i386.h revision 237021
1/* Definitions of target machine for GCC for IA-32.
2   Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3   2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GCC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to
19the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20Boston, MA 02110-1301, USA.  */
21
22/* The purpose of this file is to define the characteristics of the i386,
23   independent of assembler syntax or operating system.
24
25   Three other files build on this one to describe a specific assembler syntax:
26   bsd386.h, att386.h, and sun386.h.
27
28   The actual tm.h file for a particular system should include
29   this file, and then the file for the appropriate assembler syntax.
30
31   Many macros that specify assembler syntax are omitted entirely from
32   this file because they really belong in the files for particular
33   assemblers.  These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34   ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35   that start with ASM_ or end in ASM_OP.  */
36
37/* Define the specific costs for a given cpu */
38
39struct processor_costs {
40  const int add;		/* cost of an add instruction */
41  const int lea;		/* cost of a lea instruction */
42  const int shift_var;		/* variable shift costs */
43  const int shift_const;	/* constant shift costs */
44  const int mult_init[5];	/* cost of starting a multiply
45				   in QImode, HImode, SImode, DImode, TImode*/
46  const int mult_bit;		/* cost of multiply per each bit set */
47  const int divide[5];		/* cost of a divide/mod
48				   in QImode, HImode, SImode, DImode, TImode*/
49  int movsx;			/* The cost of movsx operation.  */
50  int movzx;			/* The cost of movzx operation.  */
51  const int large_insn;		/* insns larger than this cost more */
52  const int move_ratio;		/* The threshold of number of scalar
53				   memory-to-memory move insns.  */
54  const int movzbl_load;	/* cost of loading using movzbl */
55  const int int_load[3];	/* cost of loading integer registers
56				   in QImode, HImode and SImode relative
57				   to reg-reg move (2).  */
58  const int int_store[3];	/* cost of storing integer register
59				   in QImode, HImode and SImode */
60  const int fp_move;		/* cost of reg,reg fld/fst */
61  const int fp_load[3];		/* cost of loading FP register
62				   in SFmode, DFmode and XFmode */
63  const int fp_store[3];	/* cost of storing FP register
64				   in SFmode, DFmode and XFmode */
65  const int mmx_move;		/* cost of moving MMX register.  */
66  const int mmx_load[2];	/* cost of loading MMX register
67				   in SImode and DImode */
68  const int mmx_store[2];	/* cost of storing MMX register
69				   in SImode and DImode */
70  const int sse_move;		/* cost of moving SSE register.  */
71  const int sse_load[3];	/* cost of loading SSE register
72				   in SImode, DImode and TImode*/
73  const int sse_store[3];	/* cost of storing SSE register
74				   in SImode, DImode and TImode*/
75  const int mmxsse_to_integer;	/* cost of moving mmxsse register to
76				   integer and vice versa.  */
77  const int prefetch_block;	/* bytes moved to cache for prefetch.  */
78  const int simultaneous_prefetches; /* number of parallel prefetch
79				   operations.  */
80  const int branch_cost;	/* Default value for BRANCH_COST.  */
81  const int fadd;		/* cost of FADD and FSUB instructions.  */
82  const int fmul;		/* cost of FMUL instruction.  */
83  const int fdiv;		/* cost of FDIV instruction.  */
84  const int fabs;		/* cost of FABS instruction.  */
85  const int fchs;		/* cost of FCHS instruction.  */
86  const int fsqrt;		/* cost of FSQRT instruction.  */
87};
88
89extern const struct processor_costs *ix86_cost;
90
91/* Macros used in the machine description to test the flags.  */
92
93/* configure can arrange to make this 2, to force a 486.  */
94
95#ifndef TARGET_CPU_DEFAULT
96#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
97#endif
98
99#ifndef TARGET_FPMATH_DEFAULT
100#define TARGET_FPMATH_DEFAULT \
101  (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
102#endif
103
104#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
105
106/* 64bit Sledgehammer mode.  For libgcc2 we make sure this is a
107   compile-time constant.  */
108#ifdef IN_LIBGCC2
109#undef TARGET_64BIT
110#ifdef __x86_64__
111#define TARGET_64BIT 1
112#else
113#define TARGET_64BIT 0
114#endif
115#else
116#ifndef TARGET_BI_ARCH
117#undef TARGET_64BIT
118#if TARGET_64BIT_DEFAULT
119#define TARGET_64BIT 1
120#else
121#define TARGET_64BIT 0
122#endif
123#endif
124#endif
125
126#define HAS_LONG_COND_BRANCH 1
127#define HAS_LONG_UNCOND_BRANCH 1
128
129#define TARGET_386 (ix86_tune == PROCESSOR_I386)
130#define TARGET_486 (ix86_tune == PROCESSOR_I486)
131#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
132#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
133#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
134#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
135#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
136#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
137#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
138#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
139#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
140#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
141#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
142#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
143#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
144
145#define TUNEMASK (1 << ix86_tune)
146extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
147extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
148extern const int x86_branch_hints, x86_unroll_strlen;
149extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
150extern const int x86_use_himode_fiop, x86_use_simode_fiop;
151extern const int x86_use_mov0, x86_use_cltd, x86_read_modify_write;
152extern const int x86_read_modify, x86_split_long_moves;
153extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
154extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
155extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
156extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
157extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
158extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
159extern const int x86_epilogue_using_move, x86_decompose_lea;
160extern const int x86_arch_always_fancy_math_387, x86_shift1;
161extern const int x86_sse_partial_reg_dependency, x86_sse_split_regs;
162extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
163extern const int x86_use_ffreep;
164extern const int x86_inter_unit_moves, x86_schedule;
165extern const int x86_use_bt;
166extern const int x86_cmpxchg, x86_cmpxchg8b, x86_cmpxchg16b, x86_xadd;
167extern const int x86_use_incdec;
168extern const int x86_pad_returns;
169extern const int x86_partial_flag_reg_stall;
170extern int x86_prefetch_sse;
171
172#define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
173#define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
174#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
175#define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
176#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
177/* For sane SSE instruction set generation we need fcomi instruction.  It is
178   safe to enable all CMOVE instructions.  */
179#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
180#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
181#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
182#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
183#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
184#define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
185#define TARGET_MOVX (x86_movx & TUNEMASK)
186#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
187#define TARGET_PARTIAL_FLAG_REG_STALL (x86_partial_flag_reg_stall & TUNEMASK)
188#define TARGET_USE_HIMODE_FIOP (x86_use_himode_fiop & TUNEMASK)
189#define TARGET_USE_SIMODE_FIOP (x86_use_simode_fiop & TUNEMASK)
190#define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
191#define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
192#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
193#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
194#define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
195#define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
196#define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
197#define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
198#define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
199#define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
200#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
201#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
202#define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
203#define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
204#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
205#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
206#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
207#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
208#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
209				      (x86_sse_partial_reg_dependency & TUNEMASK)
210#define TARGET_SSE_SPLIT_REGS (x86_sse_split_regs & TUNEMASK)
211#define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
212#define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
213#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
214#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
215#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
216#define TARGET_PREFETCH_SSE (x86_prefetch_sse)
217#define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
218#define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
219#define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
220#define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
221#define TARGET_FOUR_JUMP_LIMIT (x86_four_jump_limit & TUNEMASK)
222#define TARGET_SCHEDULE (x86_schedule & TUNEMASK)
223#define TARGET_USE_BT (x86_use_bt & TUNEMASK)
224#define TARGET_USE_INCDEC (x86_use_incdec & TUNEMASK)
225#define TARGET_PAD_RETURNS (x86_pad_returns & TUNEMASK)
226
227#define ASSEMBLER_DIALECT (ix86_asm_dialect)
228
229#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
230#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
231			     && (ix86_fpmath & FPMATH_387))
232
233#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
234#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
235#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
236#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
237
238#define TARGET_CMPXCHG (x86_cmpxchg & (1 << ix86_arch))
239#define TARGET_CMPXCHG8B (x86_cmpxchg8b & (1 << ix86_arch))
240#define TARGET_CMPXCHG16B (x86_cmpxchg16b & (1 << ix86_arch))
241#define TARGET_XADD (x86_xadd & (1 << ix86_arch))
242
243#ifndef TARGET_64BIT_DEFAULT
244#define TARGET_64BIT_DEFAULT 0
245#endif
246#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
247#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
248#endif
249
250/* Once GDB has been enhanced to deal with functions without frame
251   pointers, we can change this to allow for elimination of
252   the frame pointer in leaf functions.  */
253#define TARGET_DEFAULT 0
254
255/* This is not really a target flag, but is done this way so that
256   it's analogous to similar code for Mach-O on PowerPC.  darwin.h
257   redefines this to 1.  */
258#define TARGET_MACHO 0
259
260/* Subtargets may reset this to 1 in order to enable 96-bit long double
261   with the rounding mode forced to 53 bits.  */
262#define TARGET_96_ROUND_53_LONG_DOUBLE 0
263
264/* Sometimes certain combinations of command options do not make
265   sense on a particular target machine.  You can define a macro
266   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
267   defined, is executed once just after all the command options have
268   been parsed.
269
270   Don't use this macro to turn on various extra optimizations for
271   `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */
272
273#define OVERRIDE_OPTIONS override_options ()
274
275/* Define this to change the optimizations performed by default.  */
276#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
277  optimization_options ((LEVEL), (SIZE))
278
279/* -march=native handling only makes sense with compiler running on
280   an x86 or x86_64 chip.  If changing this condition, also change
281   the condition in driver-i386.c.  */
282#if defined(__i386__) || defined(__x86_64__)
283/* In driver-i386.c.  */
284extern const char *host_detect_local_cpu (int argc, const char **argv);
285#define EXTRA_SPEC_FUNCTIONS \
286  { "local_cpu_detect", host_detect_local_cpu },
287#define HAVE_LOCAL_CPU_DETECT
288#endif
289
290/* Support for configure-time defaults of some command line options.
