i386.h revision 132744
1/* Definitions of target machine for GCC for IA-32.
2   Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3   2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GCC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING.  If not, write to
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA.  */
21
22/* The purpose of this file is to define the characteristics of the i386,
23   independent of assembler syntax or operating system.
24
25   Three other files build on this one to describe a specific assembler syntax:
26   bsd386.h, att386.h, and sun386.h.
27
28   The actual tm.h file for a particular system should include
29   this file, and then the file for the appropriate assembler syntax.
30
31   Many macros that specify assembler syntax are omitted entirely from
32   this file because they really belong in the files for particular
33   assemblers.  These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34   ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35   that start with ASM_ or end in ASM_OP.  */
36
37/* Define the specific costs for a given cpu */
38
39struct processor_costs {
40  const int add;		/* cost of an add instruction */
41  const int lea;		/* cost of a lea instruction */
42  const int shift_var;		/* variable shift costs */
43  const int shift_const;	/* constant shift costs */
44  const int mult_init[5];	/* cost of starting a multiply
45				   in QImode, HImode, SImode, DImode, TImode*/
46  const int mult_bit;		/* cost of multiply per each bit set */
47  const int divide[5];		/* cost of a divide/mod
48				   in QImode, HImode, SImode, DImode, TImode*/
49  int movsx;			/* The cost of movsx operation.  */
50  int movzx;			/* The cost of movzx operation.  */
51  const int large_insn;		/* insns larger than this cost more */
52  const int move_ratio;		/* The threshold of number of scalar
53				   memory-to-memory move insns.  */
54  const int movzbl_load;	/* cost of loading using movzbl */
55  const int int_load[3];	/* cost of loading integer registers
56				   in QImode, HImode and SImode relative
57				   to reg-reg move (2).  */
58  const int int_store[3];	/* cost of storing integer register
59				   in QImode, HImode and SImode */
60  const int fp_move;		/* cost of reg,reg fld/fst */
61  const int fp_load[3];		/* cost of loading FP register
62				   in SFmode, DFmode and XFmode */
63  const int fp_store[3];	/* cost of storing FP register
64				   in SFmode, DFmode and XFmode */
65  const int mmx_move;		/* cost of moving MMX register.  */
66  const int mmx_load[2];	/* cost of loading MMX register
67				   in SImode and DImode */
68  const int mmx_store[2];	/* cost of storing MMX register
69				   in SImode and DImode */
70  const int sse_move;		/* cost of moving SSE register.  */
71  const int sse_load[3];	/* cost of loading SSE register
72				   in SImode, DImode and TImode*/
73  const int sse_store[3];	/* cost of storing SSE register
74				   in SImode, DImode and TImode*/
75  const int mmxsse_to_integer;	/* cost of moving mmxsse register to
76				   integer and vice versa.  */
77  const int prefetch_block;	/* bytes moved to cache for prefetch.  */
78  const int simultaneous_prefetches; /* number of parallel prefetch
79				   operations.  */
80  const int branch_cost;	/* Default value for BRANCH_COST.  */
81  const int fadd;		/* cost of FADD and FSUB instructions.  */
82  const int fmul;		/* cost of FMUL instruction.  */
83  const int fdiv;		/* cost of FDIV instruction.  */
84  const int fabs;		/* cost of FABS instruction.  */
85  const int fchs;		/* cost of FCHS instruction.  */
86  const int fsqrt;		/* cost of FSQRT instruction.  */
87};
88
89extern const struct processor_costs *ix86_cost;
90
91/* Run-time compilation parameters selecting different hardware subsets.  */
92
93extern int target_flags;
94
95/* Macros used in the machine description to test the flags.  */
96
97/* configure can arrange to make this 2, to force a 486.  */
98
99#ifndef TARGET_CPU_DEFAULT
100#ifdef TARGET_64BIT_DEFAULT
101#define TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT_k8
102#else
103#define TARGET_CPU_DEFAULT 0
104#endif
105#endif
106
107/* Masks for the -m switches */
108#define MASK_80387		0x00000001	/* Hardware floating point */
109#define MASK_RTD		0x00000002	/* Use ret that pops args */
110#define MASK_ALIGN_DOUBLE	0x00000004	/* align doubles to 2 word boundary */
111#define MASK_SVR3_SHLIB		0x00000008	/* Uninit locals into bss */
112#define MASK_IEEE_FP		0x00000010	/* IEEE fp comparisons */
113#define MASK_FLOAT_RETURNS	0x00000020	/* Return float in st(0) */
114#define MASK_NO_FANCY_MATH_387	0x00000040	/* Disable sin, cos, sqrt */
115#define MASK_OMIT_LEAF_FRAME_POINTER 0x080      /* omit leaf frame pointers */
116#define MASK_STACK_PROBE	0x00000100	/* Enable stack probing */
117#define MASK_NO_ALIGN_STROPS	0x00000200	/* Enable aligning of string ops.  */
118#define MASK_INLINE_ALL_STROPS	0x00000400	/* Inline stringops in all cases */
119#define MASK_NO_PUSH_ARGS	0x00000800	/* Use push instructions */
120#define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
121#define MASK_MMX		0x00002000	/* Support MMX regs/builtins */
122#define MASK_SSE		0x00004000	/* Support SSE regs/builtins */
123#define MASK_SSE2		0x00008000	/* Support SSE2 regs/builtins */
124#define MASK_SSE3		0x00010000	/* Support SSE3 regs/builtins */
125#define MASK_3DNOW		0x00020000	/* Support 3Dnow builtins */
126#define MASK_3DNOW_A		0x00040000	/* Support Athlon 3Dnow builtins */
127#define MASK_128BIT_LONG_DOUBLE 0x00080000	/* long double size is 128bit */
128#define MASK_64BIT		0x00100000	/* Produce 64bit code */
129#define MASK_MS_BITFIELD_LAYOUT 0x00200000	/* Use native (MS) bitfield layout */
130#define MASK_TLS_DIRECT_SEG_REFS 0x00400000	/* Avoid adding %gs:0  */
131
132/* Unused:			0x03e0000	*/
133
134/* ... overlap with subtarget options starts by 0x04000000.  */
135#define MASK_NO_RED_ZONE	0x04000000	/* Do not use red zone */
136#define MASK_NO_ALIGN_LONG_STRINGS 0x08000000	/* Do not align long strings specially */
137
138/* Use the floating point instructions */
139#define TARGET_80387 (target_flags & MASK_80387)
140
141/* Compile using ret insn that pops args.
142   This will not work unless you use prototypes at least
143   for all functions that can take varying numbers of args.  */
144#define TARGET_RTD (target_flags & MASK_RTD)
145
146/* Align doubles to a two word boundary.  This breaks compatibility with
147   the published ABI's for structures containing doubles, but produces
148   faster code on the pentium.  */
149#define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
150
151/* Use push instructions to save outgoing args.  */
152#define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
153
154/* Accumulate stack adjustments to prologue/epilogue.  */
155#define TARGET_ACCUMULATE_OUTGOING_ARGS \
156 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
157
158/* Put uninitialized locals into bss, not data.
159   Meaningful only on svr3.  */
160#define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
161
162/* Use IEEE floating point comparisons.  These handle correctly the cases
163   where the result of a comparison is unordered.  Normally SIGFPE is
164   generated in such cases, in which case this isn't needed.  */
165#define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
166
167/* Functions that return a floating point value may return that value
168   in the 387 FPU or in 386 integer registers.  If set, this flag causes
169   the 387 to be used, which is compatible with most calling conventions.  */
170#define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
171
172/* Long double is 128bit instead of 96bit, even when only 80bits are used.
173   This mode wastes cache, but avoid misaligned data accesses and simplifies
174   address calculations.  */
175#define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
176
177/* Disable generation of FP sin, cos and sqrt operations for 387.
178   This is because FreeBSD lacks these in the math-emulator-code */
179#define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
180
181/* Don't create frame pointers for leaf functions */
182#define TARGET_OMIT_LEAF_FRAME_POINTER \
183  (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
184
185/* Debug GO_IF_LEGITIMATE_ADDRESS */
186#define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
187
188/* Debug FUNCTION_ARG macros */
189#define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
190
191/* 64bit Sledgehammer mode.  For libgcc2 we make sure this is a
192   compile-time constant.  */
193#ifdef IN_LIBGCC2
194#ifdef __x86_64__
195#define TARGET_64BIT 1
196#else
197#define TARGET_64BIT 0
198#endif
199#else
200#ifdef TARGET_BI_ARCH
201#define TARGET_64BIT (target_flags & MASK_64BIT)
202#else
203#if TARGET_64BIT_DEFAULT
204#define TARGET_64BIT 1
205#else
206#define TARGET_64BIT 0
207#endif
208#endif
209#endif
210
211/* Avoid adding %gs:0 in TLS references; use %gs:address directly.  */
212#define TARGET_TLS_DIRECT_SEG_REFS (target_flags & MASK_TLS_DIRECT_SEG_REFS)
213
214#define TARGET_386 (ix86_tune == PROCESSOR_I386)
215#define TARGET_486 (ix86_tune == PROCESSOR_I486)
216#define TARGET_PENTIUM (ix86_tune == PROCESSOR_PENTIUM)
217#define TARGET_PENTIUMPRO (ix86_tune == PROCESSOR_PENTIUMPRO)
218#define TARGET_K6 (ix86_tune == PROCESSOR_K6)
219#define TARGET_ATHLON (ix86_tune == PROCESSOR_ATHLON)
220#define TARGET_PENTIUM4 (ix86_tune == PROCESSOR_PENTIUM4)
221#define TARGET_K8 (ix86_tune == PROCESSOR_K8)
222#define TARGET_ATHLON_K8 (TARGET_K8 || TARGET_ATHLON)
223
224#define TUNEMASK (1 << ix86_tune)
225extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
226extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
227extern const int x86_branch_hints, x86_unroll_strlen;
228extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
229extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
230extern const int x86_use_cltd, x86_read_modify_write;
231extern const int x86_read_modify, x86_split_long_moves;
232extern const int x86_promote_QImode, x86_single_stringop, x86_fast_prefix;
233extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
234extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
235extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
236extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
237extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
238extern const int x86_epilogue_using_move, x86_decompose_lea;
239extern const int x86_arch_always_fancy_math_387, x86_shift1;
240extern const int x86_sse_partial_reg_dependency, x86_sse_partial_regs;
241extern const int x86_sse_typeless_stores, x86_sse_load0_by_pxor;
242extern const int x86_use_ffreep, x86_sse_partial_regs_for_cvtsd2ss;
243extern const int x86_inter_unit_moves;
244extern int x86_prefetch_sse;
245
246#define TARGET_USE_LEAVE (x86_use_leave & TUNEMASK)
247#define TARGET_PUSH_MEMORY (x86_push_memory & TUNEMASK)
248#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & TUNEMASK)
249#define TARGET_USE_BIT_TEST (x86_use_bit_test & TUNEMASK)
250#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & TUNEMASK)
251/* For sane SSE instruction set generation we need fcomi instruction.  It is
252   safe to enable all CMOVE instructions.  */
253#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
254#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & TUNEMASK)
255#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & TUNEMASK)
256#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & TUNEMASK)
257#define TARGET_USE_SAHF ((x86_use_sahf & TUNEMASK) && !TARGET_64BIT)
258#define TARGET_MOVX (x86_movx & TUNEMASK)
259#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & TUNEMASK)
260#define TARGET_USE_LOOP (x86_use_loop & TUNEMASK)
261#define TARGET_USE_FIOP (x86_use_fiop & TUNEMASK)
262#define TARGET_USE_MOV0 (x86_use_mov0 & TUNEMASK)
263#define TARGET_USE_CLTD (x86_use_cltd & TUNEMASK)
264#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & TUNEMASK)
265#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & TUNEMASK)
266#define TARGET_READ_MODIFY (x86_read_modify & TUNEMASK)
267#define TARGET_PROMOTE_QImode (x86_promote_QImode & TUNEMASK)
268#define TARGET_FAST_PREFIX (x86_fast_prefix & TUNEMASK)
269#define TARGET_SINGLE_STRINGOP (x86_single_stringop & TUNEMASK)
270#define TARGET_QIMODE_MATH (x86_qimode_math & TUNEMASK)
271#define TARGET_HIMODE_MATH (x86_himode_math & TUNEMASK)
272#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & TUNEMASK)
273#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & TUNEMASK)
274#define TARGET_ADD_ESP_4 (x86_add_esp_4 & TUNEMASK)
275#define TARGET_ADD_ESP_8 (x86_add_esp_8 & TUNEMASK)
276#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & TUNEMASK)
277#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & TUNEMASK)
278#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & TUNEMASK)
279#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & TUNEMASK)
280#define TARGET_SSE_PARTIAL_REG_DEPENDENCY \
281				      (x86_sse_partial_reg_dependency & TUNEMASK)
282#define TARGET_SSE_PARTIAL_REGS (x86_sse_partial_regs & TUNEMASK)
283#define TARGET_SSE_PARTIAL_REGS_FOR_CVTSD2SS \
284				(x86_sse_partial_regs_for_cvtsd2ss & TUNEMASK)
285#define TARGET_SSE_TYPELESS_STORES (x86_sse_typeless_stores & TUNEMASK)
286#define TARGET_SSE_TYPELESS_LOAD0 (x86_sse_typeless_load0 & TUNEMASK)
287#define TARGET_SSE_LOAD0_BY_PXOR (x86_sse_load0_by_pxor & TUNEMASK)
288#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & TUNEMASK)
289#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & TUNEMASK)
290#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & TUNEMASK)
291#define TARGET_DECOMPOSE_LEA (x86_decompose_lea & TUNEMASK)
292#define TARGET_PREFETCH_SSE (x86_prefetch_sse)
293#define TARGET_SHIFT1 (x86_shift1 & TUNEMASK)
294#define TARGET_USE_FFREEP (x86_use_ffreep & TUNEMASK)
295#define TARGET_REP_MOVL_OPTIMAL (x86_rep_movl_optimal & TUNEMASK)
296#define TARGET_INTER_UNIT_MOVES (x86_inter_unit_moves & TUNEMASK)
297
298#define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
299
300#define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
301#define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
302
303#define ASSEMBLER_DIALECT (ix86_asm_dialect)
304
305#define TARGET_SSE ((target_flags & MASK_SSE) != 0)
306#define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
307#define TARGET_SSE3 ((target_flags & MASK_SSE3) != 0)
308#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
309#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
310			     && (ix86_fpmath & FPMATH_387))
311#define TARGET_MMX ((target_flags & MASK_MMX) != 0)
312#define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
313#define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
314
315#define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
316
317#define TARGET_NO_ALIGN_LONG_STRINGS (target_flags & MASK_NO_ALIGN_LONG_STRINGS)
318
319#define TARGET_USE_MS_BITFIELD_LAYOUT  (target_flags & MASK_MS_BITFIELD_LAYOUT)
320
321#define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
322#define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
323
324/* WARNING: Do not mark empty strings for translation, as calling
325            gettext on an empty string does NOT return an empty
326            string.  */
327
328
329#define TARGET_SWITCHES							      \
330{ { "80387",			 MASK_80387, N_("Use hardware fp") },	      \
331  { "no-80387",			-MASK_80387, N_("Do not use hardware fp") },  \
332  { "hard-float",		 MASK_80387, N_("Use hardware fp") },	      \
333  { "soft-float",		-MASK_80387, N_("Do not use hardware fp") },  \
334  { "no-soft-float",		 MASK_80387, N_("Use hardware fp") },	      \
335  { "386",			 0, "" /*Deprecated.*/},		      \
336  { "486",			 0, "" /*Deprecated.*/},		      \
337  { "pentium",			 0, "" /*Deprecated.*/},		      \
338  { "pentiumpro",		 0, "" /*Deprecated.*/},		      \
339  { "pni",			 0, "" /*Deprecated.*/},		      \
340  { "no-pni",			 0, "" /*Deprecated.*/},		      \
341  { "intel-syntax",		 0, "" /*Deprecated.*/},	 	      \
342  { "no-intel-syntax",		 0, "" /*Deprecated.*/},	 	      \
343  { "rtd",			 MASK_RTD,				      \
344    N_("Alternate calling convention") },				      \
345  { "no-rtd",			-MASK_RTD,				      \
346    N_("Use normal calling convention") },				      \
347  { "align-double",		 MASK_ALIGN_DOUBLE,			      \
348    N_("Align some doubles on dword boundary") },			      \
