i386.h revision 219374
1105464Sphk/* Definitions of target machine for GCC for IA-32.
2105464Sphk   Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3105464Sphk   2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4105464Sphk
5105464SphkThis file is part of GCC.
6105464Sphk
7105464SphkGCC is free software; you can redistribute it and/or modify
8105464Sphkit under the terms of the GNU General Public License as published by
9105464Sphkthe Free Software Foundation; either version 2, or (at your option)
10105464Sphkany later version.
11105464Sphk
12105464SphkGCC is distributed in the hope that it will be useful,
13105464Sphkbut WITHOUT ANY WARRANTY; without even the implied warranty of
14105464SphkMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15105464SphkGNU General Public License for more details.
16105464Sphk
17105464SphkYou should have received a copy of the GNU General Public License
18105464Sphkalong with GCC; see the file COPYING.  If not, write to
19105464Sphkthe Free Software Foundation, 51 Franklin Street, Fifth Floor,
20105464SphkBoston, MA 02110-1301, USA.  */
21105464Sphk
22105464Sphk/* The purpose of this file is to define the characteristics of the i386,
23105464Sphk   independent of assembler syntax or operating system.
24105464Sphk
25105464Sphk   Three other files build on this one to describe a specific assembler syntax:
26105464Sphk   bsd386.h, att386.h, and sun386.h.
27105464Sphk
28105464Sphk   The actual tm.h file for a particular system should include
29105464Sphk   this file, and then the file for the appropriate assembler syntax.
30105464Sphk
31105464Sphk   Many macros that specify assembler syntax are omitted entirely from
32105464Sphk   this file because they really belong in the files for particular
33105464Sphk   assemblers.  These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34105464Sphk   ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35105464Sphk   that start with ASM_ or end in ASM_OP.  */
36105464Sphk
37105464Sphk/* Define the specific costs for a given cpu */
38105464Sphk
39105464Sphkstruct processor_costs {
40105464Sphk  const int add;		/* cost of an add instruction */
41105464Sphk  const int lea;		/* cost of a lea instruction */
42105464Sphk  const int shift_var;		/* variable shift costs */
43105464Sphk  const int shift_const;	/* constant shift costs */
44219029Snetchild  const int mult_init[5];	/* cost of starting a multiply
45105464Sphk				   in QImode, HImode, SImode, DImode, TImode*/
46143418Sume  const int mult_bit;		/* cost of multiply per each bit set */
47106407Sphk  const int divide[5];		/* cost of a divide/mod
48106407Sphk				   in QImode, HImode, SImode, DImode, TImode*/
49106407Sphk  int movsx;			/* The cost of movsx operation.  */
50105464Sphk  int movzx;			/* The cost of movzx operation.  */
51105464Sphk  const int large_insn;		/* insns larger than this cost more */
52219029Snetchild  const int move_ratio;		/* The threshold of number of scalar
53219029Snetchild				   memory-to-memory move insns.  */
54105464Sphk  const int movzbl_load;	/* cost of loading using movzbl */
55105464Sphk  const int int_load[3];	/* cost of loading integer registers
56105464Sphk				   in QImode, HImode and SImode relative
57105464Sphk				   to reg-reg move (2).  */
58105464Sphk  const int int_store[3];	/* cost of storing integer register
59105464Sphk				   in QImode, HImode and SImode */
60105464Sphk  const int fp_move;		/* cost of reg,reg fld/fst */
61105464Sphk  const int fp_load[3];		/* cost of loading FP register
62105464Sphk				   in SFmode, DFmode and XFmode */
63105464Sphk  const int fp_store[3];	/* cost of storing FP register
64105464Sphk				   in SFmode, DFmode and XFmode */
65105464Sphk  const int mmx_move;		/* cost of moving MMX register.  */
66105464Sphk  const int mmx_load[2];	/* cost of loading MMX register
67105464Sphk				   in SImode and DImode */
68105464Sphk  const int mmx_store[2];	/* cost of storing MMX register
69105464Sphk				   in SImode and DImode */
70105464Sphk  const int sse_move;		/* cost of moving SSE register.  */
71105464Sphk  const int sse_load[3];	/* cost of loading SSE register
72105464Sphk				   in SImode, DImode and TImode*/
73105464Sphk  const int sse_store[3];	/* cost of storing SSE register
74105464Sphk				   in SImode, DImode and TImode*/
75105464Sphk  const int mmxsse_to_integer;	/* cost of moving mmxsse register to
76105464Sphk				   integer and vice versa.  */
77105464Sphk  const int prefetch_block;	/* bytes moved to cache for prefetch.  */
78105464Sphk  const int simultaneous_prefetches; /* number of parallel prefetch
79105464Sphk				   operations.  */
80105464Sphk  const int branch_cost;	/* Default value for BRANCH_COST.  */
81105464Sphk  const int fadd;		/* cost of FADD and FSUB instructions.  */
82105464Sphk  const int fmul;		/* cost of FMUL instruction.  */
83105464Sphk  const int fdiv;		/* cost of FDIV instruction.  */
84105464Sphk  const int fabs;		/* cost of FABS instruction.  */
85105464Sphk  const int fchs;		/* cost of FCHS instruction.  */
86105464Sphk  const int fsqrt;		/* cost of FSQRT instruction.  */
87105464Sphk};
88238198Strasz
89105464Sphkextern const struct processor_costs *ix86_cost;
90105464Sphk
91105464Sphk/* Macros used in the machine description to test the flags.  */
92105464Sphk
93105464Sphk/* configure can arrange to make this 2, to force a 486.  */
94105464Sphk
95105464Sphk#ifndef TARGET_CPU_DEFAULT
96105464Sphk#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
97105464Sphk#endif
98105464Sphk
99105464Sphk#ifndef TARGET_FPMATH_DEFAULT
100105464Sphk#define TARGET_FPMATH_DEFAULT \
101105464Sphk  (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
102105464Sphk#endif
103105464Sphk
104105464Sphk#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
105105464Sphk
106105464Sphk/* 64bit Sledgehammer mode.  For libgcc2 we make sure this is a
107105464Sphk   compile-time constant.  */
108105464Sphk#ifdef IN_LIBGCC2
109105464Sphk#undef TARGET_64BIT
110125755Sphk#ifdef __x86_64__
111105464Sphk#define TARGET_64BIT 1
112105464Sphk#else
113115624Sphk#define TARGET_64BIT 0
114112828Sphk#endif
115112828Sphk#else
116112828Sphk#ifndef TARGET_BI_ARCH
117112828Sphk#undef TARGET_64BIT
118112828Sphk#if TARGET_64BIT_DEFAULT
119112828Sphk#define TARGET_64BIT 1
120112828Sphk#else
121112828Sphk#define TARGET_64BIT 0
122112828Sphk#endif
123112828Sphk#endif
124112828Sphk#endif
125112828Sphk
126112828Sphk#define HAS_LONG_COND_BRANCH 1
127112828Sphk#define HAS_LONG_UNCOND_BRANCH 1
128112828Sphk
129112828Sphk#define TARGET_386 (ix86_tune == PROCESSOR_I386)
130112828Sphk#define TARGET_486 (ix86_tune == PROCESSOR_I486)
131112828Sphk#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
132112828Sphk#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
133112828Sphk#define TARGET_GEODE (ix86_tune == PROCESSOR_GEODE)
134125755Sphk#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
135112828Sphk#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
136112828Sphk#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
137112828Sphk#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
138112828Sphk#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
139115624Sphk#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
140125590Sphk#define TARGET_CORE2 (ix86_tune == PROCESSOR_CORE2)
141112828Sphk#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
142114720Sphk#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
143114720Sphk#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
144114720Sphk
145114720Sphk#define TUNEMASK (1 << ix86_tune)
146114720Sphkextern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
147115624Sphkextern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
148114720Sphkextern const int x86_branch_hints, x86_unroll_strlen;
149114720Sphkextern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
150114720Sphkextern const int x86_use_himode_fiop, x86_use_simode_fiop;
151114720Sphkextern const int x86_use_mov0, x86_use_cltd, x86_read_modify_write;
152115624Sphkextern const int x86_read_modify, x86_split_long_moves;
153114720Sphkextern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
154114720Sphkextern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
155112828Sphkextern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
156112828Sphkextern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
157112828Sphkextern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
158112828Sphkextern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
159112828Sphkextern const int x86_epilogue_using_move, x86_decompose_lea;
160112828Sphkextern const int x86_arch_always_fancy_math_387, x86_shift1;
161112828Sphkextern const int x86_sse_partial_reg_dependency, x86_sse_split_regs;
162112828Sphkextern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
163112828Sphkextern const int x86_use_ffreep;
164112828Sphkextern const int x86_inter_unit_moves, x86_schedule;
165112828Sphkextern const int x86_use_bt;
166112828Sphkextern const int x86_cmpxchg, x86_cmpxchg8b, x86_cmpxchg16b, x86_xadd;
167112828Sphkextern const int x86_use_incdec;
168112828Sphkextern const int x86_pad_returns;
169112828Sphkextern const int x86_partial_flag_reg_stall;
170112828Sphkextern int x86_prefetch_sse;
171112828Sphk
172112828Sphk#define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
173112828Sphk#define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
174112828Sphk#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
175112828Sphk#define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
176112828Sphk#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
177112828Sphk/* For sane SSE instruction set generation we need fcomi instruction.  It is
178112828Sphk   safe to enable all CMOVE instructions.  */
179112828Sphk#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
180112828Sphk#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
181112828Sphk#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
182112828Sphk#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
183112828Sphk#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
184112828Sphk#define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
185172836Sjulian#define TARGET_MOVX (x86_movx & TUNEMASK)
186112828Sphk#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
187243333Sjh#define TARGET_PARTIAL_FLAG_REG_STALL (x86_partial_flag_reg_stall & TUNEMASK)
188112828Sphk#define TARGET_USE_HIMODE_FIOP (x86_use_himode_fiop & TUNEMASK)
189112828Sphk#define TARGET_USE_SIMODE_FIOP (x86_use_simode_fiop & TUNEMASK)
190112828Sphk#define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
191112828Sphk#define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
192112828Sphk#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
193112828Sphk#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
194114720Sphk#define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
195115624Sphk#define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
196114720Sphk#define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
197115624Sphk#define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
198114720Sphk#define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
199115624Sphk#define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
200115624Sphk#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
201125755Sphk#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
202112828Sphk#define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
203112828Sphk#define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
204112828Sphk#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
205112828Sphk#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
206112828Sphk#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
207115624Sphk#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
208112828Sphk#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
209112828Sphk				      (x86_sse_partial_reg_dependency & TUNEMASK)
210112828Sphk#define TARGET_SSE_SPLIT_REGS (x86_sse_split_regs & TUNEMASK)
211112828Sphk#define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
212112828Sphk#define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
213112828Sphk#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
214112828Sphk#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
215112828Sphk#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
216112828Sphk#define TARGET_PREFETCH_SSE (x86_prefetch_sse)
217112828Sphk#define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
218112828Sphk#define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
219112828Sphk#define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
220112828Sphk#define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
221112828Sphk#define TARGET_FOUR_JUMP_LIMIT (x86_four_jump_limit & TUNEMASK)
222112828Sphk#define TARGET_SCHEDULE (x86_schedule & TUNEMASK)
223112828Sphk#define TARGET_USE_BT (x86_use_bt & TUNEMASK)
224112828Sphk#define TARGET_USE_INCDEC (x86_use_incdec & TUNEMASK)
225112828Sphk#define TARGET_PAD_RETURNS (x86_pad_returns & TUNEMASK)
226112828Sphk
227112828Sphk#define ASSEMBLER_DIALECT (ix86_asm_dialect)
228112828Sphk
229112828Sphk#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
230112828Sphk#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
231112828Sphk			     && (ix86_fpmath & FPMATH_387))
232112828Sphk
233125803Sphk#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
234112828Sphk#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
235112828Sphk#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
236112828Sphk#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
237112828Sphk
238112828Sphk#define TARGET_CMPXCHG (x86_cmpxchg & (1 << ix86_arch))
239112828Sphk#define TARGET_CMPXCHG8B (x86_cmpxchg8b & (1 << ix86_arch))
240112828Sphk#define TARGET_CMPXCHG16B (x86_cmpxchg16b & (1 << ix86_arch))
241115624Sphk#define TARGET_XADD (x86_xadd & (1 << ix86_arch))
242112828Sphk
243112828Sphk#ifndef TARGET_64BIT_DEFAULT
244112828Sphk#define TARGET_64BIT_DEFAULT 0
245115624Sphk#endif
246115624Sphk#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
247115624Sphk#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
248115624Sphk#endif
249115624Sphk
250115624Sphk/* Once GDB has been enhanced to deal with functions without frame
251115624Sphk   pointers, we can change this to allow for elimination of
252115624Sphk   the frame pointer in leaf functions.  */
253115624Sphk#define TARGET_DEFAULT 0
254115624Sphk
255115624Sphk/* This is not really a target flag, but is done this way so that
256115624Sphk   it's analogous to similar code for Mach-O on PowerPC.  darwin.h
257115624Sphk   redefines this to 1.  */
258115624Sphk#define TARGET_MACHO 0
259115624Sphk
260115624Sphk/* Subtargets may reset this to 1 in order to enable 96-bit long double
261115624Sphk   with the rounding mode forced to 53 bits.  */
262115624Sphk#define TARGET_96_ROUND_53_LONG_DOUBLE 0
263115624Sphk
264105464Sphk/* Sometimes certain combinations of command options do not make
265112552Sphk   sense on a particular target machine.  You can define a macro
266133318Sphk   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
267112828Sphk   defined, is executed once just after all the command options have
268115624Sphk   been parsed.
