elfdump.c revision 289071
197426Snectar/*-
297426Snectar * Copyright (c) 2007-2012 Kai Wang
397426Snectar * Copyright (c) 2003 David O'Brien.  All rights reserved.
497426Snectar * Copyright (c) 2001 Jake Burkholder
597426Snectar * All rights reserved.
697426Snectar *
797426Snectar * Redistribution and use in source and binary forms, with or without
897426Snectar * modification, are permitted provided that the following conditions
997426Snectar * are met:
1097426Snectar * 1. Redistributions of source code must retain the above copyright
1197426Snectar *    notice, this list of conditions and the following disclaimer.
1297426Snectar * 2. Redistributions in binary form must reproduce the above copyright
1397426Snectar *    notice, this list of conditions and the following disclaimer in the
1497426Snectar *    documentation and/or other materials provided with the distribution.
1597426Snectar *
1697426Snectar * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
1797426Snectar * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
1897426Snectar * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
1997426Snectar * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
2097426Snectar * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
2197426Snectar * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
2297426Snectar * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
2397426Snectar * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
2497426Snectar * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
2597426Snectar * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
2697426Snectar * SUCH DAMAGE.
2797426Snectar */
2897426Snectar
2997426Snectar#include <sys/param.h>
3097426Snectar#include <sys/queue.h>
3197426Snectar#include <sys/stat.h>
3297426Snectar
3397426Snectar#include <ar.h>
3497426Snectar#include <assert.h>
3597426Snectar#include <err.h>
3697426Snectar#include <fcntl.h>
3797426Snectar#include <gelf.h>
3897426Snectar#include <getopt.h>
3997426Snectar#include <libelftc.h>
4097426Snectar#include <inttypes.h>
4197426Snectar#include <stdio.h>
4297426Snectar#include <stdlib.h>
4397426Snectar#include <string.h>
4497426Snectar#include <unistd.h>
4597426Snectar
4697426Snectar#ifdef USE_LIBARCHIVE_AR
4797426Snectar#include <archive.h>
4897426Snectar#include <archive_entry.h>
4997426Snectar#endif
5097426Snectar
5197426Snectar#include "_elftc.h"
5297426Snectar
5397426SnectarELFTC_VCSID("$Id: elfdump.c 3250 2015-10-06 13:56:15Z emaste $");
5497426Snectar
5597426Snectar#if defined(ELFTC_NEED_ELF_NOTE_DEFINITION)
5697426Snectar#include "native-elf-format.h"
57123455Sdes#if ELFTC_CLASS == ELFCLASS32
58123455Sdestypedef Elf32_Nhdr	Elf_Note;
5997426Snectar#else
6097426Snectartypedef Elf64_Nhdr	Elf_Note;
6197426Snectar#endif
62107381Sdes#endif
6397426Snectar
6497426Snectar/* elfdump(1) options. */
6597426Snectar#define	ED_DYN		(1<<0)
6697426Snectar#define	ED_EHDR		(1<<1)
67123455Sdes#define	ED_GOT		(1<<2)
6897426Snectar#define	ED_HASH		(1<<3)
6997426Snectar#define	ED_INTERP	(1<<4)
70125650Sdes#define	ED_NOTE		(1<<5)
7197426Snectar#define	ED_PHDR		(1<<6)
7297426Snectar#define	ED_REL		(1<<7)
73233302Sstas#define	ED_SHDR		(1<<8)
74233302Sstas#define	ED_SYMTAB	(1<<9)
75233302Sstas#define	ED_SYMVER	(1<<10)
7697426Snectar#define	ED_CHECKSUM	(1<<11)
7797426Snectar#define	ED_ALL		((1<<12)-1)
7897426Snectar
7997426Snectar/* elfdump(1) run control flags. */
8097426Snectar#define	SOLARIS_FMT		(1<<0)
8197426Snectar#define	PRINT_FILENAME		(1<<1)
8297426Snectar#define	PRINT_ARSYM		(1<<2)
8397426Snectar#define	ONLY_ARSYM		(1<<3)
8497426Snectar
8597426Snectar/* Convenient print macro. */
8697426Snectar#define	PRT(...)	fprintf(ed->out, __VA_ARGS__)
