i386.h revision 171836
1/* Definitions of target machine for GCC for IA-32.
2   Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3   2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GCC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to
19the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20Boston, MA 02110-1301, USA.  */
21
22/* The purpose of this file is to define the characteristics of the i386,
23   independent of assembler syntax or operating system.
24
25   Three other files build on this one to describe a specific assembler syntax:
26   bsd386.h, att386.h, and sun386.h.
27
28   The actual tm.h file for a particular system should include
29   this file, and then the file for the appropriate assembler syntax.
30
31   Many macros that specify assembler syntax are omitted entirely from
32   this file because they really belong in the files for particular
33   assemblers.  These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34   ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35   that start with ASM_ or end in ASM_OP.  */
36
37/* Define the specific costs for a given cpu */
38
39struct processor_costs {
40  const int add;		/* cost of an add instruction */
41  const int lea;		/* cost of a lea instruction */
42  const int shift_var;		/* variable shift costs */
43  const int shift_const;	/* constant shift costs */
44  const int mult_init[5];	/* cost of starting a multiply
45				   in QImode, HImode, SImode, DImode, TImode*/
46  const int mult_bit;		/* cost of multiply per each bit set */
47  const int divide[5];		/* cost of a divide/mod
48				   in QImode, HImode, SImode, DImode, TImode*/
49  int movsx;			/* The cost of movsx operation.  */
50  int movzx;			/* The cost of movzx operation.  */
51  const int large_insn;		/* insns larger than this cost more */
52  const int move_ratio;		/* The threshold of number of scalar
53				   memory-to-memory move insns.  */
54  const int movzbl_load;	/* cost of loading using movzbl */
55  const int int_load[3];	/* cost of loading integer registers
56				   in QImode, HImode and SImode relative
57				   to reg-reg move (2).  */
58  const int int_store[3];	/* cost of storing integer register
59				   in QImode, HImode and SImode */
60  const int fp_move;		/* cost of reg,reg fld/fst */
61  const int fp_load[3];		/* cost of loading FP register
62				   in SFmode, DFmode and XFmode */
63  const int fp_store[3];	/* cost of storing FP register
64				   in SFmode, DFmode and XFmode */
65  const int mmx_move;		/* cost of moving MMX register.  */
66  const int mmx_load[2];	/* cost of loading MMX register
67				   in SImode and DImode */
68  const int mmx_store[2];	/* cost of storing MMX register
69				   in SImode and DImode */
70  const int sse_move;		/* cost of moving SSE register.  */
71  const int sse_load[3];	/* cost of loading SSE register
72				   in SImode, DImode and TImode*/
73  const int sse_store[3];	/* cost of storing SSE register
74				   in SImode, DImode and TImode*/
75  const int mmxsse_to_integer;	/* cost of moving mmxsse register to
76				   integer and vice versa.  */
77  const int prefetch_block;	/* bytes moved to cache for prefetch.  */
78  const int simultaneous_prefetches; /* number of parallel prefetch
79				   operations.  */
80  const int branch_cost;	/* Default value for BRANCH_COST.  */
81  const int fadd;		/* cost of FADD and FSUB instructions.  */
82  const int fmul;		/* cost of FMUL instruction.  */
83  const int fdiv;		/* cost of FDIV instruction.  */
84  const int fabs;		/* cost of FABS instruction.  */
85  const int fchs;		/* cost of FCHS instruction.  */
86  const int fsqrt;		/* cost of FSQRT instruction.  */
87};
88
89extern const struct processor_costs *ix86_cost;
90
91/* Macros used in the machine description to test the flags.  */
92
93/* configure can arrange to make this 2, to force a 486.  */
94
95#ifndef TARGET_CPU_DEFAULT
96#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_generic
97#endif
98
99#ifndef TARGET_FPMATH_DEFAULT
100#define TARGET_FPMATH_DEFAULT \
101  (TARGET_64BIT && TARGET_SSE ? FPMATH_SSE : FPMATH_387)
102#endif
103
104#define TARGET_FLOAT_RETURNS_IN_80387 TARGET_FLOAT_RETURNS
105
106/* 64bit Sledgehammer mode.  For libgcc2 we make sure this is a
107   compile-time constant.  */
108#ifdef IN_LIBGCC2
109#undef TARGET_64BIT
110#ifdef __x86_64__
111#define TARGET_64BIT 1
112#else
113#define TARGET_64BIT 0
114#endif
115#else
116#ifndef TARGET_BI_ARCH
117#undef TARGET_64BIT
118#if TARGET_64BIT_DEFAULT
119#define TARGET_64BIT 1
120#else
121#define TARGET_64BIT 0
122#endif
123#endif
124#endif
125
126#define HAS_LONG_COND_BRANCH 1
127#define HAS_LONG_UNCOND_BRANCH 1
128
129#define TARGET_386 (ix86_tune == PROCESSOR_I386)
130#define TARGET_486 (ix86_tune == PROCESSOR_I486)
131#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
132#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
133#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
134#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
135#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
136#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
137#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
138#define TARGET_NOCONA (ix86_tune == PROCESSOR_NOCONA)
139#define TARGET_GENERIC32 (ix86_tune == PROCESSOR_GENERIC32)
140#define TARGET_GENERIC64 (ix86_tune == PROCESSOR_GENERIC64)
141#define TARGET_GENERIC (TARGET_GENERIC32 || TARGET_GENERIC64)
142
143#define TUNEMASK (1 << ix86_tune)
144extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
145extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
146extern const int x86_branch_hints, x86_unroll_strlen;
147extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
148extern const int x86_use_himode_fiop, x86_use_simode_fiop;
149extern const int x86_use_mov0, x86_use_cltd, x86_read_modify_write;
150extern const int x86_read_modify, x86_split_long_moves;
151extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
152extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
153extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
154extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
155extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
156extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
157extern const int x86_epilogue_using_move, x86_decompose_lea;
158extern const int x86_arch_always_fancy_math_387, x86_shift1;
159extern const int x86_sse_partial_reg_dependency, x86_sse_split_regs;
160extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
161extern const int x86_use_ffreep;
162extern const int x86_inter_unit_moves, x86_schedule;
163extern const int x86_use_bt;
164extern const int x86_cmpxchg, x86_cmpxchg8b, x86_cmpxchg16b, x86_xadd;
165extern const int x86_use_incdec;
166extern const int x86_pad_returns;
167extern const int x86_partial_flag_reg_stall;
168extern int x86_prefetch_sse;
169
170#define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
171#define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
172#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
173#define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
174#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
175/* For sane SSE instruction set generation we need fcomi instruction.  It is
176   safe to enable all CMOVE instructions.  */
177#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
178#define TARGET_FISTTP (TARGET_SSE3 && TARGET_80387)
179#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
180#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
181#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
182#define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
183#define TARGET_MOVX (x86_movx & TUNEMASK)
184#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
185#define TARGET_PARTIAL_FLAG_REG_STALL (x86_partial_flag_reg_stall & TUNEMASK)
186#define TARGET_USE_HIMODE_FIOP (x86_use_himode_fiop & TUNEMASK)
187#define TARGET_USE_SIMODE_FIOP (x86_use_simode_fiop & TUNEMASK)
188#define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
189#define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
190#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
191#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
192#define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
193#define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
194#define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
195#define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
196#define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
197#define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
198#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
199#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
200#define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
201#define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
202#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
203#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
204#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
205#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
206#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
207				      (x86_sse_partial_reg_dependency & TUNEMASK)
208#define TARGET_SSE_SPLIT_REGS (x86_sse_split_regs & TUNEMASK)
209#define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
210#define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
211#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
212#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
213#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
214#define TARGET_PREFETCH_SSE (x86_prefetch_sse)
215#define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
216#define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
217#define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
218#define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
219#define TARGET_FOUR_JUMP_LIMIT (x86_four_jump_limit & TUNEMASK)
220#define TARGET_SCHEDULE (x86_schedule & TUNEMASK)
221#define TARGET_USE_BT (x86_use_bt & TUNEMASK)
222#define TARGET_USE_INCDEC (x86_use_incdec & TUNEMASK)
223#define TARGET_PAD_RETURNS (x86_pad_returns & TUNEMASK)
224
225#define ASSEMBLER_DIALECT (ix86_asm_dialect)
226
227#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
228#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
229			     && (ix86_fpmath & FPMATH_387))
230
231#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
232#define TARGET_GNU2_TLS (ix86_tls_dialect == TLS_DIALECT_GNU2)
233#define TARGET_ANY_GNU_TLS (TARGET_GNU_TLS || TARGET_GNU2_TLS)
234#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
235
236#define TARGET_CMPXCHG (x86_cmpxchg & (1 << ix86_arch))
237#define TARGET_CMPXCHG8B (x86_cmpxchg8b & (1 << ix86_arch))
238#define TARGET_CMPXCHG16B (x86_cmpxchg16b & (1 << ix86_arch))
239#define TARGET_XADD (x86_xadd & (1 << ix86_arch))
240
241#ifndef TARGET_64BIT_DEFAULT
242#define TARGET_64BIT_DEFAULT 0
243#endif
244#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
245#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
246#endif
247
248/* Once GDB has been enhanced to deal with functions without frame
249   pointers, we can change this to allow for elimination of
250   the frame pointer in leaf functions.  */
251#define TARGET_DEFAULT 0
252
253/* This is not really a target flag, but is done this way so that
254   it's analogous to similar code for Mach-O on PowerPC.  darwin.h
255   redefines this to 1.  */
256#define TARGET_MACHO 0
257
258/* Subtargets may reset this to 1 in order to enable 96-bit long double
259   with the rounding mode forced to 53 bits.  */
260#define TARGET_96_ROUND_53_LONG_DOUBLE 0
261
262/* Sometimes certain combinations of command options do not make
263   sense on a particular target machine.  You can define a macro
264   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
265   defined, is executed once just after all the command options have
266   been parsed.
267
268   Don't use this macro to turn on various extra optimizations for
269   `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */
270
271#define OVERRIDE_OPTIONS override_options ()
272
273/* Define this to change the optimizations performed by default.  */
274#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
275  optimization_options ((LEVEL), (SIZE))
276
277/* -march=native handling only makes sense with compiler running on
278   an x86 or x86_64 chip.  If changing this condition, also change
279   the condition in driver-i386.c.  */
280#if defined(__i386__) || defined(__x86_64__)
281/* In driver-i386.c.  */
282extern const char *host_detect_local_cpu (int argc, const char **argv);
283#define EXTRA_SPEC_FUNCTIONS \
284  { "local_cpu_detect", host_detect_local_cpu },
285#define HAVE_LOCAL_CPU_DETECT
286#endif
287
288/* Support for configure-time defaults of some command line options.
