i386.h revision 107598
1/* Definitions of target machine for GNU compiler for IA-32.
2   Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3   2001, 2002 Free Software Foundation, Inc.
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING.  If not, write to
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA.  */
21
22/* The purpose of this file is to define the characteristics of the i386,
23   independent of assembler syntax or operating system.
24
25   Three other files build on this one to describe a specific assembler syntax:
26   bsd386.h, att386.h, and sun386.h.
27
28   The actual tm.h file for a particular system should include
29   this file, and then the file for the appropriate assembler syntax.
30
31   Many macros that specify assembler syntax are omitted entirely from
32   this file because they really belong in the files for particular
33   assemblers.  These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34   ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35   that start with ASM_ or end in ASM_OP.  */
36
37
38/* $FreeBSD: head/contrib/gcc/config/i386/i386.h 107598 2002-12-04 16:07:58Z obrien $ */
39
40
41/* Stubs for half-pic support if not OSF/1 reference platform.  */
42
43#ifndef HALF_PIC_P
44#define HALF_PIC_P() 0
45#define HALF_PIC_NUMBER_PTRS 0
46#define HALF_PIC_NUMBER_REFS 0
47#define HALF_PIC_ENCODE(DECL)
48#define HALF_PIC_DECLARE(NAME)
49#define HALF_PIC_INIT()	error ("half-pic init called on systems that don't support it")
50#define HALF_PIC_ADDRESS_P(X) 0
51#define HALF_PIC_PTR(X) (X)
52#define HALF_PIC_FINISH(STREAM)
53#endif
54
55/* Define the specific costs for a given cpu */
56
57struct processor_costs {
58  const int add;		/* cost of an add instruction */
59  const int lea;		/* cost of a lea instruction */
60  const int shift_var;		/* variable shift costs */
61  const int shift_const;	/* constant shift costs */
62  const int mult_init;		/* cost of starting a multiply */
63  const int mult_bit;		/* cost of multiply per each bit set */
64  const int divide;		/* cost of a divide/mod */
65  int movsx;			/* The cost of movsx operation.  */
66  int movzx;			/* The cost of movzx operation.  */
67  const int large_insn;		/* insns larger than this cost more */
68  const int move_ratio;		/* The threshold of number of scalar
69				   memory-to-memory move insns.  */
70  const int movzbl_load;	/* cost of loading using movzbl */
71  const int int_load[3];	/* cost of loading integer registers
72				   in QImode, HImode and SImode relative
73				   to reg-reg move (2).  */
74  const int int_store[3];	/* cost of storing integer register
75				   in QImode, HImode and SImode */
76  const int fp_move;		/* cost of reg,reg fld/fst */
77  const int fp_load[3];		/* cost of loading FP register
78				   in SFmode, DFmode and XFmode */
79  const int fp_store[3];	/* cost of storing FP register
80				   in SFmode, DFmode and XFmode */
81  const int mmx_move;		/* cost of moving MMX register.  */
82  const int mmx_load[2];	/* cost of loading MMX register
83				   in SImode and DImode */
84  const int mmx_store[2];	/* cost of storing MMX register
85				   in SImode and DImode */
86  const int sse_move;		/* cost of moving SSE register.  */
87  const int sse_load[3];	/* cost of loading SSE register
88				   in SImode, DImode and TImode*/
89  const int sse_store[3];	/* cost of storing SSE register
90				   in SImode, DImode and TImode*/
91  const int mmxsse_to_integer;	/* cost of moving mmxsse register to
92				   integer and vice versa.  */
93  const int prefetch_block;	/* bytes moved to cache for prefetch.  */
94  const int simultaneous_prefetches; /* number of parallel prefetch
95				   operations.  */
96};
97
98extern const struct processor_costs *ix86_cost;
99
100/* Run-time compilation parameters selecting different hardware subsets.  */
101
102extern int target_flags;
103
104/* Macros used in the machine description to test the flags.  */
105
106/* configure can arrange to make this 2, to force a 486.  */
107
108#ifndef TARGET_CPU_DEFAULT
109#define TARGET_CPU_DEFAULT 0
110#endif
111
112/* Masks for the -m switches */
113#define MASK_80387		0x00000001	/* Hardware floating point */
114#define MASK_RTD		0x00000002	/* Use ret that pops args */
115#define MASK_ALIGN_DOUBLE	0x00000004	/* align doubles to 2 word boundary */
116#define MASK_SVR3_SHLIB		0x00000008	/* Uninit locals into bss */
117#define MASK_IEEE_FP		0x00000010	/* IEEE fp comparisons */
118#define MASK_FLOAT_RETURNS	0x00000020	/* Return float in st(0) */
119#define MASK_NO_FANCY_MATH_387	0x00000040	/* Disable sin, cos, sqrt */
120#define MASK_OMIT_LEAF_FRAME_POINTER 0x080      /* omit leaf frame pointers */
121#define MASK_STACK_PROBE	0x00000100	/* Enable stack probing */
122#define MASK_NO_ALIGN_STROPS	0x00000200	/* Enable aligning of string ops.  */
123#define MASK_INLINE_ALL_STROPS	0x00000400	/* Inline stringops in all cases */
124#define MASK_NO_PUSH_ARGS	0x00000800	/* Use push instructions */
125#define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
126#define MASK_ACCUMULATE_OUTGOING_ARGS_SET 0x00002000
127#define MASK_MMX		0x00004000	/* Support MMX regs/builtins */
128#define MASK_MMX_SET		0x00008000
129#define MASK_SSE		0x00010000	/* Support SSE regs/builtins */
130#define MASK_SSE_SET		0x00020000
131#define MASK_SSE2		0x00040000	/* Support SSE2 regs/builtins */
132#define MASK_SSE2_SET		0x00080000
133#define MASK_3DNOW		0x00100000	/* Support 3Dnow builtins */
134#define MASK_3DNOW_SET		0x00200000
135#define MASK_3DNOW_A		0x00400000	/* Support Athlon 3Dnow builtins */
136#define MASK_3DNOW_A_SET	0x00800000
137#define MASK_128BIT_LONG_DOUBLE 0x01000000	/* long double size is 128bit */
138#define MASK_64BIT		0x02000000	/* Produce 64bit code */
139/* ... overlap with subtarget options starts by 0x04000000.  */
140#define MASK_NO_RED_ZONE	0x04000000	/* Do not use red zone */
141#define MASK_NO_ALIGN_LONG_STRINGS 0x08000000	/* Do not align long strings specially */
142
143/* Use the floating point instructions */
144#define TARGET_80387 (target_flags & MASK_80387)
145
146/* Compile using ret insn that pops args.
147   This will not work unless you use prototypes at least
148   for all functions that can take varying numbers of args.  */
149#define TARGET_RTD (target_flags & MASK_RTD)
150
151/* Align doubles to a two word boundary.  This breaks compatibility with
152   the published ABI's for structures containing doubles, but produces
153   faster code on the pentium.  */
154#define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
155
156/* Use push instructions to save outgoing args.  */
157#define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
158
159/* Accumulate stack adjustments to prologue/epilogue.  */
160#define TARGET_ACCUMULATE_OUTGOING_ARGS \
161 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
162
163/* Put uninitialized locals into bss, not data.
164   Meaningful only on svr3.  */
165#define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
166
167/* Use IEEE floating point comparisons.  These handle correctly the cases
168   where the result of a comparison is unordered.  Normally SIGFPE is
169   generated in such cases, in which case this isn't needed.  */
170#define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
171
172/* Functions that return a floating point value may return that value
173   in the 387 FPU or in 386 integer registers.  If set, this flag causes
174   the 387 to be used, which is compatible with most calling conventions.  */
175#define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
176
177/* Long double is 128bit instead of 96bit, even when only 80bits are used.
178   This mode wastes cache, but avoid misaligned data accesses and simplifies
179   address calculations.  */
180#define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
181
182/* Disable generation of FP sin, cos and sqrt operations for 387.
183   This is because FreeBSD lacks these in the math-emulator-code */
184#define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
185
186/* Don't create frame pointers for leaf functions */
187#define TARGET_OMIT_LEAF_FRAME_POINTER \
188  (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
189
190/* Debug GO_IF_LEGITIMATE_ADDRESS */
191#define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
192
193/* Debug FUNCTION_ARG macros */
194#define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
195
196/* 64bit Sledgehammer mode */
197#ifdef TARGET_BI_ARCH
198#define TARGET_64BIT (target_flags & MASK_64BIT)
199#else
200#ifdef TARGET_64BIT_DEFAULT
201#define TARGET_64BIT 1
202#else
203#define TARGET_64BIT 0
204#endif
205#endif
206
207#define TARGET_386 (ix86_cpu == PROCESSOR_I386)
208#define TARGET_486 (ix86_cpu == PROCESSOR_I486)
209#define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM)
210#define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO)
211#define TARGET_K6 (ix86_cpu == PROCESSOR_K6)
212#define TARGET_ATHLON (ix86_cpu == PROCESSOR_ATHLON)
213#define TARGET_PENTIUM4 (ix86_cpu == PROCESSOR_PENTIUM4)
214
215#define CPUMASK (1 << ix86_cpu)
216extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
217extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
218extern const int x86_branch_hints, x86_unroll_strlen;
219extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
220extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
221extern const int x86_use_cltd, x86_read_modify_write;
222extern const int x86_read_modify, x86_split_long_moves;
223extern const int x86_promote_QImode, x86_single_stringop;
224extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
225extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
226extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
227extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
228extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
229extern const int x86_epilogue_using_move, x86_decompose_lea;
230extern const int x86_arch_always_fancy_math_387;
231extern int x86_prefetch_sse;
232
233#define TARGET_USE_LEAVE (x86_use_leave & CPUMASK)
234#define TARGET_PUSH_MEMORY (x86_push_memory & CPUMASK)
235#define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & CPUMASK)
236#define TARGET_USE_BIT_TEST (x86_use_bit_test & CPUMASK)
237#define TARGET_UNROLL_STRLEN (x86_unroll_strlen & CPUMASK)
238/* For sane SSE instruction set generation we need fcomi instruction.  It is
239   safe to enable all CMOVE instructions.  */
240#define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
241#define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & CPUMASK)
242#define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & CPUMASK)
243#define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & CPUMASK)
244#define TARGET_USE_SAHF ((x86_use_sahf & CPUMASK) && !TARGET_64BIT)
245#define TARGET_MOVX (x86_movx & CPUMASK)
246#define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & CPUMASK)
247#define TARGET_USE_LOOP (x86_use_loop & CPUMASK)
248#define TARGET_USE_FIOP (x86_use_fiop & CPUMASK)
249#define TARGET_USE_MOV0 (x86_use_mov0 & CPUMASK)
250#define TARGET_USE_CLTD (x86_use_cltd & CPUMASK)
251#define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & CPUMASK)
252#define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & CPUMASK)
253#define TARGET_READ_MODIFY (x86_read_modify & CPUMASK)
254#define TARGET_PROMOTE_QImode (x86_promote_QImode & CPUMASK)
255#define TARGET_SINGLE_STRINGOP (x86_single_stringop & CPUMASK)
256#define TARGET_QIMODE_MATH (x86_qimode_math & CPUMASK)
257#define TARGET_HIMODE_MATH (x86_himode_math & CPUMASK)
258#define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & CPUMASK)
259#define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & CPUMASK)
260#define TARGET_ADD_ESP_4 (x86_add_esp_4 & CPUMASK)
261#define TARGET_ADD_ESP_8 (x86_add_esp_8 & CPUMASK)
262#define TARGET_SUB_ESP_4 (x86_sub_esp_4 & CPUMASK)
263#define TARGET_SUB_ESP_8 (x86_sub_esp_8 & CPUMASK)
264#define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & CPUMASK)
265#define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & CPUMASK)
266#define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & CPUMASK)
267#define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & CPUMASK)
268#define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & CPUMASK)
269#define TARGET_DECOMPOSE_LEA (x86_decompose_lea & CPUMASK)
270#define TARGET_PREFETCH_SSE (x86_prefetch_sse)
271
272#define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
273
274#define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
275#define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
276
277#define ASSEMBLER_DIALECT (ix86_asm_dialect)
278
279#define TARGET_SSE ((target_flags & (MASK_SSE | MASK_SSE2)) != 0)
280#define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
281#define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
282#define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
283			     && (ix86_fpmath & FPMATH_387))
284#define TARGET_MMX ((target_flags & MASK_MMX) != 0)
285#define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
286#define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
287
288#define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
289
290#define TARGET_NO_ALIGN_LONG_STRINGS (target_flags & MASK_NO_ALIGN_LONG_STRINGS)
291
292/* WARNING: Do not mark empty strings for translation, as calling
293            gettext on an empty string does NOT return an empty
294            string. */
295
296
297#define TARGET_SWITCHES							      \
298{ { "80387",			 MASK_80387, N_("Use hardware fp") },	      \
299  { "no-80387",			-MASK_80387, N_("Do not use hardware fp") },  \
300  { "hard-float",		 MASK_80387, N_("Use hardware fp") },	      \
301  { "soft-float",		-MASK_80387, N_("Do not use hardware fp") },  \
302  { "no-soft-float",		 MASK_80387, N_("Use hardware fp") },	      \
303  { "386",			 0, "" /*Deprecated.*/},		      \
304  { "486",			 0, "" /*Deprecated.*/},		      \
305  { "pentium",			 0, "" /*Deprecated.*/},		      \
306  { "pentiumpro",		 0, "" /*Deprecated.*/},		      \
307  { "intel-syntax",		 0, "" /*Deprecated.*/},	 	      \
308  { "no-intel-syntax",		 0, "" /*Deprecated.*/},	 	      \
309  { "rtd",			 MASK_RTD,				      \
310    N_("Alternate calling convention") },				      \
311  { "no-rtd",			-MASK_RTD,				      \
312    N_("Use normal calling convention") },				      \
313  { "align-double",		 MASK_ALIGN_DOUBLE,			      \
314    N_("Align some doubles on dword boundary") },			      \
315  { "no-align-double",		-MASK_ALIGN_DOUBLE,			      \
316    N_("Align doubles on word boundary") },				      \
317  { "svr3-shlib",		 MASK_SVR3_SHLIB,			      \
318    N_("Uninitialized locals in .bss")  },				      \
319  { "no-svr3-shlib",		-MASK_SVR3_SHLIB,			      \
320    N_("Uninitialized locals in .data") },				      \
321  { "ieee-fp",			 MASK_IEEE_FP,				      \
322    N_("Use IEEE math for fp comparisons") },				      \
323  { "no-ieee-fp",		-MASK_IEEE_FP,				      \
324    N_("Do not use IEEE math for fp comparisons") },			      \
325  { "fp-ret-in-387",		 MASK_FLOAT_RETURNS,			      \
326    N_("Return values of functions in FPU registers") },		      \
327  { "no-fp-ret-in-387",		-MASK_FLOAT_RETURNS ,			      \
328    N_("Do not return values of functions in FPU registers")},		      \
329  { "no-fancy-math-387",	 MASK_NO_FANCY_MATH_387,		      \
330    N_("Do not generate sin, cos, sqrt for FPU") },			      \
331  { "fancy-math-387",		-MASK_NO_FANCY_MATH_387,		      \
332     N_("Generate sin, cos, sqrt for FPU")},				      \
333  { "omit-leaf-frame-pointer",	 MASK_OMIT_LEAF_FRAME_POINTER,		      \
334    N_("Omit the frame pointer in leaf functions") },			      \
335  { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" },	      \
336  { "stack-arg-probe",		 MASK_STACK_PROBE,			      \
337    N_("Enable stack probing") },					      \
338  { "no-stack-arg-probe",	-MASK_STACK_PROBE, "" },		      \
339  { "windows",			0, 0 /* undocumented */ },		      \
340  { "dll",			0,  0 /* undocumented */ },		      \
341  { "align-stringops",		-MASK_NO_ALIGN_STROPS,			      \
342    N_("Align destination of the string operations") },			      \
343  { "no-align-stringops",	 MASK_NO_ALIGN_STROPS,			      \
344    N_("Do not align destination of the string operations") },		      \
345  { "inline-all-stringops",	 MASK_INLINE_ALL_STROPS,		      \
346    N_("Inline all known string operations") },				      \
347  { "no-inline-all-stringops",	-MASK_INLINE_ALL_STROPS,		      \
348    N_("Do not inline all known string operations") },			      \
349  { "push-args",		-MASK_NO_PUSH_ARGS,			      \
350    N_("Use push instructions to save outgoing arguments") },		      \
351  { "no-push-args",		MASK_NO_PUSH_ARGS,			      \
352    N_("Do not use push instructions to save outgoing arguments") },	      \
353  { "accumulate-outgoing-args",	(MASK_ACCUMULATE_OUTGOING_ARGS		      \
354				 | MASK_ACCUMULATE_OUTGOING_ARGS_SET),	      \
355    N_("Use push instructions to save outgoing arguments") },		      \
356  { "no-accumulate-outgoing-args",MASK_ACCUMULATE_OUTGOING_ARGS_SET,	      \
357    N_("Do not use push instructions to save outgoing arguments") },	      \
358  { "mmx",			 MASK_MMX | MASK_MMX_SET,		      \
359    N_("Support MMX built-in functions") },				      \
360  { "no-mmx",			 -MASK_MMX,				      \
361    N_("Do not support MMX built-in functions") },			      \
362  { "no-mmx",			 MASK_MMX_SET, "" },			      \
363  { "3dnow",                     MASK_3DNOW | MASK_3DNOW_SET,		      \
364    N_("Support 3DNow! built-in functions") },				      \
365  { "no-3dnow",                  -MASK_3DNOW, "" },			      \
366  { "no-3dnow",                  MASK_3DNOW_SET,			      \
367    N_("Do not support 3DNow! built-in functions") },			      \
368  { "sse",			 MASK_SSE | MASK_SSE_SET,		      \
369    N_("Support MMX and SSE built-in functions and code generation") },	      \
370  { "no-sse",			 -MASK_SSE, "" },	 		      \
371  { "no-sse",			 MASK_SSE_SET,				      \
372    N_("Do not support MMX and SSE built-in functions and code generation") },\
373  { "sse2",			 MASK_SSE2 | MASK_SSE2_SET,		      \
374    N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
375  { "no-sse2",			 -MASK_SSE2, "" },			      \
376  { "no-sse2",			 MASK_SSE2_SET,				      \
377    N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") },    \
378  { "128bit-long-double",	 MASK_128BIT_LONG_DOUBLE,		      \
379    N_("sizeof(long double) is 16") },					      \
380  { "96bit-long-double",	-MASK_128BIT_LONG_DOUBLE,		      \
381    N_("sizeof(long double) is 12") },					      \
382  { "64",			MASK_64BIT,				      \
383    N_("Generate 64bit x86-64 code") },					      \
384  { "32",			-MASK_64BIT,				      \
385    N_("Generate 32bit i386 code") },					      \
386  { "red-zone",			-MASK_NO_RED_ZONE,			      \
387    N_("Use red-zone in the x86-64 code") },				      \
388  { "no-red-zone",		MASK_NO_RED_ZONE,			      \
389    N_("Do not use red-zone in the x86-64 code") },			      \
390  { "no-align-long-strings",	 MASK_NO_ALIGN_LONG_STRINGS,		      \
391    N_("Do not align long strings specially") },			      \
392  { "align-long-strings",	-MASK_NO_ALIGN_LONG_STRINGS,		      \
393    N_("Align strings longer than 30 on a 32-byte boundary") },		      \
394  SUBTARGET_SWITCHES							      \
395  { "", TARGET_DEFAULT, 0 }}
396
397#ifdef TARGET_64BIT_DEFAULT
398#define TARGET_DEFAULT (MASK_64BIT | TARGET_SUBTARGET_DEFAULT)
399#else
400#define TARGET_DEFAULT TARGET_SUBTARGET_DEFAULT
401#endif
402
403/* Which processor to schedule for. The cpu attribute defines a list that
404   mirrors this list, so changes to i386.md must be made at the same time.  */
405
406enum processor_type
407{
408  PROCESSOR_I386,			/* 80386 */
409  PROCESSOR_I486,			/* 80486DX, 80486SX, 80486DX[24] */
410  PROCESSOR_PENTIUM,
411  PROCESSOR_PENTIUMPRO,
412  PROCESSOR_K6,
413  PROCESSOR_ATHLON,
414  PROCESSOR_PENTIUM4,
415  PROCESSOR_max
416};
417enum fpmath_unit
418{
419  FPMATH_387 = 1,
420  FPMATH_SSE = 2
421};
422
423extern enum processor_type ix86_cpu;
424extern enum fpmath_unit ix86_fpmath;
425
426extern int ix86_arch;
427
428/* This macro is similar to `TARGET_SWITCHES' but defines names of
429   command options that have values.  Its definition is an
430   initializer with a subgrouping for each command option.