8797426Snectar
8897426Snectar/* Internal data structure for sections. */
8997426Snectarstruct section {
9097426Snectar	const char	*name;		/* section name */
9197426Snectar	Elf_Scn		*scn;		/* section scn */
9297426Snectar	uint64_t	 off;		/* section offset */
9397426Snectar	uint64_t	 sz;		/* section size */
9497426Snectar	uint64_t	 entsize;	/* section entsize */
9597426Snectar	uint64_t	 align;		/* section alignment */
9697426Snectar	uint64_t	 type;		/* section type */
9797426Snectar	uint64_t	 flags;		/* section flags */
9897426Snectar	uint64_t	 addr;		/* section virtual addr */
9997426Snectar	uint32_t	 link;		/* section link ndx */
10097426Snectar	uint32_t	 info;		/* section info ndx */
10197426Snectar};
10297426Snectar
10397426Snectarstruct spec_name {
10497426Snectar	const char	*name;
10597426Snectar	STAILQ_ENTRY(spec_name)	sn_list;
10697426Snectar};
10797426Snectar
10897426Snectar/* Structure encapsulates the global data for readelf(1). */
10997426Snectarstruct elfdump {
11097426Snectar	FILE		*out;		/* output redirection. */
11197426Snectar	const char	*filename;	/* current processing file. */
11297426Snectar	const char	*archive;	/* archive name */
11397426Snectar	int		 options;	/* command line options. */
11497426Snectar	int		 flags;		/* run control flags. */
11597426Snectar	Elf		*elf;		/* underlying ELF descriptor. */
116233302Sstas#ifndef USE_LIBARCHIVE_AR
11797426Snectar	Elf		*ar;		/* ar(1) archive descriptor. */
11897426Snectar#endif
11997426Snectar	GElf_Ehdr	 ehdr;		/* ELF header. */
12097426Snectar	int		 ec;		/* ELF class. */
12197426Snectar	size_t		 shnum;		/* #sections. */
12297426Snectar	struct section	*sl;		/* list of sections. */
12397426Snectar	STAILQ_HEAD(, spec_name) snl;	/* list of names specified by -N. */
12497426Snectar};
12597426Snectar
12697426Snectar/* Relocation entry. */
12797426Snectarstruct rel_entry {
12897426Snectar	union {
12997426Snectar		GElf_Rel rel;
13097426Snectar		GElf_Rela rela;
13197426Snectar	} u_r;
132123455Sdes	const char *symn;
13397426Snectar	uint32_t type;
134123455Sdes};
135123455Sdes
136233302Sstas#if defined(ELFTC_NEED_BYTEORDER_EXTENSIONS)
137233302Sstasstatic __inline uint32_t
138233302Sstasbe32dec(const void *pp)
139233302Sstas{
140233302Sstas	unsigned char const *p = (unsigned char const *)pp;
141233302Sstas
142233302Sstas	return ((p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]);
14397426Snectar}
144233302Sstas
145233302Sstasstatic __inline uint32_t
14697426Snectarle32dec(const void *pp)
147233302Sstas{
148233302Sstas	unsigned char const *p = (unsigned char const *)pp;
149233302Sstas
15097426Snectar	return ((p[3] << 24) | (p[2] << 16) | (p[1] << 8) | p[0]);
15197426Snectar}
15297426Snectar#endif
15397426Snectar
15497426Snectar/* http://www.sco.com/developers/gabi/latest/ch5.dynamic.html#tag_encodings */
15597426Snectarstatic const char *
15697426Snectard_tags(uint64_t tag)
157233302Sstas{
158233302Sstas	switch (tag) {
159233302Sstas	case 0: return "DT_NULL";
16097426Snectar	case 1: return "DT_NEEDED";
16197426Snectar	case 2: return "DT_PLTRELSZ";
16297426Snectar	case 3: return "DT_PLTGOT";
16397426Snectar	case 4: return "DT_HASH";
16497426Snectar	case 5: return "DT_STRTAB";
16597426Snectar	case 6: return "DT_SYMTAB";
16697426Snectar	case 7: return "DT_RELA";
16797426Snectar	case 8: return "DT_RELASZ";
16897426Snectar	case 9: return "DT_RELAENT";
16997426Snectar	case 10: return "DT_STRSZ";
17097426Snectar	case 11: return "DT_SYMENT";
17197426Snectar	case 12: return "DT_INIT";
17297426Snectar	case 13: return "DT_FINI";
17397426Snectar	case 14: return "DT_SONAME";
17497426Snectar	case 15: return "DT_RPATH";
