i386.h revision 148163
1204076Spjd/* Definitions of target machine for GCC for IA-32.
2204076Spjd   Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3204076Spjd   2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4204076Spjd
5204076SpjdThis file is part of GCC.
6204076Spjd
7204076SpjdGCC is free software; you can redistribute it and/or modify
8204076Spjdit under the terms of the GNU General Public License as published by
9204076Spjdthe Free Software Foundation; either version 2, or (at your option)
10204076Spjdany later version.
11204076Spjd
12204076SpjdGCC is distributed in the hope that it will be useful,
13204076Spjdbut WITHOUT ANY WARRANTY; without even the implied warranty of
14204076SpjdMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15204076SpjdGNU General Public License for more details.
16204076Spjd
17204076SpjdYou should have received a copy of the GNU General Public License
18204076Spjdalong with GCC; see the file COPYING.  If not, write to
19204076Spjdthe Free Software Foundation, 59 Temple Place - Suite 330,
20204076SpjdBoston, MA 02111-1307, USA.  */
21204076Spjd
22204076Spjd/* The purpose of this file is to define the characteristics of the i386,
23204076Spjd   independent of assembler syntax or operating system.
24204076Spjd
25204076Spjd   Three other files build on this one to describe a specific assembler syntax:
26204076Spjd   bsd386.h, att386.h, and sun386.h.
27204076Spjd
28204076Spjd   The actual tm.h file for a particular system should include
29204076Spjd   this file, and then the file for the appropriate assembler syntax.
30204076Spjd
31204076Spjd   Many macros that specify assembler syntax are omitted entirely from
32204076Spjd   this file because they really belong in the files for particular
33204076Spjd   assemblers.  These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34204076Spjd   ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35204076Spjd   that start with ASM_ or end in ASM_OP.  */
36204076Spjd
37204076Spjd/* Define the specific costs for a given cpu */
38204076Spjd
39204076Spjdstruct processor_costs {
40204076Spjd  const int add;		/* cost of an add instruction */
41204076Spjd  const int lea;		/* cost of a lea instruction */
42204076Spjd  const int shift_var;		/* variable shift costs */
43218138Spjd  const int shift_const;	/* constant shift costs */
44204076Spjd  const int mult_init[5];	/* cost of starting a multiply
45204076Spjd				   in QImode, HImode, SImode, DImode, TImode*/
46204076Spjd  const int mult_bit;		/* cost of multiply per each bit set */
47204076Spjd  const int divide[5];		/* cost of a divide/mod
48204076Spjd				   in QImode, HImode, SImode, DImode, TImode*/
49204076Spjd  int movsx;			/* The cost of movsx operation.  */
50204076Spjd  int movzx;			/* The cost of movzx operation.  */
51204076Spjd  const int large_insn;		/* insns larger than this cost more */
52204076Spjd  const int move_ratio;		/* The threshold of number of scalar
53204076Spjd				   memory-to-memory move insns.  */
54204076Spjd  const int movzbl_load;	/* cost of loading using movzbl */
55204076Spjd  const int int_load[3];	/* cost of loading integer registers
56204076Spjd				   in QImode, HImode and SImode relative
57204076Spjd				   to reg-reg move (2).  */
58204076Spjd  const int int_store[3];	/* cost of storing integer register
59219818Spjd				   in QImode, HImode and SImode */
60204076Spjd  const int fp_move;		/* cost of reg,reg fld/fst */
61204076Spjd  const int fp_load[3];		/* cost of loading FP register
62204076Spjd				   in SFmode, DFmode and XFmode */
63204076Spjd  const int fp_store[3];	/* cost of storing FP register
64219818Spjd				   in SFmode, DFmode and XFmode */
65204076Spjd  const int mmx_move;		/* cost of moving MMX register.  */
66204076Spjd  const int mmx_load[2];	/* cost of loading MMX register
67219818Spjd				   in SImode and DImode */
68219818Spjd  const int mmx_store[2];	/* cost of storing MMX register
69204076Spjd				   in SImode and DImode */
70204076Spjd  const int sse_move;		/* cost of moving SSE register.  */
71204076Spjd  const int sse_load[3];	/* cost of loading SSE register
72204076Spjd				   in SImode, DImode and TImode*/
73231017Strociny  const int sse_store[3];	/* cost of storing SSE register
74204076Spjd				   in SImode, DImode and TImode*/
75204076Spjd  const int mmxsse_to_integer;	/* cost of moving mmxsse register to
76204076Spjd				   integer and vice versa.  */
77204076Spjd  const int prefetch_block;	/* bytes moved to cache for prefetch.  */
78204076Spjd  const int simultaneous_prefetches; /* number of parallel prefetch
79204076Spjd				   operations.  */
80204076Spjd  const int branch_cost;	/* Default value for BRANCH_COST.  */
81204076Spjd  const int fadd;		/* cost of FADD and FSUB instructions.  */
82204076Spjd  const int fmul;		/* cost of FMUL instruction.  */
83204076Spjd  const int fdiv;		/* cost of FDIV instruction.  */
84204076Spjd  const int fabs;		/* cost of FABS instruction.  */
85204076Spjd  const int fchs;		/* cost of FCHS instruction.  */
86204076Spjd  const int fsqrt;		/* cost of FSQRT instruction.  */
87218194Spjd};
88204076Spjd
89204076Spjdextern const struct processor_costs *ix86_cost;
90218194Spjd
91204076Spjd/* Run-time compilation parameters selecting different hardware subsets.  */
92218138Spjd
93218138Spjdextern int target_flags;
94204076Spjd
95204076Spjd/* Macros used in the machine description to test the flags.  */
96204076Spjd
97204076Spjd/* configure can arrange to make this 2, to force a 486.  */
98204076Spjd
99218194Spjd#ifndef TARGET_CPU_DEFAULT
100204076Spjd#ifdef TARGET_64BIT_DEFAULT
101204076Spjd#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_k8
102204076Spjd#else
103204076Spjd#define TARGET_CPU_DEFAULT 0
104204076Spjd#endif
105218138Spjd#endif
106204076Spjd
107218138Spjd/* Masks for the -m switches */
108218194Spjd#define MASK_80387		0x00000001	/* Hardware floating point */
109204076Spjd#define MASK_RTD		0x00000002	/* Use ret that pops args */
110204076Spjd#define MASK_ALIGN_DOUBLE	0x00000004	/* align doubles to 2 word boundary */
111218138Spjd#define MASK_SVR3_SHLIB		0x00000008	/* Uninit locals into bss */
112218194Spjd#define MASK_IEEE_FP		0x00000010	/* IEEE fp comparisons */
113204076Spjd#define MASK_FLOAT_RETURNS	0x00000020	/* Return float in st(0) */
114204076Spjd#define MASK_NO_FANCY_MATH_387	0x00000040	/* Disable sin, cos, sqrt */
115218138Spjd#define MASK_OMIT_LEAF_FRAME_POINTER 0x080      /* omit leaf frame pointers */
116204076Spjd#define MASK_STACK_PROBE	0x00000100	/* Enable stack probing */
117204076Spjd#define MASK_NO_ALIGN_STROPS	0x00000200	/* Enable aligning of string ops.  */
118212036Spjd#define MASK_INLINE_ALL_STROPS	0x00000400	/* Inline stringops in all cases */
119212036Spjd#define MASK_NO_PUSH_ARGS	0x00000800	/* Use push instructions */
120212036Spjd#define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
121212036Spjd#define MASK_MMX		0x00002000	/* Support MMX regs/builtins */
122218194Spjd#define MASK_SSE		0x00004000	/* Support SSE regs/builtins */
123204076Spjd#define MASK_SSE2		0x00008000	/* Support SSE2 regs/builtins */
124204076Spjd#define MASK_SSE3		0x00010000	/* Support SSE3 regs/builtins */
125204076Spjd#define MASK_3DNOW		0x00020000	/* Support 3Dnow builtins */
126218194Spjd#define MASK_3DNOW_A		0x00040000	/* Support Athlon 3Dnow builtins */
127204076Spjd#define MASK_128BIT_LONG_DOUBLE 0x00080000	/* long double size is 128bit */
128204076Spjd#define MASK_64BIT		0x00100000	/* Produce 64bit code */
129204076Spjd#define MASK_MS_BITFIELD_LAYOUT 0x00200000	/* Use native (MS) bitfield layout */
130204076Spjd#define MASK_TLS_DIRECT_SEG_REFS 0x00400000	/* Avoid adding %gs:0  */
131218138Spjd
132218138Spjd/* Unused:			0x03e0000	*/
133204076Spjd
134204076Spjd/* ... overlap with subtarget options starts by 0x04000000.  */
135204076Spjd#define MASK_NO_RED_ZONE	0x04000000	/* Do not use red zone */
136204076Spjd#define MASK_NO_ALIGN_LONG_STRINGS 0x08000000	/* Do not align long strings specially */
137204076Spjd
138218194Spjd/* Use the floating point instructions */
139204076Spjd#define TARGET_80387 (target_flags & MASK_80387)
140204076Spjd
141204076Spjd/* Compile using ret insn that pops args.
142204076Spjd   This will not work unless you use prototypes at least
143204076Spjd   for all functions that can take varying numbers of args.  */
144218138Spjd#define TARGET_RTD (target_flags & MASK_RTD)
145204076Spjd
146218138Spjd/* Align doubles to a two word boundary.  This breaks compatibility with
147204076Spjd   the published ABI's for structures containing doubles, but produces
148204076Spjd   faster code on the pentium.  */
149204076Spjd#define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
150218138Spjd
151204076Spjd/* Use push instructions to save outgoing args.  */
152204076Spjd#define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
153204076Spjd
154218138Spjd/* Accumulate stack adjustments to prologue/epilogue.  */
155204076Spjd#define TARGET_ACCUMULATE_OUTGOING_ARGS \
156204076Spjd (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
157212036Spjd
158212036Spjd/* Put uninitialized locals into bss, not data.
159212036Spjd   Meaningful only on svr3.  */
160212036Spjd#define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
161218194Spjd
162204076Spjd/* Use IEEE floating point comparisons.  These handle correctly the cases
163204076Spjd   where the result of a comparison is unordered.  Normally SIGFPE is
164204076Spjd   generated in such cases, in which case this isn't needed.  */
165204076Spjd#define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
166204076Spjd
167204076Spjd/* Functions that return a floating point value may return that value
168204076Spjd   in the 387 FPU or in 386 integer registers.  If set, this flag causes
169218138Spjd   the 387 to be used, which is compatible with most calling conventions.  */
170218138Spjd#define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
171218138Spjd
172204076Spjd/* Long double is 128bit instead of 96bit, even when only 80bits are used.
173204076Spjd   This mode wastes cache, but avoid misaligned data accesses and simplifies
174204076Spjd   address calculations.  */
175204076Spjd#define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
176218138Spjd
177204076Spjd/* Disable generation of FP sin, cos and sqrt operations for 387.
178204076Spjd   This is because FreeBSD lacks these in the math-emulator-code */
179218138Spjd#define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
180204076Spjd
181204076Spjd/* Don't create frame pointers for leaf functions */
182204076Spjd#define TARGET_OMIT_LEAF_FRAME_POINTER \
183218138Spjd  (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
184204076Spjd
185204076Spjd/* Debug GO_IF_LEGITIMATE_ADDRESS */
186204076Spjd#define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
187204076Spjd
188204076Spjd/* Debug FUNCTION_ARG macros */
189204076Spjd#define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
190204076Spjd
191218138Spjd/* 64bit Sledgehammer mode.  For libgcc2 we make sure this is a
192218138Spjd   compile-time constant.  */
193204076Spjd#ifdef IN_LIBGCC2
194204076Spjd#ifdef __x86_64__
195204076Spjd#define TARGET_64BIT 1
196218138Spjd#else
197204076Spjd#define TARGET_64BIT 0
198218138Spjd#endif
199218138Spjd#else
200204076Spjd#ifdef TARGET_BI_ARCH
201218138Spjd#define TARGET_64BIT (target_flags & MASK_64BIT)
202204076Spjd#else
203204076Spjd#if TARGET_64BIT_DEFAULT
204218138Spjd#define TARGET_64BIT 1
205204076Spjd#else
206218138Spjd#define TARGET_64BIT 0
207218138Spjd#endif
208204076Spjd#endif
209204076Spjd#endif
210218138Spjd
211204076Spjd/* Avoid adding %gs:0 in TLS references; use %gs:address directly.  */
212218138Spjd#define TARGET_TLS_DIRECT_SEG_REFS (target_flags & MASK_TLS_DIRECT_SEG_REFS)
213218138Spjd
214204076Spjd#define TARGET_386 (ix86_tune == PROCESSOR_I386)
215204076Spjd#define TARGET_486 (ix86_tune == PROCESSOR_I486)
216218138Spjd#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
217204076Spjd#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
218204076Spjd#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
219204076Spjd#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
220204076Spjd#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
221204076Spjd#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
222204076Spjd#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
223219873Spjd
224219873Spjd#define TUNEMASK (1 << ix86_tune)
225219873Spjdextern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
226219873Spjdextern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
227219873Spjdextern const int x86_branch_hints, x86_unroll_strlen;
228219873Spjdextern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
229219873Spjdextern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
230204076Spjdextern const int x86_use_cltd, x86_read_modify_write;
231204076Spjdextern const int x86_read_modify, x86_split_long_moves;
232204076Spjdextern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
233204076Spjdextern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
234204076Spjdextern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
235204076Spjdextern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
236210869Spjdextern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
237204076Spjdextern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
238extern const int x86_epilogue_using_move, x86_decompose_lea;
239extern const int x86_arch_always_fancy_math_387, x86_shift1;
240extern const int x86_sse_partial_reg_dependency, x86_sse_partial_regs;
241extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
242extern const int x86_use_ffreep, x86_sse_partial_regs_for_cvtsd2ss;
243extern const int x86_inter_unit_moves;
244extern int x86_prefetch_sse;
245
246#define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
247#define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
248#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
249#define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
250#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
251/* For sane SSE instruction set generation we need fcomi instruction.  It is
252   safe to enable all CMOVE instructions.  */
253#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
254#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
255#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
256#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
257#define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
258#define TARGET_MOVX (x86_movx & TUNEMASK)
259#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
260#define TARGET_USE_LOOP (x86_use_loop & TUNEMASK)
261#define TARGET_USE_FIOP (x86_use_fiop & TUNEMASK)
262#define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
263#define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
264#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
265#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
266#define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
267#define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
268#define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
269#define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
270#define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
271#define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
272#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
273#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
274#define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
275#define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
276#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
277#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
278#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
279#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
280#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
281				      (x86_sse_partial_reg_dependency & TUNEMASK)
282#define TARGET_SSE_PARTIAL_REGS (x86_sse_partial_regs & TUNEMASK)
283#define TARGET_SSE_PARTIAL_REGS_FOR_CVTSD2SS \
284				(x86_sse_partial_regs_for_cvtsd2ss & TUNEMASK)
285#define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
286#define TARGET_SSE_TYPELESS_LOAD0 (x86_sse_typeless_load0 & TUNEMASK)
287#define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
288#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
289#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
290#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
291#define TARGET_DECOMPOSE_LEA (x86_decompose_lea & TUNEMASK)
292#define TARGET_PREFETCH_SSE (x86_prefetch_sse)
293#define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
294#define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
295#define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
296#define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
297
298#define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
299
300#define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
301#define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
302
303#define ASSEMBLER_DIALECT (ix86_asm_dialect)
304
305#define TARGET_SSE ((target_flags & MASK_SSE) != 0)
306#define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
307#define TARGET_SSE3 ((target_flags & MASK_SSE3) != 0)
308#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
309#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
310			     && (ix86_fpmath & FPMATH_387))
311#define TARGET_MMX ((target_flags & MASK_MMX) != 0)
312#define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
313#define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
314
315#define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
316
317#define TARGET_NO_ALIGN_LONG_STRINGS (target_flags & MASK_NO_ALIGN_LONG_STRINGS)
318
319#define TARGET_USE_MS_BITFIELD_LAYOUT  (target_flags & MASK_MS_BITFIELD_LAYOUT)
320
321#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