291   The order here is important so that -march doesn't squash the
292   tune or cpu values.  */
293#define OPTION_DEFAULT_SPECS \
294  {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
295  {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
296  {"arch", "%{!march=*:-march=%(VALUE)}"}
297
298/* Specs for the compiler proper */
299
300#ifndef CC1_CPU_SPEC
301#define CC1_CPU_SPEC_1 "\
302%{!mtune*: \
303%{m386:mtune=i386 \
304%n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
305%{m486:-mtune=i486 \
306%n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
307%{mpentium:-mtune=pentium \
308%n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
309%{mpentiumpro:-mtune=pentiumpro \
310%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
311%{mcpu=*:-mtune=%* \
312%n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
313%<mcpu=* \
314%{mintel-syntax:-masm=intel \
315%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
316%{mno-intel-syntax:-masm=att \
317%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
318
319#ifndef HAVE_LOCAL_CPU_DETECT
320#define CC1_CPU_SPEC CC1_CPU_SPEC_1
321#else
322#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
323"%{march=native:%<march=native %:local_cpu_detect(arch) \
324  %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
325%{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
326#endif
327#endif
328
329/* Target CPU builtins.  */
330#define TARGET_CPU_CPP_BUILTINS()				\
331  do								\
332    {								\
333      size_t arch_len = strlen (ix86_arch_string);		\
334      size_t tune_len = strlen (ix86_tune_string);		\
335      int last_arch_char = ix86_arch_string[arch_len - 1];	\
336      int last_tune_char = ix86_tune_string[tune_len - 1];		\
337								\
338      if (TARGET_64BIT)						\
339	{							\
340	  builtin_assert ("cpu=x86_64");			\
341	  builtin_assert ("machine=x86_64");			\
342	  builtin_define ("__amd64");				\
343	  builtin_define ("__amd64__");				\
344	  builtin_define ("__x86_64");				\
345	  builtin_define ("__x86_64__");			\
346	}							\
347      else							\
348	{							\
349	  builtin_assert ("cpu=i386");				\
350	  builtin_assert ("machine=i386");			\
351	  builtin_define_std ("i386");				\
352	}							\
353								\
354      /* Built-ins based on -mtune= (or -march= if no		\
355	 -mtune= given).  */					\
356      if (TARGET_386)						\
357	builtin_define ("__tune_i386__");			\
358      else if (TARGET_486)					\
359	builtin_define ("__tune_i486__");			\
360      else if (TARGET_PENTIUM)					\
361	{							\
362	  builtin_define ("__tune_i586__");			\
363	  builtin_define ("__tune_pentium__");			\
364	  if (last_tune_char == 'x')				\
365	    builtin_define ("__tune_pentium_mmx__");		\
366	}							\
367      else if (TARGET_PENTIUMPRO)				\
368	{							\
369	  builtin_define ("__tune_i686__");			\
370	  builtin_define ("__tune_pentiumpro__");		\
371	  switch (last_tune_char)				\
372	    {							\
373	    case '3':						\
374	      builtin_define ("__tune_pentium3__");		\
375	      /* FALLTHRU */					\
376	    case '2':						\
377	      builtin_define ("__tune_pentium2__");		\
378	      break;						\
379	    }							\
380	}							\
381      else if (TARGET_GEODE)					\
382	{							\
383	  builtin_define ("__tune_geode__");			\
384	}							\
385      else if (TARGET_K6)					\
386	{							\
387	  builtin_define ("__tune_k6__");			\
388	  if (last_tune_char == '2')				\
389	    builtin_define ("__tune_k6_2__");			\
390	  else if (last_tune_char == '3')			\
391	    builtin_define ("__tune_k6_3__");			\
392	}							\
393      else if (TARGET_ATHLON)					\
394	{							\
395	  builtin_define ("__tune_athlon__");			\
396	  /* Plain "athlon" & "athlon-tbird" lacks SSE.  */	\
397	  if (last_tune_char != 'n' && last_tune_char != 'd')	\
398	    builtin_define ("__tune_athlon_sse__");		\
399	}							\
400      else if (TARGET_K8)					\
401	builtin_define ("__tune_k8__");				\
402      else if (TARGET_PENTIUM4)					\
403	builtin_define ("__tune_pentium4__");			\
404      else if (TARGET_NOCONA)					\
405	builtin_define ("__tune_nocona__");			\
406      else if (TARGET_CORE2)					\
407	builtin_define ("__tune_core2__");			\
408								\
409      if (TARGET_MMX)						\
410	builtin_define ("__MMX__");				\
411      if (TARGET_3DNOW)						\
412	builtin_define ("__3dNOW__");				\
413      if (TARGET_3DNOW_A)					\
414	builtin_define ("__3dNOW_A__");				\
415      if (TARGET_SSE)						\
416	builtin_define ("__SSE__");				\
417      if (TARGET_SSE2)						\
418	builtin_define ("__SSE2__");				\
419      if (TARGET_SSE3)						\
420	builtin_define ("__SSE3__");				\
421      if (TARGET_SSSE3)						\
422	builtin_define ("__SSSE3__");				\
423      if (TARGET_SSE_MATH && TARGET_SSE)			\
424	builtin_define ("__SSE_MATH__");			\
425      if (TARGET_SSE_MATH && TARGET_SSE2)			\
426	builtin_define ("__SSE2_MATH__");			\
427								\
428      /* Built-ins based on -march=.  */			\
429      if (ix86_arch == PROCESSOR_I486)				\
430	{							\
431	  builtin_define ("__i486");				\
432	  builtin_define ("__i486__");				\
433	}							\
434      else if (ix86_arch == PROCESSOR_PENTIUM)			\
435	{							\
436	  builtin_define ("__i586");				\
437	  builtin_define ("__i586__");				\
438	  builtin_define ("__pentium");				\
439	  builtin_define ("__pentium__");			\
440	  if (last_arch_char == 'x')				\
441	    builtin_define ("__pentium_mmx__");			\
442	}							\
443      else if (ix86_arch == PROCESSOR_PENTIUMPRO)		\
444	{							\
445	  builtin_define ("__i686");				\
446	  builtin_define ("__i686__");				\
447	  builtin_define ("__pentiumpro");			\
448	  builtin_define ("__pentiumpro__");			\
449	}							\
450      else if (ix86_arch == PROCESSOR_GEODE)			\
451	{							\
452	  builtin_define ("__geode");				\
453	  builtin_define ("__geode__");				\
454	}							\
455      else if (ix86_arch == PROCESSOR_K6)			\
456	{							\
457								\
458	  builtin_define ("__k6");				\
459	  builtin_define ("__k6__");				\
460	  if (last_arch_char == '2')				\
461	    builtin_define ("__k6_2__");			\
462	  else if (last_arch_char == '3')			\
463	    builtin_define ("__k6_3__");			\
464	}							\
465      else if (ix86_arch == PROCESSOR_ATHLON)			\
466	{							\
467	  builtin_define ("__athlon");				\
468	  builtin_define ("__athlon__");			\
469	  /* Plain "athlon" & "athlon-tbird" lacks SSE.  */	\
470	  if (last_tune_char != 'n' && last_tune_char != 'd')	\
471	    builtin_define ("__athlon_sse__");			\
472	}							\
473      else if (ix86_arch == PROCESSOR_K8)			\
474	{							\
475	  builtin_define ("__k8");				\
476	  builtin_define ("__k8__");				\
477	}							\
478      else if (ix86_arch == PROCESSOR_PENTIUM4)			\
479	{							\
480	  builtin_define ("__pentium4");			\
481	  builtin_define ("__pentium4__");			\
482	}							\
483      else if (ix86_arch == PROCESSOR_NOCONA)			\
484	{							\
485	  builtin_define ("__nocona");				\
486	  builtin_define ("__nocona__");			\
487	}							\
488      else if (ix86_arch == PROCESSOR_CORE2)			\
489	{							\
490	  builtin_define ("__core2");				\
491	  builtin_define ("__core2__");				\
492	}							\
493    }								\
494  while (0)
495
496#define TARGET_CPU_DEFAULT_i386 0
497#define TARGET_CPU_DEFAULT_i486 1
498#define TARGET_CPU_DEFAULT_pentium 2
499#define TARGET_CPU_DEFAULT_pentium_mmx 3
500#define TARGET_CPU_DEFAULT_pentiumpro 4
501#define TARGET_CPU_DEFAULT_pentium2 5
502#define TARGET_CPU_DEFAULT_pentium3 6
503#define TARGET_CPU_DEFAULT_pentium4 7
504#define TARGET_CPU_DEFAULT_geode 8
505#define TARGET_CPU_DEFAULT_k6 9
506#define TARGET_CPU_DEFAULT_k6_2 10
507#define TARGET_CPU_DEFAULT_k6_3 11
508#define TARGET_CPU_DEFAULT_athlon 12
509#define TARGET_CPU_DEFAULT_athlon_sse 13
510#define TARGET_CPU_DEFAULT_k8 14
511#define TARGET_CPU_DEFAULT_pentium_m 15
512#define TARGET_CPU_DEFAULT_prescott 16
513#define TARGET_CPU_DEFAULT_nocona 17
514#define TARGET_CPU_DEFAULT_core2 18
515#define TARGET_CPU_DEFAULT_generic 19
516
517#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
518				  "pentiumpro", "pentium2", "pentium3", \
519                                  "pentium4", "geode", "k6", "k6-2", "k6-3", \
520				  "athlon", "athlon-4", "k8", \
521				  "pentium-m", "prescott", "nocona", \
522				  "core2", "generic"}
523
524#ifndef CC1_SPEC
525#define CC1_SPEC "%(cc1_cpu) "
526#endif
527
528/* This macro defines names of additional specifications to put in the
529   specs that can be used in various specifications like CC1_SPEC.  Its
530   definition is an initializer with a subgrouping for each command option.
531
532   Each subgrouping contains a string constant, that defines the
533   specification name, and a string constant that used by the GCC driver
534   program.
535
536   Do not define this macro if it does not need to do anything.  */
537
538#ifndef SUBTARGET_EXTRA_SPECS
539#define SUBTARGET_EXTRA_SPECS
540#endif
541
542#define EXTRA_SPECS							\
543  { "cc1_cpu",  CC1_CPU_SPEC },						\
544  SUBTARGET_EXTRA_SPECS
545
546/* target machine storage layout */
547
548#define LONG_DOUBLE_TYPE_SIZE 80
549
550/* Set the value of FLT_EVAL_METHOD in float.h.  When using only the
551   FPU, assume that the fpcw is set to extended precision; when using
552   only SSE, rounding is correct; when using both SSE and the FPU,
553   the rounding precision is indeterminate, since either may be chosen
554   apparently at random.  */
555#define TARGET_FLT_EVAL_METHOD \
556  (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
557
558#define SHORT_TYPE_SIZE 16
559#define INT_TYPE_SIZE 32
560#define FLOAT_TYPE_SIZE 32
561#ifndef LONG_TYPE_SIZE
562#define LONG_TYPE_SIZE BITS_PER_WORD
563#endif
564#define DOUBLE_TYPE_SIZE 64
565#define LONG_LONG_TYPE_SIZE 64
566
567#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
568#define MAX_BITS_PER_WORD 64
569#else
570#define MAX_BITS_PER_WORD 32
571#endif
572
573/* Define this if most significant byte of a word is the lowest numbered.  */
574/* That is true on the 80386.  */
575
576#define BITS_BIG_ENDIAN 0
577
578/* Define this if most significant byte of a word is the lowest numbered.  */
579/* That is not true on the 80386.  */
580#define BYTES_BIG_ENDIAN 0
581
582/* Define this if most significant word of a multiword number is the lowest
583   numbered.  */
584/* Not true for 80386 */
585#define WORDS_BIG_ENDIAN 0
586
587/* Width of a word, in units (bytes).  */
588#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
589#ifdef IN_LIBGCC2
590#define MIN_UNITS_PER_WORD	(TARGET_64BIT ? 8 : 4)
591#else
592#define MIN_UNITS_PER_WORD	4
593#endif
594
595/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
596#define PARM_BOUNDARY BITS_PER_WORD
597
598/* Boundary (in *bits*) on which stack pointer should be aligned.  */
599#define STACK_BOUNDARY BITS_PER_WORD
600
601/* Boundary (in *bits*) on which the stack pointer prefers to be
602   aligned; the compiler cannot rely on having this alignment.  */
603#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
604
605/* As of July 2001, many runtimes do not align the stack properly when
606   entering main.  This causes expand_main_function to forcibly align
607   the stack, which results in aligned frames for functions called from
608   main, though it does nothing for the alignment of main itself.  */
609#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
610  (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
611
612/* Minimum allocation boundary for the code of a function.  */
613#define FUNCTION_BOUNDARY 8
614
615/* C++ stores the virtual bit in the lowest bit of function pointers.  */
616#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
617
618/* Alignment of field after `int : 0' in a structure.  */
619
620#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
621
622/* Minimum size in bits of the largest boundary to which any
623   and all fundamental data types supported by the hardware
624   might need to be aligned. No data type wants to be aligned
625   rounder than this.