431
432   Each subgrouping contains a string constant, that defines the
433   fixed part of the option name, and the address of a variable.  The
434   variable, type `char *', is set to the variable part of the given
435   option if the fixed part matches.  The actual option name is made
436   by appending `-m' to the specified name.  */
437#define TARGET_OPTIONS						\
438{ { "cpu=",		&ix86_cpu_string,			\
439    N_("Schedule code for given CPU")},				\
440  { "fpmath=",		&ix86_fpmath_string,			\
441    N_("Generate floating point mathematics using given instruction set")},\
442  { "arch=",		&ix86_arch_string,			\
443    N_("Generate code for given CPU")},				\
444  { "regparm=",		&ix86_regparm_string,			\
445    N_("Number of registers used to pass integer arguments") },	\
446  { "align-loops=",	&ix86_align_loops_string,		\
447    N_("Loop code aligned to this power of 2") },		\
448  { "align-jumps=",	&ix86_align_jumps_string,		\
449    N_("Jump targets are aligned to this power of 2") },	\
450  { "align-functions=",	&ix86_align_funcs_string,		\
451    N_("Function starts are aligned to this power of 2") },	\
452  { "preferred-stack-boundary=",				\
453    &ix86_preferred_stack_boundary_string,			\
454    N_("Attempt to keep stack aligned to this power of 2") },	\
455  { "branch-cost=",	&ix86_branch_cost_string,		\
456    N_("Branches are this expensive (1-5, arbitrary units)") },	\
457  { "cmodel=", &ix86_cmodel_string,				\
458    N_("Use given x86-64 code model") },			\
459  { "debug-arg", &ix86_debug_arg_string,			\
460    "" /* Undocumented. */ },					\
461  { "debug-addr", &ix86_debug_addr_string,			\
462    "" /* Undocumented. */ },					\
463  { "asm=", &ix86_asm_string,					\
464    N_("Use given assembler dialect") },			\
465  SUBTARGET_OPTIONS						\
466}
467
468/* Sometimes certain combinations of command options do not make
469   sense on a particular target machine.  You can define a macro
470   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
471   defined, is executed once just after all the command options have
472   been parsed.
473
474   Don't use this macro to turn on various extra optimizations for
475   `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */
476
477#define OVERRIDE_OPTIONS override_options ()
478
479/* These are meant to be redefined in the host dependent files */
480#define SUBTARGET_SWITCHES
481#define SUBTARGET_OPTIONS
482
483/* Define this to change the optimizations performed by default.  */
484#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
485  optimization_options ((LEVEL), (SIZE))
486
487/* Specs for the compiler proper */
488
489#ifndef CC1_CPU_SPEC
490#define CC1_CPU_SPEC "\
491%{!mcpu*: \
492%{m386:-mcpu=i386 \
493%n`-m386' is deprecated. Use `-march=i386' or `-mcpu=i386' instead.\n} \
494%{m486:-mcpu=i486 \
495%n`-m486' is deprecated. Use `-march=i486' or `-mcpu=i486' instead.\n} \
496%{mpentium:-mcpu=pentium \
497%n`-mpentium' is deprecated. Use `-march=pentium' or `-mcpu=pentium' instead.\n} \
498%{mpentiumpro:-mcpu=pentiumpro \
499%n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mcpu=pentiumpro' instead.\n}} \
500%{mintel-syntax:-masm=intel \
501%n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
502%{mno-intel-syntax:-masm=att \
503%n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
504#endif
505
506#define TARGET_CPU_DEFAULT_i386 0
507#define TARGET_CPU_DEFAULT_i486 1
508#define TARGET_CPU_DEFAULT_pentium 2
509#define TARGET_CPU_DEFAULT_pentium_mmx 3
510#define TARGET_CPU_DEFAULT_pentiumpro 4
511#define TARGET_CPU_DEFAULT_pentium2 5
512#define TARGET_CPU_DEFAULT_pentium3 6
513#define TARGET_CPU_DEFAULT_pentium4 7
514#define TARGET_CPU_DEFAULT_k6 8
515#define TARGET_CPU_DEFAULT_k6_2 9
516#define TARGET_CPU_DEFAULT_k6_3 10
517#define TARGET_CPU_DEFAULT_athlon 11
518#define TARGET_CPU_DEFAULT_athlon_sse 12
519
520#define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
521				  "pentiumpro", "pentium2", "pentium3", \
522				  "pentium4", "k6", "k6-2", "k6-3",\
523				  "athlon", "athlon-4"}
524#ifndef CPP_CPU_DEFAULT_SPEC
525#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_i486
526#define CPP_CPU_DEFAULT_SPEC "-D__tune_i486__"
527#endif
528#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium
529#define CPP_CPU_DEFAULT_SPEC "-D__tune_i586__ -D__tune_pentium__"
530#endif
531#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium_mmx
532#define CPP_CPU_DEFAULT_SPEC "-D__tune_i586__ -D__tune_pentium__ -D__tune_pentium_mmx__"
533#endif
534#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentiumpro
535#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__"
536#endif
537#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium2
538#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__\
539-D__tune_pentium2__"
540#endif
541#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium3
542#define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__\
543-D__tune_pentium2__ -D__tune_pentium3__"
544#endif
545#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium4
546#define CPP_CPU_DEFAULT_SPEC "-D__tune_pentium4__"
547#endif
548#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6
549#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__"
550#endif
551#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6_2
552#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__ -D__tune_k6_2__"
553#endif
554#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6_3
555#define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__ -D__tune_k6_3__"
556#endif
557#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_athlon
558#define CPP_CPU_DEFAULT_SPEC "-D__tune_athlon__"
559#endif
560#if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_athlon_sse
561#define CPP_CPU_DEFAULT_SPEC "-D__tune_athlon__ -D__tune_athlon_sse__"
562#endif
563#ifndef CPP_CPU_DEFAULT_SPEC
564#define CPP_CPU_DEFAULT_SPEC "-D__tune_i386__"
565#endif
566#endif /* CPP_CPU_DEFAULT_SPEC */
567
568#ifdef TARGET_BI_ARCH
569#define NO_BUILTIN_SIZE_TYPE
570#define NO_BUILTIN_PTRDIFF_TYPE
571#endif
572
573#ifdef NO_BUILTIN_SIZE_TYPE
574#define CPP_CPU32_SIZE_TYPE_SPEC \
575  " -D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int"
576#define CPP_CPU64_SIZE_TYPE_SPEC \
577  " -D__SIZE_TYPE__=unsigned\\ long\\ int -D__PTRDIFF_TYPE__=long\\ int"
578#else
579#define CPP_CPU32_SIZE_TYPE_SPEC ""
580#define CPP_CPU64_SIZE_TYPE_SPEC ""
581#endif
582
583#define CPP_CPU32_SPEC \
584  "-Acpu=i386 -Amachine=i386 %{!ansi:%{!std=c*:%{!std=i*:-Di386}}} -D__i386 \
585-D__i386__ %(cpp_cpu32sizet)"
586
587#define CPP_CPU64_SPEC \
588  "-Acpu=x86_64 -Amachine=x86_64 -D__x86_64 -D__x86_64__ %(cpp_cpu64sizet)"
589
590#define CPP_CPUCOMMON_SPEC "\
591%{march=i386:%{!mcpu*:-D__tune_i386__ }}\
592%{march=i486:-D__i486 -D__i486__ %{!mcpu*:-D__tune_i486__ }}\
593%{march=pentium|march=i586:-D__i586 -D__i586__ -D__pentium -D__pentium__ \
594  %{!mcpu*:-D__tune_i586__ -D__tune_pentium__ }}\
595%{march=pentium-mmx:-D__i586 -D__i586__ -D__pentium -D__pentium__ \
596  -D__pentium__mmx__ \
597  %{!mcpu*:-D__tune_i586__ -D__tune_pentium__ -D__tune_pentium_mmx__}}\
598%{march=pentiumpro|march=i686|march=pentium2|march=pentium3:-D__i686 -D__i686__ \
599  -D__pentiumpro -D__pentiumpro__ \
600  %{!mcpu*:-D__tune_i686__ -D__tune_pentiumpro__ }}\
601%{march=march=pentium2|march=pentium3: -D__pentium2 -D__pentium2__\
602  %{!mcpu*:-D__tune_pentium2__ }}\
603%{march=pentium3: -D__pentium3 -D__pentium3__\
604  %{!mcpu*:-D__tune_pentium3__ }}\
605%{march=k6:-D__k6 -D__k6__ %{!mcpu*:-D__tune_k6__ }}\
606%{march=k6-2:-D__k6 -D__k6__ -D__k6_2__ \
607  %{!mcpu*:-D__tune_k6__ -D__tune_k6_2__ }}\
608%{march=k6-3:-D__k6 -D__k6__ -D__k6_3__ \
609  %{!mcpu*:-D__tune_k6__ -D__tune_k6_3__ }}\
610%{march=athlon|march=athlon-tbird:-D__athlon -D__athlon__ \
611  %{!mcpu*:-D__tune_athlon__ }}\
612%{march=athlon-4|march=athlon-xp|march=athlon-mp:-D__athlon -D__athlon__ \
613  -D__athlon_sse__ \
614  %{!mcpu*:-D__tune_athlon__ -D__tune_athlon_sse__ }}\
615%{march=pentium4:-D__pentium4 -D__pentium4__ %{!mcpu*:-D__tune_pentium4__ }}\
616%{m386|mcpu=i386:-D__tune_i386__ }\
617%{m486|mcpu=i486:-D__tune_i486__ }\
618%{mpentium|mcpu=pentium|mcpu=i586|mcpu=pentium-mmx:-D__tune_i586__ -D__tune_pentium__ }\
619%{mpentiumpro|mcpu=pentiumpro|mcpu=i686|mcpu=pentium2|mcpu=pentium3:-D__tune_i686__ \
620-D__tune_pentiumpro__ }\
621%{mcpu=k6|mcpu=k6-2|mcpu=k6-3:-D__tune_k6__ }\
622%{mcpu=athlon|mcpu=athlon-tbird|mcpu=athlon-4|mcpu=athlon-xp|mcpu=athlon-mp:\
623-D__tune_athlon__ }\
624%{mcpu=athlon-4|mcpu=athlon-xp|mcpu=athlon-mp:\
625-D__tune_athlon_sse__ }\
626%{mcpu=pentium4:-D__tune_pentium4__ }\
627%{march=athlon-xp|march=athlon-mp|march=pentium3|march=pentium4|msse|msse2:\
628-D__SSE__ }\
629%{march=pentium-mmx|march=k6|march=k6-2|march=k6-3\
630|march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\
631|march=athlon-mp|march=pentium2|march=pentium3|march=pentium4|mmx|msse|m3dnow: -D__MMX__ }\
632%{march=k6-2|march=k6-3\
633|march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\
634|march=athlon-mp|m3dnow: -D__3dNOW__ }\
635%{march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\
636|march=athlon-mp: -D__3dNOW_A__ }\
637%{march=pentium4|msse2: -D__SSE2__ }\
638%{!march*:%{!mcpu*:%{!m386:%{!m486:%{!mpentium*:%(cpp_cpu_default)}}}}}"
639
640#ifndef CPP_CPU_SPEC
641#ifdef TARGET_BI_ARCH
642#ifdef TARGET_64BIT_DEFAULT
643#define CPP_CPU_SPEC "%{m32:%(cpp_cpu32)}%{!m32:%(cpp_cpu64)} %(cpp_cpucommon)"
644#else
645#define CPP_CPU_SPEC "%{m64:%(cpp_cpu64)}%{!m64:%(cpp_cpu32)} %(cpp_cpucommon)"
646#endif
647#else
648#ifdef TARGET_64BIT_DEFAULT
649#define CPP_CPU_SPEC "%(cpp_cpu64) %(cpp_cpucommon)"
650#else
651#define CPP_CPU_SPEC "%(cpp_cpu32) %(cpp_cpucommon)"
652#endif
653#endif
654#endif
655
656#ifndef CC1_SPEC
657#define CC1_SPEC "%(cc1_cpu) "
658#endif
659
660/* This macro defines names of additional specifications to put in the
661   specs that can be used in various specifications like CC1_SPEC.  Its
662   definition is an initializer with a subgrouping for each command option.
663
664   Each subgrouping contains a string constant, that defines the
665   specification name, and a string constant that used by the GNU CC driver
666   program.
667
668   Do not define this macro if it does not need to do anything.  */
669
670#ifndef SUBTARGET_EXTRA_SPECS
671#define SUBTARGET_EXTRA_SPECS
672#endif
673
674#define EXTRA_SPECS							\
675  { "cpp_cpu_default",	CPP_CPU_DEFAULT_SPEC },				\
676  { "cpp_cpu",	CPP_CPU_SPEC },						\
677  { "cpp_cpu32", CPP_CPU32_SPEC },					\
678  { "cpp_cpu64", CPP_CPU64_SPEC },					\
679  { "cpp_cpu32sizet", CPP_CPU32_SIZE_TYPE_SPEC },			\
680  { "cpp_cpu64sizet", CPP_CPU64_SIZE_TYPE_SPEC },			\
681  { "cpp_cpucommon", CPP_CPUCOMMON_SPEC },				\
682  { "cc1_cpu",  CC1_CPU_SPEC },						\
683  SUBTARGET_EXTRA_SPECS
684
685/* target machine storage layout */
686
687/* Define for XFmode or TFmode extended real floating point support.
688   This will automatically cause REAL_ARITHMETIC to be defined.
689
690   The XFmode is specified by i386 ABI, while TFmode may be faster
691   due to alignment and simplifications in the address calculations.