289   The order here is important so that -march doesn't squash the
290   tune or cpu values.  */
291#define OPTION_DEFAULT_SPECS \
292  {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
293  {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
294  {"arch", "%{!march=*:-march=%(VALUE)}"}
295
296/* Specs for the compiler proper */
297
298#ifndef CC1_CPU_SPEC
299#define CC1_CPU_SPEC_1 "\
300%{!mtune*: \
301%{m386:mtune=i386 \
302%n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
303%{m486:-mtune=i486 \
304%n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
305%{mpentium:-mtune=pentium \
306%n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
307%{mpentiumpro:-mtune=pentiumpro \
308%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
309%{mcpu=*:-mtune=%* \
310%n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
311%<mcpu=* \
312%{mintel-syntax:-masm=intel \
313%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
314%{mno-intel-syntax:-masm=att \
315%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
316
317#ifndef HAVE_LOCAL_CPU_DETECT
318#define CC1_CPU_SPEC CC1_CPU_SPEC_1
319#else
320#define CC1_CPU_SPEC CC1_CPU_SPEC_1 \
321"%{march=native:%<march=native %:local_cpu_detect(arch) \
322  %{!mtune=*:%<mtune=native %:local_cpu_detect(tune)}} \
323%{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
324#endif
325#endif
326
327/* Target CPU builtins.  */
328#define TARGET_CPU_CPP_BUILTINS()				\
329  do								\
330    {								\
331      size_t arch_len = strlen (ix86_arch_string);		\
332      size_t tune_len = strlen (ix86_tune_string);		\
333      int last_arch_char = ix86_arch_string[arch_len - 1];	\
334      int last_tune_char = ix86_tune_string[tune_len - 1];		\
335								\
336      if (TARGET_64BIT)						\
337	{							\
338	  builtin_assert ("cpu=x86_64");			\
339	  builtin_assert ("machine=x86_64");			\
340	  builtin_define ("__amd64");				\
341	  builtin_define ("__amd64__");				\
342	  builtin_define ("__x86_64");				\
343	  builtin_define ("__x86_64__");			\
344	}							\
345      else							\
346	{							\
347	  builtin_assert ("cpu=i386");				\
348	  builtin_assert ("machine=i386");			\
349	  builtin_define_std ("i386");				\
350	}							\
351								\
352      /* Built-ins based on -mtune= (or -march= if no		\
353	 -mtune= given).  */					\
354      if (TARGET_386)						\
355	builtin_define ("__tune_i386__");			\
356      else if (TARGET_486)					\
357	builtin_define ("__tune_i486__");			\
358      else if (TARGET_PENTIUM)					\
359	{							\
360	  builtin_define ("__tune_i586__");			\
361	  builtin_define ("__tune_pentium__");			\
362	  if (last_tune_char == 'x')				\
363	    builtin_define ("__tune_pentium_mmx__");		\
364	}							\
365      else if (TARGET_PENTIUMPRO)				\
366	{							\
367	  builtin_define ("__tune_i686__");			\
368	  builtin_define ("__tune_pentiumpro__");		\
369	  switch (last_tune_char)				\
370	    {							\
371	    case '3':						\
372	      builtin_define ("__tune_pentium3__");		\
373	      /* FALLTHRU */					\
374	    case '2':						\
375	      builtin_define ("__tune_pentium2__");		\
376	      break;						\
377	    }							\
378	}							\
379      else if (TARGET_K6)					\
380	{							\
381	  builtin_define ("__tune_k6__");			\
382	  if (last_tune_char == '2')				\
383	    builtin_define ("__tune_k6_2__");			\
384	  else if (last_tune_char == '3')			\
385	    builtin_define ("__tune_k6_3__");			\
386	}							\
387      else if (TARGET_ATHLON)					\
388	{							\
389	  builtin_define ("__tune_athlon__");			\
390	  /* Plain "athlon" & "athlon-tbird" lacks SSE.  */	\
391	  if (last_tune_char != 'n' && last_tune_char != 'd')	\
392	    builtin_define ("__tune_athlon_sse__");		\
393	}							\
394      else if (TARGET_K8)					\
395	builtin_define ("__tune_k8__");				\
396      else if (TARGET_PENTIUM4)					\
397	builtin_define ("__tune_pentium4__");			\
398      else if (TARGET_NOCONA)					\
399	builtin_define ("__tune_nocona__");			\
400								\
401      if (TARGET_MMX)						\
402	builtin_define ("__MMX__");				\
403      if (TARGET_3DNOW)						\
404	builtin_define ("__3dNOW__");				\
405      if (TARGET_3DNOW_A)					\
406	builtin_define ("__3dNOW_A__");				\
407      if (TARGET_SSE)						\
408	builtin_define ("__SSE__");				\
409      if (TARGET_SSE2)						\
410	builtin_define ("__SSE2__");				\
411      if (TARGET_SSE3)						\
412	builtin_define ("__SSE3__");				\
413      if (TARGET_SSE_MATH && TARGET_SSE)			\
414	builtin_define ("__SSE_MATH__");			\
415      if (TARGET_SSE_MATH && TARGET_SSE2)			\
416	builtin_define ("__SSE2_MATH__");			\
417								\
418      /* Built-ins based on -march=.  */			\
419      if (ix86_arch == PROCESSOR_I486)				\
420	{							\
421	  builtin_define ("__i486");				\
422	  builtin_define ("__i486__");				\
423	}							\
424      else if (ix86_arch == PROCESSOR_PENTIUM)			\
425	{							\
426	  builtin_define ("__i586");				\
427	  builtin_define ("__i586__");				\
428	  builtin_define ("__pentium");				\
429	  builtin_define ("__pentium__");			\
430	  if (last_arch_char == 'x')				\
431	    builtin_define ("__pentium_mmx__");			\
432	}							\
433      else if (ix86_arch == PROCESSOR_PENTIUMPRO)		\
434	{							\
435	  builtin_define ("__i686");				\
436	  builtin_define ("__i686__");				\
437	  builtin_define ("__pentiumpro");			\
438	  builtin_define ("__pentiumpro__");			\
439	}							\
440      else if (ix86_arch == PROCESSOR_K6)			\
441	{							\
442								\
443	  builtin_define ("__k6");				\
444	  builtin_define ("__k6__");				\
445	  if (last_arch_char == '2')				\
446	    builtin_define ("__k6_2__");			\
447	  else if (last_arch_char == '3')			\
448	    builtin_define ("__k6_3__");			\
449	}							\
450      else if (ix86_arch == PROCESSOR_ATHLON)			\
451	{							\
452	  builtin_define ("__athlon");				\
453	  builtin_define ("__athlon__");			\
454	  /* Plain "athlon" & "athlon-tbird" lacks SSE.  */	\
455	  if (last_tune_char != 'n' && last_tune_char != 'd')	\
456	    builtin_define ("__athlon_sse__");			\
457	}							\
458      else if (ix86_arch == PROCESSOR_K8)			\
459	{							\
460	  builtin_define ("__k8");				\
461	  builtin_define ("__k8__");				\
462	}							\
463      else if (ix86_arch == PROCESSOR_PENTIUM4)			\
464	{							\
465	  builtin_define ("__pentium4");			\
466	  builtin_define ("__pentium4__");			\
467	}							\
468      else if (ix86_arch == PROCESSOR_NOCONA)			\
469	{							\
470	  builtin_define ("__nocona");				\
471	  builtin_define ("__nocona__");			\
472	}							\
473    }								\
474  while (0)
475
476#define TARGET_CPU_DEFAULT_i386 0
477#define TARGET_CPU_DEFAULT_i486 1
478#define TARGET_CPU_DEFAULT_pentium 2
479#define TARGET_CPU_DEFAULT_pentium_mmx 3
480#define TARGET_CPU_DEFAULT_pentiumpro 4
481#define TARGET_CPU_DEFAULT_pentium2 5
482#define TARGET_CPU_DEFAULT_pentium3 6
483#define TARGET_CPU_DEFAULT_pentium4 7
484#define TARGET_CPU_DEFAULT_k6 8
485#define TARGET_CPU_DEFAULT_k6_2 9
486#define TARGET_CPU_DEFAULT_k6_3 10
487#define TARGET_CPU_DEFAULT_athlon 11
488#define TARGET_CPU_DEFAULT_athlon_sse 12
489#define TARGET_CPU_DEFAULT_k8 13
490#define TARGET_CPU_DEFAULT_pentium_m 14
491#define TARGET_CPU_DEFAULT_prescott 15
492#define TARGET_CPU_DEFAULT_nocona 16
493#define TARGET_CPU_DEFAULT_generic 17
494
495#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
496				  "pentiumpro", "pentium2", "pentium3", \
497				  "pentium4", "k6", "k6-2", "k6-3",\
498				  "athlon", "athlon-4", "k8", \
499				  "pentium-m", "prescott", "nocona", \
500				  "generic"}
501
502#ifndef CC1_SPEC
503#define CC1_SPEC "%(cc1_cpu) "
504#endif
505
506/* This macro defines names of additional specifications to put in the
507   specs that can be used in various specifications like CC1_SPEC.  Its
508   definition is an initializer with a subgrouping for each command option.
509
510   Each subgrouping contains a string constant, that defines the
511   specification name, and a string constant that used by the GCC driver
512   program.
513
514   Do not define this macro if it does not need to do anything.  */
515
516#ifndef SUBTARGET_EXTRA_SPECS
517#define SUBTARGET_EXTRA_SPECS
518#endif
519
520#define EXTRA_SPECS							\
521  { "cc1_cpu",  CC1_CPU_SPEC },						\
522  SUBTARGET_EXTRA_SPECS
523
524/* target machine storage layout */
525
526#define LONG_DOUBLE_TYPE_SIZE 80
527
528/* Set the value of FLT_EVAL_METHOD in float.h.  When using only the
529   FPU, assume that the fpcw is set to extended precision; when using
530   only SSE, rounding is correct; when using both SSE and the FPU,
531   the rounding precision is indeterminate, since either may be chosen
532   apparently at random.  */
533#define TARGET_FLT_EVAL_METHOD \
534  (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
535
536#define SHORT_TYPE_SIZE 16
537#define INT_TYPE_SIZE 32
538#define FLOAT_TYPE_SIZE 32
539#ifndef LONG_TYPE_SIZE
540#define LONG_TYPE_SIZE BITS_PER_WORD
541#endif
542#define DOUBLE_TYPE_SIZE 64
543#define LONG_LONG_TYPE_SIZE 64
544
545#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
546#define MAX_BITS_PER_WORD 64
547#else
548#define MAX_BITS_PER_WORD 32
549#endif
550
551/* Define this if most significant byte of a word is the lowest numbered.  */
552/* That is true on the 80386.  */
553
554#define BITS_BIG_ENDIAN 0
555
556/* Define this if most significant byte of a word is the lowest numbered.  */
557/* That is not true on the 80386.  */
558#define BYTES_BIG_ENDIAN 0
559
560/* Define this if most significant word of a multiword number is the lowest
561   numbered.  */
562/* Not true for 80386 */
563#define WORDS_BIG_ENDIAN 0
564
565/* Width of a word, in units (bytes).  */
566#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
567#ifdef IN_LIBGCC2
568#define MIN_UNITS_PER_WORD	(TARGET_64BIT ? 8 : 4)
569#else
570#define MIN_UNITS_PER_WORD	4
571#endif
572
573/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
574#define PARM_BOUNDARY BITS_PER_WORD
575
576/* Boundary (in *bits*) on which stack pointer should be aligned.  */
577#define STACK_BOUNDARY BITS_PER_WORD
578
579/* Boundary (in *bits*) on which the stack pointer prefers to be
580   aligned; the compiler cannot rely on having this alignment.  */
581#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
582
583/* As of July 2001, many runtimes do not align the stack properly when
584   entering main.  This causes expand_main_function to forcibly align
585   the stack, which results in aligned frames for functions called from
586   main, though it does nothing for the alignment of main itself.  */
587#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
588  (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
589
590/* Minimum allocation boundary for the code of a function.  */
591#define FUNCTION_BOUNDARY 8
592
593/* C++ stores the virtual bit in the lowest bit of function pointers.  */
594#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
595
596/* Alignment of field after `int : 0' in a structure.  */
597
598#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
599
600/* Minimum size in bits of the largest boundary to which any
601   and all fundamental data types supported by the hardware
602   might need to be aligned. No data type wants to be aligned
603   rounder than this.