322#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
323
324/* WARNING: Do not mark empty strings for translation, as calling
325            gettext on an empty string does NOT return an empty
326            string.  */
327
328
329#define TARGET_SWITCHES							      \
330{ { "80387",			 MASK_80387, N_("Use hardware fp") },	      \
331  { "no-80387",			-MASK_80387, N_("Do not use hardware fp") },  \
332  { "hard-float",		 MASK_80387, N_("Use hardware fp") },	      \
333  { "soft-float",		-MASK_80387, N_("Do not use hardware fp") },  \
334  { "no-soft-float",		 MASK_80387, N_("Use hardware fp") },	      \
335  { "386",			 0, "" /*Deprecated.*/},		      \
336  { "486",			 0, "" /*Deprecated.*/},		      \
337  { "pentium",			 0, "" /*Deprecated.*/},		      \
338  { "pentiumpro",		 0, "" /*Deprecated.*/},		      \
339  { "pni",			 0, "" /*Deprecated.*/},		      \
340  { "no-pni",			 0, "" /*Deprecated.*/},		      \
341  { "intel-syntax",		 0, "" /*Deprecated.*/},	 	      \
342  { "no-intel-syntax",		 0, "" /*Deprecated.*/},	 	      \
343  { "rtd",			 MASK_RTD,				      \
344    N_("Alternate calling convention") },				      \
345  { "no-rtd",			-MASK_RTD,				      \
346    N_("Use normal calling convention") },				      \
347  { "align-double",		 MASK_ALIGN_DOUBLE,			      \
348    N_("Align some doubles on dword boundary") },			      \
349  { "no-align-double",		-MASK_ALIGN_DOUBLE,			      \
350    N_("Align doubles on word boundary") },				      \
351  { "svr3-shlib",		 MASK_SVR3_SHLIB,			      \
352    N_("Uninitialized locals in .bss")  },				      \
353  { "no-svr3-shlib",		-MASK_SVR3_SHLIB,			      \
354    N_("Uninitialized locals in .data") },				      \
355  { "ieee-fp",			 MASK_IEEE_FP,				      \
356    N_("Use IEEE math for fp comparisons") },				      \
357  { "no-ieee-fp",		-MASK_IEEE_FP,				      \
358    N_("Do not use IEEE math for fp comparisons") },			      \
359  { "fp-ret-in-387",		 MASK_FLOAT_RETURNS,			      \
360    N_("Return values of functions in FPU registers") },		      \
361  { "no-fp-ret-in-387",		-MASK_FLOAT_RETURNS ,			      \
362    N_("Do not return values of functions in FPU registers")},		      \
363  { "no-fancy-math-387",	 MASK_NO_FANCY_MATH_387,		      \
364    N_("Do not generate sin, cos, sqrt for FPU") },			      \
365  { "fancy-math-387",		-MASK_NO_FANCY_MATH_387,		      \
366     N_("Generate sin, cos, sqrt for FPU")},				      \
367  { "omit-leaf-frame-pointer",	 MASK_OMIT_LEAF_FRAME_POINTER,		      \
368    N_("Omit the frame pointer in leaf functions") },			      \
369  { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" },	      \
370  { "stack-arg-probe",		 MASK_STACK_PROBE,			      \
371    N_("Enable stack probing") },					      \
372  { "no-stack-arg-probe",	-MASK_STACK_PROBE, "" },		      \
373  { "windows",			0, 0 /* undocumented */ },		      \
374  { "dll",			0,  0 /* undocumented */ },		      \
375  { "align-stringops",		-MASK_NO_ALIGN_STROPS,			      \
376    N_("Align destination of the string operations") },			      \
377  { "no-align-stringops",	 MASK_NO_ALIGN_STROPS,			      \
378    N_("Do not align destination of the string operations") },		      \
379  { "inline-all-stringops",	 MASK_INLINE_ALL_STROPS,		      \
380    N_("Inline all known string operations") },				      \
381  { "no-inline-all-stringops",	-MASK_INLINE_ALL_STROPS,		      \
382    N_("Do not inline all known string operations") },			      \
383  { "push-args",		-MASK_NO_PUSH_ARGS,			      \
384    N_("Use push instructions to save outgoing arguments") },		      \
385  { "no-push-args",		MASK_NO_PUSH_ARGS,			      \
386    N_("Do not use push instructions to save outgoing arguments") },	      \
387  { "accumulate-outgoing-args",	MASK_ACCUMULATE_OUTGOING_ARGS,		      \
388    N_("Use push instructions to save outgoing arguments") },		      \
389  { "no-accumulate-outgoing-args",-MASK_ACCUMULATE_OUTGOING_ARGS,	      \
390    N_("Do not use push instructions to save outgoing arguments") },	      \
391  { "mmx",			 MASK_MMX,				      \
392    N_("Support MMX built-in functions") },				      \
393  { "no-mmx",			 -MASK_MMX,				      \
394    N_("Do not support MMX built-in functions") },			      \
395  { "3dnow",                     MASK_3DNOW,				      \
396    N_("Support 3DNow! built-in functions") },				      \
397  { "no-3dnow",                  -MASK_3DNOW,				      \
398    N_("Do not support 3DNow! built-in functions") },			      \
399  { "sse",			 MASK_SSE,				      \
400    N_("Support MMX and SSE built-in functions and code generation") },	      \
401  { "no-sse",			 -MASK_SSE,				      \
402    N_("Do not support MMX and SSE built-in functions and code generation") },\
403  { "sse2",			 MASK_SSE2,				      \
404    N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
405  { "no-sse2",			 -MASK_SSE2,				      \
406    N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") },    \
407  { "sse3",			 MASK_SSE3,				      \
408    N_("Support MMX, SSE, SSE2 and SSE3 built-in functions and code generation") },\
409  { "no-sse3",			 -MASK_SSE3,				      \
410    N_("Do not support MMX, SSE, SSE2 and SSE3 built-in functions and code generation") },\
411  { "128bit-long-double",	 MASK_128BIT_LONG_DOUBLE,		      \
412    N_("sizeof(long double) is 16") },					      \
413  { "96bit-long-double",	-MASK_128BIT_LONG_DOUBLE,		      \
414    N_("sizeof(long double) is 12") },					      \
415  { "64",			MASK_64BIT,				      \
416    N_("Generate 64bit x86-64 code") },					      \
417  { "32",			-MASK_64BIT,				      \
418    N_("Generate 32bit i386 code") },					      \
419  { "ms-bitfields",		MASK_MS_BITFIELD_LAYOUT,		      \
420    N_("Use native (MS) bitfield layout") },				      \
421  { "no-ms-bitfields",		-MASK_MS_BITFIELD_LAYOUT,		      \
422    N_("Use gcc default bitfield layout") },				      \
423  { "red-zone",			-MASK_NO_RED_ZONE,			      \
424    N_("Use red-zone in the x86-64 code") },				      \
425  { "no-red-zone",		MASK_NO_RED_ZONE,			      \
426    N_("Do not use red-zone in the x86-64 code") },			      \
427  { "no-align-long-strings",	 MASK_NO_ALIGN_LONG_STRINGS,		      \
428    N_("Do not align long strings specially") },			      \
429  { "align-long-strings",	-MASK_NO_ALIGN_LONG_STRINGS,		      \
430    N_("Align strings longer than 30 on a 32-byte boundary") },		      \
431  { "tls-direct-seg-refs",	MASK_TLS_DIRECT_SEG_REFS,		      \
432    N_("Use direct references against %gs when accessing tls data") },	      \
433  { "no-tls-direct-seg-refs",	-MASK_TLS_DIRECT_SEG_REFS,		      \
434    N_("Do not use direct references against %gs when accessing tls data") }, \
435  SUBTARGET_SWITCHES							      \
436  { "",									      \
437    TARGET_DEFAULT | TARGET_64BIT_DEFAULT | TARGET_SUBTARGET_DEFAULT	      \
438    | TARGET_TLS_DIRECT_SEG_REFS_DEFAULT, 0 }}
439
440#ifndef TARGET_64BIT_DEFAULT
441#define TARGET_64BIT_DEFAULT 0
442#endif
443#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
444#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
445#endif
446
447/* Once GDB has been enhanced to deal with functions without frame
448   pointers, we can change this to allow for elimination of
449   the frame pointer in leaf functions.  */
450#define TARGET_DEFAULT 0
451
452/* This is not really a target flag, but is done this way so that
453   it's analogous to similar code for Mach-O on PowerPC.  darwin.h
454   redefines this to 1.  */
455#define TARGET_MACHO 0
456
457/* Subtargets may reset this to 1 in order to enable 96-bit long double
458   with the rounding mode forced to 53 bits.  */
459#define TARGET_96_ROUND_53_LONG_DOUBLE 0
460
461/* This macro is similar to `TARGET_SWITCHES' but defines names of
462   command options that have values.  Its definition is an
463   initializer with a subgrouping for each command option.
464
465   Each subgrouping contains a string constant, that defines the
466   fixed part of the option name, and the address of a variable.  The
467   variable, type `char *', is set to the variable part of the given
468   option if the fixed part matches.  The actual option name is made
469   by appending `-m' to the specified name.  */
470#define TARGET_OPTIONS						\
471{ { "tune=",		&ix86_tune_string,			\
472    N_("Schedule code for given CPU"), 0},			\
473  { "fpmath=",		&ix86_fpmath_string,			\
474    N_("Generate floating point mathematics using given instruction set"), 0},\
475  { "arch=",		&ix86_arch_string,			\
476    N_("Generate code for given CPU"), 0},			\
477  { "regparm=",		&ix86_regparm_string,			\
478    N_("Number of registers used to pass integer arguments"), 0},\
479  { "align-loops=",	&ix86_align_loops_string,		\
480    N_("Loop code aligned to this power of 2"), 0},		\
481  { "align-jumps=",	&ix86_align_jumps_string,		\
482    N_("Jump targets are aligned to this power of 2"), 0},	\
483  { "align-functions=",	&ix86_align_funcs_string,		\
484    N_("Function starts are aligned to this power of 2"), 0},	\
485  { "preferred-stack-boundary=",				\
486    &ix86_preferred_stack_boundary_string,			\
487    N_("Attempt to keep stack aligned to this power of 2"), 0},	\
488  { "branch-cost=",	&ix86_branch_cost_string,		\
489    N_("Branches are this expensive (1-5, arbitrary units)"), 0},\
490  { "cmodel=", &ix86_cmodel_string,				\
491    N_("Use given x86-64 code model"), 0},			\
492  { "debug-arg", &ix86_debug_arg_string,			\
493    "" /* Undocumented.  */, 0},				\
494  { "debug-addr", &ix86_debug_addr_string,			\
495    "" /* Undocumented.  */, 0},				\
496  { "asm=", &ix86_asm_string,					\
497    N_("Use given assembler dialect"), 0},			\
498  { "tls-dialect=", &ix86_tls_dialect_string,			\
499    N_("Use given thread-local storage dialect"), 0},		\
500  SUBTARGET_OPTIONS						\
501}
502
503/* Sometimes certain combinations of command options do not make
504   sense on a particular target machine.  You can define a macro
505   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
506   defined, is executed once just after all the command options have
507   been parsed.
508
509   Don't use this macro to turn on various extra optimizations for
510   `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */
511
512#define OVERRIDE_OPTIONS override_options ()
513
514/* These are meant to be redefined in the host dependent files */
515#define SUBTARGET_SWITCHES
516#define SUBTARGET_OPTIONS
517
518/* Define this to change the optimizations performed by default.  */
519#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
520  optimization_options ((LEVEL), (SIZE))
521
522/* Support for configure-time defaults of some command line options.  */
523#define OPTION_DEFAULT_SPECS \
524  {"arch", "%{!march=*:-march=%(VALUE)}"}, \
525  {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
526  {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }
527
528/* Specs for the compiler proper */
529
530#ifndef CC1_CPU_SPEC
531#define CC1_CPU_SPEC "\
532%{!mtune*: \
533%{m386:mtune=i386 \
534%n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
535%{m486:-mtune=i486 \
536%n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
537%{mpentium:-mtune=pentium \
538%n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
539%{mpentiumpro:-mtune=pentiumpro \
540%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
541%{mcpu=*:-mtune=%* \
542%n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
543%<mcpu=* \
544%{mpni:-msse3 \
545%n`-mpni' is deprecated. Use `-msse3' instead.\n} \
546%{mno-pni:-mno-sse3 \
547%n`-mno-pni' is deprecated. Use `-mno-sse3' instead.\n} \
548%{mintel-syntax:-masm=intel \
549%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
550%{mno-intel-syntax:-masm=att \
551%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
552#endif
553
554/* Target CPU builtins.  */
555#define TARGET_CPU_CPP_BUILTINS()				\
556  do								\
557    {								\
558      size_t arch_len = strlen (ix86_arch_string);		\
559      size_t tune_len = strlen (ix86_tune_string);		\
560      int last_arch_char = ix86_arch_string[arch_len - 1];	\
561      int last_tune_char = ix86_tune_string[tune_len - 1];		\
562								\
563      if (TARGET_64BIT)						\
564	{							\
565	  builtin_assert ("cpu=x86_64");			\
566	  builtin_assert ("machine=x86_64");			\
567	  builtin_define ("__amd64");				\
568	  builtin_define ("__amd64__");				\
569	  builtin_define ("__x86_64");				\
570	  builtin_define ("__x86_64__");			\
571	}							\
572      else							\
573	{							\
574	  builtin_assert ("cpu=i386");				\
575	  builtin_assert ("machine=i386");			\
576	  builtin_define_std ("i386");				\
577	}							\
578								\
579      /* Built-ins based on -mtune= (or -march= if no		\
580	 -mtune= given).  */					\
581      if (TARGET_386)						\
582	builtin_define ("__tune_i386__");			\
583      else if (TARGET_486)					\
584	builtin_define ("__tune_i486__");			\
585      else if (TARGET_PENTIUM)					\
586	{							\
587	  builtin_define ("__tune_i586__");			\
588	  builtin_define ("__tune_pentium__");			\
589	  if (last_tune_char == 'x')				\
590	    builtin_define ("__tune_pentium_mmx__");		\
591	}							\
592      else if (TARGET_PENTIUMPRO)				\
593	{							\
594	  builtin_define ("__tune_i686__");			\
595	  builtin_define ("__tune_pentiumpro__");		\
596	  switch (last_tune_char)				\
597	    {							\
598	    case '3':						\
599	      builtin_define ("__tune_pentium3__");		\
600	      /* FALLTHRU */					\
601	    case '2':						\
602	      builtin_define ("__tune_pentium2__");		\
603	      break;						\
604	    }							\
605	}							\
606      else if (TARGET_K6)					\
607	{							\
608	  builtin_define ("__tune_k6__");			\
609	  if (last_tune_char == '2')				\
610	    builtin_define ("__tune_k6_2__");			\
611	  else if (last_tune_char == '3')			\
612	    builtin_define ("__tune_k6_3__");			\
613	}							\
614      else if (TARGET_ATHLON)					\
615	{							\
616	  builtin_define ("__tune_athlon__");			\
617	  /* Plain "athlon" & "athlon-tbird" lacks SSE.  */	\
618	  if (last_tune_char != 'n' && last_tune_char != 'd')	\
619	    builtin_define ("__tune_athlon_sse__");		\
620	}							\
621      else if (TARGET_K8)					\
622	builtin_define ("__tune_k8__");				\
623      else if (TARGET_PENTIUM4)					\
624	builtin_define ("__tune_pentium4__");			\
625								\
626      if (TARGET_MMX)						\
627	builtin_define ("__MMX__");				\
628      if (TARGET_3DNOW)						\
629	builtin_define ("__3dNOW__");				\
630      if (TARGET_3DNOW_A)					\
631	builtin_define ("__3dNOW_A__");				\
632      if (TARGET_SSE)						\
633	builtin_define ("__SSE__");				\
634      if (TARGET_SSE2)						\
635	builtin_define ("__SSE2__");				\
636      if (TARGET_SSE3)						\
637	{							\
638	  builtin_define ("__SSE3__");				\
639	  builtin_define ("__PNI__");				\
640	}							\
641      if (TARGET_SSE_MATH && TARGET_SSE)			\
642	builtin_define ("__SSE_MATH__");			\
643      if (TARGET_SSE_MATH && TARGET_SSE2)			\
644	builtin_define ("__SSE2_MATH__");			\
645								\
646      /* Built-ins based on -march=.  */			\
647      if (ix86_arch == PROCESSOR_I486)				\
648	{							\
649	  builtin_define ("__i486");				\
650	  builtin_define ("__i486__");				\
651	}							\
652      else if (ix86_arch == PROCESSOR_PENTIUM)			\
653	{							\
654	  builtin_define ("__i586");				\
655	  builtin_define ("__i586__");				\
656	  builtin_define ("__pentium");				\
657	  builtin_define ("__pentium__");			\
658	  if (last_arch_char == 'x')				\
659	    builtin_define ("__pentium_mmx__");			\
660	}							\
661      else if (ix86_arch == PROCESSOR_PENTIUMPRO)		\
662	{							\
663	  builtin_define ("__i686");				\
664	  builtin_define ("__i686__");				\
665	  builtin_define ("__pentiumpro");			\
666	  builtin_define ("__pentiumpro__");			\
667	}							\
668      else if (ix86_arch == PROCESSOR_K6)			\
669	{							\
670								\
671	  builtin_define ("__k6");				\
672	  builtin_define ("__k6__");				\
673	  if (last_arch_char == '2')				\
674	    builtin_define ("__k6_2__");			\
675	  else if (last_arch_char == '3')			\
676	    builtin_define ("__k6_3__");			\
677	}							\
678      else if (ix86_arch == PROCESSOR_ATHLON)			\
679	{							\
680	  builtin_define ("__athlon");				\
681	  builtin_define ("__athlon__");			\
682	  /* Plain "athlon" & "athlon-tbird" lacks SSE.  */	\
683	  if (last_tune_char != 'n' && last_tune_char != 'd')	\
684	    builtin_define ("__athlon_sse__");			\
685	}							\
686      else if (ix86_arch == PROCESSOR_K8)			\
687	{							\
688	  builtin_define ("__k8");				\
689	  builtin_define ("__k8__");				\
690	}							\
691      else if (ix86_arch == PROCESSOR_PENTIUM4)			\
692	{							\
693	  builtin_define ("__pentium4");			\
694	  builtin_define ("__pentium4__");			\
695	}							\
696    }								\
697  while (0)
698
699#define TARGET_CPU_DEFAULT_i386 0
700#define TARGET_CPU_DEFAULT_i486 1
701#define TARGET_CPU_DEFAULT_pentium 2
702#define TARGET_CPU_DEFAULT_pentium_mmx 3
703#define TARGET_CPU_DEFAULT_pentiumpro 4
704#define TARGET_CPU_DEFAULT_pentium2 5
705#define TARGET_CPU_DEFAULT_pentium3 6
706#define TARGET_CPU_DEFAULT_pentium4 7
707#define TARGET_CPU_DEFAULT_k6 8
708#define TARGET_CPU_DEFAULT_k6_2 9
709#define TARGET_CPU_DEFAULT_k6_3 10
710#define TARGET_CPU_DEFAULT_athlon 11
711#define TARGET_CPU_DEFAULT_athlon_sse 12
712#define TARGET_CPU_DEFAULT_k8 13
713#define TARGET_CPU_DEFAULT_pentium_m 14
714#define TARGET_CPU_DEFAULT_prescott 15
715#define TARGET_CPU_DEFAULT_nocona 16
716
717#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
718				  "pentiumpro", "pentium2", "pentium3", \
719				  "pentium4", "k6", "k6-2", "k6-3",\
720				  "athlon", "athlon-4", "k8", \
721				  "pentium-m", "prescott", "nocona"}
722
723#ifndef CC1_SPEC
724#define CC1_SPEC "%(cc1_cpu) "
725#endif
726
727/* This macro defines names of additional specifications to put in the
728   specs that can be used in various specifications like CC1_SPEC.  Its
729   definition is an initializer with a subgrouping for each command option.