692 */
693#define LONG_DOUBLE_TYPE_SIZE (TARGET_128BIT_LONG_DOUBLE ? 128 : 96)
694#define MAX_LONG_DOUBLE_TYPE_SIZE 128
695#ifdef __x86_64__
696#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
697#else
698#define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 96
699#endif
700/* Tell real.c that this is the 80-bit Intel extended float format
701   packaged in a 128-bit or 96bit entity.  */
702#define INTEL_EXTENDED_IEEE_FORMAT 1
703
704
705#define SHORT_TYPE_SIZE 16
706#define INT_TYPE_SIZE 32
707#define FLOAT_TYPE_SIZE 32
708#ifndef LONG_TYPE_SIZE
709#define LONG_TYPE_SIZE BITS_PER_WORD
710#endif
711#define MAX_WCHAR_TYPE_SIZE 32
712#define DOUBLE_TYPE_SIZE 64
713#define LONG_LONG_TYPE_SIZE 64
714
715#if defined (TARGET_BI_ARCH) || defined (TARGET_64BIT_DEFAULT)
716#define MAX_BITS_PER_WORD 64
717#define MAX_LONG_TYPE_SIZE 64
718#else
719#define MAX_BITS_PER_WORD 32
720#define MAX_LONG_TYPE_SIZE 32
721#endif
722
723/* Define if you don't want extended real, but do want to use the
724   software floating point emulator for REAL_ARITHMETIC and
725   decimal <-> binary conversion.  */
726/* #define REAL_ARITHMETIC */
727
728/* Define this if most significant byte of a word is the lowest numbered.  */
729/* That is true on the 80386.  */
730
731#define BITS_BIG_ENDIAN 0
732
733/* Define this if most significant byte of a word is the lowest numbered.  */
734/* That is not true on the 80386.  */
735#define BYTES_BIG_ENDIAN 0
736
737/* Define this if most significant word of a multiword number is the lowest
738   numbered.  */
739/* Not true for 80386 */
740#define WORDS_BIG_ENDIAN 0
741
742/* number of bits in an addressable storage unit */
743#define BITS_PER_UNIT 8
744
745/* Width in bits of a "word", which is the contents of a machine register.
746   Note that this is not necessarily the width of data type `int';
747   if using 16-bit ints on a 80386, this would still be 32.
748   But on a machine with 16-bit registers, this would be 16.  */
749#define BITS_PER_WORD (TARGET_64BIT ? 64 : 32)
750
751/* Width of a word, in units (bytes).  */
752#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
753#define MIN_UNITS_PER_WORD 4
754
755/* Width in bits of a pointer.
756   See also the macro `Pmode' defined below.  */
757#define POINTER_SIZE BITS_PER_WORD
758
759/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
760#define PARM_BOUNDARY BITS_PER_WORD
761
762/* Boundary (in *bits*) on which stack pointer should be aligned.  */
763#define STACK_BOUNDARY BITS_PER_WORD
764
765/* Boundary (in *bits*) on which the stack pointer preferrs to be
766   aligned; the compiler cannot rely on having this alignment.  */
767#define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
768
769/* As of July 2001, many runtimes to not align the stack properly when
770   entering main.  This causes expand_main_function to forcably align
771   the stack, which results in aligned frames for functions called from
772   main, though it does nothing for the alignment of main itself.  */
773#define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
774  (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
775
776/* Minimum allocation boundary for the code of a function.  */
777#define FUNCTION_BOUNDARY 8
778
779/* C++ stores the virtual bit in the lowest bit of function pointers.  */
780#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_pfn
781
782/* Alignment of field after `int : 0' in a structure.  */
783
784#define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
785
786/* Minimum size in bits of the largest boundary to which any
787   and all fundamental data types supported by the hardware
788   might need to be aligned. No data type wants to be aligned
789   rounder than this.
790
791   Pentium+ preferrs DFmode values to be aligned to 64 bit boundary
792   and Pentium Pro XFmode values at 128 bit boundaries.  */
793
794#define BIGGEST_ALIGNMENT 128
795
796/* Decide whether a variable of mode MODE must be 128 bit aligned.  */
797#define ALIGN_MODE_128(MODE) \
798 ((MODE) == XFmode || (MODE) == TFmode || ((MODE) == TImode) \
799  || (MODE) == V4SFmode	|| (MODE) == V4SImode)
800
801/* The published ABIs say that doubles should be aligned on word
802   boundaries, so lower the aligment for structure fields unless
803   -malign-double is set.  */
804
805/* ??? Blah -- this macro is used directly by libobjc.  Since it
806   supports no vector modes, cut out the complexity and fall back
807   on BIGGEST_FIELD_ALIGNMENT.  */
808#ifdef IN_TARGET_LIBS
809#define BIGGEST_FIELD_ALIGNMENT 32
810#else
811#define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
812   x86_field_alignment (FIELD, COMPUTED)
813#endif
814
815/* If defined, a C expression to compute the alignment given to a
816   constant that is being placed in memory.  EXP is the constant
817   and ALIGN is the alignment that the object would ordinarily have.
818   The value of this macro is used instead of that alignment to align
819   the object.
820
821   If this macro is not defined, then ALIGN is used.
822
823   The typical use of this macro is to increase alignment for string
824   constants to be word aligned so that `strcpy' calls that copy
825   constants can be done inline.  */
826
827#define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
828
829/* If defined, a C expression to compute the alignment for a static
830   variable.  TYPE is the data type, and ALIGN is the alignment that
831   the object would ordinarily have.  The value of this macro is used
832   instead of that alignment to align the object.
833
834   If this macro is not defined, then ALIGN is used.
835
836   One use of this macro is to increase alignment of medium-size
837   data to make it all fit in fewer cache lines.  Another is to
838   cause character arrays to be word-aligned so that `strcpy' calls
839   that copy constants to character arrays can be done inline.  */
840
841#define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
842
843/* If defined, a C expression to compute the alignment for a local
844   variable.  TYPE is the data type, and ALIGN is the alignment that
845   the object would ordinarily have.  The value of this macro is used
846   instead of that alignment to align the object.
847
848   If this macro is not defined, then ALIGN is used.
849
850   One use of this macro is to increase alignment of medium-size
851   data to make it all fit in fewer cache lines.  */
852
853#define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
854
855/* If defined, a C expression that gives the alignment boundary, in
856   bits, of an argument with the specified mode and type.  If it is
857   not defined, `PARM_BOUNDARY' is used for all arguments.  */
858
859#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
860  ix86_function_arg_boundary ((MODE), (TYPE))
861
862/* Set this non-zero if move instructions will actually fail to work
863   when given unaligned data.  */
864#define STRICT_ALIGNMENT 0
865
866/* If bit field type is int, don't let it cross an int,
867   and give entire struct the alignment of an int.  */
868/* Required on the 386 since it doesn't have bitfield insns.  */
869#define PCC_BITFIELD_TYPE_MATTERS 1
870
871/* Standard register usage.  */
872
873/* This processor has special stack-like registers.  See reg-stack.c
874   for details.  */
875
876#define STACK_REGS
877#define IS_STACK_MODE(MODE)					\
878  ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode	\
879   || (MODE) == TFmode)
880
881/* Number of actual hardware registers.
882   The hardware registers are assigned numbers for the compiler
883   from 0 to just below FIRST_PSEUDO_REGISTER.
884   All registers that the compiler knows about must be given numbers,
885   even those that are not normally considered general registers.
886
887   In the 80386 we give the 8 general purpose registers the numbers 0-7.
888   We number the floating point registers 8-15.
889   Note that registers 0-7 can be accessed as a  short or int,
890   while only 0-3 may be used with byte `mov' instructions.
891
892   Reg 16 does not correspond to any hardware register, but instead
893   appears in the RTL as an argument pointer prior to reload, and is
894   eliminated during reloading in favor of either the stack or frame
895   pointer.  */
896
897#define FIRST_PSEUDO_REGISTER 53
898
899/* Number of hardware registers that go into the DWARF-2 unwind info.
900   If not defined, equals FIRST_PSEUDO_REGISTER.  */
901
902#define DWARF_FRAME_REGISTERS 17
903
904/* 1 for registers that have pervasive standard uses
905   and are not available for the register allocator.
906   On the 80386, the stack pointer is such, as is the arg pointer.
907
908   The value is an mask - bit 1 is set for fixed registers
909   for 32bit target, while 2 is set for fixed registers for 64bit.
910   Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
911 */
912#define FIXED_REGISTERS						\
913/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
914{  0, 0, 0, 0, 0, 0, 0, 3, 0,  0,  0,  0,  0,  0,  0,  0,	\
915/*arg,flags,fpsr,dir,frame*/					\
916    3,    3,   3,  3,    3,					\
917/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
918     0,   0,   0,   0,   0,   0,   0,   0,			\
919/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
920     0,   0,   0,   0,   0,   0,   0,   0,			\
921/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
922     1,   1,   1,   1,   1,   1,   1,   1,			\
923/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
924     1,   1,    1,    1,    1,    1,    1,    1}
925
926
927/* 1 for registers not available across function calls.
928   These must include the FIXED_REGISTERS and also any
929   registers that can be used without being saved.
930   The latter must include the registers where values are returned
931   and the register where structure-value addresses are passed.
932   Aside from that, you can include as many other registers as you like.
933
934   The value is an mask - bit 1 is set for call used
935   for 32bit target, while 2 is set for call used for 64bit.
936   Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
937*/
938#define CALL_USED_REGISTERS					\
939/*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/	\
940{  3, 3, 3, 0, 2, 2, 0, 3, 3,  3,  3,  3,  3,  3,  3,  3,	\
941/*arg,flags,fpsr,dir,frame*/					\
942     3,   3,   3,  3,    3,					\
943/*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/			\
944     3,   3,   3,   3,   3,  3,    3,   3,			\
945/*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/			\
946     3,   3,   3,   3,   3,   3,   3,   3,			\
947/*  r8,  r9, r10, r11, r12, r13, r14, r15*/			\
948     3,   3,   3,   3,   1,   1,   1,   1,			\
949/*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/		\
950     3,   3,    3,    3,    3,    3,    3,    3}		\
951
952/* Order in which to allocate registers.  Each register must be
953   listed once, even those in FIXED_REGISTERS.  List frame pointer
954   late and fixed registers last.  Note that, in general, we prefer
955   registers listed in CALL_USED_REGISTERS, keeping the others
956   available for storage of persistent values.
957
958   The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
959   so this is just empty initializer for array.  */
960
961#define REG_ALLOC_ORDER 					\
962{  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
963   18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,	\
964   33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,  \
965   48, 49, 50, 51, 52 }
966
967/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
968   to be rearranged based on a particular function.  When using sse math,
969   we want to allocase SSE before x87 registers and vice vera.  */
970
971#define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
972
973
974/* Macro to conditionally modify fixed_regs/call_used_regs.  */
975#define CONDITIONAL_REGISTER_USAGE					\
976do {									\
977    int i;								\
978    for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)				\
979      {									\
980        fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0;	\
981        call_used_regs[i] = (call_used_regs[i]				\
982			     & (TARGET_64BIT ? 2 : 1)) != 0;		\
983      }									\
984    if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)			\
985      {									\
986	fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
987	call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;			\
988      }									\
989    if (! TARGET_MMX)							\
990      {									\
991	int i;								\
992        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
993          if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i))	\
994	    fixed_regs[i] = call_used_regs[i] = 1;		 	\
995      }									\
996    if (! TARGET_SSE)							\
997      {									\
998	int i;								\
999        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
1000          if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i))	\
1001	    fixed_regs[i] = call_used_regs[i] = 1;		 	\
1002      }									\
1003    if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387)		\
1004      {									\
1005	int i;								\
1006	HARD_REG_SET x;							\
1007        COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]);	\
1008        for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)			\
1009          if (TEST_HARD_REG_BIT (x, i)) 				\
1010	    fixed_regs[i] = call_used_regs[i] = 1;			\
1011      }									\
1012  } while (0)
1013
1014/* Return number of consecutive hard regs needed starting at reg REGNO
1015   to hold something of mode MODE.
1016   This is ordinarily the length in words of a value of mode MODE
1017   but can be less for certain modes in special long registers.
1018
1019   Actually there are no two word move instructions for consecutive
1020   registers.  And only registers 0-3 may have mov byte instructions
1021   applied to them.
1022   */
1023
1024#define HARD_REGNO_NREGS(REGNO, MODE)   \
1025  (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO)	\
1026   ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
1027   : ((MODE) == TFmode							\
1028      ? (TARGET_64BIT ? 2 : 3)						\
1029      : (MODE) == TCmode						\
1030      ? (TARGET_64BIT ? 4 : 6)						\
1031      : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1032
1033#define VALID_SSE_REG_MODE(MODE)					\
1034    ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode	\
1035     || (MODE) == SFmode						\
1036     || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
1037
1038#define VALID_MMX_REG_MODE_3DNOW(MODE) \
1039    ((MODE) == V2SFmode || (MODE) == SFmode)
1040
1041#define VALID_MMX_REG_MODE(MODE)					\
1042    ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode	\
1043     || (MODE) == V2SImode || (MODE) == SImode)
1044
1045#define VECTOR_MODE_SUPPORTED_P(MODE)					\
1046    (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1			\
1047     : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1			\
1048     : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
1049
1050#define VALID_FP_MODE_P(MODE)						\
1051    ((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode		\
1052     || (!TARGET_64BIT && (MODE) == XFmode)				\
1053     || (MODE) == SCmode || (MODE) == DCmode || (MODE) == TCmode	\
1054     || (!TARGET_64BIT && (MODE) == XCmode))
1055
1056#define VALID_INT_MODE_P(MODE)						\
1057    ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode		\
1058     || (MODE) == DImode						\
1059     || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode	\
1060     || (MODE) == CDImode						\
1061     || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode)))
1062
1063/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.  */
1064
1065#define HARD_REGNO_MODE_OK(REGNO, MODE)	\
1066   ix86_hard_regno_mode_ok ((REGNO), (MODE))
1067
1068/* Value is 1 if it is a good idea to tie two pseudo registers
1069   when one has mode MODE1 and one has mode MODE2.
1070   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1071   for any hard reg, then this must be 0 for correct output.  */
1072
1073#define MODES_TIEABLE_P(MODE1, MODE2)				\
1074  ((MODE1) == (MODE2)						\
1075   || (((MODE1) == HImode || (MODE1) == SImode			\
1076	|| ((MODE1) == QImode					\
1077	    && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL))	\
1078        || ((MODE1) == DImode && TARGET_64BIT))			\
1079       && ((MODE2) == HImode || (MODE2) == SImode		\
1080	   || ((MODE1) == QImode				\
1081	       && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL))	\
1082	   || ((MODE2) == DImode && TARGET_64BIT))))
1083
1084
1085/* Specify the modes required to caller save a given hard regno.
1086   We do this on i386 to prevent flags from being saved at all.
1087
1088   Kill any attempts to combine saving of modes.  */
1089
1090#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE)			\
1091  (CC_REGNO_P (REGNO) ? VOIDmode					\
1092   : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode			\
1093   : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS))	\
1094   : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode		\
1095   : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode 	\
1096   : (MODE))
1097/* Specify the registers used for certain standard purposes.
1098   The values of these macros are register numbers.  */
1099
1100/* on the 386 the pc register is %eip, and is not usable as a general
1101   register.  The ordinary mov instructions won't work */
1102/* #define PC_REGNUM  */
1103
1104/* Register to use for pushing function arguments.  */
1105#define STACK_POINTER_REGNUM 7
1106
1107/* Base register for access to local variables of the function.  */
1108#define HARD_FRAME_POINTER_REGNUM 6
1109
1110/* Base register for access to local variables of the function.  */
1111#define FRAME_POINTER_REGNUM 20
1112
1113/* First floating point reg */
1114#define FIRST_FLOAT_REG 8
1115
1116/* First & last stack-like regs */
1117#define FIRST_STACK_REG FIRST_FLOAT_REG
1118#define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1119
1120#define FLAGS_REG 17
1121#define FPSR_REG 18
1122#define DIRFLAG_REG 19
1123
1124#define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1125#define LAST_SSE_REG  (FIRST_SSE_REG + 7)
1126
1127#define FIRST_MMX_REG  (LAST_SSE_REG + 1)
1128#define LAST_MMX_REG   (FIRST_MMX_REG + 7)
1129
1130#define FIRST_REX_INT_REG  (LAST_MMX_REG + 1)
1131#define LAST_REX_INT_REG   (FIRST_REX_INT_REG + 7)
1132
1133#define FIRST_REX_SSE_REG  (LAST_REX_INT_REG + 1)
1134#define LAST_REX_SSE_REG   (FIRST_REX_SSE_REG + 7)
1135
1136/* Value should be nonzero if functions must have frame pointers.
1137   Zero means the frame pointer need not be set up (and parms
1138   may be accessed via the stack pointer) in functions that seem suitable.
1139   This is computed in `reload', in reload1.c.  */
1140#define FRAME_POINTER_REQUIRED  ix86_frame_pointer_required ()
1141
1142/* Override this in other tm.h files to cope with various OS losage
1143   requiring a frame pointer.  */
1144#ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1145#define SUBTARGET_FRAME_POINTER_REQUIRED 0
1146#endif
1147
1148/* Make sure we can access arbitrary call frames.  */
1149#define SETUP_FRAME_ADDRESSES()  ix86_setup_frame_addresses ()
1150
1151/* Base register for access to arguments of the function.  */
1152#define ARG_POINTER_REGNUM 16
1153
1154/* Register in which static-chain is passed to a function.