269133314Sphk
270133314Sphk   Don't use this macro to turn on various extra optimizations for
271133314Sphk   `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */
272133314Sphk
273105464Sphk#define OVERRIDE_OPTIONS override_options ()
274105464Sphk
275105464Sphk/* Define this to change the optimizations performed by default.  */
276#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
277  optimization_options ((LEVEL), (SIZE))
278
279/* -march=native handling only makes sense with compiler running on
280   an x86 or x86_64 chip.  If changing this condition, also change
281   the condition in driver-i386.c.  */
282#if defined(__i386__) || defined(__x86_64__)
283/* In driver-i386.c.  */
284extern const char *host_detect_local_cpu (int argc, const char **argv);
285#define EXTRA_SPEC_FUNCTIONS \
286  { "local_cpu_detect", host_detect_local_cpu },
287#define HAVE_LOCAL_CPU_DETECT
288#endif
289
290/* Support for configure-time defaults of some command line options.
291   The order here is important so that -march doesn't squash the
292   tune or cpu values.  */
293#define OPTION_DEFAULT_SPECS \
294  {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
295  {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
296  {"arch", "%{!march=*:-march=%(VALUE)}"}
297
298/* Specs for the compiler proper */
299
300#ifndef CC1_CPU_SPEC
301#define CC1_CPU_SPEC_1 "\
302%{!mtune*: \
303%{m386:mtune=i386 \
304%n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
305%{m486:-mtune=i486 \
306%n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
307%{mpentium:-mtune=pentium \
308%n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
309%{mpentiumpro:-mtune=pentiumpro \
310%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
311%{mcpu=*:-mtune=%* \
312%n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
313%<mcpu=* \
314%{mintel-syntax:-masm=intel \
315%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
316%{mno-intel-syntax:-masm=att \
317%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
318
319#ifndef HAVE_LOCAL_CPU_DETECT
320#define CC1_CPU_SPEC CC1_CPU_SPEC_1
321#else
322#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
323"%{march=native:%<march=native %:local_cpu_detect(arch) \
324  %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
325%{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
326#endif
327#endif
328
329/* Target CPU builtins.  */
330#define TARGET_CPU_CPP_BUILTINS()				\
331  do								\
332    {								\
333      size_t arch_len = strlen (ix86_arch_string);		\
334      size_t tune_len = strlen (ix86_tune_string);		\
335      int last_arch_char = ix86_arch_string[arch_len - 1];	\
336      int last_tune_char = ix86_tune_string[tune_len - 1];		\
337								\
338      if (TARGET_64BIT)						\
339	{							\
340	  builtin_assert ("cpu=x86_64");			\
341	  builtin_assert ("machine=x86_64");			\
342	  builtin_define ("__amd64");				\
343	  builtin_define ("__amd64__");				\
344	  builtin_define ("__x86_64");				\
345	  builtin_define ("__x86_64__");			\
346	}							\
347      else							\
348	{							\
349	  builtin_assert ("cpu=i386");				\
350	  builtin_assert ("machine=i386");			\
351	  builtin_define_std ("i386");				\
352	}							\
353								\
354      /* Built-ins based on -mtune= (or -march= if no		\
355	 -mtune= given).  */					\
356      if (TARGET_386)						\
357	builtin_define ("__tune_i386__");			\
358      else if (TARGET_486)					\
359	builtin_define ("__tune_i486__");			\
360      else if (TARGET_PENTIUM)					\
361	{							\
362	  builtin_define ("__tune_i586__");			\
363	  builtin_define ("__tune_pentium__");			\
364	  if (last_tune_char == 'x')				\
365	    builtin_define ("__tune_pentium_mmx__");		\
366	}							\
367      else if (TARGET_PENTIUMPRO)				\
368	{							\
369	  builtin_define ("__tune_i686__");			\
370	  builtin_define ("__tune_pentiumpro__");		\
371	  switch (last_tune_char)				\
372	    {							\
373	    case '3':						\
374	      builtin_define ("__tune_pentium3__");		\
375	      /* FALLTHRU */					\
376	    case '2':						\
377	      builtin_define ("__tune_pentium2__");		\
378	      break;						\
379	    }							\
380	}							\
381      else if (TARGET_GEODE)					\
382	{							\
383	  builtin_define ("__tune_geode__");			\
384	}							\
385      else if (TARGET_K6)					\
386	{							\
387	  builtin_define ("__tune_k6__");			\
388	  if (last_tune_char == '2')				\
389	    builtin_define ("__tune_k6_2__");			\
390	  else if (last_tune_char == '3')			\
391	    builtin_define ("__tune_k6_3__");			\
392	}							\
393      else if (TARGET_ATHLON)					\
394	{							\
395	  builtin_define ("__tune_athlon__");			\
396	  /* Plain "athlon" & "athlon-tbird" lacks SSE.  */	\
397	  if (last_tune_char != 'n' && last_tune_char != 'd')	\
398	    builtin_define ("__tune_athlon_sse__");		\
399	}							\
400      else if (TARGET_K8)					\
401	builtin_define ("__tune_k8__");				\
402      else if (TARGET_PENTIUM4)					\
403	builtin_define ("__tune_pentium4__");			\
404      else if (TARGET_NOCONA)					\
405	builtin_define ("__tune_nocona__");			\
406      else if (TARGET_CORE2)					\
407	builtin_define ("__tune_core2__");			\
408								\
409      if (TARGET_MMX)						\
410	builtin_define ("__MMX__");				\
411      if (TARGET_3DNOW)						\
412	builtin_define ("__3dNOW__");				\
413      if (TARGET_3DNOW_A)					\
414	builtin_define ("__3dNOW_A__");				\
415      if (TARGET_SSE)						\
416	builtin_define ("__SSE__");				\
417      if (TARGET_SSE2)						\
418	builtin_define ("__SSE2__");				\
419      if (TARGET_SSE3)						\
420	builtin_define ("__SSE3__");				\
421      if (TARGET_SSE_MATH && TARGET_SSE)			\
422	builtin_define ("__SSE_MATH__");			\
423      if (TARGET_SSE_MATH && TARGET_SSE2)			\
424	builtin_define ("__SSE2_MATH__");			\
425								\
426      /* Built-ins based on -march=.  */			\
427      if (ix86_arch == PROCESSOR_I486)				\
428	{							\
429	  builtin_define ("__i486");				\
430	  builtin_define ("__i486__");				\
431	}							\
432      else if (ix86_arch == PROCESSOR_PENTIUM)			\
433	{							\
434	  builtin_define ("__i586");				\
435	  builtin_define ("__i586__");				\
436	  builtin_define ("__pentium");				\
437	  builtin_define ("__pentium__");			\
438	  if (last_arch_char == 'x')				\
439	    builtin_define ("__pentium_mmx__");			\
440	}							\
441      else if (ix86_arch == PROCESSOR_PENTIUMPRO)		\
442	{							\
443	  builtin_define ("__i686");				\
444	  builtin_define ("__i686__");				\
445	  builtin_define ("__pentiumpro");			\
446	  builtin_define ("__pentiumpro__");			\
447	}							\
448      else if (ix86_arch == PROCESSOR_GEODE)			\
449	{							\
450	  builtin_define ("__geode");				\
451	  builtin_define ("__geode__");				\
452	}							\
453      else if (ix86_arch == PROCESSOR_K6)			\
454	{							\
455								\
456	  builtin_define ("__k6");				\
457	  builtin_define ("__k6__");				\
458	  if (last_arch_char == '2')				\
459	    builtin_define ("__k6_2__");			\
460	  else if (last_arch_char == '3')			\
461	    builtin_define ("__k6_3__");			\
462	}							\
463      else if (ix86_arch == PROCESSOR_ATHLON)			\
464	{							\
465	  builtin_define ("__athlon");				\
466	  builtin_define ("__athlon__");			\
467	  /* Plain "athlon" & "athlon-tbird" lacks SSE.  */	\
468	  if (last_tune_char != 'n' && last_tune_char != 'd')	\
469	    builtin_define ("__athlon_sse__");			\
470	}							\
471      else if (ix86_arch == PROCESSOR_K8)			\
472	{							\
473	  builtin_define ("__k8");				\
474	  builtin_define ("__k8__");				\
475	}							\
476      else if (ix86_arch == PROCESSOR_PENTIUM4)			\
477	{							\
478	  builtin_define ("__pentium4");			\
479	  builtin_define ("__pentium4__");			\
480	}							\
481      else if (ix86_arch == PROCESSOR_NOCONA)			\
482	{							\
483	  builtin_define ("__nocona");				\
484	  builtin_define ("__nocona__");			\
485	}							\
486      else if (ix86_arch == PROCESSOR_CORE2)			\
487	{							\
488	  builtin_define ("__core2");				\
489	  builtin_define ("__core2__");				\
490	}							\
491    }								\
492  while (0)
493
494#define TARGET_CPU_DEFAULT_i386 0
495#define TARGET_CPU_DEFAULT_i486 1
496#define TARGET_CPU_DEFAULT_pentium 2
497#define TARGET_CPU_DEFAULT_pentium_mmx 3
498#define TARGET_CPU_DEFAULT_pentiumpro 4
499#define TARGET_CPU_DEFAULT_pentium2 5
500#define TARGET_CPU_DEFAULT_pentium3 6
501#define TARGET_CPU_DEFAULT_pentium4 7
502#define TARGET_CPU_DEFAULT_geode 8
503#define TARGET_CPU_DEFAULT_k6 9
504#define TARGET_CPU_DEFAULT_k6_2 10
505#define TARGET_CPU_DEFAULT_k6_3 11
506#define TARGET_CPU_DEFAULT_athlon 12
507#define TARGET_CPU_DEFAULT_athlon_sse 13
508#define TARGET_CPU_DEFAULT_k8 14
509#define TARGET_CPU_DEFAULT_pentium_m 15
510#define TARGET_CPU_DEFAULT_prescott 16
511#define TARGET_CPU_DEFAULT_nocona 17
512#define TARGET_CPU_DEFAULT_core2 18
513#define TARGET_CPU_DEFAULT_generic 19
514
515#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
516				  "pentiumpro", "pentium2", "pentium3", \
517                                  "pentium4", "geode", "k6", "k6-2", "k6-3", \
518				  "athlon", "athlon-4", "k8", \
519				  "pentium-m", "prescott", "nocona", \
520				  "core2", "generic"}
521
522#ifndef CC1_SPEC
523#define CC1_SPEC "%(cc1_cpu) "
524#endif
525
526/* This macro defines names of additional specifications to put in the
527   specs that can be used in various specifications like CC1_SPEC.  Its
528   definition is an initializer with a subgrouping for each command option.