730
731   Each subgrouping contains a string constant, that defines the
732   specification name, and a string constant that used by the GCC driver
733   program.
734
735   Do not define this macro if it does not need to do anything.  */
736
737#ifndef SUBTARGET_EXTRA_SPECS
738#define SUBTARGET_EXTRA_SPECS
739#endif
740
741#define EXTRA_SPECS							\
742  { "cc1_cpu",  CC1_CPU_SPEC },						\
743  SUBTARGET_EXTRA_SPECS
744
745/* target machine storage layout */
746
747#define LONG_DOUBLE_TYPE_SIZE 96
748
749/* Set the value of FLT_EVAL_METHOD in float.h.  When using only the
750   FPU, assume that the fpcw is set to extended precision; when using
751   only SSE, rounding is correct; when using both SSE and the FPU,
752   the rounding precision is indeterminate, since either may be chosen
753   apparently at random.  */
754#define TARGET_FLT_EVAL_METHOD \
755  (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
756
757#define SHORT_TYPE_SIZE 16
758#define INT_TYPE_SIZE 32
759#define FLOAT_TYPE_SIZE 32
760#ifndef LONG_TYPE_SIZE
761#define LONG_TYPE_SIZE BITS_PER_WORD
762#endif
763#define MAX_WCHAR_TYPE_SIZE 32
764#define DOUBLE_TYPE_SIZE 64
765#define LONG_LONG_TYPE_SIZE 64
766
767#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
768#define MAX_BITS_PER_WORD 64
769#define MAX_LONG_TYPE_SIZE 64
770#else
771#define MAX_BITS_PER_WORD 32
772#define MAX_LONG_TYPE_SIZE 32
773#endif
774
775/* Define this if most significant byte of a word is the lowest numbered.  */
776/* That is true on the 80386.  */
777
778#define BITS_BIG_ENDIAN 0
779
780/* Define this if most significant byte of a word is the lowest numbered.  */
781/* That is not true on the 80386.  */
782#define BYTES_BIG_ENDIAN 0
783
784/* Define this if most significant word of a multiword number is the lowest
785   numbered.  */
786/* Not true for 80386 */
787#define WORDS_BIG_ENDIAN 0
788
789/* Width of a word, in units (bytes).  */
790#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
791#ifdef IN_LIBGCC2
792#define MIN_UNITS_PER_WORD	(TARGET_64BIT ? 8 : 4)
793#else
794#define MIN_UNITS_PER_WORD	4
795#endif
796
797/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
798#define PARM_BOUNDARY BITS_PER_WORD
799
800/* Boundary (in *bits*) on which stack pointer should be aligned.  */
801#define STACK_BOUNDARY BITS_PER_WORD
802
803/* Boundary (in *bits*) on which the stack pointer prefers to be
804   aligned; the compiler cannot rely on having this alignment.  */
805#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
806
807/* As of July 2001, many runtimes to not align the stack properly when
808   entering main.  This causes expand_main_function to forcibly align
809   the stack, which results in aligned frames for functions called from
810   main, though it does nothing for the alignment of main itself.  */
811#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
812  (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
813
814/* Minimum allocation boundary for the code of a function.  */
815#define FUNCTION_BOUNDARY 8
816
817/* C++ stores the virtual bit in the lowest bit of function pointers.  */
818#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
819
820/* Alignment of field after `int : 0' in a structure.  */
821
822#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
823
824/* Minimum size in bits of the largest boundary to which any
825   and all fundamental data types supported by the hardware
826   might need to be aligned. No data type wants to be aligned
827   rounder than this.
828
829   Pentium+ prefers DFmode values to be aligned to 64 bit boundary
830   and Pentium Pro XFmode values at 128 bit boundaries.  */
831
832#define BIGGEST_ALIGNMENT 128
833
834/* Decide whether a variable of mode MODE should be 128 bit aligned.  */
835#define ALIGN_MODE_128(MODE) \
836 ((MODE) == XFmode || (MODE) == TFmode || SSE_REG_MODE_P (MODE))
837
838/* The published ABIs say that doubles should be aligned on word
839   boundaries, so lower the alignment for structure fields unless
840   -malign-double is set.  */
841
842/* ??? Blah -- this macro is used directly by libobjc.  Since it
843   supports no vector modes, cut out the complexity and fall back
844   on BIGGEST_FIELD_ALIGNMENT.  */
845#ifdef IN_TARGET_LIBS
846#ifdef __x86_64__
847#define BIGGEST_FIELD_ALIGNMENT 128
848#else
849#define BIGGEST_FIELD_ALIGNMENT 32
850#endif
851#else
852#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
853   x86_field_alignment (FIELD, COMPUTED)
854#endif
855
856/* If defined, a C expression to compute the alignment given to a
857   constant that is being placed in memory.  EXP is the constant
858   and ALIGN is the alignment that the object would ordinarily have.
859   The value of this macro is used instead of that alignment to align
860   the object.
861
862   If this macro is not defined, then ALIGN is used.
863
864   The typical use of this macro is to increase alignment for string
865   constants to be word aligned so that `strcpy' calls that copy
866   constants can be done inline.  */
867
868#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
869
870/* If defined, a C expression to compute the alignment for a static
871   variable.  TYPE is the data type, and ALIGN is the alignment that
872   the object would ordinarily have.  The value of this macro is used
873   instead of that alignment to align the object.
874
875   If this macro is not defined, then ALIGN is used.
876
877   One use of this macro is to increase alignment of medium-size
878   data to make it all fit in fewer cache lines.  Another is to
879   cause character arrays to be word-aligned so that `strcpy' calls
880   that copy constants to character arrays can be done inline.  */
881
882#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
883
884/* If defined, a C expression to compute the alignment for a local
885   variable.  TYPE is the data type, and ALIGN is the alignment that
886   the object would ordinarily have.  The value of this macro is used
887   instead of that alignment to align the object.
888
889   If this macro is not defined, then ALIGN is used.
890
891   One use of this macro is to increase alignment of medium-size
892   data to make it all fit in fewer cache lines.  */
893
894#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
895
896/* If defined, a C expression that gives the alignment boundary, in
897   bits, of an argument with the specified mode and type.  If it is
898   not defined, `PARM_BOUNDARY' is used for all arguments.  */
899
900#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
901  ix86_function_arg_boundary ((MODE), (TYPE))
902
903/* Set this nonzero if move instructions will actually fail to work
904   when given unaligned data.  */
905#define STRICT_ALIGNMENT 0
906
907/* If bit field type is int, don't let it cross an int,
908   and give entire struct the alignment of an int.  */
909/* Required on the 386 since it doesn't have bit-field insns.  */
910#define PCC_BITFIELD_TYPE_MATTERS 1
911
912/* Standard register usage.  */
913
914/* This processor has special stack-like registers.  See reg-stack.c
915   for details.  */
916
917#define STACK_REGS
918#define IS_STACK_MODE(MODE)					\
919  ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode)	\
920
921/* Number of actual hardware registers.
922   The hardware registers are assigned numbers for the compiler
923   from 0 to just below FIRST_PSEUDO_REGISTER.
924   All registers that the compiler knows about must be given numbers,
925   even those that are not normally considered general registers.
926
927   In the 80386 we give the 8 general purpose registers the numbers 0-7.
928   We number the floating point registers 8-15.
929   Note that registers 0-7 can be accessed as a  short or int,
930   while only 0-3 may be used with byte `mov' instructions.
931
932   Reg 16 does not correspond to any hardware register, but instead
933   appears in the RTL as an argument pointer prior to reload, and is
934   eliminated during reloading in favor of either the stack or frame
935   pointer.  */
936
937#define FIRST_PSEUDO_REGISTER 53
938
939/* Number of hardware registers that go into the DWARF-2 unwind info.
940   If not defined, equals FIRST_PSEUDO_REGISTER.  */
941
942#define DWARF_FRAME_REGISTERS 17
943
944/* 1 for registers that have pervasive standard uses
945   and are not available for the register allocator.
946   On the 80386, the stack pointer is such, as is the arg pointer.
947
948   The value is a mask - bit 1 is set for fixed registers
949   for 32bit target, while 2 is set for fixed registers for 64bit.
950   Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
951 */
952#define FIXED_REGISTERS						\
953/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
954{  0, 0, 0, 0, 0, 0, 0, 3, 0,  0,  0,  0,  0,  0,  0,  0,	\
955/*arg,flags,fpsr,dir,frame*/					\
956    3,    3,   3,  3,    3,					\
957/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
958     0,   0,   0,   0,   0,   0,   0,   0,			\
959/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
960     0,   0,   0,   0,   0,   0,   0,   0,			\
961/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
962     1,   1,   1,   1,   1,   1,   1,   1,			\
963/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
964     1,   1,    1,    1,    1,    1,    1,    1}
965
966
967/* 1 for registers not available across function calls.
968   These must include the FIXED_REGISTERS and also any
969   registers that can be used without being saved.
970   The latter must include the registers where values are returned
971   and the register where structure-value addresses are passed.
972   Aside from that, you can include as many other registers as you like.
973
974   The value is a mask - bit 1 is set for call used
975   for 32bit target, while 2 is set for call used for 64bit.
976   Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
977*/
978#define CALL_USED_REGISTERS					\
979/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
980{  3, 3, 3, 0, 2, 2, 0, 3, 3,  3,  3,  3,  3,  3,  3,  3,	\
981/*arg,flags,fpsr,dir,frame*/					\
982     3,   3,   3,  3,    3,					\
983/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
984     3,   3,   3,   3,   3,  3,    3,   3,			\
985/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
986     3,   3,   3,   3,   3,   3,   3,   3,			\
987/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
988     3,   3,   3,   3,   1,   1,   1,   1,			\
989/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
990     3,   3,    3,    3,    3,    3,    3,    3}		\
991
992/* Order in which to allocate registers.  Each register must be
993   listed once, even those in FIXED_REGISTERS.  List frame pointer
994   late and fixed registers last.  Note that, in general, we prefer
995   registers listed in CALL_USED_REGISTERS, keeping the others
996   available for storage of persistent values.
997
998   The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
999   so this is just empty initializer for array.  */
1000
1001#define REG_ALLOC_ORDER 					\
1002{  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
1003   18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,	\
1004   33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,  \
1005   48, 49, 50, 51, 52 }
1006
1007/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
1008   to be rearranged based on a particular function.  When using sse math,
1009   we want to allocate SSE before x87 registers and vice vera.  */
1010
1011#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
1012
1013
1014/* Macro to conditionally modify fixed_regs/call_used_regs.  */
1015#define CONDITIONAL_REGISTER_USAGE					\
1016do {									\
1017    int i;								\
1018    for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)				\
1019      {									\
1020        fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0;	\
1021        call_used_regs[i] = (call_used_regs[i]				\
1022			     & (TARGET_64BIT ? 2 : 1)) != 0;		\
1023      }									\
1024    if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)			\
1025      {									\
1026	fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
1027	call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
1028      }									\
1029    if (! TARGET_MMX)							\
1030      {									\
1031	int i;								\
1032        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
1033          if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i))	\
1034	    fixed_regs[i] = call_used_regs[i] = 1;		 	\
1035      }									\
1036    if (! TARGET_SSE)							\
1037      {									\
1038	int i;								\
1039        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
1040          if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i))	\
1041	    fixed_regs[i] = call_used_regs[i] = 1;		 	\
1042      }									\
1043    if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387)		\
1044      {									\
1045	int i;								\
1046	HARD_REG_SET x;							\
1047        COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]);	\
1048        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
1049          if (TEST_HARD_REG_BIT (x, i)) 				\
1050	    fixed_regs[i] = call_used_regs[i] = 1;			\
1051      }									\
1052  } while (0)
1053
1054/* Return number of consecutive hard regs needed starting at reg REGNO
1055   to hold something of mode MODE.
1056   This is ordinarily the length in words of a value of mode MODE
1057   but can be less for certain modes in special long registers.
1058
1059   Actually there are no two word move instructions for consecutive
1060   registers.  And only registers 0-3 may have mov byte instructions
1061   applied to them.
1062   */
1063
1064#define HARD_REGNO_NREGS(REGNO, MODE)   \
1065  (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)	\
1066   ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
1067   : ((MODE) == XFmode							\
1068      ? (TARGET_64BIT ? 2 : 3)						\
1069      : (MODE) == XCmode						\
1070      ? (TARGET_64BIT ? 4 : 6)						\
1071      : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1072
1073#define VALID_SSE2_REG_MODE(MODE) \
1074    ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode    \
1075     || (MODE) == V2DImode || (MODE) == DFmode)
1076
1077#define VALID_SSE_REG_MODE(MODE)					\
1078    ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode	\
1079     || (MODE) == SFmode || (MODE) == TFmode)
1080
1081#define VALID_MMX_REG_MODE_3DNOW(MODE) \
1082    ((MODE) == V2SFmode || (MODE) == SFmode)
1083
1084#define VALID_MMX_REG_MODE(MODE)					\
1085    ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode	\
1086     || (MODE) == V2SImode || (MODE) == SImode)
1087
1088#define VECTOR_MODE_SUPPORTED_P(MODE)					\
1089    (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1			\
1090     : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1			\
1091     : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
1092
1093#define VALID_FP_MODE_P(MODE)						\
1094    ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode		\
1095     || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode)	\
1096
1097#define VALID_INT_MODE_P(MODE)						\
1098    ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode		\
1099     || (MODE) == DImode						\
1100     || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode	\
1101     || (MODE) == CDImode						\
1102     || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode		\
1103         || (MODE) == TFmode || (MODE) == TCmode)))
1104
1105/* Return true for modes passed in SSE registers.  */
1106#define SSE_REG_MODE_P(MODE) \
1107 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode		\
1108   || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode	\
1109   || (MODE) == V4SFmode || (MODE) == V4SImode)
1110
1111/* Return true for modes passed in MMX registers.  */
1112#define MMX_REG_MODE_P(MODE) \
1113 ((MODE) == V8QImode || (MODE) == V4HImode || (MODE) == V2SImode	\
1114   || (MODE) == V2SFmode)
1115
1116/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.  */
1117
1118#define HARD_REGNO_MODE_OK(REGNO, MODE)	\
1119   ix86_hard_regno_mode_ok ((REGNO), (MODE))
1120
1121/* Value is 1 if it is a good idea to tie two pseudo registers
1122   when one has mode MODE1 and one has mode MODE2.