17597426Snectar	case 16: return "DT_SYMBOLIC";
17697426Snectar	case 17: return "DT_REL";
17797426Snectar	case 18: return "DT_RELSZ";
17897426Snectar	case 19: return "DT_RELENT";
17997426Snectar	case 20: return "DT_PLTREL";
18097426Snectar	case 21: return "DT_DEBUG";
18197426Snectar	case 22: return "DT_TEXTREL";
18297426Snectar	case 23: return "DT_JMPREL";
18397426Snectar	case 24: return "DT_BIND_NOW";
18497426Snectar	case 25: return "DT_INIT_ARRAY";
18597426Snectar	case 26: return "DT_FINI_ARRAY";
18697426Snectar	case 27: return "DT_INIT_ARRAYSZ";
18797426Snectar	case 28: return "DT_FINI_ARRAYSZ";
18897426Snectar	case 29: return "DT_RUNPATH";
18997426Snectar	case 30: return "DT_FLAGS";
19097426Snectar	case 32: return "DT_PREINIT_ARRAY"; /* XXX: DT_ENCODING */
19197426Snectar	case 33: return "DT_PREINIT_ARRAYSZ";
19297426Snectar	/* 0x6000000D - 0x6ffff000 operating system-specific semantics */
19397426Snectar	case 0x6ffffdf5: return "DT_GNU_PRELINKED";
19497426Snectar	case 0x6ffffdf6: return "DT_GNU_CONFLICTSZ";
19597426Snectar	case 0x6ffffdf7: return "DT_GNU_LIBLISTSZ";
19697426Snectar	case 0x6ffffdf8: return "DT_SUNW_CHECKSUM";
19797426Snectar	case 0x6ffffdf9: return "DT_PLTPADSZ";
19897426Snectar	case 0x6ffffdfa: return "DT_MOVEENT";
19997426Snectar	case 0x6ffffdfb: return "DT_MOVESZ";
20097426Snectar	case 0x6ffffdfc: return "DT_FEATURE";
20197426Snectar	case 0x6ffffdfd: return "DT_POSFLAG_1";
20297426Snectar	case 0x6ffffdfe: return "DT_SYMINSZ";
20397426Snectar	case 0x6ffffdff: return "DT_SYMINENT (DT_VALRNGHI)";
20497426Snectar	case 0x6ffffe00: return "DT_ADDRRNGLO";
20597426Snectar	case 0x6ffffef5: return "DT_GNU_HASH";
20697426Snectar	case 0x6ffffef8: return "DT_GNU_CONFLICT";
20797426Snectar	case 0x6ffffef9: return "DT_GNU_LIBLIST";
20897426Snectar	case 0x6ffffefa: return "DT_CONFIG";
20997426Snectar	case 0x6ffffefb: return "DT_DEPAUDIT";
21097426Snectar	case 0x6ffffefc: return "DT_AUDIT";
21197426Snectar	case 0x6ffffefd: return "DT_PLTPAD";
21297426Snectar	case 0x6ffffefe: return "DT_MOVETAB";
21397426Snectar	case 0x6ffffeff: return "DT_SYMINFO (DT_ADDRRNGHI)";
21497426Snectar	case 0x6ffffff9: return "DT_RELACOUNT";
21597426Snectar	case 0x6ffffffa: return "DT_RELCOUNT";
21697426Snectar	case 0x6ffffffb: return "DT_FLAGS_1";
21797426Snectar	case 0x6ffffffc: return "DT_VERDEF";
21897426Snectar	case 0x6ffffffd: return "DT_VERDEFNUM";
21997426Snectar	case 0x6ffffffe: return "DT_VERNEED";
22097426Snectar	case 0x6fffffff: return "DT_VERNEEDNUM";
22197426Snectar	case 0x6ffffff0: return "DT_GNU_VERSYM";
22297426Snectar	/* 0x70000000 - 0x7fffffff processor-specific semantics */
22397426Snectar	case 0x70000000: return "DT_IA_64_PLT_RESERVE";
22497426Snectar	case 0x7ffffffd: return "DT_SUNW_AUXILIARY";
22597426Snectar	case 0x7ffffffe: return "DT_SUNW_USED";
22697426Snectar	case 0x7fffffff: return "DT_SUNW_FILTER";
22797426Snectar	default: return "ERROR: TAG NOT DEFINED";
22897426Snectar	}
22997426Snectar}
23097426Snectar
23197426Snectarstatic const char *
23297426Snectare_machines(unsigned int mach)
233233302Sstas{
234233302Sstas	static char machdesc[64];
235233302Sstas
23697426Snectar	switch (mach) {
23797426Snectar	case EM_NONE:	return "EM_NONE";
23897426Snectar	case EM_M32:	return "EM_M32";
23997426Snectar	case EM_SPARC:	return "EM_SPARC";
24097426Snectar	case EM_386:	return "EM_386";
24197426Snectar	case EM_68K:	return "EM_68K";
24297426Snectar	case EM_88K:	return "EM_88K";
24397426Snectar	case EM_IAMCU:	return "EM_IAMCU";
24497426Snectar	case EM_860:	return "EM_860";
24597426Snectar	case EM_MIPS:	return "EM_MIPS";
24697426Snectar	case EM_PPC:	return "EM_PPC";
24797426Snectar	case EM_PPC64:	return "EM_PPC64";