529
530   Each subgrouping contains a string constant, that defines the
531   specification name, and a string constant that used by the GCC driver
532   program.
533
534   Do not define this macro if it does not need to do anything.  */
535
536#ifndef SUBTARGET_EXTRA_SPECS
537#define SUBTARGET_EXTRA_SPECS
538#endif
539
540#define EXTRA_SPECS							\
541  { "cc1_cpu",  CC1_CPU_SPEC },						\
542  SUBTARGET_EXTRA_SPECS
543
544/* target machine storage layout */
545
546#define LONG_DOUBLE_TYPE_SIZE 80
547
548/* Set the value of FLT_EVAL_METHOD in float.h.  When using only the
549   FPU, assume that the fpcw is set to extended precision; when using
550   only SSE, rounding is correct; when using both SSE and the FPU,
551   the rounding precision is indeterminate, since either may be chosen
552   apparently at random.  */
553#define TARGET_FLT_EVAL_METHOD \
554  (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
555
556#define SHORT_TYPE_SIZE 16
557#define INT_TYPE_SIZE 32
558#define FLOAT_TYPE_SIZE 32
559#ifndef LONG_TYPE_SIZE
560#define LONG_TYPE_SIZE BITS_PER_WORD
561#endif
562#define DOUBLE_TYPE_SIZE 64
563#define LONG_LONG_TYPE_SIZE 64
564
565#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
566#define MAX_BITS_PER_WORD 64
567#else
568#define MAX_BITS_PER_WORD 32
569#endif
570
571/* Define this if most significant byte of a word is the lowest numbered.  */
572/* That is true on the 80386.  */
573
574#define BITS_BIG_ENDIAN 0
575
576/* Define this if most significant byte of a word is the lowest numbered.  */
577/* That is not true on the 80386.  */
578#define BYTES_BIG_ENDIAN 0
579
580/* Define this if most significant word of a multiword number is the lowest
581   numbered.  */
582/* Not true for 80386 */
583#define WORDS_BIG_ENDIAN 0
584
585/* Width of a word, in units (bytes).  */
586#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
587#ifdef IN_LIBGCC2
588#define MIN_UNITS_PER_WORD	(TARGET_64BIT ? 8 : 4)
589#else
590#define MIN_UNITS_PER_WORD	4
591#endif
592
593/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
594#define PARM_BOUNDARY BITS_PER_WORD
595
596/* Boundary (in *bits*) on which stack pointer should be aligned.  */
597#define STACK_BOUNDARY BITS_PER_WORD
598
599/* Boundary (in *bits*) on which the stack pointer prefers to be
600   aligned; the compiler cannot rely on having this alignment.  */
601#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
602
603/* As of July 2001, many runtimes do not align the stack properly when
604   entering main.  This causes expand_main_function to forcibly align
605   the stack, which results in aligned frames for functions called from
606   main, though it does nothing for the alignment of main itself.  */
607#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
608  (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
609
610/* Minimum allocation boundary for the code of a function.  */
611#define FUNCTION_BOUNDARY 8
612
613/* C++ stores the virtual bit in the lowest bit of function pointers.  */
614#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
615
616/* Alignment of field after `int : 0' in a structure.  */
617
618#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
619
620/* Minimum size in bits of the largest boundary to which any
621   and all fundamental data types supported by the hardware
622   might need to be aligned. No data type wants to be aligned
623   rounder than this.
624
625   Pentium+ prefers DFmode values to be aligned to 64 bit boundary
626   and Pentium Pro XFmode values at 128 bit boundaries.  */
627
628#define BIGGEST_ALIGNMENT 128
629
630/* Decide whether a variable of mode MODE should be 128 bit aligned.  */
631#define ALIGN_MODE_128(MODE) \
632 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
633
634/* The published ABIs say that doubles should be aligned on word
635   boundaries, so lower the alignment for structure fields unless
636   -malign-double is set.  */
637
638/* ??? Blah -- this macro is used directly by libobjc.  Since it
639   supports no vector modes, cut out the complexity and fall back
640   on BIGGEST_FIELD_ALIGNMENT.  */
641#ifdef IN_TARGET_LIBS
642#ifdef __x86_64__
643#define BIGGEST_FIELD_ALIGNMENT 128
644#else
645#define BIGGEST_FIELD_ALIGNMENT 32
646#endif
647#else
648#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
649   x86_field_alignment (FIELD, COMPUTED)
650#endif
651
652/* If defined, a C expression to compute the alignment given to a
653   constant that is being placed in memory.  EXP is the constant
654   and ALIGN is the alignment that the object would ordinarily have.
655   The value of this macro is used instead of that alignment to align
656   the object.
657
658   If this macro is not defined, then ALIGN is used.
659
660   The typical use of this macro is to increase alignment for string
661   constants to be word aligned so that `strcpy' calls that copy
662   constants can be done inline.  */
663
664#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
665
666/* If defined, a C expression to compute the alignment for a static
667   variable.  TYPE is the data type, and ALIGN is the alignment that
668   the object would ordinarily have.  The value of this macro is used
669   instead of that alignment to align the object.
670
671   If this macro is not defined, then ALIGN is used.
672
673   One use of this macro is to increase alignment of medium-size
674   data to make it all fit in fewer cache lines.  Another is to
675   cause character arrays to be word-aligned so that `strcpy' calls
676   that copy constants to character arrays can be done inline.  */
677
678#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
679
680/* If defined, a C expression to compute the alignment for a local
681   variable.  TYPE is the data type, and ALIGN is the alignment that
682   the object would ordinarily have.  The value of this macro is used
683   instead of that alignment to align the object.
684
685   If this macro is not defined, then ALIGN is used.
686
687   One use of this macro is to increase alignment of medium-size
688   data to make it all fit in fewer cache lines.  */
689
690#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
691
692/* If defined, a C expression that gives the alignment boundary, in
693   bits, of an argument with the specified mode and type.  If it is
694   not defined, `PARM_BOUNDARY' is used for all arguments.  */
695
696#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
697  ix86_function_arg_boundary ((MODE), (TYPE))
698
699/* Set this nonzero if move instructions will actually fail to work
700   when given unaligned data.  */
701#define STRICT_ALIGNMENT 0
702
703/* If bit field type is int, don't let it cross an int,
704   and give entire struct the alignment of an int.  */
705/* Required on the 386 since it doesn't have bit-field insns.  */
706#define PCC_BITFIELD_TYPE_MATTERS 1
707
708/* Standard register usage.  */
709
710/* This processor has special stack-like registers.  See reg-stack.c
711   for details.  */
712
713#define STACK_REGS
714#define IS_STACK_MODE(MODE)					\
715  (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH))	\
716   || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH))  \
717   || (MODE) == XFmode)
718
719/* Number of actual hardware registers.
720   The hardware registers are assigned numbers for the compiler
721   from 0 to just below FIRST_PSEUDO_REGISTER.
722   All registers that the compiler knows about must be given numbers,
723   even those that are not normally considered general registers.
724
725   In the 80386 we give the 8 general purpose registers the numbers 0-7.
726   We number the floating point registers 8-15.
727   Note that registers 0-7 can be accessed as a  short or int,
728   while only 0-3 may be used with byte `mov' instructions.
729
730   Reg 16 does not correspond to any hardware register, but instead
731   appears in the RTL as an argument pointer prior to reload, and is
732   eliminated during reloading in favor of either the stack or frame
733   pointer.  */
734
735#define FIRST_PSEUDO_REGISTER 53
736
737/* Number of hardware registers that go into the DWARF-2 unwind info.
738   If not defined, equals FIRST_PSEUDO_REGISTER.  */
739
740#define DWARF_FRAME_REGISTERS 17
741
742/* 1 for registers that have pervasive standard uses
743   and are not available for the register allocator.
744   On the 80386, the stack pointer is such, as is the arg pointer.
745
746   The value is zero if the register is not fixed on either 32 or
747   64 bit targets, one if the register if fixed on both 32 and 64
748   bit targets, two if it is only fixed on 32bit targets and three
749   if its only fixed on 64bit targets.
750   Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
751 */
752#define FIXED_REGISTERS						\
753/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
754{  0, 0, 0, 0, 0, 0, 0, 1, 0,  0,  0,  0,  0,  0,  0,  0,	\
755/*arg,flags,fpsr,dir,frame*/					\
756    1,    1,   1,  1,    1,					\
757/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
758     0,   0,   0,   0,   0,   0,   0,   0,			\
759/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
760     0,   0,   0,   0,   0,   0,   0,   0,			\
761/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
762     2,   2,   2,   2,   2,   2,   2,   2,			\
763/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
764     2,   2,    2,    2,    2,    2,    2,    2}
765
766
767/* 1 for registers not available across function calls.
768   These must include the FIXED_REGISTERS and also any
769   registers that can be used without being saved.
770   The latter must include the registers where values are returned
771   and the register where structure-value addresses are passed.
772   Aside from that, you can include as many other registers as you like.
773
774   The value is zero if the register is not call used on either 32 or
775   64 bit targets, one if the register if call used on both 32 and 64
776   bit targets, two if it is only call used on 32bit targets and three
777   if its only call used on 64bit targets.
778   Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
779*/
780#define CALL_USED_REGISTERS					\
781/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
782{  1, 1, 1, 0, 3, 3, 0, 1, 1,  1,  1,  1,  1,  1,  1,  1,	\
783/*arg,flags,fpsr,dir,frame*/					\
784     1,   1,   1,  1,    1,					\
785/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
786     1,   1,   1,   1,   1,  1,    1,   1,			\
787/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
788     1,   1,   1,   1,   1,   1,   1,   1,			\
789/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
790     1,   1,   1,   1,   2,   2,   2,   2,			\
791/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
792     1,   1,    1,    1,    1,    1,    1,    1}		\
793
794/* Order in which to allocate registers.  Each register must be
795   listed once, even those in FIXED_REGISTERS.  List frame pointer
796   late and fixed registers last.  Note that, in general, we prefer
797   registers listed in CALL_USED_REGISTERS, keeping the others
798   available for storage of persistent values.