626
627   Pentium+ prefers DFmode values to be aligned to 64 bit boundary
628   and Pentium Pro XFmode values at 128 bit boundaries.  */
629
630#define BIGGEST_ALIGNMENT 128
631
632/* Decide whether a variable of mode MODE should be 128 bit aligned.  */
633#define ALIGN_MODE_128(MODE) \
634 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
635
636/* The published ABIs say that doubles should be aligned on word
637   boundaries, so lower the alignment for structure fields unless
638   -malign-double is set.  */
639
640/* ??? Blah -- this macro is used directly by libobjc.  Since it
641   supports no vector modes, cut out the complexity and fall back
642   on BIGGEST_FIELD_ALIGNMENT.  */
643#ifdef IN_TARGET_LIBS
644#ifdef __x86_64__
645#define BIGGEST_FIELD_ALIGNMENT 128
646#else
647#define BIGGEST_FIELD_ALIGNMENT 32
648#endif
649#else
650#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
651   x86_field_alignment (FIELD, COMPUTED)
652#endif
653
654/* If defined, a C expression to compute the alignment given to a
655   constant that is being placed in memory.  EXP is the constant
656   and ALIGN is the alignment that the object would ordinarily have.
657   The value of this macro is used instead of that alignment to align
658   the object.
659
660   If this macro is not defined, then ALIGN is used.
661
662   The typical use of this macro is to increase alignment for string
663   constants to be word aligned so that `strcpy' calls that copy
664   constants can be done inline.  */
665
666#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
667
668/* If defined, a C expression to compute the alignment for a static
669   variable.  TYPE is the data type, and ALIGN is the alignment that
670   the object would ordinarily have.  The value of this macro is used
671   instead of that alignment to align the object.
672
673   If this macro is not defined, then ALIGN is used.
674
675   One use of this macro is to increase alignment of medium-size
676   data to make it all fit in fewer cache lines.  Another is to
677   cause character arrays to be word-aligned so that `strcpy' calls
678   that copy constants to character arrays can be done inline.  */
679
680#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
681
682/* If defined, a C expression to compute the alignment for a local
683   variable.  TYPE is the data type, and ALIGN is the alignment that
684   the object would ordinarily have.  The value of this macro is used
685   instead of that alignment to align the object.
686
687   If this macro is not defined, then ALIGN is used.
688
689   One use of this macro is to increase alignment of medium-size
690   data to make it all fit in fewer cache lines.  */
691
692#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
693
694/* If defined, a C expression that gives the alignment boundary, in
695   bits, of an argument with the specified mode and type.  If it is
696   not defined, `PARM_BOUNDARY' is used for all arguments.  */
697
698#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
699  ix86_function_arg_boundary ((MODE), (TYPE))
700
701/* Set this nonzero if move instructions will actually fail to work
702   when given unaligned data.  */
703#define STRICT_ALIGNMENT 0
704
705/* If bit field type is int, don't let it cross an int,
706   and give entire struct the alignment of an int.  */
707/* Required on the 386 since it doesn't have bit-field insns.  */
708#define PCC_BITFIELD_TYPE_MATTERS 1
709
710/* Standard register usage.  */
711
712/* This processor has special stack-like registers.  See reg-stack.c
713   for details.  */
714
715#define STACK_REGS
716#define IS_STACK_MODE(MODE)					\
717  (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH))	\
718   || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH))  \
719   || (MODE) == XFmode)
720
721/* Number of actual hardware registers.
722   The hardware registers are assigned numbers for the compiler
723   from 0 to just below FIRST_PSEUDO_REGISTER.
724   All registers that the compiler knows about must be given numbers,
725   even those that are not normally considered general registers.
726
727   In the 80386 we give the 8 general purpose registers the numbers 0-7.
728   We number the floating point registers 8-15.
729   Note that registers 0-7 can be accessed as a  short or int,
730   while only 0-3 may be used with byte `mov' instructions.
731
732   Reg 16 does not correspond to any hardware register, but instead
733   appears in the RTL as an argument pointer prior to reload, and is
734   eliminated during reloading in favor of either the stack or frame
735   pointer.  */
736
737#define FIRST_PSEUDO_REGISTER 53
738
739/* Number of hardware registers that go into the DWARF-2 unwind info.
740   If not defined, equals FIRST_PSEUDO_REGISTER.  */
741
742#define DWARF_FRAME_REGISTERS 17
743
744/* 1 for registers that have pervasive standard uses
745   and are not available for the register allocator.
746   On the 80386, the stack pointer is such, as is the arg pointer.
747
748   The value is zero if the register is not fixed on either 32 or
749   64 bit targets, one if the register if fixed on both 32 and 64
750   bit targets, two if it is only fixed on 32bit targets and three
751   if its only fixed on 64bit targets.
752   Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
753 */
754#define FIXED_REGISTERS						\
755/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
756{  0, 0, 0, 0, 0, 0, 0, 1, 0,  0,  0,  0,  0,  0,  0,  0,	\
757/*arg,flags,fpsr,dir,frame*/					\
758    1,    1,   1,  1,    1,					\
759/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
760     0,   0,   0,   0,   0,   0,   0,   0,			\
761/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
762     0,   0,   0,   0,   0,   0,   0,   0,			\
763/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
764     2,   2,   2,   2,   2,   2,   2,   2,			\
765/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
766     2,   2,    2,    2,    2,    2,    2,    2}
767
768
769/* 1 for registers not available across function calls.
770   These must include the FIXED_REGISTERS and also any
771   registers that can be used without being saved.
772   The latter must include the registers where values are returned
773   and the register where structure-value addresses are passed.
774   Aside from that, you can include as many other registers as you like.
775
776   The value is zero if the register is not call used on either 32 or
777   64 bit targets, one if the register if call used on both 32 and 64
778   bit targets, two if it is only call used on 32bit targets and three
779   if its only call used on 64bit targets.
780   Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
781*/
782#define CALL_USED_REGISTERS					\
783/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
784{  1, 1, 1, 0, 3, 3, 0, 1, 1,  1,  1,  1,  1,  1,  1,  1,	\
785/*arg,flags,fpsr,dir,frame*/					\
786     1,   1,   1,  1,    1,					\
787/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
788     1,   1,   1,   1,   1,  1,    1,   1,			\
789/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
790     1,   1,   1,   1,   1,   1,   1,   1,			\
791/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
792     1,   1,   1,   1,   2,   2,   2,   2,			\
793/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
794     1,   1,    1,    1,    1,    1,    1,    1}		\
795
796/* Order in which to allocate registers.  Each register must be
797   listed once, even those in FIXED_REGISTERS.  List frame pointer
798   late and fixed registers last.  Note that, in general, we prefer
799   registers listed in CALL_USED_REGISTERS, keeping the others
800   available for storage of persistent values.
801
802   The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
803   so this is just empty initializer for array.  */
804
805#define REG_ALLOC_ORDER 					\
806{  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
807   18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,	\
808   33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,  \
809   48, 49, 50, 51, 52 }
810
811/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
812   to be rearranged based on a particular function.  When using sse math,
813   we want to allocate SSE before x87 registers and vice vera.  */
814
815#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
816
817
818/* Macro to conditionally modify fixed_regs/call_used_regs.  */
819#define CONDITIONAL_REGISTER_USAGE					\
820do {									\
821    int i;								\
822    for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)				\
823      {									\
824	if (fixed_regs[i] > 1)						\
825	  fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2));	\
826	if (call_used_regs[i] > 1)					\
827	  call_used_regs[i] = (call_used_regs[i]			\
828			       == (TARGET_64BIT ? 3 : 2));		\
829      }									\
830    if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)			\
831      {									\
832	fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
833	call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
834      }									\
835    if (! TARGET_MMX)							\
836      {									\
837	int i;								\
838        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
839          if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i))	\
840	    fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";	\
841      }									\
842    if (! TARGET_SSE)							\
843      {									\
844	int i;								\
845        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
846          if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i))	\
847	    fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";	\
848      }									\
849    if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387)		\
850      {									\
851	int i;								\
852	HARD_REG_SET x;							\
853        COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]);	\
854        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
855          if (TEST_HARD_REG_BIT (x, i)) 				\
856	    fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";	\
857      }									\
858    if (! TARGET_64BIT)							\
859      {									\
860	int i;								\
861	for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++)		\
862	  reg_names[i] = "";						\
863	for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++)		\
864	  reg_names[i] = "";						\
865      }									\
866  } while (0)
867
868/* Return number of consecutive hard regs needed starting at reg REGNO
869   to hold something of mode MODE.
870   This is ordinarily the length in words of a value of mode MODE
871   but can be less for certain modes in special long registers.
872
873   Actually there are no two word move instructions for consecutive
874   registers.  And only registers 0-3 may have mov byte instructions
875   applied to them.
