	    case '2':						\
381156952Sume	      builtin_define ("__tune_pentium2__");		\
382156952Sume	      break;						\
383156952Sume	    }							\
384156952Sume	}							\
385156952Sume      else if (TARGET_GEODE)					\
386156952Sume	{							\
387156952Sume	  builtin_define ("__tune_geode__");			\
388156952Sume	}							\
389156952Sume      else if (TARGET_K6)					\
390156952Sume	{							\
391156952Sume	  builtin_define ("__tune_k6__");			\
392156952Sume	  if (last_tune_char == '2')				\
393156952Sume	    builtin_define ("__tune_k6_2__");			\
394156952Sume	  else if (last_tune_char == '3')			\
395156952Sume	    builtin_define ("__tune_k6_3__");			\
396156952Sume	}							\
397156952Sume      else if (TARGET_ATHLON)					\
398156952Sume	{							\
399156952Sume	  builtin_define ("__tune_athlon__");			\
400170244Sume	  /* Plain "athlon" & "athlon-tbird" lacks SSE.  */	\
401156952Sume	  if (last_tune_char != 'n' && last_tune_char != 'd')	\
402156952Sume	    builtin_define ("__tune_athlon_sse__");		\
403156952Sume	}							\
404156952Sume      else if (TARGET_K8)					\
405156952Sume	builtin_define ("__tune_k8__");				\
406156952Sume      else if (TARGET_AMDFAM10)					\
407156952Sume	builtin_define ("__tune_amdfam10__");			\
408156952Sume      else if (TARGET_PENTIUM4)					\
409156952Sume	builtin_define ("__tune_pentium4__");			\
410156952Sume      else if (TARGET_NOCONA)					\
411156952Sume	builtin_define ("__tune_nocona__");			\
412156952Sume      else if (TARGET_CORE2)					\
413156952Sume	builtin_define ("__tune_core2__");			\
414156952Sume								\
415156952Sume      if (TARGET_MMX)						\
416170244Sume	builtin_define ("__MMX__");				\
417156952Sume      if (TARGET_3DNOW)						\
418156952Sume	builtin_define ("__3dNOW__");				\
419156956Sume      if (TARGET_3DNOW_A)					\
420156952Sume	builtin_define ("__3dNOW_A__");				\
421156952Sume      if (TARGET_SSE)						\
422156952Sume	builtin_define ("__SSE__");				\
423156952Sume      if (TARGET_SSE2)						\
424186090Sume	builtin_define ("__SSE2__");				\
425156952Sume      if (TARGET_SSE3)						\
426156952Sume	builtin_define ("__SSE3__");				\
427156956Sume      if (TARGET_SSSE3)						\
428156952Sume	builtin_define ("__SSSE3__");				\
429156952Sume      if (TARGET_SSE4A)					\
430156952Sume 	builtin_define ("__SSE4A__");		                \
431156952Sume      if (TARGET_AES)						\
432186090Sume	builtin_define ("__AES__");				\
433156952Sume      if (TARGET_SSE_MATH && TARGET_SSE)			\
434156952Sume	builtin_define ("__SSE_MATH__");			\
435156952Sume      if (TARGET_SSE_MATH && TARGET_SSE2)			\
436156952Sume	builtin_define ("__SSE2_MATH__");			\
437156952Sume								\
438156952Sume      /* Built-ins based on -march=.  */			\
439156952Sume      if (ix86_arch == PROCESSOR_I486)				\
440156952Sume	{							\
441156952Sume	  builtin_define ("__i486");				\
442156952Sume	  builtin_define ("__i486__");				\
443156952Sume	}							\
444156952Sume      else if (ix86_arch == PROCESSOR_PENTIUM)			\
445156952Sume	{							\
446156952Sume	  builtin_define ("__i586");				\
447156952Sume	  builtin_define ("__i586__");				\
448156952Sume	  builtin_define ("__pentium");				\
449156952Sume	  builtin_define ("__pentium__");			\
450156952Sume	  if (last_arch_char == 'x')				\
451156952Sume	    builtin_define ("__pentium_mmx__");			\
452156952Sume	}							\
453170244Sume      else if (ix86_arch == PROCESSOR_PENTIUMPRO)		\
454156952Sume	{							\
455156952Sume	  builtin_define ("__i686");				\
456156952Sume	  builtin_define ("__i686__");				\
457156952Sume	  builtin_define ("__pentiumpro");			\
458156952Sume	  builtin_define ("__pentiumpro__");			\
459156952Sume	}							\
460156952Sume      else if (ix86_arch == PROCESSOR_GEODE)			\
461156952Sume	{							\
462156952Sume	  builtin_define ("__geode");				\
463156952Sume	  builtin_define ("__geode__");				\
464156952Sume	}							\
465156952Sume      else if (ix86_arch == PROCESSOR_K6)			\
466156952Sume	{							\
467156952Sume								\
468156952Sume	  builtin_define ("__k6");				\
469156952Sume	  builtin_define ("__k6__");				\
470156952Sume	  if (last_arch_char == '2')				\
471156952Sume	    builtin_define ("__k6_2__");			\
472156952Sume	  else if (last_arch_char == '3')			\
473156952Sume	    builtin_define ("__k6_3__");			\
474156952Sume	}							\
475156952Sume      else if (ix86_arch == PROCESSOR_ATHLON)			\
476156952Sume	{							\
477156952Sume	  builtin_define ("__athlon");				\
478156952Sume	  builtin_define ("__athlon__");			\
479156952Sume	  /* Plain "athlon" & "athlon-tbird" lacks SSE.  */	\
480156952Sume	  if (last_tune_char != 'n' && last_tune_char != 'd')	\
481156952Sume	    builtin_define ("__athlon_sse__");			\
482156952Sume	}							\
483156952Sume      else if (ix86_arch == PROCESSOR_K8)			\
484156952Sume	{							\
485156952Sume	  builtin_define ("__k8");				\
486156952Sume	  builtin_define ("__k8__");				\
487156952Sume	}							\
488156952Sume      else if (ix86_arch == PROCESSOR_AMDFAM10)			\
489156952Sume	{							\
490156952Sume	  builtin_define ("__amdfam10");			\
491156952Sume	  builtin_define ("__amdfam10__");			\
492156952Sume	}							\
493269867Sume      else if (ix86_arch == PROCESSOR_PENTIUM4)			\
494269867Sume	{							\
495269867Sume	  builtin_define ("__pentium4");			\
496269867Sume	  builtin_define ("__pentium4__");			\
497269867Sume	}							\
498269867Sume      else if (ix86_arch == PROCESSOR_NOCONA)			\
499269867Sume	{							\
500269867Sume	  builtin_define ("__nocona");				\
501269867Sume	  builtin_define ("__nocona__");			\
502269867Sume	}							\
503269867Sume      else if (ix86_arch == PROCESSOR_CORE2)			\
504269867Sume	{							\
505269867Sume	  builtin_define ("__core2");				\
506269867Sume	  builtin_define ("__core2__");				\
507269867Sume	}							\
508269867Sume    }								\
509269867Sume  while (0)
510269867Sume
511156952Sume#define TARGET_CPU_DEFAULT_i386 0
512156952Sume#define TARGET_CPU_DEFAULT_i486 1
513156952Sume#define TARGET_CPU_DEFAULT_pentium 2
514156952Sume#define TARGET_CPU_DEFAULT_pentium_mmx 3
515156952Sume#define TARGET_CPU_DEFAULT_pentiumpro 4
516156952Sume#define TARGET_CPU_DEFAULT_pentium2 5
517156952Sume#define TARGET_CPU_DEFAULT_pentium3 6
518156952Sume#define TARGET_CPU_DEFAULT_pentium4 7
519156952Sume#define TARGET_CPU_DEFAULT_geode 8
520156952Sume#define TARGET_CPU_DEFAULT_k6 9
521156952Sume#define TARGET_CPU_DEFAULT_k6_2 10
522156952Sume#define TARGET_CPU_DEFAULT_k6_3 11
523156952Sume#define TARGET_CPU_DEFAULT_athlon 12
524156952Sume#define TARGET_CPU_DEFAULT_athlon_sse 13
525156952Sume#define TARGET_CPU_DEFAULT_k8 14
526269867Sume#define TARGET_CPU_DEFAULT_pentium_m 15
527156952Sume#define TARGET_CPU_DEFAULT_prescott 16
528156952Sume#define TARGET_CPU_DEFAULT_nocona 17
529156952Sume#define TARGET_CPU_DEFAULT_core2 18
530170244Sume#define TARGET_CPU_DEFAULT_generic 19
531156952Sume#define TARGET_CPU_DEFAULT_amdfam10 20
532156952Sume
533168441Skan#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
534156952Sume				  "pentiumpro", "pentium2", "pentium3", \
535156952Sume                                  "pentium4", "geode", "k6", "k6-2", "k6-3", \
536156952Sume				  "athlon", "athlon-4", "k8", \
537156952Sume				  "pentium-m", "prescott", "nocona", \
538156952Sume				  "core2", "generic", "amdfam10"}
539156952Sume
540156952Sume#ifndef CC1_SPEC
541156952Sume#define CC1_SPEC "%(cc1_cpu) "
542156952Sume#endif
543156952Sume
544156952Sume/* This macro defines names of additional specifications to put in the
545156952Sume   specs that can be used in various specifications like CC1_SPEC.  Its
546156952Sume   definition is an initializer with a subgrouping for each command option.
547156952Sume
548156952Sume   Each subgrouping contains a string constant, that defines the
549156952Sume   specification name, and a string constant that used by the GCC driver
550156952Sume   program.