1123   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1124   for any hard reg, then this must be 0 for correct output.  */
1125
1126#define MODES_TIEABLE_P(MODE1, MODE2)				\
1127  ((MODE1) == (MODE2)						\
1128   || (((MODE1) == HImode || (MODE1) == SImode			\
1129	|| ((MODE1) == QImode					\
1130	    && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL))	\
1131        || ((MODE1) == DImode && TARGET_64BIT))			\
1132       && ((MODE2) == HImode || (MODE2) == SImode		\
1133	   || ((MODE2) == QImode				\
1134	       && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL))	\
1135	   || ((MODE2) == DImode && TARGET_64BIT))))
1136
1137/* It is possible to write patterns to move flags; but until someone
1138   does it,  */
1139#define AVOID_CCMODE_COPIES
1140
1141/* Specify the modes required to caller save a given hard regno.
1142   We do this on i386 to prevent flags from being saved at all.
1143
1144   Kill any attempts to combine saving of modes.  */
1145
1146#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)			\
1147  (CC_REGNO_P (REGNO) ? VOIDmode					\
1148   : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode			\
1149   : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
1150   : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode		\
1151   : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode 	\
1152   : (MODE))
1153/* Specify the registers used for certain standard purposes.
1154   The values of these macros are register numbers.  */
1155
1156/* on the 386 the pc register is %eip, and is not usable as a general
1157   register.  The ordinary mov instructions won't work */
1158/* #define PC_REGNUM  */
1159
1160/* Register to use for pushing function arguments.  */
1161#define STACK_POINTER_REGNUM 7
1162
1163/* Base register for access to local variables of the function.  */
1164#define HARD_FRAME_POINTER_REGNUM 6
1165
1166/* Base register for access to local variables of the function.  */
1167#define FRAME_POINTER_REGNUM 20
1168
1169/* First floating point reg */
1170#define FIRST_FLOAT_REG 8
1171
1172/* First & last stack-like regs */
1173#define FIRST_STACK_REG FIRST_FLOAT_REG
1174#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1175
1176#define FLAGS_REG 17
1177#define FPSR_REG 18
1178#define DIRFLAG_REG 19
1179
1180#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1181#define LAST_SSE_REG  (FIRST_SSE_REG + 7)
1182
1183#define FIRST_MMX_REG  (LAST_SSE_REG + 1)
1184#define LAST_MMX_REG   (FIRST_MMX_REG + 7)
1185
1186#define FIRST_REX_INT_REG  (LAST_MMX_REG + 1)
1187#define LAST_REX_INT_REG   (FIRST_REX_INT_REG + 7)
1188
1189#define FIRST_REX_SSE_REG  (LAST_REX_INT_REG + 1)
1190#define LAST_REX_SSE_REG   (FIRST_REX_SSE_REG + 7)
1191
1192/* Value should be nonzero if functions must have frame pointers.
1193   Zero means the frame pointer need not be set up (and parms
1194   may be accessed via the stack pointer) in functions that seem suitable.
1195   This is computed in `reload', in reload1.c.  */
1196#define FRAME_POINTER_REQUIRED  ix86_frame_pointer_required ()
1197
1198/* Override this in other tm.h files to cope with various OS losage
1199   requiring a frame pointer.  */
1200#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1201#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1202#endif
1203
1204/* Make sure we can access arbitrary call frames.  */
1205#define SETUP_FRAME_ADDRESSES()  ix86_setup_frame_addresses ()
1206
1207/* Base register for access to arguments of the function.  */
1208#define ARG_POINTER_REGNUM 16
1209
1210/* Register in which static-chain is passed to a function.
1211   We do use ECX as static chain register for 32 bit ABI.  On the
1212   64bit ABI, ECX is an argument register, so we use R10 instead.  */
1213#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1214
1215/* Register to hold the addressing base for position independent
1216   code access to data items.  We don't use PIC pointer for 64bit
1217   mode.  Define the regnum to dummy value to prevent gcc from
1218   pessimizing code dealing with EBX.
1219
1220   To avoid clobbering a call-saved register unnecessarily, we renumber
1221   the pic register when possible.  The change is visible after the
1222   prologue has been emitted.  */
1223
1224#define REAL_PIC_OFFSET_TABLE_REGNUM  3
1225
1226#define PIC_OFFSET_TABLE_REGNUM				\
1227  (TARGET_64BIT || !flag_pic ? INVALID_REGNUM		\
1228   : reload_completed ? REGNO (pic_offset_table_rtx)	\
1229   : REAL_PIC_OFFSET_TABLE_REGNUM)
1230
1231#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1232
1233/* Register in which address to store a structure value
1234   arrives in the function.  On the 386, the prologue
1235   copies this from the stack to register %eax.  */
1236#define STRUCT_VALUE_INCOMING 0
1237
1238/* Place in which caller passes the structure value address.
1239   0 means push the value on the stack like an argument.  */
1240#define STRUCT_VALUE 0
1241
1242/* A C expression which can inhibit the returning of certain function
1243   values in registers, based on the type of value.  A nonzero value
1244   says to return the function value in memory, just as large
1245   structures are always returned.  Here TYPE will be a C expression
1246   of type `tree', representing the data type of the value.
1247
1248   Note that values of mode `BLKmode' must be explicitly handled by
1249   this macro.  Also, the option `-fpcc-struct-return' takes effect
1250   regardless of this macro.  On most systems, it is possible to
1251   leave the macro undefined; this causes a default definition to be
1252   used, whose value is the constant 1 for `BLKmode' values, and 0
1253   otherwise.
1254
1255   Do not use this macro to indicate that structures and unions
1256   should always be returned in memory.  You should instead use
1257   `DEFAULT_PCC_STRUCT_RETURN' to indicate this.  */
1258
1259#define RETURN_IN_MEMORY(TYPE) \
1260  ix86_return_in_memory (TYPE)
1261
1262/* This is overridden by <cygwin.h>.  */
1263#define MS_AGGREGATE_RETURN 0
1264
1265
1266/* Define the classes of registers for register constraints in the
1267   machine description.  Also define ranges of constants.
1268
1269   One of the classes must always be named ALL_REGS and include all hard regs.
1270   If there is more than one class, another class must be named NO_REGS
1271   and contain no registers.
1272
1273   The name GENERAL_REGS must be the name of a class (or an alias for
1274   another name such as ALL_REGS).  This is the class of registers
1275   that is allowed by "g" or "r" in a register constraint.
1276   Also, registers outside this class are allocated only when
1277   instructions express preferences for them.
1278
1279   The classes must be numbered in nondecreasing order; that is,
1280   a larger-numbered class must never be contained completely
1281   in a smaller-numbered class.
1282
1283   For any two classes, it is very desirable that there be another
1284   class that represents their union.
1285
1286   It might seem that class BREG is unnecessary, since no useful 386
1287   opcode needs reg %ebx.  But some systems pass args to the OS in ebx,
1288   and the "b" register constraint is useful in asms for syscalls.
1289
1290   The flags and fpsr registers are in no class.  */
1291
1292enum reg_class
1293{
1294  NO_REGS,
1295  AREG, DREG, CREG, BREG, SIREG, DIREG,
1296  AD_REGS,			/* %eax/%edx for DImode */
1297  Q_REGS,			/* %eax %ebx %ecx %edx */
1298  NON_Q_REGS,			/* %esi %edi %ebp %esp */
1299  INDEX_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp */
1300  LEGACY_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1301  GENERAL_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1302  FP_TOP_REG, FP_SECOND_REG,	/* %st(0) %st(1) */
1303  FLOAT_REGS,
1304  SSE_REGS,
1305  MMX_REGS,
1306  FP_TOP_SSE_REGS,
1307  FP_SECOND_SSE_REGS,
1308  FLOAT_SSE_REGS,
1309  FLOAT_INT_REGS,
1310  INT_SSE_REGS,
1311  FLOAT_INT_SSE_REGS,
1312  ALL_REGS, LIM_REG_CLASSES
1313};
1314
1315#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1316
1317#define INTEGER_CLASS_P(CLASS) \
1318  reg_class_subset_p ((CLASS), GENERAL_REGS)
1319#define FLOAT_CLASS_P(CLASS) \
1320  reg_class_subset_p ((CLASS), FLOAT_REGS)
1321#define SSE_CLASS_P(CLASS) \
1322  reg_class_subset_p ((CLASS), SSE_REGS)
1323#define MMX_CLASS_P(CLASS) \
1324  reg_class_subset_p ((CLASS), MMX_REGS)
1325#define MAYBE_INTEGER_CLASS_P(CLASS) \
1326  reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1327#define MAYBE_FLOAT_CLASS_P(CLASS) \
1328  reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1329#define MAYBE_SSE_CLASS_P(CLASS) \
1330  reg_classes_intersect_p (SSE_REGS, (CLASS))
1331#define MAYBE_MMX_CLASS_P(CLASS) \
1332  reg_classes_intersect_p (MMX_REGS, (CLASS))
1333
1334#define Q_CLASS_P(CLASS) \
1335  reg_class_subset_p ((CLASS), Q_REGS)
1336
1337/* Give names of register classes as strings for dump file.  */
1338
1339#define REG_CLASS_NAMES \
1340{  "NO_REGS",				\
1341   "AREG", "DREG", "CREG", "BREG",	\
1342   "SIREG", "DIREG",			\
1343   "AD_REGS",				\
1344   "Q_REGS", "NON_Q_REGS",		\
1345   "INDEX_REGS",			\
1346   "LEGACY_REGS",			\
1347   "GENERAL_REGS",			\
1348   "FP_TOP_REG", "FP_SECOND_REG",	\
1349   "FLOAT_REGS",			\
1350   "SSE_REGS",				\
1351   "MMX_REGS",				\
1352   "FP_TOP_SSE_REGS",			\
1353   "FP_SECOND_SSE_REGS",		\
1354   "FLOAT_SSE_REGS",			\
1355   "FLOAT_INT_REGS",			\
1356   "INT_SSE_REGS",			\
1357   "FLOAT_INT_SSE_REGS",		\
1358   "ALL_REGS" }
1359
1360/* Define which registers fit in which classes.
1361   This is an initializer for a vector of HARD_REG_SET
1362   of length N_REG_CLASSES.  */
1363
1364#define REG_CLASS_CONTENTS						\
1365{     { 0x00,     0x0 },						\
1366      { 0x01,     0x0 }, { 0x02, 0x0 },	/* AREG, DREG */		\
1367      { 0x04,     0x0 }, { 0x08, 0x0 },	/* CREG, BREG */		\
1368      { 0x10,     0x0 }, { 0x20, 0x0 },	/* SIREG, DIREG */		\
1369      { 0x03,     0x0 },		/* AD_REGS */			\
1370      { 0x0f,     0x0 },		/* Q_REGS */			\
1371  { 0x1100f0,  0x1fe0 },		/* NON_Q_REGS */		\
1372      { 0x7f,  0x1fe0 },		/* INDEX_REGS */		\
1373  { 0x1100ff,  0x0 },			/* LEGACY_REGS */		\
1374  { 0x1100ff,  0x1fe0 },		/* GENERAL_REGS */		\
1375     { 0x100,     0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1376    { 0xff00,     0x0 },		/* FLOAT_REGS */		\
1377{ 0x1fe00000,0x1fe000 },		/* SSE_REGS */			\
1378{ 0xe0000000,    0x1f },		/* MMX_REGS */			\
1379{ 0x1fe00100,0x1fe000 },		/* FP_TOP_SSE_REG */		\
1380{ 0x1fe00200,0x1fe000 },		/* FP_SECOND_SSE_REG */		\
1381{ 0x1fe0ff00,0x1fe000 },		/* FLOAT_SSE_REGS */		\
1382   { 0x1ffff,  0x1fe0 },		/* FLOAT_INT_REGS */		\
1383{ 0x1fe100ff,0x1fffe0 },		/* INT_SSE_REGS */		\
1384{ 0x1fe1ffff,0x1fffe0 },		/* FLOAT_INT_SSE_REGS */	\
1385{ 0xffffffff,0x1fffff }							\
1386}
1387
1388/* The same information, inverted:
1389   Return the class number of the smallest class containing
1390   reg number REGNO.  This could be a conditional expression
1391   or could index an array.  */
1392
1393#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1394
1395/* When defined, the compiler allows registers explicitly used in the
1396   rtl to be used as spill registers but prevents the compiler from
1397   extending the lifetime of these registers.  */
1398
1399#define SMALL_REGISTER_CLASSES 1
1400
1401#define QI_REG_P(X) \
1402  (REG_P (X) && REGNO (X) < 4)
1403
1404#define GENERAL_REGNO_P(N) \
1405  ((N) < 8 || REX_INT_REGNO_P (N))
1406
1407#define GENERAL_REG_P(X) \
1408  (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1409
1410#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1411
1412#define NON_QI_REG_P(X) \
1413  (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1414
1415#define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1416#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1417
1418#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1419#define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1420#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1421#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1422
1423#define SSE_REGNO_P(N) \
1424  (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1425   || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1426
1427#define REX_SSE_REGNO_P(N) \
1428   ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1429
1430#define SSE_REGNO(N) \
1431  ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1432#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1433
1434#define SSE_FLOAT_MODE_P(MODE) \
1435  ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1436
1437#define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1438#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1439
1440#define STACK_REG_P(XOP)		\
1441  (REG_P (XOP) &&		       	\
1442   REGNO (XOP) >= FIRST_STACK_REG &&	\
1443   REGNO (XOP) <= LAST_STACK_REG)
1444
1445#define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1446
1447#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1448
1449#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1450#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1451
1452/* The class value for index registers, and the one for base regs.  */
1453
1454#define INDEX_REG_CLASS INDEX_REGS
1455#define BASE_REG_CLASS GENERAL_REGS
1456
1457/* Get reg_class from a letter such as appears in the machine description.  */
1458
1459#define REG_CLASS_FROM_LETTER(C)	\
1460  ((C) == 'r' ? GENERAL_REGS :					\
1461   (C) == 'R' ? LEGACY_REGS :					\
1462   (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS :		\
1463   (C) == 'Q' ? Q_REGS :					\
1464   (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387	\
1465		 ? FLOAT_REGS					\
1466		 : NO_REGS) :					\
1467   (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387	\
1468		 ? FP_TOP_REG					\
1469		 : NO_REGS) :					\
1470   (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387	\
1471		 ? FP_SECOND_REG				\
1472		 : NO_REGS) :					\
1473   (C) == 'a' ? AREG :						\
1474   (C) == 'b' ? BREG :						\
1475   (C) == 'c' ? CREG :						\
1476   (C) == 'd' ? DREG :						\
1477   (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS :		\
1478   (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS :		\
1479   (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS :		\
1480   (C) == 'A' ? AD_REGS :					\
1481   (C) == 'D' ? DIREG :						\
1482   (C) == 'S' ? SIREG : NO_REGS)
1483
1484/* The letters I, J, K, L and M in a register constraint string
1485   can be used to stand for particular ranges of immediate operands.
1486   This macro defines what the ranges are.
1487   C is the letter, and VALUE is a constant value.
1488   Return 1 if VALUE is in the range specified by C.
1489
1490   I is for non-DImode shifts.
1491   J is for DImode shifts.
1492   K is for signed imm8 operands.
1493   L is for andsi as zero-extending move.
1494   M is for shifts that can be executed by the "lea" opcode.
1495   N is for immediate operands for out/in instructions (0-255)
1496   */
1497
1498#define CONST_OK_FOR_LETTER_P(VALUE, C)				\
1499  ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31			\
1500   : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63			\
1501   : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127		\
1502   : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff		\
1503   : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3			\
1504   : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255		\
1505   : 0)
1506
1507/* Similar, but for floating constants, and defining letters G and H.
1508   Here VALUE is the CONST_DOUBLE rtx itself.  We allow constants even if
1509   TARGET_387 isn't set, because the stack register converter may need to
1510   load 0.0 into the function value register.  */
1511
1512#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  \
1513  ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1514   : 0)
1515
1516/* A C expression that defines the optional machine-dependent
1517   constraint letters that can be used to segregate specific types of
1518   operands, usually memory references, for the target machine.  Any
1519   letter that is not elsewhere defined and not matched by
1520   `REG_CLASS_FROM_LETTER' may be used.  Normally this macro will not
1521   be defined.
1522
1523   If it is required for a particular target machine, it should
1524   return 1 if VALUE corresponds to the operand type represented by
1525   the constraint letter C.  If C is not defined as an extra
1526   constraint, the value returned should be 0 regardless of VALUE.  */
1527
1528#define EXTRA_CONSTRAINT(VALUE, D)				\
1529  ((D) == 'e' ? x86_64_sign_extended_value (VALUE)		\
1530   : (D) == 'Z' ? x86_64_zero_extended_value (VALUE)		\
1531   : (D) == 'C' ? standard_sse_constant_p (VALUE)		\
1532   : 0)
1533
1534/* Place additional restrictions on the register class to use when it
1535   is necessary to be able to hold a value of mode MODE in a reload
1536   register for which class CLASS would ordinarily be used.  */
1537
1538#define LIMIT_RELOAD_CLASS(MODE, CLASS) 			\
1539  ((MODE) == QImode && !TARGET_64BIT				\
1540   && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS		\
1541       || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS)	\
1542   ? Q_REGS : (CLASS))
1543
1544/* Given an rtx X being reloaded into a reg required to be
1545   in class CLASS, return the class of reg to actually use.