1155   We do use ECX as static chain register for 32 bit ABI.  On the
1156   64bit ABI, ECX is an argument register, so we use R10 instead.  */
1157#define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1158
1159/* Register to hold the addressing base for position independent
1160   code access to data items.  We don't use PIC pointer for 64bit
1161   mode.  Define the regnum to dummy value to prevent gcc from
1162   pessimizing code dealing with EBX.  */
1163#define PIC_OFFSET_TABLE_REGNUM \
1164  (TARGET_64BIT || !flag_pic ? INVALID_REGNUM : 3)
1165
1166/* Register in which address to store a structure value
1167   arrives in the function.  On the 386, the prologue
1168   copies this from the stack to register %eax.  */
1169#define STRUCT_VALUE_INCOMING 0
1170
1171/* Place in which caller passes the structure value address.
1172   0 means push the value on the stack like an argument.  */
1173#define STRUCT_VALUE 0
1174
1175/* A C expression which can inhibit the returning of certain function
1176   values in registers, based on the type of value.  A nonzero value
1177   says to return the function value in memory, just as large
1178   structures are always returned.  Here TYPE will be a C expression
1179   of type `tree', representing the data type of the value.
1180
1181   Note that values of mode `BLKmode' must be explicitly handled by
1182   this macro.  Also, the option `-fpcc-struct-return' takes effect
1183   regardless of this macro.  On most systems, it is possible to
1184   leave the macro undefined; this causes a default definition to be
1185   used, whose value is the constant 1 for `BLKmode' values, and 0
1186   otherwise.
1187
1188   Do not use this macro to indicate that structures and unions
1189   should always be returned in memory.  You should instead use
1190   `DEFAULT_PCC_STRUCT_RETURN' to indicate this.  */
1191
1192#define RETURN_IN_MEMORY(TYPE) \
1193  ix86_return_in_memory (TYPE)
1194
1195
1196/* Define the classes of registers for register constraints in the
1197   machine description.  Also define ranges of constants.
1198
1199   One of the classes must always be named ALL_REGS and include all hard regs.
1200   If there is more than one class, another class must be named NO_REGS
1201   and contain no registers.
1202
1203   The name GENERAL_REGS must be the name of a class (or an alias for
1204   another name such as ALL_REGS).  This is the class of registers
1205   that is allowed by "g" or "r" in a register constraint.
1206   Also, registers outside this class are allocated only when
1207   instructions express preferences for them.
1208
1209   The classes must be numbered in nondecreasing order; that is,
1210   a larger-numbered class must never be contained completely
1211   in a smaller-numbered class.
1212
1213   For any two classes, it is very desirable that there be another
1214   class that represents their union.
1215
1216   It might seem that class BREG is unnecessary, since no useful 386
1217   opcode needs reg %ebx.  But some systems pass args to the OS in ebx,
1218   and the "b" register constraint is useful in asms for syscalls.
1219
1220   The flags and fpsr registers are in no class.  */
1221
1222enum reg_class
1223{
1224  NO_REGS,
1225  AREG, DREG, CREG, BREG, SIREG, DIREG,
1226  AD_REGS,			/* %eax/%edx for DImode */
1227  Q_REGS,			/* %eax %ebx %ecx %edx */
1228  NON_Q_REGS,			/* %esi %edi %ebp %esp */
1229  INDEX_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp */
1230  LEGACY_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1231  GENERAL_REGS,			/* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1232  FP_TOP_REG, FP_SECOND_REG,	/* %st(0) %st(1) */
1233  FLOAT_REGS,
1234  SSE_REGS,
1235  MMX_REGS,
1236  FP_TOP_SSE_REGS,
1237  FP_SECOND_SSE_REGS,
1238  FLOAT_SSE_REGS,
1239  FLOAT_INT_REGS,
1240  INT_SSE_REGS,
1241  FLOAT_INT_SSE_REGS,
1242  ALL_REGS, LIM_REG_CLASSES
1243};
1244
1245#define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1246
1247#define INTEGER_CLASS_P(CLASS) \
1248  reg_class_subset_p ((CLASS), GENERAL_REGS)
1249#define FLOAT_CLASS_P(CLASS) \
1250  reg_class_subset_p ((CLASS), FLOAT_REGS)
1251#define SSE_CLASS_P(CLASS) \
1252  reg_class_subset_p ((CLASS), SSE_REGS)
1253#define MMX_CLASS_P(CLASS) \
1254  reg_class_subset_p ((CLASS), MMX_REGS)
1255#define MAYBE_INTEGER_CLASS_P(CLASS) \
1256  reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1257#define MAYBE_FLOAT_CLASS_P(CLASS) \
1258  reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1259#define MAYBE_SSE_CLASS_P(CLASS) \
1260  reg_classes_intersect_p (SSE_REGS, (CLASS))
1261#define MAYBE_MMX_CLASS_P(CLASS) \
1262  reg_classes_intersect_p (MMX_REGS, (CLASS))
1263
1264#define Q_CLASS_P(CLASS) \
1265  reg_class_subset_p ((CLASS), Q_REGS)
1266
1267/* Give names of register classes as strings for dump file.   */
1268
1269#define REG_CLASS_NAMES \
1270{  "NO_REGS",				\
1271   "AREG", "DREG", "CREG", "BREG",	\
1272   "SIREG", "DIREG",			\
1273   "AD_REGS",				\
1274   "Q_REGS", "NON_Q_REGS",		\
1275   "INDEX_REGS",			\
1276   "LEGACY_REGS",			\
1277   "GENERAL_REGS",			\
1278   "FP_TOP_REG", "FP_SECOND_REG",	\
1279   "FLOAT_REGS",			\
1280   "SSE_REGS",				\
1281   "MMX_REGS",				\
1282   "FP_TOP_SSE_REGS",			\
1283   "FP_SECOND_SSE_REGS",		\
1284   "FLOAT_SSE_REGS",			\
1285   "FLOAT_INT_REGS",			\
1286   "INT_SSE_REGS",			\
1287   "FLOAT_INT_SSE_REGS",		\
1288   "ALL_REGS" }
1289
1290/* Define which registers fit in which classes.
1291   This is an initializer for a vector of HARD_REG_SET
1292   of length N_REG_CLASSES.  */
1293
1294#define REG_CLASS_CONTENTS						\
1295{     { 0x00,     0x0 },						\
1296      { 0x01,     0x0 }, { 0x02, 0x0 },	/* AREG, DREG */		\
1297      { 0x04,     0x0 }, { 0x08, 0x0 },	/* CREG, BREG */		\
1298      { 0x10,     0x0 }, { 0x20, 0x0 },	/* SIREG, DIREG */		\
1299      { 0x03,     0x0 },		/* AD_REGS */			\
1300      { 0x0f,     0x0 },		/* Q_REGS */			\
1301  { 0x1100f0,  0x1fe0 },		/* NON_Q_REGS */		\
1302      { 0x7f,  0x1fe0 },		/* INDEX_REGS */		\
1303  { 0x1100ff,  0x0 },			/* LEGACY_REGS */		\
1304  { 0x1100ff,  0x1fe0 },		/* GENERAL_REGS */		\
1305     { 0x100,     0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1306    { 0xff00,     0x0 },		/* FLOAT_REGS */		\
1307{ 0x1fe00000,0x1fe000 },		/* SSE_REGS */			\
1308{ 0xe0000000,    0x1f },		/* MMX_REGS */			\
1309{ 0x1fe00100,0x1fe000 },		/* FP_TOP_SSE_REG */		\
1310{ 0x1fe00200,0x1fe000 },		/* FP_SECOND_SSE_REG */		\
1311{ 0x1fe0ff00,0x1fe000 },		/* FLOAT_SSE_REGS */		\
1312   { 0x1ffff,  0x1fe0 },		/* FLOAT_INT_REGS */		\
1313{ 0x1fe100ff,0x1fffe0 },		/* INT_SSE_REGS */		\
1314{ 0x1fe1ffff,0x1fffe0 },		/* FLOAT_INT_SSE_REGS */	\
1315{ 0xffffffff,0x1fffff }							\
1316}
1317
1318/* The same information, inverted:
1319   Return the class number of the smallest class containing
1320   reg number REGNO.  This could be a conditional expression
1321   or could index an array.  */
1322
1323#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1324
1325/* When defined, the compiler allows registers explicitly used in the
1326   rtl to be used as spill registers but prevents the compiler from
1327   extending the lifetime of these registers.  */
1328
1329#define SMALL_REGISTER_CLASSES 1
1330
1331#define QI_REG_P(X) \
1332  (REG_P (X) && REGNO (X) < 4)
1333
1334#define GENERAL_REGNO_P(N) \
1335  ((N) < 8 || REX_INT_REGNO_P (N))
1336
1337#define GENERAL_REG_P(X) \
1338  (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1339
1340#define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1341
1342#define NON_QI_REG_P(X) \
1343  (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1344
1345#define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1346#define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1347
1348#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1349#define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1350#define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1351#define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1352
1353#define SSE_REGNO_P(N) \
1354  (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1355   || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1356
1357#define SSE_REGNO(N) \
1358  ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1359#define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1360
1361#define SSE_FLOAT_MODE_P(MODE) \
1362  ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1363
1364#define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1365#define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1366
1367#define STACK_REG_P(XOP)		\
1368  (REG_P (XOP) &&		       	\
1369   REGNO (XOP) >= FIRST_STACK_REG &&	\
1370   REGNO (XOP) <= LAST_STACK_REG)
1371
1372#define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1373
1374#define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1375
1376#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1377#define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1378
1379/* Indicate whether hard register numbered REG_NO should be converted
1380   to SSA form.  */
1381#define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \
1382  ((REG_NO) == FLAGS_REG || (REG_NO) == ARG_POINTER_REGNUM)
1383
1384/* The class value for index registers, and the one for base regs.  */
1385
1386#define INDEX_REG_CLASS INDEX_REGS
1387#define BASE_REG_CLASS GENERAL_REGS
1388
1389/* Get reg_class from a letter such as appears in the machine description.  */
1390
1391#define REG_CLASS_FROM_LETTER(C)	\
1392  ((C) == 'r' ? GENERAL_REGS :					\
1393   (C) == 'R' ? LEGACY_REGS :					\
1394   (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS :		\
1395   (C) == 'Q' ? Q_REGS :					\
1396   (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387	\
1397		 ? FLOAT_REGS					\
1398		 : NO_REGS) :					\
1399   (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387	\
1400		 ? FP_TOP_REG					\
1401		 : NO_REGS) :					\
1402   (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387	\
1403		 ? FP_SECOND_REG				\
1404		 : NO_REGS) :					\
1405   (C) == 'a' ? AREG :						\
1406   (C) == 'b' ? BREG :						\
1407   (C) == 'c' ? CREG :						\
1408   (C) == 'd' ? DREG :						\
1409   (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS :		\
1410   (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS :		\
1411   (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS :		\
1412   (C) == 'A' ? AD_REGS :					\
1413   (C) == 'D' ? DIREG :						\
1414   (C) == 'S' ? SIREG : NO_REGS)
1415
1416/* The letters I, J, K, L and M in a register constraint string
1417   can be used to stand for particular ranges of immediate operands.
1418   This macro defines what the ranges are.
1419   C is the letter, and VALUE is a constant value.
1420   Return 1 if VALUE is in the range specified by C.
1421
1422   I is for non-DImode shifts.
1423   J is for DImode shifts.
1424   K is for signed imm8 operands.
1425   L is for andsi as zero-extending move.
1426   M is for shifts that can be executed by the "lea" opcode.
1427   N is for immedaite operands for out/in instructions (0-255)
1428   */
1429
1430#define CONST_OK_FOR_LETTER_P(VALUE, C)				\
1431  ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31			\
1432   : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63			\
1433   : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127		\
1434   : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff		\
1435   : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3			\
1436   : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255		\
1437   : 0)
1438
1439/* Similar, but for floating constants, and defining letters G and H.
1440   Here VALUE is the CONST_DOUBLE rtx itself.  We allow constants even if
1441   TARGET_387 isn't set, because the stack register converter may need to
1442   load 0.0 into the function value register.  */
1443
1444#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)  \
1445  ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1446   : ((C) == 'H' ? standard_sse_constant_p (VALUE) : 0))
1447
1448/* A C expression that defines the optional machine-dependent
1449   constraint letters that can be used to segregate specific types of
1450   operands, usually memory references, for the target machine.  Any
1451   letter that is not elsewhere defined and not matched by
1452   `REG_CLASS_FROM_LETTER' may be used.  Normally this macro will not
1453   be defined.
1454
1455   If it is required for a particular target machine, it should
1456   return 1 if VALUE corresponds to the operand type represented by
1457   the constraint letter C.  If C is not defined as an extra
1458   constraint, the value returned should be 0 regardless of VALUE.  */
1459
1460#define EXTRA_CONSTRAINT(VALUE, C)				\
1461  ((C) == 'e' ? x86_64_sign_extended_value (VALUE)		\
1462   : (C) == 'Z' ? x86_64_zero_extended_value (VALUE)		\
1463   : 0)
1464
1465/* Place additional restrictions on the register class to use when it
1466   is necessary to be able to hold a value of mode MODE in a reload
1467   register for which class CLASS would ordinarily be used.  */
1468
1469#define LIMIT_RELOAD_CLASS(MODE, CLASS) 			\
1470  ((MODE) == QImode && !TARGET_64BIT				\
1471   && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS		\
1472       || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS)	\
1473   ? Q_REGS : (CLASS))
1474
1475/* Given an rtx X being reloaded into a reg required to be
1476   in class CLASS, return the class of reg to actually use.
1477   In general this is just CLASS; but on some machines
1478   in some cases it is preferable to use a more restrictive class.
1479   On the 80386 series, we prevent floating constants from being
1480   reloaded into floating registers (since no move-insn can do that)
1481   and we ensure that QImodes aren't reloaded into the esi or edi reg.  */
1482
1483/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1484   QImode must go into class Q_REGS.
1485   Narrow ALL_REGS to GENERAL_REGS.  This supports allowing movsf and
1486   movdf to do mem-to-mem moves through integer regs.  */
1487
1488#define PREFERRED_RELOAD_CLASS(X, CLASS) \
1489   ix86_preferred_reload_class ((X), (CLASS))
1490
1491/* If we are copying between general and FP registers, we need a memory
1492   location. The same is true for SSE and MMX registers.  */
1493#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1494  ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1495
1496/* QImode spills from non-QI registers need a scratch.  This does not
1497   happen often -- the only example so far requires an uninitialized
1498   pseudo.  */
1499
1500#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT)			\
1501  (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS			\
1502    || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode	\
1503   ? Q_REGS : NO_REGS)
1504
1505/* Return the maximum number of consecutive registers
1506   needed to represent mode MODE in a register of class CLASS.  */
1507/* On the 80386, this is the size of MODE in words,
1508   except in the FP regs, where a single reg is always enough.
1509   The TFmodes are really just 80bit values, so we use only 3 registers
1510   to hold them, instead of 4, as the size would suggest.
1511 */
1512#define CLASS_MAX_NREGS(CLASS, MODE)					\
1513 (!MAYBE_INTEGER_CLASS_P (CLASS)					\
1514  ? (COMPLEX_MODE_P (MODE) ? 2 : 1)					\
1515  : ((GET_MODE_SIZE ((MODE) == TFmode ? XFmode : (MODE))		\
1516     + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1517
1518/* A C expression whose value is nonzero if pseudos that have been
1519   assigned to registers of class CLASS would likely be spilled
1520   because registers of CLASS are needed for spill registers.
1521
1522   The default value of this macro returns 1 if CLASS has exactly one
1523   register and zero otherwise.  On most machines, this default
1524   should be used.  Only define this macro to some other expression
1525   if pseudo allocated by `local-alloc.c' end up in memory because
1526   their hard registers were needed for spill registers.  If this
1527   macro returns nonzero for those classes, those pseudos will only
1528   be allocated by `global.c', which knows how to reallocate the
1529   pseudo to another register.  If there would not be another
1530   register available for reallocation, you should not change the
1531   definition of this macro since the only effect of such a
1532   definition would be to slow down register allocation.  */
1533
1534#define CLASS_LIKELY_SPILLED_P(CLASS)					\
1535  (((CLASS) == AREG)							\
1536   || ((CLASS) == DREG)							\
1537   || ((CLASS) == CREG)							\
1538   || ((CLASS) == BREG)							\
1539   || ((CLASS) == AD_REGS)						\
1540   || ((CLASS) == SIREG)						\
1541   || ((CLASS) == DIREG))
1542
1543/* A C statement that adds to CLOBBERS any hard regs the port wishes
1544   to automatically clobber for all asms.
1545
1546   We do this in the new i386 backend to maintain source compatibility
1547   with the old cc0-based compiler.  */
1548
1549#define MD_ASM_CLOBBERS(CLOBBERS)					\
1550  do {									\
1551    (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"),	\
1552			    (CLOBBERS));				\
1553    (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"),	\
1554			    (CLOBBERS));				\
1555    (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"),	\
1556			    (CLOBBERS));				\
1557  } while (0)
1558
1559/* Stack layout; function entry, exit and calling.  */
1560
1561/* Define this if pushing a word on the stack
1562   makes the stack pointer a smaller address.  */
1563#define STACK_GROWS_DOWNWARD
1564
1565/* Define this if the nominal address of the stack frame
1566   is at the high-address end of the local variables;
1567   that is, each additional local variable allocated
1568   goes at a more negative offset in the frame.  */
1569#define FRAME_GROWS_DOWNWARD
1570
1571/* Offset within stack frame to start allocating local variables at.