24897426Snectar	case EM_ARM:	return "EM_ARM";
24997426Snectar	case EM_ALPHA:	return "EM_ALPHA (legacy)";
250107381Sdes	case EM_SPARCV9:return "EM_SPARCV9";
25197426Snectar	case EM_IA_64:	return "EM_IA_64";
25297426Snectar	case EM_X86_64:	return "EM_X86_64";
25397426Snectar	case EM_AARCH64:return "EM_AARCH64";
25497426Snectar	case EM_RISCV:	return "EM_RISCV";
25597426Snectar	}
25697426Snectar	snprintf(machdesc, sizeof(machdesc),
257233302Sstas	    "(unknown machine) -- type 0x%x", mach);
258233302Sstas	return (machdesc);
259233302Sstas}
26097426Snectar
26197426Snectarstatic const char *e_types[] = {
26297426Snectar	"ET_NONE", "ET_REL", "ET_EXEC", "ET_DYN", "ET_CORE"
26397426Snectar};
26497426Snectar
26597426Snectarstatic const char *ei_versions[] = {
26697426Snectar	"EV_NONE", "EV_CURRENT"
267107380Sdes};
268107380Sdes
269static const char *ei_classes[] = {
270	"ELFCLASSNONE", "ELFCLASS32", "ELFCLASS64"
271};
272
273static const char *ei_data[] = {
274	"ELFDATANONE", "ELFDATA2LSB", "ELFDATA2MSB"
275};
276
277static const char *ei_abis[256] = {
278	"ELFOSABI_NONE", "ELFOSABI_HPUX", "ELFOSABI_NETBSD", "ELFOSABI_LINUX",
279	"ELFOSABI_HURD", "ELFOSABI_86OPEN", "ELFOSABI_SOLARIS", "ELFOSABI_AIX",
280	"ELFOSABI_IRIX", "ELFOSABI_FREEBSD", "ELFOSABI_TRU64",
281	"ELFOSABI_MODESTO", "ELFOSABI_OPENBSD",
282	[255] = "ELFOSABI_STANDALONE"
283};
284
285static const char *p_types[] = {
286	"PT_NULL", "PT_LOAD", "PT_DYNAMIC", "PT_INTERP", "PT_NOTE",
287	"PT_SHLIB", "PT_PHDR", "PT_TLS"
288};
289
290static const char *p_flags[] = {
291	"", "PF_X", "PF_W", "PF_X|PF_W", "PF_R", "PF_X|PF_R", "PF_W|PF_R",
292	"PF_X|PF_W|PF_R"
293};
294
295static const char *
296sh_name(struct elfdump *ed, int ndx)
297{
298	static char num[10];
299
300	switch (ndx) {
301	case SHN_UNDEF: return "UNDEF";
302	case SHN_ABS: return "ABS";
303	case SHN_COMMON: return "COMMON";
304	default:
305		if ((uint64_t)ndx < ed->shnum)
306			return (ed->sl[ndx].name);
307		else {
308			snprintf(num, sizeof(num), "%d", ndx);
309			return (num);
310		}
311	}
312}
313
314/* http://www.sco.com/developers/gabi/latest/ch4.sheader.html#sh_type */
315static const char *
316sh_types(u_int64_t sht) {
317	switch (sht) {
318	case 0:	return "SHT_NULL";
319	case 1: return "SHT_PROGBITS";
320	case 2: return "SHT_SYMTAB";
321	case 3: return "SHT_STRTAB";
322	case 4: return "SHT_RELA";
323	case 5: return "SHT_HASH";
324	case 6: return "SHT_DYNAMIC";
325	case 7: return "SHT_NOTE";
326	case 8: return "SHT_NOBITS";
327	case 9: return "SHT_REL";
328	case 10: return "SHT_SHLIB";
329	case 11: return "SHT_DYNSYM";
330	case 14: return "SHT_INIT_ARRAY";
331	case 15: return "SHT_FINI_ARRAY";
332	case 16: return "SHT_PREINIT_ARRAY";
333	case 17: return "SHT_GROUP";
334	case 18: return "SHT_SYMTAB_SHNDX";
335	/* 0x60000000 - 0x6fffffff operating system-specific semantics */
336	case 0x6ffffff0: return "XXX:VERSYM";
337	case 0x6ffffff4: return "SHT_SUNW_dof";
338	case 0x6ffffff6: return "SHT_GNU_HASH";
339	case 0x6ffffff7: return "SHT_GNU_LIBLIST";
340	case 0x6ffffffc: return "XXX:VERDEF";
341	case 0x6ffffffd: return "SHT_SUNW(GNU)_verdef";
342	case 0x6ffffffe: return "SHT_SUNW(GNU)_verneed";
343	case 0x6fffffff: return "SHT_SUNW(GNU)_versym";
344	/* 0x70000000 - 0x7fffffff processor-specific semantics */
345	case 0x70000000: return "SHT_IA_64_EXT";
346	case 0x70000001: return "SHT_IA_64_UNWIND";
347	case 0x7ffffffd: return "XXX:AUXILIARY";
348	case 0x7fffffff: return "XXX:FILTER";
349	/* 0x80000000 - 0xffffffff application programs */
350	default: return "ERROR: SHT NOT DEFINED";
351	}
352}
353
354/*
355 * Define known section flags. These flags are defined in the order
356 * they are to be printed out.