604
605   Pentium+ prefers DFmode values to be aligned to 64 bit boundary
606   and Pentium Pro XFmode values at 128 bit boundaries.  */
607
608#define BIGGEST_ALIGNMENT 128
609
610/* Decide whether a variable of mode MODE should be 128 bit aligned.  */
611#define ALIGN_MODE_128(MODE) \
612 ((MODE) == XFmode || SSE_REG_MODE_P (MODE))
613
614/* The published ABIs say that doubles should be aligned on word
615   boundaries, so lower the alignment for structure fields unless
616   -malign-double is set.  */
617
618/* ??? Blah -- this macro is used directly by libobjc.  Since it
619   supports no vector modes, cut out the complexity and fall back
620   on BIGGEST_FIELD_ALIGNMENT.  */
621#ifdef IN_TARGET_LIBS
622#ifdef __x86_64__
623#define BIGGEST_FIELD_ALIGNMENT 128
624#else
625#define BIGGEST_FIELD_ALIGNMENT 32
626#endif
627#else
628#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
629   x86_field_alignment (FIELD, COMPUTED)
630#endif
631
632/* If defined, a C expression to compute the alignment given to a
633   constant that is being placed in memory.  EXP is the constant
634   and ALIGN is the alignment that the object would ordinarily have.
635   The value of this macro is used instead of that alignment to align
636   the object.
637
638   If this macro is not defined, then ALIGN is used.
639
640   The typical use of this macro is to increase alignment for string
641   constants to be word aligned so that `strcpy' calls that copy
642   constants can be done inline.  */
643
644#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
645
646/* If defined, a C expression to compute the alignment for a static
647   variable.  TYPE is the data type, and ALIGN is the alignment that
648   the object would ordinarily have.  The value of this macro is used
649   instead of that alignment to align the object.
650
651   If this macro is not defined, then ALIGN is used.
652
653   One use of this macro is to increase alignment of medium-size
654   data to make it all fit in fewer cache lines.  Another is to
655   cause character arrays to be word-aligned so that `strcpy' calls
656   that copy constants to character arrays can be done inline.  */
657
658#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
659
660/* If defined, a C expression to compute the alignment for a local
661   variable.  TYPE is the data type, and ALIGN is the alignment that
662   the object would ordinarily have.  The value of this macro is used
663   instead of that alignment to align the object.
664
665   If this macro is not defined, then ALIGN is used.
666
667   One use of this macro is to increase alignment of medium-size
668   data to make it all fit in fewer cache lines.  */
669
670#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
671
672/* If defined, a C expression that gives the alignment boundary, in
673   bits, of an argument with the specified mode and type.  If it is
674   not defined, `PARM_BOUNDARY' is used for all arguments.  */
675
676#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
677  ix86_function_arg_boundary ((MODE), (TYPE))
678
679/* Set this nonzero if move instructions will actually fail to work
680   when given unaligned data.  */
681#define STRICT_ALIGNMENT 0
682
683/* If bit field type is int, don't let it cross an int,
684   and give entire struct the alignment of an int.  */
685/* Required on the 386 since it doesn't have bit-field insns.  */
686#define PCC_BITFIELD_TYPE_MATTERS 1
687
688/* Standard register usage.  */
689
690/* This processor has special stack-like registers.  See reg-stack.c
691   for details.  */
692
693#define STACK_REGS
694#define IS_STACK_MODE(MODE)					\
695  (((MODE) == SFmode && (!TARGET_SSE || !TARGET_SSE_MATH))	\
696   || ((MODE) == DFmode && (!TARGET_SSE2 || !TARGET_SSE_MATH))  \
697   || (MODE) == XFmode)
698
699/* Number of actual hardware registers.
700   The hardware registers are assigned numbers for the compiler
701   from 0 to just below FIRST_PSEUDO_REGISTER.
702   All registers that the compiler knows about must be given numbers,
703   even those that are not normally considered general registers.
704
705   In the 80386 we give the 8 general purpose registers the numbers 0-7.
706   We number the floating point registers 8-15.
707   Note that registers 0-7 can be accessed as a  short or int,
708   while only 0-3 may be used with byte `mov' instructions.
709
710   Reg 16 does not correspond to any hardware register, but instead
711   appears in the RTL as an argument pointer prior to reload, and is
712   eliminated during reloading in favor of either the stack or frame
713   pointer.  */
714
715#define FIRST_PSEUDO_REGISTER 53
716
717/* Number of hardware registers that go into the DWARF-2 unwind info.
718   If not defined, equals FIRST_PSEUDO_REGISTER.  */
719
720#define DWARF_FRAME_REGISTERS 17
721
722/* 1 for registers that have pervasive standard uses
723   and are not available for the register allocator.
724   On the 80386, the stack pointer is such, as is the arg pointer.
725
726   The value is zero if the register is not fixed on either 32 or
727   64 bit targets, one if the register if fixed on both 32 and 64
728   bit targets, two if it is only fixed on 32bit targets and three
729   if its only fixed on 64bit targets.
730   Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
731 */
732#define FIXED_REGISTERS						\
733/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
734{  0, 0, 0, 0, 0, 0, 0, 1, 0,  0,  0,  0,  0,  0,  0,  0,	\
735/*arg,flags,fpsr,dir,frame*/					\
736    1,    1,   1,  1,    1,					\
737/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
738     0,   0,   0,   0,   0,   0,   0,   0,			\
739/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
740     0,   0,   0,   0,   0,   0,   0,   0,			\
741/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
742     2,   2,   2,   2,   2,   2,   2,   2,			\
743/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
744     2,   2,    2,    2,    2,    2,    2,    2}
745
746
747/* 1 for registers not available across function calls.
748   These must include the FIXED_REGISTERS and also any
749   registers that can be used without being saved.
750   The latter must include the registers where values are returned
751   and the register where structure-value addresses are passed.
752   Aside from that, you can include as many other registers as you like.
753
754   The value is zero if the register is not call used on either 32 or
755   64 bit targets, one if the register if call used on both 32 and 64
756   bit targets, two if it is only call used on 32bit targets and three
757   if its only call used on 64bit targets.
758   Proper values are computed in the CONDITIONAL_REGISTER_USAGE.
759*/
760#define CALL_USED_REGISTERS					\
761/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
762{  1, 1, 1, 0, 3, 3, 0, 1, 1,  1,  1,  1,  1,  1,  1,  1,	\
763/*arg,flags,fpsr,dir,frame*/					\
764     1,   1,   1,  1,    1,					\
765/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
766     1,   1,   1,   1,   1,  1,    1,   1,			\
767/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
768     1,   1,   1,   1,   1,   1,   1,   1,			\
769/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
770     1,   1,   1,   1,   2,   2,   2,   2,			\
771/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
772     1,   1,    1,    1,    1,    1,    1,    1}		\
773
774/* Order in which to allocate registers.  Each register must be
775   listed once, even those in FIXED_REGISTERS.  List frame pointer
776   late and fixed registers last.  Note that, in general, we prefer
777   registers listed in CALL_USED_REGISTERS, keeping the others
778   available for storage of persistent values.
779
780   The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
781   so this is just empty initializer for array.  */
782
783#define REG_ALLOC_ORDER 					\
784{  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
785   18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,	\
786   33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,  \
787   48, 49, 50, 51, 52 }
788
789/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
790   to be rearranged based on a particular function.  When using sse math,
791   we want to allocate SSE before x87 registers and vice vera.  */
792
793#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
794
795
796/* Macro to conditionally modify fixed_regs/call_used_regs.  */
797#define CONDITIONAL_REGISTER_USAGE					\
798do {									\
799    int i;								\
800    for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)				\
801      {									\
802	if (fixed_regs[i] > 1)						\
803	  fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2));	\
804	if (call_used_regs[i] > 1)					\
805	  call_used_regs[i] = (call_used_regs[i]			\
806			       == (TARGET_64BIT ? 3 : 2));		\
807      }									\
808    if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)			\
809      {									\
810	fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
811	call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
812      }									\
813    if (! TARGET_MMX)							\
814      {									\
815	int i;								\
816        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
817          if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i))	\
818	    fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";	\
819      }									\
820    if (! TARGET_SSE)							\
821      {									\
822	int i;								\
823        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
824          if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i))	\
825	    fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";	\
826      }									\
827    if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387)		\
828      {									\
829	int i;								\
830	HARD_REG_SET x;							\
831        COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]);	\
832        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
833          if (TEST_HARD_REG_BIT (x, i)) 				\
834	    fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = "";	\
835      }									\
836    if (! TARGET_64BIT)							\
837      {									\
838	int i;								\
839	for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++)		\
840	  reg_names[i] = "";						\
841	for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++)		\
842	  reg_names[i] = "";						\
843      }									\
844  } while (0)
845
846/* Return number of consecutive hard regs needed starting at reg REGNO
847   to hold something of mode MODE.
848   This is ordinarily the length in words of a value of mode MODE
849   but can be less for certain modes in special long registers.
850
851   Actually there are no two word move instructions for consecutive
852   registers.  And only registers 0-3 may have mov byte instructions
853   applied to them.