1572   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1573   first local allocated.  Otherwise, it is the offset to the BEGINNING
1574   of the first local allocated.  */
1575#define STARTING_FRAME_OFFSET 0
1576
1577/* If we generate an insn to push BYTES bytes,
1578   this says how many the stack pointer really advances by.
1579   On 386 pushw decrements by exactly 2 no matter what the position was.
1580   On the 386 there is no pushb; we use pushw instead, and this
1581   has the effect of rounding up to 2.
1582
1583   For 64bit ABI we round up to 8 bytes.
1584 */
1585
1586#define PUSH_ROUNDING(BYTES) \
1587  (TARGET_64BIT		     \
1588   ? (((BYTES) + 7) & (-8))  \
1589   : (((BYTES) + 1) & (-2)))
1590
1591/* If defined, the maximum amount of space required for outgoing arguments will
1592   be computed and placed into the variable
1593   `current_function_outgoing_args_size'.  No space will be pushed onto the
1594   stack for each call; instead, the function prologue should increase the stack
1595   frame size by this amount.  */
1596
1597#define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1598
1599/* If defined, a C expression whose value is nonzero when we want to use PUSH
1600   instructions to pass outgoing arguments.  */
1601
1602#define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1603
1604/* We want the stack and args grow in opposite directions, even if
1605   PUSH_ARGS is 0.  */
1606#define PUSH_ARGS_REVERSED 1
1607
1608/* Offset of first parameter from the argument pointer register value.  */
1609#define FIRST_PARM_OFFSET(FNDECL) 0
1610
1611/* Define this macro if functions should assume that stack space has been
1612   allocated for arguments even when their values are passed in registers.
1613
1614   The value of this macro is the size, in bytes, of the area reserved for
1615   arguments passed in registers for the function represented by FNDECL.
1616
1617   This space can be allocated by the caller, or be a part of the
1618   machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1619   which.  */
1620#define REG_PARM_STACK_SPACE(FNDECL) 0
1621
1622/* Define as a C expression that evaluates to nonzero if we do not know how
1623   to pass TYPE solely in registers.  The file expr.h defines a
1624   definition that is usually appropriate, refer to expr.h for additional
1625   documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1626   computed in the stack and then loaded into a register.  */
1627#define MUST_PASS_IN_STACK(MODE, TYPE)				\
1628  ((TYPE) != 0							\
1629   && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST		\
1630       || TREE_ADDRESSABLE (TYPE)				\
1631       || ((MODE) == TImode)					\
1632       || ((MODE) == BLKmode 					\
1633	   && ! ((TYPE) != 0					\
1634		 && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
1635		 && 0 == (int_size_in_bytes (TYPE)		\
1636			  % (PARM_BOUNDARY / BITS_PER_UNIT)))	\
1637	   && (FUNCTION_ARG_PADDING (MODE, TYPE)		\
1638	       == (BYTES_BIG_ENDIAN ? upward : downward)))))
1639
1640/* Value is the number of bytes of arguments automatically
1641   popped when returning from a subroutine call.
1642   FUNDECL is the declaration node of the function (as a tree),
1643   FUNTYPE is the data type of the function (as a tree),
1644   or for a library call it is an identifier node for the subroutine name.
1645   SIZE is the number of bytes of arguments passed on the stack.
1646
1647   On the 80386, the RTD insn may be used to pop them if the number
1648     of args is fixed, but if the number is variable then the caller
1649     must pop them all.  RTD can't be used for library calls now
1650     because the library is compiled with the Unix compiler.
1651   Use of RTD is a selectable option, since it is incompatible with
1652   standard Unix calling sequences.  If the option is not selected,
1653   the caller must always pop the args.
1654
1655   The attribute stdcall is equivalent to RTD on a per module basis.  */
1656
1657#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1658  ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1659
1660/* Define how to find the value returned by a function.
1661   VALTYPE is the data type of the value (as a tree).
1662   If the precise function being called is known, FUNC is its FUNCTION_DECL;
1663   otherwise, FUNC is 0.  */
1664#define FUNCTION_VALUE(VALTYPE, FUNC)  \
1665   ix86_function_value (VALTYPE)
1666
1667#define FUNCTION_VALUE_REGNO_P(N) \
1668  ix86_function_value_regno_p (N)
1669
1670/* Define how to find the value returned by a library function
1671   assuming the value has mode MODE.  */
1672
1673#define LIBCALL_VALUE(MODE) \
1674  ix86_libcall_value (MODE)
1675
1676/* Define the size of the result block used for communication between
1677   untyped_call and untyped_return.  The block contains a DImode value
1678   followed by the block used by fnsave and frstor.  */
1679
1680#define APPLY_RESULT_SIZE (8+108)
1681
1682/* 1 if N is a possible register number for function argument passing.  */
1683#define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1684
1685/* Define a data type for recording info about an argument list
1686   during the scan of that argument list.  This data type should
1687   hold all necessary information about the function itself
1688   and about the args processed so far, enough to enable macros
1689   such as FUNCTION_ARG to determine where the next arg should go.  */
1690
1691typedef struct ix86_args {
1692  int words;			/* # words passed so far */
1693  int nregs;			/* # registers available for passing */
1694  int regno;			/* next available register number */
1695  int sse_words;		/* # sse words passed so far */
1696  int sse_nregs;		/* # sse registers available for passing */
1697  int sse_regno;		/* next available sse register number */
1698  int maybe_vaarg;		/* true for calls to possibly vardic fncts.  */
1699} CUMULATIVE_ARGS;
1700
1701/* Initialize a variable CUM of type CUMULATIVE_ARGS
1702   for a call to a function whose data type is FNTYPE.
1703   For a library call, FNTYPE is 0.  */
1704
1705#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1706  init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME))
1707
1708/* Update the data in CUM to advance over an argument
1709   of mode MODE and data type TYPE.
1710   (TYPE is null for libcalls where that information may not be available.)  */
1711
1712#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1713  function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1714
1715/* Define where to put the arguments to a function.
1716   Value is zero to push the argument on the stack,
1717   or a hard register in which to store the argument.
1718
1719   MODE is the argument's machine mode.
1720   TYPE is the data type of the argument (as a tree).
1721    This is null for libcalls where that information may
1722    not be available.
1723   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1724    the preceding args and about the function being called.
1725   NAMED is nonzero if this argument is a named parameter
1726    (otherwise it is an extra parameter matching an ellipsis).  */
1727
1728#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1729  function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1730
1731/* For an arg passed partly in registers and partly in memory,
1732   this is the number of registers used.
1733   For args passed entirely in registers or entirely in memory, zero.  */
1734
1735#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
1736
1737/* If PIC, we cannot make sibling calls to global functions
1738   because the PLT requires %ebx live.
1739   If we are returning floats on the register stack, we cannot make
1740   sibling calls to functions that return floats.  (The stack adjust
1741   instruction will wind up after the sibcall jump, and not be executed.) */
1742#define FUNCTION_OK_FOR_SIBCALL(DECL)					\
1743  ((DECL)								\
1744   && (! flag_pic || ! TREE_PUBLIC (DECL))				\
1745   && (! TARGET_FLOAT_RETURNS_IN_80387					\
1746       || ! FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (DECL))))	\
1747       || FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (cfun->decl))))))
1748
1749/* Perform any needed actions needed for a function that is receiving a
1750   variable number of arguments.
1751
1752   CUM is as above.
1753
1754   MODE and TYPE are the mode and type of the current parameter.
1755
1756   PRETEND_SIZE is a variable that should be set to the amount of stack
1757   that must be pushed by the prolog to pretend that our caller pushed
1758   it.
1759
1760   Normally, this macro will push all remaining incoming registers on the
1761   stack and set PRETEND_SIZE to the length of the registers pushed.  */
1762
1763#define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL)	\
1764  ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \
1765			       (NO_RTL))
1766
1767/* Define the `__builtin_va_list' type for the ABI.  */
1768#define BUILD_VA_LIST_TYPE(VALIST) \
1769  ((VALIST) = ix86_build_va_list ())
1770
1771/* Implement `va_start' for varargs and stdarg.  */
1772#define EXPAND_BUILTIN_VA_START(STDARG, VALIST, NEXTARG) \
1773  ix86_va_start ((STDARG), (VALIST), (NEXTARG))
1774
1775/* Implement `va_arg'.  */
1776#define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
1777  ix86_va_arg ((VALIST), (TYPE))
1778
1779/* This macro is invoked at the end of compilation.  It is used here to
1780   output code for -fpic that will load the return address into %ebx.  */
1781
1782#undef ASM_FILE_END
1783#define ASM_FILE_END(FILE)  ix86_asm_file_end (FILE)
1784
1785/* Output assembler code to FILE to increment profiler label # LABELNO
1786   for profiling a function entry.  */
1787
1788#define FUNCTION_PROFILER(FILE, LABELNO)				\
1789do {									\
1790  if (flag_pic)								\
1791    {									\
1792      fprintf ((FILE), "\tleal\t%sP%d@GOTOFF(%%ebx),%%edx\n",		\
1793	       LPREFIX, (LABELNO));					\
1794      fprintf ((FILE), "\tcall\t*_mcount@GOT(%%ebx)\n");		\
1795    }									\
1796  else									\
1797    {									\
1798      fprintf ((FILE), "\tmovl\t$%sP%d,%%edx\n", LPREFIX, (LABELNO));	\
1799      fprintf ((FILE), "\tcall\t_mcount\n");				\
1800    }									\
1801} while (0)
1802
1803/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1804   the stack pointer does not matter.  The value is tested only in
1805   functions that have frame pointers.
1806   No definition is equivalent to always zero.  */
1807/* Note on the 386 it might be more efficient not to define this since
1808   we have to restore it ourselves from the frame pointer, in order to
1809   use pop */
1810
1811#define EXIT_IGNORE_STACK 1
1812
1813/* Output assembler code for a block containing the constant parts
1814   of a trampoline, leaving space for the variable parts.  */
1815
1816/* On the 386, the trampoline contains two instructions:
1817     mov #STATIC,ecx
1818     jmp FUNCTION
1819   The trampoline is generated entirely at runtime.  The operand of JMP
1820   is the address of FUNCTION relative to the instruction following the
1821   JMP (which is 5 bytes long).  */
1822
1823/* Length in units of the trampoline for entering a nested function.  */
1824
1825#define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1826
1827/* Emit RTL insns to initialize the variable parts of a trampoline.
1828   FNADDR is an RTX for the address of the function's pure code.
1829   CXT is an RTX for the static chain value for the function.  */
1830
1831#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1832  x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1833
1834/* Definitions for register eliminations.
1835
1836   This is an array of structures.  Each structure initializes one pair
1837   of eliminable registers.  The "from" register number is given first,
1838   followed by "to".  Eliminations of the same "from" register are listed
1839   in order of preference.
1840
1841   There are two registers that can always be eliminated on the i386.
1842   The frame pointer and the arg pointer can be replaced by either the
1843   hard frame pointer or to the stack pointer, depending upon the
1844   circumstances.  The hard frame pointer is not used before reload and
1845   so it is not eligible for elimination.  */
1846
1847#define ELIMINABLE_REGS					\
1848{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1849 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},	\
1850 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},		\
1851 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}	\
1852
1853/* Given FROM and TO register numbers, say whether this elimination is
1854   allowed.  Frame pointer elimination is automatically handled.
1855
1856   All other eliminations are valid.  */
1857
1858#define CAN_ELIMINATE(FROM, TO) \
1859  ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1860
1861/* Define the offset between two registers, one to be eliminated, and the other
1862   its replacement, at the start of a routine.  */
1863
1864#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1865  ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1866
1867/* Addressing modes, and classification of registers for them.  */
1868
1869/* #define HAVE_POST_INCREMENT 0 */
1870/* #define HAVE_POST_DECREMENT 0 */
1871
1872/* #define HAVE_PRE_DECREMENT 0 */
1873/* #define HAVE_PRE_INCREMENT 0 */
1874
1875/* Macros to check register numbers against specific register classes.  */
1876
1877/* These assume that REGNO is a hard or pseudo reg number.
1878   They give nonzero only if REGNO is a hard reg of the suitable class
1879   or a pseudo reg currently allocated to a suitable hard reg.
1880   Since they use reg_renumber, they are safe only once reg_renumber
1881   has been allocated, which happens in local-alloc.c.  */
1882
1883#define REGNO_OK_FOR_INDEX_P(REGNO) 					\
1884  ((REGNO) < STACK_POINTER_REGNUM 					\
1885   || (REGNO >= FIRST_REX_INT_REG					\
1886       && (REGNO) <= LAST_REX_INT_REG)					\
1887   || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1888       && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1889   || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1890
1891#define REGNO_OK_FOR_BASE_P(REGNO) 					\
1892  ((REGNO) <= STACK_POINTER_REGNUM 					\
1893   || (REGNO) == ARG_POINTER_REGNUM 					\
1894   || (REGNO) == FRAME_POINTER_REGNUM 					\
1895   || (REGNO >= FIRST_REX_INT_REG					\
1896       && (REGNO) <= LAST_REX_INT_REG)					\
1897   || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG		\
1898       && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG)		\
1899   || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1900
1901#define REGNO_OK_FOR_SIREG_P(REGNO) \
1902  ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1903#define REGNO_OK_FOR_DIREG_P(REGNO) \
1904  ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1905
1906/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1907   and check its validity for a certain class.
1908   We have two alternate definitions for each of them.
1909   The usual definition accepts all pseudo regs; the other rejects
1910   them unless they have been allocated suitable hard regs.
1911   The symbol REG_OK_STRICT causes the latter definition to be used.
1912
1913   Most source files want to accept pseudo regs in the hope that
1914   they will get allocated to the class that the insn wants them to be in.
1915   Source files for reload pass need to be strict.
1916   After reload, it makes no difference, since pseudo regs have
1917   been eliminated by then.  */
1918
1919
1920/* Non strict versions, pseudos are ok */
1921#define REG_OK_FOR_INDEX_NONSTRICT_P(X)					\
1922  (REGNO (X) < STACK_POINTER_REGNUM					\
1923   || (REGNO (X) >= FIRST_REX_INT_REG					\
1924       && REGNO (X) <= LAST_REX_INT_REG)				\
1925   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1926
1927#define REG_OK_FOR_BASE_NONSTRICT_P(X)					\
1928  (REGNO (X) <= STACK_POINTER_REGNUM					\
1929   || REGNO (X) == ARG_POINTER_REGNUM					\
1930   || REGNO (X) == FRAME_POINTER_REGNUM 				\
1931   || (REGNO (X) >= FIRST_REX_INT_REG					\
1932       && REGNO (X) <= LAST_REX_INT_REG)				\
1933   || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1934
1935/* Strict versions, hard registers only */
1936#define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1937#define REG_OK_FOR_BASE_STRICT_P(X)  REGNO_OK_FOR_BASE_P (REGNO (X))
1938
1939#ifndef REG_OK_STRICT
1940#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_NONSTRICT_P (X)
1941#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_NONSTRICT_P (X)
1942
1943#else
1944#define REG_OK_FOR_INDEX_P(X)  REG_OK_FOR_INDEX_STRICT_P (X)
1945#define REG_OK_FOR_BASE_P(X)   REG_OK_FOR_BASE_STRICT_P (X)
1946#endif
1947
1948/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1949   that is a valid memory address for an instruction.
1950   The MODE argument is the machine mode for the MEM expression
1951   that wants to use this address.
1952
1953   The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1954   except for CONSTANT_ADDRESS_P which is usually machine-independent.
1955
1956   See legitimize_pic_address in i386.c for details as to what
1957   constitutes a legitimate address when -fpic is used.  */
1958
1959#define MAX_REGS_PER_ADDRESS 2
1960
1961#define CONSTANT_ADDRESS_P(X)					\
1962  (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF	\
1963   || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST	\
1964   || GET_CODE (X) == CONST_DOUBLE)
1965
1966/* Nonzero if the constant value X is a legitimate general operand.
1967   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
1968
1969#define LEGITIMATE_CONSTANT_P(X) 1
1970
1971#ifdef REG_OK_STRICT
1972#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
1973do {									\
1974  if (legitimate_address_p ((MODE), (X), 1))				\
1975    goto ADDR;								\
1976} while (0)
1977
1978#else
1979#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
1980do {									\
1981  if (legitimate_address_p ((MODE), (X), 0))				\
1982    goto ADDR;								\
1983} while (0)
1984
1985#endif
1986
1987/* If defined, a C expression to determine the base term of address X.
1988   This macro is used in only one place: `find_base_term' in alias.c.
1989
1990   It is always safe for this macro to not be defined.  It exists so
1991   that alias analysis can understand machine-dependent addresses.
1992
1993   The typical use of this macro is to handle addresses containing
1994   a label_ref or symbol_ref within an UNSPEC.  */
1995
1996#define FIND_BASE_TERM(X) ix86_find_base_term (X)
1997
1998/* Try machine-dependent ways of modifying an illegitimate address
1999   to be legitimate.  If we find one, return the new, valid address.
2000   This macro is used in only one place: `memory_address' in explow.c.
2001
2002   OLDX is the address as it was before break_out_memory_refs was called.
2003   In some cases it is useful to look at this to decide what needs to be done.
2004
2005   MODE and WIN are passed so that this macro can use
2006   GO_IF_LEGITIMATE_ADDRESS.
2007
2008   It is always safe for this macro to do nothing.  It exists to recognize
2009   opportunities to optimize the output.