876   */
877
878#define HARD_REGNO_NREGS(REGNO, MODE)   \
879  (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)	\
880   ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
881   : ((MODE) == XFmode							\
882      ? (TARGET_64BIT ? 2 : 3)						\
883      : (MODE) == XCmode						\
884      ? (TARGET_64BIT ? 4 : 6)						\
885      : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
886
887#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE)			\
888  ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT)				\
889   ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)	\
890      ? 0								\
891      : ((MODE) == XFmode || (MODE) == XCmode))				\
892   : 0)
893
894#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
895
896#define VALID_SSE2_REG_MODE(MODE) \
897    ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode    \
898     || (MODE) == V2DImode || (MODE) == DFmode)
899
900#define VALID_SSE_REG_MODE(MODE)					\
901    ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode	\
902     || (MODE) == SFmode || (MODE) == TFmode)
903
904#define VALID_MMX_REG_MODE_3DNOW(MODE) \
905    ((MODE) == V2SFmode || (MODE) == SFmode)
906
907#define VALID_MMX_REG_MODE(MODE)					\
908    ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode	\
909     || (MODE) == V2SImode || (MODE) == SImode)
910
911/* ??? No autovectorization into MMX or 3DNOW until we can reliably
912   place emms and femms instructions.  */
913#define UNITS_PER_SIMD_WORD (TARGET_SSE ? 16 : UNITS_PER_WORD)
914
915#define VALID_FP_MODE_P(MODE)						\
916    ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode		\
917     || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode)	\
918
919#define VALID_INT_MODE_P(MODE)						\
920    ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode		\
921     || (MODE) == DImode						\
922     || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode	\
923     || (MODE) == CDImode						\
924     || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode		\
925         || (MODE) == TFmode || (MODE) == TCmode)))
926
927/* Return true for modes passed in SSE registers.  */
928#define SSE_REG_MODE_P(MODE) \
929 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode		\
930   || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode	\
931   || (MODE) == V4SFmode || (MODE) == V4SImode)
932
933/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.  */
934
935#define HARD_REGNO_MODE_OK(REGNO, MODE)	\
936   ix86_hard_regno_mode_ok ((REGNO), (MODE))
937
938/* Value is 1 if it is a good idea to tie two pseudo registers
939   when one has mode MODE1 and one has mode MODE2.
940   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
941   for any hard reg, then this must be 0 for correct output.  */
942
943#define MODES_TIEABLE_P(MODE1, MODE2)  ix86_modes_tieable_p (MODE1, MODE2)
944
945/* It is possible to write patterns to move flags; but until someone
946   does it,  */
947#define AVOID_CCMODE_COPIES
948
949/* Specify the modes required to caller save a given hard regno.
950   We do this on i386 to prevent flags from being saved at all.
951
952   Kill any attempts to combine saving of modes.  */
953
954#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)			\
955  (CC_REGNO_P (REGNO) ? VOIDmode					\
956   : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode			\
957   : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
958   : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode		\
959   : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode 	\
960   : (MODE))
961/* Specify the registers used for certain standard purposes.
962   The values of these macros are register numbers.  */
963
964/* on the 386 the pc register is %eip, and is not usable as a general
965   register.  The ordinary mov instructions won't work */
966/* #define PC_REGNUM  */
967
968/* Register to use for pushing function arguments.  */
969#define STACK_POINTER_REGNUM 7
970
971/* Base register for access to local variables of the function.  */
972#define HARD_FRAME_POINTER_REGNUM 6
973
974/* Base register for access to local variables of the function.  */
975#define FRAME_POINTER_REGNUM 20
976
977/* First floating point reg */
978#define FIRST_FLOAT_REG 8
979
980/* First & last stack-like regs */
981#define FIRST_STACK_REG FIRST_FLOAT_REG
982#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
983
984#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
985#define LAST_SSE_REG  (FIRST_SSE_REG + 7)
986
987#define FIRST_MMX_REG  (LAST_SSE_REG + 1)
988#define LAST_MMX_REG   (FIRST_MMX_REG + 7)
989
990#define FIRST_REX_INT_REG  (LAST_MMX_REG + 1)
991#define LAST_REX_INT_REG   (FIRST_REX_INT_REG + 7)
992
993#define FIRST_REX_SSE_REG  (LAST_REX_INT_REG + 1)
994#define LAST_REX_SSE_REG   (FIRST_REX_SSE_REG + 7)
995
996/* Value should be nonzero if functions must have frame pointers.
997   Zero means the frame pointer need not be set up (and parms
998   may be accessed via the stack pointer) in functions that seem suitable.
999   This is computed in `reload', in reload1.c.  */
1000#define FRAME_POINTER_REQUIRED  ix86_frame_pointer_required ()
1001
1002/* Override this in other tm.h files to cope with various OS lossage
1003   requiring a frame pointer.  */
1004#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1005#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1006#endif
1007
1008/* Make sure we can access arbitrary call frames.  */
1009#define SETUP_FRAME_ADDRESSES()  ix86_setup_frame_addresses ()
1010
1011/* Base register for access to arguments of the function.  */
1012#define ARG_POINTER_REGNUM 16
1013
1014/* Register in which static-chain is passed to a function.
1015   We do use ECX as static chain register for 32 bit ABI.  On the
1016   64bit ABI, ECX is an argument register, so we use R10 instead.  */
1017#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1018
1019/* Register to hold the addressing base for position independent
1020   code access to data items.  We don't use PIC pointer for 64bit
1021   mode.  Define the regnum to dummy value to prevent gcc from
1022   pessimizing code dealing with EBX.
1023
1024   To avoid clobbering a call-saved register unnecessarily, we renumber
1025   the pic register when possible.  The change is visible after the
1026   prologue has been emitted.  */
1027
1028#define REAL_PIC_OFFSET_TABLE_REGNUM  3
1029
1030#define PIC_OFFSET_TABLE_REGNUM				\
1031  ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC)	\
1032   || !flag_pic ? INVALID_REGNUM			\
1033   : reload_completed ? REGNO (pic_offset_table_rtx)	\
1034   : REAL_PIC_OFFSET_TABLE_REGNUM)
1035
1036#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1037
1038/* A C expression which can inhibit the returning of certain function
1039   values in registers, based on the type of value.  A nonzero value
1040   says to return the function value in memory, just as large
1041   structures are always returned.  Here TYPE will be a C expression
1042   of type `tree', representing the data type of the value.
1043
1044   Note that values of mode `BLKmode' must be explicitly handled by
1045   this macro.  Also, the option `-fpcc-struct-return' takes effect
1046   regardless of this macro.  On most systems, it is possible to
1047   leave the macro undefined; this causes a default definition to be
1048   used, whose value is the constant 1 for `BLKmode' values, and 0
1049   otherwise.
1050
1051   Do not use this macro to indicate that structures and unions
1052   should always be returned in memory.  You should instead use
1053   `DEFAULT_PCC_STRUCT_RETURN' to indicate this.  */
1054
1055#define RETURN_IN_MEMORY(TYPE) \
1056  ix86_return_in_memory (TYPE)
1057
1058/* This is overridden by <cygwin.h>.  */
1059#define MS_AGGREGATE_RETURN 0
1060
1061/* This is overridden by <netware.h>.  */
1062#define KEEP_AGGREGATE_RETURN_POINTER 0
1063
1064/* Define the classes of registers for register constraints in the
1065   machine description.  Also define ranges of constants.
1066
1067   One of the classes must always be named ALL_REGS and include all hard regs.
1068   If there is more than one class, another class must be named NO_REGS
1069   and contain no registers.
1070
1071   The name GENERAL_REGS must be the name of a class (or an alias for
1072   another name such as ALL_REGS).  This is the class of registers
1073   that is allowed by "g" or "r" in a register constraint.
1074   Also, registers outside this class are allocated only when
1075   instructions express preferences for them.
1076
1077   The classes must be numbered in nondecreasing order; that is,
1078   a larger-numbered class must never be contained completely
1079   in a smaller-numbered class.
1080
1081   For any two classes, it is very desirable that there be another
1082   class that represents their union.
1083
1084   It might seem that class BREG is unnecessary, since no useful 386
1085   opcode needs reg %ebx.  But some systems pass args to the OS in ebx,
1086   and the "b" register constraint is useful in asms for syscalls.
1087
1088   The flags and fpsr registers are in no class.  */
1089
1090enum reg_class
1091{
1092  NO_REGS,
1093  AREG, DREG, CREG, BREG, SIREG, DIREG,
1094  AD_REGS,			/* %eax/%edx for DImode */
1095  Q_REGS,			/* %eax %ebx %ecx %edx */
1096  NON_Q_REGS,			/* %esi %edi %ebp %esp */
1097  INDEX_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp */
1098  LEGACY_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1099  GENERAL_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1100  FP_TOP_REG, FP_SECOND_REG,	/* %st(0) %st(1) */
1101  FLOAT_REGS,
1102  SSE_REGS,
1103  MMX_REGS,
1104  FP_TOP_SSE_REGS,
1105  FP_SECOND_SSE_REGS,
1106  FLOAT_SSE_REGS,
1107  FLOAT_INT_REGS,
1108  INT_SSE_REGS,
1109  FLOAT_INT_SSE_REGS,
1110  ALL_REGS, LIM_REG_CLASSES
1111};
1112
1113#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1114
1115#define INTEGER_CLASS_P(CLASS) \
1116  reg_class_subset_p ((CLASS), GENERAL_REGS)
1117#define FLOAT_CLASS_P(CLASS) \
1118  reg_class_subset_p ((CLASS), FLOAT_REGS)
1119#define SSE_CLASS_P(CLASS) \
1120  ((CLASS) == SSE_REGS)
1121#define MMX_CLASS_P(CLASS) \
1122  ((CLASS) == MMX_REGS)
1123#define MAYBE_INTEGER_CLASS_P(CLASS) \
1124  reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1125#define MAYBE_FLOAT_CLASS_P(CLASS) \
1126  reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1127#define MAYBE_SSE_CLASS_P(CLASS) \
1128  reg_classes_intersect_p (SSE_REGS, (CLASS))
1129#define MAYBE_MMX_CLASS_P(CLASS) \
1130  reg_classes_intersect_p (MMX_REGS, (CLASS))
1131
1132#define Q_CLASS_P(CLASS) \
1133  reg_class_subset_p ((CLASS), Q_REGS)
1134
1135/* Give names of register classes as strings for dump file.  */
1136
1137#define REG_CLASS_NAMES \
1138{  "NO_REGS",				\
1139   "AREG", "DREG", "CREG", "BREG",	\
1140   "SIREG", "DIREG",			\
1141   "AD_REGS",				\
1142   "Q_REGS", "NON_Q_REGS",		\
1143   "INDEX_REGS",			\
1144   "LEGACY_REGS",			\
1145   "GENERAL_REGS",			\
1146   "FP_TOP_REG", "FP_SECOND_REG",	\
1147   "FLOAT_REGS",			\
1148   "SSE_REGS",				\
1149   "MMX_REGS",				\
1150   "FP_TOP_SSE_REGS",			\
1151   "FP_SECOND_SSE_REGS",		\
1152   "FLOAT_SSE_REGS",			\
1153   "FLOAT_INT_REGS",			\
1154   "INT_SSE_REGS",			\
1155   "FLOAT_INT_SSE_REGS",		\
1156   "ALL_REGS" }
1157
1158/* Define which registers fit in which classes.