551156952Sume
552156952Sume   Do not define this macro if it does not need to do anything.  */
553156952Sume
554156952Sume#ifndef SUBTARGET_EXTRA_SPECS
555156952Sume#define SUBTARGET_EXTRA_SPECS
556156952Sume#endif
557156952Sume
558156952Sume#define EXTRA_SPECS							\
559156952Sume  { "cc1_cpu",  CC1_CPU_SPEC },						\
560156952Sume  SUBTARGET_EXTRA_SPECS
561156952Sume
562156952Sume/* target machine storage layout */
563170244Sume
564156952Sume#define LONG_DOUBLE_TYPE_SIZE 80
565156952Sume
566156952Sume/* Set the value of FLT_EVAL_METHOD in float.h.  When using only the
567156952Sume   FPU, assume that the fpcw is set to extended precision; when using
568156952Sume   only SSE, rounding is correct; when using both SSE and the FPU,
569156952Sume   the rounding precision is indeterminate, since either may be chosen
570156952Sume   apparently at random.  */
571156952Sume#define TARGET_FLT_EVAL_METHOD \
572156952Sume  (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
573156952Sume
574156952Sume#define SHORT_TYPE_SIZE 16
575156952Sume#define INT_TYPE_SIZE 32
576156952Sume#define FLOAT_TYPE_SIZE 32
577156952Sume#ifndef LONG_TYPE_SIZE
578170244Sume#define LONG_TYPE_SIZE BITS_PER_WORD
579156952Sume#endif
580156952Sume#define DOUBLE_TYPE_SIZE 64
581156952Sume#define LONG_LONG_TYPE_SIZE 64
582156952Sume
583156952Sume#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
584156952Sume#define MAX_BITS_PER_WORD 64
585156952Sume#else
586156952Sume#define MAX_BITS_PER_WORD 32
587156952Sume#endif
588156952Sume
589156952Sume/* Define this if most significant byte of a word is the lowest numbered.  */
590156952Sume/* That is true on the 80386.  */
591156952Sume
592156952Sume#define BITS_BIG_ENDIAN 0
593156952Sume
594156952Sume/* Define this if most significant byte of a word is the lowest numbered.  */
595170244Sume/* That is not true on the 80386.  */
596156952Sume#define BYTES_BIG_ENDIAN 0
597156952Sume
598156952Sume/* Define this if most significant word of a multiword number is the lowest
599156952Sume   numbered.  */
600156952Sume/* Not true for 80386 */
601170244Sume#define WORDS_BIG_ENDIAN 0
602156952Sume
603156952Sume/* Width of a word, in units (bytes).  */
604156952Sume#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
605156952Sume#ifdef IN_LIBGCC2
606156952Sume#define MIN_UNITS_PER_WORD	(TARGET_64BIT ? 8 : 4)
607156952Sume#else
608156952Sume#define MIN_UNITS_PER_WORD	4
609156952Sume#endif
610156952Sume
611156952Sume/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
612156952Sume#define PARM_BOUNDARY BITS_PER_WORD
613156952Sume
614156952Sume/* Boundary (in *bits*) on which stack pointer should be aligned.  */
615156952Sume#define STACK_BOUNDARY BITS_PER_WORD
616156952Sume
617156952Sume/* Boundary (in *bits*) on which the stack pointer prefers to be
618156952Sume   aligned; the compiler cannot rely on having this alignment.  */
619170244Sume#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
620156952Sume
621156952Sume/* As of July 2001, many runtimes do not align the stack properly when
622156952Sume   entering main.  This causes expand_main_function to forcibly align
623156952Sume   the stack, which results in aligned frames for functions called from
624156952Sume   main, though it does nothing for the alignment of main itself.  */
625156952Sume#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
626156952Sume  (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
627156952Sume
628156952Sume/* Minimum allocation boundary for the code of a function.  */
629156952Sume#define FUNCTION_BOUNDARY 8
630156952Sume
631156952Sume/* C++ stores the virtual bit in the lowest bit of function pointers.  */
632156952Sume#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
633156952Sume
634156952Sume/* Alignment of field after `int : 0' in a structure.  */
635156952Sume
636156952Sume#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
637170244Sume
638156952Sume/* Minimum size in bits of the largest boundary to which any
639156952Sume   and all fundamental data types supported by the hardware
640156952Sume   might need to be aligned. No data type wants to be aligned
641156952Sume   rounder than this.
642156952Sume
643156952Sume   Pentium+ prefers DFmode values to be aligned to 64 bit boundary
644156952Sume   and Pentium Pro XFmode values at 128 bit boundaries.  */
645156952Sume
646156952Sume#define BIGGEST_ALIGNMENT 128
647156952Sume
648156952Sume/* Decide whether a variable of mode MODE should be 128 bit aligned.  */
649156952Sume#define ALIGN_MODE_128(MODE) \
650156952Sume ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
651156952Sume
652156952Sume/* The published ABIs say that doubles should be aligned on word
653156952Sume   boundaries, so lower the alignment for structure fields unless
654156952Sume   -malign-double is set.  */
655170244Sume
656156952Sume/* ??? Blah -- this macro is used directly by libobjc.  Since it
657156952Sume   supports no vector modes, cut out the complexity and fall back
658156952Sume   on BIGGEST_FIELD_ALIGNMENT.  */
659156952Sume#ifdef IN_TARGET_LIBS
660156952Sume#ifdef __x86_64__
661156952Sume#define BIGGEST_FIELD_ALIGNMENT 128
662156952Sume#else
663156952Sume#define BIGGEST_FIELD_ALIGNMENT 32
664156952Sume#endif
665156952Sume#else
666156952Sume#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
667156952Sume   x86_field_alignment (FIELD, COMPUTED)
668156952Sume#endif
669156952Sume
670156952Sume/* If defined, a C expression to compute the alignment given to a
671156952Sume   constant that is being placed in memory.  EXP is the constant
672156952Sume   and ALIGN is the alignment that the object would ordinarily have.
673156952Sume   The value of this macro is used instead of that alignment to align
674156952Sume   the object.
675156952Sume
676156952Sume   If this macro is not defined, then ALIGN is used.
677170244Sume
678156952Sume   The typical use of this macro is to increase alignment for string
679186090Sume   constants to be word aligned so that `strcpy' calls that copy
680156952Sume   constants can be done inline.  */
681156952Sume
682156952Sume#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
683156952Sume
684156952Sume/* If defined, a C expression to compute the alignment for a static
685156952Sume   variable.  TYPE is the data type, and ALIGN is the alignment that
686156952Sume   the object would ordinarily have.  The value of this macro is used
687156952Sume   instead of that alignment to align the object.
688156952Sume
689156952Sume   If this macro is not defined, then ALIGN is used.
690156952Sume
691156952Sume   One use of this macro is to increase alignment of medium-size
692156952Sume   data to make it all fit in fewer cache lines.  Another is to
693156952Sume   cause character arrays to be word-aligned so that `strcpy' calls
694156952Sume   that copy constants to character arrays can be done inline.  */
695156952Sume
696156952Sume#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
697156952Sume
698156952Sume/* If defined, a C expression to compute the alignment for a local
699170244Sume   variable.  TYPE is the data type, and ALIGN is the alignment that
700156952Sume   the object would ordinarily have.  The value of this macro is used
701156952Sume   instead of that alignment to align the object.
702156952Sume
703156952Sume   If this macro is not defined, then ALIGN is used.
704156952Sume
705156952Sume   One use of this macro is to increase alignment of medium-size
706156952Sume   data to make it all fit in fewer cache lines.  */
707156952Sume
708156952Sume#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
709156952Sume
710156952Sume/* If defined, a C expression that gives the alignment boundary, in
711170244Sume   bits, of an argument with the specified mode and type.  If it is
712156952Sume   not defined, `PARM_BOUNDARY' is used for all arguments.  */
713156952Sume
714156952Sume#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
715156952Sume  ix86_function_arg_boundary ((MODE), (TYPE))
716156952Sume
717156952Sume/* Set this nonzero if move instructions will actually fail to work
718156952Sume   when given unaligned data.  */
719170244Sume#define STRICT_ALIGNMENT 0
720156952Sume
721156952Sume/* If bit field type is int, don't let it cross an int,
722156952Sume   and give entire struct the alignment of an int.  */
723156952Sume/* Required on the 386 since it doesn't have bit-field insns.  */
724156952Sume#define PCC_BITFIELD_TYPE_MATTERS 1
725156952Sume
726156952Sume/* Standard register usage.  */
727156952Sume
728156952Sume/* This processor has special stack-like registers.  See reg-stack.c
729156952Sume   for details.  */
730156952Sume
731156952Sume#define STACK_REGS
732156952Sume#define IS_STACK_MODE(MODE)					\
733156952Sume  (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH))	\
734156952Sume   || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH))  \
735156952Sume   || (MODE) == XFmode)
736156952Sume
737156952Sume/* Number of actual hardware registers.
738156952Sume   The hardware registers are assigned numbers for the compiler
739156952Sume   from 0 to just below FIRST_PSEUDO_REGISTER.
740156952Sume   All registers that the compiler knows about must be given numbers,
741156952Sume   even those that are not normally considered general registers.
742156952Sume
743156952Sume   In the 80386 we give the 8 general purpose registers the numbers 0-7.
744156952Sume   We number the floating point registers 8-15.
745156952Sume   Note that registers 0-7 can be accessed as a  short or int,
746170244Sume   while only 0-3 may be used with byte `mov' instructions.
747156952Sume
748156952Sume   Reg 16 does not correspond to any hardware register, but instead
749156952Sume   appears in the RTL as an argument pointer prior to reload, and is
750156952Sume   eliminated during reloading in favor of either the stack or frame
751156952Sume   pointer.  */
752156952Sume
753156952Sume#define FIRST_PSEUDO_REGISTER 53
754156952Sume
755170244Sume/* Number of hardware registers that go into the DWARF-2 unwind info.
756156952Sume   If not defined, equals FIRST_PSEUDO_REGISTER.  */
757288114Srodrigc
758156952Sume#define DWARF_FRAME_REGISTERS 17
759156952Sume
760156952Sume/* 1 for registers that have pervasive standard uses
761156952Sume   and are not available for the register allocator.
762156952Sume   On the 80386, the stack pointer is such, as is the arg pointer.
763156952Sume
764156952Sume   The value is zero if the register is not fixed on either 32 or
765156952Sume   64 bit targets, one if the register if fixed on both 32 and 64
766156952Sume   bit targets, two if it is only fixed on 32bit targets and three
767156952Sume   if its only fixed on 64bit targets.
768156952Sume   Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
769156952Sume */
770156952Sume#define FIXED_REGISTERS						\
771156952Sume/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
772170244Sume{  0, 0, 0, 0, 0, 0, 0, 1, 0,  0,  0,  0,  0,  0,  0,  0,	\
773156952Sume/*arg,flags,fpsr,dir,frame*/					\
774156952Sume    1,    1,   1,  1,    1,					\
775156952Sume/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
776156952Sume     0,   0,   0,   0,   0,   0,   0,   0,			\
777156952Sume/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
778156952Sume     0,   0,   0,   0,   0,   0,   0,   0,			\
779156952Sume/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
780156952Sume     2,   2,   2,   2,   2,   2,   2,   2,			\
781156952Sume/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
782156952Sume     2,   2,    2,    2,    2,    2,    2,    2}
783156952Sume
784156952Sume
785156952Sume/* 1 for registers not available across function calls.
786170244Sume   These must include the FIXED_REGISTERS and also any
787156952Sume   registers that can be used without being saved.
788156952Sume   The latter must include the registers where values are returned
789156952Sume   and the register where structure-value addresses are passed.