2010
2011   For the 80386, we handle X+REG by loading X into a register R and
2012   using R+REG.  R will go in a general reg and indexing will be used.
2013   However, if REG is a broken-out memory address or multiplication,
2014   nothing needs to be done because REG can certainly go in a general reg.
2015
2016   When -fpic is used, special handling is needed for symbolic references.
2017   See comments by legitimize_pic_address in i386.c for details.  */
2018
2019#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)				\
2020do {									\
2021  (X) = legitimize_address ((X), (OLDX), (MODE));			\
2022  if (memory_address_p ((MODE), (X)))					\
2023    goto WIN;								\
2024} while (0)
2025
2026#define REWRITE_ADDRESS(X) rewrite_address (X)
2027
2028/* Nonzero if the constant value X is a legitimate general operand
2029   when generating PIC code.  It is given that flag_pic is on and
2030   that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */
2031
2032#define LEGITIMATE_PIC_OPERAND_P(X)		\
2033  (! SYMBOLIC_CONST (X)				\
2034   || legitimate_pic_address_disp_p (X))
2035
2036#define SYMBOLIC_CONST(X)	\
2037  (GET_CODE (X) == SYMBOL_REF						\
2038   || GET_CODE (X) == LABEL_REF						\
2039   || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
2040
2041/* Go to LABEL if ADDR (a legitimate address expression)
2042   has an effect that depends on the machine mode it is used for.
2043   On the 80386, only postdecrement and postincrement address depend thus
2044   (the amount of decrement or increment being the length of the operand).  */
2045#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)	\
2046do {							\
2047 if (GET_CODE (ADDR) == POST_INC			\
2048     || GET_CODE (ADDR) == POST_DEC)			\
2049   goto LABEL;						\
2050} while (0)
2051
2052/* Codes for all the SSE/MMX builtins.  */
2053enum ix86_builtins
2054{
2055  IX86_BUILTIN_ADDPS,
2056  IX86_BUILTIN_ADDSS,
2057  IX86_BUILTIN_DIVPS,
2058  IX86_BUILTIN_DIVSS,
2059  IX86_BUILTIN_MULPS,
2060  IX86_BUILTIN_MULSS,
2061  IX86_BUILTIN_SUBPS,
2062  IX86_BUILTIN_SUBSS,
2063
2064  IX86_BUILTIN_CMPEQPS,
2065  IX86_BUILTIN_CMPLTPS,
2066  IX86_BUILTIN_CMPLEPS,
2067  IX86_BUILTIN_CMPGTPS,
2068  IX86_BUILTIN_CMPGEPS,
2069  IX86_BUILTIN_CMPNEQPS,
2070  IX86_BUILTIN_CMPNLTPS,
2071  IX86_BUILTIN_CMPNLEPS,
2072  IX86_BUILTIN_CMPNGTPS,
2073  IX86_BUILTIN_CMPNGEPS,
2074  IX86_BUILTIN_CMPORDPS,
2075  IX86_BUILTIN_CMPUNORDPS,
2076  IX86_BUILTIN_CMPNEPS,
2077  IX86_BUILTIN_CMPEQSS,
2078  IX86_BUILTIN_CMPLTSS,
2079  IX86_BUILTIN_CMPLESS,
2080  IX86_BUILTIN_CMPNEQSS,
2081  IX86_BUILTIN_CMPNLTSS,
2082  IX86_BUILTIN_CMPNLESS,
2083  IX86_BUILTIN_CMPORDSS,
2084  IX86_BUILTIN_CMPUNORDSS,
2085  IX86_BUILTIN_CMPNESS,
2086
2087  IX86_BUILTIN_COMIEQSS,
2088  IX86_BUILTIN_COMILTSS,
2089  IX86_BUILTIN_COMILESS,
2090  IX86_BUILTIN_COMIGTSS,
2091  IX86_BUILTIN_COMIGESS,
2092  IX86_BUILTIN_COMINEQSS,
2093  IX86_BUILTIN_UCOMIEQSS,
2094  IX86_BUILTIN_UCOMILTSS,
2095  IX86_BUILTIN_UCOMILESS,
2096  IX86_BUILTIN_UCOMIGTSS,
2097  IX86_BUILTIN_UCOMIGESS,
2098  IX86_BUILTIN_UCOMINEQSS,
2099
2100  IX86_BUILTIN_CVTPI2PS,
2101  IX86_BUILTIN_CVTPS2PI,
2102  IX86_BUILTIN_CVTSI2SS,
2103  IX86_BUILTIN_CVTSS2SI,
2104  IX86_BUILTIN_CVTTPS2PI,
2105  IX86_BUILTIN_CVTTSS2SI,
2106
2107  IX86_BUILTIN_MAXPS,
2108  IX86_BUILTIN_MAXSS,
2109  IX86_BUILTIN_MINPS,
2110  IX86_BUILTIN_MINSS,
2111
2112  IX86_BUILTIN_LOADAPS,
2113  IX86_BUILTIN_LOADUPS,
2114  IX86_BUILTIN_STOREAPS,
2115  IX86_BUILTIN_STOREUPS,
2116  IX86_BUILTIN_LOADSS,
2117  IX86_BUILTIN_STORESS,
2118  IX86_BUILTIN_MOVSS,
2119
2120  IX86_BUILTIN_MOVHLPS,
2121  IX86_BUILTIN_MOVLHPS,
2122  IX86_BUILTIN_LOADHPS,
2123  IX86_BUILTIN_LOADLPS,
2124  IX86_BUILTIN_STOREHPS,
2125  IX86_BUILTIN_STORELPS,
2126
2127  IX86_BUILTIN_MASKMOVQ,
2128  IX86_BUILTIN_MOVMSKPS,
2129  IX86_BUILTIN_PMOVMSKB,
2130
2131  IX86_BUILTIN_MOVNTPS,
2132  IX86_BUILTIN_MOVNTQ,
2133
2134  IX86_BUILTIN_PACKSSWB,
2135  IX86_BUILTIN_PACKSSDW,
2136  IX86_BUILTIN_PACKUSWB,
2137
2138  IX86_BUILTIN_PADDB,
2139  IX86_BUILTIN_PADDW,
2140  IX86_BUILTIN_PADDD,
2141  IX86_BUILTIN_PADDSB,
2142  IX86_BUILTIN_PADDSW,
2143  IX86_BUILTIN_PADDUSB,
2144  IX86_BUILTIN_PADDUSW,
2145  IX86_BUILTIN_PSUBB,
2146  IX86_BUILTIN_PSUBW,
2147  IX86_BUILTIN_PSUBD,
2148  IX86_BUILTIN_PSUBSB,
2149  IX86_BUILTIN_PSUBSW,
2150  IX86_BUILTIN_PSUBUSB,
2151  IX86_BUILTIN_PSUBUSW,
2152
2153  IX86_BUILTIN_PAND,
2154  IX86_BUILTIN_PANDN,
2155  IX86_BUILTIN_POR,
2156  IX86_BUILTIN_PXOR,
2157
2158  IX86_BUILTIN_PAVGB,
2159  IX86_BUILTIN_PAVGW,
2160
2161  IX86_BUILTIN_PCMPEQB,
2162  IX86_BUILTIN_PCMPEQW,
2163  IX86_BUILTIN_PCMPEQD,
2164  IX86_BUILTIN_PCMPGTB,
2165  IX86_BUILTIN_PCMPGTW,
2166  IX86_BUILTIN_PCMPGTD,
2167
2168  IX86_BUILTIN_PEXTRW,
2169  IX86_BUILTIN_PINSRW,
2170
2171  IX86_BUILTIN_PMADDWD,
2172
2173  IX86_BUILTIN_PMAXSW,
2174  IX86_BUILTIN_PMAXUB,
2175  IX86_BUILTIN_PMINSW,
2176  IX86_BUILTIN_PMINUB,
2177
2178  IX86_BUILTIN_PMULHUW,
2179  IX86_BUILTIN_PMULHW,
2180  IX86_BUILTIN_PMULLW,
2181
2182  IX86_BUILTIN_PSADBW,
2183  IX86_BUILTIN_PSHUFW,
2184
2185  IX86_BUILTIN_PSLLW,
2186  IX86_BUILTIN_PSLLD,
2187  IX86_BUILTIN_PSLLQ,
2188  IX86_BUILTIN_PSRAW,
2189  IX86_BUILTIN_PSRAD,
2190  IX86_BUILTIN_PSRLW,
2191  IX86_BUILTIN_PSRLD,
2192  IX86_BUILTIN_PSRLQ,
2193  IX86_BUILTIN_PSLLWI,
2194  IX86_BUILTIN_PSLLDI,
2195  IX86_BUILTIN_PSLLQI,
2196  IX86_BUILTIN_PSRAWI,
2197  IX86_BUILTIN_PSRADI,
2198  IX86_BUILTIN_PSRLWI,
2199  IX86_BUILTIN_PSRLDI,
2200  IX86_BUILTIN_PSRLQI,
2201
2202  IX86_BUILTIN_PUNPCKHBW,
2203  IX86_BUILTIN_PUNPCKHWD,
2204  IX86_BUILTIN_PUNPCKHDQ,
2205  IX86_BUILTIN_PUNPCKLBW,
2206  IX86_BUILTIN_PUNPCKLWD,
2207  IX86_BUILTIN_PUNPCKLDQ,
2208
2209  IX86_BUILTIN_SHUFPS,
2210
2211  IX86_BUILTIN_RCPPS,
2212  IX86_BUILTIN_RCPSS,
2213  IX86_BUILTIN_RSQRTPS,
2214  IX86_BUILTIN_RSQRTSS,
2215  IX86_BUILTIN_SQRTPS,
2216  IX86_BUILTIN_SQRTSS,
2217
2218  IX86_BUILTIN_UNPCKHPS,
2219  IX86_BUILTIN_UNPCKLPS,
2220
2221  IX86_BUILTIN_ANDPS,
2222  IX86_BUILTIN_ANDNPS,
2223  IX86_BUILTIN_ORPS,
2224  IX86_BUILTIN_XORPS,
2225
2226  IX86_BUILTIN_EMMS,
2227  IX86_BUILTIN_LDMXCSR,
2228  IX86_BUILTIN_STMXCSR,
2229  IX86_BUILTIN_SFENCE,
2230
2231  /* 3DNow! Original */
2232  IX86_BUILTIN_FEMMS,
2233  IX86_BUILTIN_PAVGUSB,
2234  IX86_BUILTIN_PF2ID,
2235  IX86_BUILTIN_PFACC,
2236  IX86_BUILTIN_PFADD,
2237  IX86_BUILTIN_PFCMPEQ,
2238  IX86_BUILTIN_PFCMPGE,
2239  IX86_BUILTIN_PFCMPGT,
2240  IX86_BUILTIN_PFMAX,
2241  IX86_BUILTIN_PFMIN,
2242  IX86_BUILTIN_PFMUL,
2243  IX86_BUILTIN_PFRCP,
2244  IX86_BUILTIN_PFRCPIT1,
2245  IX86_BUILTIN_PFRCPIT2,
2246  IX86_BUILTIN_PFRSQIT1,
2247  IX86_BUILTIN_PFRSQRT,
2248  IX86_BUILTIN_PFSUB,
2249  IX86_BUILTIN_PFSUBR,
2250  IX86_BUILTIN_PI2FD,
2251  IX86_BUILTIN_PMULHRW,
2252
2253  /* 3DNow! Athlon Extensions */
2254  IX86_BUILTIN_PF2IW,
2255  IX86_BUILTIN_PFNACC,
2256  IX86_BUILTIN_PFPNACC,
2257  IX86_BUILTIN_PI2FW,
2258  IX86_BUILTIN_PSWAPDSI,
2259  IX86_BUILTIN_PSWAPDSF,
2260
2261  IX86_BUILTIN_SSE_ZERO,
2262  IX86_BUILTIN_MMX_ZERO,
2263
2264  IX86_BUILTIN_MAX
2265};
2266
2267/* Define this macro if references to a symbol must be treated
2268   differently depending on something about the variable or
2269   function named by the symbol (such as what section it is in).
2270
2271   On i386, if using PIC, mark a SYMBOL_REF for a non-global symbol
2272   so that we may access it directly in the GOT.  */
2273
2274#define ENCODE_SECTION_INFO(DECL)				\
2275do {								\
2276    if (flag_pic)						\
2277      {								\
2278	rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd'	\
2279		   ? TREE_CST_RTL (DECL) : DECL_RTL (DECL));	\
2280								\
2281	if (GET_CODE (rtl) == MEM)				\
2282	  {							\
2283	    if (TARGET_DEBUG_ADDR				\
2284		&& TREE_CODE_CLASS (TREE_CODE (DECL)) == 'd')	\
2285	      {							\
2286		fprintf (stderr, "Encode %s, public = %d\n",	\
2287			 IDENTIFIER_POINTER (DECL_NAME (DECL)),	\
2288			 TREE_PUBLIC (DECL));			\
2289	      }							\
2290	    							\
2291	    SYMBOL_REF_FLAG (XEXP (rtl, 0))			\
2292	      = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd'	\
2293		 || ! TREE_PUBLIC (DECL));			\
2294	  }							\
2295      }								\
2296} while (0)
2297
2298/* The `FINALIZE_PIC' macro serves as a hook to emit these special
2299   codes once the function is being compiled into assembly code, but
2300   not before.  (It is not done before, because in the case of
2301   compiling an inline function, it would lead to multiple PIC
2302   prologues being included in functions which used inline functions
2303   and were compiled to assembly language.)  */
2304
2305#define FINALIZE_PIC \
2306  (current_function_uses_pic_offset_table |= current_function_profile)
2307
2308
2309/* Max number of args passed in registers.  If this is more than 3, we will
2310   have problems with ebx (register #4), since it is a caller save register and
2311   is also used as the pic register in ELF.  So for now, don't allow more than
2312   3 registers to be passed in registers.  */
2313
2314#define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2315
2316#define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : 0)
2317
2318
2319/* Specify the machine mode that this machine uses
2320   for the index in the tablejump instruction.  */
2321#define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
2322
2323/* Define as C expression which evaluates to nonzero if the tablejump
2324   instruction expects the table to contain offsets from the address of the
2325   table.
2326   Do not define this if the table should contain absolute addresses.  */
2327/* #define CASE_VECTOR_PC_RELATIVE 1 */
2328
2329/* Define this as 1 if `char' should by default be signed; else as 0.  */
2330#define DEFAULT_SIGNED_CHAR 1
2331
2332/* Number of bytes moved into a data cache for a single prefetch operation.  */
2333#define PREFETCH_BLOCK ix86_cost->prefetch_block
2334
2335/* Number of prefetch operations that can be done in parallel.  */
2336#define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2337
2338/* Max number of bytes we can move from memory to memory
2339   in one reasonably fast instruction.  */
2340#define MOVE_MAX 16
2341
2342/* MOVE_MAX_PIECES is the number of bytes at a time which we can
2343   move efficiently, as opposed to  MOVE_MAX which is the maximum
2344   number of bytes we can move with a single instruction.  */
2345#define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
2346
2347/* If a memory-to-memory move would take MOVE_RATIO or more simple
2348   move-instruction pairs, we will do a movstr or libcall instead.
2349   Increasing the value will always make code faster, but eventually
2350   incurs high cost in increased code size.
2351
2352   If you don't define this, a reasonable default is used.  */
2353
2354#define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
2355
2356/* Define if shifts truncate the shift count
2357   which implies one can omit a sign-extension or zero-extension
2358   of a shift count.  */
2359/* On i386, shifts do truncate the count.  But bit opcodes don't.  */
2360
2361/* #define SHIFT_COUNT_TRUNCATED */
2362
2363/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2364   is done just by pretending it is already truncated.  */
2365#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2366
2367/* We assume that the store-condition-codes instructions store 0 for false
2368   and some other value for true.  This is the value stored for true.  */
2369
2370#define STORE_FLAG_VALUE 1
2371
2372/* When a prototype says `char' or `short', really pass an `int'.
2373   (The 386 can't easily push less than an int.)  */
2374
2375#define PROMOTE_PROTOTYPES (!TARGET_64BIT)
2376
2377/* A macro to update M and UNSIGNEDP when an object whose type is
2378   TYPE and which has the specified mode and signedness is to be
2379   stored in a register.  This macro is only called when TYPE is a
2380   scalar type.
2381
2382   On i386 it is sometimes useful to promote HImode and QImode
2383   quantities to SImode.  The choice depends on target type.  */
2384
2385#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) 		\
2386do {							\
2387  if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS)	\
2388      || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS))	\
2389    (MODE) = SImode;					\
2390} while (0)
2391
2392/* Specify the machine mode that pointers have.
2393   After generation of rtl, the compiler makes no further distinction
2394   between pointers and any other objects of this machine mode.  */
2395#define Pmode (TARGET_64BIT ? DImode : SImode)
2396
2397/* A function address in a call instruction
2398   is a byte address (for indexing purposes)
2399   so give the MEM rtx a byte's mode.  */
2400#define FUNCTION_MODE QImode
2401
2402/* A part of a C `switch' statement that describes the relative costs
2403   of constant RTL expressions.  It must contain `case' labels for
2404   expression codes `const_int', `const', `symbol_ref', `label_ref'
2405   and `const_double'.  Each case must ultimately reach a `return'
2406   statement to return the relative cost of the use of that kind of
2407   constant value in an expression.  The cost may depend on the
2408   precise value of the constant, which is available for examination
2409   in X, and the rtx code of the expression in which it is contained,
2410   found in OUTER_CODE.