349  { "no-align-double",		-MASK_ALIGN_DOUBLE,			      \
350    N_("Align doubles on word boundary") },				      \
351  { "svr3-shlib",		 MASK_SVR3_SHLIB,			      \
352    N_("Uninitialized locals in .bss")  },				      \
353  { "no-svr3-shlib",		-MASK_SVR3_SHLIB,			      \
354    N_("Uninitialized locals in .data") },				      \
355  { "ieee-fp",			 MASK_IEEE_FP,				      \
356    N_("Use IEEE math for fp comparisons") },				      \
357  { "no-ieee-fp",		-MASK_IEEE_FP,				      \
358    N_("Do not use IEEE math for fp comparisons") },			      \
359  { "fp-ret-in-387",		 MASK_FLOAT_RETURNS,			      \
360    N_("Return values of functions in FPU registers") },		      \
361  { "no-fp-ret-in-387",		-MASK_FLOAT_RETURNS ,			      \
362    N_("Do not return values of functions in FPU registers")},		      \
363  { "no-fancy-math-387",	 MASK_NO_FANCY_MATH_387,		      \
364    N_("Do not generate sin, cos, sqrt for FPU") },			      \
365  { "fancy-math-387",		-MASK_NO_FANCY_MATH_387,		      \
366     N_("Generate sin, cos, sqrt for FPU")},				      \
367  { "omit-leaf-frame-pointer",	 MASK_OMIT_LEAF_FRAME_POINTER,		      \
368    N_("Omit the frame pointer in leaf functions") },			      \
369  { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" },	      \
370  { "stack-arg-probe",		 MASK_STACK_PROBE,			      \
371    N_("Enable stack probing") },					      \
372  { "no-stack-arg-probe",	-MASK_STACK_PROBE, "" },		      \
373  { "windows",			0, 0 /* undocumented */ },		      \
374  { "dll",			0,  0 /* undocumented */ },		      \
375  { "align-stringops",		-MASK_NO_ALIGN_STROPS,			      \
376    N_("Align destination of the string operations") },			      \
377  { "no-align-stringops",	 MASK_NO_ALIGN_STROPS,			      \
378    N_("Do not align destination of the string operations") },		      \
379  { "inline-all-stringops",	 MASK_INLINE_ALL_STROPS,		      \
380    N_("Inline all known string operations") },				      \
381  { "no-inline-all-stringops",	-MASK_INLINE_ALL_STROPS,		      \
382    N_("Do not inline all known string operations") },			      \
383  { "push-args",		-MASK_NO_PUSH_ARGS,			      \
384    N_("Use push instructions to save outgoing arguments") },		      \
385  { "no-push-args",		MASK_NO_PUSH_ARGS,			      \
386    N_("Do not use push instructions to save outgoing arguments") },	      \
387  { "accumulate-outgoing-args",	MASK_ACCUMULATE_OUTGOING_ARGS,		      \
388    N_("Use push instructions to save outgoing arguments") },		      \
389  { "no-accumulate-outgoing-args",-MASK_ACCUMULATE_OUTGOING_ARGS,	      \
390    N_("Do not use push instructions to save outgoing arguments") },	      \
391  { "mmx",			 MASK_MMX,				      \
392    N_("Support MMX built-in functions") },				      \
393  { "no-mmx",			 -MASK_MMX,				      \
394    N_("Do not support MMX built-in functions") },			      \
395  { "3dnow",                     MASK_3DNOW,				      \
396    N_("Support 3DNow! built-in functions") },				      \
397  { "no-3dnow",                  -MASK_3DNOW,				      \
398    N_("Do not support 3DNow! built-in functions") },			      \
399  { "sse",			 MASK_SSE,				      \
400    N_("Support MMX and SSE built-in functions and code generation") },	      \
401  { "no-sse",			 -MASK_SSE,				      \
402    N_("Do not support MMX and SSE built-in functions and code generation") },\
403  { "sse2",			 MASK_SSE2,				      \
404    N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
405  { "no-sse2",			 -MASK_SSE2,				      \
406    N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") },    \
407  { "sse3",			 MASK_SSE3,				      \
408    N_("Support MMX, SSE, SSE2 and SSE3 built-in functions and code generation") },\
409  { "no-sse3",			 -MASK_SSE3,				      \
410    N_("Do not support MMX, SSE, SSE2 and SSE3 built-in functions and code generation") },\
411  { "128bit-long-double",	 MASK_128BIT_LONG_DOUBLE,		      \
412    N_("sizeof(long double) is 16") },					      \
413  { "96bit-long-double",	-MASK_128BIT_LONG_DOUBLE,		      \
414    N_("sizeof(long double) is 12") },					      \
415  { "64",			MASK_64BIT,				      \
416    N_("Generate 64bit x86-64 code") },					      \
417  { "32",			-MASK_64BIT,				      \
418    N_("Generate 32bit i386 code") },					      \
419  { "ms-bitfields",		MASK_MS_BITFIELD_LAYOUT,		      \
420    N_("Use native (MS) bitfield layout") },				      \
421  { "no-ms-bitfields",		-MASK_MS_BITFIELD_LAYOUT,		      \
422    N_("Use gcc default bitfield layout") },				      \
423  { "red-zone",			-MASK_NO_RED_ZONE,			      \
424    N_("Use red-zone in the x86-64 code") },				      \
425  { "no-red-zone",		MASK_NO_RED_ZONE,			      \
426    N_("Do not use red-zone in the x86-64 code") },			      \
427  { "no-align-long-strings",	 MASK_NO_ALIGN_LONG_STRINGS,		      \
428    N_("Do not align long strings specially") },			      \
429  { "align-long-strings",	-MASK_NO_ALIGN_LONG_STRINGS,		      \
430    N_("Align strings longer than 30 on a 32-byte boundary") },		      \
431  { "tls-direct-seg-refs",	MASK_TLS_DIRECT_SEG_REFS,		      \
432    N_("Use direct references against %gs when accessing tls data") },	      \
433  { "no-tls-direct-seg-refs",	-MASK_TLS_DIRECT_SEG_REFS,		      \
434    N_("Do not use direct references against %gs when accessing tls data") }, \
435  SUBTARGET_SWITCHES							      \
436  { "",									      \
437    TARGET_DEFAULT | TARGET_64BIT_DEFAULT | TARGET_SUBTARGET_DEFAULT	      \
438    | TARGET_TLS_DIRECT_SEG_REFS_DEFAULT, 0 }}
439
440#ifndef TARGET_64BIT_DEFAULT
441#define TARGET_64BIT_DEFAULT 0
442#endif
443#ifndef TARGET_TLS_DIRECT_SEG_REFS_DEFAULT
444#define TARGET_TLS_DIRECT_SEG_REFS_DEFAULT 0
445#endif
446
447/* Once GDB has been enhanced to deal with functions without frame
448   pointers, we can change this to allow for elimination of
449   the frame pointer in leaf functions.  */
450#define TARGET_DEFAULT 0
451
452/* This is not really a target flag, but is done this way so that
453   it's analogous to similar code for Mach-O on PowerPC.  darwin.h
454   redefines this to 1.  */
455#define TARGET_MACHO 0
456
457/* This macro is similar to `TARGET_SWITCHES' but defines names of
458   command options that have values.  Its definition is an
459   initializer with a subgrouping for each command option.
460
461   Each subgrouping contains a string constant, that defines the
462   fixed part of the option name, and the address of a variable.  The
463   variable, type `char *', is set to the variable part of the given
464   option if the fixed part matches.  The actual option name is made
465   by appending `-m' to the specified name.  */
466#define TARGET_OPTIONS						\
467{ { "tune=",		&ix86_tune_string,			\
468    N_("Schedule code for given CPU"), 0},			\
469  { "fpmath=",		&ix86_fpmath_string,			\
470    N_("Generate floating point mathematics using given instruction set"), 0},\
471  { "arch=",		&ix86_arch_string,			\
472    N_("Generate code for given CPU"), 0},			\
473  { "regparm=",		&ix86_regparm_string,			\
474    N_("Number of registers used to pass integer arguments"), 0},\
475  { "align-loops=",	&ix86_align_loops_string,		\
476    N_("Loop code aligned to this power of 2"), 0},		\
477  { "align-jumps=",	&ix86_align_jumps_string,		\
478    N_("Jump targets are aligned to this power of 2"), 0},	\
479  { "align-functions=",	&ix86_align_funcs_string,		\
480    N_("Function starts are aligned to this power of 2"), 0},	\
481  { "preferred-stack-boundary=",				\
482    &ix86_preferred_stack_boundary_string,			\
483    N_("Attempt to keep stack aligned to this power of 2"), 0},	\
484  { "branch-cost=",	&ix86_branch_cost_string,		\
485    N_("Branches are this expensive (1-5, arbitrary units)"), 0},\
486  { "cmodel=", &ix86_cmodel_string,				\
487    N_("Use given x86-64 code model"), 0},			\
488  { "debug-arg", &ix86_debug_arg_string,			\
489    "" /* Undocumented.  */, 0},				\
490  { "debug-addr", &ix86_debug_addr_string,			\
491    "" /* Undocumented.  */, 0},				\
492  { "asm=", &ix86_asm_string,					\
493    N_("Use given assembler dialect"), 0},			\
494  { "tls-dialect=", &ix86_tls_dialect_string,			\
495    N_("Use given thread-local storage dialect"), 0},		\
496  SUBTARGET_OPTIONS						\
497}
498
499/* Sometimes certain combinations of command options do not make
500   sense on a particular target machine.  You can define a macro
501   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
502   defined, is executed once just after all the command options have
503   been parsed.
504
505   Don't use this macro to turn on various extra optimizations for
506   `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */
507
508#define OVERRIDE_OPTIONS override_options ()
509
510/* These are meant to be redefined in the host dependent files */
511#define SUBTARGET_SWITCHES
512#define SUBTARGET_OPTIONS
513
514/* Define this to change the optimizations performed by default.  */
515#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
516  optimization_options ((LEVEL), (SIZE))
517
518/* Support for configure-time defaults of some command line options.  */
519#define OPTION_DEFAULT_SPECS \
520  {"arch", "%{!march=*:-march=%(VALUE)}"}, \
521  {"tune", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }, \
522  {"cpu", "%{!mtune=*:%{!mcpu=*:%{!march=*:-mtune=%(VALUE)}}}" }
523
524/* Specs for the compiler proper */
525
526#ifndef CC1_CPU_SPEC
527#define CC1_CPU_SPEC "\
528%{!mtune*: \
529%{m386:mtune=i386 \
530%n`-m386' is deprecated. Use `-march=i386' or `-mtune=i386' instead.\n} \
531%{m486:-mtune=i486 \
532%n`-m486' is deprecated. Use `-march=i486' or `-mtune=i486' instead.\n} \
533%{mpentium:-mtune=pentium \
534%n`-mpentium' is deprecated. Use `-march=pentium' or `-mtune=pentium' instead.\n} \
535%{mpentiumpro:-mtune=pentiumpro \
536%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mtune=pentiumpro' instead.\n} \
537%{mcpu=*:-mtune=%* \
538%n`-mcpu=' is deprecated. Use `-mtune=' or '-march=' instead.\n}} \
539%<mcpu=* \
540%{mpni:-msse3 \
541%n`-mpni' is deprecated. Use `-msse3' instead.\n} \
542%{mno-pni:-mno-sse3 \
543%n`-mno-pni' is deprecated. Use `-mno-sse3' instead.\n} \
544%{mintel-syntax:-masm=intel \
545%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
546%{mno-intel-syntax:-masm=att \
547%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
548#endif
549
550/* Target CPU builtins.  */
551#define TARGET_CPU_CPP_BUILTINS()				\
552  do								\
553    {								\
554      size_t arch_len = strlen (ix86_arch_string);		\
555      size_t tune_len = strlen (ix86_tune_string);		\
556      int last_arch_char = ix86_arch_string[arch_len - 1];	\
557      int last_tune_char = ix86_tune_string[tune_len - 1];		\
558								\
559      if (TARGET_64BIT)						\
560	{							\
561	  builtin_assert ("cpu=x86_64");			\
562	  builtin_assert ("machine=x86_64");			\
563	  builtin_define ("__amd64");				\
564	  builtin_define ("__amd64__");				\
565	  builtin_define ("__x86_64");				\
566	  builtin_define ("__x86_64__");			\
567	}							\
568      else							\
569	{							\
570	  builtin_assert ("cpu=i386");				\
571	  builtin_assert ("machine=i386");			\
572	  builtin_define_std ("i386");				\
573	}							\
574								\
575      /* Built-ins based on -mtune= (or -march= if no		\
576	 -mtune= given).  */					\
577      if (TARGET_386)						\
578	builtin_define ("__tune_i386__");			\
579      else if (TARGET_486)					\
580	builtin_define ("__tune_i486__");			\
581      else if (TARGET_PENTIUM)					\
582	{							\
583	  builtin_define ("__tune_i586__");			\
584	  builtin_define ("__tune_pentium__");			\
585	  if (last_tune_char == 'x')				\
586	    builtin_define ("__tune_pentium_mmx__");		\
587	}							\
588      else if (TARGET_PENTIUMPRO)				\
589	{							\
590	  builtin_define ("__tune_i686__");			\
591	  builtin_define ("__tune_pentiumpro__");		\
592	  switch (last_tune_char)				\
593	    {							\
594	    case '3':						\
595	      builtin_define ("__tune_pentium3__");		\
596	      /* FALLTHRU */					\
597	    case '2':						\
598	      builtin_define ("__tune_pentium2__");		\
599	      break;						\
600	    }							\
601	}							\
602      else if (TARGET_K6)					\
603	{							\
604	  builtin_define ("__tune_k6__");			\
605	  if (last_tune_char == '2')				\
606	    builtin_define ("__tune_k6_2__");			\
607	  else if (last_tune_char == '3')			\
608	    builtin_define ("__tune_k6_3__");			\
609	}							\
610      else if (TARGET_ATHLON)					\
611	{							\
612	  builtin_define ("__tune_athlon__");			\
613	  /* Only plain "athlon" lacks SSE.  */			\
614	  if (last_tune_char != 'n')				\
615	    builtin_define ("__tune_athlon_sse__");		\
616	}							\
617      else if (TARGET_K8)					\
618	builtin_define ("__tune_k8__");				\
619      else if (TARGET_PENTIUM4)					\
620	builtin_define ("__tune_pentium4__");			\
621								\
622      if (TARGET_MMX)						\
623	builtin_define ("__MMX__");				\
624      if (TARGET_3DNOW)						\
625	builtin_define ("__3dNOW__");				\
626      if (TARGET_3DNOW_A)					\
627	builtin_define ("__3dNOW_A__");				\
628      if (TARGET_SSE)						\
629	builtin_define ("__SSE__");				\
630      if (TARGET_SSE2)						\
631	builtin_define ("__SSE2__");				\
632      if (TARGET_SSE3)						\
633	{							\
634	  builtin_define ("__SSE3__");				\
635	  builtin_define ("__PNI__");				\
636	}							\
637      if (TARGET_SSE_MATH && TARGET_SSE)			\
638	builtin_define ("__SSE_MATH__");			\
639      if (TARGET_SSE_MATH && TARGET_SSE2)			\
640	builtin_define ("__SSE2_MATH__");			\
641								\
642      /* Built-ins based on -march=.  */			\
643      if (ix86_arch == PROCESSOR_I486)				\
644	{							\
645	  builtin_define ("__i486");				\
646	  builtin_define ("__i486__");				\
647	}							\
648      else if (ix86_arch == PROCESSOR_PENTIUM)			\
649	{							\
650	  builtin_define ("__i586");				\
651	  builtin_define ("__i586__");				\
652	  builtin_define ("__pentium");				\
653	  builtin_define ("__pentium__");			\
654	  if (last_arch_char == 'x')				\
655	    builtin_define ("__pentium_mmx__");			\
656	}							\
657      else if (ix86_arch == PROCESSOR_PENTIUMPRO)		\
658	{							\
659	  builtin_define ("__i686");				\
660	  builtin_define ("__i686__");				\
661	  builtin_define ("__pentiumpro");			\
662	  builtin_define ("__pentiumpro__");			\
663	}							\
664      else if (ix86_arch == PROCESSOR_K6)			\
665	{							\
666								\
667	  builtin_define ("__k6");				\
668	  builtin_define ("__k6__");				\
669	  if (last_arch_char == '2')				\
670	    builtin_define ("__k6_2__");			\
671	  else if (last_arch_char == '3')			\
672	    builtin_define ("__k6_3__");			\
673	}							\
674      else if (ix86_arch == PROCESSOR_ATHLON)			\
675	{							\
676	  builtin_define ("__athlon");				\
677	  builtin_define ("__athlon__");			\
678	  /* Only plain "athlon" lacks SSE.  */			\
679	  if (last_arch_char != 'n')				\
680	    builtin_define ("__athlon_sse__");			\
681	}							\
682      else if (ix86_arch == PROCESSOR_K8)			\
683	{							\
684	  builtin_define ("__k8");				\
685	  builtin_define ("__k8__");				\
686	}							\
687      else if (ix86_arch == PROCESSOR_PENTIUM4)			\
688	{							\
689	  builtin_define ("__pentium4");			\
690	  builtin_define ("__pentium4__");			\
691	}							\
692    }								\
693  while (0)
694
695#define TARGET_CPU_DEFAULT_i386 0
696#define TARGET_CPU_DEFAULT_i486 1
697#define TARGET_CPU_DEFAULT_pentium 2
698#define TARGET_CPU_DEFAULT_pentium_mmx 3
699#define TARGET_CPU_DEFAULT_pentiumpro 4
700#define TARGET_CPU_DEFAULT_pentium2 5
701#define TARGET_CPU_DEFAULT_pentium3 6
702#define TARGET_CPU_DEFAULT_pentium4 7
703#define TARGET_CPU_DEFAULT_k6 8
704#define TARGET_CPU_DEFAULT_k6_2 9
705#define TARGET_CPU_DEFAULT_k6_3 10
706#define TARGET_CPU_DEFAULT_athlon 11
707#define TARGET_CPU_DEFAULT_athlon_sse 12
708#define TARGET_CPU_DEFAULT_k8 13
709#define TARGET_CPU_DEFAULT_pentium_m 14
710#define TARGET_CPU_DEFAULT_prescott 15
711#define TARGET_CPU_DEFAULT_nocona 16
712
713#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
714				  "pentiumpro", "pentium2", "pentium3", \
715				  "pentium4", "k6", "k6-2", "k6-3",\
716				  "athlon", "athlon-4", "k8", \
717				  "pentium-m", "prescott", "nocona"}
718
719#ifndef CC1_SPEC
720#define CC1_SPEC "%(cc1_cpu) "
721#endif
722
723/* This macro defines names of additional specifications to put in the
724   specs that can be used in various specifications like CC1_SPEC.  Its
725   definition is an initializer with a subgrouping for each command option.