1546   In general this is just CLASS; but on some machines
1547   in some cases it is preferable to use a more restrictive class.
1548   On the 80386 series, we prevent floating constants from being
1549   reloaded into floating registers (since no move-insn can do that)
1550   and we ensure that QImodes aren't reloaded into the esi or edi reg.  */
1551
1552/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1553   QImode must go into class Q_REGS.
1554   Narrow ALL_REGS to GENERAL_REGS.  This supports allowing movsf and
1555   movdf to do mem-to-mem moves through integer regs.  */
1556
1557#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1558   ix86_preferred_reload_class ((X), (CLASS))
1559
1560/* If we are copying between general and FP registers, we need a memory
1561   location. The same is true for SSE and MMX registers.  */
1562#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1563  ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1564
1565/* QImode spills from non-QI registers need a scratch.  This does not
1566   happen often -- the only example so far requires an uninitialized
1567   pseudo.  */
1568
1569#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT)			\
1570  (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS			\
1571    || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode	\
1572   ? Q_REGS : NO_REGS)
1573
1574/* Return the maximum number of consecutive registers
1575   needed to represent mode MODE in a register of class CLASS.  */
1576/* On the 80386, this is the size of MODE in words,
1577   except in the FP regs, where a single reg is always enough.  */
1578#define CLASS_MAX_NREGS(CLASS, MODE)					\
1579 (!MAYBE_INTEGER_CLASS_P (CLASS)					\
1580  ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
1581  : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE)))			\
1582      + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1583
1584/* A C expression whose value is nonzero if pseudos that have been
1585   assigned to registers of class CLASS would likely be spilled
1586   because registers of CLASS are needed for spill registers.
1587
1588   The default value of this macro returns 1 if CLASS has exactly one
1589   register and zero otherwise.  On most machines, this default
1590   should be used.  Only define this macro to some other expression
1591   if pseudo allocated by `local-alloc.c' end up in memory because
1592   their hard registers were needed for spill registers.  If this
1593   macro returns nonzero for those classes, those pseudos will only
1594   be allocated by `global.c', which knows how to reallocate the
1595   pseudo to another register.  If there would not be another
1596   register available for reallocation, you should not change the
1597   definition of this macro since the only effect of such a
1598   definition would be to slow down register allocation.  */
1599
1600#define CLASS_LIKELY_SPILLED_P(CLASS)					\
1601  (((CLASS) == AREG)							\
1602   || ((CLASS) == DREG)							\
1603   || ((CLASS) == CREG)							\
1604   || ((CLASS) == BREG)							\
1605   || ((CLASS) == AD_REGS)						\
1606   || ((CLASS) == SIREG)						\
1607   || ((CLASS) == DIREG)						\
1608   || ((CLASS) == FP_TOP_REG)						\
1609   || ((CLASS) == FP_SECOND_REG))
1610
1611/* Return a class of registers that cannot change FROM mode to TO mode.
1612
1613   x87 registers can't do subreg as all values are reformated to extended
1614   precision.  XMM registers does not support with nonzero offsets equal
1615   to 4, 8 and 12 otherwise valid for integer registers. Since we can't
1616   determine these, prohibit all nonparadoxical subregs changing size.  */
1617
1618#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)	\
1619  (GET_MODE_SIZE (TO) < GET_MODE_SIZE (FROM)		\
1620   ? reg_classes_intersect_p (FLOAT_SSE_REGS, (CLASS))	\
1621     || MAYBE_MMX_CLASS_P (CLASS) 			\
1622   : GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)		\
1623   ? reg_classes_intersect_p (FLOAT_REGS, (CLASS)) : 0)
1624
1625/* A C statement that adds to CLOBBERS any hard regs the port wishes
1626   to automatically clobber for all asms.
1627
1628   We do this in the new i386 backend to maintain source compatibility
1629   with the old cc0-based compiler.  */
1630
1631#define MD_ASM_CLOBBERS(CLOBBERS)					\
1632  do {									\
1633    (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"),	\
1634			    (CLOBBERS));				\
1635    (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"),	\
1636			    (CLOBBERS));				\
1637    (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"),	\
1638			    (CLOBBERS));				\
1639  } while (0)
1640
1641/* Stack layout; function entry, exit and calling.  */
1642
1643/* Define this if pushing a word on the stack
1644   makes the stack pointer a smaller address.  */
1645#define STACK_GROWS_DOWNWARD
1646
1647/* Define this if the nominal address of the stack frame
1648   is at the high-address end of the local variables;
1649   that is, each additional local variable allocated
1650   goes at a more negative offset in the frame.  */
1651#define FRAME_GROWS_DOWNWARD
1652
1653/* Offset within stack frame to start allocating local variables at.
1654   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1655   first local allocated.  Otherwise, it is the offset to the BEGINNING
1656   of the first local allocated.  */
1657#define STARTING_FRAME_OFFSET 0
1658
1659/* If we generate an insn to push BYTES bytes,
1660   this says how many the stack pointer really advances by.
1661   On 386 pushw decrements by exactly 2 no matter what the position was.
1662   On the 386 there is no pushb; we use pushw instead, and this
1663   has the effect of rounding up to 2.
1664
1665   For 64bit ABI we round up to 8 bytes.
1666 */
1667
1668#define PUSH_ROUNDING(BYTES) \
1669  (TARGET_64BIT		     \
1670   ? (((BYTES) + 7) & (-8))  \
1671   : (((BYTES) + 1) & (-2)))
1672
1673/* If defined, the maximum amount of space required for outgoing arguments will
1674   be computed and placed into the variable
1675   `current_function_outgoing_args_size'.  No space will be pushed onto the
1676   stack for each call; instead, the function prologue should increase the stack
1677   frame size by this amount.  */
1678
1679#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1680
1681/* If defined, a C expression whose value is nonzero when we want to use PUSH
1682   instructions to pass outgoing arguments.  */
1683
1684#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1685
1686/* We want the stack and args grow in opposite directions, even if
1687   PUSH_ARGS is 0.  */
1688#define PUSH_ARGS_REVERSED 1
1689
1690/* Offset of first parameter from the argument pointer register value.  */
1691#define FIRST_PARM_OFFSET(FNDECL) 0
1692
1693/* Define this macro if functions should assume that stack space has been
1694   allocated for arguments even when their values are passed in registers.
1695
1696   The value of this macro is the size, in bytes, of the area reserved for
1697   arguments passed in registers for the function represented by FNDECL.
1698
1699   This space can be allocated by the caller, or be a part of the
1700   machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1701   which.  */
1702#define REG_PARM_STACK_SPACE(FNDECL) 0
1703
1704/* Define as a C expression that evaluates to nonzero if we do not know how
1705   to pass TYPE solely in registers.  The file expr.h defines a
1706   definition that is usually appropriate, refer to expr.h for additional
1707   documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1708   computed in the stack and then loaded into a register.  */
1709#define MUST_PASS_IN_STACK(MODE, TYPE)  ix86_must_pass_in_stack ((MODE), (TYPE))
1710
1711/* Value is the number of bytes of arguments automatically
1712   popped when returning from a subroutine call.
1713   FUNDECL is the declaration node of the function (as a tree),
1714   FUNTYPE is the data type of the function (as a tree),
1715   or for a library call it is an identifier node for the subroutine name.
1716   SIZE is the number of bytes of arguments passed on the stack.
1717
1718   On the 80386, the RTD insn may be used to pop them if the number
1719     of args is fixed, but if the number is variable then the caller
1720     must pop them all.  RTD can't be used for library calls now
1721     because the library is compiled with the Unix compiler.
1722   Use of RTD is a selectable option, since it is incompatible with
1723   standard Unix calling sequences.  If the option is not selected,
1724   the caller must always pop the args.
1725
1726   The attribute stdcall is equivalent to RTD on a per module basis.  */
1727
1728#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1729  ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1730
1731/* Define how to find the value returned by a function.
1732   VALTYPE is the data type of the value (as a tree).
1733   If the precise function being called is known, FUNC is its FUNCTION_DECL;
1734   otherwise, FUNC is 0.  */
1735#define FUNCTION_VALUE(VALTYPE, FUNC)  \
1736   ix86_function_value (VALTYPE)
1737
1738#define FUNCTION_VALUE_REGNO_P(N) \
1739  ix86_function_value_regno_p (N)
1740
1741/* Define how to find the value returned by a library function
1742   assuming the value has mode MODE.  */
1743
1744#define LIBCALL_VALUE(MODE) \
1745  ix86_libcall_value (MODE)
1746
1747/* Define the size of the result block used for communication between
1748   untyped_call and untyped_return.  The block contains a DImode value
1749   followed by the block used by fnsave and frstor.  */
1750
1751#define APPLY_RESULT_SIZE (8+108)
1752
1753/* 1 if N is a possible register number for function argument passing.  */
1754#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1755
1756/* Define a data type for recording info about an argument list
1757   during the scan of that argument list.  This data type should
1758   hold all necessary information about the function itself
1759   and about the args processed so far, enough to enable macros
1760   such as FUNCTION_ARG to determine where the next arg should go.  */
1761
1762typedef struct ix86_args {
1763  int words;			/* # words passed so far */
1764  int nregs;			/* # registers available for passing */
1765  int regno;			/* next available register number */
1766  int fastcall;		/* fastcall calling convention is used */
1767  int sse_words;		/* # sse words passed so far */
1768  int sse_nregs;		/* # sse registers available for passing */
1769  int warn_sse;			/* True when we want to warn about SSE ABI.  */
1770  int warn_mmx;			/* True when we want to warn about MMX ABI.  */
1771  int sse_regno;		/* next available sse register number */
1772  int mmx_words;		/* # mmx words passed so far */
1773  int mmx_nregs;		/* # mmx registers available for passing */
1774  int mmx_regno;		/* next available mmx register number */
1775  int maybe_vaarg;		/* true for calls to possibly vardic fncts.  */
1776} CUMULATIVE_ARGS;
1777
1778/* Initialize a variable CUM of type CUMULATIVE_ARGS
1779   for a call to a function whose data type is FNTYPE.
1780   For a library call, FNTYPE is 0.  */
1781
1782#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1783  init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1784
1785/* Update the data in CUM to advance over an argument
1786   of mode MODE and data type TYPE.
1787   (TYPE is null for libcalls where that information may not be available.)  */
1788
1789#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1790  function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1791
1792/* Define where to put the arguments to a function.
1793   Value is zero to push the argument on the stack,
1794   or a hard register in which to store the argument.
1795
1796   MODE is the argument's machine mode.
1797   TYPE is the data type of the argument (as a tree).
1798    This is null for libcalls where that information may
1799    not be available.
1800   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1801    the preceding args and about the function being called.
1802   NAMED is nonzero if this argument is a named parameter
1803    (otherwise it is an extra parameter matching an ellipsis).  */
1804
1805#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1806  function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1807
1808/* For an arg passed partly in registers and partly in memory,
1809   this is the number of registers used.
1810   For args passed entirely in registers or entirely in memory, zero.  */
1811
1812#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
1813
1814/* A C expression that indicates when an argument must be passed by
1815   reference.  If nonzero for an argument, a copy of that argument is
1816   made in memory and a pointer to the argument is passed instead of
1817   the argument itself.  The pointer is passed in whatever way is
1818   appropriate for passing a pointer to that type.  */
1819
1820#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1821  function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1822
1823/* Perform any needed actions needed for a function that is receiving a
1824   variable number of arguments.
1825
1826   CUM is as above.
1827
1828   MODE and TYPE are the mode and type of the current parameter.
1829
1830   PRETEND_SIZE is a variable that should be set to the amount of stack
1831   that must be pushed by the prolog to pretend that our caller pushed
1832   it.
1833
1834   Normally, this macro will push all remaining incoming registers on the
1835   stack and set PRETEND_SIZE to the length of the registers pushed.  */
1836
1837#define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL)	\
1838  ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \
1839			       (NO_RTL))
1840
1841/* Implement `va_start' for varargs and stdarg.  */
1842#define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1843  ix86_va_start (VALIST, NEXTARG)
1844
1845/* Implement `va_arg'.  */
1846#define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
1847  ix86_va_arg ((VALIST), (TYPE))
1848
1849#define TARGET_ASM_FILE_END ix86_file_end
1850#define NEED_INDICATE_EXEC_STACK 0
1851
1852/* Output assembler code to FILE to increment profiler label # LABELNO
1853   for profiling a function entry.  */
1854
1855#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1856
1857#define MCOUNT_NAME "_mcount"
1858
1859#define PROFILE_COUNT_REGISTER "edx"
1860
1861/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1862   the stack pointer does not matter.  The value is tested only in
1863   functions that have frame pointers.
1864   No definition is equivalent to always zero.  */
1865/* Note on the 386 it might be more efficient not to define this since
1866   we have to restore it ourselves from the frame pointer, in order to
1867   use pop */
1868
1869#define EXIT_IGNORE_STACK 1
1870
1871/* Output assembler code for a block containing the constant parts
1872   of a trampoline, leaving space for the variable parts.  */
1873
1874/* On the 386, the trampoline contains two instructions:
1875     mov #STATIC,ecx
1876     jmp FUNCTION
1877   The trampoline is generated entirely at runtime.  The operand of JMP
1878   is the address of FUNCTION relative to the instruction following the
1879   JMP (which is 5 bytes long).  */
1880
1881/* Length in units of the trampoline for entering a nested function.  */
1882
1883#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1884
1885/* Emit RTL insns to initialize the variable parts of a trampoline.
1886   FNADDR is an RTX for the address of the function's pure code.
1887   CXT is an RTX for the static chain value for the function.  */
1888
1889#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1890  x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1891
1892/* Definitions for register eliminations.
1893
1894   This is an array of structures.  Each structure initializes one pair
1895   of eliminable registers.  The "from" register number is given first,
1896   followed by "to".  Eliminations of the same "from" register are listed
1897   in order of preference.
1898
1899   There are two registers that can always be eliminated on the i386.
1900   The frame pointer and the arg pointer can be replaced by either the
1901   hard frame pointer or to the stack pointer, depending upon the
1902   circumstances.  The hard frame pointer is not used before reload and
1903   so it is not eligible for elimination.  */
1904
1905#define ELIMINABLE_REGS					\
1906{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1907 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1908 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1909 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}	\
1910
1911/* Given FROM and TO register numbers, say whether this elimination is
1912   allowed.  Frame pointer elimination is automatically handled.
1913
1914   All other eliminations are valid.  */
1915
1916#define CAN_ELIMINATE(FROM, TO) \
1917  ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1918
1919/* Define the offset between two registers, one to be eliminated, and the other
1920   its replacement, at the start of a routine.  */
1921
1922#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1923  ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1924
1925/* Addressing modes, and classification of registers for them.  */
1926
1927/* Macros to check register numbers against specific register classes.  */
1928
1929/* These assume that REGNO is a hard or pseudo reg number.
1930   They give nonzero only if REGNO is a hard reg of the suitable class
1931   or a pseudo reg currently allocated to a suitable hard reg.
1932   Since they use reg_renumber, they are safe only once reg_renumber
1933   has been allocated, which happens in local-alloc.c.  */
1934
1935#define REGNO_OK_FOR_INDEX_P(REGNO) 					\
1936  ((REGNO) < STACK_POINTER_REGNUM 					\
1937   || (REGNO >= FIRST_REX_INT_REG					\
1938       && (REGNO) <= LAST_REX_INT_REG)					\
1939   || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1940       && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1941   || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1942
1943#define REGNO_OK_FOR_BASE_P(REGNO) 					\
1944  ((REGNO) <= STACK_POINTER_REGNUM 					\
1945   || (REGNO) == ARG_POINTER_REGNUM 					\
1946   || (REGNO) == FRAME_POINTER_REGNUM 					\
1947   || (REGNO >= FIRST_REX_INT_REG					\
1948       && (REGNO) <= LAST_REX_INT_REG)					\
1949   || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1950       && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1951   || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1952
1953#define REGNO_OK_FOR_SIREG_P(REGNO) \
1954  ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1955#define REGNO_OK_FOR_DIREG_P(REGNO) \
1956  ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1957
1958/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1959   and check its validity for a certain class.
1960   We have two alternate definitions for each of them.
1961   The usual definition accepts all pseudo regs; the other rejects
1962   them unless they have been allocated suitable hard regs.
1963   The symbol REG_OK_STRICT causes the latter definition to be used.
1964
1965   Most source files want to accept pseudo regs in the hope that
1966   they will get allocated to the class that the insn wants them to be in.