854   */
855
856#define HARD_REGNO_NREGS(REGNO, MODE)   \
857  (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)	\
858   ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
859   : ((MODE) == XFmode							\
860      ? (TARGET_64BIT ? 2 : 3)						\
861      : (MODE) == XCmode						\
862      ? (TARGET_64BIT ? 4 : 6)						\
863      : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
864
865#define HARD_REGNO_NREGS_HAS_PADDING(REGNO, MODE)			\
866  ((TARGET_128BIT_LONG_DOUBLE && !TARGET_64BIT)				\
867   ? (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)	\
868      ? 0								\
869      : ((MODE) == XFmode || (MODE) == XCmode))				\
870   : 0)
871
872#define HARD_REGNO_NREGS_WITH_PADDING(REGNO, MODE) ((MODE) == XFmode ? 4 : 8)
873
874#define VALID_SSE2_REG_MODE(MODE) \
875    ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode    \
876     || (MODE) == V2DImode || (MODE) == DFmode)
877
878#define VALID_SSE_REG_MODE(MODE)					\
879    ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode	\
880     || (MODE) == SFmode || (MODE) == TFmode)
881
882#define VALID_MMX_REG_MODE_3DNOW(MODE) \
883    ((MODE) == V2SFmode || (MODE) == SFmode)
884
885#define VALID_MMX_REG_MODE(MODE)					\
886    ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode	\
887     || (MODE) == V2SImode || (MODE) == SImode)
888
889/* ??? No autovectorization into MMX or 3DNOW until we can reliably
890   place emms and femms instructions.  */
891#define UNITS_PER_SIMD_WORD (TARGET_SSE ? 16 : UNITS_PER_WORD)
892
893#define VALID_FP_MODE_P(MODE)						\
894    ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode		\
895     || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode)	\
896
897#define VALID_INT_MODE_P(MODE)						\
898    ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode		\
899     || (MODE) == DImode						\
900     || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode	\
901     || (MODE) == CDImode						\
902     || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode		\
903         || (MODE) == TFmode || (MODE) == TCmode)))
904
905/* Return true for modes passed in SSE registers.  */
906#define SSE_REG_MODE_P(MODE) \
907 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode		\
908   || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode	\
909   || (MODE) == V4SFmode || (MODE) == V4SImode)
910
911/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.  */
912
913#define HARD_REGNO_MODE_OK(REGNO, MODE)	\
914   ix86_hard_regno_mode_ok ((REGNO), (MODE))
915
916/* Value is 1 if it is a good idea to tie two pseudo registers
917   when one has mode MODE1 and one has mode MODE2.
918   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
919   for any hard reg, then this must be 0 for correct output.  */
920
921#define MODES_TIEABLE_P(MODE1, MODE2)  ix86_modes_tieable_p (MODE1, MODE2)
922
923/* It is possible to write patterns to move flags; but until someone
924   does it,  */
925#define AVOID_CCMODE_COPIES
926
927/* Specify the modes required to caller save a given hard regno.
928   We do this on i386 to prevent flags from being saved at all.
929
930   Kill any attempts to combine saving of modes.  */
931
932#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)			\
933  (CC_REGNO_P (REGNO) ? VOIDmode					\
934   : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode			\
935   : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
936   : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode		\
937   : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode 	\
938   : (MODE))
939/* Specify the registers used for certain standard purposes.
940   The values of these macros are register numbers.  */
941
942/* on the 386 the pc register is %eip, and is not usable as a general
943   register.  The ordinary mov instructions won't work */
944/* #define PC_REGNUM  */
945
946/* Register to use for pushing function arguments.  */
947#define STACK_POINTER_REGNUM 7
948
949/* Base register for access to local variables of the function.  */
950#define HARD_FRAME_POINTER_REGNUM 6
951
952/* Base register for access to local variables of the function.  */
953#define FRAME_POINTER_REGNUM 20
954
955/* First floating point reg */
956#define FIRST_FLOAT_REG 8
957
958/* First & last stack-like regs */
959#define FIRST_STACK_REG FIRST_FLOAT_REG
960#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
961
962#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
963#define LAST_SSE_REG  (FIRST_SSE_REG + 7)
964
965#define FIRST_MMX_REG  (LAST_SSE_REG + 1)
966#define LAST_MMX_REG   (FIRST_MMX_REG + 7)
967
968#define FIRST_REX_INT_REG  (LAST_MMX_REG + 1)
969#define LAST_REX_INT_REG   (FIRST_REX_INT_REG + 7)
970
971#define FIRST_REX_SSE_REG  (LAST_REX_INT_REG + 1)
972#define LAST_REX_SSE_REG   (FIRST_REX_SSE_REG + 7)
973
974/* Value should be nonzero if functions must have frame pointers.
975   Zero means the frame pointer need not be set up (and parms
976   may be accessed via the stack pointer) in functions that seem suitable.
977   This is computed in `reload', in reload1.c.  */
978#define FRAME_POINTER_REQUIRED  ix86_frame_pointer_required ()
979
980/* Override this in other tm.h files to cope with various OS lossage
981   requiring a frame pointer.  */
982#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
983#define SUBTARGET_FRAME_POINTER_REQUIRED 0
984#endif
985
986/* Make sure we can access arbitrary call frames.  */
987#define SETUP_FRAME_ADDRESSES()  ix86_setup_frame_addresses ()
988
989/* Base register for access to arguments of the function.  */
990#define ARG_POINTER_REGNUM 16
991
992/* Register in which static-chain is passed to a function.
993   We do use ECX as static chain register for 32 bit ABI.  On the
994   64bit ABI, ECX is an argument register, so we use R10 instead.  */
995#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
996
997/* Register to hold the addressing base for position independent
998   code access to data items.  We don't use PIC pointer for 64bit
999   mode.  Define the regnum to dummy value to prevent gcc from
1000   pessimizing code dealing with EBX.
1001
1002   To avoid clobbering a call-saved register unnecessarily, we renumber
1003   the pic register when possible.  The change is visible after the
1004   prologue has been emitted.  */
1005
1006#define REAL_PIC_OFFSET_TABLE_REGNUM  3
1007
1008#define PIC_OFFSET_TABLE_REGNUM				\
1009  ((TARGET_64BIT && ix86_cmodel == CM_SMALL_PIC)	\
1010   || !flag_pic ? INVALID_REGNUM			\
1011   : reload_completed ? REGNO (pic_offset_table_rtx)	\
1012   : REAL_PIC_OFFSET_TABLE_REGNUM)
1013
1014#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1015
1016/* A C expression which can inhibit the returning of certain function
1017   values in registers, based on the type of value.  A nonzero value
1018   says to return the function value in memory, just as large
1019   structures are always returned.  Here TYPE will be a C expression
1020   of type `tree', representing the data type of the value.
1021
1022   Note that values of mode `BLKmode' must be explicitly handled by
1023   this macro.  Also, the option `-fpcc-struct-return' takes effect
1024   regardless of this macro.  On most systems, it is possible to
1025   leave the macro undefined; this causes a default definition to be
1026   used, whose value is the constant 1 for `BLKmode' values, and 0
1027   otherwise.
1028
1029   Do not use this macro to indicate that structures and unions
1030   should always be returned in memory.  You should instead use
1031   `DEFAULT_PCC_STRUCT_RETURN' to indicate this.  */
1032
1033#define RETURN_IN_MEMORY(TYPE) \
1034  ix86_return_in_memory (TYPE)
1035
1036/* This is overridden by <cygwin.h>.  */
1037#define MS_AGGREGATE_RETURN 0
1038
1039/* This is overridden by <netware.h>.  */
1040#define KEEP_AGGREGATE_RETURN_POINTER 0
1041
1042/* Define the classes of registers for register constraints in the
1043   machine description.  Also define ranges of constants.
1044
1045   One of the classes must always be named ALL_REGS and include all hard regs.
1046   If there is more than one class, another class must be named NO_REGS
1047   and contain no registers.
1048
1049   The name GENERAL_REGS must be the name of a class (or an alias for
1050   another name such as ALL_REGS).  This is the class of registers
1051   that is allowed by "g" or "r" in a register constraint.
1052   Also, registers outside this class are allocated only when
1053   instructions express preferences for them.
1054
1055   The classes must be numbered in nondecreasing order; that is,
1056   a larger-numbered class must never be contained completely
1057   in a smaller-numbered class.
1058
1059   For any two classes, it is very desirable that there be another
1060   class that represents their union.
1061
1062   It might seem that class BREG is unnecessary, since no useful 386
1063   opcode needs reg %ebx.  But some systems pass args to the OS in ebx,
1064   and the "b" register constraint is useful in asms for syscalls.
1065
1066   The flags and fpsr registers are in no class.  */
1067
1068enum reg_class
1069{
1070  NO_REGS,
1071  AREG, DREG, CREG, BREG, SIREG, DIREG,
1072  AD_REGS,			/* %eax/%edx for DImode */
1073  Q_REGS,			/* %eax %ebx %ecx %edx */
1074  NON_Q_REGS,			/* %esi %edi %ebp %esp */
1075  INDEX_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp */
1076  LEGACY_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1077  GENERAL_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1078  FP_TOP_REG, FP_SECOND_REG,	/* %st(0) %st(1) */
1079  FLOAT_REGS,
1080  SSE_REGS,
1081  MMX_REGS,
1082  FP_TOP_SSE_REGS,
1083  FP_SECOND_SSE_REGS,
1084  FLOAT_SSE_REGS,
1085  FLOAT_INT_REGS,
1086  INT_SSE_REGS,
1087  FLOAT_INT_SSE_REGS,
1088  ALL_REGS, LIM_REG_CLASSES
1089};
1090
1091#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1092
1093#define INTEGER_CLASS_P(CLASS) \
1094  reg_class_subset_p ((CLASS), GENERAL_REGS)
1095#define FLOAT_CLASS_P(CLASS) \
1096  reg_class_subset_p ((CLASS), FLOAT_REGS)
1097#define SSE_CLASS_P(CLASS) \
1098  ((CLASS) == SSE_REGS)
1099#define MMX_CLASS_P(CLASS) \
1100  ((CLASS) == MMX_REGS)
1101#define MAYBE_INTEGER_CLASS_P(CLASS) \
1102  reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1103#define MAYBE_FLOAT_CLASS_P(CLASS) \
1104  reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1105#define MAYBE_SSE_CLASS_P(CLASS) \
1106  reg_classes_intersect_p (SSE_REGS, (CLASS))
1107#define MAYBE_MMX_CLASS_P(CLASS) \
1108  reg_classes_intersect_p (MMX_REGS, (CLASS))
1109
1110#define Q_CLASS_P(CLASS) \
1111  reg_class_subset_p ((CLASS), Q_REGS)
1112
1113/* Give names of register classes as strings for dump file.  */
1114
1115#define REG_CLASS_NAMES \
1116{  "NO_REGS",				\
1117   "AREG", "DREG", "CREG", "BREG",	\
1118   "SIREG", "DIREG",			\
1119   "AD_REGS",				\
1120   "Q_REGS", "NON_Q_REGS",		\
1121   "INDEX_REGS",			\
1122   "LEGACY_REGS",			\
1123   "GENERAL_REGS",			\
1124   "FP_TOP_REG", "FP_SECOND_REG",	\
1125   "FLOAT_REGS",			\
1126   "SSE_REGS",				\
1127   "MMX_REGS",				\
1128   "FP_TOP_SSE_REGS",			\
1129   "FP_SECOND_SSE_REGS",		\
1130   "FLOAT_SSE_REGS",			\
1131   "FLOAT_INT_REGS",			\
1132   "INT_SSE_REGS",			\
1133   "FLOAT_INT_SSE_REGS",		\
1134   "ALL_REGS" }
1135
1136/* Define which registers fit in which classes.