1159   This is an initializer for a vector of HARD_REG_SET
1160   of length N_REG_CLASSES.  */
1161
1162#define REG_CLASS_CONTENTS						\
1163{     { 0x00,     0x0 },						\
1164      { 0x01,     0x0 }, { 0x02, 0x0 },	/* AREG, DREG */		\
1165      { 0x04,     0x0 }, { 0x08, 0x0 },	/* CREG, BREG */		\
1166      { 0x10,     0x0 }, { 0x20, 0x0 },	/* SIREG, DIREG */		\
1167      { 0x03,     0x0 },		/* AD_REGS */			\
1168      { 0x0f,     0x0 },		/* Q_REGS */			\
1169  { 0x1100f0,  0x1fe0 },		/* NON_Q_REGS */		\
1170      { 0x7f,  0x1fe0 },		/* INDEX_REGS */		\
1171  { 0x1100ff,  0x0 },			/* LEGACY_REGS */		\
1172  { 0x1100ff,  0x1fe0 },		/* GENERAL_REGS */		\
1173     { 0x100,     0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1174    { 0xff00,     0x0 },		/* FLOAT_REGS */		\
1175{ 0x1fe00000,0x1fe000 },		/* SSE_REGS */			\
1176{ 0xe0000000,    0x1f },		/* MMX_REGS */			\
1177{ 0x1fe00100,0x1fe000 },		/* FP_TOP_SSE_REG */		\
1178{ 0x1fe00200,0x1fe000 },		/* FP_SECOND_SSE_REG */		\
1179{ 0x1fe0ff00,0x1fe000 },		/* FLOAT_SSE_REGS */		\
1180   { 0x1ffff,  0x1fe0 },		/* FLOAT_INT_REGS */		\
1181{ 0x1fe100ff,0x1fffe0 },		/* INT_SSE_REGS */		\
1182{ 0x1fe1ffff,0x1fffe0 },		/* FLOAT_INT_SSE_REGS */	\
1183{ 0xffffffff,0x1fffff }							\
1184}
1185
1186/* The same information, inverted:
1187   Return the class number of the smallest class containing
1188   reg number REGNO.  This could be a conditional expression
1189   or could index an array.  */
1190
1191#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1192
1193/* When defined, the compiler allows registers explicitly used in the
1194   rtl to be used as spill registers but prevents the compiler from
1195   extending the lifetime of these registers.  */
1196
1197#define SMALL_REGISTER_CLASSES 1
1198
1199#define QI_REG_P(X) \
1200  (REG_P (X) && REGNO (X) < 4)
1201
1202#define GENERAL_REGNO_P(N) \
1203  ((N) < 8 || REX_INT_REGNO_P (N))
1204
1205#define GENERAL_REG_P(X) \
1206  (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1207
1208#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1209
1210#define NON_QI_REG_P(X) \
1211  (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1212
1213#define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1214#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1215
1216#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1217#define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1218#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1219#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1220
1221#define SSE_REGNO_P(N) \
1222  (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1223   || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1224
1225#define REX_SSE_REGNO_P(N) \
1226   ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1227
1228#define SSE_REGNO(N) \
1229  ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1230#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1231
1232#define SSE_FLOAT_MODE_P(MODE) \
1233  ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1234
1235#define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1236#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1237
1238#define STACK_REG_P(XOP)		\
1239  (REG_P (XOP) &&		       	\
1240   REGNO (XOP) >= FIRST_STACK_REG &&	\
1241   REGNO (XOP) <= LAST_STACK_REG)
1242
1243#define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1244
1245#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1246
1247#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1248#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1249
1250/* The class value for index registers, and the one for base regs.  */
1251
1252#define INDEX_REG_CLASS INDEX_REGS
1253#define BASE_REG_CLASS GENERAL_REGS
1254
1255/* Place additional restrictions on the register class to use when it
1256   is necessary to be able to hold a value of mode MODE in a reload
1257   register for which class CLASS would ordinarily be used.  */
1258
1259#define LIMIT_RELOAD_CLASS(MODE, CLASS) 			\
1260  ((MODE) == QImode && !TARGET_64BIT				\
1261   && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS		\
1262       || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS)	\
1263   ? Q_REGS : (CLASS))
1264
1265/* Given an rtx X being reloaded into a reg required to be
1266   in class CLASS, return the class of reg to actually use.
1267   In general this is just CLASS; but on some machines
1268   in some cases it is preferable to use a more restrictive class.
1269   On the 80386 series, we prevent floating constants from being
1270   reloaded into floating registers (since no move-insn can do that)
1271   and we ensure that QImodes aren't reloaded into the esi or edi reg.  */
1272
1273/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1274   QImode must go into class Q_REGS.
1275   Narrow ALL_REGS to GENERAL_REGS.  This supports allowing movsf and
1276   movdf to do mem-to-mem moves through integer regs.  */
1277
1278#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1279   ix86_preferred_reload_class ((X), (CLASS))
1280
1281/* Discourage putting floating-point values in SSE registers unless
1282   SSE math is being used, and likewise for the 387 registers.  */
1283
1284#define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1285   ix86_preferred_output_reload_class ((X), (CLASS))
1286
1287/* If we are copying between general and FP registers, we need a memory
1288   location. The same is true for SSE and MMX registers.  */
1289#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1290  ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1291
1292/* QImode spills from non-QI registers need a scratch.  This does not
1293   happen often -- the only example so far requires an uninitialized
1294   pseudo.  */
1295
1296#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT)			\
1297  (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS			\
1298    || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode	\
1299   ? Q_REGS : NO_REGS)
1300
1301/* Return the maximum number of consecutive registers
1302   needed to represent mode MODE in a register of class CLASS.  */
1303/* On the 80386, this is the size of MODE in words,
1304   except in the FP regs, where a single reg is always enough.  */
1305#define CLASS_MAX_NREGS(CLASS, MODE)					\
1306 (!MAYBE_INTEGER_CLASS_P (CLASS)					\
1307  ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
1308  : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE)))			\
1309      + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1310
1311/* A C expression whose value is nonzero if pseudos that have been
1312   assigned to registers of class CLASS would likely be spilled
1313   because registers of CLASS are needed for spill registers.
1314
1315   The default value of this macro returns 1 if CLASS has exactly one
1316   register and zero otherwise.  On most machines, this default
1317   should be used.  Only define this macro to some other expression
1318   if pseudo allocated by `local-alloc.c' end up in memory because
1319   their hard registers were needed for spill registers.  If this
1320   macro returns nonzero for those classes, those pseudos will only
1321   be allocated by `global.c', which knows how to reallocate the
1322   pseudo to another register.  If there would not be another
1323   register available for reallocation, you should not change the
1324   definition of this macro since the only effect of such a
1325   definition would be to slow down register allocation.  */
1326
1327#define CLASS_LIKELY_SPILLED_P(CLASS)					\
1328  (((CLASS) == AREG)							\
1329   || ((CLASS) == DREG)							\
1330   || ((CLASS) == CREG)							\
1331   || ((CLASS) == BREG)							\
1332   || ((CLASS) == AD_REGS)						\
1333   || ((CLASS) == SIREG)						\
1334   || ((CLASS) == DIREG)						\
1335   || ((CLASS) == FP_TOP_REG)						\
1336   || ((CLASS) == FP_SECOND_REG))
1337
1338/* Return a class of registers that cannot change FROM mode to TO mode.  */
1339
1340#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1341  ix86_cannot_change_mode_class (FROM, TO, CLASS)
1342
1343/* Stack layout; function entry, exit and calling.  */
1344
1345/* Define this if pushing a word on the stack
1346   makes the stack pointer a smaller address.  */
1347#define STACK_GROWS_DOWNWARD
1348
1349/* Define this to nonzero if the nominal address of the stack frame
1350   is at the high-address end of the local variables;
1351   that is, each additional local variable allocated
1352   goes at a more negative offset in the frame.  */
1353#define FRAME_GROWS_DOWNWARD 1
1354
1355/* Offset within stack frame to start allocating local variables at.
1356   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1357   first local allocated.  Otherwise, it is the offset to the BEGINNING
1358   of the first local allocated.  */
1359#define STARTING_FRAME_OFFSET 0
1360
1361/* If we generate an insn to push BYTES bytes,
1362   this says how many the stack pointer really advances by.
1363   On 386, we have pushw instruction that decrements by exactly 2 no
1364   matter what the position was, there is no pushb.
1365   But as CIE data alignment factor on this arch is -4, we need to make
1366   sure all stack pointer adjustments are in multiple of 4.
1367
1368   For 64bit ABI we round up to 8 bytes.
1369 */
1370
1371#define PUSH_ROUNDING(BYTES) \
1372  (TARGET_64BIT		     \
1373   ? (((BYTES) + 7) & (-8))  \
1374   : (((BYTES) + 3) & (-4)))
1375
1376/* If defined, the maximum amount of space required for outgoing arguments will
1377   be computed and placed into the variable
1378   `current_function_outgoing_args_size'.  No space will be pushed onto the
1379   stack for each call; instead, the function prologue should increase the stack
1380   frame size by this amount.  */
1381
1382#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1383
1384/* If defined, a C expression whose value is nonzero when we want to use PUSH
1385   instructions to pass outgoing arguments.  */
1386
1387#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1388
1389/* We want the stack and args grow in opposite directions, even if
1390   PUSH_ARGS is 0.  */
1391#define PUSH_ARGS_REVERSED 1
1392
1393/* Offset of first parameter from the argument pointer register value.  */
1394#define FIRST_PARM_OFFSET(FNDECL) 0
1395
1396/* Define this macro if functions should assume that stack space has been
1397   allocated for arguments even when their values are passed in registers.
1398
1399   The value of this macro is the size, in bytes, of the area reserved for
1400   arguments passed in registers for the function represented by FNDECL.
1401
1402   This space can be allocated by the caller, or be a part of the
1403   machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1404   which.  */
1405#define REG_PARM_STACK_SPACE(FNDECL) 0
1406
1407/* Value is the number of bytes of arguments automatically
1408   popped when returning from a subroutine call.
1409   FUNDECL is the declaration node of the function (as a tree),
1410   FUNTYPE is the data type of the function (as a tree),
1411   or for a library call it is an identifier node for the subroutine name.
1412   SIZE is the number of bytes of arguments passed on the stack.
1413
1414   On the 80386, the RTD insn may be used to pop them if the number
1415     of args is fixed, but if the number is variable then the caller
1416     must pop them all.  RTD can't be used for library calls now
1417     because the library is compiled with the Unix compiler.
1418   Use of RTD is a selectable option, since it is incompatible with
1419   standard Unix calling sequences.  If the option is not selected,
1420   the caller must always pop the args.