1967   Source files for reload pass need to be strict.
1968   After reload, it makes no difference, since pseudo regs have
1969   been eliminated by then.  */
1970
1971
1972/* Non strict versions, pseudos are ok */
1973#define REG_OK_FOR_INDEX_NONSTRICT_P(X)					\
1974  (REGNO (X) < STACK_POINTER_REGNUM					\
1975   || (REGNO (X) >= FIRST_REX_INT_REG					\
1976       && REGNO (X) <= LAST_REX_INT_REG)				\
1977   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1978
1979#define REG_OK_FOR_BASE_NONSTRICT_P(X)					\
1980  (REGNO (X) <= STACK_POINTER_REGNUM					\
1981   || REGNO (X) == ARG_POINTER_REGNUM					\
1982   || REGNO (X) == FRAME_POINTER_REGNUM 				\
1983   || (REGNO (X) >= FIRST_REX_INT_REG					\
1984       && REGNO (X) <= LAST_REX_INT_REG)				\
1985   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1986
1987/* Strict versions, hard registers only */
1988#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1989#define REG_OK_FOR_BASE_STRICT_P(X)  REGNO_OK_FOR_BASE_P (REGNO (X))
1990
1991#ifndef REG_OK_STRICT
1992#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_NONSTRICT_P (X)
1993#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_NONSTRICT_P (X)
1994
1995#else
1996#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_STRICT_P (X)
1997#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_STRICT_P (X)
1998#endif
1999
2000/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2001   that is a valid memory address for an instruction.
2002   The MODE argument is the machine mode for the MEM expression
2003   that wants to use this address.
2004
2005   The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
2006   except for CONSTANT_ADDRESS_P which is usually machine-independent.
2007
2008   See legitimize_pic_address in i386.c for details as to what
2009   constitutes a legitimate address when -fpic is used.  */
2010
2011#define MAX_REGS_PER_ADDRESS 2
2012
2013#define CONSTANT_ADDRESS_P(X)  constant_address_p (X)
2014
2015/* Nonzero if the constant value X is a legitimate general operand.
2016   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
2017
2018#define LEGITIMATE_CONSTANT_P(X)  legitimate_constant_p (X)
2019
2020#ifdef REG_OK_STRICT
2021#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
2022do {									\
2023  if (legitimate_address_p ((MODE), (X), 1))				\
2024    goto ADDR;								\
2025} while (0)
2026
2027#else
2028#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
2029do {									\
2030  if (legitimate_address_p ((MODE), (X), 0))				\
2031    goto ADDR;								\
2032} while (0)
2033
2034#endif
2035
2036/* If defined, a C expression to determine the base term of address X.
2037   This macro is used in only one place: `find_base_term' in alias.c.
2038
2039   It is always safe for this macro to not be defined.  It exists so
2040   that alias analysis can understand machine-dependent addresses.
2041
2042   The typical use of this macro is to handle addresses containing
2043   a label_ref or symbol_ref within an UNSPEC.  */
2044
2045#define FIND_BASE_TERM(X) ix86_find_base_term (X)
2046
2047/* Try machine-dependent ways of modifying an illegitimate address
2048   to be legitimate.  If we find one, return the new, valid address.
2049   This macro is used in only one place: `memory_address' in explow.c.
2050
2051   OLDX is the address as it was before break_out_memory_refs was called.
2052   In some cases it is useful to look at this to decide what needs to be done.
2053
2054   MODE and WIN are passed so that this macro can use
2055   GO_IF_LEGITIMATE_ADDRESS.
2056
2057   It is always safe for this macro to do nothing.  It exists to recognize
2058   opportunities to optimize the output.
2059
2060   For the 80386, we handle X+REG by loading X into a register R and
2061   using R+REG.  R will go in a general reg and indexing will be used.
2062   However, if REG is a broken-out memory address or multiplication,
2063   nothing needs to be done because REG can certainly go in a general reg.
2064
2065   When -fpic is used, special handling is needed for symbolic references.
2066   See comments by legitimize_pic_address in i386.c for details.  */
2067
2068#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)				\
2069do {									\
2070  (X) = legitimize_address ((X), (OLDX), (MODE));			\
2071  if (memory_address_p ((MODE), (X)))					\
2072    goto WIN;								\
2073} while (0)
2074
2075#define REWRITE_ADDRESS(X) rewrite_address (X)
2076
2077/* Nonzero if the constant value X is a legitimate general operand
2078   when generating PIC code.  It is given that flag_pic is on and
2079   that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
2080
2081#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
2082
2083#define SYMBOLIC_CONST(X)	\
2084  (GET_CODE (X) == SYMBOL_REF						\
2085   || GET_CODE (X) == LABEL_REF						\
2086   || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
2087
2088/* Go to LABEL if ADDR (a legitimate address expression)
2089   has an effect that depends on the machine mode it is used for.
2090   On the 80386, only postdecrement and postincrement address depend thus
2091   (the amount of decrement or increment being the length of the operand).  */
2092#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)	\
2093do {							\
2094 if (GET_CODE (ADDR) == POST_INC			\
2095     || GET_CODE (ADDR) == POST_DEC)			\
2096   goto LABEL;						\
2097} while (0)
2098
2099/* Codes for all the SSE/MMX builtins.  */
2100enum ix86_builtins
2101{
2102  IX86_BUILTIN_ADDPS,
2103  IX86_BUILTIN_ADDSS,
2104  IX86_BUILTIN_DIVPS,
2105  IX86_BUILTIN_DIVSS,
2106  IX86_BUILTIN_MULPS,
2107  IX86_BUILTIN_MULSS,
2108  IX86_BUILTIN_SUBPS,
2109  IX86_BUILTIN_SUBSS,
2110
2111  IX86_BUILTIN_CMPEQPS,
2112  IX86_BUILTIN_CMPLTPS,
2113  IX86_BUILTIN_CMPLEPS,
2114  IX86_BUILTIN_CMPGTPS,
2115  IX86_BUILTIN_CMPGEPS,
2116  IX86_BUILTIN_CMPNEQPS,
2117  IX86_BUILTIN_CMPNLTPS,
2118  IX86_BUILTIN_CMPNLEPS,
2119  IX86_BUILTIN_CMPNGTPS,
2120  IX86_BUILTIN_CMPNGEPS,
2121  IX86_BUILTIN_CMPORDPS,
2122  IX86_BUILTIN_CMPUNORDPS,
2123  IX86_BUILTIN_CMPNEPS,
2124  IX86_BUILTIN_CMPEQSS,
2125  IX86_BUILTIN_CMPLTSS,
2126  IX86_BUILTIN_CMPLESS,
2127  IX86_BUILTIN_CMPNEQSS,
2128  IX86_BUILTIN_CMPNLTSS,
2129  IX86_BUILTIN_CMPNLESS,
2130  IX86_BUILTIN_CMPORDSS,
2131  IX86_BUILTIN_CMPUNORDSS,
2132  IX86_BUILTIN_CMPNESS,
2133
2134  IX86_BUILTIN_COMIEQSS,
2135  IX86_BUILTIN_COMILTSS,
2136  IX86_BUILTIN_COMILESS,
2137  IX86_BUILTIN_COMIGTSS,
2138  IX86_BUILTIN_COMIGESS,
2139  IX86_BUILTIN_COMINEQSS,
2140  IX86_BUILTIN_UCOMIEQSS,
2141  IX86_BUILTIN_UCOMILTSS,
2142  IX86_BUILTIN_UCOMILESS,
2143  IX86_BUILTIN_UCOMIGTSS,
2144  IX86_BUILTIN_UCOMIGESS,
2145  IX86_BUILTIN_UCOMINEQSS,
2146
2147  IX86_BUILTIN_CVTPI2PS,
2148  IX86_BUILTIN_CVTPS2PI,
2149  IX86_BUILTIN_CVTSI2SS,
2150  IX86_BUILTIN_CVTSI642SS,
2151  IX86_BUILTIN_CVTSS2SI,
2152  IX86_BUILTIN_CVTSS2SI64,
2153  IX86_BUILTIN_CVTTPS2PI,
2154  IX86_BUILTIN_CVTTSS2SI,
2155  IX86_BUILTIN_CVTTSS2SI64,
2156
2157  IX86_BUILTIN_MAXPS,
2158  IX86_BUILTIN_MAXSS,
2159  IX86_BUILTIN_MINPS,
2160  IX86_BUILTIN_MINSS,
2161
2162  IX86_BUILTIN_LOADAPS,
2163  IX86_BUILTIN_LOADUPS,
2164  IX86_BUILTIN_STOREAPS,
2165  IX86_BUILTIN_STOREUPS,
2166  IX86_BUILTIN_LOADSS,
2167  IX86_BUILTIN_STORESS,
2168  IX86_BUILTIN_MOVSS,
2169
2170  IX86_BUILTIN_MOVHLPS,
2171  IX86_BUILTIN_MOVLHPS,
2172  IX86_BUILTIN_LOADHPS,
2173  IX86_BUILTIN_LOADLPS,
2174  IX86_BUILTIN_STOREHPS,
2175  IX86_BUILTIN_STORELPS,
2176
2177  IX86_BUILTIN_MASKMOVQ,
2178  IX86_BUILTIN_MOVMSKPS,
2179  IX86_BUILTIN_PMOVMSKB,
2180
2181  IX86_BUILTIN_MOVNTPS,
2182  IX86_BUILTIN_MOVNTQ,
2183
2184  IX86_BUILTIN_LOADDQA,
2185  IX86_BUILTIN_LOADDQU,
2186  IX86_BUILTIN_STOREDQA,
2187  IX86_BUILTIN_STOREDQU,
2188  IX86_BUILTIN_MOVQ,
2189  IX86_BUILTIN_LOADD,
2190  IX86_BUILTIN_STORED,
2191
2192  IX86_BUILTIN_CLRTI,
2193
2194  IX86_BUILTIN_PACKSSWB,
2195  IX86_BUILTIN_PACKSSDW,
2196  IX86_BUILTIN_PACKUSWB,
2197
2198  IX86_BUILTIN_PADDB,
2199  IX86_BUILTIN_PADDW,
2200  IX86_BUILTIN_PADDD,
2201  IX86_BUILTIN_PADDQ,
2202  IX86_BUILTIN_PADDSB,
2203  IX86_BUILTIN_PADDSW,
2204  IX86_BUILTIN_PADDUSB,
2205  IX86_BUILTIN_PADDUSW,
2206  IX86_BUILTIN_PSUBB,
2207  IX86_BUILTIN_PSUBW,
2208  IX86_BUILTIN_PSUBD,
2209  IX86_BUILTIN_PSUBQ,
2210  IX86_BUILTIN_PSUBSB,
2211  IX86_BUILTIN_PSUBSW,
2212  IX86_BUILTIN_PSUBUSB,
2213  IX86_BUILTIN_PSUBUSW,
2214
2215  IX86_BUILTIN_PAND,
2216  IX86_BUILTIN_PANDN,
2217  IX86_BUILTIN_POR,
2218  IX86_BUILTIN_PXOR,
2219
2220  IX86_BUILTIN_PAVGB,
2221  IX86_BUILTIN_PAVGW,
2222
2223  IX86_BUILTIN_PCMPEQB,
2224  IX86_BUILTIN_PCMPEQW,
2225  IX86_BUILTIN_PCMPEQD,
2226  IX86_BUILTIN_PCMPGTB,
2227  IX86_BUILTIN_PCMPGTW,
2228  IX86_BUILTIN_PCMPGTD,
2229
2230  IX86_BUILTIN_PEXTRW,
2231  IX86_BUILTIN_PINSRW,
2232
2233  IX86_BUILTIN_PMADDWD,
2234
2235  IX86_BUILTIN_PMAXSW,
2236  IX86_BUILTIN_PMAXUB,
2237  IX86_BUILTIN_PMINSW,
2238  IX86_BUILTIN_PMINUB,
2239
2240  IX86_BUILTIN_PMULHUW,
2241  IX86_BUILTIN_PMULHW,
2242  IX86_BUILTIN_PMULLW,
2243
2244  IX86_BUILTIN_PSADBW,
2245  IX86_BUILTIN_PSHUFW,
2246
2247  IX86_BUILTIN_PSLLW,
2248  IX86_BUILTIN_PSLLD,
2249  IX86_BUILTIN_PSLLQ,
2250  IX86_BUILTIN_PSRAW,
2251  IX86_BUILTIN_PSRAD,
2252  IX86_BUILTIN_PSRLW,
2253  IX86_BUILTIN_PSRLD,
2254  IX86_BUILTIN_PSRLQ,
2255  IX86_BUILTIN_PSLLWI,
2256  IX86_BUILTIN_PSLLDI,
2257  IX86_BUILTIN_PSLLQI,
2258  IX86_BUILTIN_PSRAWI,
2259  IX86_BUILTIN_PSRADI,
2260  IX86_BUILTIN_PSRLWI,
2261  IX86_BUILTIN_PSRLDI,
2262  IX86_BUILTIN_PSRLQI,
2263
2264  IX86_BUILTIN_PUNPCKHBW,
2265  IX86_BUILTIN_PUNPCKHWD,
2266  IX86_BUILTIN_PUNPCKHDQ,
2267  IX86_BUILTIN_PUNPCKLBW,
2268  IX86_BUILTIN_PUNPCKLWD,
2269  IX86_BUILTIN_PUNPCKLDQ,
2270
2271  IX86_BUILTIN_SHUFPS,
2272
2273  IX86_BUILTIN_RCPPS,
2274  IX86_BUILTIN_RCPSS,
2275  IX86_BUILTIN_RSQRTPS,
2276  IX86_BUILTIN_RSQRTSS,
2277  IX86_BUILTIN_SQRTPS,
2278  IX86_BUILTIN_SQRTSS,
2279
2280  IX86_BUILTIN_UNPCKHPS,
2281  IX86_BUILTIN_UNPCKLPS,
2282
2283  IX86_BUILTIN_ANDPS,
2284  IX86_BUILTIN_ANDNPS,
2285  IX86_BUILTIN_ORPS,
2286  IX86_BUILTIN_XORPS,
2287
2288  IX86_BUILTIN_EMMS,
2289  IX86_BUILTIN_LDMXCSR,
2290  IX86_BUILTIN_STMXCSR,
2291  IX86_BUILTIN_SFENCE,
2292
2293  /* 3DNow! Original */
2294  IX86_BUILTIN_FEMMS,
2295  IX86_BUILTIN_PAVGUSB,
2296  IX86_BUILTIN_PF2ID,
2297  IX86_BUILTIN_PFACC,
2298  IX86_BUILTIN_PFADD,
2299  IX86_BUILTIN_PFCMPEQ,
2300  IX86_BUILTIN_PFCMPGE,
2301  IX86_BUILTIN_PFCMPGT,
2302  IX86_BUILTIN_PFMAX,
2303  IX86_BUILTIN_PFMIN,
2304  IX86_BUILTIN_PFMUL,
2305  IX86_BUILTIN_PFRCP,
2306  IX86_BUILTIN_PFRCPIT1,
2307  IX86_BUILTIN_PFRCPIT2,
2308  IX86_BUILTIN_PFRSQIT1,
2309  IX86_BUILTIN_PFRSQRT,
2310  IX86_BUILTIN_PFSUB,
2311  IX86_BUILTIN_PFSUBR,
2312  IX86_BUILTIN_PI2FD,
2313  IX86_BUILTIN_PMULHRW,
2314
2315  /* 3DNow! Athlon Extensions */
2316  IX86_BUILTIN_PF2IW,
2317  IX86_BUILTIN_PFNACC,
2318  IX86_BUILTIN_PFPNACC,
2319  IX86_BUILTIN_PI2FW,
2320  IX86_BUILTIN_PSWAPDSI,
2321  IX86_BUILTIN_PSWAPDSF,
2322
2323  IX86_BUILTIN_SSE_ZERO,
2324  IX86_BUILTIN_MMX_ZERO,
2325
2326  /* SSE2 */
2327  IX86_BUILTIN_ADDPD,
2328  IX86_BUILTIN_ADDSD,
2329  IX86_BUILTIN_DIVPD,
2330  IX86_BUILTIN_DIVSD,
2331  IX86_BUILTIN_MULPD,
2332  IX86_BUILTIN_MULSD,
2333  IX86_BUILTIN_SUBPD,
2334  IX86_BUILTIN_SUBSD,
2335
2336  IX86_BUILTIN_CMPEQPD,
2337  IX86_BUILTIN_CMPLTPD,
2338  IX86_BUILTIN_CMPLEPD,
2339  IX86_BUILTIN_CMPGTPD,
2340  IX86_BUILTIN_CMPGEPD,
2341  IX86_BUILTIN_CMPNEQPD,
2342  IX86_BUILTIN_CMPNLTPD,
2343  IX86_BUILTIN_CMPNLEPD,
2344  IX86_BUILTIN_CMPNGTPD,
2345  IX86_BUILTIN_CMPNGEPD,
2346  IX86_BUILTIN_CMPORDPD,
2347  IX86_BUILTIN_CMPUNORDPD,
2348  IX86_BUILTIN_CMPNEPD,
2349  IX86_BUILTIN_CMPEQSD,
2350  IX86_BUILTIN_CMPLTSD,
2351  IX86_BUILTIN_CMPLESD,
2352  IX86_BUILTIN_CMPNEQSD,
2353  IX86_BUILTIN_CMPNLTSD,
2354  IX86_BUILTIN_CMPNLESD,
2355  IX86_BUILTIN_CMPORDSD,
2356  IX86_BUILTIN_CMPUNORDSD,
2357  IX86_BUILTIN_CMPNESD,
2358
2359  IX86_BUILTIN_COMIEQSD,
2360  IX86_BUILTIN_COMILTSD,
2361  IX86_BUILTIN_COMILESD,
2362  IX86_BUILTIN_COMIGTSD,
2363  IX86_BUILTIN_COMIGESD,
2364  IX86_BUILTIN_COMINEQSD,
2365  IX86_BUILTIN_UCOMIEQSD,
2366  IX86_BUILTIN_UCOMILTSD,
2367  IX86_BUILTIN_UCOMILESD,
2368  IX86_BUILTIN_UCOMIGTSD,
2369  IX86_BUILTIN_UCOMIGESD,
2370  IX86_BUILTIN_UCOMINEQSD,
2371
2372  IX86_BUILTIN_MAXPD,
2373  IX86_BUILTIN_MAXSD,
2374  IX86_BUILTIN_MINPD,
2375  IX86_BUILTIN_MINSD,
2376
2377  IX86_BUILTIN_ANDPD,
2378  IX86_BUILTIN_ANDNPD,
2379  IX86_BUILTIN_ORPD,
2380  IX86_BUILTIN_XORPD,
2381
2382  IX86_BUILTIN_SQRTPD,
2383  IX86_BUILTIN_SQRTSD,
2384
2385  IX86_BUILTIN_UNPCKHPD,
2386  IX86_BUILTIN_UNPCKLPD,
2387
2388  IX86_BUILTIN_SHUFPD,
2389
2390  IX86_BUILTIN_LOADAPD,
2391  IX86_BUILTIN_LOADUPD,
2392  IX86_BUILTIN_STOREAPD,