357 */
358#define	DEFINE_SHFLAGS()			\
359	DEFINE_SHF(WRITE)			\
360	DEFINE_SHF(ALLOC)			\
361	DEFINE_SHF(EXECINSTR)			\
362	DEFINE_SHF(MERGE)			\
363	DEFINE_SHF(STRINGS)			\
364	DEFINE_SHF(INFO_LINK)			\
365	DEFINE_SHF(LINK_ORDER)			\
366	DEFINE_SHF(OS_NONCONFORMING)		\
367	DEFINE_SHF(GROUP)			\
368	DEFINE_SHF(TLS)
369
370#undef	DEFINE_SHF
371#define	DEFINE_SHF(F) "SHF_" #F "|"
372#define ALLSHFLAGS	DEFINE_SHFLAGS()
373
374static const char *
375sh_flags(uint64_t shf)
376{
377	static char	flg[sizeof(ALLSHFLAGS)+1];
378
379	flg[0] = '\0';
380
381#undef	DEFINE_SHF
382#define	DEFINE_SHF(N)				\
383	if (shf & SHF_##N)			\
384		strcat(flg, "SHF_" #N "|");	\
385
386	DEFINE_SHFLAGS()
387
388	flg[strlen(flg) - 1] = '\0'; /* Remove the trailing "|". */
389
390	return (flg);
391}
392
393static const char *st_types[] = {
394	"STT_NOTYPE", "STT_OBJECT", "STT_FUNC", "STT_SECTION", "STT_FILE",
395	"STT_COMMON", "STT_TLS"
396};
397
398static const char *st_types_S[] = {
399	"NOTY", "OBJT", "FUNC", "SECT", "FILE"
400};
401
402static const char *st_bindings[] = {
403	"STB_LOCAL", "STB_GLOBAL", "STB_WEAK"
404};
405
406static const char *st_bindings_S[] = {
407	"LOCL", "GLOB", "WEAK"
408};
409
410static unsigned char st_others[] = {
411	'D', 'I', 'H', 'P'
412};
413
414static const char *
415r_type(unsigned int mach, unsigned int type)
416{
417	switch(mach) {
418	case EM_NONE: return "";
419	case EM_386:
420	case EM_IAMCU:
421		switch(type) {
422		case 0: return "R_386_NONE";
423		case 1: return "R_386_32";
424		case 2: return "R_386_PC32";
425		case 3: return "R_386_GOT32";
426		case 4: return "R_386_PLT32";
427		case 5: return "R_386_COPY";
428		case 6: return "R_386_GLOB_DAT";
429		case 7: return "R_386_JMP_SLOT";
430		case 8: return "R_386_RELATIVE";
431		case 9: return "R_386_GOTOFF";
432		case 10: return "R_386_GOTPC";
433		case 14: return "R_386_TLS_TPOFF";
434		case 15: return "R_386_TLS_IE";
435		case 16: return "R_386_TLS_GOTIE";
436		case 17: return "R_386_TLS_LE";
437		case 18: return "R_386_TLS_GD";
438		case 19: return "R_386_TLS_LDM";
439		case 24: return "R_386_TLS_GD_32";
440		case 25: return "R_386_TLS_GD_PUSH";
441		case 26: return "R_386_TLS_GD_CALL";
442		case 27: return "R_386_TLS_GD_POP";
443		case 28: return "R_386_TLS_LDM_32";
444		case 29: return "R_386_TLS_LDM_PUSH";
445		case 30: return "R_386_TLS_LDM_CALL";
446		case 31: return "R_386_TLS_LDM_POP";
447		case 32: return "R_386_TLS_LDO_32";
448		case 33: return "R_386_TLS_IE_32";
449		case 34: return "R_386_TLS_LE_32";
450		case 35: return "R_386_TLS_DTPMOD32";
451		case 36: return "R_386_TLS_DTPOFF32";
452		case 37: return "R_386_TLS_TPOFF32";
453		default: return "";
454		}
455	case EM_ARM:
456		switch(type) {
457		case 0: return "R_ARM_NONE";
458		case 1: return "R_ARM_PC24";
459		case 2: return "R_ARM_ABS32";
460		case 3: return "R_ARM_REL32";
461		case 4: return "R_ARM_PC13";
462		case 5: return "R_ARM_ABS16";
463		case 6: return "R_ARM_ABS12";
464		case 7: return "R_ARM_THM_ABS5";
465		case 8: return "R_ARM_ABS8";
466		case 9: return "R_ARM_SBREL32";
467		case 10: return "R_ARM_THM_PC22";
468		case 11: return "R_ARM_THM_PC8";
469		case 12: return "R_ARM_AMP_VCALL9";
470		case 13: return "R_ARM_SWI24";
471		case 14: return "R_ARM_THM_SWI8";
472		case 15: return "R_ARM_XPC25";
473		case 16: return "R_ARM_THM_XPC22";
474		case 20: return "R_ARM_COPY";
475		case 21: return "R_ARM_GLOB_DAT";
476		case 22: return "R_ARM_JUMP_SLOT";
477		case 23: return "R_ARM_RELATIVE";