799
800   The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
801   so this is just empty initializer for array.  */
802
803#define REG_ALLOC_ORDER 					\
804{  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
805   18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,	\
806   33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,  \
807   48, 49, 50, 51, 52 }
808
809/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
810   to be rearranged based on a particular function.  When using sse math,
811   we want to allocate SSE before x87 registers and vice vera.  */
812
813#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
814
815
816/* Macro to conditionally modify fixed_regs/call_used_regs.  */
817#define CONDITIONAL_REGISTER_USAGE					\
818do {									\
819    int i;								\
820    for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)				\
821      {									\
822	if (fixed_regs[i] > 1)						\
823	  fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2));	\
824	if (call_used_regs[i] > 1)					\
825	  call_used_regs[i] = (call_used_regs[i]			\
826			       == (TARGET_64BIT ? 3 : 2));		\
827      }									\
828    if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)			\
829      {									\
830	fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
831	call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
832      }									\
833    if (! TARGET_MMX)							\
834      {									\
835	int i;								\
836        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
837          if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i))	\
838	    fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";	\
839      }									\
840    if (! TARGET_SSE)							\
841      {									\
842	int i;								\
843        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
844          if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i))	\
845	    fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";	\
846      }									\
847    if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387)		\
848      {									\
849	int i;								\
850	HARD_REG_SET x;							\
851        COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]);	\
852        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
853          if (TEST_HARD_REG_BIT (x, i)) 				\
854	    fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";	\
855      }									\
856    if (! TARGET_64BIT)							\
857      {									\
858	int i;								\
859	for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++)		\
860	  reg_names[i] = "";						\
861	for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++)		\
862	  reg_names[i] = "";						\
863      }									\
864  } while (0)
865
866/* Return number of consecutive hard regs needed starting at reg REGNO
867   to hold something of mode MODE.
868   This is ordinarily the length in words of a value of mode MODE
869   but can be less for certain modes in special long registers.
870
871   Actually there are no two word move instructions for consecutive
872   registers.  And only registers 0-3 may have mov byte instructions
873   applied to them.
874   */
875
876#define HARD_REGNO_NREGS(REGNO, MODE)   \
877  (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)	\
878   ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
879   : ((MODE) == XFmode							\
880      ? (TARGET_64BIT ? 2 : 3)						\
881      : (MODE) == XCmode						\
882      ? (TARGET_64BIT ? 4 : 6)						\
883      : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
884
885#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE)			\
886  ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT)				\
887   ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)	\
888      ? 0								\
889      : ((MODE) == XFmode || (MODE) == XCmode))				\
890   : 0)
891
892#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
893
894#define VALID_SSE2_REG_MODE(MODE) \
895    ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode    \
896     || (MODE) == V2DImode || (MODE) == DFmode)
897
898#define VALID_SSE_REG_MODE(MODE)					\
899    ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode	\
900     || (MODE) == SFmode || (MODE) == TFmode)
901
902#define VALID_MMX_REG_MODE_3DNOW(MODE) \
903    ((MODE) == V2SFmode || (MODE) == SFmode)
904
905#define VALID_MMX_REG_MODE(MODE)					\
906    ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode	\
907     || (MODE) == V2SImode || (MODE) == SImode)
908
909/* ??? No autovectorization into MMX or 3DNOW until we can reliably
910   place emms and femms instructions.  */
911#define UNITS_PER_SIMD_WORD (TARGET_SSE ? 16 : UNITS_PER_WORD)
912
913#define VALID_FP_MODE_P(MODE)						\
914    ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode		\
915     || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode)	\
916
917#define VALID_INT_MODE_P(MODE)						\
918    ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode		\
919     || (MODE) == DImode						\
920     || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode	\
921     || (MODE) == CDImode						\
922     || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode		\
923         || (MODE) == TFmode || (MODE) == TCmode)))
924
925/* Return true for modes passed in SSE registers.  */
926#define SSE_REG_MODE_P(MODE) \
927 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode		\
928   || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode	\
929   || (MODE) == V4SFmode || (MODE) == V4SImode)
930
931/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.  */
932
933#define HARD_REGNO_MODE_OK(REGNO, MODE)	\
934   ix86_hard_regno_mode_ok ((REGNO), (MODE))
935
936/* Value is 1 if it is a good idea to tie two pseudo registers
937   when one has mode MODE1 and one has mode MODE2.
938   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
939   for any hard reg, then this must be 0 for correct output.  */
940
941#define MODES_TIEABLE_P(MODE1, MODE2)  ix86_modes_tieable_p (MODE1, MODE2)
942
943/* It is possible to write patterns to move flags; but until someone
944   does it,  */
945#define AVOID_CCMODE_COPIES
946
947/* Specify the modes required to caller save a given hard regno.
948   We do this on i386 to prevent flags from being saved at all.
949
950   Kill any attempts to combine saving of modes.  */
951
952#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)			\
953  (CC_REGNO_P (REGNO) ? VOIDmode					\
954   : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode			\
955   : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
956   : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode		\
957   : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode 	\
958   : (MODE))
959/* Specify the registers used for certain standard purposes.
960   The values of these macros are register numbers.  */
961
962/* on the 386 the pc register is %eip, and is not usable as a general
963   register.  The ordinary mov instructions won't work */
964/* #define PC_REGNUM  */
965
966/* Register to use for pushing function arguments.  */
967#define STACK_POINTER_REGNUM 7
968
969/* Base register for access to local variables of the function.  */
970#define HARD_FRAME_POINTER_REGNUM 6
971
972/* Base register for access to local variables of the function.  */
973#define FRAME_POINTER_REGNUM 20
974
975/* First floating point reg */
976#define FIRST_FLOAT_REG 8
977
978/* First & last stack-like regs */
979#define FIRST_STACK_REG FIRST_FLOAT_REG
980#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
981
982#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
983#define LAST_SSE_REG  (FIRST_SSE_REG + 7)
984
985#define FIRST_MMX_REG  (LAST_SSE_REG + 1)
986#define LAST_MMX_REG   (FIRST_MMX_REG + 7)
987
988#define FIRST_REX_INT_REG  (LAST_MMX_REG + 1)
989#define LAST_REX_INT_REG   (FIRST_REX_INT_REG + 7)
990
991#define FIRST_REX_SSE_REG  (LAST_REX_INT_REG + 1)
992#define LAST_REX_SSE_REG   (FIRST_REX_SSE_REG + 7)
993
994/* Value should be nonzero if functions must have frame pointers.
995   Zero means the frame pointer need not be set up (and parms
996   may be accessed via the stack pointer) in functions that seem suitable.
997   This is computed in `reload', in reload1.c.  */
998#define FRAME_POINTER_REQUIRED  ix86_frame_pointer_required ()
999
1000/* Override this in other tm.h files to cope with various OS lossage
1001   requiring a frame pointer.  */
1002#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1003#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1004#endif
1005
1006/* Make sure we can access arbitrary call frames.  */
1007#define SETUP_FRAME_ADDRESSES()  ix86_setup_frame_addresses ()
1008
1009/* Base register for access to arguments of the function.  */
1010#define ARG_POINTER_REGNUM 16
1011
1012/* Register in which static-chain is passed to a function.
1013   We do use ECX as static chain register for 32 bit ABI.  On the
1014   64bit ABI, ECX is an argument register, so we use R10 instead.  */
1015#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1016
1017/* Register to hold the addressing base for position independent
1018   code access to data items.  We don't use PIC pointer for 64bit
1019   mode.  Define the regnum to dummy value to prevent gcc from
1020   pessimizing code dealing with EBX.
1021
1022   To avoid clobbering a call-saved register unnecessarily, we renumber
1023   the pic register when possible.  The change is visible after the
1024   prologue has been emitted.  */
1025
1026#define REAL_PIC_OFFSET_TABLE_REGNUM  3
1027
1028#define PIC_OFFSET_TABLE_REGNUM				\
1029  ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC)	\
1030   || !flag_pic ? INVALID_REGNUM			\
1031   : reload_completed ? REGNO (pic_offset_table_rtx)	\
1032   : REAL_PIC_OFFSET_TABLE_REGNUM)
1033
1034#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1035
1036/* A C expression which can inhibit the returning of certain function
1037   values in registers, based on the type of value.  A nonzero value
1038   says to return the function value in memory, just as large
1039   structures are always returned.  Here TYPE will be a C expression
1040   of type `tree', representing the data type of the value.
1041
1042   Note that values of mode `BLKmode' must be explicitly handled by
1043   this macro.  Also, the option `-fpcc-struct-return' takes effect
1044   regardless of this macro.  On most systems, it is possible to
1045   leave the macro undefined; this causes a default definition to be
1046   used, whose value is the constant 1 for `BLKmode' values, and 0
1047   otherwise.
1048
1049   Do not use this macro to indicate that structures and unions
1050   should always be returned in memory.  You should instead use
1051   `DEFAULT_PCC_STRUCT_RETURN' to indicate this.  */
1052
1053#define RETURN_IN_MEMORY(TYPE) \
1054  ix86_return_in_memory (TYPE)
1055
1056/* This is overridden by <cygwin.h>.  */
1057#define MS_AGGREGATE_RETURN 0
1058
1059/* This is overridden by <netware.h>.  */
1060#define KEEP_AGGREGATE_RETURN_POINTER 0
1061
1062/* Define the classes of registers for register constraints in the
1063   machine description.  Also define ranges of constants.
1064
1065   One of the classes must always be named ALL_REGS and include all hard regs.
1066   If there is more than one class, another class must be named NO_REGS
1067   and contain no registers.
1068
1069   The name GENERAL_REGS must be the name of a class (or an alias for
1070   another name such as ALL_REGS).  This is the class of registers
1071   that is allowed by "g" or "r" in a register constraint.
1072   Also, registers outside this class are allocated only when
1073   instructions express preferences for them.
1074
1075   The classes must be numbered in nondecreasing order; that is,
1076   a larger-numbered class must never be contained completely
1077   in a smaller-numbered class.
1078
1079   For any two classes, it is very desirable that there be another
1080   class that represents their union.
1081
1082   It might seem that class BREG is unnecessary, since no useful 386
1083   opcode needs reg %ebx.  But some systems pass args to the OS in ebx,
1084   and the "b" register constraint is useful in asms for syscalls.