2393  IX86_BUILTIN_STOREUPD,
2394  IX86_BUILTIN_LOADSD,
2395  IX86_BUILTIN_STORESD,
2396  IX86_BUILTIN_MOVSD,
2397
2398  IX86_BUILTIN_LOADHPD,
2399  IX86_BUILTIN_LOADLPD,
2400  IX86_BUILTIN_STOREHPD,
2401  IX86_BUILTIN_STORELPD,
2402
2403  IX86_BUILTIN_CVTDQ2PD,
2404  IX86_BUILTIN_CVTDQ2PS,
2405
2406  IX86_BUILTIN_CVTPD2DQ,
2407  IX86_BUILTIN_CVTPD2PI,
2408  IX86_BUILTIN_CVTPD2PS,
2409  IX86_BUILTIN_CVTTPD2DQ,
2410  IX86_BUILTIN_CVTTPD2PI,
2411
2412  IX86_BUILTIN_CVTPI2PD,
2413  IX86_BUILTIN_CVTSI2SD,
2414  IX86_BUILTIN_CVTSI642SD,
2415
2416  IX86_BUILTIN_CVTSD2SI,
2417  IX86_BUILTIN_CVTSD2SI64,
2418  IX86_BUILTIN_CVTSD2SS,
2419  IX86_BUILTIN_CVTSS2SD,
2420  IX86_BUILTIN_CVTTSD2SI,
2421  IX86_BUILTIN_CVTTSD2SI64,
2422
2423  IX86_BUILTIN_CVTPS2DQ,
2424  IX86_BUILTIN_CVTPS2PD,
2425  IX86_BUILTIN_CVTTPS2DQ,
2426
2427  IX86_BUILTIN_MOVNTI,
2428  IX86_BUILTIN_MOVNTPD,
2429  IX86_BUILTIN_MOVNTDQ,
2430
2431  IX86_BUILTIN_SETPD1,
2432  IX86_BUILTIN_SETPD,
2433  IX86_BUILTIN_CLRPD,
2434  IX86_BUILTIN_SETRPD,
2435  IX86_BUILTIN_LOADPD1,
2436  IX86_BUILTIN_LOADRPD,
2437  IX86_BUILTIN_STOREPD1,
2438  IX86_BUILTIN_STORERPD,
2439
2440  /* SSE2 MMX */
2441  IX86_BUILTIN_MASKMOVDQU,
2442  IX86_BUILTIN_MOVMSKPD,
2443  IX86_BUILTIN_PMOVMSKB128,
2444  IX86_BUILTIN_MOVQ2DQ,
2445  IX86_BUILTIN_MOVDQ2Q,
2446
2447  IX86_BUILTIN_PACKSSWB128,
2448  IX86_BUILTIN_PACKSSDW128,
2449  IX86_BUILTIN_PACKUSWB128,
2450
2451  IX86_BUILTIN_PADDB128,
2452  IX86_BUILTIN_PADDW128,
2453  IX86_BUILTIN_PADDD128,
2454  IX86_BUILTIN_PADDQ128,
2455  IX86_BUILTIN_PADDSB128,
2456  IX86_BUILTIN_PADDSW128,
2457  IX86_BUILTIN_PADDUSB128,
2458  IX86_BUILTIN_PADDUSW128,
2459  IX86_BUILTIN_PSUBB128,
2460  IX86_BUILTIN_PSUBW128,
2461  IX86_BUILTIN_PSUBD128,
2462  IX86_BUILTIN_PSUBQ128,
2463  IX86_BUILTIN_PSUBSB128,
2464  IX86_BUILTIN_PSUBSW128,
2465  IX86_BUILTIN_PSUBUSB128,
2466  IX86_BUILTIN_PSUBUSW128,
2467
2468  IX86_BUILTIN_PAND128,
2469  IX86_BUILTIN_PANDN128,
2470  IX86_BUILTIN_POR128,
2471  IX86_BUILTIN_PXOR128,
2472
2473  IX86_BUILTIN_PAVGB128,
2474  IX86_BUILTIN_PAVGW128,
2475
2476  IX86_BUILTIN_PCMPEQB128,
2477  IX86_BUILTIN_PCMPEQW128,
2478  IX86_BUILTIN_PCMPEQD128,
2479  IX86_BUILTIN_PCMPGTB128,
2480  IX86_BUILTIN_PCMPGTW128,
2481  IX86_BUILTIN_PCMPGTD128,
2482
2483  IX86_BUILTIN_PEXTRW128,
2484  IX86_BUILTIN_PINSRW128,
2485
2486  IX86_BUILTIN_PMADDWD128,
2487
2488  IX86_BUILTIN_PMAXSW128,
2489  IX86_BUILTIN_PMAXUB128,
2490  IX86_BUILTIN_PMINSW128,
2491  IX86_BUILTIN_PMINUB128,
2492
2493  IX86_BUILTIN_PMULUDQ,
2494  IX86_BUILTIN_PMULUDQ128,
2495  IX86_BUILTIN_PMULHUW128,
2496  IX86_BUILTIN_PMULHW128,
2497  IX86_BUILTIN_PMULLW128,
2498
2499  IX86_BUILTIN_PSADBW128,
2500  IX86_BUILTIN_PSHUFHW,
2501  IX86_BUILTIN_PSHUFLW,
2502  IX86_BUILTIN_PSHUFD,
2503
2504  IX86_BUILTIN_PSLLW128,
2505  IX86_BUILTIN_PSLLD128,
2506  IX86_BUILTIN_PSLLQ128,
2507  IX86_BUILTIN_PSRAW128,
2508  IX86_BUILTIN_PSRAD128,
2509  IX86_BUILTIN_PSRLW128,
2510  IX86_BUILTIN_PSRLD128,
2511  IX86_BUILTIN_PSRLQ128,
2512  IX86_BUILTIN_PSLLDQI128,
2513  IX86_BUILTIN_PSLLWI128,
2514  IX86_BUILTIN_PSLLDI128,
2515  IX86_BUILTIN_PSLLQI128,
2516  IX86_BUILTIN_PSRAWI128,
2517  IX86_BUILTIN_PSRADI128,
2518  IX86_BUILTIN_PSRLDQI128,
2519  IX86_BUILTIN_PSRLWI128,
2520  IX86_BUILTIN_PSRLDI128,
2521  IX86_BUILTIN_PSRLQI128,
2522
2523  IX86_BUILTIN_PUNPCKHBW128,
2524  IX86_BUILTIN_PUNPCKHWD128,
2525  IX86_BUILTIN_PUNPCKHDQ128,
2526  IX86_BUILTIN_PUNPCKHQDQ128,
2527  IX86_BUILTIN_PUNPCKLBW128,
2528  IX86_BUILTIN_PUNPCKLWD128,
2529  IX86_BUILTIN_PUNPCKLDQ128,
2530  IX86_BUILTIN_PUNPCKLQDQ128,
2531
2532  IX86_BUILTIN_CLFLUSH,
2533  IX86_BUILTIN_MFENCE,
2534  IX86_BUILTIN_LFENCE,
2535
2536  /* Prescott New Instructions.  */
2537  IX86_BUILTIN_ADDSUBPS,
2538  IX86_BUILTIN_HADDPS,
2539  IX86_BUILTIN_HSUBPS,
2540  IX86_BUILTIN_MOVSHDUP,
2541  IX86_BUILTIN_MOVSLDUP,
2542  IX86_BUILTIN_ADDSUBPD,
2543  IX86_BUILTIN_HADDPD,
2544  IX86_BUILTIN_HSUBPD,
2545  IX86_BUILTIN_LOADDDUP,
2546  IX86_BUILTIN_MOVDDUP,
2547  IX86_BUILTIN_LDDQU,
2548
2549  IX86_BUILTIN_MONITOR,
2550  IX86_BUILTIN_MWAIT,
2551
2552  IX86_BUILTIN_MAX
2553};
2554
2555/* Max number of args passed in registers.  If this is more than 3, we will
2556   have problems with ebx (register #4), since it is a caller save register and
2557   is also used as the pic register in ELF.  So for now, don't allow more than
2558   3 registers to be passed in registers.  */
2559
2560#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2561
2562#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
2563
2564#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
2565
2566
2567/* Specify the machine mode that this machine uses
2568   for the index in the tablejump instruction.  */
2569#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
2570
2571/* Define as C expression which evaluates to nonzero if the tablejump
2572   instruction expects the table to contain offsets from the address of the
2573   table.
2574   Do not define this if the table should contain absolute addresses.  */
2575/* #define CASE_VECTOR_PC_RELATIVE 1 */
2576
2577/* Define this as 1 if `char' should by default be signed; else as 0.  */
2578#define DEFAULT_SIGNED_CHAR 1
2579
2580/* Number of bytes moved into a data cache for a single prefetch operation.  */
2581#define PREFETCH_BLOCK ix86_cost->prefetch_block
2582
2583/* Number of prefetch operations that can be done in parallel.  */
2584#define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2585
2586/* Max number of bytes we can move from memory to memory
2587   in one reasonably fast instruction.  */
2588#define MOVE_MAX 16
2589
2590/* MOVE_MAX_PIECES is the number of bytes at a time which we can
2591   move efficiently, as opposed to  MOVE_MAX which is the maximum
2592   number of bytes we can move with a single instruction.  */
2593#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
2594
2595/* If a memory-to-memory move would take MOVE_RATIO or more simple
2596   move-instruction pairs, we will do a movstr or libcall instead.
2597   Increasing the value will always make code faster, but eventually
2598   incurs high cost in increased code size.
2599
2600   If you don't define this, a reasonable default is used.  */
2601
2602#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
2603
2604/* Define if shifts truncate the shift count
2605   which implies one can omit a sign-extension or zero-extension
2606   of a shift count.  */
2607/* On i386, shifts do truncate the count.  But bit opcodes don't.  */
2608
2609/* #define SHIFT_COUNT_TRUNCATED */
2610
2611/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2612   is done just by pretending it is already truncated.  */
2613#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2614
2615/* When a prototype says `char' or `short', really pass an `int'.
2616   (The 386 can't easily push less than an int.)  */
2617
2618#define PROMOTE_PROTOTYPES 1
2619
2620/* A macro to update M and UNSIGNEDP when an object whose type is
2621   TYPE and which has the specified mode and signedness is to be
2622   stored in a register.  This macro is only called when TYPE is a
2623   scalar type.
2624
2625   On i386 it is sometimes useful to promote HImode and QImode
2626   quantities to SImode.  The choice depends on target type.  */
2627
2628#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) 		\
2629do {							\
2630  if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS)	\
2631      || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS))	\
2632    (MODE) = SImode;					\
2633} while (0)
2634
2635/* Specify the machine mode that pointers have.
2636   After generation of rtl, the compiler makes no further distinction
2637   between pointers and any other objects of this machine mode.  */
2638#define Pmode (TARGET_64BIT ? DImode : SImode)
2639
2640/* A function address in a call instruction
2641   is a byte address (for indexing purposes)
2642   so give the MEM rtx a byte's mode.  */
2643#define FUNCTION_MODE QImode
2644
2645/* A C expression for the cost of moving data from a register in class FROM to
2646   one in class TO.  The classes are expressed using the enumeration values
2647   such as `GENERAL_REGS'.  A value of 2 is the default; other values are
2648   interpreted relative to that.
2649
2650   It is not required that the cost always equal 2 when FROM is the same as TO;
2651   on some machines it is expensive to move between registers if they are not
2652   general registers.  */
2653
2654#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2655   ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
2656
2657/* A C expression for the cost of moving data of mode M between a
2658   register and memory.  A value of 2 is the default; this cost is
2659   relative to those in `REGISTER_MOVE_COST'.
2660
2661   If moving between registers and memory is more expensive than
2662   between two registers, you should define this macro to express the
2663   relative cost.  */
2664
2665#define MEMORY_MOVE_COST(MODE, CLASS, IN)	\
2666  ix86_memory_move_cost ((MODE), (CLASS), (IN))
2667
2668/* A C expression for the cost of a branch instruction.  A value of 1
2669   is the default; other values are interpreted relative to that.  */
2670
2671#define BRANCH_COST ix86_branch_cost
2672
2673/* Define this macro as a C expression which is nonzero if accessing
2674   less than a word of memory (i.e. a `char' or a `short') is no
2675   faster than accessing a word of memory, i.e., if such access
2676   require more than one instruction or if there is no difference in
2677   cost between byte and (aligned) word loads.
2678
2679   When this macro is not defined, the compiler will access a field by
2680   finding the smallest containing object; when it is defined, a
2681   fullword load will be used if alignment permits.  Unless bytes
2682   accesses are faster than word accesses, using word accesses is
2683   preferable since it may eliminate subsequent memory access if
2684   subsequent accesses occur to other fields in the same word of the
2685   structure, but to different bytes.  */
2686
2687#define SLOW_BYTE_ACCESS 0
2688
2689/* Nonzero if access to memory by shorts is slow and undesirable.  */
2690#define SLOW_SHORT_ACCESS 0
2691
2692/* Define this macro to be the value 1 if unaligned accesses have a
2693   cost many times greater than aligned accesses, for example if they
2694   are emulated in a trap handler.
2695
2696   When this macro is nonzero, the compiler will act as if
2697   `STRICT_ALIGNMENT' were nonzero when generating code for block
2698   moves.  This can cause significantly more instructions to be
2699   produced.  Therefore, do not set this macro nonzero if unaligned
2700   accesses only add a cycle or two to the time for a memory access.
2701
2702   If the value of this macro is always zero, it need not be defined.  */
2703
2704/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2705
2706/* Define this macro if it is as good or better to call a constant
2707   function address than to call an address kept in a register.
2708
2709   Desirable on the 386 because a CALL with a constant address is
2710   faster than one with a register address.  */
2711
2712#define NO_FUNCTION_CSE
2713
2714/* Define this macro if it is as good or better for a function to call
2715   itself with an explicit address than to call an address kept in a
2716   register.  */
2717
2718#define NO_RECURSIVE_FUNCTION_CSE
2719
2720/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2721   return the mode to be used for the comparison.
2722
2723   For floating-point equality comparisons, CCFPEQmode should be used.
2724   VOIDmode should be used in all other cases.
2725
2726   For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2727   possible, to allow for more combinations.  */
2728
2729#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2730
2731/* Return nonzero if MODE implies a floating point inequality can be
2732   reversed.  */
2733
2734#define REVERSIBLE_CC_MODE(MODE) 1
2735
2736/* A C expression whose value is reversed condition code of the CODE for
2737   comparison done in CC_MODE mode.  */
2738#define REVERSE_CONDITION(CODE, MODE) \
2739  ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
2740   : reverse_condition_maybe_unordered (CODE))
2741
2742
2743/* Control the assembler format that we output, to the extent
2744   this does not vary between assemblers.  */
2745
2746/* How to refer to registers in assembler output.
2747   This sequence is indexed by compiler's hard-register-number (see above).  */
2748
2749/* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2750   For non floating point regs, the following are the HImode names.