790156952Sume   Aside from that, you can include as many other registers as you like.
791156952Sume
792156952Sume   The value is zero if the register is not call used on either 32 or
793156952Sume   64 bit targets, one if the register if call used on both 32 and 64
794156952Sume   bit targets, two if it is only call used on 32bit targets and three
795156952Sume   if its only call used on 64bit targets.
796156952Sume   Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
797156952Sume*/
798156952Sume#define CALL_USED_REGISTERS					\
799156952Sume/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
800156952Sume{  1, 1, 1, 0, 3, 3, 0, 1, 1,  1,  1,  1,  1,  1,  1,  1,	\
801156952Sume/*arg,flags,fpsr,dir,frame*/					\
802156952Sume     1,   1,   1,  1,    1,					\
803156952Sume/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
804156952Sume     1,   1,   1,   1,   1,  1,    1,   1,			\
805156952Sume/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
806156952Sume     1,   1,   1,   1,   1,   1,   1,   1,			\
807156952Sume/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
808156952Sume     1,   1,   1,   1,   2,   2,   2,   2,			\
809156952Sume/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
810156952Sume     1,   1,    1,    1,    1,    1,    1,    1}		\
811156952Sume
812170244Sume/* Order in which to allocate registers.  Each register must be
813156952Sume   listed once, even those in FIXED_REGISTERS.  List frame pointer
814156952Sume   late and fixed registers last.  Note that, in general, we prefer
815156952Sume   registers listed in CALL_USED_REGISTERS, keeping the others
816156952Sume   available for storage of persistent values.
817156952Sume
818156952Sume   The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
819156952Sume   so this is just empty initializer for array.  */
820156952Sume
821156952Sume#define REG_ALLOC_ORDER 					\
822156952Sume{  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
823156952Sume   18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,	\
824156952Sume   33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,  \
825156952Sume   48, 49, 50, 51, 52 }
826156952Sume
827156952Sume/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
828156952Sume   to be rearranged based on a particular function.  When using sse math,
829156952Sume   we want to allocate SSE before x87 registers and vice vera.  */
830156952Sume
831156952Sume#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
832156952Sume
833156952Sume
834156952Sume/* Macro to conditionally modify fixed_regs/call_used_regs.  */
835156952Sume#define CONDITIONAL_REGISTER_USAGE					\
836156952Sumedo {									\
837156952Sume    int i;								\
838156952Sume    for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)				\
839156952Sume      {									\
840156952Sume	if (fixed_regs[i] > 1)						\
841156952Sume	  fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2));	\
842170244Sume	if (call_used_regs[i] > 1)					\
843156952Sume	  call_used_regs[i] = (call_used_regs[i]			\
844156952Sume			       == (TARGET_64BIT ? 3 : 2));		\
845156952Sume      }									\
846156952Sume    if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)			\
847156952Sume      {									\
848156952Sume	fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
849156952Sume	call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
850156952Sume      }									\
851156952Sume    if (! TARGET_MMX)							\
852156952Sume      {									\
853156952Sume	int i;								\
854156952Sume        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
855170244Sume          if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i))	\
856156952Sume	    fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";	\
857156952Sume      }									\
858156952Sume    if (! TARGET_SSE)							\
859156952Sume      {									\
860156952Sume	int i;								\
861156952Sume        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
862156952Sume          if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i))	\
863156952Sume	    fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";	\
864156952Sume      }									\
865156952Sume    if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387)		\
866156952Sume      {									\
867156952Sume	int i;								\
868156952Sume	HARD_REG_SET x;							\
869156952Sume        COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]);	\
870156952Sume        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
871156952Sume          if (TEST_HARD_REG_BIT (x, i)) 				\
872156952Sume	    fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";	\
873156952Sume      }									\
874156952Sume    if (! TARGET_64BIT)							\
875156952Sume      {									\
876170244Sume	int i;								\
877156952Sume	for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++)		\
878156952Sume	  reg_names[i] = "";						\
879156952Sume	for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++)		\
880156952Sume	  reg_names[i] = "";						\
881156952Sume      }									\
882156952Sume  } while (0)
883170244Sume
884156952Sume/* Return number of consecutive hard regs needed starting at reg REGNO
885156952Sume   to hold something of mode MODE.
886156952Sume   This is ordinarily the length in words of a value of mode MODE
887170244Sume   but can be less for certain modes in special long registers.
888156952Sume
889156952Sume   Actually there are no two word move instructions for consecutive
890170244Sume   registers.  And only registers 0-3 may have mov byte instructions
891156952Sume   applied to them.
892156952Sume   */
893156952Sume
894170244Sume#define HARD_REGNO_NREGS(REGNO, MODE)   \
895170244Sume  (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)	\
896156952Sume   ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
897156952Sume   : ((MODE) == XFmode							\
898170244Sume      ? (TARGET_64BIT ? 2 : 3)						\
899156952Sume      : (MODE) == XCmode						\
900156952Sume      ? (TARGET_64BIT ? 4 : 6)						\
901156952Sume      : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
902156952Sume
903156952Sume#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE)			\
904156952Sume  ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT)				\
905156952Sume   ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)	\
906170244Sume      ? 0								\
907170244Sume      : ((MODE) == XFmode || (MODE) == XCmode))				\
908156952Sume   : 0)
909156952Sume
910288114Srodrigc#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
911156952Sume
912156952Sume#define VALID_SSE2_REG_MODE(MODE) \
913156952Sume    ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode    \
914156952Sume     || (MODE) == V2DImode || (MODE) == DFmode)
915156952Sume
916156952Sume#define VALID_SSE_REG_MODE(MODE)					\
917156952Sume    ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode	\
918170244Sume     || (MODE) == SFmode || (MODE) == TFmode)
919170244Sume
920170244Sume#define VALID_MMX_REG_MODE_3DNOW(MODE) \
921156952Sume    ((MODE) == V2SFmode || (MODE) == SFmode)
922156952Sume
923156952Sume#define VALID_MMX_REG_MODE(MODE)					\
924156952Sume    ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode	\
925156952Sume     || (MODE) == V2SImode || (MODE) == SImode)
926156952Sume
927156952Sume/* ??? No autovectorization into MMX or 3DNOW until we can reliably
928156952Sume   place emms and femms instructions.  */
929156952Sume#define UNITS_PER_SIMD_WORD (TARGET_SSE ? 16 : UNITS_PER_WORD)
930156952Sume
931170244Sume#define VALID_FP_MODE_P(MODE)						\
932170244Sume    ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode		\
933156952Sume     || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode)	\
934156952Sume
935170244Sume#define VALID_INT_MODE_P(MODE)						\
936156952Sume    ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode		\
937156952Sume     || (MODE) == DImode						\
938170244Sume     || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode	\
939156952Sume     || (MODE) == CDImode						\
940156952Sume     || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode		\
941156952Sume         || (MODE) == TFmode || (MODE) == TCmode)))
942170244Sume
943156952Sume/* Return true for modes passed in SSE registers.  */
944156952Sume#define SSE_REG_MODE_P(MODE) \
945156952Sume ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode		\
946156952Sume   || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode	\
947156952Sume   || (MODE) == V4SFmode || (MODE) == V4SImode)
948156952Sume
949156952Sume/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.  */
950156952Sume
951269867Sume#define HARD_REGNO_MODE_OK(REGNO, MODE)	\
952156952Sume   ix86_hard_regno_mode_ok ((REGNO), (MODE))
953156952Sume
954156952Sume/* Value is 1 if it is a good idea to tie two pseudo registers
955156952Sume   when one has mode MODE1 and one has mode MODE2.
956156952Sume   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
957156952Sume   for any hard reg, then this must be 0 for correct output.  */
958170244Sume
959156952Sume#define MODES_TIEABLE_P(MODE1, MODE2)  ix86_modes_tieable_p (MODE1, MODE2)
960156952Sume
961156952Sume/* It is possible to write patterns to move flags; but until someone
962156952Sume   does it,  */
963156952Sume#define AVOID_CCMODE_COPIES
964156952Sume
965156952Sume/* Specify the modes required to caller save a given hard regno.
966156952Sume   We do this on i386 to prevent flags from being saved at all.
967156952Sume
968156952Sume   Kill any attempts to combine saving of modes.  */
969156952Sume
970170244Sume#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)			\
971156952Sume  (CC_REGNO_P (REGNO) ? VOIDmode					\
972156952Sume   : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode			\
973156952Sume   : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
974156952Sume   : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode		\
975156952Sume   : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode 	\
976156952Sume   : (MODE))
977156952Sume/* Specify the registers used for certain standard purposes.
978156952Sume   The values of these macros are register numbers.  */
979156952Sume
980269867Sume/* on the 386 the pc register is %eip, and is not usable as a general
981170244Sume   register.  The ordinary mov instructions won't work */
982156952Sume/* #define PC_REGNUM  */
983156952Sume
984156952Sume/* Register to use for pushing function arguments.  */
985156952Sume#define STACK_POINTER_REGNUM 7
986156952Sume
987156952Sume/* Base register for access to local variables of the function.  */
988156952Sume#define HARD_FRAME_POINTER_REGNUM 6
989156952Sume
990156952Sume/* Base register for access to local variables of the function.  */
991156952Sume#define FRAME_POINTER_REGNUM 20
992170244Sume
993156952Sume/* First floating point reg */
994156952Sume#define FIRST_FLOAT_REG 8
995156952Sume
996156952Sume/* First & last stack-like regs */
997156952Sume#define FIRST_STACK_REG FIRST_FLOAT_REG
998156952Sume#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
999156952Sume
1000156952Sume#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1001156952Sume#define LAST_SSE_REG  (FIRST_SSE_REG + 7)
1002156952Sume
1003156952Sume#define FIRST_MMX_REG  (LAST_SSE_REG + 1)
1004156952Sume#define LAST_MMX_REG   (FIRST_MMX_REG + 7)
1005156952Sume
1006170244Sume#define FIRST_REX_INT_REG  (LAST_MMX_REG + 1)
1007156952Sume#define LAST_REX_INT_REG   (FIRST_REX_INT_REG + 7)
1008156952Sume
1009156952Sume#define FIRST_REX_SSE_REG  (LAST_REX_INT_REG + 1)
1010156952Sume#define LAST_REX_SSE_REG   (FIRST_REX_SSE_REG + 7)
1011156952Sume
1012156952Sume/* Value should be nonzero if functions must have frame pointers.
1013269867Sume   Zero means the frame pointer need not be set up (and parms
1014170244Sume   may be accessed via the stack pointer) in functions that seem suitable.