1085
1086   The flags and fpsr registers are in no class.  */
1087
1088enum reg_class
1089{
1090  NO_REGS,
1091  AREG, DREG, CREG, BREG, SIREG, DIREG,
1092  AD_REGS,			/* %eax/%edx for DImode */
1093  Q_REGS,			/* %eax %ebx %ecx %edx */
1094  NON_Q_REGS,			/* %esi %edi %ebp %esp */
1095  INDEX_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp */
1096  LEGACY_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1097  GENERAL_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1098  FP_TOP_REG, FP_SECOND_REG,	/* %st(0) %st(1) */
1099  FLOAT_REGS,
1100  SSE_REGS,
1101  MMX_REGS,
1102  FP_TOP_SSE_REGS,
1103  FP_SECOND_SSE_REGS,
1104  FLOAT_SSE_REGS,
1105  FLOAT_INT_REGS,
1106  INT_SSE_REGS,
1107  FLOAT_INT_SSE_REGS,
1108  ALL_REGS, LIM_REG_CLASSES
1109};
1110
1111#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1112
1113#define INTEGER_CLASS_P(CLASS) \
1114  reg_class_subset_p ((CLASS), GENERAL_REGS)
1115#define FLOAT_CLASS_P(CLASS) \
1116  reg_class_subset_p ((CLASS), FLOAT_REGS)
1117#define SSE_CLASS_P(CLASS) \
1118  ((CLASS) == SSE_REGS)
1119#define MMX_CLASS_P(CLASS) \
1120  ((CLASS) == MMX_REGS)
1121#define MAYBE_INTEGER_CLASS_P(CLASS) \
1122  reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1123#define MAYBE_FLOAT_CLASS_P(CLASS) \
1124  reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1125#define MAYBE_SSE_CLASS_P(CLASS) \
1126  reg_classes_intersect_p (SSE_REGS, (CLASS))
1127#define MAYBE_MMX_CLASS_P(CLASS) \
1128  reg_classes_intersect_p (MMX_REGS, (CLASS))
1129
1130#define Q_CLASS_P(CLASS) \
1131  reg_class_subset_p ((CLASS), Q_REGS)
1132
1133/* Give names of register classes as strings for dump file.  */
1134
1135#define REG_CLASS_NAMES \
1136{  "NO_REGS",				\
1137   "AREG", "DREG", "CREG", "BREG",	\
1138   "SIREG", "DIREG",			\
1139   "AD_REGS",				\
1140   "Q_REGS", "NON_Q_REGS",		\
1141   "INDEX_REGS",			\
1142   "LEGACY_REGS",			\
1143   "GENERAL_REGS",			\
1144   "FP_TOP_REG", "FP_SECOND_REG",	\
1145   "FLOAT_REGS",			\
1146   "SSE_REGS",				\
1147   "MMX_REGS",				\
1148   "FP_TOP_SSE_REGS",			\
1149   "FP_SECOND_SSE_REGS",		\
1150   "FLOAT_SSE_REGS",			\
1151   "FLOAT_INT_REGS",			\
1152   "INT_SSE_REGS",			\
1153   "FLOAT_INT_SSE_REGS",		\
1154   "ALL_REGS" }
1155
1156/* Define which registers fit in which classes.
1157   This is an initializer for a vector of HARD_REG_SET
1158   of length N_REG_CLASSES.  */
1159
1160#define REG_CLASS_CONTENTS						\
1161{     { 0x00,     0x0 },						\
1162      { 0x01,     0x0 }, { 0x02, 0x0 },	/* AREG, DREG */		\
1163      { 0x04,     0x0 }, { 0x08, 0x0 },	/* CREG, BREG */		\
1164      { 0x10,     0x0 }, { 0x20, 0x0 },	/* SIREG, DIREG */		\
1165      { 0x03,     0x0 },		/* AD_REGS */			\
1166      { 0x0f,     0x0 },		/* Q_REGS */			\
1167  { 0x1100f0,  0x1fe0 },		/* NON_Q_REGS */		\
1168      { 0x7f,  0x1fe0 },		/* INDEX_REGS */		\
1169  { 0x1100ff,  0x0 },			/* LEGACY_REGS */		\
1170  { 0x1100ff,  0x1fe0 },		/* GENERAL_REGS */		\
1171     { 0x100,     0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1172    { 0xff00,     0x0 },		/* FLOAT_REGS */		\
1173{ 0x1fe00000,0x1fe000 },		/* SSE_REGS */			\
1174{ 0xe0000000,    0x1f },		/* MMX_REGS */			\
1175{ 0x1fe00100,0x1fe000 },		/* FP_TOP_SSE_REG */		\
1176{ 0x1fe00200,0x1fe000 },		/* FP_SECOND_SSE_REG */		\
1177{ 0x1fe0ff00,0x1fe000 },		/* FLOAT_SSE_REGS */		\
1178   { 0x1ffff,  0x1fe0 },		/* FLOAT_INT_REGS */		\
1179{ 0x1fe100ff,0x1fffe0 },		/* INT_SSE_REGS */		\
1180{ 0x1fe1ffff,0x1fffe0 },		/* FLOAT_INT_SSE_REGS */	\
1181{ 0xffffffff,0x1fffff }							\
1182}
1183
1184/* The same information, inverted:
1185   Return the class number of the smallest class containing
1186   reg number REGNO.  This could be a conditional expression
1187   or could index an array.  */
1188
1189#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1190
1191/* When defined, the compiler allows registers explicitly used in the
1192   rtl to be used as spill registers but prevents the compiler from
1193   extending the lifetime of these registers.  */
1194
1195#define SMALL_REGISTER_CLASSES 1
1196
1197#define QI_REG_P(X) \
1198  (REG_P (X) && REGNO (X) < 4)
1199
1200#define GENERAL_REGNO_P(N) \
1201  ((N) < 8 || REX_INT_REGNO_P (N))
1202
1203#define GENERAL_REG_P(X) \
1204  (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1205
1206#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1207
1208#define NON_QI_REG_P(X) \
1209  (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1210
1211#define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1212#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1213
1214#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1215#define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1216#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1217#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1218
1219#define SSE_REGNO_P(N) \
1220  (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1221   || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1222
1223#define REX_SSE_REGNO_P(N) \
1224   ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1225
1226#define SSE_REGNO(N) \
1227  ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1228#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1229
1230#define SSE_FLOAT_MODE_P(MODE) \
1231  ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1232
1233#define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1234#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1235
1236#define STACK_REG_P(XOP)		\
1237  (REG_P (XOP) &&		       	\
1238   REGNO (XOP) >= FIRST_STACK_REG &&	\
1239   REGNO (XOP) <= LAST_STACK_REG)
1240
1241#define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1242
1243#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1244
1245#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1246#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1247
1248/* The class value for index registers, and the one for base regs.  */
1249
1250#define INDEX_REG_CLASS INDEX_REGS
1251#define BASE_REG_CLASS GENERAL_REGS
1252
1253/* Place additional restrictions on the register class to use when it
1254   is necessary to be able to hold a value of mode MODE in a reload
1255   register for which class CLASS would ordinarily be used.  */
1256
1257#define LIMIT_RELOAD_CLASS(MODE, CLASS) 			\
1258  ((MODE) == QImode && !TARGET_64BIT				\
1259   && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS		\
1260       || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS)	\
1261   ? Q_REGS : (CLASS))
1262
1263/* Given an rtx X being reloaded into a reg required to be
1264   in class CLASS, return the class of reg to actually use.
1265   In general this is just CLASS; but on some machines
1266   in some cases it is preferable to use a more restrictive class.
1267   On the 80386 series, we prevent floating constants from being
1268   reloaded into floating registers (since no move-insn can do that)
1269   and we ensure that QImodes aren't reloaded into the esi or edi reg.  */
1270
1271/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1272   QImode must go into class Q_REGS.
1273   Narrow ALL_REGS to GENERAL_REGS.  This supports allowing movsf and
1274   movdf to do mem-to-mem moves through integer regs.  */
1275
1276#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1277   ix86_preferred_reload_class ((X), (CLASS))
1278
1279/* Discourage putting floating-point values in SSE registers unless
1280   SSE math is being used, and likewise for the 387 registers.  */
1281
1282#define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1283   ix86_preferred_output_reload_class ((X), (CLASS))
1284
1285/* If we are copying between general and FP registers, we need a memory
1286   location. The same is true for SSE and MMX registers.  */
1287#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1288  ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1289
1290/* QImode spills from non-QI registers need a scratch.  This does not
1291   happen often -- the only example so far requires an uninitialized
1292   pseudo.  */
1293
1294#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT)			\
1295  (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS			\
1296    || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode	\
1297   ? Q_REGS : NO_REGS)
1298
1299/* Return the maximum number of consecutive registers
1300   needed to represent mode MODE in a register of class CLASS.  */
1301/* On the 80386, this is the size of MODE in words,
1302   except in the FP regs, where a single reg is always enough.  */
1303#define CLASS_MAX_NREGS(CLASS, MODE)					\
1304 (!MAYBE_INTEGER_CLASS_P (CLASS)					\
1305  ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
1306  : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE)))			\
1307      + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1308
1309/* A C expression whose value is nonzero if pseudos that have been
1310   assigned to registers of class CLASS would likely be spilled
1311   because registers of CLASS are needed for spill registers.
1312
1313   The default value of this macro returns 1 if CLASS has exactly one
1314   register and zero otherwise.  On most machines, this default
1315   should be used.  Only define this macro to some other expression
1316   if pseudo allocated by `local-alloc.c' end up in memory because
1317   their hard registers were needed for spill registers.  If this
1318   macro returns nonzero for those classes, those pseudos will only
1319   be allocated by `global.c', which knows how to reallocate the
1320   pseudo to another register.  If there would not be another
1321   register available for reallocation, you should not change the
1322   definition of this macro since the only effect of such a
1323   definition would be to slow down register allocation.  */
1324
1325#define CLASS_LIKELY_SPILLED_P(CLASS)					\
1326  (((CLASS) == AREG)							\
1327   || ((CLASS) == DREG)							\
1328   || ((CLASS) == CREG)							\
1329   || ((CLASS) == BREG)							\
1330   || ((CLASS) == AD_REGS)						\
1331   || ((CLASS) == SIREG)						\
1332   || ((CLASS) == DIREG)						\
1333   || ((CLASS) == FP_TOP_REG)						\
1334   || ((CLASS) == FP_SECOND_REG))
1335
1336/* Return a class of registers that cannot change FROM mode to TO mode.  */
1337
1338#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1339  ix86_cannot_change_mode_class (FROM, TO, CLASS)
1340
1341/* Stack layout; function entry, exit and calling.  */
1342
1343/* Define this if pushing a word on the stack
1344   makes the stack pointer a smaller address.  */
1345#define STACK_GROWS_DOWNWARD
1346
1347/* Define this to nonzero if the nominal address of the stack frame
1348   is at the high-address end of the local variables;
1349   that is, each additional local variable allocated
1350   goes at a more negative offset in the frame.  */
1351#define FRAME_GROWS_DOWNWARD 1
1352
1353/* Offset within stack frame to start allocating local variables at.
1354   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1355   first local allocated.  Otherwise, it is the offset to the BEGINNING
1356   of the first local allocated.  */
1357#define STARTING_FRAME_OFFSET 0
1358
1359/* If we generate an insn to push BYTES bytes,
1360   this says how many the stack pointer really advances by.
1361   On 386, we have pushw instruction that decrements by exactly 2 no
1362   matter what the position was, there is no pushb.
1363   But as CIE data alignment factor on this arch is -4, we need to make
1364   sure all stack pointer adjustments are in multiple of 4.
1365
1366   For 64bit ABI we round up to 8 bytes.
1367 */
1368
1369#define PUSH_ROUNDING(BYTES) \
1370  (TARGET_64BIT		     \
1371   ? (((BYTES) + 7) & (-8))  \
1372   : (((BYTES) + 3) & (-4)))
1373
1374/* If defined, the maximum amount of space required for outgoing arguments will
1375   be computed and placed into the variable
1376   `current_function_outgoing_args_size'.  No space will be pushed onto the
1377   stack for each call; instead, the function prologue should increase the stack
1378   frame size by this amount.  */
1379
1380#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1381
1382/* If defined, a C expression whose value is nonzero when we want to use PUSH
1383   instructions to pass outgoing arguments.  */
1384
1385#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1386
1387/* We want the stack and args grow in opposite directions, even if
1388   PUSH_ARGS is 0.  */
1389#define PUSH_ARGS_REVERSED 1
1390
1391/* Offset of first parameter from the argument pointer register value.  */
1392#define FIRST_PARM_OFFSET(FNDECL) 0
1393
1394/* Define this macro if functions should assume that stack space has been
1395   allocated for arguments even when their values are passed in registers.