2751
2752   For float regs, the stack top is sometimes referred to as "%st(0)"
2753   instead of just "%st".  PRINT_OPERAND handles this with the "y" code.  */
2754
2755#define HI_REGISTER_NAMES						\
2756{"ax","dx","cx","bx","si","di","bp","sp",				\
2757 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)",		\
2758 "argp", "flags", "fpsr", "dirflag", "frame",				\
2759 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7",		\
2760 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7"	,		\
2761 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",			\
2762 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
2763
2764#define REGISTER_NAMES HI_REGISTER_NAMES
2765
2766/* Table of additional register names to use in user input.  */
2767
2768#define ADDITIONAL_REGISTER_NAMES \
2769{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 },	\
2770  { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 },	\
2771  { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 },	\
2772  { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 },	\
2773  { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 },		\
2774  { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 },		\
2775  { "mm0", 8},  { "mm1", 9},  { "mm2", 10}, { "mm3", 11},	\
2776  { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
2777
2778/* Note we are omitting these since currently I don't know how
2779to get gcc to use these, since they want the same but different
2780number as al, and ax.
2781*/
2782
2783#define QI_REGISTER_NAMES \
2784{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2785
2786/* These parallel the array above, and can be used to access bits 8:15
2787   of regs 0 through 3.  */
2788
2789#define QI_HIGH_REGISTER_NAMES \
2790{"ah", "dh", "ch", "bh", }
2791
2792/* How to renumber registers for dbx and gdb.  */
2793
2794#define DBX_REGISTER_NUMBER(N) \
2795  (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2796
2797extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2798extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2799extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2800
2801/* Before the prologue, RA is at 0(%esp).  */
2802#define INCOMING_RETURN_ADDR_RTX \
2803  gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2804
2805/* After the prologue, RA is at -4(AP) in the current frame.  */
2806#define RETURN_ADDR_RTX(COUNT, FRAME)					   \
2807  ((COUNT) == 0								   \
2808   ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2809   : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2810
2811/* PC is dbx register 8; let's use that column for RA.  */
2812#define DWARF_FRAME_RETURN_COLUMN 	(TARGET_64BIT ? 16 : 8)
2813
2814/* Before the prologue, the top of the frame is at 4(%esp).  */
2815#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2816
2817/* Describe how we implement __builtin_eh_return.  */
2818#define EH_RETURN_DATA_REGNO(N)	((N) < 2 ? (N) : INVALID_REGNUM)
2819#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 2)
2820
2821
2822/* Select a format to encode pointers in exception handling data.  CODE
2823   is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
2824   true if the symbol may be affected by dynamic relocations.
2825
2826   ??? All x86 object file formats are capable of representing this.
2827   After all, the relocation needed is the same as for the call insn.
2828   Whether or not a particular assembler allows us to enter such, I
2829   guess we'll have to see.  */
2830#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)       		\
2831  (flag_pic								\
2832    ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
2833   : DW_EH_PE_absptr)
2834
2835/* This is how to output an insn to push a register on the stack.
2836   It need not be very fast code.  */
2837
2838#define ASM_OUTPUT_REG_PUSH(FILE, REGNO)  \
2839do {									\
2840  if (TARGET_64BIT)							\
2841    asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n",				\
2842		 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));	\
2843  else									\
2844    asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]);	\
2845} while (0)
2846
2847/* This is how to output an insn to pop a register from the stack.
2848   It need not be very fast code.  */
2849
2850#define ASM_OUTPUT_REG_POP(FILE, REGNO)  \
2851do {									\
2852  if (TARGET_64BIT)							\
2853    asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n",				\
2854		 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));	\
2855  else									\
2856    asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]);	\
2857} while (0)
2858
2859/* This is how to output an element of a case-vector that is absolute.  */
2860
2861#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
2862  ix86_output_addr_vec_elt ((FILE), (VALUE))
2863
2864/* This is how to output an element of a case-vector that is relative.  */
2865
2866#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2867  ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2868
2869/* Under some conditions we need jump tables in the text section, because
2870   the assembler cannot handle label differences between sections.  */
2871
2872#define JUMP_TABLES_IN_TEXT_SECTION \
2873  (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
2874
2875/* A C statement that outputs an address constant appropriate to
2876   for DWARF debugging.  */
2877
2878#define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
2879  i386_dwarf_output_addr_const ((FILE), (X))
2880
2881/* Emit a dtp-relative reference to a TLS variable.  */
2882
2883#ifdef HAVE_AS_TLS
2884#define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
2885  i386_output_dwarf_dtprel (FILE, SIZE, X)
2886#endif
2887
2888/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2889   and switch back.  For x86 we do this only to save a few bytes that
2890   would otherwise be unused in the text section.  */
2891#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
2892   asm (SECTION_OP "\n\t"				\
2893	"call " USER_LABEL_PREFIX #FUNC "\n"		\
2894	TEXT_SECTION_ASM_OP);
2895
2896/* Print operand X (an rtx) in assembler syntax to file FILE.
2897   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2898   Effect of various CODE letters is described in i386.c near
2899   print_operand function.  */
2900
2901#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2902  ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
2903
2904#define PRINT_OPERAND(FILE, X, CODE)  \
2905  print_operand ((FILE), (X), (CODE))
2906
2907#define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
2908  print_operand_address ((FILE), (ADDR))
2909
2910#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL)	\
2911do {						\
2912  if (! output_addr_const_extra (FILE, (X)))	\
2913    goto FAIL;					\
2914} while (0);
2915
2916/* a letter which is not needed by the normal asm syntax, which
2917   we can use for operand syntax in the extended asm */
2918
2919#define ASM_OPERAND_LETTER '#'
2920#define RET return ""
2921#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
2922
2923/* Define the codes that are matched by predicates in i386.c.  */
2924
2925#define PREDICATE_CODES							\
2926  {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG,			\
2927				SYMBOL_REF, LABEL_REF, CONST}},		\
2928  {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG,			\
2929				SYMBOL_REF, LABEL_REF, CONST}},		\
2930  {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG,			\
2931				SYMBOL_REF, LABEL_REF, CONST}},		\
2932  {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG,		\
2933				     SYMBOL_REF, LABEL_REF, CONST}},	\
2934  {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM,		\
2935			      SYMBOL_REF, LABEL_REF, CONST}},		\
2936  {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM,	\
2937				   SYMBOL_REF, LABEL_REF, CONST}},	\
2938  {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST,	\
2939				       SYMBOL_REF, LABEL_REF}},		\
2940  {"shiftdi_operand", {SUBREG, REG, MEM}},				\
2941  {"const_int_1_31_operand", {CONST_INT}},				\
2942  {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}},			\
2943  {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,	\
2944		       LABEL_REF, SUBREG, REG, MEM}},			\
2945  {"pic_symbolic_operand", {CONST}},					\
2946  {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}},		\
2947  {"sibcall_insn_operand", {REG, SUBREG, SYMBOL_REF}},			\
2948  {"constant_call_address_operand", {SYMBOL_REF, CONST}},		\
2949  {"const0_operand", {CONST_INT, CONST_DOUBLE}},			\
2950  {"const1_operand", {CONST_INT}},					\
2951  {"const248_operand", {CONST_INT}},					\
2952  {"const_0_to_3_operand", {CONST_INT}},				\
2953  {"const_0_to_7_operand", {CONST_INT}},				\
2954  {"const_0_to_15_operand", {CONST_INT}},				\
2955  {"const_0_to_255_operand", {CONST_INT}},				\
2956  {"incdec_operand", {CONST_INT}},					\
2957  {"mmx_reg_operand", {REG}},						\
2958  {"reg_no_sp_operand", {SUBREG, REG}},					\
2959  {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST,		\
2960			SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}},	\
2961  {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}},		\
2962  {"index_register_operand", {SUBREG, REG}},				\
2963  {"flags_reg_operand", {REG}},						\
2964  {"q_regs_operand", {SUBREG, REG}},					\
2965  {"non_q_regs_operand", {SUBREG, REG}},				\
2966  {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
2967				 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE,	\
2968				 GE, UNGE, LTGT, UNEQ}},		\
2969  {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT,	\
2970			       ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT	\
2971			       }},					\
2972  {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU,	\
2973			       GTU, UNORDERED, ORDERED, UNLE, UNLT,	\
2974			       UNGE, UNGT, LTGT, UNEQ }},		\
2975  {"ix86_carry_flag_operator", {LTU, LT, UNLT, GT, UNGT, LE, UNLE,	\
2976				 GE, UNGE, LTGT, UNEQ}},		\
2977  {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}},	\
2978  {"ext_register_operand", {SUBREG, REG}},				\
2979  {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}},			\
2980  {"mult_operator", {MULT}},						\
2981  {"div_operator", {DIV}},						\
2982  {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
2983				 UMIN, UMAX, COMPARE, MINUS, DIV, MOD,	\
2984				 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT,	\
2985				 LSHIFTRT, ROTATERT}},			\
2986  {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}},	\
2987  {"memory_displacement_operand", {MEM}},				\
2988  {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,	\
2989		     LABEL_REF, SUBREG, REG, MEM, AND}},		\
2990  {"long_memory_operand", {MEM}},					\
2991  {"tls_symbolic_operand", {SYMBOL_REF}},				\
2992  {"global_dynamic_symbolic_operand", {SYMBOL_REF}},			\
2993  {"local_dynamic_symbolic_operand", {SYMBOL_REF}},			\
2994  {"initial_exec_symbolic_operand", {SYMBOL_REF}},			\
2995  {"local_exec_symbolic_operand", {SYMBOL_REF}},			\
2996  {"any_fp_register_operand", {REG}},					\
2997  {"register_and_not_any_fp_reg_operand", {REG}},			\
2998  {"fp_register_operand", {REG}},					\
2999  {"register_and_not_fp_reg_operand", {REG}},				\
3000  {"zero_extended_scalar_load_operand", {MEM}},				\
3001  {"vector_move_operand", {CONST_VECTOR, SUBREG, REG, MEM}},		\
3002  {"no_seg_address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
3003			      LABEL_REF, SUBREG, REG, MEM, PLUS, MULT}}, \
3004  {"compare_operator", {COMPARE}},
3005
3006/* A list of predicates that do special things with modes, and so
3007   should not elicit warnings for VOIDmode match_operand.  */
3008
3009#define SPECIAL_MODE_PREDICATES \
3010  "ext_register_operand",
3011
3012/* Which processor to schedule for. The cpu attribute defines a list that
3013   mirrors this list, so changes to i386.md must be made at the same time.  */
3014
3015enum processor_type
3016{
3017  PROCESSOR_I386,			/* 80386 */
3018  PROCESSOR_I486,			/* 80486DX, 80486SX, 80486DX[24] */
3019  PROCESSOR_PENTIUM,
3020  PROCESSOR_PENTIUMPRO,
3021  PROCESSOR_K6,
3022  PROCESSOR_ATHLON,
3023  PROCESSOR_PENTIUM4,
3024  PROCESSOR_K8,
3025  PROCESSOR_max
3026};
3027
3028extern enum processor_type ix86_tune;
3029extern const char *ix86_tune_string;
3030
3031extern enum processor_type ix86_arch;
3032extern const char *ix86_arch_string;
3033
3034enum fpmath_unit
3035{
3036  FPMATH_387 = 1,
3037  FPMATH_SSE = 2
3038};
3039
3040extern enum fpmath_unit ix86_fpmath;
3041extern const char *ix86_fpmath_string;
3042
3043enum tls_dialect
3044{
3045  TLS_DIALECT_GNU,
3046  TLS_DIALECT_SUN
3047};
3048
3049extern enum tls_dialect ix86_tls_dialect;
3050extern const char *ix86_tls_dialect_string;
3051
3052enum cmodel {
3053  CM_32,	/* The traditional 32-bit ABI.  */
3054  CM_SMALL,	/* Assumes all code and data fits in the low 31 bits.  */
3055  CM_KERNEL,	/* Assumes all code and data fits in the high 31 bits.  */
3056  CM_MEDIUM,	/* Assumes code fits in the low 31 bits; data unlimited.  */
3057  CM_LARGE,	/* No assumptions.  */
3058  CM_SMALL_PIC	/* Assumes code+data+got/plt fits in a 31 bit region.  */
3059};
3060
3061extern enum cmodel ix86_cmodel;
3062extern const char *ix86_cmodel_string;
3063
3064/* Size of the RED_ZONE area.  */
3065#define RED_ZONE_SIZE 128
3066/* Reserved area of the red zone for temporaries.  */
3067#define RED_ZONE_RESERVE 8
3068
3069enum asm_dialect {
3070  ASM_ATT,
3071  ASM_INTEL
3072};
3073
3074extern const char *ix86_asm_string;
3075extern enum asm_dialect ix86_asm_dialect;
3076
3077extern int ix86_regparm;
3078extern const char *ix86_regparm_string;
3079
3080extern int ix86_preferred_stack_boundary;
3081extern const char *ix86_preferred_stack_boundary_string;
3082
3083extern int ix86_branch_cost;
3084extern const char *ix86_branch_cost_string;
3085
3086extern const char *ix86_debug_arg_string;
3087extern const char *ix86_debug_addr_string;
3088
3089/* Obsoleted by -f options.  Remove before 3.2 ships.  */
3090extern const char *ix86_align_loops_string;
3091extern const char *ix86_align_jumps_string;
3092extern const char *ix86_align_funcs_string;
3093
3094/* Smallest class containing REGNO.  */
3095extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
3096
3097extern rtx ix86_compare_op0;	/* operand 0 for comparisons */
3098extern rtx ix86_compare_op1;	/* operand 1 for comparisons */
3099
3100/* To properly truncate FP values into integers, we need to set i387 control
3101   word.  We can't emit proper mode switching code before reload, as spills
3102   generated by reload may truncate values incorrectly, but we still can avoid
3103   redundant computation of new control word by the mode switching pass.
3104   The fldcw instructions are still emitted redundantly, but this is probably
3105   not going to be noticeable problem, as most CPUs do have fast path for
3106   the sequence.
3107
3108   The machinery is to emit simple truncation instructions and split them
3109   before reload to instructions having USEs of two memory locations that
3110   are filled by this code to old and new control word.
3111
3112   Post-reload pass may be later used to eliminate the redundant fildcw if
3113   needed.  */
3114
3115enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
3116
3117/* Define this macro if the port needs extra instructions inserted
3118   for mode switching in an optimizing compilation.  */
3119
3120#define OPTIMIZE_MODE_SWITCHING(ENTITY) ix86_optimize_mode_switching
3121
3122/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
3123   initializer for an array of integers.  Each initializer element N
3124   refers to an entity that needs mode switching, and specifies the
3125   number of different modes that might need to be set for this
3126   entity.  The position of the initializer in the initializer -
3127   starting counting at zero - determines the integer that is used to
3128   refer to the mode-switched entity in question.  */
3129
3130#define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
3131
3132/* ENTITY is an integer specifying a mode-switched entity.  If
3133   `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
3134   return an integer value not larger than the corresponding element
3135   in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
3136   must be switched into prior to the execution of INSN.  */
3137
3138#define MODE_NEEDED(ENTITY, I)						\
3139  (GET_CODE (I) == CALL_INSN						\
3140   || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 	\
3141				|| GET_CODE (PATTERN (I)) == ASM_INPUT))\
3142   ? FP_CW_UNINITIALIZED						\
3143   : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP		\
3144   ? FP_CW_ANY								\
3145   : FP_CW_STORED)
3146
3147/* This macro specifies the order in which modes for ENTITY are
3148   processed.  0 is the highest priority.  */
3149
3150#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
3151
3152/* Generate one or more insns to set ENTITY to MODE.  HARD_REG_LIVE
3153   is the set of hard registers live at the point where the insn(s)
3154   are to be inserted.  */
3155
3156#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) 			\
3157  ((MODE) == FP_CW_STORED						\
3158   ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1),	\
3159				  assign_386_stack_local (HImode, 2)), 0\
3160   : 0)
3161
3162/* Avoid renaming of stack registers, as doing so in combination with
3163   scheduling just increases amount of live registers at time and in
3164   the turn amount of fxch instructions needed.
3165
3166   ??? Maybe Pentium chips benefits from renaming, someone can try....  */
3167
3168#define HARD_REGNO_RENAME_OK(SRC, TARGET)  \
3169   ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
3170
3171
3172#define DLL_IMPORT_EXPORT_PREFIX '#'
3173
3174#define FASTCALL_PREFIX '@'
3175
3176struct machine_function GTY(())
3177{
3178  struct stack_local_entry *stack_locals;
3179  const char *some_ld_name;
3180  int save_varrargs_registers;
3181  int accesses_prev_frame;
3182  int optimize_mode_switching;
3183  /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
3184     determine the style used.  */
3185  int use_fast_prologue_epilogue;
3186  /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
3187     for.  */
3188  int use_fast_prologue_epilogue_nregs;
3189};
3190
3191#define ix86_stack_locals (cfun->machine->stack_locals)
3192#define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
3193#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
3194
3195/* Control behavior of x86_file_start.  */
3196#define X86_FILE_START_VERSION_DIRECTIVE false
3197#define X86_FILE_START_FLTUSED false
3198
3199/*
3200Local variables:
3201version-control: t
3202End:
3203*/
3204