1015156952Sume   This is computed in `reload', in reload1.c.  */
1016156952Sume#define FRAME_POINTER_REQUIRED  ix86_frame_pointer_required ()
1017170244Sume
1018156952Sume/* Override this in other tm.h files to cope with various OS lossage
1019288114Srodrigc   requiring a frame pointer.  */
1020156952Sume#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1021156952Sume#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1022156952Sume#endif
1023156952Sume
1024156952Sume/* Make sure we can access arbitrary call frames.  */
1025156952Sume#define SETUP_FRAME_ADDRESSES()  ix86_setup_frame_addresses ()
1026156952Sume
1027156952Sume/* Base register for access to arguments of the function.  */
1028156952Sume#define ARG_POINTER_REGNUM 16
1029156952Sume
1030156952Sume/* Register in which static-chain is passed to a function.
1031156952Sume   We do use ECX as static chain register for 32 bit ABI.  On the
1032156952Sume   64bit ABI, ECX is an argument register, so we use R10 instead.  */
1033156952Sume#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1034156952Sume
1035156952Sume/* Register to hold the addressing base for position independent
1036156952Sume   code access to data items.  We don't use PIC pointer for 64bit
1037269867Sume   mode.  Define the regnum to dummy value to prevent gcc from
1038156952Sume   pessimizing code dealing with EBX.
1039156952Sume
1040156952Sume   To avoid clobbering a call-saved register unnecessarily, we renumber
1041156952Sume   the pic register when possible.  The change is visible after the
1042156952Sume   prologue has been emitted.  */
1043156952Sume
1044156952Sume#define REAL_PIC_OFFSET_TABLE_REGNUM  3
1045156952Sume
1046156952Sume#define PIC_OFFSET_TABLE_REGNUM				\
1047156952Sume  ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC)	\
1048156952Sume   || !flag_pic ? INVALID_REGNUM			\
1049156952Sume   : reload_completed ? REGNO (pic_offset_table_rtx)	\
1050156952Sume   : REAL_PIC_OFFSET_TABLE_REGNUM)
1051156952Sume
1052156952Sume#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1053156952Sume
1054156952Sume/* A C expression which can inhibit the returning of certain function
1055156952Sume   values in registers, based on the type of value.  A nonzero value
1056156952Sume   says to return the function value in memory, just as large
1057156952Sume   structures are always returned.  Here TYPE will be a C expression
1058156952Sume   of type `tree', representing the data type of the value.
1059156952Sume
1060156952Sume   Note that values of mode `BLKmode' must be explicitly handled by
1061156952Sume   this macro.  Also, the option `-fpcc-struct-return' takes effect
1062170244Sume   regardless of this macro.  On most systems, it is possible to
1063156952Sume   leave the macro undefined; this causes a default definition to be
1064156952Sume   used, whose value is the constant 1 for `BLKmode' values, and 0
1065156952Sume   otherwise.
1066156952Sume
1067156952Sume   Do not use this macro to indicate that structures and unions
1068156952Sume   should always be returned in memory.  You should instead use
1069156952Sume   `DEFAULT_PCC_STRUCT_RETURN' to indicate this.  */
1070156952Sume
1071156952Sume#define RETURN_IN_MEMORY(TYPE) \
1072156952Sume  ix86_return_in_memory (TYPE)
1073156952Sume
1074156952Sume/* This is overridden by <cygwin.h>.  */
1075156952Sume#define MS_AGGREGATE_RETURN 0
1076156952Sume
1077156952Sume/* This is overridden by <netware.h>.  */
1078156952Sume#define KEEP_AGGREGATE_RETURN_POINTER 0
1079156952Sume
1080156952Sume/* Define the classes of registers for register constraints in the
1081156952Sume   machine description.  Also define ranges of constants.
1082156952Sume
1083156952Sume   One of the classes must always be named ALL_REGS and include all hard regs.
1084156952Sume   If there is more than one class, another class must be named NO_REGS
1085156952Sume   and contain no registers.
1086156952Sume
1087156952Sume   The name GENERAL_REGS must be the name of a class (or an alias for
1088156952Sume   another name such as ALL_REGS).  This is the class of registers
1089156952Sume   that is allowed by "g" or "r" in a register constraint.
1090156952Sume   Also, registers outside this class are allocated only when
1091156952Sume   instructions express preferences for them.
1092156952Sume
1093156952Sume   The classes must be numbered in nondecreasing order; that is,
1094156952Sume   a larger-numbered class must never be contained completely
1095156952Sume   in a smaller-numbered class.
1096156952Sume
1097156952Sume   For any two classes, it is very desirable that there be another
1098156952Sume   class that represents their union.
1099156952Sume
1100156952Sume   It might seem that class BREG is unnecessary, since no useful 386
1101156952Sume   opcode needs reg %ebx.  But some systems pass args to the OS in ebx,
1102156952Sume   and the "b" register constraint is useful in asms for syscalls.
1103156952Sume
1104156952Sume   The flags and fpsr registers are in no class.  */
1105156952Sume
1106156952Sumeenum reg_class
1107156952Sume{
1108156952Sume  NO_REGS,
1109156952Sume  AREG, DREG, CREG, BREG, SIREG, DIREG,
1110156952Sume  AD_REGS,			/* %eax/%edx for DImode */
1111156952Sume  Q_REGS,			/* %eax %ebx %ecx %edx */
1112156952Sume  NON_Q_REGS,			/* %esi %edi %ebp %esp */
1113156952Sume  INDEX_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp */
1114156952Sume  LEGACY_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1115156952Sume  GENERAL_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1116156952Sume  FP_TOP_REG, FP_SECOND_REG,	/* %st(0) %st(1) */
1117156952Sume  FLOAT_REGS,
1118156952Sume  SSE_REGS,
1119156952Sume  MMX_REGS,
1120156952Sume  FP_TOP_SSE_REGS,
1121156952Sume  FP_SECOND_SSE_REGS,
1122156952Sume  FLOAT_SSE_REGS,
1123156952Sume  FLOAT_INT_REGS,
1124156952Sume  INT_SSE_REGS,
1125170244Sume  FLOAT_INT_SSE_REGS,
1126156952Sume  ALL_REGS, LIM_REG_CLASSES
1127156952Sume};
1128156952Sume
1129156952Sume#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1130156952Sume
1131156952Sume#define INTEGER_CLASS_P(CLASS) \
1132156952Sume  reg_class_subset_p ((CLASS), GENERAL_REGS)
1133156952Sume#define FLOAT_CLASS_P(CLASS) \
1134156952Sume  reg_class_subset_p ((CLASS), FLOAT_REGS)
1135156952Sume#define SSE_CLASS_P(CLASS) \
1136156952Sume  ((CLASS) == SSE_REGS)
1137156952Sume#define MMX_CLASS_P(CLASS) \
1138156952Sume  ((CLASS) == MMX_REGS)
1139156952Sume#define MAYBE_INTEGER_CLASS_P(CLASS) \
1140156952Sume  reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1141156952Sume#define MAYBE_FLOAT_CLASS_P(CLASS) \
1142156952Sume  reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1143156952Sume#define MAYBE_SSE_CLASS_P(CLASS) \
1144156952Sume  reg_classes_intersect_p (SSE_REGS, (CLASS))
1145156952Sume#define MAYBE_MMX_CLASS_P(CLASS) \
1146156952Sume  reg_classes_intersect_p (MMX_REGS, (CLASS))
1147156952Sume
1148156952Sume#define Q_CLASS_P(CLASS) \
1149156952Sume  reg_class_subset_p ((CLASS), Q_REGS)
1150170244Sume
1151269867Sume/* Give names of register classes as strings for dump file.  */
1152156952Sume
1153156952Sume#define REG_CLASS_NAMES \
1154156952Sume{  "NO_REGS",				\
1155156952Sume   "AREG", "DREG", "CREG", "BREG",	\
1156156952Sume   "SIREG", "DIREG",			\
1157156952Sume   "AD_REGS",				\
1158156952Sume   "Q_REGS", "NON_Q_REGS",		\
1159156952Sume   "INDEX_REGS",			\
1160156952Sume   "LEGACY_REGS",			\
1161269867Sume   "GENERAL_REGS",			\
1162156952Sume   "FP_TOP_REG", "FP_SECOND_REG",	\
1163156952Sume   "FLOAT_REGS",			\
1164156952Sume   "SSE_REGS",				\
1165156952Sume   "MMX_REGS",				\
1166156952Sume   "FP_TOP_SSE_REGS",			\
1167156952Sume   "FP_SECOND_SSE_REGS",		\
1168156952Sume   "FLOAT_SSE_REGS",			\
1169156952Sume   "FLOAT_INT_REGS",			\
1170156952Sume   "INT_SSE_REGS",			\
1171156952Sume   "FLOAT_INT_SSE_REGS",		\
1172156952Sume   "ALL_REGS" }
1173156952Sume
1174156952Sume/* Define which registers fit in which classes.