478		case 24: return "R_ARM_GOTOFF";
479		case 25: return "R_ARM_GOTPC";
480		case 26: return "R_ARM_GOT32";
481		case 27: return "R_ARM_PLT32";
482		case 100: return "R_ARM_GNU_VTENTRY";
483		case 101: return "R_ARM_GNU_VTINHERIT";
484		case 250: return "R_ARM_RSBREL32";
485		case 251: return "R_ARM_THM_RPC22";
486		case 252: return "R_ARM_RREL32";
487		case 253: return "R_ARM_RABS32";
488		case 254: return "R_ARM_RPC24";
489		case 255: return "R_ARM_RBASE";
490		default: return "";
491		}
492	case EM_IA_64:
493		switch(type) {
494		case 0: return "R_IA_64_NONE";
495		case 33: return "R_IA_64_IMM14";
496		case 34: return "R_IA_64_IMM22";
497		case 35: return "R_IA_64_IMM64";
498		case 36: return "R_IA_64_DIR32MSB";
499		case 37: return "R_IA_64_DIR32LSB";
500		case 38: return "R_IA_64_DIR64MSB";
501		case 39: return "R_IA_64_DIR64LSB";
502		case 42: return "R_IA_64_GPREL22";
503		case 43: return "R_IA_64_GPREL64I";
504		case 44: return "R_IA_64_GPREL32MSB";
505		case 45: return "R_IA_64_GPREL32LSB";
506		case 46: return "R_IA_64_GPREL64MSB";
507		case 47: return "R_IA_64_GPREL64LSB";
508		case 50: return "R_IA_64_LTOFF22";
509		case 51: return "R_IA_64_LTOFF64I";
510		case 58: return "R_IA_64_PLTOFF22";
511		case 59: return "R_IA_64_PLTOFF64I";
512		case 62: return "R_IA_64_PLTOFF64MSB";
513		case 63: return "R_IA_64_PLTOFF64LSB";
514		case 67: return "R_IA_64_FPTR64I";
515		case 68: return "R_IA_64_FPTR32MSB";
516		case 69: return "R_IA_64_FPTR32LSB";
517		case 70: return "R_IA_64_FPTR64MSB";
518		case 71: return "R_IA_64_FPTR64LSB";
519		case 72: return "R_IA_64_PCREL60B";
520		case 73: return "R_IA_64_PCREL21B";
521		case 74: return "R_IA_64_PCREL21M";
522		case 75: return "R_IA_64_PCREL21F";
523		case 76: return "R_IA_64_PCREL32MSB";
524		case 77: return "R_IA_64_PCREL32LSB";
525		case 78: return "R_IA_64_PCREL64MSB";
526		case 79: return "R_IA_64_PCREL64LSB";
527		case 82: return "R_IA_64_LTOFF_FPTR22";
528		case 83: return "R_IA_64_LTOFF_FPTR64I";
529		case 84: return "R_IA_64_LTOFF_FPTR32MSB";
530		case 85: return "R_IA_64_LTOFF_FPTR32LSB";
531		case 86: return "R_IA_64_LTOFF_FPTR64MSB";
532		case 87: return "R_IA_64_LTOFF_FPTR64LSB";
533		case 92: return "R_IA_64_SEGREL32MSB";
534		case 93: return "R_IA_64_SEGREL32LSB";
535		case 94: return "R_IA_64_SEGREL64MSB";
536		case 95: return "R_IA_64_SEGREL64LSB";
537		case 100: return "R_IA_64_SECREL32MSB";
538		case 101: return "R_IA_64_SECREL32LSB";
539		case 102: return "R_IA_64_SECREL64MSB";
540		case 103: return "R_IA_64_SECREL64LSB";
541		case 108: return "R_IA_64_REL32MSB";
542		case 109: return "R_IA_64_REL32LSB";
543		case 110: return "R_IA_64_REL64MSB";
544		case 111: return "R_IA_64_REL64LSB";
545		case 116: return "R_IA_64_LTV32MSB";
546		case 117: return "R_IA_64_LTV32LSB";
547		case 118: return "R_IA_64_LTV64MSB";
548		case 119: return "R_IA_64_LTV64LSB";
549		case 121: return "R_IA_64_PCREL21BI";
550		case 122: return "R_IA_64_PCREL22";
551		case 123: return "R_IA_64_PCREL64I";
552		case 128: return "R_IA_64_IPLTMSB";
553		case 129: return "R_IA_64_IPLTLSB";
554		case 133: return "R_IA_64_SUB";
555		case 134: return "R_IA_64_LTOFF22X";
556		case 135: return "R_IA_64_LDXMOV";
557		case 145: return "R_IA_64_TPREL14";
558		case 146: return "R_IA_64_TPREL22";
559		case 147: return "R_IA_64_TPREL64I";
560		case 150: return "R_IA_64_TPREL64MSB";
561		case 151: return "R_IA_64_TPREL64LSB";
562		case 154: return "R_IA_64_LTOFF_TPREL22";