1396
1397   The value of this macro is the size, in bytes, of the area reserved for
1398   arguments passed in registers for the function represented by FNDECL.
1399
1400   This space can be allocated by the caller, or be a part of the
1401   machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1402   which.  */
1403#define REG_PARM_STACK_SPACE(FNDECL) 0
1404
1405/* Value is the number of bytes of arguments automatically
1406   popped when returning from a subroutine call.
1407   FUNDECL is the declaration node of the function (as a tree),
1408   FUNTYPE is the data type of the function (as a tree),
1409   or for a library call it is an identifier node for the subroutine name.
1410   SIZE is the number of bytes of arguments passed on the stack.
1411
1412   On the 80386, the RTD insn may be used to pop them if the number
1413     of args is fixed, but if the number is variable then the caller
1414     must pop them all.  RTD can't be used for library calls now
1415     because the library is compiled with the Unix compiler.
1416   Use of RTD is a selectable option, since it is incompatible with
1417   standard Unix calling sequences.  If the option is not selected,
1418   the caller must always pop the args.
1419
1420   The attribute stdcall is equivalent to RTD on a per module basis.  */
1421
1422#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1423  ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1424
1425#define FUNCTION_VALUE_REGNO_P(N) \
1426  ix86_function_value_regno_p (N)
1427
1428/* Define how to find the value returned by a library function
1429   assuming the value has mode MODE.  */
1430
1431#define LIBCALL_VALUE(MODE) \
1432  ix86_libcall_value (MODE)
1433
1434/* Define the size of the result block used for communication between
1435   untyped_call and untyped_return.  The block contains a DImode value
1436   followed by the block used by fnsave and frstor.  */
1437
1438#define APPLY_RESULT_SIZE (8+108)
1439
1440/* 1 if N is a possible register number for function argument passing.  */
1441#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1442
1443/* Define a data type for recording info about an argument list
1444   during the scan of that argument list.  This data type should
1445   hold all necessary information about the function itself
1446   and about the args processed so far, enough to enable macros
1447   such as FUNCTION_ARG to determine where the next arg should go.  */
1448
1449typedef struct ix86_args {
1450  int words;			/* # words passed so far */
1451  int nregs;			/* # registers available for passing */
1452  int regno;			/* next available register number */
1453  int fastcall;			/* fastcall calling convention is used */
1454  int sse_words;		/* # sse words passed so far */
1455  int sse_nregs;		/* # sse registers available for passing */
1456  int warn_sse;			/* True when we want to warn about SSE ABI.  */
1457  int warn_mmx;			/* True when we want to warn about MMX ABI.  */
1458  int sse_regno;		/* next available sse register number */
1459  int mmx_words;		/* # mmx words passed so far */
1460  int mmx_nregs;		/* # mmx registers available for passing */
1461  int mmx_regno;		/* next available mmx register number */
1462  int maybe_vaarg;		/* true for calls to possibly vardic fncts.  */
1463  int float_in_sse;		/* 1 if in 32-bit mode SFmode (2 for DFmode) should
1464				   be passed in SSE registers.  Otherwise 0.  */
1465} CUMULATIVE_ARGS;
1466
1467/* Initialize a variable CUM of type CUMULATIVE_ARGS
1468   for a call to a function whose data type is FNTYPE.
1469   For a library call, FNTYPE is 0.  */
1470
1471#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1472  init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1473
1474/* Update the data in CUM to advance over an argument
1475   of mode MODE and data type TYPE.
1476   (TYPE is null for libcalls where that information may not be available.)  */
1477
1478#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1479  function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1480
1481/* Define where to put the arguments to a function.
1482   Value is zero to push the argument on the stack,
1483   or a hard register in which to store the argument.
1484
1485   MODE is the argument's machine mode.
1486   TYPE is the data type of the argument (as a tree).
1487    This is null for libcalls where that information may
1488    not be available.
1489   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1490    the preceding args and about the function being called.
1491   NAMED is nonzero if this argument is a named parameter
1492    (otherwise it is an extra parameter matching an ellipsis).  */
1493
1494#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1495  function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1496
1497/* Implement `va_start' for varargs and stdarg.  */
1498#define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1499  ix86_va_start (VALIST, NEXTARG)
1500
1501#define TARGET_ASM_FILE_END ix86_file_end
1502#define NEED_INDICATE_EXEC_STACK 0
1503
1504/* Output assembler code to FILE to increment profiler label # LABELNO
1505   for profiling a function entry.  */
1506
1507#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1508
1509#define MCOUNT_NAME "_mcount"
1510
1511#define PROFILE_COUNT_REGISTER "edx"
1512
1513/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1514   the stack pointer does not matter.  The value is tested only in
1515   functions that have frame pointers.
1516   No definition is equivalent to always zero.  */
1517/* Note on the 386 it might be more efficient not to define this since
1518   we have to restore it ourselves from the frame pointer, in order to
1519   use pop */
1520
1521#define EXIT_IGNORE_STACK 1
1522
1523/* Output assembler code for a block containing the constant parts
1524   of a trampoline, leaving space for the variable parts.  */
1525
1526/* On the 386, the trampoline contains two instructions:
1527     mov #STATIC,ecx
1528     jmp FUNCTION
1529   The trampoline is generated entirely at runtime.  The operand of JMP
1530   is the address of FUNCTION relative to the instruction following the
1531   JMP (which is 5 bytes long).  */
1532
1533/* Length in units of the trampoline for entering a nested function.  */
1534
1535#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1536
1537/* Emit RTL insns to initialize the variable parts of a trampoline.
1538   FNADDR is an RTX for the address of the function's pure code.
1539   CXT is an RTX for the static chain value for the function.  */
1540
1541#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1542  x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1543
1544/* Definitions for register eliminations.
1545
1546   This is an array of structures.  Each structure initializes one pair
1547   of eliminable registers.  The "from" register number is given first,
1548   followed by "to".  Eliminations of the same "from" register are listed
1549   in order of preference.
1550
1551   There are two registers that can always be eliminated on the i386.
1552   The frame pointer and the arg pointer can be replaced by either the
1553   hard frame pointer or to the stack pointer, depending upon the
1554   circumstances.  The hard frame pointer is not used before reload and
1555   so it is not eligible for elimination.  */
1556
1557#define ELIMINABLE_REGS					\
1558{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1559 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1560 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1561 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}	\
1562
1563/* Given FROM and TO register numbers, say whether this elimination is
1564   allowed.  Frame pointer elimination is automatically handled.
1565
1566   All other eliminations are valid.  */
1567
1568#define CAN_ELIMINATE(FROM, TO) \
1569  ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1570
1571/* Define the offset between two registers, one to be eliminated, and the other
1572   its replacement, at the start of a routine.  */
1573
1574#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1575  ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1576
1577/* Addressing modes, and classification of registers for them.  */
1578
1579/* Macros to check register numbers against specific register classes.  */
1580
1581/* These assume that REGNO is a hard or pseudo reg number.
1582   They give nonzero only if REGNO is a hard reg of the suitable class
1583   or a pseudo reg currently allocated to a suitable hard reg.
1584   Since they use reg_renumber, they are safe only once reg_renumber
1585   has been allocated, which happens in local-alloc.c.  */
1586
1587#define REGNO_OK_FOR_INDEX_P(REGNO) 					\
1588  ((REGNO) < STACK_POINTER_REGNUM 					\
1589   || (REGNO >= FIRST_REX_INT_REG					\
1590       && (REGNO) <= LAST_REX_INT_REG)					\
1591   || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1592       && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1593   || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1594
1595#define REGNO_OK_FOR_BASE_P(REGNO) 					\
1596  ((REGNO) <= STACK_POINTER_REGNUM 					\
1597   || (REGNO) == ARG_POINTER_REGNUM 					\
1598   || (REGNO) == FRAME_POINTER_REGNUM 					\
1599   || (REGNO >= FIRST_REX_INT_REG					\
1600       && (REGNO) <= LAST_REX_INT_REG)					\
1601   || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1602       && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1603   || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1604
1605#define REGNO_OK_FOR_SIREG_P(REGNO) \
1606  ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1607#define REGNO_OK_FOR_DIREG_P(REGNO) \
1608  ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1609
1610/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1611   and check its validity for a certain class.
1612   We have two alternate definitions for each of them.
1613   The usual definition accepts all pseudo regs; the other rejects
1614   them unless they have been allocated suitable hard regs.
1615   The symbol REG_OK_STRICT causes the latter definition to be used.
1616
1617   Most source files want to accept pseudo regs in the hope that
1618   they will get allocated to the class that the insn wants them to be in.
1619   Source files for reload pass need to be strict.
1620   After reload, it makes no difference, since pseudo regs have
1621   been eliminated by then.  */
1622
1623
1624/* Non strict versions, pseudos are ok.  */
1625#define REG_OK_FOR_INDEX_NONSTRICT_P(X)					\
1626  (REGNO (X) < STACK_POINTER_REGNUM					\
1627   || (REGNO (X) >= FIRST_REX_INT_REG					\
1628       && REGNO (X) <= LAST_REX_INT_REG)				\
1629   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1630
1631#define REG_OK_FOR_BASE_NONSTRICT_P(X)					\
1632  (REGNO (X) <= STACK_POINTER_REGNUM					\
1633   || REGNO (X) == ARG_POINTER_REGNUM					\
1634   || REGNO (X) == FRAME_POINTER_REGNUM 				\
1635   || (REGNO (X) >= FIRST_REX_INT_REG					\
1636       && REGNO (X) <= LAST_REX_INT_REG)				\
1637   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1638
1639/* Strict versions, hard registers only */
1640#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1641#define REG_OK_FOR_BASE_STRICT_P(X)  REGNO_OK_FOR_BASE_P (REGNO (X))
1642
1643#ifndef REG_OK_STRICT
1644#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_NONSTRICT_P (X)
1645#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_NONSTRICT_P (X)
1646
1647#else
1648#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_STRICT_P (X)
1649#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_STRICT_P (X)
1650#endif
1651
1652/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1653   that is a valid memory address for an instruction.
1654   The MODE argument is the machine mode for the MEM expression
1655   that wants to use this address.
1656
1657   The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1658   except for CONSTANT_ADDRESS_P which is usually machine-independent.
1659
1660   See legitimize_pic_address in i386.c for details as to what
1661   constitutes a legitimate address when -fpic is used.  */
1662
1663#define MAX_REGS_PER_ADDRESS 2
1664
1665#define CONSTANT_ADDRESS_P(X)  constant_address_p (X)
1666
1667/* Nonzero if the constant value X is a legitimate general operand.
1668   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1669
1670#define LEGITIMATE_CONSTANT_P(X)  legitimate_constant_p (X)
1671
1672#ifdef REG_OK_STRICT
1673#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
1674do {									\
1675  if (legitimate_address_p ((MODE), (X), 1))				\
1676    goto ADDR;								\
1677} while (0)
1678
1679#else
1680#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
1681do {									\
1682  if (legitimate_address_p ((MODE), (X), 0))				\
1683    goto ADDR;								\
1684} while (0)
1685
1686#endif
1687
1688/* If defined, a C expression to determine the base term of address X.