1137   This is an initializer for a vector of HARD_REG_SET
1138   of length N_REG_CLASSES.  */
1139
1140#define REG_CLASS_CONTENTS						\
1141{     { 0x00,     0x0 },						\
1142      { 0x01,     0x0 }, { 0x02, 0x0 },	/* AREG, DREG */		\
1143      { 0x04,     0x0 }, { 0x08, 0x0 },	/* CREG, BREG */		\
1144      { 0x10,     0x0 }, { 0x20, 0x0 },	/* SIREG, DIREG */		\
1145      { 0x03,     0x0 },		/* AD_REGS */			\
1146      { 0x0f,     0x0 },		/* Q_REGS */			\
1147  { 0x1100f0,  0x1fe0 },		/* NON_Q_REGS */		\
1148      { 0x7f,  0x1fe0 },		/* INDEX_REGS */		\
1149  { 0x1100ff,  0x0 },			/* LEGACY_REGS */		\
1150  { 0x1100ff,  0x1fe0 },		/* GENERAL_REGS */		\
1151     { 0x100,     0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1152    { 0xff00,     0x0 },		/* FLOAT_REGS */		\
1153{ 0x1fe00000,0x1fe000 },		/* SSE_REGS */			\
1154{ 0xe0000000,    0x1f },		/* MMX_REGS */			\
1155{ 0x1fe00100,0x1fe000 },		/* FP_TOP_SSE_REG */		\
1156{ 0x1fe00200,0x1fe000 },		/* FP_SECOND_SSE_REG */		\
1157{ 0x1fe0ff00,0x1fe000 },		/* FLOAT_SSE_REGS */		\
1158   { 0x1ffff,  0x1fe0 },		/* FLOAT_INT_REGS */		\
1159{ 0x1fe100ff,0x1fffe0 },		/* INT_SSE_REGS */		\
1160{ 0x1fe1ffff,0x1fffe0 },		/* FLOAT_INT_SSE_REGS */	\
1161{ 0xffffffff,0x1fffff }							\
1162}
1163
1164/* The same information, inverted:
1165   Return the class number of the smallest class containing
1166   reg number REGNO.  This could be a conditional expression
1167   or could index an array.  */
1168
1169#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1170
1171/* When defined, the compiler allows registers explicitly used in the
1172   rtl to be used as spill registers but prevents the compiler from
1173   extending the lifetime of these registers.  */
1174
1175#define SMALL_REGISTER_CLASSES 1
1176
1177#define QI_REG_P(X) \
1178  (REG_P (X) && REGNO (X) < 4)
1179
1180#define GENERAL_REGNO_P(N) \
1181  ((N) < 8 || REX_INT_REGNO_P (N))
1182
1183#define GENERAL_REG_P(X) \
1184  (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1185
1186#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1187
1188#define NON_QI_REG_P(X) \
1189  (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1190
1191#define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1192#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1193
1194#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1195#define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1196#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1197#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1198
1199#define SSE_REGNO_P(N) \
1200  (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1201   || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1202
1203#define REX_SSE_REGNO_P(N) \
1204   ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1205
1206#define SSE_REGNO(N) \
1207  ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1208#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1209
1210#define SSE_FLOAT_MODE_P(MODE) \
1211  ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1212
1213#define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1214#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1215
1216#define STACK_REG_P(XOP)		\
1217  (REG_P (XOP) &&		       	\
1218   REGNO (XOP) >= FIRST_STACK_REG &&	\
1219   REGNO (XOP) <= LAST_STACK_REG)
1220
1221#define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1222
1223#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1224
1225#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1226#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1227
1228/* The class value for index registers, and the one for base regs.  */
1229
1230#define INDEX_REG_CLASS INDEX_REGS
1231#define BASE_REG_CLASS GENERAL_REGS
1232
1233/* Place additional restrictions on the register class to use when it
1234   is necessary to be able to hold a value of mode MODE in a reload
1235   register for which class CLASS would ordinarily be used.  */
1236
1237#define LIMIT_RELOAD_CLASS(MODE, CLASS) 			\
1238  ((MODE) == QImode && !TARGET_64BIT				\
1239   && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS		\
1240       || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS)	\
1241   ? Q_REGS : (CLASS))
1242
1243/* Given an rtx X being reloaded into a reg required to be
1244   in class CLASS, return the class of reg to actually use.
1245   In general this is just CLASS; but on some machines
1246   in some cases it is preferable to use a more restrictive class.
1247   On the 80386 series, we prevent floating constants from being
1248   reloaded into floating registers (since no move-insn can do that)
1249   and we ensure that QImodes aren't reloaded into the esi or edi reg.  */
1250
1251/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1252   QImode must go into class Q_REGS.
1253   Narrow ALL_REGS to GENERAL_REGS.  This supports allowing movsf and
1254   movdf to do mem-to-mem moves through integer regs.  */
1255
1256#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1257   ix86_preferred_reload_class ((X), (CLASS))
1258
1259/* Discourage putting floating-point values in SSE registers unless
1260   SSE math is being used, and likewise for the 387 registers.  */
1261
1262#define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
1263   ix86_preferred_output_reload_class ((X), (CLASS))
1264
1265/* If we are copying between general and FP registers, we need a memory
1266   location. The same is true for SSE and MMX registers.  */
1267#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1268  ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1269
1270/* QImode spills from non-QI registers need a scratch.  This does not
1271   happen often -- the only example so far requires an uninitialized
1272   pseudo.  */
1273
1274#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT)			\
1275  (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS			\
1276    || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode	\
1277   ? Q_REGS : NO_REGS)
1278
1279/* Return the maximum number of consecutive registers
1280   needed to represent mode MODE in a register of class CLASS.  */
1281/* On the 80386, this is the size of MODE in words,
1282   except in the FP regs, where a single reg is always enough.  */
1283#define CLASS_MAX_NREGS(CLASS, MODE)					\
1284 (!MAYBE_INTEGER_CLASS_P (CLASS)					\
1285  ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
1286  : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE)))			\
1287      + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1288
1289/* A C expression whose value is nonzero if pseudos that have been
1290   assigned to registers of class CLASS would likely be spilled
1291   because registers of CLASS are needed for spill registers.
1292
1293   The default value of this macro returns 1 if CLASS has exactly one
1294   register and zero otherwise.  On most machines, this default
1295   should be used.  Only define this macro to some other expression
1296   if pseudo allocated by `local-alloc.c' end up in memory because
1297   their hard registers were needed for spill registers.  If this
1298   macro returns nonzero for those classes, those pseudos will only
1299   be allocated by `global.c', which knows how to reallocate the
1300   pseudo to another register.  If there would not be another
1301   register available for reallocation, you should not change the
1302   definition of this macro since the only effect of such a
1303   definition would be to slow down register allocation.  */
1304
1305#define CLASS_LIKELY_SPILLED_P(CLASS)					\
1306  (((CLASS) == AREG)							\
1307   || ((CLASS) == DREG)							\
1308   || ((CLASS) == CREG)							\
1309   || ((CLASS) == BREG)							\
1310   || ((CLASS) == AD_REGS)						\
1311   || ((CLASS) == SIREG)						\
1312   || ((CLASS) == DIREG)						\
1313   || ((CLASS) == FP_TOP_REG)						\
1314   || ((CLASS) == FP_SECOND_REG))
1315
1316/* Return a class of registers that cannot change FROM mode to TO mode.  */
1317
1318#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1319  ix86_cannot_change_mode_class (FROM, TO, CLASS)
1320
1321/* Stack layout; function entry, exit and calling.  */
1322
1323/* Define this if pushing a word on the stack
1324   makes the stack pointer a smaller address.  */
1325#define STACK_GROWS_DOWNWARD
1326
1327/* Define this to nonzero if the nominal address of the stack frame
1328   is at the high-address end of the local variables;
1329   that is, each additional local variable allocated
1330   goes at a more negative offset in the frame.  */
1331#define FRAME_GROWS_DOWNWARD 1
1332
1333/* Offset within stack frame to start allocating local variables at.
1334   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1335   first local allocated.  Otherwise, it is the offset to the BEGINNING
1336   of the first local allocated.  */
1337#define STARTING_FRAME_OFFSET 0
1338
1339/* If we generate an insn to push BYTES bytes,
1340   this says how many the stack pointer really advances by.
1341   On 386, we have pushw instruction that decrements by exactly 2 no
1342   matter what the position was, there is no pushb.
1343   But as CIE data alignment factor on this arch is -4, we need to make
1344   sure all stack pointer adjustments are in multiple of 4.
1345
1346   For 64bit ABI we round up to 8 bytes.
1347 */
1348
1349#define PUSH_ROUNDING(BYTES) \
1350  (TARGET_64BIT		     \
1351   ? (((BYTES) + 7) & (-8))  \
1352   : (((BYTES) + 3) & (-4)))
1353
1354/* If defined, the maximum amount of space required for outgoing arguments will
1355   be computed and placed into the variable
1356   `current_function_outgoing_args_size'.  No space will be pushed onto the
1357   stack for each call; instead, the function prologue should increase the stack
1358   frame size by this amount.  */
1359
1360#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1361
1362/* If defined, a C expression whose value is nonzero when we want to use PUSH
1363   instructions to pass outgoing arguments.  */
1364
1365#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1366
1367/* We want the stack and args grow in opposite directions, even if
1368   PUSH_ARGS is 0.  */
1369#define PUSH_ARGS_REVERSED 1
1370
1371/* Offset of first parameter from the argument pointer register value.  */
1372#define FIRST_PARM_OFFSET(FNDECL) 0
1373
1374/* Define this macro if functions should assume that stack space has been
1375   allocated for arguments even when their values are passed in registers.
1376
1377   The value of this macro is the size, in bytes, of the area reserved for
1378   arguments passed in registers for the function represented by FNDECL.
1379
1380   This space can be allocated by the caller, or be a part of the
1381   machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1382   which.  */
1383#define REG_PARM_STACK_SPACE(FNDECL) 0
1384
1385/* Value is the number of bytes of arguments automatically
1386   popped when returning from a subroutine call.
1387   FUNDECL is the declaration node of the function (as a tree),
1388   FUNTYPE is the data type of the function (as a tree),
1389   or for a library call it is an identifier node for the subroutine name.
1390   SIZE is the number of bytes of arguments passed on the stack.
1391
1392   On the 80386, the RTD insn may be used to pop them if the number
1393     of args is fixed, but if the number is variable then the caller
1394     must pop them all.  RTD can't be used for library calls now
1395     because the library is compiled with the Unix compiler.
1396   Use of RTD is a selectable option, since it is incompatible with
1397   standard Unix calling sequences.  If the option is not selected,
1398   the caller must always pop the args.