563		case 166: return "R_IA_64_DTPMOD64MSB";
564		case 167: return "R_IA_64_DTPMOD64LSB";
565		case 170: return "R_IA_64_LTOFF_DTPMOD22";
566		case 177: return "R_IA_64_DTPREL14";
567		case 178: return "R_IA_64_DTPREL22";
568		case 179: return "R_IA_64_DTPREL64I";
569		case 180: return "R_IA_64_DTPREL32MSB";
570		case 181: return "R_IA_64_DTPREL32LSB";
571		case 182: return "R_IA_64_DTPREL64MSB";
572		case 183: return "R_IA_64_DTPREL64LSB";
573		case 186: return "R_IA_64_LTOFF_DTPREL22";
574		default: return "";
575		}
576	case EM_MIPS:
577		switch(type) {
578		case 0: return "R_MIPS_NONE";
579		case 1: return "R_MIPS_16";
580		case 2: return "R_MIPS_32";
581		case 3: return "R_MIPS_REL32";
582		case 4: return "R_MIPS_26";
583		case 5: return "R_MIPS_HI16";
584		case 6: return "R_MIPS_LO16";
585		case 7: return "R_MIPS_GPREL16";
586		case 8: return "R_MIPS_LITERAL";
587		case 9: return "R_MIPS_GOT16";
588		case 10: return "R_MIPS_PC16";
589		case 11: return "R_MIPS_CALL16";
590		case 12: return "R_MIPS_GPREL32";
591		case 21: return "R_MIPS_GOTHI16";
592		case 22: return "R_MIPS_GOTLO16";
593		case 30: return "R_MIPS_CALLHI16";
594		case 31: return "R_MIPS_CALLLO16";
595		default: return "";
596		}
597	case EM_PPC:
598		switch(type) {
599		case 0: return "R_PPC_NONE";
600		case 1: return "R_PPC_ADDR32";
601		case 2: return "R_PPC_ADDR24";
602		case 3: return "R_PPC_ADDR16";
603		case 4: return "R_PPC_ADDR16_LO";
604		case 5: return "R_PPC_ADDR16_HI";
605		case 6: return "R_PPC_ADDR16_HA";
606		case 7: return "R_PPC_ADDR14";
607		case 8: return "R_PPC_ADDR14_BRTAKEN";
608		case 9: return "R_PPC_ADDR14_BRNTAKEN";
609		case 10: return "R_PPC_REL24";
610		case 11: return "R_PPC_REL14";
611		case 12: return "R_PPC_REL14_BRTAKEN";
612		case 13: return "R_PPC_REL14_BRNTAKEN";
613		case 14: return "R_PPC_GOT16";
614		case 15: return "R_PPC_GOT16_LO";
615		case 16: return "R_PPC_GOT16_HI";
616		case 17: return "R_PPC_GOT16_HA";
617		case 18: return "R_PPC_PLTREL24";
618		case 19: return "R_PPC_COPY";
619		case 20: return "R_PPC_GLOB_DAT";
620		case 21: return "R_PPC_JMP_SLOT";
621		case 22: return "R_PPC_RELATIVE";
622		case 23: return "R_PPC_LOCAL24PC";
623		case 24: return "R_PPC_UADDR32";
624		case 25: return "R_PPC_UADDR16";
625		case 26: return "R_PPC_REL32";
626		case 27: return "R_PPC_PLT32";
627		case 28: return "R_PPC_PLTREL32";
628		case 29: return "R_PPC_PLT16_LO";
629		case 30: return "R_PPC_PLT16_HI";
630		case 31: return "R_PPC_PLT16_HA";
631		case 32: return "R_PPC_SDAREL16";
632		case 33: return "R_PPC_SECTOFF";
633		case 34: return "R_PPC_SECTOFF_LO";
634		case 35: return "R_PPC_SECTOFF_HI";
635		case 36: return "R_PPC_SECTOFF_HA";
636		case 67: return "R_PPC_TLS";
637		case 68: return "R_PPC_DTPMOD32";
638		case 69: return "R_PPC_TPREL16";
639		case 70: return "R_PPC_TPREL16_LO";
640		case 71: return "R_PPC_TPREL16_HI";
641		case 72: return "R_PPC_TPREL16_HA";
642		case 73: return "R_PPC_TPREL32";
643		case 74: return "R_PPC_DTPREL16";
644		case 75: return "R_PPC_DTPREL16_LO";
645		case 76: return "R_PPC_DTPREL16_HI";
646		case 77: return "R_PPC_DTPREL16_HA";
647		case 78: return "R_PPC_DTPREL32";
648		case 79: return "R_PPC_GOT_TLSGD16";
649		case 80: return "R_PPC_GOT_TLSGD16_LO";
650		case 81: return "R_PPC_GOT_TLSGD16_HI";
651		case 82: return "R_PPC_GOT_TLSGD16_HA";
652		case 83: return "R_PPC_GOT_TLSLD16";
653		case 84: return "R_PPC_GOT_TLSLD16_LO";
654		case 85: return "R_PPC_GOT_TLSLD16_HI";