726
727   Each subgrouping contains a string constant, that defines the
728   specification name, and a string constant that used by the GCC driver
729   program.
730
731   Do not define this macro if it does not need to do anything.  */
732
733#ifndef SUBTARGET_EXTRA_SPECS
734#define SUBTARGET_EXTRA_SPECS
735#endif
736
737#define EXTRA_SPECS							\
738  { "cc1_cpu",  CC1_CPU_SPEC },						\
739  SUBTARGET_EXTRA_SPECS
740
741/* target machine storage layout */
742
743#define LONG_DOUBLE_TYPE_SIZE 96
744
745/* Set the value of FLT_EVAL_METHOD in float.h.  When using only the
746   FPU, assume that the fpcw is set to extended precision; when using
747   only SSE, rounding is correct; when using both SSE and the FPU,
748   the rounding precision is indeterminate, since either may be chosen
749   apparently at random.  */
750#define TARGET_FLT_EVAL_METHOD \
751  (TARGET_MIX_SSE_I387 ? -1 : TARGET_SSE_MATH ? 0 : 2)
752
753#define SHORT_TYPE_SIZE 16
754#define INT_TYPE_SIZE 32
755#define FLOAT_TYPE_SIZE 32
756#ifndef LONG_TYPE_SIZE
757#define LONG_TYPE_SIZE BITS_PER_WORD
758#endif
759#define MAX_WCHAR_TYPE_SIZE 32
760#define DOUBLE_TYPE_SIZE 64
761#define LONG_LONG_TYPE_SIZE 64
762
763#if defined (TARGET_BI_ARCH) || TARGET_64BIT_DEFAULT
764#define MAX_BITS_PER_WORD 64
765#define MAX_LONG_TYPE_SIZE 64
766#else
767#define MAX_BITS_PER_WORD 32
768#define MAX_LONG_TYPE_SIZE 32
769#endif
770
771/* Define this if most significant byte of a word is the lowest numbered.  */
772/* That is true on the 80386.  */
773
774#define BITS_BIG_ENDIAN 0
775
776/* Define this if most significant byte of a word is the lowest numbered.  */
777/* That is not true on the 80386.  */
778#define BYTES_BIG_ENDIAN 0
779
780/* Define this if most significant word of a multiword number is the lowest
781   numbered.  */
782/* Not true for 80386 */
783#define WORDS_BIG_ENDIAN 0
784
785/* Width of a word, in units (bytes).  */
786#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
787#ifdef IN_LIBGCC2
788#define MIN_UNITS_PER_WORD	(TARGET_64BIT ? 8 : 4)
789#else
790#define MIN_UNITS_PER_WORD	4
791#endif
792
793/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
794#define PARM_BOUNDARY BITS_PER_WORD
795
796/* Boundary (in *bits*) on which stack pointer should be aligned.  */
797#define STACK_BOUNDARY BITS_PER_WORD
798
799/* Boundary (in *bits*) on which the stack pointer prefers to be
800   aligned; the compiler cannot rely on having this alignment.  */
801#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
802
803/* As of July 2001, many runtimes to not align the stack properly when
804   entering main.  This causes expand_main_function to forcibly align
805   the stack, which results in aligned frames for functions called from
806   main, though it does nothing for the alignment of main itself.  */
807#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
808  (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
809
810/* Minimum allocation boundary for the code of a function.  */
811#define FUNCTION_BOUNDARY 8
812
813/* C++ stores the virtual bit in the lowest bit of function pointers.  */
814#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
815
816/* Alignment of field after `int : 0' in a structure.  */
817
818#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
819
820/* Minimum size in bits of the largest boundary to which any
821   and all fundamental data types supported by the hardware
822   might need to be aligned. No data type wants to be aligned
823   rounder than this.
824
825   Pentium+ prefers DFmode values to be aligned to 64 bit boundary
826   and Pentium Pro XFmode values at 128 bit boundaries.  */
827
828#define BIGGEST_ALIGNMENT 128
829
830/* Decide whether a variable of mode MODE should be 128 bit aligned.  */
831#define ALIGN_MODE_128(MODE) \
832 ((MODE) == XFmode || (MODE) == TFmode || SSE_REG_MODE_P (MODE))
833
834/* The published ABIs say that doubles should be aligned on word
835   boundaries, so lower the alignment for structure fields unless
836   -malign-double is set.  */
837
838/* ??? Blah -- this macro is used directly by libobjc.  Since it
839   supports no vector modes, cut out the complexity and fall back
840   on BIGGEST_FIELD_ALIGNMENT.  */
841#ifdef IN_TARGET_LIBS
842#ifdef __x86_64__
843#define BIGGEST_FIELD_ALIGNMENT 128
844#else
845#define BIGGEST_FIELD_ALIGNMENT 32
846#endif
847#else
848#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
849   x86_field_alignment (FIELD, COMPUTED)
850#endif
851
852/* If defined, a C expression to compute the alignment given to a
853   constant that is being placed in memory.  EXP is the constant
854   and ALIGN is the alignment that the object would ordinarily have.
855   The value of this macro is used instead of that alignment to align
856   the object.
857
858   If this macro is not defined, then ALIGN is used.
859
860   The typical use of this macro is to increase alignment for string
861   constants to be word aligned so that `strcpy' calls that copy
862   constants can be done inline.  */
863
864#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
865
866/* If defined, a C expression to compute the alignment for a static
867   variable.  TYPE is the data type, and ALIGN is the alignment that
868   the object would ordinarily have.  The value of this macro is used
869   instead of that alignment to align the object.
870
871   If this macro is not defined, then ALIGN is used.
872
873   One use of this macro is to increase alignment of medium-size
874   data to make it all fit in fewer cache lines.  Another is to
875   cause character arrays to be word-aligned so that `strcpy' calls
876   that copy constants to character arrays can be done inline.  */
877
878#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
879
880/* If defined, a C expression to compute the alignment for a local
881   variable.  TYPE is the data type, and ALIGN is the alignment that
882   the object would ordinarily have.  The value of this macro is used
883   instead of that alignment to align the object.
884
885   If this macro is not defined, then ALIGN is used.
886
887   One use of this macro is to increase alignment of medium-size
888   data to make it all fit in fewer cache lines.  */
889
890#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
891
892/* If defined, a C expression that gives the alignment boundary, in
893   bits, of an argument with the specified mode and type.  If it is
894   not defined, `PARM_BOUNDARY' is used for all arguments.  */
895
896#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
897  ix86_function_arg_boundary ((MODE), (TYPE))
898
899/* Set this nonzero if move instructions will actually fail to work
900   when given unaligned data.  */
901#define STRICT_ALIGNMENT 0
902
903/* If bit field type is int, don't let it cross an int,
904   and give entire struct the alignment of an int.  */
905/* Required on the 386 since it doesn't have bit-field insns.  */
906#define PCC_BITFIELD_TYPE_MATTERS 1
907
908/* Standard register usage.  */
909
910/* This processor has special stack-like registers.  See reg-stack.c
911   for details.  */
912
913#define STACK_REGS
914#define IS_STACK_MODE(MODE)					\
915  ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode)	\
916
917/* Number of actual hardware registers.
918   The hardware registers are assigned numbers for the compiler
919   from 0 to just below FIRST_PSEUDO_REGISTER.
920   All registers that the compiler knows about must be given numbers,
921   even those that are not normally considered general registers.
922
923   In the 80386 we give the 8 general purpose registers the numbers 0-7.
924   We number the floating point registers 8-15.
925   Note that registers 0-7 can be accessed as a  short or int,
926   while only 0-3 may be used with byte `mov' instructions.
927
928   Reg 16 does not correspond to any hardware register, but instead
929   appears in the RTL as an argument pointer prior to reload, and is
930   eliminated during reloading in favor of either the stack or frame
931   pointer.  */
932
933#define FIRST_PSEUDO_REGISTER 53
934
935/* Number of hardware registers that go into the DWARF-2 unwind info.
936   If not defined, equals FIRST_PSEUDO_REGISTER.  */
937
938#define DWARF_FRAME_REGISTERS 17
939
940/* 1 for registers that have pervasive standard uses
941   and are not available for the register allocator.
942   On the 80386, the stack pointer is such, as is the arg pointer.
943
944   The value is a mask - bit 1 is set for fixed registers
945   for 32bit target, while 2 is set for fixed registers for 64bit.
946   Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
947 */
948#define FIXED_REGISTERS						\
949/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
950{  0, 0, 0, 0, 0, 0, 0, 3, 0,  0,  0,  0,  0,  0,  0,  0,	\
951/*arg,flags,fpsr,dir,frame*/					\
952    3,    3,   3,  3,    3,					\
953/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
954     0,   0,   0,   0,   0,   0,   0,   0,			\
955/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
956     0,   0,   0,   0,   0,   0,   0,   0,			\
957/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
958     1,   1,   1,   1,   1,   1,   1,   1,			\
959/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
960     1,   1,    1,    1,    1,    1,    1,    1}
961
962
963/* 1 for registers not available across function calls.
964   These must include the FIXED_REGISTERS and also any
965   registers that can be used without being saved.
966   The latter must include the registers where values are returned
967   and the register where structure-value addresses are passed.
968   Aside from that, you can include as many other registers as you like.
969
970   The value is a mask - bit 1 is set for call used
971   for 32bit target, while 2 is set for call used for 64bit.
972   Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
973*/
974#define CALL_USED_REGISTERS					\
975/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
976{  3, 3, 3, 0, 2, 2, 0, 3, 3,  3,  3,  3,  3,  3,  3,  3,	\
977/*arg,flags,fpsr,dir,frame*/					\
978     3,   3,   3,  3,    3,					\
979/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
980     3,   3,   3,   3,   3,  3,    3,   3,			\
981/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
982     3,   3,   3,   3,   3,   3,   3,   3,			\
983/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
984     3,   3,   3,   3,   1,   1,   1,   1,			\
985/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
986     3,   3,    3,    3,    3,    3,    3,    3}		\
987
988/* Order in which to allocate registers.  Each register must be
989   listed once, even those in FIXED_REGISTERS.  List frame pointer
990   late and fixed registers last.  Note that, in general, we prefer
991   registers listed in CALL_USED_REGISTERS, keeping the others
992   available for storage of persistent values.
993
994   The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
995   so this is just empty initializer for array.  */
996
997#define REG_ALLOC_ORDER 					\
998{  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
999   18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,	\
1000   33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,  \
1001   48, 49, 50, 51, 52 }
1002
1003/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
1004   to be rearranged based on a particular function.  When using sse math,
1005   we want to allocate SSE before x87 registers and vice vera.  */
1006
1007#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
1008
1009
1010/* Macro to conditionally modify fixed_regs/call_used_regs.  */
1011#define CONDITIONAL_REGISTER_USAGE					\
1012do {									\
1013    int i;								\
1014    for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)				\
1015      {									\
1016        fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0;	\
1017        call_used_regs[i] = (call_used_regs[i]				\
1018			     & (TARGET_64BIT ? 2 : 1)) != 0;		\
1019      }									\
1020    if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)			\
1021      {									\
1022	fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
1023	call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
1024      }									\
1025    if (! TARGET_MMX)							\
1026      {									\
1027	int i;								\
1028        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
1029          if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i))	\
1030	    fixed_regs[i] = call_used_regs[i] = 1;		 	\
1031      }									\
1032    if (! TARGET_SSE)							\
1033      {									\
1034	int i;								\
1035        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
1036          if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i))	\
1037	    fixed_regs[i] = call_used_regs[i] = 1;		 	\
1038      }									\
1039    if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387)		\
1040      {									\
1041	int i;								\
1042	HARD_REG_SET x;							\
1043        COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]);	\
1044        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
1045          if (TEST_HARD_REG_BIT (x, i)) 				\
1046	    fixed_regs[i] = call_used_regs[i] = 1;			\
1047      }									\
1048  } while (0)
1049
1050/* Return number of consecutive hard regs needed starting at reg REGNO
1051   to hold something of mode MODE.
1052   This is ordinarily the length in words of a value of mode MODE
1053   but can be less for certain modes in special long registers.
1054
1055   Actually there are no two word move instructions for consecutive
1056   registers.  And only registers 0-3 may have mov byte instructions
1057   applied to them.
1058   */
1059
1060#define HARD_REGNO_NREGS(REGNO, MODE)   \
1061  (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)	\
1062   ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
1063   : ((MODE) == XFmode							\
1064      ? (TARGET_64BIT ? 2 : 3)						\
1065      : (MODE) == XCmode						\
1066      ? (TARGET_64BIT ? 4 : 6)						\
1067      : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1068
1069#define VALID_SSE2_REG_MODE(MODE) \
1070    ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode    \
1071     || (MODE) == V2DImode)
1072
1073#define VALID_SSE_REG_MODE(MODE)					\
1074    ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode	\
1075     || (MODE) == SFmode || (MODE) == TFmode				\
1076     /* Always accept SSE2 modes so that xmmintrin.h compiles.  */	\
1077     || VALID_SSE2_REG_MODE (MODE)					\
1078     || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
1079
1080#define VALID_MMX_REG_MODE_3DNOW(MODE) \
1081    ((MODE) == V2SFmode || (MODE) == SFmode)
1082
1083#define VALID_MMX_REG_MODE(MODE)					\
1084    ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode	\
1085     || (MODE) == V2SImode || (MODE) == SImode)
1086
1087#define VECTOR_MODE_SUPPORTED_P(MODE)					\
1088    (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1			\
1089     : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1			\
1090     : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
1091
1092#define VALID_FP_MODE_P(MODE)						\
1093    ((MODE) == SFmode || (MODE) == DFmode || (MODE) == XFmode		\
1094     || (MODE) == SCmode || (MODE) == DCmode || (MODE) == XCmode)	\
1095
1096#define VALID_INT_MODE_P(MODE)						\
1097    ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode		\
1098     || (MODE) == DImode						\
1099     || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode	\
1100     || (MODE) == CDImode						\
1101     || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode		\
1102         || (MODE) == TFmode || (MODE) == TCmode)))
1103
1104/* Return true for modes passed in SSE registers.  */
1105#define SSE_REG_MODE_P(MODE) \
1106 ((MODE) == TImode || (MODE) == V16QImode || (MODE) == TFmode		\
1107   || (MODE) == V8HImode || (MODE) == V2DFmode || (MODE) == V2DImode	\
1108   || (MODE) == V4SFmode || (MODE) == V4SImode)
1109
1110/* Return true for modes passed in MMX registers.  */
1111#define MMX_REG_MODE_P(MODE) \
1112 ((MODE) == V8QImode || (MODE) == V4HImode || (MODE) == V2SImode	\
1113   || (MODE) == V2SFmode)
1114
1115/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.  */
1116
1117#define HARD_REGNO_MODE_OK(REGNO, MODE)	\
1118   ix86_hard_regno_mode_ok ((REGNO), (MODE))
1119
1120/* Value is 1 if it is a good idea to tie two pseudo registers
1121   when one has mode MODE1 and one has mode MODE2.
1122   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1123   for any hard reg, then this must be 0 for correct output.  */
1124
1125#define MODES_TIEABLE_P(MODE1, MODE2)				\
1126  ((MODE1) == (MODE2)						\
1127   || (((MODE1) == HImode || (MODE1) == SImode			\
1128	|| ((MODE1) == QImode					\
1129	    && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL))	\
1130        || ((MODE1) == DImode && TARGET_64BIT))			\
1131       && ((MODE2) == HImode || (MODE2) == SImode		\
1132	   || ((MODE2) == QImode				\
1133	       && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL))	\
1134	   || ((MODE2) == DImode && TARGET_64BIT))))
1135
1136/* It is possible to write patterns to move flags; but until someone
1137   does it,  */
1138#define AVOID_CCMODE_COPIES
1139
1140/* Specify the modes required to caller save a given hard regno.