1421
1422   The attribute stdcall is equivalent to RTD on a per module basis.  */
1423
1424#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1425  ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1426
1427#define FUNCTION_VALUE_REGNO_P(N) \
1428  ix86_function_value_regno_p (N)
1429
1430/* Define how to find the value returned by a library function
1431   assuming the value has mode MODE.  */
1432
1433#define LIBCALL_VALUE(MODE) \
1434  ix86_libcall_value (MODE)
1435
1436/* Define the size of the result block used for communication between
1437   untyped_call and untyped_return.  The block contains a DImode value
1438   followed by the block used by fnsave and frstor.  */
1439
1440#define APPLY_RESULT_SIZE (8+108)
1441
1442/* 1 if N is a possible register number for function argument passing.  */
1443#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1444
1445/* Define a data type for recording info about an argument list
1446   during the scan of that argument list.  This data type should
1447   hold all necessary information about the function itself
1448   and about the args processed so far, enough to enable macros
1449   such as FUNCTION_ARG to determine where the next arg should go.  */
1450
1451typedef struct ix86_args {
1452  int words;			/* # words passed so far */
1453  int nregs;			/* # registers available for passing */
1454  int regno;			/* next available register number */
1455  int fastcall;			/* fastcall calling convention is used */
1456  int sse_words;		/* # sse words passed so far */
1457  int sse_nregs;		/* # sse registers available for passing */
1458  int warn_sse;			/* True when we want to warn about SSE ABI.  */
1459  int warn_mmx;			/* True when we want to warn about MMX ABI.  */
1460  int sse_regno;		/* next available sse register number */
1461  int mmx_words;		/* # mmx words passed so far */
1462  int mmx_nregs;		/* # mmx registers available for passing */
1463  int mmx_regno;		/* next available mmx register number */
1464  int maybe_vaarg;		/* true for calls to possibly vardic fncts.  */
1465  int float_in_sse;		/* 1 if in 32-bit mode SFmode (2 for DFmode) should
1466				   be passed in SSE registers.  Otherwise 0.  */
1467} CUMULATIVE_ARGS;
1468
1469/* Initialize a variable CUM of type CUMULATIVE_ARGS
1470   for a call to a function whose data type is FNTYPE.
1471   For a library call, FNTYPE is 0.  */
1472
1473#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1474  init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1475
1476/* Update the data in CUM to advance over an argument
1477   of mode MODE and data type TYPE.
1478   (TYPE is null for libcalls where that information may not be available.)  */
1479
1480#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1481  function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1482
1483/* Define where to put the arguments to a function.
1484   Value is zero to push the argument on the stack,
1485   or a hard register in which to store the argument.
1486
1487   MODE is the argument's machine mode.
1488   TYPE is the data type of the argument (as a tree).
1489    This is null for libcalls where that information may
1490    not be available.
1491   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1492    the preceding args and about the function being called.
1493   NAMED is nonzero if this argument is a named parameter
1494    (otherwise it is an extra parameter matching an ellipsis).  */
1495
1496#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1497  function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1498
1499/* Implement `va_start' for varargs and stdarg.  */
1500#define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1501  ix86_va_start (VALIST, NEXTARG)
1502
1503#define TARGET_ASM_FILE_END ix86_file_end
1504#define NEED_INDICATE_EXEC_STACK 0
1505
1506/* Output assembler code to FILE to increment profiler label # LABELNO
1507   for profiling a function entry.  */
1508
1509#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1510
1511#define MCOUNT_NAME "_mcount"
1512
1513#define PROFILE_COUNT_REGISTER "edx"
1514
1515/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1516   the stack pointer does not matter.  The value is tested only in
1517   functions that have frame pointers.
1518   No definition is equivalent to always zero.  */
1519/* Note on the 386 it might be more efficient not to define this since
1520   we have to restore it ourselves from the frame pointer, in order to
1521   use pop */
1522
1523#define EXIT_IGNORE_STACK 1
1524
1525/* Output assembler code for a block containing the constant parts
1526   of a trampoline, leaving space for the variable parts.  */
1527
1528/* On the 386, the trampoline contains two instructions:
1529     mov #STATIC,ecx
1530     jmp FUNCTION
1531   The trampoline is generated entirely at runtime.  The operand of JMP
1532   is the address of FUNCTION relative to the instruction following the
1533   JMP (which is 5 bytes long).  */
1534
1535/* Length in units of the trampoline for entering a nested function.  */
1536
1537#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1538
1539/* Emit RTL insns to initialize the variable parts of a trampoline.
1540   FNADDR is an RTX for the address of the function's pure code.
1541   CXT is an RTX for the static chain value for the function.  */
1542
1543#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1544  x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1545
1546/* Definitions for register eliminations.
1547
1548   This is an array of structures.  Each structure initializes one pair
1549   of eliminable registers.  The "from" register number is given first,
1550   followed by "to".  Eliminations of the same "from" register are listed
1551   in order of preference.
1552
1553   There are two registers that can always be eliminated on the i386.
1554   The frame pointer and the arg pointer can be replaced by either the
1555   hard frame pointer or to the stack pointer, depending upon the
1556   circumstances.  The hard frame pointer is not used before reload and
1557   so it is not eligible for elimination.  */
1558
1559#define ELIMINABLE_REGS					\
1560{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1561 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1562 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1563 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}	\
1564
1565/* Given FROM and TO register numbers, say whether this elimination is
1566   allowed.  Frame pointer elimination is automatically handled.
1567
1568   All other eliminations are valid.  */
1569
1570#define CAN_ELIMINATE(FROM, TO) \
1571  ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1572
1573/* Define the offset between two registers, one to be eliminated, and the other
1574   its replacement, at the start of a routine.  */
1575
1576#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1577  ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1578
1579/* Addressing modes, and classification of registers for them.  */
1580
1581/* Macros to check register numbers against specific register classes.  */
1582
1583/* These assume that REGNO is a hard or pseudo reg number.
1584   They give nonzero only if REGNO is a hard reg of the suitable class
1585   or a pseudo reg currently allocated to a suitable hard reg.
1586   Since they use reg_renumber, they are safe only once reg_renumber
1587   has been allocated, which happens in local-alloc.c.  */
1588
1589#define REGNO_OK_FOR_INDEX_P(REGNO) 					\
1590  ((REGNO) < STACK_POINTER_REGNUM 					\
1591   || (REGNO >= FIRST_REX_INT_REG					\
1592       && (REGNO) <= LAST_REX_INT_REG)					\
1593   || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1594       && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1595   || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1596
1597#define REGNO_OK_FOR_BASE_P(REGNO) 					\
1598  ((REGNO) <= STACK_POINTER_REGNUM 					\
1599   || (REGNO) == ARG_POINTER_REGNUM 					\
1600   || (REGNO) == FRAME_POINTER_REGNUM 					\
1601   || (REGNO >= FIRST_REX_INT_REG					\
1602       && (REGNO) <= LAST_REX_INT_REG)					\
1603   || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1604       && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1605   || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1606
1607#define REGNO_OK_FOR_SIREG_P(REGNO) \
1608  ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1609#define REGNO_OK_FOR_DIREG_P(REGNO) \
1610  ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1611
1612/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1613   and check its validity for a certain class.
1614   We have two alternate definitions for each of them.
1615   The usual definition accepts all pseudo regs; the other rejects
1616   them unless they have been allocated suitable hard regs.
1617   The symbol REG_OK_STRICT causes the latter definition to be used.
1618
1619   Most source files want to accept pseudo regs in the hope that
1620   they will get allocated to the class that the insn wants them to be in.
1621   Source files for reload pass need to be strict.
1622   After reload, it makes no difference, since pseudo regs have
1623   been eliminated by then.  */
1624
1625
1626/* Non strict versions, pseudos are ok.  */
1627#define REG_OK_FOR_INDEX_NONSTRICT_P(X)					\
1628  (REGNO (X) < STACK_POINTER_REGNUM					\
1629   || (REGNO (X) >= FIRST_REX_INT_REG					\
1630       && REGNO (X) <= LAST_REX_INT_REG)				\
1631   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1632
1633#define REG_OK_FOR_BASE_NONSTRICT_P(X)					\
1634  (REGNO (X) <= STACK_POINTER_REGNUM					\
1635   || REGNO (X) == ARG_POINTER_REGNUM					\
1636   || REGNO (X) == FRAME_POINTER_REGNUM 				\
1637   || (REGNO (X) >= FIRST_REX_INT_REG					\
1638       && REGNO (X) <= LAST_REX_INT_REG)				\
1639   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1640
1641/* Strict versions, hard registers only */
1642#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1643#define REG_OK_FOR_BASE_STRICT_P(X)  REGNO_OK_FOR_BASE_P (REGNO (X))
1644
1645#ifndef REG_OK_STRICT
1646#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_NONSTRICT_P (X)
1647#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_NONSTRICT_P (X)
1648
1649#else
1650#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_STRICT_P (X)
1651#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_STRICT_P (X)
1652#endif
1653
1654/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1655   that is a valid memory address for an instruction.
1656   The MODE argument is the machine mode for the MEM expression
1657   that wants to use this address.
1658
1659   The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1660   except for CONSTANT_ADDRESS_P which is usually machine-independent.
1661
1662   See legitimize_pic_address in i386.c for details as to what
1663   constitutes a legitimate address when -fpic is used.  */
1664
1665#define MAX_REGS_PER_ADDRESS 2
1666
1667#define CONSTANT_ADDRESS_P(X)  constant_address_p (X)
1668
1669/* Nonzero if the constant value X is a legitimate general operand.
1670   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1671
1672#define LEGITIMATE_CONSTANT_P(X)  legitimate_constant_p (X)
1673
1674#ifdef REG_OK_STRICT
1675#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
1676do {									\
1677  if (legitimate_address_p ((MODE), (X), 1))				\
1678    goto ADDR;								\
1679} while (0)
1680
1681#else
1682#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
1683do {									\
1684  if (legitimate_address_p ((MODE), (X), 0))				\
1685    goto ADDR;								\
1686} while (0)
1687
1688#endif
1689
1690/* If defined, a C expression to determine the base term of address X.
1691   This macro is used in only one place: `find_base_term' in alias.c.
1692
1693   It is always safe for this macro to not be defined.  It exists so
1694   that alias analysis can understand machine-dependent addresses.
1695
1696   The typical use of this macro is to handle addresses containing
1697   a label_ref or symbol_ref within an UNSPEC.  */
1698
1699#define FIND_BASE_TERM(X) ix86_find_base_term (X)
1700
1701/* Try machine-dependent ways of modifying an illegitimate address
1702   to be legitimate.  If we find one, return the new, valid address.
1703   This macro is used in only one place: `memory_address' in explow.c.
1704
1705   OLDX is the address as it was before break_out_memory_refs was called.
1706   In some cases it is useful to look at this to decide what needs to be done.
1707
1708   MODE and WIN are passed so that this macro can use
1709   GO_IF_LEGITIMATE_ADDRESS.
1710
1711   It is always safe for this macro to do nothing.  It exists to recognize
1712   opportunities to optimize the output.