1399
1400   The attribute stdcall is equivalent to RTD on a per module basis.  */
1401
1402#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1403  ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1404
1405#define FUNCTION_VALUE_REGNO_P(N) \
1406  ix86_function_value_regno_p (N)
1407
1408/* Define how to find the value returned by a library function
1409   assuming the value has mode MODE.  */
1410
1411#define LIBCALL_VALUE(MODE) \
1412  ix86_libcall_value (MODE)
1413
1414/* Define the size of the result block used for communication between
1415   untyped_call and untyped_return.  The block contains a DImode value
1416   followed by the block used by fnsave and frstor.  */
1417
1418#define APPLY_RESULT_SIZE (8+108)
1419
1420/* 1 if N is a possible register number for function argument passing.  */
1421#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1422
1423/* Define a data type for recording info about an argument list
1424   during the scan of that argument list.  This data type should
1425   hold all necessary information about the function itself
1426   and about the args processed so far, enough to enable macros
1427   such as FUNCTION_ARG to determine where the next arg should go.  */
1428
1429typedef struct ix86_args {
1430  int words;			/* # words passed so far */
1431  int nregs;			/* # registers available for passing */
1432  int regno;			/* next available register number */
1433  int fastcall;			/* fastcall calling convention is used */
1434  int sse_words;		/* # sse words passed so far */
1435  int sse_nregs;		/* # sse registers available for passing */
1436  int warn_sse;			/* True when we want to warn about SSE ABI.  */
1437  int warn_mmx;			/* True when we want to warn about MMX ABI.  */
1438  int sse_regno;		/* next available sse register number */
1439  int mmx_words;		/* # mmx words passed so far */
1440  int mmx_nregs;		/* # mmx registers available for passing */
1441  int mmx_regno;		/* next available mmx register number */
1442  int maybe_vaarg;		/* true for calls to possibly vardic fncts.  */
1443  int float_in_sse;		/* 1 if in 32-bit mode SFmode (2 for DFmode) should
1444				   be passed in SSE registers.  Otherwise 0.  */
1445} CUMULATIVE_ARGS;
1446
1447/* Initialize a variable CUM of type CUMULATIVE_ARGS
1448   for a call to a function whose data type is FNTYPE.
1449   For a library call, FNTYPE is 0.  */
1450
1451#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1452  init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1453
1454/* Update the data in CUM to advance over an argument
1455   of mode MODE and data type TYPE.
1456   (TYPE is null for libcalls where that information may not be available.)  */
1457
1458#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1459  function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1460
1461/* Define where to put the arguments to a function.
1462   Value is zero to push the argument on the stack,
1463   or a hard register in which to store the argument.
1464
1465   MODE is the argument's machine mode.
1466   TYPE is the data type of the argument (as a tree).
1467    This is null for libcalls where that information may
1468    not be available.
1469   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1470    the preceding args and about the function being called.
1471   NAMED is nonzero if this argument is a named parameter
1472    (otherwise it is an extra parameter matching an ellipsis).  */
1473
1474#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1475  function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1476
1477/* Implement `va_start' for varargs and stdarg.  */
1478#define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1479  ix86_va_start (VALIST, NEXTARG)
1480
1481#define TARGET_ASM_FILE_END ix86_file_end
1482#define NEED_INDICATE_EXEC_STACK 0
1483
1484/* Output assembler code to FILE to increment profiler label # LABELNO
1485   for profiling a function entry.  */
1486
1487#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1488
1489#define MCOUNT_NAME "_mcount"
1490
1491#define PROFILE_COUNT_REGISTER "edx"
1492
1493/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1494   the stack pointer does not matter.  The value is tested only in
1495   functions that have frame pointers.
1496   No definition is equivalent to always zero.  */
1497/* Note on the 386 it might be more efficient not to define this since
1498   we have to restore it ourselves from the frame pointer, in order to
1499   use pop */
1500
1501#define EXIT_IGNORE_STACK 1
1502
1503/* Output assembler code for a block containing the constant parts
1504   of a trampoline, leaving space for the variable parts.  */
1505
1506/* On the 386, the trampoline contains two instructions:
1507     mov #STATIC,ecx
1508     jmp FUNCTION
1509   The trampoline is generated entirely at runtime.  The operand of JMP
1510   is the address of FUNCTION relative to the instruction following the
1511   JMP (which is 5 bytes long).  */
1512
1513/* Length in units of the trampoline for entering a nested function.  */
1514
1515#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1516
1517/* Emit RTL insns to initialize the variable parts of a trampoline.
1518   FNADDR is an RTX for the address of the function's pure code.
1519   CXT is an RTX for the static chain value for the function.  */
1520
1521#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1522  x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1523
1524/* Definitions for register eliminations.
1525
1526   This is an array of structures.  Each structure initializes one pair
1527   of eliminable registers.  The "from" register number is given first,
1528   followed by "to".  Eliminations of the same "from" register are listed
1529   in order of preference.
1530
1531   There are two registers that can always be eliminated on the i386.
1532   The frame pointer and the arg pointer can be replaced by either the
1533   hard frame pointer or to the stack pointer, depending upon the
1534   circumstances.  The hard frame pointer is not used before reload and
1535   so it is not eligible for elimination.  */
1536
1537#define ELIMINABLE_REGS					\
1538{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1539 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1540 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1541 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}	\
1542
1543/* Given FROM and TO register numbers, say whether this elimination is
1544   allowed.  Frame pointer elimination is automatically handled.
1545
1546   All other eliminations are valid.  */
1547
1548#define CAN_ELIMINATE(FROM, TO) \
1549  ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1550
1551/* Define the offset between two registers, one to be eliminated, and the other
1552   its replacement, at the start of a routine.  */
1553
1554#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1555  ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1556
1557/* Addressing modes, and classification of registers for them.  */
1558
1559/* Macros to check register numbers against specific register classes.  */
1560
1561/* These assume that REGNO is a hard or pseudo reg number.
1562   They give nonzero only if REGNO is a hard reg of the suitable class
1563   or a pseudo reg currently allocated to a suitable hard reg.
1564   Since they use reg_renumber, they are safe only once reg_renumber
1565   has been allocated, which happens in local-alloc.c.  */
1566
1567#define REGNO_OK_FOR_INDEX_P(REGNO) 					\
1568  ((REGNO) < STACK_POINTER_REGNUM 					\
1569   || (REGNO >= FIRST_REX_INT_REG					\
1570       && (REGNO) <= LAST_REX_INT_REG)					\
1571   || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1572       && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1573   || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1574
1575#define REGNO_OK_FOR_BASE_P(REGNO) 					\
1576  ((REGNO) <= STACK_POINTER_REGNUM 					\
1577   || (REGNO) == ARG_POINTER_REGNUM 					\
1578   || (REGNO) == FRAME_POINTER_REGNUM 					\
1579   || (REGNO >= FIRST_REX_INT_REG					\
1580       && (REGNO) <= LAST_REX_INT_REG)					\
1581   || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1582       && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1583   || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1584
1585#define REGNO_OK_FOR_SIREG_P(REGNO) \
1586  ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1587#define REGNO_OK_FOR_DIREG_P(REGNO) \
1588  ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1589
1590/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1591   and check its validity for a certain class.
1592   We have two alternate definitions for each of them.
1593   The usual definition accepts all pseudo regs; the other rejects
1594   them unless they have been allocated suitable hard regs.
1595   The symbol REG_OK_STRICT causes the latter definition to be used.
1596
1597   Most source files want to accept pseudo regs in the hope that
1598   they will get allocated to the class that the insn wants them to be in.
1599   Source files for reload pass need to be strict.
1600   After reload, it makes no difference, since pseudo regs have
1601   been eliminated by then.  */
1602
1603
1604/* Non strict versions, pseudos are ok.  */
1605#define REG_OK_FOR_INDEX_NONSTRICT_P(X)					\
1606  (REGNO (X) < STACK_POINTER_REGNUM					\
1607   || (REGNO (X) >= FIRST_REX_INT_REG					\
1608       && REGNO (X) <= LAST_REX_INT_REG)				\
1609   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1610
1611#define REG_OK_FOR_BASE_NONSTRICT_P(X)					\
1612  (REGNO (X) <= STACK_POINTER_REGNUM					\
1613   || REGNO (X) == ARG_POINTER_REGNUM					\
1614   || REGNO (X) == FRAME_POINTER_REGNUM 				\
1615   || (REGNO (X) >= FIRST_REX_INT_REG					\
1616       && REGNO (X) <= LAST_REX_INT_REG)				\
1617   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1618
1619/* Strict versions, hard registers only */
1620#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1621#define REG_OK_FOR_BASE_STRICT_P(X)  REGNO_OK_FOR_BASE_P (REGNO (X))
1622
1623#ifndef REG_OK_STRICT
1624#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_NONSTRICT_P (X)
1625#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_NONSTRICT_P (X)
1626
1627#else
1628#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_STRICT_P (X)
1629#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_STRICT_P (X)
1630#endif
1631
1632/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1633   that is a valid memory address for an instruction.
1634   The MODE argument is the machine mode for the MEM expression
1635   that wants to use this address.
1636
1637   The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1638   except for CONSTANT_ADDRESS_P which is usually machine-independent.
1639
1640   See legitimize_pic_address in i386.c for details as to what
1641   constitutes a legitimate address when -fpic is used.  */
1642
1643#define MAX_REGS_PER_ADDRESS 2
1644
1645#define CONSTANT_ADDRESS_P(X)  constant_address_p (X)
1646
1647/* Nonzero if the constant value X is a legitimate general operand.
1648   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1649
1650#define LEGITIMATE_CONSTANT_P(X)  legitimate_constant_p (X)
1651
1652#ifdef REG_OK_STRICT
1653#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
1654do {									\
1655  if (legitimate_address_p ((MODE), (X), 1))				\
1656    goto ADDR;								\
1657} while (0)
1658
1659#else
1660#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
1661do {									\
1662  if (legitimate_address_p ((MODE), (X), 0))				\
1663    goto ADDR;								\
1664} while (0)
1665
1666#endif
1667
1668/* If defined, a C expression to determine the base term of address X.
1669   This macro is used in only one place: `find_base_term' in alias.c.
1670
1671   It is always safe for this macro to not be defined.  It exists so
1672   that alias analysis can understand machine-dependent addresses.
1673
1674   The typical use of this macro is to handle addresses containing
1675   a label_ref or symbol_ref within an UNSPEC.  */
1676
1677#define FIND_BASE_TERM(X) ix86_find_base_term (X)
1678
1679/* Try machine-dependent ways of modifying an illegitimate address
1680   to be legitimate.  If we find one, return the new, valid address.
1681   This macro is used in only one place: `memory_address' in explow.c.
1682
1683   OLDX is the address as it was before break_out_memory_refs was called.
1684   In some cases it is useful to look at this to decide what needs to be done.
1685
1686   MODE and WIN are passed so that this macro can use
1687   GO_IF_LEGITIMATE_ADDRESS.
1688
1689   It is always safe for this macro to do nothing.  It exists to recognize
1690   opportunities to optimize the output.
1691
1692   For the 80386, we handle X+REG by loading X into a register R and
1693   using R+REG.  R will go in a general reg and indexing will be used.
1694   However, if REG is a broken-out memory address or multiplication,
1695   nothing needs to be done because REG can certainly go in a general reg.