1141   We do this on i386 to prevent flags from being saved at all.
1142
1143   Kill any attempts to combine saving of modes.  */
1144
1145#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)			\
1146  (CC_REGNO_P (REGNO) ? VOIDmode					\
1147   : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode			\
1148   : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS), false)\
1149   : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode		\
1150   : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode 	\
1151   : (MODE))
1152/* Specify the registers used for certain standard purposes.
1153   The values of these macros are register numbers.  */
1154
1155/* on the 386 the pc register is %eip, and is not usable as a general
1156   register.  The ordinary mov instructions won't work */
1157/* #define PC_REGNUM  */
1158
1159/* Register to use for pushing function arguments.  */
1160#define STACK_POINTER_REGNUM 7
1161
1162/* Base register for access to local variables of the function.  */
1163#define HARD_FRAME_POINTER_REGNUM 6
1164
1165/* Base register for access to local variables of the function.  */
1166#define FRAME_POINTER_REGNUM 20
1167
1168/* First floating point reg */
1169#define FIRST_FLOAT_REG 8
1170
1171/* First & last stack-like regs */
1172#define FIRST_STACK_REG FIRST_FLOAT_REG
1173#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1174
1175#define FLAGS_REG 17
1176#define FPSR_REG 18
1177#define DIRFLAG_REG 19
1178
1179#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1180#define LAST_SSE_REG  (FIRST_SSE_REG + 7)
1181
1182#define FIRST_MMX_REG  (LAST_SSE_REG + 1)
1183#define LAST_MMX_REG   (FIRST_MMX_REG + 7)
1184
1185#define FIRST_REX_INT_REG  (LAST_MMX_REG + 1)
1186#define LAST_REX_INT_REG   (FIRST_REX_INT_REG + 7)
1187
1188#define FIRST_REX_SSE_REG  (LAST_REX_INT_REG + 1)
1189#define LAST_REX_SSE_REG   (FIRST_REX_SSE_REG + 7)
1190
1191/* Value should be nonzero if functions must have frame pointers.
1192   Zero means the frame pointer need not be set up (and parms
1193   may be accessed via the stack pointer) in functions that seem suitable.
1194   This is computed in `reload', in reload1.c.  */
1195#define FRAME_POINTER_REQUIRED  ix86_frame_pointer_required ()
1196
1197/* Override this in other tm.h files to cope with various OS losage
1198   requiring a frame pointer.  */
1199#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1200#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1201#endif
1202
1203/* Make sure we can access arbitrary call frames.  */
1204#define SETUP_FRAME_ADDRESSES()  ix86_setup_frame_addresses ()
1205
1206/* Base register for access to arguments of the function.  */
1207#define ARG_POINTER_REGNUM 16
1208
1209/* Register in which static-chain is passed to a function.
1210   We do use ECX as static chain register for 32 bit ABI.  On the
1211   64bit ABI, ECX is an argument register, so we use R10 instead.  */
1212#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1213
1214/* Register to hold the addressing base for position independent
1215   code access to data items.  We don't use PIC pointer for 64bit
1216   mode.  Define the regnum to dummy value to prevent gcc from
1217   pessimizing code dealing with EBX.
1218
1219   To avoid clobbering a call-saved register unnecessarily, we renumber
1220   the pic register when possible.  The change is visible after the
1221   prologue has been emitted.  */
1222
1223#define REAL_PIC_OFFSET_TABLE_REGNUM  3
1224
1225#define PIC_OFFSET_TABLE_REGNUM				\
1226  (TARGET_64BIT || !flag_pic ? INVALID_REGNUM		\
1227   : reload_completed ? REGNO (pic_offset_table_rtx)	\
1228   : REAL_PIC_OFFSET_TABLE_REGNUM)
1229
1230#define GOT_SYMBOL_NAME "_GLOBAL_OFFSET_TABLE_"
1231
1232/* Register in which address to store a structure value
1233   arrives in the function.  On the 386, the prologue
1234   copies this from the stack to register %eax.  */
1235#define STRUCT_VALUE_INCOMING 0
1236
1237/* Place in which caller passes the structure value address.
1238   0 means push the value on the stack like an argument.  */
1239#define STRUCT_VALUE 0
1240
1241/* A C expression which can inhibit the returning of certain function
1242   values in registers, based on the type of value.  A nonzero value
1243   says to return the function value in memory, just as large
1244   structures are always returned.  Here TYPE will be a C expression
1245   of type `tree', representing the data type of the value.
1246
1247   Note that values of mode `BLKmode' must be explicitly handled by
1248   this macro.  Also, the option `-fpcc-struct-return' takes effect
1249   regardless of this macro.  On most systems, it is possible to
1250   leave the macro undefined; this causes a default definition to be
1251   used, whose value is the constant 1 for `BLKmode' values, and 0
1252   otherwise.
1253
1254   Do not use this macro to indicate that structures and unions
1255   should always be returned in memory.  You should instead use
1256   `DEFAULT_PCC_STRUCT_RETURN' to indicate this.  */
1257
1258#define RETURN_IN_MEMORY(TYPE) \
1259  ix86_return_in_memory (TYPE)
1260
1261/* This is overridden by <cygwin.h>.  */
1262#define MS_AGGREGATE_RETURN 0
1263
1264
1265/* Define the classes of registers for register constraints in the
1266   machine description.  Also define ranges of constants.
1267
1268   One of the classes must always be named ALL_REGS and include all hard regs.
1269   If there is more than one class, another class must be named NO_REGS
1270   and contain no registers.
1271
1272   The name GENERAL_REGS must be the name of a class (or an alias for
1273   another name such as ALL_REGS).  This is the class of registers
1274   that is allowed by "g" or "r" in a register constraint.
1275   Also, registers outside this class are allocated only when
1276   instructions express preferences for them.
1277
1278   The classes must be numbered in nondecreasing order; that is,
1279   a larger-numbered class must never be contained completely
1280   in a smaller-numbered class.
1281
1282   For any two classes, it is very desirable that there be another
1283   class that represents their union.
1284
1285   It might seem that class BREG is unnecessary, since no useful 386
1286   opcode needs reg %ebx.  But some systems pass args to the OS in ebx,
1287   and the "b" register constraint is useful in asms for syscalls.
1288
1289   The flags and fpsr registers are in no class.  */
1290
1291enum reg_class
1292{
1293  NO_REGS,
1294  AREG, DREG, CREG, BREG, SIREG, DIREG,
1295  AD_REGS,			/* %eax/%edx for DImode */
1296  Q_REGS,			/* %eax %ebx %ecx %edx */
1297  NON_Q_REGS,			/* %esi %edi %ebp %esp */
1298  INDEX_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp */
1299  LEGACY_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1300  GENERAL_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1301  FP_TOP_REG, FP_SECOND_REG,	/* %st(0) %st(1) */
1302  FLOAT_REGS,
1303  SSE_REGS,
1304  MMX_REGS,
1305  FP_TOP_SSE_REGS,
1306  FP_SECOND_SSE_REGS,
1307  FLOAT_SSE_REGS,
1308  FLOAT_INT_REGS,
1309  INT_SSE_REGS,
1310  FLOAT_INT_SSE_REGS,
1311  ALL_REGS, LIM_REG_CLASSES
1312};
1313
1314#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1315
1316#define INTEGER_CLASS_P(CLASS) \
1317  reg_class_subset_p ((CLASS), GENERAL_REGS)
1318#define FLOAT_CLASS_P(CLASS) \
1319  reg_class_subset_p ((CLASS), FLOAT_REGS)
1320#define SSE_CLASS_P(CLASS) \
1321  reg_class_subset_p ((CLASS), SSE_REGS)
1322#define MMX_CLASS_P(CLASS) \
1323  reg_class_subset_p ((CLASS), MMX_REGS)
1324#define MAYBE_INTEGER_CLASS_P(CLASS) \
1325  reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1326#define MAYBE_FLOAT_CLASS_P(CLASS) \
1327  reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1328#define MAYBE_SSE_CLASS_P(CLASS) \
1329  reg_classes_intersect_p (SSE_REGS, (CLASS))
1330#define MAYBE_MMX_CLASS_P(CLASS) \
1331  reg_classes_intersect_p (MMX_REGS, (CLASS))
1332
1333#define Q_CLASS_P(CLASS) \
1334  reg_class_subset_p ((CLASS), Q_REGS)
1335
1336/* Give names of register classes as strings for dump file.  */
1337
1338#define REG_CLASS_NAMES \
1339{  "NO_REGS",				\
1340   "AREG", "DREG", "CREG", "BREG",	\
1341   "SIREG", "DIREG",			\
1342   "AD_REGS",				\
1343   "Q_REGS", "NON_Q_REGS",		\
1344   "INDEX_REGS",			\
1345   "LEGACY_REGS",			\
1346   "GENERAL_REGS",			\
1347   "FP_TOP_REG", "FP_SECOND_REG",	\
1348   "FLOAT_REGS",			\
1349   "SSE_REGS",				\
1350   "MMX_REGS",				\
1351   "FP_TOP_SSE_REGS",			\
1352   "FP_SECOND_SSE_REGS",		\
1353   "FLOAT_SSE_REGS",			\
1354   "FLOAT_INT_REGS",			\
1355   "INT_SSE_REGS",			\
1356   "FLOAT_INT_SSE_REGS",		\
1357   "ALL_REGS" }
1358
1359/* Define which registers fit in which classes.
1360   This is an initializer for a vector of HARD_REG_SET
1361   of length N_REG_CLASSES.  */
1362
1363#define REG_CLASS_CONTENTS						\
1364{     { 0x00,     0x0 },						\
1365      { 0x01,     0x0 }, { 0x02, 0x0 },	/* AREG, DREG */		\
1366      { 0x04,     0x0 }, { 0x08, 0x0 },	/* CREG, BREG */		\
1367      { 0x10,     0x0 }, { 0x20, 0x0 },	/* SIREG, DIREG */		\
1368      { 0x03,     0x0 },		/* AD_REGS */			\
1369      { 0x0f,     0x0 },		/* Q_REGS */			\
1370  { 0x1100f0,  0x1fe0 },		/* NON_Q_REGS */		\
1371      { 0x7f,  0x1fe0 },		/* INDEX_REGS */		\
1372  { 0x1100ff,  0x0 },			/* LEGACY_REGS */		\
1373  { 0x1100ff,  0x1fe0 },		/* GENERAL_REGS */		\
1374     { 0x100,     0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1375    { 0xff00,     0x0 },		/* FLOAT_REGS */		\
1376{ 0x1fe00000,0x1fe000 },		/* SSE_REGS */			\
1377{ 0xe0000000,    0x1f },		/* MMX_REGS */			\
1378{ 0x1fe00100,0x1fe000 },		/* FP_TOP_SSE_REG */		\
1379{ 0x1fe00200,0x1fe000 },		/* FP_SECOND_SSE_REG */		\
1380{ 0x1fe0ff00,0x1fe000 },		/* FLOAT_SSE_REGS */		\
1381   { 0x1ffff,  0x1fe0 },		/* FLOAT_INT_REGS */		\
1382{ 0x1fe100ff,0x1fffe0 },		/* INT_SSE_REGS */		\
1383{ 0x1fe1ffff,0x1fffe0 },		/* FLOAT_INT_SSE_REGS */	\
1384{ 0xffffffff,0x1fffff }							\
1385}
1386
1387/* The same information, inverted:
1388   Return the class number of the smallest class containing
1389   reg number REGNO.  This could be a conditional expression
1390   or could index an array.  */
1391
1392#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1393
1394/* When defined, the compiler allows registers explicitly used in the
1395   rtl to be used as spill registers but prevents the compiler from
1396   extending the lifetime of these registers.  */
1397
1398#define SMALL_REGISTER_CLASSES 1
1399
1400#define QI_REG_P(X) \
1401  (REG_P (X) && REGNO (X) < 4)
1402
1403#define GENERAL_REGNO_P(N) \
1404  ((N) < 8 || REX_INT_REGNO_P (N))
1405
1406#define GENERAL_REG_P(X) \
1407  (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1408
1409#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1410
1411#define NON_QI_REG_P(X) \
1412  (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1413
1414#define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1415#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1416
1417#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1418#define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1419#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1420#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1421
1422#define SSE_REGNO_P(N) \
1423  (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1424   || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1425
1426#define REX_SSE_REGNO_P(N) \
1427   ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG)
1428
1429#define SSE_REGNO(N) \
1430  ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1431#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1432
1433#define SSE_FLOAT_MODE_P(MODE) \
1434  ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1435
1436#define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1437#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1438
1439#define STACK_REG_P(XOP)		\
1440  (REG_P (XOP) &&		       	\
1441   REGNO (XOP) >= FIRST_STACK_REG &&	\
1442   REGNO (XOP) <= LAST_STACK_REG)
1443
1444#define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1445
1446#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1447
1448#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1449#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1450
1451/* The class value for index registers, and the one for base regs.  */
1452
1453#define INDEX_REG_CLASS INDEX_REGS
1454#define BASE_REG_CLASS GENERAL_REGS
1455
1456/* Get reg_class from a letter such as appears in the machine description.  */
1457
1458#define REG_CLASS_FROM_LETTER(C)	\
1459  ((C) == 'r' ? GENERAL_REGS :					\
1460   (C) == 'R' ? LEGACY_REGS :					\
1461   (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS :		\
1462   (C) == 'Q' ? Q_REGS :					\
1463   (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387	\
1464		 ? FLOAT_REGS					\
1465		 : NO_REGS) :					\
1466   (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387	\
1467		 ? FP_TOP_REG					\
1468		 : NO_REGS) :					\
1469   (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387	\
1470		 ? FP_SECOND_REG				\
1471		 : NO_REGS) :					\
1472   (C) == 'a' ? AREG :						\
1473   (C) == 'b' ? BREG :						\
1474   (C) == 'c' ? CREG :						\
1475   (C) == 'd' ? DREG :						\
1476   (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS :		\
1477   (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS :		\
1478   (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS :		\
1479   (C) == 'A' ? AD_REGS :					\
1480   (C) == 'D' ? DIREG :						\
1481   (C) == 'S' ? SIREG : NO_REGS)
1482
1483/* The letters I, J, K, L and M in a register constraint string
1484   can be used to stand for particular ranges of immediate operands.
1485   This macro defines what the ranges are.
1486   C is the letter, and VALUE is a constant value.
1487   Return 1 if VALUE is in the range specified by C.
1488
1489   I is for non-DImode shifts.
1490   J is for DImode shifts.
1491   K is for signed imm8 operands.
1492   L is for andsi as zero-extending move.
1493   M is for shifts that can be executed by the "lea" opcode.
1494   N is for immediate operands for out/in instructions (0-255)
1495   */
1496
1497#define CONST_OK_FOR_LETTER_P(VALUE, C)				\
1498  ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31			\
1499   : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63			\
1500   : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127		\
1501   : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff		\
1502   : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3			\
1503   : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255		\
1504   : 0)
1505
1506/* Similar, but for floating constants, and defining letters G and H.
1507   Here VALUE is the CONST_DOUBLE rtx itself.  We allow constants even if
1508   TARGET_387 isn't set, because the stack register converter may need to
1509   load 0.0 into the function value register.  */
1510
1511#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  \
1512  ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1513   : 0)
1514
1515/* A C expression that defines the optional machine-dependent
1516   constraint letters that can be used to segregate specific types of
1517   operands, usually memory references, for the target machine.  Any
1518   letter that is not elsewhere defined and not matched by
1519   `REG_CLASS_FROM_LETTER' may be used.  Normally this macro will not
1520   be defined.
1521
1522   If it is required for a particular target machine, it should
1523   return 1 if VALUE corresponds to the operand type represented by
1524   the constraint letter C.  If C is not defined as an extra
1525   constraint, the value returned should be 0 regardless of VALUE.  */
1526
1527#define EXTRA_CONSTRAINT(VALUE, D)				\
1528  ((D) == 'e' ? x86_64_sign_extended_value (VALUE)		\
1529   : (D) == 'Z' ? x86_64_zero_extended_value (VALUE)		\
1530   : (D) == 'C' ? standard_sse_constant_p (VALUE)		\
1531   : 0)
1532
1533/* Place additional restrictions on the register class to use when it
1534   is necessary to be able to hold a value of mode MODE in a reload
1535   register for which class CLASS would ordinarily be used.  */
1536
1537#define LIMIT_RELOAD_CLASS(MODE, CLASS) 			\
1538  ((MODE) == QImode && !TARGET_64BIT				\
1539   && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS		\
1540       || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS)	\
1541   ? Q_REGS : (CLASS))
1542
1543/* Given an rtx X being reloaded into a reg required to be
1544   in class CLASS, return the class of reg to actually use.
1545   In general this is just CLASS; but on some machines
1546   in some cases it is preferable to use a more restrictive class.
1547   On the 80386 series, we prevent floating constants from being
1548   reloaded into floating registers (since no move-insn can do that)
1549   and we ensure that QImodes aren't reloaded into the esi or edi reg.  */
1550
1551/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1552   QImode must go into class Q_REGS.