1689   This macro is used in only one place: `find_base_term' in alias.c.
1690
1691   It is always safe for this macro to not be defined.  It exists so
1692   that alias analysis can understand machine-dependent addresses.
1693
1694   The typical use of this macro is to handle addresses containing
1695   a label_ref or symbol_ref within an UNSPEC.  */
1696
1697#define FIND_BASE_TERM(X) ix86_find_base_term (X)
1698
1699/* Try machine-dependent ways of modifying an illegitimate address
1700   to be legitimate.  If we find one, return the new, valid address.
1701   This macro is used in only one place: `memory_address' in explow.c.
1702
1703   OLDX is the address as it was before break_out_memory_refs was called.
1704   In some cases it is useful to look at this to decide what needs to be done.
1705
1706   MODE and WIN are passed so that this macro can use
1707   GO_IF_LEGITIMATE_ADDRESS.
1708
1709   It is always safe for this macro to do nothing.  It exists to recognize
1710   opportunities to optimize the output.
1711
1712   For the 80386, we handle X+REG by loading X into a register R and
1713   using R+REG.  R will go in a general reg and indexing will be used.
1714   However, if REG is a broken-out memory address or multiplication,
1715   nothing needs to be done because REG can certainly go in a general reg.
1716
1717   When -fpic is used, special handling is needed for symbolic references.
1718   See comments by legitimize_pic_address in i386.c for details.  */
1719
1720#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)				\
1721do {									\
1722  (X) = legitimize_address ((X), (OLDX), (MODE));			\
1723  if (memory_address_p ((MODE), (X)))					\
1724    goto WIN;								\
1725} while (0)
1726
1727#define REWRITE_ADDRESS(X) rewrite_address (X)
1728
1729/* Nonzero if the constant value X is a legitimate general operand
1730   when generating PIC code.  It is given that flag_pic is on and
1731   that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1732
1733#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1734
1735#define SYMBOLIC_CONST(X)	\
1736  (GET_CODE (X) == SYMBOL_REF						\
1737   || GET_CODE (X) == LABEL_REF						\
1738   || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1739
1740/* Go to LABEL if ADDR (a legitimate address expression)
1741   has an effect that depends on the machine mode it is used for.
1742   On the 80386, only postdecrement and postincrement address depend thus
1743   (the amount of decrement or increment being the length of the operand).  */
1744#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)	\
1745do {							\
1746 if (GET_CODE (ADDR) == POST_INC			\
1747     || GET_CODE (ADDR) == POST_DEC)			\
1748   goto LABEL;						\
1749} while (0)
1750
1751/* Max number of args passed in registers.  If this is more than 3, we will
1752   have problems with ebx (register #4), since it is a caller save register and
1753   is also used as the pic register in ELF.  So for now, don't allow more than
1754   3 registers to be passed in registers.  */
1755
1756#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
1757
1758#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
1759
1760#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1761
1762
1763/* Specify the machine mode that this machine uses
1764   for the index in the tablejump instruction.  */
1765#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
1766
1767/* Define this as 1 if `char' should by default be signed; else as 0.  */
1768#define DEFAULT_SIGNED_CHAR 1
1769
1770/* Number of bytes moved into a data cache for a single prefetch operation.  */
1771#define PREFETCH_BLOCK ix86_cost->prefetch_block
1772
1773/* Number of prefetch operations that can be done in parallel.  */
1774#define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
1775
1776/* Max number of bytes we can move from memory to memory
1777   in one reasonably fast instruction.  */
1778#define MOVE_MAX 16
1779
1780/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1781   move efficiently, as opposed to  MOVE_MAX which is the maximum
1782   number of bytes we can move with a single instruction.  */
1783#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
1784
1785/* If a memory-to-memory move would take MOVE_RATIO or more simple
1786   move-instruction pairs, we will do a movmem or libcall instead.
1787   Increasing the value will always make code faster, but eventually
1788   incurs high cost in increased code size.
1789
1790   If you don't define this, a reasonable default is used.  */
1791
1792#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
1793
1794/* If a clear memory operation would take CLEAR_RATIO or more simple
1795   move-instruction sequences, we will do a clrmem or libcall instead.  */
1796
1797#define CLEAR_RATIO (optimize_size ? 2 \
1798		     : ix86_cost->move_ratio > 6 ? 6 : ix86_cost->move_ratio)
1799
1800/* Define if shifts truncate the shift count
1801   which implies one can omit a sign-extension or zero-extension
1802   of a shift count.  */
1803/* On i386, shifts do truncate the count.  But bit opcodes don't.  */
1804
1805/* #define SHIFT_COUNT_TRUNCATED */
1806
1807/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1808   is done just by pretending it is already truncated.  */
1809#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1810
1811/* A macro to update M and UNSIGNEDP when an object whose type is
1812   TYPE and which has the specified mode and signedness is to be
1813   stored in a register.  This macro is only called when TYPE is a
1814   scalar type.
1815
1816   On i386 it is sometimes useful to promote HImode and QImode
1817   quantities to SImode.  The choice depends on target type.  */
1818
1819#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) 		\
1820do {							\
1821  if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS)	\
1822      || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS))	\
1823    (MODE) = SImode;					\
1824} while (0)
1825
1826/* Specify the machine mode that pointers have.
1827   After generation of rtl, the compiler makes no further distinction
1828   between pointers and any other objects of this machine mode.  */
1829#define Pmode (TARGET_64BIT ? DImode : SImode)
1830
1831/* A function address in a call instruction
1832   is a byte address (for indexing purposes)
1833   so give the MEM rtx a byte's mode.  */
1834#define FUNCTION_MODE QImode
1835
1836/* A C expression for the cost of moving data from a register in class FROM to
1837   one in class TO.  The classes are expressed using the enumeration values
1838   such as `GENERAL_REGS'.  A value of 2 is the default; other values are
1839   interpreted relative to that.
1840
1841   It is not required that the cost always equal 2 when FROM is the same as TO;
1842   on some machines it is expensive to move between registers if they are not
1843   general registers.  */
1844
1845#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1846   ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
1847
1848/* A C expression for the cost of moving data of mode M between a
1849   register and memory.  A value of 2 is the default; this cost is
1850   relative to those in `REGISTER_MOVE_COST'.
1851
1852   If moving between registers and memory is more expensive than
1853   between two registers, you should define this macro to express the
1854   relative cost.  */
1855
1856#define MEMORY_MOVE_COST(MODE, CLASS, IN)	\
1857  ix86_memory_move_cost ((MODE), (CLASS), (IN))
1858
1859/* A C expression for the cost of a branch instruction.  A value of 1
1860   is the default; other values are interpreted relative to that.  */
1861
1862#define BRANCH_COST ix86_branch_cost
1863
1864/* Define this macro as a C expression which is nonzero if accessing
1865   less than a word of memory (i.e. a `char' or a `short') is no
1866   faster than accessing a word of memory, i.e., if such access
1867   require more than one instruction or if there is no difference in
1868   cost between byte and (aligned) word loads.
1869
1870   When this macro is not defined, the compiler will access a field by
1871   finding the smallest containing object; when it is defined, a
1872   fullword load will be used if alignment permits.  Unless bytes
1873   accesses are faster than word accesses, using word accesses is
1874   preferable since it may eliminate subsequent memory access if
1875   subsequent accesses occur to other fields in the same word of the
1876   structure, but to different bytes.  */
1877
1878#define SLOW_BYTE_ACCESS 0
1879
1880/* Nonzero if access to memory by shorts is slow and undesirable.  */
1881#define SLOW_SHORT_ACCESS 0
1882
1883/* Define this macro to be the value 1 if unaligned accesses have a
1884   cost many times greater than aligned accesses, for example if they
1885   are emulated in a trap handler.
1886
1887   When this macro is nonzero, the compiler will act as if
1888   `STRICT_ALIGNMENT' were nonzero when generating code for block
1889   moves.  This can cause significantly more instructions to be
1890   produced.  Therefore, do not set this macro nonzero if unaligned
1891   accesses only add a cycle or two to the time for a memory access.
1892
1893   If the value of this macro is always zero, it need not be defined.  */
1894
1895/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
1896
1897/* Define this macro if it is as good or better to call a constant
1898   function address than to call an address kept in a register.
1899
1900   Desirable on the 386 because a CALL with a constant address is
1901   faster than one with a register address.  */
1902
1903#define NO_FUNCTION_CSE
1904
1905/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1906   return the mode to be used for the comparison.
1907
1908   For floating-point equality comparisons, CCFPEQmode should be used.
1909   VOIDmode should be used in all other cases.
1910
1911   For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1912   possible, to allow for more combinations.  */
1913
1914#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1915
1916/* Return nonzero if MODE implies a floating point inequality can be
1917   reversed.  */
1918
1919#define REVERSIBLE_CC_MODE(MODE) 1
1920
1921/* A C expression whose value is reversed condition code of the CODE for
1922   comparison done in CC_MODE mode.  */
1923#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1924
1925
1926/* Control the assembler format that we output, to the extent
1927   this does not vary between assemblers.  */
1928
1929/* How to refer to registers in assembler output.
1930   This sequence is indexed by compiler's hard-register-number (see above).  */
1931
1932/* In order to refer to the first 8 regs as 32 bit regs, prefix an "e".
1933   For non floating point regs, the following are the HImode names.
1934
1935   For float regs, the stack top is sometimes referred to as "%st(0)"
1936   instead of just "%st".  PRINT_OPERAND handles this with the "y" code.  */
1937
1938#define HI_REGISTER_NAMES						\
1939{"ax","dx","cx","bx","si","di","bp","sp",				\
1940 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)",		\
1941 "argp", "flags", "fpsr", "dirflag", "frame",				\
1942 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7",		\
1943 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7"	,		\
1944 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",			\
1945 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
1946
1947#define REGISTER_NAMES HI_REGISTER_NAMES
1948
1949/* Table of additional register names to use in user input.  */
1950
1951#define ADDITIONAL_REGISTER_NAMES \
1952{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 },	\
1953  { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 },	\
1954  { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 },	\
1955  { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 },	\
1956  { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 },		\
1957  { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
1958
1959/* Note we are omitting these since currently I don't know how
1960to get gcc to use these, since they want the same but different
1961number as al, and ax.
1962*/
1963
1964#define QI_REGISTER_NAMES \
1965{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
1966
1967/* These parallel the array above, and can be used to access bits 8:15
1968   of regs 0 through 3.  */
1969
1970#define QI_HIGH_REGISTER_NAMES \
1971{"ah", "dh", "ch", "bh", }
1972
1973/* How to renumber registers for dbx and gdb.  */
1974
1975#define DBX_REGISTER_NUMBER(N) \
1976  (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
1977
1978extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1979extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1980extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
1981
1982/* Before the prologue, RA is at 0(%esp).  */
1983#define INCOMING_RETURN_ADDR_RTX \
1984  gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
1985
1986/* After the prologue, RA is at -4(AP) in the current frame.  */
1987#define RETURN_ADDR_RTX(COUNT, FRAME)					   \
1988  ((COUNT) == 0								   \
1989   ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
1990   : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
1991
1992/* PC is dbx register 8; let's use that column for RA.  */
1993#define DWARF_FRAME_RETURN_COLUMN 	(TARGET_64BIT ? 16 : 8)
1994
1995/* Before the prologue, the top of the frame is at 4(%esp).  */
1996#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
1997
1998/* Describe how we implement __builtin_eh_return.  */
1999#define EH_RETURN_DATA_REGNO(N)	((N) < 2 ? (N) : INVALID_REGNUM)
2000#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 2)
2001
2002
2003/* Select a format to encode pointers in exception handling data.  CODE
2004   is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
2005   true if the symbol may be affected by dynamic relocations.