1175156952Sume   This is an initializer for a vector of HARD_REG_SET
1176156952Sume   of length N_REG_CLASSES.  */
1177156952Sume
1178156952Sume#define REG_CLASS_CONTENTS						\
1179156952Sume{     { 0x00,     0x0 },						\
1180156952Sume      { 0x01,     0x0 }, { 0x02, 0x0 },	/* AREG, DREG */		\
1181156952Sume      { 0x04,     0x0 }, { 0x08, 0x0 },	/* CREG, BREG */		\
1182156952Sume      { 0x10,     0x0 }, { 0x20, 0x0 },	/* SIREG, DIREG */		\
1183156952Sume      { 0x03,     0x0 },		/* AD_REGS */			\
1184156952Sume      { 0x0f,     0x0 },		/* Q_REGS */			\
1185156952Sume  { 0x1100f0,  0x1fe0 },		/* NON_Q_REGS */		\
1186156952Sume      { 0x7f,  0x1fe0 },		/* INDEX_REGS */		\
1187156952Sume  { 0x1100ff,  0x0 },			/* LEGACY_REGS */		\
1188156952Sume  { 0x1100ff,  0x1fe0 },		/* GENERAL_REGS */		\
1189156952Sume     { 0x100,     0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1190156952Sume    { 0xff00,     0x0 },		/* FLOAT_REGS */		\
1191156952Sume{ 0x1fe00000,0x1fe000 },		/* SSE_REGS */			\
1192156952Sume{ 0xe0000000,    0x1f },		/* MMX_REGS */			\
1193156952Sume{ 0x1fe00100,0x1fe000 },		/* FP_TOP_SSE_REG */		\
1194156952Sume{ 0x1fe00200,0x1fe000 },		/* FP_SECOND_SSE_REG */		\
1195156952Sume{ 0x1fe0ff00,0x1fe000 },		/* FLOAT_SSE_REGS */		\
1196156952Sume   { 0x1ffff,  0x1fe0 },		/* FLOAT_INT_REGS */		\
1197156952Sume{ 0x1fe100ff,0x1fffe0 },		/* INT_SSE_REGS */		\
1198156952Sume{ 0x1fe1ffff,0x1fffe0 },		/* FLOAT_INT_SSE_REGS */	\
1199156952Sume{ 0xffffffff,0x1fffff }							\
1200156952Sume}
1201156952Sume
1202156952Sume/* The same information, inverted:
1203156952Sume   Return the class number of the smallest class containing
1204156952Sume   reg number REGNO.  This could be a conditional expression
1205156952Sume   or could index an array.  */
1206156952Sume
1207156952Sume#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1208156952Sume
1209156952Sume/* When defined, the compiler allows registers explicitly used in the
1210156952Sume   rtl to be used as spill registers but prevents the compiler from
1211156952Sume   extending the lifetime of these registers.  */
1212156952Sume
1213156952Sume#define SMALL_REGISTER_CLASSES 1
1214156952Sume
1215156952Sume#define QI_REG_P(X) \
1216156952Sume  (REG_P (X) && REGNO (X) < 4)
1217156952Sume
1218156952Sume#define GENERAL_REGNO_P(N) \
1219156956Sume  ((N) < 8 || REX_INT_REGNO_P (N))
1220156956Sume
1221156956Sume#define GENERAL_REG_P(X) \
1222156956Sume  (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1223156956Sume
1224156956Sume#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1225156956Sume
1226156956Sume#define NON_QI_REG_P(X) \
1227156956Sume  (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1228156956Sume
1229156956Sume#define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1230156956Sume#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1231156956Sume
1232156956Sume#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1233156956Sume#define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1234156956Sume#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1235156956Sume#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1236156956Sume
1237156956Sume#define SSE_REGNO_P(N) \
1238170244Sume  (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1239170244Sume   || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1240
1241#define REX_SSE_REGNO_P(N) \
1242   ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1243
1244#define SSE_REGNO(N) \
1245  ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1246#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1247
1248#define SSE_FLOAT_MODE_P(MODE) \
1249  ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1250
1251#define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1252#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1253
1254#define STACK_REG_P(XOP)		\
1255  (REG_P (XOP) &&		       	\
1256   REGNO (XOP) >= FIRST_STACK_REG &&	\
1257   REGNO (XOP) <= LAST_STACK_REG)
1258
1259#define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1260
1261#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1262
1263#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1264#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1265
1266/* The class value for index registers, and the one for base regs.  */
1267
1268#define INDEX_REG_CLASS INDEX_REGS
1269#define BASE_REG_CLASS GENERAL_REGS
1270
1271/* Place additional restrictions on the register class to use when it
1272   is necessary to be able to hold a value of mode MODE in a reload
1273   register for which class CLASS would ordinarily be used.  */
1274
1275#define LIMIT_RELOAD_CLASS(MODE, CLASS) 			\
1276  ((MODE) == QImode && !TARGET_64BIT				\
1277   && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS		\
1278       || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS)	\
1279   ? Q_REGS : (CLASS))
1280
1281/* Given an rtx X being reloaded into a reg required to be
1282   in class CLASS, return the class of reg to actually use.
1283   In general this is just CLASS; but on some machines
1284   in some cases it is preferable to use a more restrictive class.
1285   On the 80386 series, we prevent floating constants from being
1286   reloaded into floating registers (since no move-insn can do that)
1287   and we ensure that QImodes aren't reloaded into the esi or edi reg.  */
1288
1289/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1290   QImode must go into class Q_REGS.
1291   Narrow ALL_REGS to GENERAL_REGS.  This supports allowing movsf and
1292   movdf to do mem-to-mem moves through integer regs.  */
1293
1294#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1295   ix86_preferred_reload_class ((X), (CLASS))
1296
1297/* Discourage putting floating-point values in SSE registers unless
1298   SSE math is being used, and likewise for the 387 registers.  */
1299
1300#define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1301   ix86_preferred_output_reload_class ((X), (CLASS))
1302
1303/* If we are copying between general and FP registers, we need a memory
1304   location. The same is true for SSE and MMX registers.  */
1305#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1306  ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1307
1308/* QImode spills from non-QI registers need a scratch.  This does not
1309   happen often -- the only example so far requires an uninitialized
1310   pseudo.  */
1311
1312#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT)			\
1313  (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS			\
1314    || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode	\
1315   ? Q_REGS : NO_REGS)
1316
1317/* Return the maximum number of consecutive registers
1318   needed to represent mode MODE in a register of class CLASS.  */
1319/* On the 80386, this is the size of MODE in words,
1320   except in the FP regs, where a single reg is always enough.  */
1321#define CLASS_MAX_NREGS(CLASS, MODE)					\
1322 (!MAYBE_INTEGER_CLASS_P (CLASS)					\
1323  ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
1324  : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE)))			\
1325      + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1326
1327/* A C expression whose value is nonzero if pseudos that have been
1328   assigned to registers of class CLASS would likely be spilled
1329   because registers of CLASS are needed for spill registers.
1330
1331   The default value of this macro returns 1 if CLASS has exactly one
1332   register and zero otherwise.  On most machines, this default
1333   should be used.  Only define this macro to some other expression
1334   if pseudo allocated by `local-alloc.c' end up in memory because
1335   their hard registers were needed for spill registers.  If this
1336   macro returns nonzero for those classes, those pseudos will only
1337   be allocated by `global.c', which knows how to reallocate the
1338   pseudo to another register.  If there would not be another
1339   register available for reallocation, you should not change the
1340   definition of this macro since the only effect of such a
1341   definition would be to slow down register allocation.  */
1342
1343#define CLASS_LIKELY_SPILLED_P(CLASS)					\
1344  (((CLASS) == AREG)							\
1345   || ((CLASS) == DREG)							\
1346   || ((CLASS) == CREG)							\
1347   || ((CLASS) == BREG)							\
1348   || ((CLASS) == AD_REGS)						\
1349   || ((CLASS) == SIREG)						\
1350   || ((CLASS) == DIREG)						\
1351   || ((CLASS) == FP_TOP_REG)						\
1352   || ((CLASS) == FP_SECOND_REG))
1353
1354/* Return a class of registers that cannot change FROM mode to TO mode.  */
1355
1356#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1357  ix86_cannot_change_mode_class (FROM, TO, CLASS)
1358
1359/* Stack layout; function entry, exit and calling.  */
1360
1361/* Define this if pushing a word on the stack
1362   makes the stack pointer a smaller address.  */
1363#define STACK_GROWS_DOWNWARD
1364
1365/* Define this to nonzero if the nominal address of the stack frame
1366   is at the high-address end of the local variables;
1367   that is, each additional local variable allocated
1368   goes at a more negative offset in the frame.  */
1369#define FRAME_GROWS_DOWNWARD 1
1370
1371/* Offset within stack frame to start allocating local variables at.
1372   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1373   first local allocated.  Otherwise, it is the offset to the BEGINNING
1374   of the first local allocated.  */
1375#define STARTING_FRAME_OFFSET 0
1376
1377/* If we generate an insn to push BYTES bytes,
1378   this says how many the stack pointer really advances by.
1379   On 386, we have pushw instruction that decrements by exactly 2 no
1380   matter what the position was, there is no pushb.
1381   But as CIE data alignment factor on this arch is -4, we need to make
1382   sure all stack pointer adjustments are in multiple of 4.
1383
1384   For 64bit ABI we round up to 8 bytes.
1385 */
1386
1387#define PUSH_ROUNDING(BYTES) \
1388  (TARGET_64BIT		     \
1389   ? (((BYTES) + 7) & (-8))  \
1390   : (((BYTES) + 3) & (-4)))
1391
1392/* If defined, the maximum amount of space required for outgoing arguments will
1393   be computed and placed into the variable
1394   `current_function_outgoing_args_size'.  No space will be pushed onto the
1395   stack for each call; instead, the function prologue should increase the stack
1396   frame size by this amount.  */
1397
1398#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1399
1400/* If defined, a C expression whose value is nonzero when we want to use PUSH
1401   instructions to pass outgoing arguments.  */
1402
1403#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1404
1405/* We want the stack and args grow in opposite directions, even if
1406   PUSH_ARGS is 0.  */
1407#define PUSH_ARGS_REVERSED 1
1408
1409/* Offset of first parameter from the argument pointer register value.  */
1410#define FIRST_PARM_OFFSET(FNDECL) 0
1411
1412/* Define this macro if functions should assume that stack space has been
1413   allocated for arguments even when their values are passed in registers.
1414
1415   The value of this macro is the size, in bytes, of the area reserved for
1416   arguments passed in registers for the function represented by FNDECL.
1417
1418   This space can be allocated by the caller, or be a part of the
1419   machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1420   which.  */
1421#define REG_PARM_STACK_SPACE(FNDECL) 0
1422
1423/* Value is the number of bytes of arguments automatically
1424   popped when returning from a subroutine call.
1425   FUNDECL is the declaration node of the function (as a tree),
1426   FUNTYPE is the data type of the function (as a tree),
1427   or for a library call it is an identifier node for the subroutine name.
1428   SIZE is the number of bytes of arguments passed on the stack.
1429
1430   On the 80386, the RTD insn may be used to pop them if the number
1431     of args is fixed, but if the number is variable then the caller
1432     must pop them all.  RTD can't be used for library calls now
1433     because the library is compiled with the Unix compiler.
1434   Use of RTD is a selectable option, since it is incompatible with
1435   standard Unix calling sequences.  If the option is not selected,
1436   the caller must always pop the args.