1553   Narrow ALL_REGS to GENERAL_REGS.  This supports allowing movsf and
1554   movdf to do mem-to-mem moves through integer regs.  */
1555
1556#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1557   ix86_preferred_reload_class ((X), (CLASS))
1558
1559/* If we are copying between general and FP registers, we need a memory
1560   location. The same is true for SSE and MMX registers.  */
1561#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1562  ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1563
1564/* QImode spills from non-QI registers need a scratch.  This does not
1565   happen often -- the only example so far requires an uninitialized
1566   pseudo.  */
1567
1568#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT)			\
1569  (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS			\
1570    || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode	\
1571   ? Q_REGS : NO_REGS)
1572
1573/* Return the maximum number of consecutive registers
1574   needed to represent mode MODE in a register of class CLASS.  */
1575/* On the 80386, this is the size of MODE in words,
1576   except in the FP regs, where a single reg is always enough.  */
1577#define CLASS_MAX_NREGS(CLASS, MODE)					\
1578 (!MAYBE_INTEGER_CLASS_P (CLASS)					\
1579  ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
1580  : (((((MODE) == XFmode ? 12 : GET_MODE_SIZE (MODE)))			\
1581      + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1582
1583/* A C expression whose value is nonzero if pseudos that have been
1584   assigned to registers of class CLASS would likely be spilled
1585   because registers of CLASS are needed for spill registers.
1586
1587   The default value of this macro returns 1 if CLASS has exactly one
1588   register and zero otherwise.  On most machines, this default
1589   should be used.  Only define this macro to some other expression
1590   if pseudo allocated by `local-alloc.c' end up in memory because
1591   their hard registers were needed for spill registers.  If this
1592   macro returns nonzero for those classes, those pseudos will only
1593   be allocated by `global.c', which knows how to reallocate the
1594   pseudo to another register.  If there would not be another
1595   register available for reallocation, you should not change the
1596   definition of this macro since the only effect of such a
1597   definition would be to slow down register allocation.  */
1598
1599#define CLASS_LIKELY_SPILLED_P(CLASS)					\
1600  (((CLASS) == AREG)							\
1601   || ((CLASS) == DREG)							\
1602   || ((CLASS) == CREG)							\
1603   || ((CLASS) == BREG)							\
1604   || ((CLASS) == AD_REGS)						\
1605   || ((CLASS) == SIREG)						\
1606   || ((CLASS) == DIREG)						\
1607   || ((CLASS) == FP_TOP_REG)						\
1608   || ((CLASS) == FP_SECOND_REG))
1609
1610/* Return a class of registers that cannot change FROM mode to TO mode.
1611
1612   x87 registers can't do subreg as all values are reformated to extended
1613   precision.  XMM registers does not support with nonzero offsets equal
1614   to 4, 8 and 12 otherwise valid for integer registers. Since we can't
1615   determine these, prohibit all nonparadoxical subregs changing size.  */
1616
1617#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)	\
1618  (GET_MODE_SIZE (TO) < GET_MODE_SIZE (FROM)		\
1619   ? reg_classes_intersect_p (FLOAT_SSE_REGS, (CLASS))	\
1620     || MAYBE_MMX_CLASS_P (CLASS) 			\
1621   : GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)		\
1622   ? reg_classes_intersect_p (FLOAT_REGS, (CLASS)) : 0)
1623
1624/* A C statement that adds to CLOBBERS any hard regs the port wishes
1625   to automatically clobber for all asms.
1626
1627   We do this in the new i386 backend to maintain source compatibility
1628   with the old cc0-based compiler.  */
1629
1630#define MD_ASM_CLOBBERS(CLOBBERS)					\
1631  do {									\
1632    (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"),	\
1633			    (CLOBBERS));				\
1634    (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"),	\
1635			    (CLOBBERS));				\
1636    (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"),	\
1637			    (CLOBBERS));				\
1638  } while (0)
1639
1640/* Stack layout; function entry, exit and calling.  */
1641
1642/* Define this if pushing a word on the stack
1643   makes the stack pointer a smaller address.  */
1644#define STACK_GROWS_DOWNWARD
1645
1646/* Define this if the nominal address of the stack frame
1647   is at the high-address end of the local variables;
1648   that is, each additional local variable allocated
1649   goes at a more negative offset in the frame.  */
1650#define FRAME_GROWS_DOWNWARD
1651
1652/* Offset within stack frame to start allocating local variables at.
1653   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1654   first local allocated.  Otherwise, it is the offset to the BEGINNING
1655   of the first local allocated.  */
1656#define STARTING_FRAME_OFFSET 0
1657
1658/* If we generate an insn to push BYTES bytes,
1659   this says how many the stack pointer really advances by.
1660   On 386 pushw decrements by exactly 2 no matter what the position was.
1661   On the 386 there is no pushb; we use pushw instead, and this
1662   has the effect of rounding up to 2.
1663
1664   For 64bit ABI we round up to 8 bytes.
1665 */
1666
1667#define PUSH_ROUNDING(BYTES) \
1668  (TARGET_64BIT		     \
1669   ? (((BYTES) + 7) & (-8))  \
1670   : (((BYTES) + 1) & (-2)))
1671
1672/* If defined, the maximum amount of space required for outgoing arguments will
1673   be computed and placed into the variable
1674   `current_function_outgoing_args_size'.  No space will be pushed onto the
1675   stack for each call; instead, the function prologue should increase the stack
1676   frame size by this amount.  */
1677
1678#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1679
1680/* If defined, a C expression whose value is nonzero when we want to use PUSH
1681   instructions to pass outgoing arguments.  */
1682
1683#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1684
1685/* We want the stack and args grow in opposite directions, even if
1686   PUSH_ARGS is 0.  */
1687#define PUSH_ARGS_REVERSED 1
1688
1689/* Offset of first parameter from the argument pointer register value.  */
1690#define FIRST_PARM_OFFSET(FNDECL) 0
1691
1692/* Define this macro if functions should assume that stack space has been
1693   allocated for arguments even when their values are passed in registers.
1694
1695   The value of this macro is the size, in bytes, of the area reserved for
1696   arguments passed in registers for the function represented by FNDECL.
1697
1698   This space can be allocated by the caller, or be a part of the
1699   machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1700   which.  */
1701#define REG_PARM_STACK_SPACE(FNDECL) 0
1702
1703/* Define as a C expression that evaluates to nonzero if we do not know how
1704   to pass TYPE solely in registers.  The file expr.h defines a
1705   definition that is usually appropriate, refer to expr.h for additional
1706   documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1707   computed in the stack and then loaded into a register.  */
1708#define MUST_PASS_IN_STACK(MODE, TYPE)  ix86_must_pass_in_stack ((MODE), (TYPE))
1709
1710/* Value is the number of bytes of arguments automatically
1711   popped when returning from a subroutine call.
1712   FUNDECL is the declaration node of the function (as a tree),
1713   FUNTYPE is the data type of the function (as a tree),
1714   or for a library call it is an identifier node for the subroutine name.
1715   SIZE is the number of bytes of arguments passed on the stack.
1716
1717   On the 80386, the RTD insn may be used to pop them if the number
1718     of args is fixed, but if the number is variable then the caller
1719     must pop them all.  RTD can't be used for library calls now
1720     because the library is compiled with the Unix compiler.
1721   Use of RTD is a selectable option, since it is incompatible with
1722   standard Unix calling sequences.  If the option is not selected,
1723   the caller must always pop the args.
1724
1725   The attribute stdcall is equivalent to RTD on a per module basis.  */
1726
1727#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1728  ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1729
1730/* Define how to find the value returned by a function.
1731   VALTYPE is the data type of the value (as a tree).
1732   If the precise function being called is known, FUNC is its FUNCTION_DECL;
1733   otherwise, FUNC is 0.  */
1734#define FUNCTION_VALUE(VALTYPE, FUNC)  \
1735   ix86_function_value (VALTYPE)
1736
1737#define FUNCTION_VALUE_REGNO_P(N) \
1738  ix86_function_value_regno_p (N)
1739
1740/* Define how to find the value returned by a library function
1741   assuming the value has mode MODE.  */
1742
1743#define LIBCALL_VALUE(MODE) \
1744  ix86_libcall_value (MODE)
1745
1746/* Define the size of the result block used for communication between
1747   untyped_call and untyped_return.  The block contains a DImode value
1748   followed by the block used by fnsave and frstor.  */
1749
1750#define APPLY_RESULT_SIZE (8+108)
1751
1752/* 1 if N is a possible register number for function argument passing.  */
1753#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1754
1755/* Define a data type for recording info about an argument list
1756   during the scan of that argument list.  This data type should
1757   hold all necessary information about the function itself
1758   and about the args processed so far, enough to enable macros
1759   such as FUNCTION_ARG to determine where the next arg should go.  */
1760
1761typedef struct ix86_args {
1762  int words;			/* # words passed so far */
1763  int nregs;			/* # registers available for passing */
1764  int regno;			/* next available register number */
1765  int fastcall;		/* fastcall calling convention is used */
1766  int sse_words;		/* # sse words passed so far */
1767  int sse_nregs;		/* # sse registers available for passing */
1768  int warn_sse;			/* True when we want to warn about SSE ABI.  */
1769  int warn_mmx;			/* True when we want to warn about MMX ABI.  */
1770  int sse_regno;		/* next available sse register number */
1771  int mmx_words;		/* # mmx words passed so far */
1772  int mmx_nregs;		/* # mmx registers available for passing */
1773  int mmx_regno;		/* next available mmx register number */
1774  int maybe_vaarg;		/* true for calls to possibly vardic fncts.  */
1775} CUMULATIVE_ARGS;
1776
1777/* Initialize a variable CUM of type CUMULATIVE_ARGS
1778   for a call to a function whose data type is FNTYPE.
1779   For a library call, FNTYPE is 0.  */
1780
1781#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1782  init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1783
1784/* Update the data in CUM to advance over an argument
1785   of mode MODE and data type TYPE.
1786   (TYPE is null for libcalls where that information may not be available.)  */
1787
1788#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1789  function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1790
1791/* Define where to put the arguments to a function.
1792   Value is zero to push the argument on the stack,
1793   or a hard register in which to store the argument.
1794
1795   MODE is the argument's machine mode.
1796   TYPE is the data type of the argument (as a tree).
1797    This is null for libcalls where that information may
1798    not be available.
1799   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1800    the preceding args and about the function being called.
1801   NAMED is nonzero if this argument is a named parameter
1802    (otherwise it is an extra parameter matching an ellipsis).  */
1803
1804#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1805  function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1806
1807/* For an arg passed partly in registers and partly in memory,
1808   this is the number of registers used.
1809   For args passed entirely in registers or entirely in memory, zero.  */
1810
1811#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
1812
1813/* A C expression that indicates when an argument must be passed by
1814   reference.  If nonzero for an argument, a copy of that argument is
1815   made in memory and a pointer to the argument is passed instead of
1816   the argument itself.  The pointer is passed in whatever way is
1817   appropriate for passing a pointer to that type.  */
1818
1819#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1820  function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1821
1822/* Perform any needed actions needed for a function that is receiving a
1823   variable number of arguments.
1824
1825   CUM is as above.
1826
1827   MODE and TYPE are the mode and type of the current parameter.
1828
1829   PRETEND_SIZE is a variable that should be set to the amount of stack
1830   that must be pushed by the prolog to pretend that our caller pushed
1831   it.
1832
1833   Normally, this macro will push all remaining incoming registers on the
1834   stack and set PRETEND_SIZE to the length of the registers pushed.  */
1835
1836#define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL)	\
1837  ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \
1838			       (NO_RTL))
1839
1840/* Implement `va_start' for varargs and stdarg.  */
1841#define EXPAND_BUILTIN_VA_START(VALIST, NEXTARG) \
1842  ix86_va_start (VALIST, NEXTARG)
1843
1844/* Implement `va_arg'.  */
1845#define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
1846  ix86_va_arg ((VALIST), (TYPE))
1847
1848#define TARGET_ASM_FILE_END ix86_file_end
1849#define NEED_INDICATE_EXEC_STACK 0
1850
1851/* Output assembler code to FILE to increment profiler label # LABELNO
1852   for profiling a function entry.  */
1853
1854#define FUNCTION_PROFILER(FILE, LABELNO) x86_function_profiler (FILE, LABELNO)
1855
1856#define MCOUNT_NAME "_mcount"
1857
1858#define PROFILE_COUNT_REGISTER "edx"
1859
1860/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1861   the stack pointer does not matter.  The value is tested only in
1862   functions that have frame pointers.
1863   No definition is equivalent to always zero.  */
1864/* Note on the 386 it might be more efficient not to define this since
1865   we have to restore it ourselves from the frame pointer, in order to
1866   use pop */
1867
1868#define EXIT_IGNORE_STACK 1
1869
1870/* Output assembler code for a block containing the constant parts
1871   of a trampoline, leaving space for the variable parts.  */
1872
1873/* On the 386, the trampoline contains two instructions:
1874     mov #STATIC,ecx
1875     jmp FUNCTION
1876   The trampoline is generated entirely at runtime.  The operand of JMP
1877   is the address of FUNCTION relative to the instruction following the
1878   JMP (which is 5 bytes long).  */
1879
1880/* Length in units of the trampoline for entering a nested function.  */
1881
1882#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1883
1884/* Emit RTL insns to initialize the variable parts of a trampoline.
1885   FNADDR is an RTX for the address of the function's pure code.
1886   CXT is an RTX for the static chain value for the function.  */
1887
1888#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1889  x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1890
1891/* Definitions for register eliminations.
1892
1893   This is an array of structures.  Each structure initializes one pair
1894   of eliminable registers.  The "from" register number is given first,
1895   followed by "to".  Eliminations of the same "from" register are listed
1896   in order of preference.
1897
1898   There are two registers that can always be eliminated on the i386.
1899   The frame pointer and the arg pointer can be replaced by either the
1900   hard frame pointer or to the stack pointer, depending upon the
1901   circumstances.  The hard frame pointer is not used before reload and
1902   so it is not eligible for elimination.  */
1903
1904#define ELIMINABLE_REGS					\
1905{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1906 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1907 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1908 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}	\
1909
1910/* Given FROM and TO register numbers, say whether this elimination is
1911   allowed.  Frame pointer elimination is automatically handled.
1912
1913   All other eliminations are valid.  */
1914
1915#define CAN_ELIMINATE(FROM, TO) \
1916  ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1917
1918/* Define the offset between two registers, one to be eliminated, and the other
1919   its replacement, at the start of a routine.  */
1920
1921#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1922  ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1923
1924/* Addressing modes, and classification of registers for them.  */
1925
1926/* Macros to check register numbers against specific register classes.  */
1927
1928/* These assume that REGNO is a hard or pseudo reg number.
1929   They give nonzero only if REGNO is a hard reg of the suitable class
1930   or a pseudo reg currently allocated to a suitable hard reg.
1931   Since they use reg_renumber, they are safe only once reg_renumber
1932   has been allocated, which happens in local-alloc.c.  */
1933
1934#define REGNO_OK_FOR_INDEX_P(REGNO) 					\
1935  ((REGNO) < STACK_POINTER_REGNUM 					\
1936   || (REGNO >= FIRST_REX_INT_REG					\
1937       && (REGNO) <= LAST_REX_INT_REG)					\
1938   || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1939       && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1940   || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1941
1942#define REGNO_OK_FOR_BASE_P(REGNO) 					\
1943  ((REGNO) <= STACK_POINTER_REGNUM 					\
1944   || (REGNO) == ARG_POINTER_REGNUM 					\
1945   || (REGNO) == FRAME_POINTER_REGNUM 					\
1946   || (REGNO >= FIRST_REX_INT_REG					\
1947       && (REGNO) <= LAST_REX_INT_REG)					\
1948   || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1949       && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1950   || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1951
1952#define REGNO_OK_FOR_SIREG_P(REGNO) \
1953  ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1954#define REGNO_OK_FOR_DIREG_P(REGNO) \
1955  ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1956
1957/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1958   and check its validity for a certain class.
1959   We have two alternate definitions for each of them.
1960   The usual definition accepts all pseudo regs; the other rejects
1961   them unless they have been allocated suitable hard regs.
1962   The symbol REG_OK_STRICT causes the latter definition to be used.
1963
1964   Most source files want to accept pseudo regs in the hope that
1965   they will get allocated to the class that the insn wants them to be in.