2006
2007   ??? All x86 object file formats are capable of representing this.
2008   After all, the relocation needed is the same as for the call insn.
2009   Whether or not a particular assembler allows us to enter such, I
2010   guess we'll have to see.  */
2011#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)       		\
2012  asm_preferred_eh_data_format ((CODE), (GLOBAL))
2013
2014/* This is how to output an insn to push a register on the stack.
2015   It need not be very fast code.  */
2016
2017#define ASM_OUTPUT_REG_PUSH(FILE, REGNO)  \
2018do {									\
2019  if (TARGET_64BIT)							\
2020    asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n",				\
2021		 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));	\
2022  else									\
2023    asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]);	\
2024} while (0)
2025
2026/* This is how to output an insn to pop a register from the stack.
2027   It need not be very fast code.  */
2028
2029#define ASM_OUTPUT_REG_POP(FILE, REGNO)  \
2030do {									\
2031  if (TARGET_64BIT)							\
2032    asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n",				\
2033		 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));	\
2034  else									\
2035    asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]);	\
2036} while (0)
2037
2038/* This is how to output an element of a case-vector that is absolute.  */
2039
2040#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
2041  ix86_output_addr_vec_elt ((FILE), (VALUE))
2042
2043/* This is how to output an element of a case-vector that is relative.  */
2044
2045#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2046  ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2047
2048/* Under some conditions we need jump tables in the text section,
2049   because the assembler cannot handle label differences between
2050   sections.  This is the case for x86_64 on Mach-O for example.  */
2051
2052#define JUMP_TABLES_IN_TEXT_SECTION \
2053  (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2054   || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2055
2056/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2057   and switch back.  For x86 we do this only to save a few bytes that
2058   would otherwise be unused in the text section.  */
2059#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
2060   asm (SECTION_OP "\n\t"				\
2061	"call " USER_LABEL_PREFIX #FUNC "\n"		\
2062	TEXT_SECTION_ASM_OP);
2063
2064/* Print operand X (an rtx) in assembler syntax to file FILE.
2065   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2066   Effect of various CODE letters is described in i386.c near
2067   print_operand function.  */
2068
2069#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2070  ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
2071
2072#define PRINT_OPERAND(FILE, X, CODE)  \
2073  print_operand ((FILE), (X), (CODE))
2074
2075#define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
2076  print_operand_address ((FILE), (ADDR))
2077
2078#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL)	\
2079do {						\
2080  if (! output_addr_const_extra (FILE, (X)))	\
2081    goto FAIL;					\
2082} while (0);
2083
2084/* a letter which is not needed by the normal asm syntax, which
2085   we can use for operand syntax in the extended asm */
2086
2087#define ASM_OPERAND_LETTER '#'
2088#define RET return ""
2089#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
2090
2091/* Which processor to schedule for. The cpu attribute defines a list that
2092   mirrors this list, so changes to i386.md must be made at the same time.  */
2093
2094enum processor_type
2095{
2096  PROCESSOR_I386,			/* 80386 */
2097  PROCESSOR_I486,			/* 80486DX, 80486SX, 80486DX[24] */
2098  PROCESSOR_PENTIUM,
2099  PROCESSOR_PENTIUMPRO,
2100  PROCESSOR_GEODE,
2101  PROCESSOR_K6,
2102  PROCESSOR_ATHLON,
2103  PROCESSOR_PENTIUM4,
2104  PROCESSOR_K8,
2105  PROCESSOR_NOCONA,
2106  PROCESSOR_CORE2,
2107  PROCESSOR_GENERIC32,
2108  PROCESSOR_GENERIC64,
2109  PROCESSOR_max
2110};
2111
2112extern enum processor_type ix86_tune;
2113extern enum processor_type ix86_arch;
2114
2115enum fpmath_unit
2116{
2117  FPMATH_387 = 1,
2118  FPMATH_SSE = 2
2119};
2120
2121extern enum fpmath_unit ix86_fpmath;
2122
2123enum tls_dialect
2124{
2125  TLS_DIALECT_GNU,
2126  TLS_DIALECT_GNU2,
2127  TLS_DIALECT_SUN
2128};
2129
2130extern enum tls_dialect ix86_tls_dialect;
2131
2132enum cmodel {
2133  CM_32,	/* The traditional 32-bit ABI.  */
2134  CM_SMALL,	/* Assumes all code and data fits in the low 31 bits.  */
2135  CM_KERNEL,	/* Assumes all code and data fits in the high 31 bits.  */
2136  CM_MEDIUM,	/* Assumes code fits in the low 31 bits; data unlimited.  */
2137  CM_LARGE,	/* No assumptions.  */
2138  CM_SMALL_PIC,	/* Assumes code+data+got/plt fits in a 31 bit region.  */
2139  CM_MEDIUM_PIC	/* Assumes code+got/plt fits in a 31 bit region.  */
2140};
2141
2142extern enum cmodel ix86_cmodel;
2143
2144/* Size of the RED_ZONE area.  */
2145#define RED_ZONE_SIZE 128
2146/* Reserved area of the red zone for temporaries.  */
2147#define RED_ZONE_RESERVE 8
2148
2149enum asm_dialect {
2150  ASM_ATT,
2151  ASM_INTEL
2152};
2153
2154extern enum asm_dialect ix86_asm_dialect;
2155extern unsigned int ix86_preferred_stack_boundary;
2156extern int ix86_branch_cost, ix86_section_threshold;
2157
2158/* Smallest class containing REGNO.  */
2159extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2160
2161extern rtx ix86_compare_op0;	/* operand 0 for comparisons */
2162extern rtx ix86_compare_op1;	/* operand 1 for comparisons */
2163extern rtx ix86_compare_emitted;
2164
2165/* To properly truncate FP values into integers, we need to set i387 control
2166   word.  We can't emit proper mode switching code before reload, as spills
2167   generated by reload may truncate values incorrectly, but we still can avoid
2168   redundant computation of new control word by the mode switching pass.
2169   The fldcw instructions are still emitted redundantly, but this is probably
2170   not going to be noticeable problem, as most CPUs do have fast path for
2171   the sequence.
2172
2173   The machinery is to emit simple truncation instructions and split them
2174   before reload to instructions having USEs of two memory locations that
2175   are filled by this code to old and new control word.
2176
2177   Post-reload pass may be later used to eliminate the redundant fildcw if
2178   needed.  */
2179
2180enum ix86_entity
2181{
2182  I387_TRUNC = 0,
2183  I387_FLOOR,
2184  I387_CEIL,
2185  I387_MASK_PM,
2186  MAX_386_ENTITIES
2187};
2188
2189enum ix86_stack_slot
2190{
2191  SLOT_VIRTUAL = 0,
2192  SLOT_TEMP,
2193  SLOT_CW_STORED,
2194  SLOT_CW_TRUNC,
2195  SLOT_CW_FLOOR,
2196  SLOT_CW_CEIL,
2197  SLOT_CW_MASK_PM,
2198  MAX_386_STACK_LOCALS
2199};
2200
2201/* Define this macro if the port needs extra instructions inserted
2202   for mode switching in an optimizing compilation.  */
2203
2204#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2205   ix86_optimize_mode_switching[(ENTITY)]
2206
2207/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2208   initializer for an array of integers.  Each initializer element N
2209   refers to an entity that needs mode switching, and specifies the
2210   number of different modes that might need to be set for this
2211   entity.  The position of the initializer in the initializer -
2212   starting counting at zero - determines the integer that is used to
2213   refer to the mode-switched entity in question.  */
2214
2215#define NUM_MODES_FOR_MODE_SWITCHING \
2216   { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2217
2218/* ENTITY is an integer specifying a mode-switched entity.  If
2219   `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2220   return an integer value not larger than the corresponding element
2221   in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2222   must be switched into prior to the execution of INSN. */
2223
2224#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
2225
2226/* This macro specifies the order in which modes for ENTITY are
2227   processed.  0 is the highest priority.  */
2228
2229#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2230
2231/* Generate one or more insns to set ENTITY to MODE.  HARD_REG_LIVE
2232   is the set of hard registers live at the point where the insn(s)
2233   are to be inserted.  */
2234
2235#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) 			\
2236  ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED		\
2237   ? emit_i387_cw_initialization (MODE), 0				\
2238   : 0)
2239
2240
2241/* Avoid renaming of stack registers, as doing so in combination with
2242   scheduling just increases amount of live registers at time and in
2243   the turn amount of fxch instructions needed.
2244
2245   ??? Maybe Pentium chips benefits from renaming, someone can try....  */
2246
2247#define HARD_REGNO_RENAME_OK(SRC, TARGET)  \
2248   ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
2249
2250
2251#define DLL_IMPORT_EXPORT_PREFIX '#'
2252
2253#define FASTCALL_PREFIX '@'
2254
2255struct machine_function GTY(())
2256{
2257  struct stack_local_entry *stack_locals;
2258  const char *some_ld_name;
2259  rtx force_align_arg_pointer;
2260  int save_varrargs_registers;
2261  int accesses_prev_frame;
2262  int optimize_mode_switching[MAX_386_ENTITIES];
2263  /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
2264     determine the style used.  */
2265  int use_fast_prologue_epilogue;
2266  /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2267     for.  */
2268  int use_fast_prologue_epilogue_nregs;
2269  /* If true, the current function needs the default PIC register, not
2270     an alternate register (on x86) and must not use the red zone (on
2271     x86_64), even if it's a leaf function.  We don't want the
2272     function to be regarded as non-leaf because TLS calls need not
2273     affect register allocation.  This flag is set when a TLS call
2274     instruction is expanded within a function, and never reset, even
2275     if all such instructions are optimized away.  Use the
2276     ix86_current_function_calls_tls_descriptor macro for a better
2277     approximation.  */
2278  int tls_descriptor_call_expanded_p;
2279};
2280
2281#define ix86_stack_locals (cfun->machine->stack_locals)
2282#define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
2283#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2284#define ix86_tls_descriptor_calls_expanded_in_cfun \
2285  (cfun->machine->tls_descriptor_call_expanded_p)
2286/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2287   calls are optimized away, we try to detect cases in which it was
2288   optimized away.  Since such instructions (use (reg REG_SP)), we can
2289   verify whether there's any such instruction live by testing that
2290   REG_SP is live.  */
2291#define ix86_current_function_calls_tls_descriptor \
2292  (ix86_tls_descriptor_calls_expanded_in_cfun && regs_ever_live[SP_REG])
2293
2294/* Control behavior of x86_file_start.  */
2295#define X86_FILE_START_VERSION_DIRECTIVE false
2296#define X86_FILE_START_FLTUSED false
2297
2298/* Flag to mark data that is in the large address area.  */
2299#define SYMBOL_FLAG_FAR_ADDR		(SYMBOL_FLAG_MACH_DEP << 0)
2300#define SYMBOL_REF_FAR_ADDR_P(X)	\
2301	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2302/*
2303Local variables:
2304version-control: t
2305End:
2306*/
2307