1696
1697   When -fpic is used, special handling is needed for symbolic references.
1698   See comments by legitimize_pic_address in i386.c for details.  */
1699
1700#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)				\
1701do {									\
1702  (X) = legitimize_address ((X), (OLDX), (MODE));			\
1703  if (memory_address_p ((MODE), (X)))					\
1704    goto WIN;								\
1705} while (0)
1706
1707#define REWRITE_ADDRESS(X) rewrite_address (X)
1708
1709/* Nonzero if the constant value X is a legitimate general operand
1710   when generating PIC code.  It is given that flag_pic is on and
1711   that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1712
1713#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1714
1715#define SYMBOLIC_CONST(X)	\
1716  (GET_CODE (X) == SYMBOL_REF						\
1717   || GET_CODE (X) == LABEL_REF						\
1718   || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1719
1720/* Go to LABEL if ADDR (a legitimate address expression)
1721   has an effect that depends on the machine mode it is used for.
1722   On the 80386, only postdecrement and postincrement address depend thus
1723   (the amount of decrement or increment being the length of the operand).  */
1724#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)	\
1725do {							\
1726 if (GET_CODE (ADDR) == POST_INC			\
1727     || GET_CODE (ADDR) == POST_DEC)			\
1728   goto LABEL;						\
1729} while (0)
1730
1731/* Max number of args passed in registers.  If this is more than 3, we will
1732   have problems with ebx (register #4), since it is a caller save register and
1733   is also used as the pic register in ELF.  So for now, don't allow more than
1734   3 registers to be passed in registers.  */
1735
1736#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
1737
1738#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
1739
1740#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
1741
1742
1743/* Specify the machine mode that this machine uses
1744   for the index in the tablejump instruction.  */
1745#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
1746
1747/* Define this as 1 if `char' should by default be signed; else as 0.  */
1748#define DEFAULT_SIGNED_CHAR 1
1749
1750/* Number of bytes moved into a data cache for a single prefetch operation.  */
1751#define PREFETCH_BLOCK ix86_cost->prefetch_block
1752
1753/* Number of prefetch operations that can be done in parallel.  */
1754#define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
1755
1756/* Max number of bytes we can move from memory to memory
1757   in one reasonably fast instruction.  */
1758#define MOVE_MAX 16
1759
1760/* MOVE_MAX_PIECES is the number of bytes at a time which we can
1761   move efficiently, as opposed to  MOVE_MAX which is the maximum
1762   number of bytes we can move with a single instruction.  */
1763#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
1764
1765/* If a memory-to-memory move would take MOVE_RATIO or more simple
1766   move-instruction pairs, we will do a movmem or libcall instead.
1767   Increasing the value will always make code faster, but eventually
1768   incurs high cost in increased code size.
1769
1770   If you don't define this, a reasonable default is used.  */
1771
1772#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
1773
1774/* If a clear memory operation would take CLEAR_RATIO or more simple
1775   move-instruction sequences, we will do a clrmem or libcall instead.  */
1776
1777#define CLEAR_RATIO (optimize_size ? 2 \
1778		     : ix86_cost->move_ratio > 6 ? 6 : ix86_cost->move_ratio)
1779
1780/* Define if shifts truncate the shift count
1781   which implies one can omit a sign-extension or zero-extension
1782   of a shift count.  */
1783/* On i386, shifts do truncate the count.  But bit opcodes don't.  */
1784
1785/* #define SHIFT_COUNT_TRUNCATED */
1786
1787/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1788   is done just by pretending it is already truncated.  */
1789#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1790
1791/* A macro to update M and UNSIGNEDP when an object whose type is
1792   TYPE and which has the specified mode and signedness is to be
1793   stored in a register.  This macro is only called when TYPE is a
1794   scalar type.
1795
1796   On i386 it is sometimes useful to promote HImode and QImode
1797   quantities to SImode.  The choice depends on target type.  */
1798
1799#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) 		\
1800do {							\
1801  if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS)	\
1802      || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS))	\
1803    (MODE) = SImode;					\
1804} while (0)
1805
1806/* Specify the machine mode that pointers have.
1807   After generation of rtl, the compiler makes no further distinction
1808   between pointers and any other objects of this machine mode.  */
1809#define Pmode (TARGET_64BIT ? DImode : SImode)
1810
1811/* A function address in a call instruction
1812   is a byte address (for indexing purposes)
1813   so give the MEM rtx a byte's mode.  */
1814#define FUNCTION_MODE QImode
1815
1816/* A C expression for the cost of moving data from a register in class FROM to
1817   one in class TO.  The classes are expressed using the enumeration values
1818   such as `GENERAL_REGS'.  A value of 2 is the default; other values are
1819   interpreted relative to that.
1820
1821   It is not required that the cost always equal 2 when FROM is the same as TO;
1822   on some machines it is expensive to move between registers if they are not
1823   general registers.  */
1824
1825#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1826   ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
1827
1828/* A C expression for the cost of moving data of mode M between a
1829   register and memory.  A value of 2 is the default; this cost is
1830   relative to those in `REGISTER_MOVE_COST'.
1831
1832   If moving between registers and memory is more expensive than
1833   between two registers, you should define this macro to express the
1834   relative cost.  */
1835
1836#define MEMORY_MOVE_COST(MODE, CLASS, IN)	\
1837  ix86_memory_move_cost ((MODE), (CLASS), (IN))
1838
1839/* A C expression for the cost of a branch instruction.  A value of 1
1840   is the default; other values are interpreted relative to that.  */
1841
1842#define BRANCH_COST ix86_branch_cost
1843
1844/* Define this macro as a C expression which is nonzero if accessing
1845   less than a word of memory (i.e. a `char' or a `short') is no
1846   faster than accessing a word of memory, i.e., if such access
1847   require more than one instruction or if there is no difference in
1848   cost between byte and (aligned) word loads.
1849
1850   When this macro is not defined, the compiler will access a field by
1851   finding the smallest containing object; when it is defined, a
1852   fullword load will be used if alignment permits.  Unless bytes
1853   accesses are faster than word accesses, using word accesses is
1854   preferable since it may eliminate subsequent memory access if
1855   subsequent accesses occur to other fields in the same word of the
1856   structure, but to different bytes.  */
1857
1858#define SLOW_BYTE_ACCESS 0
1859
1860/* Nonzero if access to memory by shorts is slow and undesirable.  */
1861#define SLOW_SHORT_ACCESS 0
1862
1863/* Define this macro to be the value 1 if unaligned accesses have a
1864   cost many times greater than aligned accesses, for example if they
1865   are emulated in a trap handler.
1866
1867   When this macro is nonzero, the compiler will act as if
1868   `STRICT_ALIGNMENT' were nonzero when generating code for block
1869   moves.  This can cause significantly more instructions to be
1870   produced.  Therefore, do not set this macro nonzero if unaligned
1871   accesses only add a cycle or two to the time for a memory access.
1872
1873   If the value of this macro is always zero, it need not be defined.  */
1874
1875/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
1876
1877/* Define this macro if it is as good or better to call a constant
1878   function address than to call an address kept in a register.
1879
1880   Desirable on the 386 because a CALL with a constant address is
1881   faster than one with a register address.  */
1882
1883#define NO_FUNCTION_CSE
1884
1885/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1886   return the mode to be used for the comparison.
1887
1888   For floating-point equality comparisons, CCFPEQmode should be used.
1889   VOIDmode should be used in all other cases.
1890
1891   For integer comparisons against zero, reduce to CCNOmode or CCZmode if
1892   possible, to allow for more combinations.  */
1893
1894#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
1895
1896/* Return nonzero if MODE implies a floating point inequality can be
1897   reversed.  */
1898
1899#define REVERSIBLE_CC_MODE(MODE) 1
1900
1901/* A C expression whose value is reversed condition code of the CODE for
1902   comparison done in CC_MODE mode.  */
1903#define REVERSE_CONDITION(CODE, MODE) ix86_reverse_condition ((CODE), (MODE))
1904
1905
1906/* Control the assembler format that we output, to the extent
1907   this does not vary between assemblers.  */
1908
1909/* How to refer to registers in assembler output.
1910   This sequence is indexed by compiler's hard-register-number (see above).  */
1911
1912/* In order to refer to the first 8 regs as 32 bit regs, prefix an "e".
1913   For non floating point regs, the following are the HImode names.
1914
1915   For float regs, the stack top is sometimes referred to as "%st(0)"
1916   instead of just "%st".  PRINT_OPERAND handles this with the "y" code.  */
1917
1918#define HI_REGISTER_NAMES						\
1919{"ax","dx","cx","bx","si","di","bp","sp",				\
1920 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)",		\
1921 "argp", "flags", "fpsr", "dirflag", "frame",				\
1922 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7",		\
1923 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7"	,		\
1924 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",			\
1925 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
1926
1927#define REGISTER_NAMES HI_REGISTER_NAMES
1928
1929/* Table of additional register names to use in user input.  */
1930
1931#define ADDITIONAL_REGISTER_NAMES \
1932{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 },	\
1933  { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 },	\
1934  { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 },	\
1935  { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 },	\
1936  { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 },		\
1937  { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 } }
1938
1939/* Note we are omitting these since currently I don't know how
1940to get gcc to use these, since they want the same but different
1941number as al, and ax.
1942*/
1943
1944#define QI_REGISTER_NAMES \
1945{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
1946
1947/* These parallel the array above, and can be used to access bits 8:15
1948   of regs 0 through 3.  */
1949
1950#define QI_HIGH_REGISTER_NAMES \
1951{"ah", "dh", "ch", "bh", }
1952
1953/* How to renumber registers for dbx and gdb.  */
1954
1955#define DBX_REGISTER_NUMBER(N) \
1956  (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
1957
1958extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
1959extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
1960extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
1961
1962/* Before the prologue, RA is at 0(%esp).  */
1963#define INCOMING_RETURN_ADDR_RTX \
1964  gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
1965
1966/* After the prologue, RA is at -4(AP) in the current frame.  */
1967#define RETURN_ADDR_RTX(COUNT, FRAME)					   \
1968  ((COUNT) == 0								   \
1969   ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
1970   : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
1971
1972/* PC is dbx register 8; let's use that column for RA.  */
1973#define DWARF_FRAME_RETURN_COLUMN 	(TARGET_64BIT ? 16 : 8)
1974
1975/* Before the prologue, the top of the frame is at 4(%esp).  */
1976#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
1977
1978/* Describe how we implement __builtin_eh_return.  */
1979#define EH_RETURN_DATA_REGNO(N)	((N) < 2 ? (N) : INVALID_REGNUM)
1980#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 2)
1981
1982
1983/* Select a format to encode pointers in exception handling data.  CODE
1984   is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
1985   true if the symbol may be affected by dynamic relocations.
1986
1987   ??? All x86 object file formats are capable of representing this.
1988   After all, the relocation needed is the same as for the call insn.
1989   Whether or not a particular assembler allows us to enter such, I
1990   guess we'll have to see.  */
1991#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)       		\
1992  asm_preferred_eh_data_format ((CODE), (GLOBAL))
1993
1994/* This is how to output an insn to push a register on the stack.