1437
1438   The attribute stdcall is equivalent to RTD on a per module basis.  */
1439
1440#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1441  ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1442
1443#define FUNCTION_VALUE_REGNO_P(N) \
1444  ix86_function_value_regno_p (N)
1445
1446/* Define how to find the value returned by a library function
1447   assuming the value has mode MODE.  */
1448
1449#define LIBCALL_VALUE(MODE) \
1450  ix86_libcall_value (MODE)
1451
1452/* Define the size of the result block used for communication between
1453   untyped_call and untyped_return.  The block contains a DImode value
1454   followed by the block used by fnsave and frstor.  */
1455
1456#define APPLY_RESULT_SIZE (8+108)
1457
1458/* 1 if N is a possible register number for function argument passing.  */
1459#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1460
1461/* Define a data type for recording info about an argument list
1462   during the scan of that argument list.  This data type should
1463   hold all necessary information about the function itself
1464   and about the args processed so far, enough to enable macros
1465   such as FUNCTION_ARG to determine where the next arg should go.  */
1466
1467typedef struct ix86_args {
1468  int words;			/* # words passed so far */
1469  int nregs;			/* # registers available for passing */
1470  int regno;			/* next available register number */
1471  int fastcall;			/* fastcall calling convention is used */
1472  int sse_words;		/* # sse words passed so far */
1473  int sse_nregs;		/* # sse registers available for passing */
1474  int warn_sse;			/* True when we want to warn about SSE ABI.  */
1475  int warn_mmx;			/* True when we want to warn about MMX ABI.  */
1476  int sse_regno;		/* next available sse register number */
1477  int mmx_words;		/* # mmx words passed so far */
1478  int mmx_nregs;		/* # mmx registers available for passing */
1479  int mmx_regno;		/* next available mmx register number */
1480  int maybe_vaarg;		/* true for calls to possibly vardic fncts.  */
1481  int float_in_sse;		/* 1 if in 32-bit mode SFmode (2 for DFmode) should
1482				   be passed in SSE registers.  Otherwise 0.  */
1483} CUMULATIVE_ARGS;
1484
1485/* Initialize a variable CUM of type CUMULATIVE_ARGS
1486   for a call to a function whose data type is FNTYPE.
1487   For a library call, FNTYPE is 0.  */
1488
1489#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1490  init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1491
1492/* Update the data in CUM to advance over an argument
1493   of mode MODE and data type TYPE.
1494   (TYPE is null for libcalls where that information may not be available.)  */
1495
1496#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1497  function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1498
1499/* Define where to put the arguments to a function.
1500   Value is zero to push the argument on the stack,
1501   or a hard register in which to store the argument.
1502
1503   MODE is the argument's machine mode.
1504   TYPE is the data type of the argument (as a tree).
1505    This is null for libcalls where that information may
1506    not be available.
1507   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1508    the preceding args and about the function being called.
1509   NAMED is nonzero if this argument is a named parameter
1510    (otherwise it is an extra parameter matching an ellipsis).  */
1511
1512#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1513  function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1514
1515/* Implement `va_start' for varargs and stdarg.  */
1516#define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1517  ix86_va_start (VALIST, NEXTARG)
1518
1519#define TARGET_ASM_FILE_END ix86_file_end
1520#define NEED_INDICATE_EXEC_STACK 0
1521
1522/* Output assembler code to FILE to increment profiler label # LABELNO
1523   for profiling a function entry.  */
1524
1525#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1526
1527#define MCOUNT_NAME "_mcount"
1528
1529#define PROFILE_COUNT_REGISTER "edx"
1530
1531/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1532   the stack pointer does not matter.  The value is tested only in
1533   functions that have frame pointers.
1534   No definition is equivalent to always zero.  */
1535/* Note on the 386 it might be more efficient not to define this since
1536   we have to restore it ourselves from the frame pointer, in order to
1537   use pop */
1538
1539#define EXIT_IGNORE_STACK 1
1540
1541/* Output assembler code for a block containing the constant parts
1542   of a trampoline, leaving space for the variable parts.  */
1543
1544/* On the 386, the trampoline contains two instructions:
1545     mov #STATIC,ecx
1546     jmp FUNCTION
1547   The trampoline is generated entirely at runtime.  The operand of JMP
1548   is the address of FUNCTION relative to the instruction following the
1549   JMP (which is 5 bytes long).  */
1550
1551/* Length in units of the trampoline for entering a nested function.  */
1552
1553#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1554
1555/* Emit RTL insns to initialize the variable parts of a trampoline.
1556   FNADDR is an RTX for the address of the function's pure code.
1557   CXT is an RTX for the static chain value for the function.  */
1558
1559#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1560  x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1561
1562/* Definitions for register eliminations.
1563
1564   This is an array of structures.  Each structure initializes one pair
1565   of eliminable registers.  The "from" register number is given first,
1566   followed by "to".  Eliminations of the same "from" register are listed
1567   in order of preference.
1568
1569   There are two registers that can always be eliminated on the i386.
1570   The frame pointer and the arg pointer can be replaced by either the
1571   hard frame pointer or to the stack pointer, depending upon the
1572   circumstances.  The hard frame pointer is not used before reload and
1573   so it is not eligible for elimination.  */
1574
1575#define ELIMINABLE_REGS					\
1576{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1577 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1578 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1579 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}	\
1580
1581/* Given FROM and TO register numbers, say whether this elimination is
1582   allowed.  Frame pointer elimination is automatically handled.
1583
1584   All other eliminations are valid.  */
1585
1586#define CAN_ELIMINATE(FROM, TO) \
1587  ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1588
1589/* Define the offset between two registers, one to be eliminated, and the other
1590   its replacement, at the start of a routine.  */
1591
1592#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1593  ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1594
1595/* Addressing modes, and classification of registers for them.  */
1596
1597/* Macros to check register numbers against specific register classes.  */
1598
1599/* These assume that REGNO is a hard or pseudo reg number.
1600   They give nonzero only if REGNO is a hard reg of the suitable class
1601   or a pseudo reg currently allocated to a suitable hard reg.
1602   Since they use reg_renumber, they are safe only once reg_renumber
1603   has been allocated, which happens in local-alloc.c.  */
1604
1605#define REGNO_OK_FOR_INDEX_P(REGNO) 					\
1606  ((REGNO) < STACK_POINTER_REGNUM 					\
1607   || (REGNO >= FIRST_REX_INT_REG					\
1608       && (REGNO) <= LAST_REX_INT_REG)					\
1609   || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1610       && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1611   || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1612
1613#define REGNO_OK_FOR_BASE_P(REGNO) 					\
1614  ((REGNO) <= STACK_POINTER_REGNUM 					\
1615   || (REGNO) == ARG_POINTER_REGNUM 					\
1616   || (REGNO) == FRAME_POINTER_REGNUM 					\
1617   || (REGNO >= FIRST_REX_INT_REG					\
1618       && (REGNO) <= LAST_REX_INT_REG)					\
1619   || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1620       && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1621   || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1622
1623#define REGNO_OK_FOR_SIREG_P(REGNO) \
1624  ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1625#define REGNO_OK_FOR_DIREG_P(REGNO) \
1626  ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1627
1628/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1629   and check its validity for a certain class.
1630   We have two alternate definitions for each of them.
1631   The usual definition accepts all pseudo regs; the other rejects
1632   them unless they have been allocated suitable hard regs.
1633   The symbol REG_OK_STRICT causes the latter definition to be used.
1634
1635   Most source files want to accept pseudo regs in the hope that
1636   they will get allocated to the class that the insn wants them to be in.
1637   Source files for reload pass need to be strict.
1638   After reload, it makes no difference, since pseudo regs have
1639   been eliminated by then.  */
1640
1641
1642/* Non strict versions, pseudos are ok.  */
1643#define REG_OK_FOR_INDEX_NONSTRICT_P(X)					\
1644  (REGNO (X) < STACK_POINTER_REGNUM					\
1645   || (REGNO (X) >= FIRST_REX_INT_REG					\
1646       && REGNO (X) <= LAST_REX_INT_REG)				\
1647   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1648
1649#define REG_OK_FOR_BASE_NONSTRICT_P(X)					\
1650  (REGNO (X) <= STACK_POINTER_REGNUM					\
1651   || REGNO (X) == ARG_POINTER_REGNUM					\
1652   || REGNO (X) == FRAME_POINTER_REGNUM 				\
1653   || (REGNO (X) >= FIRST_REX_INT_REG					\
1654       && REGNO (X) <= LAST_REX_INT_REG)				\
1655   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1656
1657/* Strict versions, hard registers only */
1658#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1659#define REG_OK_FOR_BASE_STRICT_P(X)  REGNO_OK_FOR_BASE_P (REGNO (X))
1660
1661#ifndef REG_OK_STRICT
1662#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_NONSTRICT_P (X)
1663#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_NONSTRICT_P (X)
1664
1665#else
1666#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_STRICT_P (X)
1667#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_STRICT_P (X)
1668#endif
1669
1670/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1671   that is a valid memory address for an instruction.
1672   The MODE argument is the machine mode for the MEM expression
1673   that wants to use this address.
1674
1675   The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1676   except for CONSTANT_ADDRESS_P which is usually machine-independent.
1677
1678   See legitimize_pic_address in i386.c for details as to what
1679   constitutes a legitimate address when -fpic is used.  */
1680
1681#define MAX_REGS_PER_ADDRESS 2
1682
1683#define CONSTANT_ADDRESS_P(X)  constant_address_p (X)
1684
1685/* Nonzero if the constant value X is a legitimate general operand.
1686   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1687
1688#define LEGITIMATE_CONSTANT_P(X)  legitimate_constant_p (X)
1689
1690#ifdef REG_OK_STRICT
1691#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
1692do {									\
1693  if (legitimate_address_p ((MODE), (X), 1))				\
1694    goto ADDR;								\
1695} while (0)
1696
1697#else
1698#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
1699do {									\
1700  if (legitimate_address_p ((MODE), (X), 0))				\
1701    goto ADDR;								\
1702} while (0)
1703
1704#endif
1705
1706/* If defined, a C expression to determine the base term of address X.
1707   This macro is used in only one place: `find_base_term' in alias.c.
1708
1709   It is always safe for this macro to not be defined.  It exists so
1710   that alias analysis can understand machine-dependent addresses.
1711
1712   The typical use of this macro is to handle addresses containing
1713   a label_ref or symbol_ref within an UNSPEC.  */
1714
1715#define FIND_BASE_TERM(X) ix86_find_base_term (X)
1716
1717/* Try machine-dependent ways of modifying an illegitimate address
1718   to be legitimate.  If we find one, return the new, valid address.
1719   This macro is used in only one place: `memory_address' in explow.c.
1720
1721   OLDX is the address as it was before break_out_memory_refs was called.
1722   In some cases it is useful to look at this to decide what needs to be done.
1723
1724   MODE and WIN are passed so that this macro can use
1725   GO_IF_LEGITIMATE_ADDRESS.
1726
1727   It is always safe for this macro to do nothing.  It exists to recognize
1728   opportunities to optimize the output.
1729
1730   For the 80386, we handle X+REG by loading X into a register R and
1731   using R+REG.  R will go in a general reg and indexing will be used.
1732   However, if REG is a broken-out memory address or multiplication,
1733   nothing needs to be done because REG can certainly go in a general reg.