2411
2412   CODE is the expression code--redundant, since it can be obtained
2413   with `GET_CODE (X)'.  */
2414
2415#define CONST_COSTS(RTX, CODE, OUTER_CODE)			\
2416  case CONST_INT:						\
2417  case CONST:							\
2418  case LABEL_REF:						\
2419  case SYMBOL_REF:						\
2420    if (TARGET_64BIT && !x86_64_sign_extended_value (RTX))	\
2421      return 3;							\
2422    if (TARGET_64BIT && !x86_64_zero_extended_value (RTX))	\
2423      return 2;							\
2424    return flag_pic && SYMBOLIC_CONST (RTX) ? 1 : 0;		\
2425								\
2426  case CONST_DOUBLE:						\
2427    {								\
2428      int code;							\
2429      if (GET_MODE (RTX) == VOIDmode)				\
2430	return 0;						\
2431								\
2432      code = standard_80387_constant_p (RTX);			\
2433      return code == 1 ? 1 :					\
2434	     code == 2 ? 2 :					\
2435			 3;					\
2436    }
2437
2438/* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */
2439#define TOPLEVEL_COSTS_N_INSNS(N) \
2440  do { total = COSTS_N_INSNS (N); goto egress_rtx_costs; } while (0)
2441
2442/* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
2443   This can be used, for example, to indicate how costly a multiply
2444   instruction is.  In writing this macro, you can use the construct
2445   `COSTS_N_INSNS (N)' to specify a cost equal to N fast
2446   instructions.  OUTER_CODE is the code of the expression in which X
2447   is contained.
2448
2449   This macro is optional; do not define it if the default cost
2450   assumptions are adequate for the target machine.  */
2451
2452#define RTX_COSTS(X, CODE, OUTER_CODE)					\
2453  case ZERO_EXTEND:							\
2454    /* The zero extensions is often completely free on x86_64, so make	\
2455       it as cheap as possible.  */					\
2456    if (TARGET_64BIT && GET_MODE (X) == DImode				\
2457	&& GET_MODE (XEXP (X, 0)) == SImode)				\
2458      {									\
2459	total = 1; goto egress_rtx_costs;				\
2460      } 								\
2461    else								\
2462      TOPLEVEL_COSTS_N_INSNS (TARGET_ZERO_EXTEND_WITH_AND ?		\
2463			      ix86_cost->add : ix86_cost->movzx);	\
2464    break;								\
2465  case SIGN_EXTEND:							\
2466    TOPLEVEL_COSTS_N_INSNS (ix86_cost->movsx);				\
2467    break;								\
2468  case ASHIFT:								\
2469    if (GET_CODE (XEXP (X, 1)) == CONST_INT				\
2470	&& (GET_MODE (XEXP (X, 0)) != DImode || TARGET_64BIT))		\
2471      {									\
2472	HOST_WIDE_INT value = INTVAL (XEXP (X, 1));			\
2473	if (value == 1)							\
2474	  TOPLEVEL_COSTS_N_INSNS (ix86_cost->add);			\
2475	if ((value == 2 || value == 3)					\
2476	    && !TARGET_DECOMPOSE_LEA					\
2477	    && ix86_cost->lea <= ix86_cost->shift_const)		\
2478	  TOPLEVEL_COSTS_N_INSNS (ix86_cost->lea);			\
2479      }									\
2480    /* fall through */							\
2481		  							\
2482  case ROTATE:								\
2483  case ASHIFTRT:							\
2484  case LSHIFTRT:							\
2485  case ROTATERT:							\
2486    if (!TARGET_64BIT && GET_MODE (XEXP (X, 0)) == DImode)		\
2487      {									\
2488	if (GET_CODE (XEXP (X, 1)) == CONST_INT)			\
2489	  {								\
2490	    if (INTVAL (XEXP (X, 1)) > 32)				\
2491	      TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const + 2);	\
2492	    else							\
2493	      TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const * 2);	\
2494	  }								\
2495	else								\
2496	  {								\
2497	    if (GET_CODE (XEXP (X, 1)) == AND)				\
2498	      TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 2);		\
2499	    else							\
2500	      TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2);	\
2501	  }								\
2502      }									\
2503    else								\
2504      {									\
2505	if (GET_CODE (XEXP (X, 1)) == CONST_INT)			\
2506	  TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_const);		\
2507	else								\
2508	  TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_var);		\
2509      }									\
2510    break;								\
2511									\
2512  case MULT:								\
2513    if (GET_CODE (XEXP (X, 1)) == CONST_INT)				\
2514      {									\
2515	unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1));		\
2516	int nbits = 0;							\
2517									\
2518	while (value != 0)						\
2519	  {								\
2520	    nbits++;							\
2521	    value >>= 1;						\
2522	  } 								\
2523									\
2524	TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init			\
2525			        + nbits * ix86_cost->mult_bit);		\
2526      }									\
2527    else			/* This is arbitrary */			\
2528      TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init			\
2529			      + 7 * ix86_cost->mult_bit);		\
2530									\
2531  case DIV:								\
2532  case UDIV:								\
2533  case MOD:								\
2534  case UMOD:								\
2535    TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide);				\
2536									\
2537  case PLUS:								\
2538    if (!TARGET_DECOMPOSE_LEA						\
2539	&& INTEGRAL_MODE_P (GET_MODE (X))				\
2540	&& GET_MODE_BITSIZE (GET_MODE (X)) <= GET_MODE_BITSIZE (Pmode))	\
2541      {									\
2542        if (GET_CODE (XEXP (X, 0)) == PLUS				\
2543	    && GET_CODE (XEXP (XEXP (X, 0), 0)) == MULT			\
2544	    && GET_CODE (XEXP (XEXP (XEXP (X, 0), 0), 1)) == CONST_INT	\
2545	    && CONSTANT_P (XEXP (X, 1)))				\
2546	  {								\
2547	    HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 0), 0), 1));\
2548	    if (val == 2 || val == 4 || val == 8)			\
2549	      {								\
2550		return (COSTS_N_INSNS (ix86_cost->lea)			\
2551			+ rtx_cost (XEXP (XEXP (X, 0), 1),		\
2552				    (OUTER_CODE))			\
2553			+ rtx_cost (XEXP (XEXP (XEXP (X, 0), 0), 0),	\
2554				    (OUTER_CODE))			\
2555			+ rtx_cost (XEXP (X, 1), (OUTER_CODE)));	\
2556	      }								\
2557	  }								\
2558	else if (GET_CODE (XEXP (X, 0)) == MULT				\
2559		 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT)	\
2560	  {								\
2561	    HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1));		\
2562	    if (val == 2 || val == 4 || val == 8)			\
2563	      {								\
2564		return (COSTS_N_INSNS (ix86_cost->lea)			\
2565			+ rtx_cost (XEXP (XEXP (X, 0), 0),		\
2566				    (OUTER_CODE))			\
2567			+ rtx_cost (XEXP (X, 1), (OUTER_CODE)));	\
2568	      }								\
2569	  }								\
2570	else if (GET_CODE (XEXP (X, 0)) == PLUS)			\
2571	  {								\
2572	    return (COSTS_N_INSNS (ix86_cost->lea)			\
2573		    + rtx_cost (XEXP (XEXP (X, 0), 0), (OUTER_CODE))	\
2574		    + rtx_cost (XEXP (XEXP (X, 0), 1), (OUTER_CODE))	\
2575		    + rtx_cost (XEXP (X, 1), (OUTER_CODE)));		\
2576	  }								\
2577      }									\
2578									\
2579    /* fall through */							\
2580  case AND:								\
2581  case IOR:								\
2582  case XOR:								\
2583  case MINUS:								\
2584    if (!TARGET_64BIT && GET_MODE (X) == DImode)			\
2585      return (COSTS_N_INSNS (ix86_cost->add) * 2			\
2586	      + (rtx_cost (XEXP (X, 0), (OUTER_CODE))			\
2587	         << (GET_MODE (XEXP (X, 0)) != DImode))			\
2588	      + (rtx_cost (XEXP (X, 1), (OUTER_CODE))			\
2589 	         << (GET_MODE (XEXP (X, 1)) != DImode)));		\
2590									\
2591    /* fall through */							\
2592  case NEG:								\
2593  case NOT:								\
2594    if (!TARGET_64BIT && GET_MODE (X) == DImode)			\
2595      TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2);			\
2596    TOPLEVEL_COSTS_N_INSNS (ix86_cost->add);				\
2597									\
2598  egress_rtx_costs:							\
2599    break;
2600
2601
2602/* An expression giving the cost of an addressing mode that contains
2603   ADDRESS.  If not defined, the cost is computed from the ADDRESS
2604   expression and the `CONST_COSTS' values.
2605
2606   For most CISC machines, the default cost is a good approximation
2607   of the true cost of the addressing mode.  However, on RISC
2608   machines, all instructions normally have the same length and
2609   execution time.  Hence all addresses will have equal costs.
2610
2611   In cases where more than one form of an address is known, the form
2612   with the lowest cost will be used.  If multiple forms have the
2613   same, lowest, cost, the one that is the most complex will be used.
2614
2615   For example, suppose an address that is equal to the sum of a
2616   register and a constant is used twice in the same basic block.
2617   When this macro is not defined, the address will be computed in a
2618   register and memory references will be indirect through that
2619   register.  On machines where the cost of the addressing mode
2620   containing the sum is no higher than that of a simple indirect
2621   reference, this will produce an additional instruction and
2622   possibly require an additional register.  Proper specification of
2623   this macro eliminates this overhead for such machines.
2624
2625   Similar use of this macro is made in strength reduction of loops.
2626
2627   ADDRESS need not be valid as an address.  In such a case, the cost
2628   is not relevant and can be any value; invalid addresses need not be
2629   assigned a different cost.
2630
2631   On machines where an address involving more than one register is as
2632   cheap as an address computation involving only one register,
2633   defining `ADDRESS_COST' to reflect this can cause two registers to
2634   be live over a region of code where only one would have been if
2635   `ADDRESS_COST' were not defined in that manner.  This effect should
2636   be considered in the definition of this macro.  Equivalent costs
2637   should probably only be given to addresses with different numbers
2638   of registers on machines with lots of registers.
2639
2640   This macro will normally either not be defined or be defined as a
2641   constant.
2642
2643   For i386, it is better to use a complex address than let gcc copy
2644   the address into a reg and make a new pseudo.  But not if the address
2645   requires to two regs - that would mean more pseudos with longer
2646   lifetimes.  */
2647
2648#define ADDRESS_COST(RTX) \
2649  ix86_address_cost (RTX)
2650
2651/* A C expression for the cost of moving data from a register in class FROM to
2652   one in class TO.  The classes are expressed using the enumeration values
2653   such as `GENERAL_REGS'.  A value of 2 is the default; other values are
2654   interpreted relative to that.
2655
2656   It is not required that the cost always equal 2 when FROM is the same as TO;
2657   on some machines it is expensive to move between registers if they are not
2658   general registers.  */
2659
2660#define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2661   ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
2662
2663/* A C expression for the cost of moving data of mode M between a
2664   register and memory.  A value of 2 is the default; this cost is
2665   relative to those in `REGISTER_MOVE_COST'.
2666
2667   If moving between registers and memory is more expensive than
2668   between two registers, you should define this macro to express the
2669   relative cost.  */
2670
2671#define MEMORY_MOVE_COST(MODE, CLASS, IN)	\
2672  ix86_memory_move_cost ((MODE), (CLASS), (IN))
2673
2674/* A C expression for the cost of a branch instruction.  A value of 1
2675   is the default; other values are interpreted relative to that.  */
2676
2677#define BRANCH_COST ix86_branch_cost
2678
2679/* Define this macro as a C expression which is nonzero if accessing
2680   less than a word of memory (i.e. a `char' or a `short') is no
2681   faster than accessing a word of memory, i.e., if such access
2682   require more than one instruction or if there is no difference in
2683   cost between byte and (aligned) word loads.
2684
2685   When this macro is not defined, the compiler will access a field by
2686   finding the smallest containing object; when it is defined, a
2687   fullword load will be used if alignment permits.  Unless bytes
2688   accesses are faster than word accesses, using word accesses is
2689   preferable since it may eliminate subsequent memory access if
2690   subsequent accesses occur to other fields in the same word of the
2691   structure, but to different bytes.  */
2692
2693#define SLOW_BYTE_ACCESS 0
2694
2695/* Nonzero if access to memory by shorts is slow and undesirable.  */
2696#define SLOW_SHORT_ACCESS 0
2697
2698/* Define this macro to be the value 1 if unaligned accesses have a
2699   cost many times greater than aligned accesses, for example if they
2700   are emulated in a trap handler.
2701
2702   When this macro is non-zero, the compiler will act as if
2703   `STRICT_ALIGNMENT' were non-zero when generating code for block
2704   moves.  This can cause significantly more instructions to be
2705   produced.  Therefore, do not set this macro non-zero if unaligned
2706   accesses only add a cycle or two to the time for a memory access.
2707
2708   If the value of this macro is always zero, it need not be defined.  */
2709
2710/* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2711
2712/* Define this macro to inhibit strength reduction of memory
2713   addresses.  (On some machines, such strength reduction seems to do
2714   harm rather than good.)  */
2715
2716/* #define DONT_REDUCE_ADDR */
2717
2718/* Define this macro if it is as good or better to call a constant
2719   function address than to call an address kept in a register.
2720
2721   Desirable on the 386 because a CALL with a constant address is
2722   faster than one with a register address.  */
2723
2724#define NO_FUNCTION_CSE
2725
2726/* Define this macro if it is as good or better for a function to call
2727   itself with an explicit address than to call an address kept in a
2728   register.  */
2729
2730#define NO_RECURSIVE_FUNCTION_CSE
2731
2732/* Add any extra modes needed to represent the condition code.
2733
2734   For the i386, we need separate modes when floating-point
2735   equality comparisons are being done.
2736
2737   Add CCNO to indicate comparisons against zero that requires
2738   Overflow flag to be unset.  Sign bit test is used instead and
2739   thus can be used to form "a&b>0" type of tests.
2740
2741   Add CCGC to indicate comparisons agains zero that allows
2742   unspecified garbage in the Carry flag.  This mode is used
2743   by inc/dec instructions.
2744
2745   Add CCGOC to indicate comparisons agains zero that allows
2746   unspecified garbage in the Carry and Overflow flag. This
2747   mode is used to simulate comparisons of (a-b) and (a+b)
2748   against zero using sub/cmp/add operations.
2749
2750   Add CCZ to indicate that only the Zero flag is valid.  */
2751
2752#define EXTRA_CC_MODES		\
2753	CC (CCGCmode, "CCGC")	\
2754	CC (CCGOCmode, "CCGOC")	\
2755	CC (CCNOmode, "CCNO")	\
2756	CC (CCZmode, "CCZ")	\
2757	CC (CCFPmode, "CCFP")	\
2758	CC (CCFPUmode, "CCFPU")
2759
2760/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2761   return the mode to be used for the comparison.
2762
2763   For floating-point equality comparisons, CCFPEQmode should be used.
2764   VOIDmode should be used in all other cases.
2765
2766   For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2767   possible, to allow for more combinations.  */
2768
2769#define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2770
2771/* Return non-zero if MODE implies a floating point inequality can be
2772   reversed.  */
2773
2774#define REVERSIBLE_CC_MODE(MODE) 1
2775
2776/* A C expression whose value is reversed condition code of the CODE for
2777   comparison done in CC_MODE mode.  */
2778#define REVERSE_CONDITION(CODE, MODE) \
2779  ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
2780   : reverse_condition_maybe_unordered (CODE))
2781
2782
2783/* Control the assembler format that we output, to the extent
2784   this does not vary between assemblers.  */
2785
2786/* How to refer to registers in assembler output.
2787   This sequence is indexed by compiler's hard-register-number (see above).  */
2788
2789/* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2790   For non floating point regs, the following are the HImode names.
2791
2792   For float regs, the stack top is sometimes referred to as "%st(0)"
2793   instead of just "%st".  PRINT_REG handles this with the "y" code.  */
2794
2795#undef  HI_REGISTER_NAMES
2796#define HI_REGISTER_NAMES						\
2797{"ax","dx","cx","bx","si","di","bp","sp",				\
2798 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","",	\
2799 "flags","fpsr", "dirflag", "frame",					\
2800 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7",		\
2801 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7"	,		\
2802 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",			\
2803 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
2804
2805#define REGISTER_NAMES HI_REGISTER_NAMES
2806
2807/* Table of additional register names to use in user input.  */
2808
2809#define ADDITIONAL_REGISTER_NAMES \
2810{ { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 },	\
2811  { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 },	\
2812  { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 },	\
2813  { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 },	\
2814  { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 },		\
2815  { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 },		\
2816  { "mm0", 8},  { "mm1", 9},  { "mm2", 10}, { "mm3", 11},	\
2817  { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
2818
2819/* Note we are omitting these since currently I don't know how
2820to get gcc to use these, since they want the same but different
2821number as al, and ax.