1966   Source files for reload pass need to be strict.
1967   After reload, it makes no difference, since pseudo regs have
1968   been eliminated by then.  */
1969
1970
1971/* Non strict versions, pseudos are ok */
1972#define REG_OK_FOR_INDEX_NONSTRICT_P(X)					\
1973  (REGNO (X) < STACK_POINTER_REGNUM					\
1974   || (REGNO (X) >= FIRST_REX_INT_REG					\
1975       && REGNO (X) <= LAST_REX_INT_REG)				\
1976   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1977
1978#define REG_OK_FOR_BASE_NONSTRICT_P(X)					\
1979  (REGNO (X) <= STACK_POINTER_REGNUM					\
1980   || REGNO (X) == ARG_POINTER_REGNUM					\
1981   || REGNO (X) == FRAME_POINTER_REGNUM 				\
1982   || (REGNO (X) >= FIRST_REX_INT_REG					\
1983       && REGNO (X) <= LAST_REX_INT_REG)				\
1984   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1985
1986/* Strict versions, hard registers only */
1987#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1988#define REG_OK_FOR_BASE_STRICT_P(X)  REGNO_OK_FOR_BASE_P (REGNO (X))
1989
1990#ifndef REG_OK_STRICT
1991#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_NONSTRICT_P (X)
1992#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_NONSTRICT_P (X)
1993
1994#else
1995#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_STRICT_P (X)
1996#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_STRICT_P (X)
1997#endif
1998
1999/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2000   that is a valid memory address for an instruction.
2001   The MODE argument is the machine mode for the MEM expression
2002   that wants to use this address.
2003
2004   The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
2005   except for CONSTANT_ADDRESS_P which is usually machine-independent.
2006
2007   See legitimize_pic_address in i386.c for details as to what
2008   constitutes a legitimate address when -fpic is used.  */
2009
2010#define MAX_REGS_PER_ADDRESS 2
2011
2012#define CONSTANT_ADDRESS_P(X)  constant_address_p (X)
2013
2014/* Nonzero if the constant value X is a legitimate general operand.
2015   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
2016
2017#define LEGITIMATE_CONSTANT_P(X)  legitimate_constant_p (X)
2018
2019#ifdef REG_OK_STRICT
2020#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
2021do {									\
2022  if (legitimate_address_p ((MODE), (X), 1))				\
2023    goto ADDR;								\
2024} while (0)
2025
2026#else
2027#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
2028do {									\
2029  if (legitimate_address_p ((MODE), (X), 0))				\
2030    goto ADDR;								\
2031} while (0)
2032
2033#endif
2034
2035/* If defined, a C expression to determine the base term of address X.
2036   This macro is used in only one place: `find_base_term' in alias.c.
2037
2038   It is always safe for this macro to not be defined.  It exists so
2039   that alias analysis can understand machine-dependent addresses.
2040
2041   The typical use of this macro is to handle addresses containing
2042   a label_ref or symbol_ref within an UNSPEC.  */
2043
2044#define FIND_BASE_TERM(X) ix86_find_base_term (X)
2045
2046/* Try machine-dependent ways of modifying an illegitimate address
2047   to be legitimate.  If we find one, return the new, valid address.
2048   This macro is used in only one place: `memory_address' in explow.c.
2049
2050   OLDX is the address as it was before break_out_memory_refs was called.
2051   In some cases it is useful to look at this to decide what needs to be done.
2052
2053   MODE and WIN are passed so that this macro can use
2054   GO_IF_LEGITIMATE_ADDRESS.
2055
2056   It is always safe for this macro to do nothing.  It exists to recognize
2057   opportunities to optimize the output.
2058
2059   For the 80386, we handle X+REG by loading X into a register R and
2060   using R+REG.  R will go in a general reg and indexing will be used.
2061   However, if REG is a broken-out memory address or multiplication,
2062   nothing needs to be done because REG can certainly go in a general reg.
2063
2064   When -fpic is used, special handling is needed for symbolic references.
2065   See comments by legitimize_pic_address in i386.c for details.  */
2066
2067#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)				\
2068do {									\
2069  (X) = legitimize_address ((X), (OLDX), (MODE));			\
2070  if (memory_address_p ((MODE), (X)))					\
2071    goto WIN;								\
2072} while (0)
2073
2074#define REWRITE_ADDRESS(X) rewrite_address (X)
2075
2076/* Nonzero if the constant value X is a legitimate general operand
2077   when generating PIC code.  It is given that flag_pic is on and
2078   that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
2079
2080#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
2081
2082#define SYMBOLIC_CONST(X)	\
2083  (GET_CODE (X) == SYMBOL_REF						\
2084   || GET_CODE (X) == LABEL_REF						\
2085   || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
2086
2087/* Go to LABEL if ADDR (a legitimate address expression)
2088   has an effect that depends on the machine mode it is used for.
2089   On the 80386, only postdecrement and postincrement address depend thus
2090   (the amount of decrement or increment being the length of the operand).  */
2091#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)	\
2092do {							\
2093 if (GET_CODE (ADDR) == POST_INC			\
2094     || GET_CODE (ADDR) == POST_DEC)			\
2095   goto LABEL;						\
2096} while (0)
2097
2098/* Codes for all the SSE/MMX builtins.  */
2099enum ix86_builtins
2100{
2101  IX86_BUILTIN_ADDPS,
2102  IX86_BUILTIN_ADDSS,
2103  IX86_BUILTIN_DIVPS,
2104  IX86_BUILTIN_DIVSS,
2105  IX86_BUILTIN_MULPS,
2106  IX86_BUILTIN_MULSS,
2107  IX86_BUILTIN_SUBPS,
2108  IX86_BUILTIN_SUBSS,
2109
2110  IX86_BUILTIN_CMPEQPS,
2111  IX86_BUILTIN_CMPLTPS,
2112  IX86_BUILTIN_CMPLEPS,
2113  IX86_BUILTIN_CMPGTPS,
2114  IX86_BUILTIN_CMPGEPS,
2115  IX86_BUILTIN_CMPNEQPS,
2116  IX86_BUILTIN_CMPNLTPS,
2117  IX86_BUILTIN_CMPNLEPS,
2118  IX86_BUILTIN_CMPNGTPS,
2119  IX86_BUILTIN_CMPNGEPS,
2120  IX86_BUILTIN_CMPORDPS,
2121  IX86_BUILTIN_CMPUNORDPS,
2122  IX86_BUILTIN_CMPNEPS,
2123  IX86_BUILTIN_CMPEQSS,
2124  IX86_BUILTIN_CMPLTSS,
2125  IX86_BUILTIN_CMPLESS,
2126  IX86_BUILTIN_CMPNEQSS,
2127  IX86_BUILTIN_CMPNLTSS,
2128  IX86_BUILTIN_CMPNLESS,
2129  IX86_BUILTIN_CMPORDSS,
2130  IX86_BUILTIN_CMPUNORDSS,
2131  IX86_BUILTIN_CMPNESS,
2132
2133  IX86_BUILTIN_COMIEQSS,
2134  IX86_BUILTIN_COMILTSS,
2135  IX86_BUILTIN_COMILESS,
2136  IX86_BUILTIN_COMIGTSS,
2137  IX86_BUILTIN_COMIGESS,
2138  IX86_BUILTIN_COMINEQSS,
2139  IX86_BUILTIN_UCOMIEQSS,
2140  IX86_BUILTIN_UCOMILTSS,
2141  IX86_BUILTIN_UCOMILESS,
2142  IX86_BUILTIN_UCOMIGTSS,
2143  IX86_BUILTIN_UCOMIGESS,
2144  IX86_BUILTIN_UCOMINEQSS,
2145
2146  IX86_BUILTIN_CVTPI2PS,
2147  IX86_BUILTIN_CVTPS2PI,
2148  IX86_BUILTIN_CVTSI2SS,
2149  IX86_BUILTIN_CVTSI642SS,
2150  IX86_BUILTIN_CVTSS2SI,
2151  IX86_BUILTIN_CVTSS2SI64,
2152  IX86_BUILTIN_CVTTPS2PI,
2153  IX86_BUILTIN_CVTTSS2SI,
2154  IX86_BUILTIN_CVTTSS2SI64,
2155
2156  IX86_BUILTIN_MAXPS,
2157  IX86_BUILTIN_MAXSS,
2158  IX86_BUILTIN_MINPS,
2159  IX86_BUILTIN_MINSS,
2160
2161  IX86_BUILTIN_LOADAPS,
2162  IX86_BUILTIN_LOADUPS,
2163  IX86_BUILTIN_STOREAPS,
2164  IX86_BUILTIN_STOREUPS,
2165  IX86_BUILTIN_LOADSS,
2166  IX86_BUILTIN_STORESS,
2167  IX86_BUILTIN_MOVSS,
2168
2169  IX86_BUILTIN_MOVHLPS,
2170  IX86_BUILTIN_MOVLHPS,
2171  IX86_BUILTIN_LOADHPS,
2172  IX86_BUILTIN_LOADLPS,
2173  IX86_BUILTIN_STOREHPS,
2174  IX86_BUILTIN_STORELPS,
2175
2176  IX86_BUILTIN_MASKMOVQ,
2177  IX86_BUILTIN_MOVMSKPS,
2178  IX86_BUILTIN_PMOVMSKB,
2179
2180  IX86_BUILTIN_MOVNTPS,
2181  IX86_BUILTIN_MOVNTQ,
2182
2183  IX86_BUILTIN_LOADDQA,
2184  IX86_BUILTIN_LOADDQU,
2185  IX86_BUILTIN_STOREDQA,
2186  IX86_BUILTIN_STOREDQU,
2187  IX86_BUILTIN_MOVQ,
2188  IX86_BUILTIN_LOADD,
2189  IX86_BUILTIN_STORED,
2190
2191  IX86_BUILTIN_CLRTI,
2192
2193  IX86_BUILTIN_PACKSSWB,
2194  IX86_BUILTIN_PACKSSDW,
2195  IX86_BUILTIN_PACKUSWB,
2196
2197  IX86_BUILTIN_PADDB,
2198  IX86_BUILTIN_PADDW,
2199  IX86_BUILTIN_PADDD,
2200  IX86_BUILTIN_PADDQ,
2201  IX86_BUILTIN_PADDSB,
2202  IX86_BUILTIN_PADDSW,
2203  IX86_BUILTIN_PADDUSB,
2204  IX86_BUILTIN_PADDUSW,
2205  IX86_BUILTIN_PSUBB,
2206  IX86_BUILTIN_PSUBW,
2207  IX86_BUILTIN_PSUBD,
2208  IX86_BUILTIN_PSUBQ,
2209  IX86_BUILTIN_PSUBSB,
2210  IX86_BUILTIN_PSUBSW,
2211  IX86_BUILTIN_PSUBUSB,
2212  IX86_BUILTIN_PSUBUSW,
2213
2214  IX86_BUILTIN_PAND,
2215  IX86_BUILTIN_PANDN,
2216  IX86_BUILTIN_POR,
2217  IX86_BUILTIN_PXOR,
2218
2219  IX86_BUILTIN_PAVGB,
2220  IX86_BUILTIN_PAVGW,
2221
2222  IX86_BUILTIN_PCMPEQB,
2223  IX86_BUILTIN_PCMPEQW,
2224  IX86_BUILTIN_PCMPEQD,
2225  IX86_BUILTIN_PCMPGTB,
2226  IX86_BUILTIN_PCMPGTW,
2227  IX86_BUILTIN_PCMPGTD,
2228
2229  IX86_BUILTIN_PEXTRW,
2230  IX86_BUILTIN_PINSRW,
2231
2232  IX86_BUILTIN_PMADDWD,
2233
2234  IX86_BUILTIN_PMAXSW,
2235  IX86_BUILTIN_PMAXUB,
2236  IX86_BUILTIN_PMINSW,
2237  IX86_BUILTIN_PMINUB,
2238
2239  IX86_BUILTIN_PMULHUW,
2240  IX86_BUILTIN_PMULHW,
2241  IX86_BUILTIN_PMULLW,
2242
2243  IX86_BUILTIN_PSADBW,
2244  IX86_BUILTIN_PSHUFW,
2245
2246  IX86_BUILTIN_PSLLW,
2247  IX86_BUILTIN_PSLLD,
2248  IX86_BUILTIN_PSLLQ,
2249  IX86_BUILTIN_PSRAW,
2250  IX86_BUILTIN_PSRAD,
2251  IX86_BUILTIN_PSRLW,
2252  IX86_BUILTIN_PSRLD,
2253  IX86_BUILTIN_PSRLQ,
2254  IX86_BUILTIN_PSLLWI,
2255  IX86_BUILTIN_PSLLDI,
2256  IX86_BUILTIN_PSLLQI,
2257  IX86_BUILTIN_PSRAWI,
2258  IX86_BUILTIN_PSRADI,
2259  IX86_BUILTIN_PSRLWI,
2260  IX86_BUILTIN_PSRLDI,
2261  IX86_BUILTIN_PSRLQI,
2262
2263  IX86_BUILTIN_PUNPCKHBW,
2264  IX86_BUILTIN_PUNPCKHWD,
2265  IX86_BUILTIN_PUNPCKHDQ,
2266  IX86_BUILTIN_PUNPCKLBW,
2267  IX86_BUILTIN_PUNPCKLWD,
2268  IX86_BUILTIN_PUNPCKLDQ,
2269
2270  IX86_BUILTIN_SHUFPS,
2271
2272  IX86_BUILTIN_RCPPS,
2273  IX86_BUILTIN_RCPSS,
2274  IX86_BUILTIN_RSQRTPS,
2275  IX86_BUILTIN_RSQRTSS,
2276  IX86_BUILTIN_SQRTPS,
2277  IX86_BUILTIN_SQRTSS,
2278
2279  IX86_BUILTIN_UNPCKHPS,
2280  IX86_BUILTIN_UNPCKLPS,
2281
2282  IX86_BUILTIN_ANDPS,
2283  IX86_BUILTIN_ANDNPS,
2284  IX86_BUILTIN_ORPS,
2285  IX86_BUILTIN_XORPS,
2286
2287  IX86_BUILTIN_EMMS,
2288  IX86_BUILTIN_LDMXCSR,
2289  IX86_BUILTIN_STMXCSR,
2290  IX86_BUILTIN_SFENCE,
2291
2292  /* 3DNow! Original */
2293  IX86_BUILTIN_FEMMS,
2294  IX86_BUILTIN_PAVGUSB,
2295  IX86_BUILTIN_PF2ID,
2296  IX86_BUILTIN_PFACC,
2297  IX86_BUILTIN_PFADD,
2298  IX86_BUILTIN_PFCMPEQ,
2299  IX86_BUILTIN_PFCMPGE,
2300  IX86_BUILTIN_PFCMPGT,
2301  IX86_BUILTIN_PFMAX,
2302  IX86_BUILTIN_PFMIN,
2303  IX86_BUILTIN_PFMUL,
2304  IX86_BUILTIN_PFRCP,
2305  IX86_BUILTIN_PFRCPIT1,
2306  IX86_BUILTIN_PFRCPIT2,
2307  IX86_BUILTIN_PFRSQIT1,
2308  IX86_BUILTIN_PFRSQRT,
2309  IX86_BUILTIN_PFSUB,
2310  IX86_BUILTIN_PFSUBR,
2311  IX86_BUILTIN_PI2FD,
2312  IX86_BUILTIN_PMULHRW,
2313
2314  /* 3DNow! Athlon Extensions */
2315  IX86_BUILTIN_PF2IW,
2316  IX86_BUILTIN_PFNACC,
2317  IX86_BUILTIN_PFPNACC,
2318  IX86_BUILTIN_PI2FW,
2319  IX86_BUILTIN_PSWAPDSI,
2320  IX86_BUILTIN_PSWAPDSF,
2321
2322  IX86_BUILTIN_SSE_ZERO,
2323  IX86_BUILTIN_MMX_ZERO,
2324
2325  /* SSE2 */
2326  IX86_BUILTIN_ADDPD,
2327  IX86_BUILTIN_ADDSD,
2328  IX86_BUILTIN_DIVPD,
2329  IX86_BUILTIN_DIVSD,
2330  IX86_BUILTIN_MULPD,
2331  IX86_BUILTIN_MULSD,
2332  IX86_BUILTIN_SUBPD,
2333  IX86_BUILTIN_SUBSD,
2334
2335  IX86_BUILTIN_CMPEQPD,
2336  IX86_BUILTIN_CMPLTPD,
2337  IX86_BUILTIN_CMPLEPD,
2338  IX86_BUILTIN_CMPGTPD,
2339  IX86_BUILTIN_CMPGEPD,
2340  IX86_BUILTIN_CMPNEQPD,
2341  IX86_BUILTIN_CMPNLTPD,
2342  IX86_BUILTIN_CMPNLEPD,
2343  IX86_BUILTIN_CMPNGTPD,
2344  IX86_BUILTIN_CMPNGEPD,
2345  IX86_BUILTIN_CMPORDPD,
2346  IX86_BUILTIN_CMPUNORDPD,
2347  IX86_BUILTIN_CMPNEPD,
2348  IX86_BUILTIN_CMPEQSD,
2349  IX86_BUILTIN_CMPLTSD,
2350  IX86_BUILTIN_CMPLESD,
2351  IX86_BUILTIN_CMPNEQSD,
2352  IX86_BUILTIN_CMPNLTSD,
2353  IX86_BUILTIN_CMPNLESD,
2354  IX86_BUILTIN_CMPORDSD,
2355  IX86_BUILTIN_CMPUNORDSD,
2356  IX86_BUILTIN_CMPNESD,
2357
2358  IX86_BUILTIN_COMIEQSD,
2359  IX86_BUILTIN_COMILTSD,
2360  IX86_BUILTIN_COMILESD,
2361  IX86_BUILTIN_COMIGTSD,
2362  IX86_BUILTIN_COMIGESD,
2363  IX86_BUILTIN_COMINEQSD,
2364  IX86_BUILTIN_UCOMIEQSD,
2365  IX86_BUILTIN_UCOMILTSD,
2366  IX86_BUILTIN_UCOMILESD,
2367  IX86_BUILTIN_UCOMIGTSD,
2368  IX86_BUILTIN_UCOMIGESD,
2369  IX86_BUILTIN_UCOMINEQSD,
2370
2371  IX86_BUILTIN_MAXPD,
2372  IX86_BUILTIN_MAXSD,
2373  IX86_BUILTIN_MINPD,
2374  IX86_BUILTIN_MINSD,
2375
2376  IX86_BUILTIN_ANDPD,
2377  IX86_BUILTIN_ANDNPD,
2378  IX86_BUILTIN_ORPD,
2379  IX86_BUILTIN_XORPD,
2380
2381  IX86_BUILTIN_SQRTPD,
2382  IX86_BUILTIN_SQRTSD,
2383
2384  IX86_BUILTIN_UNPCKHPD,
2385  IX86_BUILTIN_UNPCKLPD,
2386
2387  IX86_BUILTIN_SHUFPD,
2388
2389  IX86_BUILTIN_LOADAPD,
2390  IX86_BUILTIN_LOADUPD,
2391  IX86_BUILTIN_STOREAPD,
2392  IX86_BUILTIN_STOREUPD,