1734
1735   When -fpic is used, special handling is needed for symbolic references.
1736   See comments by legitimize_pic_address in i386.c for details.  */
1737
1738#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)				\
1739do {									\
1740  (X) = legitimize_address ((X), (OLDX), (MODE));			\
1741  if (memory_address_p ((MODE), (X)))					\
1742    goto WIN;								\
1743} while (0)
1744
1745#define REWRITE_ADDRESS(X) rewrite_address (X)
1746
1747/* Nonzero if the constant value X is a legitimate general operand
1748   when generating PIC code.  It is given that flag_pic is on and
1749   that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1750
1751#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1752
1753#define SYMBOLIC_CONST(X)	\
1754  (GET_CODE (X) == SYMBOL_REF						\
1755   || GET_CODE (X) == LABEL_REF						\
1756   || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1757
1758/* Go to LABEL if ADDR (a legitimate address expression)
1759   has an effect that depends on the machine mode it is used for.
1760   On the 80386, only postdecrement and postincrement address depend thus
1761   (the amount of decrement or increment being the length of the operand).  */
1762#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)	\
1763do {							\
1764 if (GET_CODE (ADDR) == POST_INC			\
1765     || GET_CODE (ADDR) == POST_DEC)			\
1766   goto LABEL;						\
1767} while (0)
1768
1769/* Max number of args passed in registers.  If this is more than 3, we will
1770   have problems with ebx (register #4), since it is a caller save register and
1771   is also used as the pic register in ELF.  So for now, don't allow more than
1772   3 registers to be passed in registers.  */
1773
1774#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
1775
1776#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
1777
1778#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1779
1780
1781/* Specify the machine mode that this machine uses
1782   for the index in the tablejump instruction.  */
1783#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
1784
1785/* Define this as 1 if `char' should by default be signed; else as 0.  */
1786#define DEFAULT_SIGNED_CHAR 1
1787
1788/* Number of bytes moved into a data cache for a single prefetch operation.  */
1789#define PREFETCH_BLOCK ix86_cost->prefetch_block
1790
1791/* Number of prefetch operations that can be done in parallel.  */
1792#define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
1793
1794/* Max number of bytes we can move from memory to memory
1795   in one reasonably fast instruction.  */
1796#define MOVE_MAX 16
1797
1798/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1799   move efficiently, as opposed to  MOVE_MAX which is the maximum
1800   number of bytes we can move with a single instruction.  */
1801#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
1802
1803/* If a memory-to-memory move would take MOVE_RATIO or more simple
1804   move-instruction pairs, we will do a movmem or libcall instead.
1805   Increasing the value will always make code faster, but eventually
1806   incurs high cost in increased code size.
1807
1808   If you don't define this, a reasonable default is used.  */
1809
1810#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
1811
1812/* If a clear memory operation would take CLEAR_RATIO or more simple
1813   move-instruction sequences, we will do a clrmem or libcall instead.  */
1814
1815#define CLEAR_RATIO (optimize_size ? 2 \
1816		     : ix86_cost->move_ratio > 6 ? 6 : ix86_cost->move_ratio)
1817
1818/* Define if shifts truncate the shift count
1819   which implies one can omit a sign-extension or zero-extension
1820   of a shift count.  */
1821/* On i386, shifts do truncate the count.  But bit opcodes don't.  */
1822
1823/* #define SHIFT_COUNT_TRUNCATED */
1824
1825/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1826   is done just by pretending it is already truncated.  */
1827#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1828
1829/* A macro to update M and UNSIGNEDP when an object whose type is
1830   TYPE and which has the specified mode and signedness is to be
1831   stored in a register.  This macro is only called when TYPE is a
1832   scalar type.
1833
1834   On i386 it is sometimes useful to promote HImode and QImode
1835   quantities to SImode.  The choice depends on target type.  */
1836
1837#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) 		\
1838do {							\
1839  if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS)	\
1840      || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS))	\
1841    (MODE) = SImode;					\
1842} while (0)
1843
1844/* Specify the machine mode that pointers have.
1845   After generation of rtl, the compiler makes no further distinction
1846   between pointers and any other objects of this machine mode.  */
1847#define Pmode (TARGET_64BIT ? DImode : SImode)
1848
1849/* A function address in a call instruction
1850   is a byte address (for indexing purposes)
1851   so give the MEM rtx a byte's mode.  */
1852#define FUNCTION_MODE QImode
1853
1854/* A C expression for the cost of moving data from a register in class FROM to
1855   one in class TO.  The classes are expressed using the enumeration values
1856   such as `GENERAL_REGS'.  A value of 2 is the default; other values are
1857   interpreted relative to that.
1858
1859   It is not required that the cost always equal 2 when FROM is the same as TO;
1860   on some machines it is expensive to move between registers if they are not
1861   general registers.  */
1862
1863#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1864   ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
1865
1866/* A C expression for the cost of moving data of mode M between a
1867   register and memory.  A value of 2 is the default; this cost is
1868   relative to those in `REGISTER_MOVE_COST'.
1869
1870   If moving between registers and memory is more expensive than
1871   between two registers, you should define this macro to express the
1872   relative cost.  */
1873
1874#define MEMORY_MOVE_COST(MODE, CLASS, IN)	\
1875  ix86_memory_move_cost ((MODE), (CLASS), (IN))
1876
1877/* A C expression for the cost of a branch instruction.  A value of 1
1878   is the default; other values are interpreted relative to that.  */
1879
1880#define BRANCH_COST ix86_branch_cost
1881
1882/* Define this macro as a C expression which is nonzero if accessing
1883   less than a word of memory (i.e. a `char' or a `short') is no
1884   faster than accessing a word of memory, i.e., if such access
1885   require more than one instruction or if there is no difference in
1886   cost between byte and (aligned) word loads.
1887
1888   When this macro is not defined, the compiler will access a field by
1889   finding the smallest containing object; when it is defined, a
1890   fullword load will be used if alignment permits.  Unless bytes
1891   accesses are faster than word accesses, using word accesses is
1892   preferable since it may eliminate subsequent memory access if
1893   subsequent accesses occur to other fields in the same word of the
1894   structure, but to different bytes.  */
1895
1896#define SLOW_BYTE_ACCESS 0
1897
1898/* Nonzero if access to memory by shorts is slow and undesirable.  */
1899#define SLOW_SHORT_ACCESS 0
1900
1901/* Define this macro to be the value 1 if unaligned accesses have a
1902   cost many times greater than aligned accesses, for example if they
1903   are emulated in a trap handler.
1904
1905   When this macro is nonzero, the compiler will act as if
1906   `STRICT_ALIGNMENT' were nonzero when generating code for block
1907   moves.  This can cause significantly more instructions to be
1908   produced.  Therefore, do not set this macro nonzero if unaligned
1909   accesses only add a cycle or two to the time for a memory access.
1910
1911   If the value of this macro is always zero, it need not be defined.  */
1912
1913/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
1914
1915/* Define this macro if it is as good or better to call a constant
1916   function address than to call an address kept in a register.
1917
1918   Desirable on the 386 because a CALL with a constant address is
1919   faster than one with a register address.  */
1920
1921#define NO_FUNCTION_CSE
1922
1923/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1924   return the mode to be used for the comparison.
1925
1926   For floating-point equality comparisons, CCFPEQmode should be used.
1927   VOIDmode should be used in all other cases.
1928
1929   For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1930   possible, to allow for more combinations.  */
1931
1932#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1933
1934/* Return nonzero if MODE implies a floating point inequality can be
1935   reversed.  */
1936
1937#define REVERSIBLE_CC_MODE(MODE) 1
1938
1939/* A C expression whose value is reversed condition code of the CODE for
1940   comparison done in CC_MODE mode.  */
1941#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1942
1943
1944/* Control the assembler format that we output, to the extent
1945   this does not vary between assemblers.  */
1946
1947/* How to refer to registers in assembler output.
1948   This sequence is indexed by compiler's hard-register-number (see above).  */
1949
1950/* In order to refer to the first 8 regs as 32 bit regs, prefix an "e".
1951   For non floating point regs, the following are the HImode names.
1952
1953   For float regs, the stack top is sometimes referred to as "%st(0)"
1954   instead of just "%st".  PRINT_OPERAND handles this with the "y" code.  */
1955
1956#define HI_REGISTER_NAMES						\
1957{"ax","dx","cx","bx","si","di","bp","sp",				\
1958 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)",		\
1959 "argp", "flags", "fpsr", "dirflag", "frame",				\
1960 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7",		\
1961 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7"	,		\
1962 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",			\
1963 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
1964
1965#define REGISTER_NAMES HI_REGISTER_NAMES
1966
1967/* Table of additional register names to use in user input.  */
1968
1969#define ADDITIONAL_REGISTER_NAMES \
1970{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 },	\
1971  { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 },	\
1972  { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 },	\
1973  { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 },	\
1974  { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 },		\
1975  { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
1976
1977/* Note we are omitting these since currently I don't know how
1978to get gcc to use these, since they want the same but different
1979number as al, and ax.
1980*/
1981
1982#define QI_REGISTER_NAMES \
1983{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
1984
1985/* These parallel the array above, and can be used to access bits 8:15
1986   of regs 0 through 3.  */
1987
1988#define QI_HIGH_REGISTER_NAMES \
1989{"ah", "dh", "ch", "bh", }
1990
1991/* How to renumber registers for dbx and gdb.  */
1992
1993#define DBX_REGISTER_NUMBER(N) \
1994  (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
1995
1996extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1997extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1998extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
1999
2000/* Before the prologue, RA is at 0(%esp).  */
2001#define INCOMING_RETURN_ADDR_RTX \
2002  gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2003
2004/* After the prologue, RA is at -4(AP) in the current frame.  */
2005#define RETURN_ADDR_RTX(COUNT, FRAME)					   \
2006  ((COUNT) == 0								   \
2007   ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2008   : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2009
2010/* PC is dbx register 8; let's use that column for RA.  */
2011#define DWARF_FRAME_RETURN_COLUMN 	(TARGET_64BIT ? 16 : 8)
2012
2013/* Before the prologue, the top of the frame is at 4(%esp).  */
2014#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2015
2016/* Describe how we implement __builtin_eh_return.  */
2017#define EH_RETURN_DATA_REGNO(N)	((N) < 2 ? (N) : INVALID_REGNUM)
2018#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 2)
2019
2020
2021/* Select a format to encode pointers in exception handling data.  CODE
2022   is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
2023   true if the symbol may be affected by dynamic relocations.
2024
2025   ??? All x86 object file formats are capable of representing this.
2026   After all, the relocation needed is the same as for the call insn.
2027   Whether or not a particular assembler allows us to enter such, I
2028   guess we'll have to see.  */
2029#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)       		\
2030  asm_preferred_eh_data_format ((CODE), (GLOBAL))
2031
2032/* This is how to output an insn to push a register on the stack.