1713
1714   For the 80386, we handle X+REG by loading X into a register R and
1715   using R+REG.  R will go in a general reg and indexing will be used.
1716   However, if REG is a broken-out memory address or multiplication,
1717   nothing needs to be done because REG can certainly go in a general reg.
1718
1719   When -fpic is used, special handling is needed for symbolic references.
1720   See comments by legitimize_pic_address in i386.c for details.  */
1721
1722#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)				\
1723do {									\
1724  (X) = legitimize_address ((X), (OLDX), (MODE));			\
1725  if (memory_address_p ((MODE), (X)))					\
1726    goto WIN;								\
1727} while (0)
1728
1729#define REWRITE_ADDRESS(X) rewrite_address (X)
1730
1731/* Nonzero if the constant value X is a legitimate general operand
1732   when generating PIC code.  It is given that flag_pic is on and
1733   that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1734
1735#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1736
1737#define SYMBOLIC_CONST(X)	\
1738  (GET_CODE (X) == SYMBOL_REF						\
1739   || GET_CODE (X) == LABEL_REF						\
1740   || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1741
1742/* Go to LABEL if ADDR (a legitimate address expression)
1743   has an effect that depends on the machine mode it is used for.
1744   On the 80386, only postdecrement and postincrement address depend thus
1745   (the amount of decrement or increment being the length of the operand).  */
1746#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)	\
1747do {							\
1748 if (GET_CODE (ADDR) == POST_INC			\
1749     || GET_CODE (ADDR) == POST_DEC)			\
1750   goto LABEL;						\
1751} while (0)
1752
1753/* Max number of args passed in registers.  If this is more than 3, we will
1754   have problems with ebx (register #4), since it is a caller save register and
1755   is also used as the pic register in ELF.  So for now, don't allow more than
1756   3 registers to be passed in registers.  */
1757
1758#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
1759
1760#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
1761
1762#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1763
1764
1765/* Specify the machine mode that this machine uses
1766   for the index in the tablejump instruction.  */
1767#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
1768
1769/* Define this as 1 if `char' should by default be signed; else as 0.  */
1770#define DEFAULT_SIGNED_CHAR 1
1771
1772/* Number of bytes moved into a data cache for a single prefetch operation.  */
1773#define PREFETCH_BLOCK ix86_cost->prefetch_block
1774
1775/* Number of prefetch operations that can be done in parallel.  */
1776#define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
1777
1778/* Max number of bytes we can move from memory to memory
1779   in one reasonably fast instruction.  */
1780#define MOVE_MAX 16
1781
1782/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1783   move efficiently, as opposed to  MOVE_MAX which is the maximum
1784   number of bytes we can move with a single instruction.  */
1785#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
1786
1787/* If a memory-to-memory move would take MOVE_RATIO or more simple
1788   move-instruction pairs, we will do a movmem or libcall instead.
1789   Increasing the value will always make code faster, but eventually
1790   incurs high cost in increased code size.
1791
1792   If you don't define this, a reasonable default is used.  */
1793
1794#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
1795
1796/* If a clear memory operation would take CLEAR_RATIO or more simple
1797   move-instruction sequences, we will do a clrmem or libcall instead.  */
1798
1799#define CLEAR_RATIO (optimize_size ? 2 \
1800		     : ix86_cost->move_ratio > 6 ? 6 : ix86_cost->move_ratio)
1801
1802/* Define if shifts truncate the shift count
1803   which implies one can omit a sign-extension or zero-extension
1804   of a shift count.  */
1805/* On i386, shifts do truncate the count.  But bit opcodes don't.  */
1806
1807/* #define SHIFT_COUNT_TRUNCATED */
1808
1809/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1810   is done just by pretending it is already truncated.  */
1811#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1812
1813/* A macro to update M and UNSIGNEDP when an object whose type is
1814   TYPE and which has the specified mode and signedness is to be
1815   stored in a register.  This macro is only called when TYPE is a
1816   scalar type.
1817
1818   On i386 it is sometimes useful to promote HImode and QImode
1819   quantities to SImode.  The choice depends on target type.  */
1820
1821#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) 		\
1822do {							\
1823  if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS)	\
1824      || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS))	\
1825    (MODE) = SImode;					\
1826} while (0)
1827
1828/* Specify the machine mode that pointers have.
1829   After generation of rtl, the compiler makes no further distinction
1830   between pointers and any other objects of this machine mode.  */
1831#define Pmode (TARGET_64BIT ? DImode : SImode)
1832
1833/* A function address in a call instruction
1834   is a byte address (for indexing purposes)
1835   so give the MEM rtx a byte's mode.  */
1836#define FUNCTION_MODE QImode
1837
1838/* A C expression for the cost of moving data from a register in class FROM to
1839   one in class TO.  The classes are expressed using the enumeration values
1840   such as `GENERAL_REGS'.  A value of 2 is the default; other values are
1841   interpreted relative to that.
1842
1843   It is not required that the cost always equal 2 when FROM is the same as TO;
1844   on some machines it is expensive to move between registers if they are not
1845   general registers.  */
1846
1847#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1848   ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
1849
1850/* A C expression for the cost of moving data of mode M between a
1851   register and memory.  A value of 2 is the default; this cost is
1852   relative to those in `REGISTER_MOVE_COST'.
1853
1854   If moving between registers and memory is more expensive than
1855   between two registers, you should define this macro to express the
1856   relative cost.  */
1857
1858#define MEMORY_MOVE_COST(MODE, CLASS, IN)	\
1859  ix86_memory_move_cost ((MODE), (CLASS), (IN))
1860
1861/* A C expression for the cost of a branch instruction.  A value of 1
1862   is the default; other values are interpreted relative to that.  */
1863
1864#define BRANCH_COST ix86_branch_cost
1865
1866/* Define this macro as a C expression which is nonzero if accessing
1867   less than a word of memory (i.e. a `char' or a `short') is no
1868   faster than accessing a word of memory, i.e., if such access
1869   require more than one instruction or if there is no difference in
1870   cost between byte and (aligned) word loads.
1871
1872   When this macro is not defined, the compiler will access a field by
1873   finding the smallest containing object; when it is defined, a
1874   fullword load will be used if alignment permits.  Unless bytes
1875   accesses are faster than word accesses, using word accesses is
1876   preferable since it may eliminate subsequent memory access if
1877   subsequent accesses occur to other fields in the same word of the
1878   structure, but to different bytes.  */
1879
1880#define SLOW_BYTE_ACCESS 0
1881
1882/* Nonzero if access to memory by shorts is slow and undesirable.  */
1883#define SLOW_SHORT_ACCESS 0
1884
1885/* Define this macro to be the value 1 if unaligned accesses have a
1886   cost many times greater than aligned accesses, for example if they
1887   are emulated in a trap handler.
1888
1889   When this macro is nonzero, the compiler will act as if
1890   `STRICT_ALIGNMENT' were nonzero when generating code for block
1891   moves.  This can cause significantly more instructions to be
1892   produced.  Therefore, do not set this macro nonzero if unaligned
1893   accesses only add a cycle or two to the time for a memory access.
1894
1895   If the value of this macro is always zero, it need not be defined.  */
1896
1897/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
1898
1899/* Define this macro if it is as good or better to call a constant
1900   function address than to call an address kept in a register.
1901
1902   Desirable on the 386 because a CALL with a constant address is
1903   faster than one with a register address.  */
1904
1905#define NO_FUNCTION_CSE
1906
1907/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1908   return the mode to be used for the comparison.
1909
1910   For floating-point equality comparisons, CCFPEQmode should be used.
1911   VOIDmode should be used in all other cases.
1912
1913   For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1914   possible, to allow for more combinations.  */
1915
1916#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1917
1918/* Return nonzero if MODE implies a floating point inequality can be
1919   reversed.  */
1920
1921#define REVERSIBLE_CC_MODE(MODE) 1
1922
1923/* A C expression whose value is reversed condition code of the CODE for
1924   comparison done in CC_MODE mode.  */
1925#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1926
1927
1928/* Control the assembler format that we output, to the extent
1929   this does not vary between assemblers.  */
1930
1931/* How to refer to registers in assembler output.
1932   This sequence is indexed by compiler's hard-register-number (see above).  */
1933
1934/* In order to refer to the first 8 regs as 32 bit regs, prefix an "e".
1935   For non floating point regs, the following are the HImode names.
1936
1937   For float regs, the stack top is sometimes referred to as "%st(0)"
1938   instead of just "%st".  PRINT_OPERAND handles this with the "y" code.  */
1939
1940#define HI_REGISTER_NAMES						\
1941{"ax","dx","cx","bx","si","di","bp","sp",				\
1942 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)",		\
1943 "argp", "flags", "fpsr", "dirflag", "frame",				\
1944 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7",		\
1945 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7"	,		\
1946 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",			\
1947 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
1948
1949#define REGISTER_NAMES HI_REGISTER_NAMES
1950
1951/* Table of additional register names to use in user input.  */
1952
1953#define ADDITIONAL_REGISTER_NAMES \
1954{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 },	\
1955  { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 },	\
1956  { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 },	\
1957  { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 },	\
1958  { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 },		\
1959  { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
1960
1961/* Note we are omitting these since currently I don't know how
1962to get gcc to use these, since they want the same but different
1963number as al, and ax.
1964*/
1965
1966#define QI_REGISTER_NAMES \
1967{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
1968
1969/* These parallel the array above, and can be used to access bits 8:15
1970   of regs 0 through 3.  */
1971
1972#define QI_HIGH_REGISTER_NAMES \
1973{"ah", "dh", "ch", "bh", }
1974
1975/* How to renumber registers for dbx and gdb.  */
1976
1977#define DBX_REGISTER_NUMBER(N) \
1978  (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
1979
1980extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1981extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1982extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
1983
1984/* Before the prologue, RA is at 0(%esp).  */
1985#define INCOMING_RETURN_ADDR_RTX \
1986  gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
1987
1988/* After the prologue, RA is at -4(AP) in the current frame.  */
1989#define RETURN_ADDR_RTX(COUNT, FRAME)					   \
1990  ((COUNT) == 0								   \
1991   ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
1992   : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
1993
1994/* PC is dbx register 8; let's use that column for RA.  */
1995#define DWARF_FRAME_RETURN_COLUMN 	(TARGET_64BIT ? 16 : 8)
1996
1997/* Before the prologue, the top of the frame is at 4(%esp).  */
1998#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
1999
2000/* Describe how we implement __builtin_eh_return.  */
2001#define EH_RETURN_DATA_REGNO(N)	((N) < 2 ? (N) : INVALID_REGNUM)
2002#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 2)
2003
2004
2005/* Select a format to encode pointers in exception handling data.  CODE
2006   is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
2007   true if the symbol may be affected by dynamic relocations.
2008
2009   ??? All x86 object file formats are capable of representing this.