2393  IX86_BUILTIN_LOADSD,
2394  IX86_BUILTIN_STORESD,
2395  IX86_BUILTIN_MOVSD,
2396
2397  IX86_BUILTIN_LOADHPD,
2398  IX86_BUILTIN_LOADLPD,
2399  IX86_BUILTIN_STOREHPD,
2400  IX86_BUILTIN_STORELPD,
2401
2402  IX86_BUILTIN_CVTDQ2PD,
2403  IX86_BUILTIN_CVTDQ2PS,
2404
2405  IX86_BUILTIN_CVTPD2DQ,
2406  IX86_BUILTIN_CVTPD2PI,
2407  IX86_BUILTIN_CVTPD2PS,
2408  IX86_BUILTIN_CVTTPD2DQ,
2409  IX86_BUILTIN_CVTTPD2PI,
2410
2411  IX86_BUILTIN_CVTPI2PD,
2412  IX86_BUILTIN_CVTSI2SD,
2413  IX86_BUILTIN_CVTSI642SD,
2414
2415  IX86_BUILTIN_CVTSD2SI,
2416  IX86_BUILTIN_CVTSD2SI64,
2417  IX86_BUILTIN_CVTSD2SS,
2418  IX86_BUILTIN_CVTSS2SD,
2419  IX86_BUILTIN_CVTTSD2SI,
2420  IX86_BUILTIN_CVTTSD2SI64,
2421
2422  IX86_BUILTIN_CVTPS2DQ,
2423  IX86_BUILTIN_CVTPS2PD,
2424  IX86_BUILTIN_CVTTPS2DQ,
2425
2426  IX86_BUILTIN_MOVNTI,
2427  IX86_BUILTIN_MOVNTPD,
2428  IX86_BUILTIN_MOVNTDQ,
2429
2430  IX86_BUILTIN_SETPD1,
2431  IX86_BUILTIN_SETPD,
2432  IX86_BUILTIN_CLRPD,
2433  IX86_BUILTIN_SETRPD,
2434  IX86_BUILTIN_LOADPD1,
2435  IX86_BUILTIN_LOADRPD,
2436  IX86_BUILTIN_STOREPD1,
2437  IX86_BUILTIN_STORERPD,
2438
2439  /* SSE2 MMX */
2440  IX86_BUILTIN_MASKMOVDQU,
2441  IX86_BUILTIN_MOVMSKPD,
2442  IX86_BUILTIN_PMOVMSKB128,
2443  IX86_BUILTIN_MOVQ2DQ,
2444  IX86_BUILTIN_MOVDQ2Q,
2445
2446  IX86_BUILTIN_PACKSSWB128,
2447  IX86_BUILTIN_PACKSSDW128,
2448  IX86_BUILTIN_PACKUSWB128,
2449
2450  IX86_BUILTIN_PADDB128,
2451  IX86_BUILTIN_PADDW128,
2452  IX86_BUILTIN_PADDD128,
2453  IX86_BUILTIN_PADDQ128,
2454  IX86_BUILTIN_PADDSB128,
2455  IX86_BUILTIN_PADDSW128,
2456  IX86_BUILTIN_PADDUSB128,
2457  IX86_BUILTIN_PADDUSW128,
2458  IX86_BUILTIN_PSUBB128,
2459  IX86_BUILTIN_PSUBW128,
2460  IX86_BUILTIN_PSUBD128,
2461  IX86_BUILTIN_PSUBQ128,
2462  IX86_BUILTIN_PSUBSB128,
2463  IX86_BUILTIN_PSUBSW128,
2464  IX86_BUILTIN_PSUBUSB128,
2465  IX86_BUILTIN_PSUBUSW128,
2466
2467  IX86_BUILTIN_PAND128,
2468  IX86_BUILTIN_PANDN128,
2469  IX86_BUILTIN_POR128,
2470  IX86_BUILTIN_PXOR128,
2471
2472  IX86_BUILTIN_PAVGB128,
2473  IX86_BUILTIN_PAVGW128,
2474
2475  IX86_BUILTIN_PCMPEQB128,
2476  IX86_BUILTIN_PCMPEQW128,
2477  IX86_BUILTIN_PCMPEQD128,
2478  IX86_BUILTIN_PCMPGTB128,
2479  IX86_BUILTIN_PCMPGTW128,
2480  IX86_BUILTIN_PCMPGTD128,
2481
2482  IX86_BUILTIN_PEXTRW128,
2483  IX86_BUILTIN_PINSRW128,
2484
2485  IX86_BUILTIN_PMADDWD128,
2486
2487  IX86_BUILTIN_PMAXSW128,
2488  IX86_BUILTIN_PMAXUB128,
2489  IX86_BUILTIN_PMINSW128,
2490  IX86_BUILTIN_PMINUB128,
2491
2492  IX86_BUILTIN_PMULUDQ,
2493  IX86_BUILTIN_PMULUDQ128,
2494  IX86_BUILTIN_PMULHUW128,
2495  IX86_BUILTIN_PMULHW128,
2496  IX86_BUILTIN_PMULLW128,
2497
2498  IX86_BUILTIN_PSADBW128,
2499  IX86_BUILTIN_PSHUFHW,
2500  IX86_BUILTIN_PSHUFLW,
2501  IX86_BUILTIN_PSHUFD,
2502
2503  IX86_BUILTIN_PSLLW128,
2504  IX86_BUILTIN_PSLLD128,
2505  IX86_BUILTIN_PSLLQ128,
2506  IX86_BUILTIN_PSRAW128,
2507  IX86_BUILTIN_PSRAD128,
2508  IX86_BUILTIN_PSRLW128,
2509  IX86_BUILTIN_PSRLD128,
2510  IX86_BUILTIN_PSRLQ128,
2511  IX86_BUILTIN_PSLLDQI128,
2512  IX86_BUILTIN_PSLLWI128,
2513  IX86_BUILTIN_PSLLDI128,
2514  IX86_BUILTIN_PSLLQI128,
2515  IX86_BUILTIN_PSRAWI128,
2516  IX86_BUILTIN_PSRADI128,
2517  IX86_BUILTIN_PSRLDQI128,
2518  IX86_BUILTIN_PSRLWI128,
2519  IX86_BUILTIN_PSRLDI128,
2520  IX86_BUILTIN_PSRLQI128,
2521
2522  IX86_BUILTIN_PUNPCKHBW128,
2523  IX86_BUILTIN_PUNPCKHWD128,
2524  IX86_BUILTIN_PUNPCKHDQ128,
2525  IX86_BUILTIN_PUNPCKHQDQ128,
2526  IX86_BUILTIN_PUNPCKLBW128,
2527  IX86_BUILTIN_PUNPCKLWD128,
2528  IX86_BUILTIN_PUNPCKLDQ128,
2529  IX86_BUILTIN_PUNPCKLQDQ128,
2530
2531  IX86_BUILTIN_CLFLUSH,
2532  IX86_BUILTIN_MFENCE,
2533  IX86_BUILTIN_LFENCE,
2534
2535  /* Prescott New Instructions.  */
2536  IX86_BUILTIN_ADDSUBPS,
2537  IX86_BUILTIN_HADDPS,
2538  IX86_BUILTIN_HSUBPS,
2539  IX86_BUILTIN_MOVSHDUP,
2540  IX86_BUILTIN_MOVSLDUP,
2541  IX86_BUILTIN_ADDSUBPD,
2542  IX86_BUILTIN_HADDPD,
2543  IX86_BUILTIN_HSUBPD,
2544  IX86_BUILTIN_LOADDDUP,
2545  IX86_BUILTIN_MOVDDUP,
2546  IX86_BUILTIN_LDDQU,
2547
2548  IX86_BUILTIN_MONITOR,
2549  IX86_BUILTIN_MWAIT,
2550
2551  IX86_BUILTIN_MAX
2552};
2553
2554/* Max number of args passed in registers.  If this is more than 3, we will
2555   have problems with ebx (register #4), since it is a caller save register and
2556   is also used as the pic register in ELF.  So for now, don't allow more than
2557   3 registers to be passed in registers.  */
2558
2559#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2560
2561#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : (TARGET_SSE ? 3 : 0))
2562
2563#define MMX_REGPARM_MAX (TARGET_64BIT ? 0 : (TARGET_MMX ? 3 : 0))
2564
2565
2566/* Specify the machine mode that this machine uses
2567   for the index in the tablejump instruction.  */
2568#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
2569
2570/* Define as C expression which evaluates to nonzero if the tablejump
2571   instruction expects the table to contain offsets from the address of the
2572   table.
2573   Do not define this if the table should contain absolute addresses.  */
2574/* #define CASE_VECTOR_PC_RELATIVE 1 */
2575
2576/* Define this as 1 if `char' should by default be signed; else as 0.  */
2577#define DEFAULT_SIGNED_CHAR 1
2578
2579/* Number of bytes moved into a data cache for a single prefetch operation.  */
2580#define PREFETCH_BLOCK ix86_cost->prefetch_block
2581
2582/* Number of prefetch operations that can be done in parallel.  */
2583#define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2584
2585/* Max number of bytes we can move from memory to memory
2586   in one reasonably fast instruction.  */
2587#define MOVE_MAX 16
2588
2589/* MOVE_MAX_PIECES is the number of bytes at a time which we can
2590   move efficiently, as opposed to  MOVE_MAX which is the maximum
2591   number of bytes we can move with a single instruction.  */
2592#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
2593
2594/* If a memory-to-memory move would take MOVE_RATIO or more simple
2595   move-instruction pairs, we will do a movstr or libcall instead.
2596   Increasing the value will always make code faster, but eventually
2597   incurs high cost in increased code size.
2598
2599   If you don't define this, a reasonable default is used.  */
2600
2601#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
2602
2603/* Define if shifts truncate the shift count
2604   which implies one can omit a sign-extension or zero-extension
2605   of a shift count.  */
2606/* On i386, shifts do truncate the count.  But bit opcodes don't.  */
2607
2608/* #define SHIFT_COUNT_TRUNCATED */
2609
2610/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2611   is done just by pretending it is already truncated.  */
2612#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2613
2614/* When a prototype says `char' or `short', really pass an `int'.
2615   (The 386 can't easily push less than an int.)  */
2616
2617#define PROMOTE_PROTOTYPES 1
2618
2619/* A macro to update M and UNSIGNEDP when an object whose type is
2620   TYPE and which has the specified mode and signedness is to be
2621   stored in a register.  This macro is only called when TYPE is a
2622   scalar type.
2623
2624   On i386 it is sometimes useful to promote HImode and QImode
2625   quantities to SImode.  The choice depends on target type.  */
2626
2627#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) 		\
2628do {							\
2629  if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS)	\
2630      || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS))	\
2631    (MODE) = SImode;					\
2632} while (0)
2633
2634/* Specify the machine mode that pointers have.
2635   After generation of rtl, the compiler makes no further distinction
2636   between pointers and any other objects of this machine mode.  */
2637#define Pmode (TARGET_64BIT ? DImode : SImode)
2638
2639/* A function address in a call instruction
2640   is a byte address (for indexing purposes)
2641   so give the MEM rtx a byte's mode.  */
2642#define FUNCTION_MODE QImode
2643
2644/* A C expression for the cost of moving data from a register in class FROM to
2645   one in class TO.  The classes are expressed using the enumeration values
2646   such as `GENERAL_REGS'.  A value of 2 is the default; other values are
2647   interpreted relative to that.
2648
2649   It is not required that the cost always equal 2 when FROM is the same as TO;
2650   on some machines it is expensive to move between registers if they are not
2651   general registers.  */
2652
2653#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2654   ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
2655
2656/* A C expression for the cost of moving data of mode M between a
2657   register and memory.  A value of 2 is the default; this cost is
2658   relative to those in `REGISTER_MOVE_COST'.
2659
2660   If moving between registers and memory is more expensive than
2661   between two registers, you should define this macro to express the
2662   relative cost.  */
2663
2664#define MEMORY_MOVE_COST(MODE, CLASS, IN)	\
2665  ix86_memory_move_cost ((MODE), (CLASS), (IN))
2666
2667/* A C expression for the cost of a branch instruction.  A value of 1
2668   is the default; other values are interpreted relative to that.  */
2669
2670#define BRANCH_COST ix86_branch_cost
2671
2672/* Define this macro as a C expression which is nonzero if accessing
2673   less than a word of memory (i.e. a `char' or a `short') is no
2674   faster than accessing a word of memory, i.e., if such access
2675   require more than one instruction or if there is no difference in
2676   cost between byte and (aligned) word loads.
2677
2678   When this macro is not defined, the compiler will access a field by
2679   finding the smallest containing object; when it is defined, a
2680   fullword load will be used if alignment permits.  Unless bytes
2681   accesses are faster than word accesses, using word accesses is
2682   preferable since it may eliminate subsequent memory access if
2683   subsequent accesses occur to other fields in the same word of the
2684   structure, but to different bytes.  */
2685
2686#define SLOW_BYTE_ACCESS 0
2687
2688/* Nonzero if access to memory by shorts is slow and undesirable.  */
2689#define SLOW_SHORT_ACCESS 0
2690
2691/* Define this macro to be the value 1 if unaligned accesses have a
2692   cost many times greater than aligned accesses, for example if they
2693   are emulated in a trap handler.
2694
2695   When this macro is nonzero, the compiler will act as if
2696   `STRICT_ALIGNMENT' were nonzero when generating code for block
2697   moves.  This can cause significantly more instructions to be
2698   produced.  Therefore, do not set this macro nonzero if unaligned
2699   accesses only add a cycle or two to the time for a memory access.
2700
2701   If the value of this macro is always zero, it need not be defined.  */
2702
2703/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2704
2705/* Define this macro if it is as good or better to call a constant
2706   function address than to call an address kept in a register.
2707
2708   Desirable on the 386 because a CALL with a constant address is
2709   faster than one with a register address.  */
2710
2711#define NO_FUNCTION_CSE
2712
2713/* Define this macro if it is as good or better for a function to call
2714   itself with an explicit address than to call an address kept in a
2715   register.  */
2716
2717#define NO_RECURSIVE_FUNCTION_CSE
2718
2719/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2720   return the mode to be used for the comparison.
2721
2722   For floating-point equality comparisons, CCFPEQmode should be used.
2723   VOIDmode should be used in all other cases.
2724
2725   For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2726   possible, to allow for more combinations.  */
2727
2728#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2729
2730/* Return nonzero if MODE implies a floating point inequality can be
2731   reversed.  */
2732
2733#define REVERSIBLE_CC_MODE(MODE) 1
2734
2735/* A C expression whose value is reversed condition code of the CODE for
2736   comparison done in CC_MODE mode.  */
2737#define REVERSE_CONDITION(CODE, MODE) \
2738  ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
2739   : reverse_condition_maybe_unordered (CODE))
2740
2741
2742/* Control the assembler format that we output, to the extent
2743   this does not vary between assemblers.  */
2744
2745/* How to refer to registers in assembler output.
2746   This sequence is indexed by compiler's hard-register-number (see above).  */
2747
2748/* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2749   For non floating point regs, the following are the HImode names.