1995   It need not be very fast code.  */
1996
1997#define ASM_OUTPUT_REG_PUSH(FILE, REGNO)  \
1998do {									\
1999  if (TARGET_64BIT)							\
2000    asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n",				\
2001		 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));	\
2002  else									\
2003    asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]);	\
2004} while (0)
2005
2006/* This is how to output an insn to pop a register from the stack.
2007   It need not be very fast code.  */
2008
2009#define ASM_OUTPUT_REG_POP(FILE, REGNO)  \
2010do {									\
2011  if (TARGET_64BIT)							\
2012    asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n",				\
2013		 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));	\
2014  else									\
2015    asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]);	\
2016} while (0)
2017
2018/* This is how to output an element of a case-vector that is absolute.  */
2019
2020#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
2021  ix86_output_addr_vec_elt ((FILE), (VALUE))
2022
2023/* This is how to output an element of a case-vector that is relative.  */
2024
2025#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2026  ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2027
2028/* Under some conditions we need jump tables in the text section,
2029   because the assembler cannot handle label differences between
2030   sections.  This is the case for x86_64 on Mach-O for example.  */
2031
2032#define JUMP_TABLES_IN_TEXT_SECTION \
2033  (flag_pic && ((TARGET_MACHO && TARGET_64BIT) \
2034   || (!TARGET_64BIT && !HAVE_AS_GOTOFF_IN_DATA)))
2035
2036/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2037   and switch back.  For x86 we do this only to save a few bytes that
2038   would otherwise be unused in the text section.  */
2039#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
2040   asm (SECTION_OP "\n\t"				\
2041	"call " USER_LABEL_PREFIX #FUNC "\n"		\
2042	TEXT_SECTION_ASM_OP);
2043
2044/* Print operand X (an rtx) in assembler syntax to file FILE.
2045   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2046   Effect of various CODE letters is described in i386.c near
2047   print_operand function.  */
2048
2049#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2050  ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
2051
2052#define PRINT_OPERAND(FILE, X, CODE)  \
2053  print_operand ((FILE), (X), (CODE))
2054
2055#define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
2056  print_operand_address ((FILE), (ADDR))
2057
2058#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL)	\
2059do {						\
2060  if (! output_addr_const_extra (FILE, (X)))	\
2061    goto FAIL;					\
2062} while (0);
2063
2064/* a letter which is not needed by the normal asm syntax, which
2065   we can use for operand syntax in the extended asm */
2066
2067#define ASM_OPERAND_LETTER '#'
2068#define RET return ""
2069#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
2070
2071/* Which processor to schedule for. The cpu attribute defines a list that
2072   mirrors this list, so changes to i386.md must be made at the same time.  */
2073
2074enum processor_type
2075{
2076  PROCESSOR_I386,			/* 80386 */
2077  PROCESSOR_I486,			/* 80486DX, 80486SX, 80486DX[24] */
2078  PROCESSOR_PENTIUM,
2079  PROCESSOR_PENTIUMPRO,
2080  PROCESSOR_K6,
2081  PROCESSOR_ATHLON,
2082  PROCESSOR_PENTIUM4,
2083  PROCESSOR_K8,
2084  PROCESSOR_NOCONA,
2085  PROCESSOR_GENERIC32,
2086  PROCESSOR_GENERIC64,
2087  PROCESSOR_max
2088};
2089
2090extern enum processor_type ix86_tune;
2091extern enum processor_type ix86_arch;
2092
2093enum fpmath_unit
2094{
2095  FPMATH_387 = 1,
2096  FPMATH_SSE = 2
2097};
2098
2099extern enum fpmath_unit ix86_fpmath;
2100
2101enum tls_dialect
2102{
2103  TLS_DIALECT_GNU,
2104  TLS_DIALECT_GNU2,
2105  TLS_DIALECT_SUN
2106};
2107
2108extern enum tls_dialect ix86_tls_dialect;
2109
2110enum cmodel {
2111  CM_32,	/* The traditional 32-bit ABI.  */
2112  CM_SMALL,	/* Assumes all code and data fits in the low 31 bits.  */
2113  CM_KERNEL,	/* Assumes all code and data fits in the high 31 bits.  */
2114  CM_MEDIUM,	/* Assumes code fits in the low 31 bits; data unlimited.  */
2115  CM_LARGE,	/* No assumptions.  */
2116  CM_SMALL_PIC,	/* Assumes code+data+got/plt fits in a 31 bit region.  */
2117  CM_MEDIUM_PIC	/* Assumes code+got/plt fits in a 31 bit region.  */
2118};
2119
2120extern enum cmodel ix86_cmodel;
2121
2122/* Size of the RED_ZONE area.  */
2123#define RED_ZONE_SIZE 128
2124/* Reserved area of the red zone for temporaries.  */
2125#define RED_ZONE_RESERVE 8
2126
2127enum asm_dialect {
2128  ASM_ATT,
2129  ASM_INTEL
2130};
2131
2132extern enum asm_dialect ix86_asm_dialect;
2133extern unsigned int ix86_preferred_stack_boundary;
2134extern int ix86_branch_cost, ix86_section_threshold;
2135
2136/* Smallest class containing REGNO.  */
2137extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
2138
2139extern rtx ix86_compare_op0;	/* operand 0 for comparisons */
2140extern rtx ix86_compare_op1;	/* operand 1 for comparisons */
2141extern rtx ix86_compare_emitted;
2142
2143/* To properly truncate FP values into integers, we need to set i387 control
2144   word.  We can't emit proper mode switching code before reload, as spills
2145   generated by reload may truncate values incorrectly, but we still can avoid
2146   redundant computation of new control word by the mode switching pass.
2147   The fldcw instructions are still emitted redundantly, but this is probably
2148   not going to be noticeable problem, as most CPUs do have fast path for
2149   the sequence.
2150
2151   The machinery is to emit simple truncation instructions and split them
2152   before reload to instructions having USEs of two memory locations that
2153   are filled by this code to old and new control word.
2154
2155   Post-reload pass may be later used to eliminate the redundant fildcw if
2156   needed.  */
2157
2158enum ix86_entity
2159{
2160  I387_TRUNC = 0,
2161  I387_FLOOR,
2162  I387_CEIL,
2163  I387_MASK_PM,
2164  MAX_386_ENTITIES
2165};
2166
2167enum ix86_stack_slot
2168{
2169  SLOT_VIRTUAL = 0,
2170  SLOT_TEMP,
2171  SLOT_CW_STORED,
2172  SLOT_CW_TRUNC,
2173  SLOT_CW_FLOOR,
2174  SLOT_CW_CEIL,
2175  SLOT_CW_MASK_PM,
2176  MAX_386_STACK_LOCALS
2177};
2178
2179/* Define this macro if the port needs extra instructions inserted
2180   for mode switching in an optimizing compilation.  */
2181
2182#define OPTIMIZE_MODE_SWITCHING(ENTITY) \
2183   ix86_optimize_mode_switching[(ENTITY)]
2184
2185/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
2186   initializer for an array of integers.  Each initializer element N
2187   refers to an entity that needs mode switching, and specifies the
2188   number of different modes that might need to be set for this
2189   entity.  The position of the initializer in the initializer -
2190   starting counting at zero - determines the integer that is used to
2191   refer to the mode-switched entity in question.  */
2192
2193#define NUM_MODES_FOR_MODE_SWITCHING \
2194   { I387_CW_ANY, I387_CW_ANY, I387_CW_ANY, I387_CW_ANY }
2195
2196/* ENTITY is an integer specifying a mode-switched entity.  If
2197   `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
2198   return an integer value not larger than the corresponding element
2199   in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
2200   must be switched into prior to the execution of INSN. */
2201
2202#define MODE_NEEDED(ENTITY, I) ix86_mode_needed ((ENTITY), (I))
2203
2204/* This macro specifies the order in which modes for ENTITY are
2205   processed.  0 is the highest priority.  */
2206
2207#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
2208
2209/* Generate one or more insns to set ENTITY to MODE.  HARD_REG_LIVE
2210   is the set of hard registers live at the point where the insn(s)
2211   are to be inserted.  */
2212
2213#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) 			\
2214  ((MODE) != I387_CW_ANY && (MODE) != I387_CW_UNINITIALIZED		\
2215   ? emit_i387_cw_initialization (MODE), 0				\
2216   : 0)
2217
2218
2219/* Avoid renaming of stack registers, as doing so in combination with
2220   scheduling just increases amount of live registers at time and in
2221   the turn amount of fxch instructions needed.
2222
2223   ??? Maybe Pentium chips benefits from renaming, someone can try....  */
2224
2225#define HARD_REGNO_RENAME_OK(SRC, TARGET)  \
2226   ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
2227
2228
2229#define DLL_IMPORT_EXPORT_PREFIX '#'
2230
2231#define FASTCALL_PREFIX '@'
2232
2233struct machine_function GTY(())
2234{
2235  struct stack_local_entry *stack_locals;
2236  const char *some_ld_name;
2237  rtx force_align_arg_pointer;
2238  int save_varrargs_registers;
2239  int accesses_prev_frame;
2240  int optimize_mode_switching[MAX_386_ENTITIES];
2241  /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
2242     determine the style used.  */
2243  int use_fast_prologue_epilogue;
2244  /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
2245     for.  */
2246  int use_fast_prologue_epilogue_nregs;
2247  /* If true, the current function needs the default PIC register, not
2248     an alternate register (on x86) and must not use the red zone (on
2249     x86_64), even if it's a leaf function.  We don't want the
2250     function to be regarded as non-leaf because TLS calls need not
2251     affect register allocation.  This flag is set when a TLS call
2252     instruction is expanded within a function, and never reset, even
2253     if all such instructions are optimized away.  Use the
2254     ix86_current_function_calls_tls_descriptor macro for a better
2255     approximation.  */
2256  int tls_descriptor_call_expanded_p;
2257};
2258
2259#define ix86_stack_locals (cfun->machine->stack_locals)
2260#define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
2261#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
2262#define ix86_tls_descriptor_calls_expanded_in_cfun \
2263  (cfun->machine->tls_descriptor_call_expanded_p)
2264/* Since tls_descriptor_call_expanded is not cleared, even if all TLS
2265   calls are optimized away, we try to detect cases in which it was
2266   optimized away.  Since such instructions (use (reg REG_SP)), we can
2267   verify whether there's any such instruction live by testing that
2268   REG_SP is live.  */
2269#define ix86_current_function_calls_tls_descriptor \
2270  (ix86_tls_descriptor_calls_expanded_in_cfun && regs_ever_live[SP_REG])
2271
2272/* Control behavior of x86_file_start.  */
2273#define X86_FILE_START_VERSION_DIRECTIVE false
2274#define X86_FILE_START_FLTUSED false
2275
2276/* Flag to mark data that is in the large address area.  */
2277#define SYMBOL_FLAG_FAR_ADDR		(SYMBOL_FLAG_MACH_DEP << 0)
2278#define SYMBOL_REF_FAR_ADDR_P(X)	\
2279	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_FAR_ADDR) != 0)
2280/*
2281Local variables:
2282version-control: t
2283End:
2284*/
2285