2010   After all, the relocation needed is the same as for the call insn.
2011   Whether or not a particular assembler allows us to enter such, I
2012   guess we'll have to see.  */
2013#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)       		\
2014  asm_preferred_eh_data_format ((CODE), (GLOBAL))
2015
2016/* This is how to output an insn to push a register on the stack.
2017   It need not be very fast code.  */
2018
2019#define ASM_OUTPUT_REG_PUSH(FILE, REGNO)  \
2020do {									\
2021  if (TARGET_64BIT)							\
2022    asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n",				\
2023		 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));	\
2024  else									\
2025    asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]);	\
2026} while (0)
2027
2028/* This is how to output an insn to pop a register from the stack.
2029   It need not be very fast code.  */
2030
2031#define ASM_OUTPUT_REG_POP(FILE, REGNO)  \
2032do {									\
2033  if (TARGET_64BIT)							\
2034    asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n",				\
2035		 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));	\
2036  else									\
2037    asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]);	\
2038} while (0)
2039
2040/* This is how to output an element of a case-vector that is absolute.  */
2041
2042#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
2043  ix86_output_addr_vec_elt ((FILE), (VALUE))
2044
2045/* This is how to output an element of a case-vector that is relative.  */
2046
2047#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2048  ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2049
2050/* Under some conditions we need jump tables in the text section,
2051   because the assembler cannot handle label differences between
2052   sections.  This is the case for x86_64 on Mach-O for example.  */
2053
2054#define JUMP_TABLES_IN_TEXT_SECTION \
2055  (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2056   || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2057
2058/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2059   and switch back.  For x86 we do this only to save a few bytes that
2060   would otherwise be unused in the text section.  */
2061#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
2062   asm (SECTION_OP "\n\t"				\
2063	"call " USER_LABEL_PREFIX #FUNC "\n"		\
2064	TEXT_SECTION_ASM_OP);
2065
2066/* Print operand X (an rtx) in assembler syntax to file FILE.
2067   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2068   Effect of various CODE letters is described in i386.c near
2069   print_operand function.  */
2070
2071#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2072  ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
2073
2074#define PRINT_OPERAND(FILE, X, CODE)  \
2075  print_operand ((FILE), (X), (CODE))
2076
2077#define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
2078  print_operand_address ((FILE), (ADDR))
2079
2080#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL)	\
2081do {						\
2082  if (! output_addr_const_extra (FILE, (X)))	\
2083    goto FAIL;					\
2084} while (0);
2085
2086/* a letter which is not needed by the normal asm syntax, which
2087   we can use for operand syntax in the extended asm */
2088
2089#define ASM_OPERAND_LETTER '#'
2090#define RET return ""
2091#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
2092
2093/* Which processor to schedule for. The cpu attribute defines a list that
2094   mirrors this list, so changes to i386.md must be made at the same time.  */
2095
2096enum processor_type
2097{
2098  PROCESSOR_I386,			/* 80386 */
2099  PROCESSOR_I486,			/* 80486DX, 80486SX, 80486DX[24] */
2100  PROCESSOR_PENTIUM,
2101  PROCESSOR_PENTIUMPRO,
2102  PROCESSOR_GEODE,
2103  PROCESSOR_K6,
2104  PROCESSOR_ATHLON,
2105  PROCESSOR_PENTIUM4,
2106  PROCESSOR_K8,
2107  PROCESSOR_NOCONA,
2108  PROCESSOR_CORE2,
2109  PROCESSOR_GENERIC32,
2110  PROCESSOR_GENERIC64,
2111  PROCESSOR_max
2112};
2113
2114extern enum processor_type ix86_tune;
2115extern enum processor_type ix86_arch;
2116
2117enum fpmath_unit
2118{
2119  FPMATH_387 = 1,
2120  FPMATH_SSE = 2
2121};
2122
2123extern enum fpmath_unit ix86_fpmath;
2124
2125enum tls_dialect
2126{
2127  TLS_DIALECT_GNU,
2128  TLS_DIALECT_GNU2,
2129  TLS_DIALECT_SUN
2130};
2131
2132extern enum tls_dialect ix86_tls_dialect;
2133
2134enum cmodel {
2135  CM_32,	/* The traditional 32-bit ABI.  */
2136  CM_SMALL,	/* Assumes all code and data fits in the low 31 bits.  */
2137  CM_KERNEL,	/* Assumes all code and data fits in the high 31 bits.  */
2138  CM_MEDIUM,	/* Assumes code fits in the low 31 bits; data unlimited.  */
2139  CM_LARGE,	/* No assumptions.  */
2140  CM_SMALL_PIC,	/* Assumes code+data+got/plt fits in a 31 bit region.  */
2141  CM_MEDIUM_PIC	/* Assumes code+got/plt fits in a 31 bit region.  */
2142};
2143
2144extern enum cmodel ix86_cmodel;
2145
2146/* Size of the RED_ZONE area.  */
2147#define RED_ZONE_SIZE 128
2148/* Reserved area of the red zone for temporaries.  */
2149#define RED_ZONE_RESERVE 8
2150
2151enum asm_dialect {
2152  ASM_ATT,
2153  ASM_INTEL
2154};
2155
2156extern enum asm_dialect ix86_asm_dialect;
2157extern unsigned int ix86_preferred_stack_boundary;
2158extern int ix86_branch_cost, ix86_section_threshold;
2159
2160/* Smallest class containing REGNO.  */
2161extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2162
2163extern rtx ix86_compare_op0;	/* operand 0 for comparisons */
2164extern rtx ix86_compare_op1;	/* operand 1 for comparisons */
2165extern rtx ix86_compare_emitted;
2166
2167/* To properly truncate FP values into integers, we need to set i387 control
2168   word.  We can't emit proper mode switching code before reload, as spills
2169   generated by reload may truncate values incorrectly, but we still can avoid
2170   redundant computation of new control word by the mode switching pass.
2171   The fldcw instructions are still emitted redundantly, but this is probably
2172   not going to be noticeable problem, as most CPUs do have fast path for
2173   the sequence.
2174
2175   The machinery is to emit simple truncation instructions and split them
2176   before reload to instructions having USEs of two memory locations that
2177   are filled by this code to old and new control word.
2178
2179   Post-reload pass may be later used to eliminate the redundant fildcw if
2180   needed.  */
2181
2182enum ix86_entity
2183{
2184  I387_TRUNC = 0,
2185  I387_FLOOR,
2186  I387_CEIL,
2187  I387_MASK_PM,
2188  MAX_386_ENTITIES
2189};
2190
2191enum ix86_stack_slot
2192{
2193  SLOT_VIRTUAL = 0,
2194  SLOT_TEMP,
2195  SLOT_CW_STORED,
2196  SLOT_CW_TRUNC,
2197  SLOT_CW_FLOOR,
2198  SLOT_CW_CEIL,
2199  SLOT_CW_MASK_PM,
2200  MAX_386_STACK_LOCALS
2201};
2202
2203/* Define this macro if the port needs extra instructions inserted
2204   for mode switching in an optimizing compilation.  */
2205
2206#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2207   ix86_optimize_mode_switching[(ENTITY)]
2208
2209/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2210   initializer for an array of integers.  Each initializer element N
2211   refers to an entity that needs mode switching, and specifies the
2212   number of different modes that might need to be set for this
2213   entity.  The position of the initializer in the initializer -
2214   starting counting at zero - determines the integer that is used to
2215   refer to the mode-switched entity in question.  */
2216
2217#define NUM_MODES_FOR_MODE_SWITCHING \
2218   { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2219
2220/* ENTITY is an integer specifying a mode-switched entity.  If
2221   `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2222   return an integer value not larger than the corresponding element
2223   in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2224   must be switched into prior to the execution of INSN. */
2225
2226#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
2227
2228/* This macro specifies the order in which modes for ENTITY are
2229   processed.  0 is the highest priority.  */
2230
2231#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2232
2233/* Generate one or more insns to set ENTITY to MODE.  HARD_REG_LIVE
2234   is the set of hard registers live at the point where the insn(s)
2235   are to be inserted.  */
2236
2237#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) 			\
2238  ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED		\
2239   ? emit_i387_cw_initialization (MODE), 0				\
2240   : 0)
2241
2242
2243/* Avoid renaming of stack registers, as doing so in combination with
2244   scheduling just increases amount of live registers at time and in
2245   the turn amount of fxch instructions needed.
2246
2247   ??? Maybe Pentium chips benefits from renaming, someone can try....  */
2248
2249#define HARD_REGNO_RENAME_OK(SRC, TARGET)  \
2250   ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
2251
2252
2253#define DLL_IMPORT_EXPORT_PREFIX '#'
2254
2255#define FASTCALL_PREFIX '@'
2256
2257struct machine_function GTY(())
2258{
2259  struct stack_local_entry *stack_locals;
2260  const char *some_ld_name;
2261  rtx force_align_arg_pointer;
2262  int save_varrargs_registers;
2263  int accesses_prev_frame;
2264  int optimize_mode_switching[MAX_386_ENTITIES];
2265  /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
2266     determine the style used.  */
2267  int use_fast_prologue_epilogue;
2268  /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2269     for.  */
2270  int use_fast_prologue_epilogue_nregs;
2271  /* If true, the current function needs the default PIC register, not
2272     an alternate register (on x86) and must not use the red zone (on
2273     x86_64), even if it's a leaf function.  We don't want the
2274     function to be regarded as non-leaf because TLS calls need not
2275     affect register allocation.  This flag is set when a TLS call
2276     instruction is expanded within a function, and never reset, even
2277     if all such instructions are optimized away.  Use the
2278     ix86_current_function_calls_tls_descriptor macro for a better
2279     approximation.  */
2280  int tls_descriptor_call_expanded_p;
2281};
2282
2283#define ix86_stack_locals (cfun->machine->stack_locals)
2284#define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
2285#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2286#define ix86_tls_descriptor_calls_expanded_in_cfun \
2287  (cfun->machine->tls_descriptor_call_expanded_p)
2288/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2289   calls are optimized away, we try to detect cases in which it was
2290   optimized away.  Since such instructions (use (reg REG_SP)), we can
2291   verify whether there's any such instruction live by testing that
2292   REG_SP is live.  */
2293#define ix86_current_function_calls_tls_descriptor \
2294  (ix86_tls_descriptor_calls_expanded_in_cfun && regs_ever_live[SP_REG])
2295
2296/* Control behavior of x86_file_start.  */
2297#define X86_FILE_START_VERSION_DIRECTIVE false
2298#define X86_FILE_START_FLTUSED false
2299
2300/* Flag to mark data that is in the large address area.  */
2301#define SYMBOL_FLAG_FAR_ADDR		(SYMBOL_FLAG_MACH_DEP << 0)
2302#define SYMBOL_REF_FAR_ADDR_P(X)	\
2303	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2304/*
2305Local variables:
2306version-control: t
2307End:
2308*/
2309