2033   It need not be very fast code.  */
2034
2035#define ASM_OUTPUT_REG_PUSH(FILE, REGNO)  \
2036do {									\
2037  if (TARGET_64BIT)							\
2038    asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n",				\
2039		 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));	\
2040  else									\
2041    asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]);	\
2042} while (0)
2043
2044/* This is how to output an insn to pop a register from the stack.
2045   It need not be very fast code.  */
2046
2047#define ASM_OUTPUT_REG_POP(FILE, REGNO)  \
2048do {									\
2049  if (TARGET_64BIT)							\
2050    asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n",				\
2051		 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));	\
2052  else									\
2053    asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]);	\
2054} while (0)
2055
2056/* This is how to output an element of a case-vector that is absolute.  */
2057
2058#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
2059  ix86_output_addr_vec_elt ((FILE), (VALUE))
2060
2061/* This is how to output an element of a case-vector that is relative.  */
2062
2063#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2064  ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2065
2066/* Under some conditions we need jump tables in the text section,
2067   because the assembler cannot handle label differences between
2068   sections.  This is the case for x86_64 on Mach-O for example.  */
2069
2070#define JUMP_TABLES_IN_TEXT_SECTION \
2071  (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2072   || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2073
2074/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2075   and switch back.  For x86 we do this only to save a few bytes that
2076   would otherwise be unused in the text section.  */
2077#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
2078   asm (SECTION_OP "\n\t"				\
2079	"call " USER_LABEL_PREFIX #FUNC "\n"		\
2080	TEXT_SECTION_ASM_OP);
2081
2082/* Print operand X (an rtx) in assembler syntax to file FILE.
2083   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2084   Effect of various CODE letters is described in i386.c near
2085   print_operand function.  */
2086
2087#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2088  ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
2089
2090#define PRINT_OPERAND(FILE, X, CODE)  \
2091  print_operand ((FILE), (X), (CODE))
2092
2093#define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
2094  print_operand_address ((FILE), (ADDR))
2095
2096#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL)	\
2097do {						\
2098  if (! output_addr_const_extra (FILE, (X)))	\
2099    goto FAIL;					\
2100} while (0);
2101
2102/* a letter which is not needed by the normal asm syntax, which
2103   we can use for operand syntax in the extended asm */
2104
2105#define ASM_OPERAND_LETTER '#'
2106#define RET return ""
2107#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
2108
2109/* Which processor to schedule for. The cpu attribute defines a list that
2110   mirrors this list, so changes to i386.md must be made at the same time.  */
2111
2112enum processor_type
2113{
2114  PROCESSOR_I386,			/* 80386 */
2115  PROCESSOR_I486,			/* 80486DX, 80486SX, 80486DX[24] */
2116  PROCESSOR_PENTIUM,
2117  PROCESSOR_PENTIUMPRO,
2118  PROCESSOR_GEODE,
2119  PROCESSOR_K6,
2120  PROCESSOR_ATHLON,
2121  PROCESSOR_PENTIUM4,
2122  PROCESSOR_K8,
2123  PROCESSOR_NOCONA,
2124  PROCESSOR_CORE2,
2125  PROCESSOR_GENERIC32,
2126  PROCESSOR_GENERIC64,
2127  PROCESSOR_AMDFAM10,
2128  PROCESSOR_max
2129};
2130
2131extern enum processor_type ix86_tune;
2132extern enum processor_type ix86_arch;
2133
2134enum fpmath_unit
2135{
2136  FPMATH_387 = 1,
2137  FPMATH_SSE = 2
2138};
2139
2140extern enum fpmath_unit ix86_fpmath;
2141
2142enum tls_dialect
2143{
2144  TLS_DIALECT_GNU,
2145  TLS_DIALECT_GNU2,
2146  TLS_DIALECT_SUN
2147};
2148
2149extern enum tls_dialect ix86_tls_dialect;
2150
2151enum cmodel {
2152  CM_32,	/* The traditional 32-bit ABI.  */
2153  CM_SMALL,	/* Assumes all code and data fits in the low 31 bits.  */
2154  CM_KERNEL,	/* Assumes all code and data fits in the high 31 bits.  */
2155  CM_MEDIUM,	/* Assumes code fits in the low 31 bits; data unlimited.  */
2156  CM_LARGE,	/* No assumptions.  */
2157  CM_SMALL_PIC,	/* Assumes code+data+got/plt fits in a 31 bit region.  */
2158  CM_MEDIUM_PIC	/* Assumes code+got/plt fits in a 31 bit region.  */
2159};
2160
2161extern enum cmodel ix86_cmodel;
2162
2163/* Size of the RED_ZONE area.  */
2164#define RED_ZONE_SIZE 128
2165/* Reserved area of the red zone for temporaries.  */
2166#define RED_ZONE_RESERVE 8
2167
2168enum asm_dialect {
2169  ASM_ATT,
2170  ASM_INTEL
2171};
2172
2173extern enum asm_dialect ix86_asm_dialect;
2174extern unsigned int ix86_preferred_stack_boundary;
2175extern int ix86_branch_cost, ix86_section_threshold;
2176
2177/* Smallest class containing REGNO.  */
2178extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2179
2180extern rtx ix86_compare_op0;	/* operand 0 for comparisons */
2181extern rtx ix86_compare_op1;	/* operand 1 for comparisons */
2182extern rtx ix86_compare_emitted;
2183
2184/* To properly truncate FP values into integers, we need to set i387 control
2185   word.  We can't emit proper mode switching code before reload, as spills
2186   generated by reload may truncate values incorrectly, but we still can avoid
2187   redundant computation of new control word by the mode switching pass.
2188   The fldcw instructions are still emitted redundantly, but this is probably
2189   not going to be noticeable problem, as most CPUs do have fast path for
2190   the sequence.
2191
2192   The machinery is to emit simple truncation instructions and split them
2193   before reload to instructions having USEs of two memory locations that
2194   are filled by this code to old and new control word.
2195
2196   Post-reload pass may be later used to eliminate the redundant fildcw if
2197   needed.  */
2198
2199enum ix86_entity
2200{
2201  I387_TRUNC = 0,
2202  I387_FLOOR,
2203  I387_CEIL,
2204  I387_MASK_PM,
2205  MAX_386_ENTITIES
2206};
2207
2208enum ix86_stack_slot
2209{
2210  SLOT_VIRTUAL = 0,
2211  SLOT_TEMP,
2212  SLOT_CW_STORED,
2213  SLOT_CW_TRUNC,
2214  SLOT_CW_FLOOR,
2215  SLOT_CW_CEIL,
2216  SLOT_CW_MASK_PM,
2217  MAX_386_STACK_LOCALS
2218};
2219
2220/* Define this macro if the port needs extra instructions inserted
2221   for mode switching in an optimizing compilation.  */
2222
2223#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2224   ix86_optimize_mode_switching[(ENTITY)]
2225
2226/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2227   initializer for an array of integers.  Each initializer element N
2228   refers to an entity that needs mode switching, and specifies the
2229   number of different modes that might need to be set for this
2230   entity.  The position of the initializer in the initializer -
2231   starting counting at zero - determines the integer that is used to
2232   refer to the mode-switched entity in question.  */
2233
2234#define NUM_MODES_FOR_MODE_SWITCHING \
2235   { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2236
2237/* ENTITY is an integer specifying a mode-switched entity.  If
2238   `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2239   return an integer value not larger than the corresponding element
2240   in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2241   must be switched into prior to the execution of INSN. */
2242
2243#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
2244
2245/* This macro specifies the order in which modes for ENTITY are
2246   processed.  0 is the highest priority.  */
2247
2248#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2249
2250/* Generate one or more insns to set ENTITY to MODE.  HARD_REG_LIVE
2251   is the set of hard registers live at the point where the insn(s)
2252   are to be inserted.  */
2253
2254#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) 			\
2255  ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED		\
2256   ? emit_i387_cw_initialization (MODE), 0				\
2257   : 0)
2258
2259
2260/* Avoid renaming of stack registers, as doing so in combination with
2261   scheduling just increases amount of live registers at time and in
2262   the turn amount of fxch instructions needed.
2263
2264   ??? Maybe Pentium chips benefits from renaming, someone can try....  */
2265
2266#define HARD_REGNO_RENAME_OK(SRC, TARGET)  \
2267   ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
2268
2269
2270#define DLL_IMPORT_EXPORT_PREFIX '#'
2271
2272#define FASTCALL_PREFIX '@'
2273
2274struct machine_function GTY(())
2275{
2276  struct stack_local_entry *stack_locals;
2277  const char *some_ld_name;
2278  rtx force_align_arg_pointer;
2279  int save_varrargs_registers;
2280  int accesses_prev_frame;
2281  int optimize_mode_switching[MAX_386_ENTITIES];
2282  /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
2283     determine the style used.  */
2284  int use_fast_prologue_epilogue;
2285  /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2286     for.  */
2287  int use_fast_prologue_epilogue_nregs;
2288  /* If true, the current function needs the default PIC register, not
2289     an alternate register (on x86) and must not use the red zone (on
2290     x86_64), even if it's a leaf function.  We don't want the
2291     function to be regarded as non-leaf because TLS calls need not
2292     affect register allocation.  This flag is set when a TLS call
2293     instruction is expanded within a function, and never reset, even
2294     if all such instructions are optimized away.  Use the
2295     ix86_current_function_calls_tls_descriptor macro for a better
2296     approximation.  */
2297  int tls_descriptor_call_expanded_p;
2298};
2299
2300#define ix86_stack_locals (cfun->machine->stack_locals)
2301#define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
2302#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2303#define ix86_tls_descriptor_calls_expanded_in_cfun \
2304  (cfun->machine->tls_descriptor_call_expanded_p)
2305/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2306   calls are optimized away, we try to detect cases in which it was
2307   optimized away.  Since such instructions (use (reg REG_SP)), we can
2308   verify whether there's any such instruction live by testing that
2309   REG_SP is live.  */
2310#define ix86_current_function_calls_tls_descriptor \
2311  (ix86_tls_descriptor_calls_expanded_in_cfun && regs_ever_live[SP_REG])
2312
2313/* Control behavior of x86_file_start.  */
2314#define X86_FILE_START_VERSION_DIRECTIVE false
2315#define X86_FILE_START_FLTUSED false
2316
2317/* Flag to mark data that is in the large address area.  */
2318#define SYMBOL_FLAG_FAR_ADDR		(SYMBOL_FLAG_MACH_DEP << 0)
2319#define SYMBOL_REF_FAR_ADDR_P(X)	\
2320	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2321/*
2322Local variables:
2323version-control: t
2324End:
2325*/
2326