2750
2751   For float regs, the stack top is sometimes referred to as "%st(0)"
2752   instead of just "%st".  PRINT_OPERAND handles this with the "y" code.  */
2753
2754#define HI_REGISTER_NAMES						\
2755{"ax","dx","cx","bx","si","di","bp","sp",				\
2756 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)",		\
2757 "argp", "flags", "fpsr", "dirflag", "frame",				\
2758 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7",		\
2759 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7"	,		\
2760 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",			\
2761 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
2762
2763#define REGISTER_NAMES HI_REGISTER_NAMES
2764
2765/* Table of additional register names to use in user input.  */
2766
2767#define ADDITIONAL_REGISTER_NAMES \
2768{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 },	\
2769  { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 },	\
2770  { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 },	\
2771  { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 },	\
2772  { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 },		\
2773  { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 },		\
2774  { "mm0", 8},  { "mm1", 9},  { "mm2", 10}, { "mm3", 11},	\
2775  { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
2776
2777/* Note we are omitting these since currently I don't know how
2778to get gcc to use these, since they want the same but different
2779number as al, and ax.
2780*/
2781
2782#define QI_REGISTER_NAMES \
2783{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2784
2785/* These parallel the array above, and can be used to access bits 8:15
2786   of regs 0 through 3.  */
2787
2788#define QI_HIGH_REGISTER_NAMES \
2789{"ah", "dh", "ch", "bh", }
2790
2791/* How to renumber registers for dbx and gdb.  */
2792
2793#define DBX_REGISTER_NUMBER(N) \
2794  (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2795
2796extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2797extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2798extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2799
2800/* Before the prologue, RA is at 0(%esp).  */
2801#define INCOMING_RETURN_ADDR_RTX \
2802  gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2803
2804/* After the prologue, RA is at -4(AP) in the current frame.  */
2805#define RETURN_ADDR_RTX(COUNT, FRAME)					   \
2806  ((COUNT) == 0								   \
2807   ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2808   : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2809
2810/* PC is dbx register 8; let's use that column for RA.  */
2811#define DWARF_FRAME_RETURN_COLUMN 	(TARGET_64BIT ? 16 : 8)
2812
2813/* Before the prologue, the top of the frame is at 4(%esp).  */
2814#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2815
2816/* Describe how we implement __builtin_eh_return.  */
2817#define EH_RETURN_DATA_REGNO(N)	((N) < 2 ? (N) : INVALID_REGNUM)
2818#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 2)
2819
2820
2821/* Select a format to encode pointers in exception handling data.  CODE
2822   is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
2823   true if the symbol may be affected by dynamic relocations.
2824
2825   ??? All x86 object file formats are capable of representing this.
2826   After all, the relocation needed is the same as for the call insn.
2827   Whether or not a particular assembler allows us to enter such, I
2828   guess we'll have to see.  */
2829#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)       		\
2830  (flag_pic								\
2831    ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
2832   : DW_EH_PE_absptr)
2833
2834/* This is how to output an insn to push a register on the stack.
2835   It need not be very fast code.  */
2836
2837#define ASM_OUTPUT_REG_PUSH(FILE, REGNO)  \
2838do {									\
2839  if (TARGET_64BIT)							\
2840    asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n",				\
2841		 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));	\
2842  else									\
2843    asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]);	\
2844} while (0)
2845
2846/* This is how to output an insn to pop a register from the stack.
2847   It need not be very fast code.  */
2848
2849#define ASM_OUTPUT_REG_POP(FILE, REGNO)  \
2850do {									\
2851  if (TARGET_64BIT)							\
2852    asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n",				\
2853		 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));	\
2854  else									\
2855    asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]);	\
2856} while (0)
2857
2858/* This is how to output an element of a case-vector that is absolute.  */
2859
2860#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
2861  ix86_output_addr_vec_elt ((FILE), (VALUE))
2862
2863/* This is how to output an element of a case-vector that is relative.  */
2864
2865#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2866  ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2867
2868/* Under some conditions we need jump tables in the text section, because
2869   the assembler cannot handle label differences between sections.  */
2870
2871#define JUMP_TABLES_IN_TEXT_SECTION \
2872  (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
2873
2874/* A C statement that outputs an address constant appropriate to
2875   for DWARF debugging.  */
2876
2877#define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
2878  i386_dwarf_output_addr_const ((FILE), (X))
2879
2880/* Emit a dtp-relative reference to a TLS variable.  */
2881
2882#ifdef HAVE_AS_TLS
2883#define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
2884  i386_output_dwarf_dtprel (FILE, SIZE, X)
2885#endif
2886
2887/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2888   and switch back.  For x86 we do this only to save a few bytes that
2889   would otherwise be unused in the text section.  */
2890#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
2891   asm (SECTION_OP "\n\t"				\
2892	"call " USER_LABEL_PREFIX #FUNC "\n"		\
2893	TEXT_SECTION_ASM_OP);
2894
2895/* Print operand X (an rtx) in assembler syntax to file FILE.
2896   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2897   Effect of various CODE letters is described in i386.c near
2898   print_operand function.  */
2899
2900#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2901  ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
2902
2903#define PRINT_OPERAND(FILE, X, CODE)  \
2904  print_operand ((FILE), (X), (CODE))
2905
2906#define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
2907  print_operand_address ((FILE), (ADDR))
2908
2909#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL)	\
2910do {						\
2911  if (! output_addr_const_extra (FILE, (X)))	\
2912    goto FAIL;					\
2913} while (0);
2914
2915/* a letter which is not needed by the normal asm syntax, which
2916   we can use for operand syntax in the extended asm */
2917
2918#define ASM_OPERAND_LETTER '#'
2919#define RET return ""
2920#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
2921
2922/* Define the codes that are matched by predicates in i386.c.  */
2923
2924#define PREDICATE_CODES							\
2925  {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG,			\
2926				SYMBOL_REF, LABEL_REF, CONST}},		\
2927  {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG,			\
2928				SYMBOL_REF, LABEL_REF, CONST}},		\
2929  {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG,			\
2930				SYMBOL_REF, LABEL_REF, CONST}},		\
2931  {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG,		\
2932				     SYMBOL_REF, LABEL_REF, CONST}},	\
2933  {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM,		\
2934			      SYMBOL_REF, LABEL_REF, CONST}},		\
2935  {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM,	\
2936				   SYMBOL_REF, LABEL_REF, CONST}},	\
2937  {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST,	\
2938				       SYMBOL_REF, LABEL_REF}},		\
2939  {"shiftdi_operand", {SUBREG, REG, MEM}},				\
2940  {"const_int_1_31_operand", {CONST_INT}},				\
2941  {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}},			\
2942  {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,	\
2943		       LABEL_REF, SUBREG, REG, MEM}},			\
2944  {"pic_symbolic_operand", {CONST}},					\
2945  {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}},		\
2946  {"sibcall_insn_operand", {REG, SUBREG, SYMBOL_REF}},			\
2947  {"constant_call_address_operand", {SYMBOL_REF, CONST}},		\
2948  {"const0_operand", {CONST_INT, CONST_DOUBLE}},			\
2949  {"const1_operand", {CONST_INT}},					\
2950  {"const248_operand", {CONST_INT}},					\
2951  {"const_0_to_3_operand", {CONST_INT}},				\
2952  {"const_0_to_7_operand", {CONST_INT}},				\
2953  {"const_0_to_15_operand", {CONST_INT}},				\
2954  {"const_0_to_255_operand", {CONST_INT}},				\
2955  {"incdec_operand", {CONST_INT}},					\
2956  {"mmx_reg_operand", {REG}},						\
2957  {"reg_no_sp_operand", {SUBREG, REG}},					\
2958  {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST,		\
2959			SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}},	\
2960  {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}},		\
2961  {"index_register_operand", {SUBREG, REG}},				\
2962  {"flags_reg_operand", {REG}},						\
2963  {"q_regs_operand", {SUBREG, REG}},					\
2964  {"non_q_regs_operand", {SUBREG, REG}},				\
2965  {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
2966				 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE,	\
2967				 GE, UNGE, LTGT, UNEQ}},		\
2968  {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT,	\
2969			       ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT	\
2970			       }},					\
2971  {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU,	\
2972			       GTU, UNORDERED, ORDERED, UNLE, UNLT,	\
2973			       UNGE, UNGT, LTGT, UNEQ }},		\
2974  {"ix86_carry_flag_operator", {LTU, LT, UNLT, GT, UNGT, LE, UNLE,	\
2975				 GE, UNGE, LTGT, UNEQ}},		\
2976  {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}},	\
2977  {"ext_register_operand", {SUBREG, REG}},				\
2978  {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}},			\
2979  {"mult_operator", {MULT}},						\
2980  {"div_operator", {DIV}},						\
2981  {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
2982				 UMIN, UMAX, COMPARE, MINUS, DIV, MOD,	\
2983				 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT,	\
2984				 LSHIFTRT, ROTATERT}},			\
2985  {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}},	\
2986  {"memory_displacement_operand", {MEM}},				\
2987  {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,	\
2988		     LABEL_REF, SUBREG, REG, MEM, AND}},		\
2989  {"long_memory_operand", {MEM}},					\
2990  {"tls_symbolic_operand", {SYMBOL_REF}},				\
2991  {"global_dynamic_symbolic_operand", {SYMBOL_REF}},			\
2992  {"local_dynamic_symbolic_operand", {SYMBOL_REF}},			\
2993  {"initial_exec_symbolic_operand", {SYMBOL_REF}},			\
2994  {"local_exec_symbolic_operand", {SYMBOL_REF}},			\
2995  {"any_fp_register_operand", {REG}},					\
2996  {"register_and_not_any_fp_reg_operand", {REG}},			\
2997  {"fp_register_operand", {REG}},					\
2998  {"register_and_not_fp_reg_operand", {REG}},				\
2999  {"zero_extended_scalar_load_operand", {MEM}},				\
3000  {"vector_move_operand", {CONST_VECTOR, SUBREG, REG, MEM}},		\
3001  {"no_seg_address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
3002			      LABEL_REF, SUBREG, REG, MEM, PLUS, MULT}},
3003
3004/* A list of predicates that do special things with modes, and so
3005   should not elicit warnings for VOIDmode match_operand.  */
3006
3007#define SPECIAL_MODE_PREDICATES \
3008  "ext_register_operand",
3009
3010/* Which processor to schedule for. The cpu attribute defines a list that
3011   mirrors this list, so changes to i386.md must be made at the same time.  */
3012
3013enum processor_type
3014{
3015  PROCESSOR_I386,			/* 80386 */
3016  PROCESSOR_I486,			/* 80486DX, 80486SX, 80486DX[24] */
3017  PROCESSOR_PENTIUM,
3018  PROCESSOR_PENTIUMPRO,
3019  PROCESSOR_K6,
3020  PROCESSOR_ATHLON,
3021  PROCESSOR_PENTIUM4,
3022  PROCESSOR_K8,
3023  PROCESSOR_max
3024};
3025
3026extern enum processor_type ix86_tune;
3027extern const char *ix86_tune_string;
3028
3029extern enum processor_type ix86_arch;
3030extern const char *ix86_arch_string;
3031
3032enum fpmath_unit
3033{
3034  FPMATH_387 = 1,
3035  FPMATH_SSE = 2
3036};
3037
3038extern enum fpmath_unit ix86_fpmath;
3039extern const char *ix86_fpmath_string;
3040
3041enum tls_dialect
3042{
3043  TLS_DIALECT_GNU,
3044  TLS_DIALECT_SUN
3045};
3046
3047extern enum tls_dialect ix86_tls_dialect;
3048extern const char *ix86_tls_dialect_string;
3049
3050enum cmodel {
3051  CM_32,	/* The traditional 32-bit ABI.  */
3052  CM_SMALL,	/* Assumes all code and data fits in the low 31 bits.  */
3053  CM_KERNEL,	/* Assumes all code and data fits in the high 31 bits.  */
3054  CM_MEDIUM,	/* Assumes code fits in the low 31 bits; data unlimited.  */
3055  CM_LARGE,	/* No assumptions.  */
3056  CM_SMALL_PIC	/* Assumes code+data+got/plt fits in a 31 bit region.  */
3057};
3058
3059extern enum cmodel ix86_cmodel;
3060extern const char *ix86_cmodel_string;
3061
3062/* Size of the RED_ZONE area.  */
3063#define RED_ZONE_SIZE 128
3064/* Reserved area of the red zone for temporaries.  */
3065#define RED_ZONE_RESERVE 8
3066
3067enum asm_dialect {
3068  ASM_ATT,
3069  ASM_INTEL
3070};
3071
3072extern const char *ix86_asm_string;
3073extern enum asm_dialect ix86_asm_dialect;
3074
3075extern int ix86_regparm;
3076extern const char *ix86_regparm_string;
3077
3078extern int ix86_preferred_stack_boundary;
3079extern const char *ix86_preferred_stack_boundary_string;
3080
3081extern int ix86_branch_cost;
3082extern const char *ix86_branch_cost_string;
3083
3084extern const char *ix86_debug_arg_string;
3085extern const char *ix86_debug_addr_string;
3086
3087/* Obsoleted by -f options.  Remove before 3.2 ships.  */
3088extern const char *ix86_align_loops_string;
3089extern const char *ix86_align_jumps_string;
3090extern const char *ix86_align_funcs_string;
3091
3092/* Smallest class containing REGNO.  */
3093extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
3094
3095extern rtx ix86_compare_op0;	/* operand 0 for comparisons */
3096extern rtx ix86_compare_op1;	/* operand 1 for comparisons */
3097
3098/* To properly truncate FP values into integers, we need to set i387 control
3099   word.  We can't emit proper mode switching code before reload, as spills
3100   generated by reload may truncate values incorrectly, but we still can avoid
3101   redundant computation of new control word by the mode switching pass.
3102   The fldcw instructions are still emitted redundantly, but this is probably
3103   not going to be noticeable problem, as most CPUs do have fast path for
3104   the sequence.
3105
3106   The machinery is to emit simple truncation instructions and split them
3107   before reload to instructions having USEs of two memory locations that
3108   are filled by this code to old and new control word.
3109
3110   Post-reload pass may be later used to eliminate the redundant fildcw if
3111   needed.  */
3112
3113enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
3114
3115/* Define this macro if the port needs extra instructions inserted
3116   for mode switching in an optimizing compilation.  */
3117
3118#define OPTIMIZE_MODE_SWITCHING(ENTITY) ix86_optimize_mode_switching
3119
3120/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
3121   initializer for an array of integers.  Each initializer element N
3122   refers to an entity that needs mode switching, and specifies the
3123   number of different modes that might need to be set for this
3124   entity.  The position of the initializer in the initializer -
3125   starting counting at zero - determines the integer that is used to
3126   refer to the mode-switched entity in question.  */
3127
3128#define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
3129
3130/* ENTITY is an integer specifying a mode-switched entity.  If
3131   `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
3132   return an integer value not larger than the corresponding element
3133   in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
3134   must be switched into prior to the execution of INSN.  */
3135
3136#define MODE_NEEDED(ENTITY, I)						\
3137  (GET_CODE (I) == CALL_INSN						\
3138   || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 	\
3139				|| GET_CODE (PATTERN (I)) == ASM_INPUT))\
3140   ? FP_CW_UNINITIALIZED						\
3141   : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP		\
3142   ? FP_CW_ANY								\
3143   : FP_CW_STORED)
3144
3145/* This macro specifies the order in which modes for ENTITY are
3146   processed.  0 is the highest priority.  */
3147
3148#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
3149
3150/* Generate one or more insns to set ENTITY to MODE.  HARD_REG_LIVE
3151   is the set of hard registers live at the point where the insn(s)
3152   are to be inserted.  */
3153
3154#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) 			\
3155  ((MODE) == FP_CW_STORED						\
3156   ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1),	\
3157				  assign_386_stack_local (HImode, 2)), 0\
3158   : 0)
3159
3160/* Avoid renaming of stack registers, as doing so in combination with
3161   scheduling just increases amount of live registers at time and in
3162   the turn amount of fxch instructions needed.
3163
3164   ??? Maybe Pentium chips benefits from renaming, someone can try....  */
3165
3166#define HARD_REGNO_RENAME_OK(SRC, TARGET)  \
3167   ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
3168
3169
3170#define DLL_IMPORT_EXPORT_PREFIX '#'
3171
3172#define FASTCALL_PREFIX '@'
3173
3174struct machine_function GTY(())
3175{
3176  struct stack_local_entry *stack_locals;
3177  const char *some_ld_name;
3178  int save_varrargs_registers;
3179  int accesses_prev_frame;
3180  int optimize_mode_switching;
3181  /* Set by ix86_compute_frame_layout and used by prologue/epilogue expander to
3182     determine the style used.  */
3183  int use_fast_prologue_epilogue;
3184  /* Number of saved registers USE_FAST_PROLOGUE_EPILOGUE has been computed
3185     for.  */
3186  int use_fast_prologue_epilogue_nregs;
3187};
3188
3189#define ix86_stack_locals (cfun->machine->stack_locals)
3190#define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
3191#define ix86_optimize_mode_switching (cfun->machine->optimize_mode_switching)
3192
3193/* Control behavior of x86_file_start.  */
3194#define X86_FILE_START_VERSION_DIRECTIVE false
3195#define X86_FILE_START_FLTUSED false
3196
3197/*
3198Local variables:
3199version-control: t
3200End:
3201*/
3202