2822*/
2823
2824#define QI_REGISTER_NAMES \
2825{"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2826
2827/* These parallel the array above, and can be used to access bits 8:15
2828   of regs 0 through 3.  */
2829
2830#define QI_HIGH_REGISTER_NAMES \
2831{"ah", "dh", "ch", "bh", }
2832
2833/* How to renumber registers for dbx and gdb.  */
2834
2835#define DBX_REGISTER_NUMBER(N) \
2836  (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2837
2838extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2839extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2840extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2841
2842/* Before the prologue, RA is at 0(%esp).  */
2843#define INCOMING_RETURN_ADDR_RTX \
2844  gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2845
2846/* After the prologue, RA is at -4(AP) in the current frame.  */
2847#define RETURN_ADDR_RTX(COUNT, FRAME)					   \
2848  ((COUNT) == 0								   \
2849   ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2850   : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2851
2852/* PC is dbx register 8; let's use that column for RA.  */
2853#define DWARF_FRAME_RETURN_COLUMN 	(TARGET_64BIT ? 16 : 8)
2854
2855/* Before the prologue, the top of the frame is at 4(%esp).  */
2856#define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2857
2858/* Describe how we implement __builtin_eh_return.  */
2859#define EH_RETURN_DATA_REGNO(N)	((N) < 2 ? (N) : INVALID_REGNUM)
2860#define EH_RETURN_STACKADJ_RTX	gen_rtx_REG (Pmode, 2)
2861
2862
2863/* Select a format to encode pointers in exception handling data.  CODE
2864   is 0 for data, 1 for code labels, 2 for function pointers.  GLOBAL is
2865   true if the symbol may be affected by dynamic relocations.
2866
2867   ??? All x86 object file formats are capable of representing this.
2868   After all, the relocation needed is the same as for the call insn.
2869   Whether or not a particular assembler allows us to enter such, I
2870   guess we'll have to see.  */
2871#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL)       		\
2872  (flag_pic								\
2873    ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
2874   : DW_EH_PE_absptr)
2875
2876/* This is how to output the definition of a user-level label named NAME,
2877   such as the label on a static function or variable NAME.  */
2878
2879#define ASM_OUTPUT_LABEL(FILE, NAME)	\
2880  (assemble_name ((FILE), (NAME)), fputs (":\n", (FILE)))
2881
2882/* Store in OUTPUT a string (made with alloca) containing
2883   an assembler-name for a local static variable named NAME.
2884   LABELNO is an integer which is different for each call.  */
2885
2886#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)	\
2887( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),	\
2888  sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2889
2890/* This is how to output an insn to push a register on the stack.
2891   It need not be very fast code.  */
2892
2893#define ASM_OUTPUT_REG_PUSH(FILE, REGNO)  \
2894do {									\
2895  if (TARGET_64BIT)							\
2896    asm_fprintf ((FILE), "\tpush{q}\t%%r%s\n",				\
2897		 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));	\
2898  else									\
2899    asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)]);	\
2900} while (0)
2901
2902/* This is how to output an insn to pop a register from the stack.
2903   It need not be very fast code.  */
2904
2905#define ASM_OUTPUT_REG_POP(FILE, REGNO)  \
2906do {									\
2907  if (TARGET_64BIT)							\
2908    asm_fprintf ((FILE), "\tpop{q}\t%%r%s\n",				\
2909		 reg_names[(REGNO)] + (REX_INT_REGNO_P (REGNO) != 0));	\
2910  else									\
2911    asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)]);	\
2912} while (0)
2913
2914/* This is how to output an element of a case-vector that is absolute.  */
2915
2916#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
2917  ix86_output_addr_vec_elt ((FILE), (VALUE))
2918
2919/* This is how to output an element of a case-vector that is relative.  */
2920
2921#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2922  ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
2923
2924/* Under some conditions we need jump tables in the text section, because
2925   the assembler cannot handle label differences between sections.  */
2926
2927#define JUMP_TABLES_IN_TEXT_SECTION \
2928  (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
2929
2930/* A C statement that outputs an address constant appropriate to
2931   for DWARF debugging.  */
2932
2933#define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
2934  i386_dwarf_output_addr_const ((FILE), (X))
2935
2936/* Either simplify a location expression, or return the original.  */
2937
2938#define ASM_SIMPLIFY_DWARF_ADDR(X) \
2939  i386_simplify_dwarf_addr (X)
2940
2941/* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
2942   and switch back.  For x86 we do this only to save a few bytes that
2943   would otherwise be unused in the text section.  */
2944#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)	\
2945   asm (SECTION_OP "\n\t"				\
2946	"call " USER_LABEL_PREFIX #FUNC "\n"		\
2947	TEXT_SECTION_ASM_OP);
2948
2949/* Print operand X (an rtx) in assembler syntax to file FILE.
2950   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2951   Effect of various CODE letters is described in i386.c near
2952   print_operand function.  */
2953
2954#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2955  ((CODE) == '*' || (CODE) == '+')
2956
2957/* Print the name of a register based on its machine mode and number.
2958   If CODE is 'w', pretend the mode is HImode.
2959   If CODE is 'b', pretend the mode is QImode.
2960   If CODE is 'k', pretend the mode is SImode.
2961   If CODE is 'q', pretend the mode is DImode.
2962   If CODE is 'h', pretend the reg is the `high' byte register.
2963   If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op.  */
2964
2965#define PRINT_REG(X, CODE, FILE)  \
2966  print_reg ((X), (CODE), (FILE))
2967
2968#define PRINT_OPERAND(FILE, X, CODE)  \
2969  print_operand ((FILE), (X), (CODE))
2970
2971#define PRINT_OPERAND_ADDRESS(FILE, ADDR)  \
2972  print_operand_address ((FILE), (ADDR))
2973
2974/* Print the name of a register for based on its machine mode and number.
2975   This macro is used to print debugging output.
2976   This macro is different from PRINT_REG in that it may be used in
2977   programs that are not linked with aux-output.o.  */
2978
2979#define DEBUG_PRINT_REG(X, CODE, FILE)			\
2980  do { static const char * const hi_name[] = HI_REGISTER_NAMES;	\
2981       static const char * const qi_name[] = QI_REGISTER_NAMES;	\
2982       fprintf ((FILE), "%d ", REGNO (X));		\
2983       if (REGNO (X) == FLAGS_REG)			\
2984	 { fputs ("flags", (FILE)); break; }		\
2985       if (REGNO (X) == DIRFLAG_REG)			\
2986	 { fputs ("dirflag", (FILE)); break; }		\
2987       if (REGNO (X) == FPSR_REG)			\
2988	 { fputs ("fpsr", (FILE)); break; }		\
2989       if (REGNO (X) == ARG_POINTER_REGNUM)		\
2990	 { fputs ("argp", (FILE)); break; }		\
2991       if (REGNO (X) == FRAME_POINTER_REGNUM)		\
2992	 { fputs ("frame", (FILE)); break; }		\
2993       if (STACK_TOP_P (X))				\
2994	 { fputs ("st(0)", (FILE)); break; }		\
2995       if (FP_REG_P (X))				\
2996	 { fputs (hi_name[REGNO(X)], (FILE)); break; }	\
2997       if (REX_INT_REG_P (X))				\
2998	 {						\
2999	   switch (GET_MODE_SIZE (GET_MODE (X)))	\
3000	     {						\
3001	     default:					\
3002	     case 8:					\
3003	       fprintf ((FILE), "r%i", REGNO (X)	\
3004			- FIRST_REX_INT_REG + 8);	\
3005	       break;					\
3006	     case 4:					\
3007	       fprintf ((FILE), "r%id", REGNO (X)	\
3008			- FIRST_REX_INT_REG + 8);	\
3009	       break;					\
3010	     case 2:					\
3011	       fprintf ((FILE), "r%iw", REGNO (X)	\
3012			- FIRST_REX_INT_REG + 8);	\
3013	       break;					\
3014	     case 1:					\
3015	       fprintf ((FILE), "r%ib", REGNO (X)	\
3016			- FIRST_REX_INT_REG + 8);	\
3017	       break;					\
3018	     }						\
3019	   break;					\
3020	 }						\
3021       switch (GET_MODE_SIZE (GET_MODE (X)))		\
3022	 {						\
3023	 case 8:					\
3024	   fputs ("r", (FILE));				\
3025	   fputs (hi_name[REGNO (X)], (FILE));		\
3026	   break;					\
3027	 default:					\
3028	   fputs ("e", (FILE));				\
3029	 case 2:					\
3030	   fputs (hi_name[REGNO (X)], (FILE));		\
3031	   break;					\
3032	 case 1:					\
3033	   fputs (qi_name[REGNO (X)], (FILE));		\
3034	   break;					\
3035	 }						\
3036     } while (0)
3037
3038/* a letter which is not needed by the normal asm syntax, which
3039   we can use for operand syntax in the extended asm */
3040
3041#define ASM_OPERAND_LETTER '#'
3042#define RET return ""
3043#define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
3044
3045/* Define the codes that are matched by predicates in i386.c.  */
3046
3047#define PREDICATE_CODES							\
3048  {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG,			\
3049				SYMBOL_REF, LABEL_REF, CONST}},		\
3050  {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG,			\
3051				SYMBOL_REF, LABEL_REF, CONST}},		\
3052  {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG,			\
3053				SYMBOL_REF, LABEL_REF, CONST}},		\
3054  {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG,		\
3055				     SYMBOL_REF, LABEL_REF, CONST}},	\
3056  {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM,		\
3057			      SYMBOL_REF, LABEL_REF, CONST}},		\
3058  {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM,	\
3059				   SYMBOL_REF, LABEL_REF, CONST}},	\
3060  {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST,	\
3061				       SYMBOL_REF, LABEL_REF}},		\
3062  {"shiftdi_operand", {SUBREG, REG, MEM}},				\
3063  {"const_int_1_operand", {CONST_INT}},					\
3064  {"const_int_1_31_operand", {CONST_INT}},				\
3065  {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}},			\
3066  {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,	\
3067		       LABEL_REF, SUBREG, REG, MEM}},			\
3068  {"pic_symbolic_operand", {CONST}},					\
3069  {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}},		\
3070  {"constant_call_address_operand", {SYMBOL_REF, CONST}},		\
3071  {"const0_operand", {CONST_INT, CONST_DOUBLE}},			\
3072  {"const1_operand", {CONST_INT}},					\
3073  {"const248_operand", {CONST_INT}},					\
3074  {"incdec_operand", {CONST_INT}},					\
3075  {"mmx_reg_operand", {REG}},						\
3076  {"reg_no_sp_operand", {SUBREG, REG}},					\
3077  {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST,		\
3078			SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}},	\
3079  {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}},		\
3080  {"q_regs_operand", {SUBREG, REG}},					\
3081  {"non_q_regs_operand", {SUBREG, REG}},				\
3082  {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
3083				 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE,	\
3084				 GE, UNGE, LTGT, UNEQ}},		\
3085  {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT,	\
3086			       ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT	\
3087			       }},					\
3088  {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU,	\
3089			       GTU, UNORDERED, ORDERED, UNLE, UNLT,	\
3090			       UNGE, UNGT, LTGT, UNEQ }},		\
3091  {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}},	\
3092  {"ext_register_operand", {SUBREG, REG}},				\
3093  {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}},			\
3094  {"mult_operator", {MULT}},						\
3095  {"div_operator", {DIV}},						\
3096  {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
3097				 UMIN, UMAX, COMPARE, MINUS, DIV, MOD,	\
3098				 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT,	\
3099				 LSHIFTRT, ROTATERT}},			\
3100  {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}},	\
3101  {"memory_displacement_operand", {MEM}},				\
3102  {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,	\
3103		     LABEL_REF, SUBREG, REG, MEM, AND}},		\
3104  {"long_memory_operand", {MEM}},
3105
3106/* A list of predicates that do special things with modes, and so
3107   should not elicit warnings for VOIDmode match_operand.  */
3108
3109#define SPECIAL_MODE_PREDICATES \
3110  "ext_register_operand",
3111
3112/* CM_32 is used by 32bit ABI
3113   CM_SMALL is small model assuming that all code and data fits in the first
3114   31bits of address space.
3115   CM_KERNEL is model assuming that all code and data fits in the negative
3116   31bits of address space.
3117   CM_MEDIUM is model assuming that code fits in the first 31bits of address
3118   space.  Size of data is unlimited.
3119   CM_LARGE is model making no assumptions about size of particular sections.
3120
3121   CM_SMALL_PIC is model for PIC libraries assuming that code+data+got/plt
3122   tables first in 31bits of address space.
3123 */
3124enum cmodel {
3125  CM_32,
3126  CM_SMALL,
3127  CM_KERNEL,
3128  CM_MEDIUM,
3129  CM_LARGE,
3130  CM_SMALL_PIC
3131};
3132
3133/* Size of the RED_ZONE area.  */
3134#define RED_ZONE_SIZE 128
3135/* Reserved area of the red zone for temporaries.  */
3136#define RED_ZONE_RESERVE 8
3137extern const char *ix86_debug_arg_string, *ix86_debug_addr_string;
3138
3139enum asm_dialect {
3140  ASM_ATT,
3141  ASM_INTEL
3142};
3143extern const char *ix86_asm_string;
3144extern enum asm_dialect ix86_asm_dialect;
3145/* Value of -mcmodel specified by user.  */
3146extern const char *ix86_cmodel_string;
3147extern enum cmodel ix86_cmodel;
3148
3149/* Variables in i386.c */
3150extern const char *ix86_cpu_string;		/* for -mcpu=<xxx> */
3151extern const char *ix86_arch_string;		/* for -march=<xxx> */
3152extern const char *ix86_fpmath_string;		/* for -mfpmath=<xxx> */
3153extern const char *ix86_regparm_string;		/* # registers to use to pass args */
3154extern const char *ix86_align_loops_string;	/* power of two alignment for loops */
3155extern const char *ix86_align_jumps_string;	/* power of two alignment for non-loop jumps */
3156extern const char *ix86_align_funcs_string;	/* power of two alignment for functions */
3157extern const char *ix86_preferred_stack_boundary_string;/* power of two alignment for stack boundary */
3158extern const char *ix86_branch_cost_string;	/* values 1-5: see jump.c */
3159extern int ix86_regparm;			/* ix86_regparm_string as a number */
3160extern int ix86_preferred_stack_boundary;	/* preferred stack boundary alignment in bits */
3161extern int ix86_branch_cost;			/* values 1-5: see jump.c */
3162extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER]; /* smalled class containing REGNO */
3163extern rtx ix86_compare_op0;	/* operand 0 for comparisons */
3164extern rtx ix86_compare_op1;	/* operand 1 for comparisons */
3165
3166/* To properly truncate FP values into integers, we need to set i387 control
3167   word.  We can't emit proper mode switching code before reload, as spills
3168   generated by reload may truncate values incorrectly, but we still can avoid
3169   redundant computation of new control word by the mode switching pass.
3170   The fldcw instructions are still emitted redundantly, but this is probably
3171   not going to be noticeable problem, as most CPUs do have fast path for
3172   the sequence.
3173
3174   The machinery is to emit simple truncation instructions and split them
3175   before reload to instructions having USEs of two memory locations that
3176   are filled by this code to old and new control word.
3177
3178   Post-reload pass may be later used to eliminate the redundant fildcw if
3179   needed.  */
3180
3181enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
3182
3183/* Define this macro if the port needs extra instructions inserted
3184   for mode switching in an optimizing compilation.  */
3185
3186#define OPTIMIZE_MODE_SWITCHING(ENTITY) 1
3187
3188/* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
3189   initializer for an array of integers.  Each initializer element N
3190   refers to an entity that needs mode switching, and specifies the
3191   number of different modes that might need to be set for this
3192   entity.  The position of the initializer in the initializer -
3193   starting counting at zero - determines the integer that is used to
3194   refer to the mode-switched entity in question.  */
3195
3196#define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
3197
3198/* ENTITY is an integer specifying a mode-switched entity.  If
3199   `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
3200   return an integer value not larger than the corresponding element
3201   in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
3202   must be switched into prior to the execution of INSN.  */
3203
3204#define MODE_NEEDED(ENTITY, I)						\
3205  (GET_CODE (I) == CALL_INSN						\
3206   || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 	\
3207				|| GET_CODE (PATTERN (I)) == ASM_INPUT))\
3208   ? FP_CW_UNINITIALIZED						\
3209   : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP		\
3210   ? FP_CW_ANY								\
3211   : FP_CW_STORED)
3212
3213/* This macro specifies the order in which modes for ENTITY are
3214   processed.  0 is the highest priority.  */
3215
3216#define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
3217
3218/* Generate one or more insns to set ENTITY to MODE.  HARD_REG_LIVE
3219   is the set of hard registers live at the point where the insn(s)
3220   are to be inserted.  */
3221
3222#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) 			\
3223  ((MODE) == FP_CW_STORED						\
3224   ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1),	\
3225				  assign_386_stack_local (HImode, 2)), 0\
3226   : 0)
3227
3228/* Avoid renaming of stack registers, as doing so in combination with
3229   scheduling just increases amount of live registers at time and in
3230   the turn amount of fxch instructions needed.
3231
3232   ??? Maybe Pentium chips benefits from renaming, someone can try...  */
3233
3234#define HARD_REGNO_RENAME_OK(SRC, TARGET)  \
3235   ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
3236
3237
3238/*
3239Local variables:
3240version-control: t
3241End:
3242*/
3243