655		case 86: return "R_PPC_GOT_TLSLD16_HA";
656		case 87: return "R_PPC_GOT_TPREL16";
657		case 88: return "R_PPC_GOT_TPREL16_LO";
658		case 89: return "R_PPC_GOT_TPREL16_HI";
659		case 90: return "R_PPC_GOT_TPREL16_HA";
660		case 101: return "R_PPC_EMB_NADDR32";
661		case 102: return "R_PPC_EMB_NADDR16";
662		case 103: return "R_PPC_EMB_NADDR16_LO";
663		case 104: return "R_PPC_EMB_NADDR16_HI";
664		case 105: return "R_PPC_EMB_NADDR16_HA";
665		case 106: return "R_PPC_EMB_SDAI16";
666		case 107: return "R_PPC_EMB_SDA2I16";
667		case 108: return "R_PPC_EMB_SDA2REL";
668		case 109: return "R_PPC_EMB_SDA21";
669		case 110: return "R_PPC_EMB_MRKREF";
670		case 111: return "R_PPC_EMB_RELSEC16";
671		case 112: return "R_PPC_EMB_RELST_LO";
672		case 113: return "R_PPC_EMB_RELST_HI";
673		case 114: return "R_PPC_EMB_RELST_HA";
674		case 115: return "R_PPC_EMB_BIT_FLD";
675		case 116: return "R_PPC_EMB_RELSDA";
676		default: return "";
677		}
678	case EM_SPARC:
679	case EM_SPARCV9:
680		switch(type) {
681		case 0: return "R_SPARC_NONE";
682		case 1: return "R_SPARC_8";
683		case 2: return "R_SPARC_16";
684		case 3: return "R_SPARC_32";
685		case 4: return "R_SPARC_DISP8";
686		case 5: return "R_SPARC_DISP16";
687		case 6: return "R_SPARC_DISP32";
688		case 7: return "R_SPARC_WDISP30";
689		case 8: return "R_SPARC_WDISP22";
690		case 9: return "R_SPARC_HI22";
691		case 10: return "R_SPARC_22";
692		case 11: return "R_SPARC_13";
693		case 12: return "R_SPARC_LO10";
694		case 13: return "R_SPARC_GOT10";
695		case 14: return "R_SPARC_GOT13";
696		case 15: return "R_SPARC_GOT22";
697		case 16: return "R_SPARC_PC10";
698		case 17: return "R_SPARC_PC22";
699		case 18: return "R_SPARC_WPLT30";
700		case 19: return "R_SPARC_COPY";
701		case 20: return "R_SPARC_GLOB_DAT";
702		case 21: return "R_SPARC_JMP_SLOT";
703		case 22: return "R_SPARC_RELATIVE";
704		case 23: return "R_SPARC_UA32";
705		case 24: return "R_SPARC_PLT32";
706		case 25: return "R_SPARC_HIPLT22";
707		case 26: return "R_SPARC_LOPLT10";
708		case 27: return "R_SPARC_PCPLT32";
709		case 28: return "R_SPARC_PCPLT22";
710		case 29: return "R_SPARC_PCPLT10";
711		case 30: return "R_SPARC_10";
712		case 31: return "R_SPARC_11";
713		case 32: return "R_SPARC_64";
714		case 33: return "R_SPARC_OLO10";
715		case 34: return "R_SPARC_HH22";
716		case 35: return "R_SPARC_HM10";
717		case 36: return "R_SPARC_LM22";
718		case 37: return "R_SPARC_PC_HH22";
719		case 38: return "R_SPARC_PC_HM10";
720		case 39: return "R_SPARC_PC_LM22";
721		case 40: return "R_SPARC_WDISP16";
722		case 41: return "R_SPARC_WDISP19";
723		case 42: return "R_SPARC_GLOB_JMP";
724		case 43: return "R_SPARC_7";
725		case 44: return "R_SPARC_5";
726		case 45: return "R_SPARC_6";
727		case 46: return "R_SPARC_DISP64";
728		case 47: return "R_SPARC_PLT64";
729		case 48: return "R_SPARC_HIX22";
730		case 49: return "R_SPARC_LOX10";
731		case 50: return "R_SPARC_H44";
732		case 51: return "R_SPARC_M44";
733		case 52: return "R_SPARC_L44";
734		case 53: return "R_SPARC_REGISTER";
735		case 54: return "R_SPARC_UA64";
736		case 55: return "R_SPARC_UA16";
737		case 56: return "R_SPARC_TLS_GD_HI22";
738		case 57: return "R_SPARC_TLS_GD_LO10";
739		case 58: return "R_SPARC_TLS_GD_ADD";
740		case 59: return "R_SPARC_TLS_GD_CALL";
741		case 60: return "R_SPARC_TLS_LDM_HI22";
742		case 61: return "R_SPARC_TLS_LDM_LO10";
743		case 62: return "R_SPARC_TLS_LDM_ADD";
744		case 63: return "R_SPARC_TLS_LDM_CALL";
745		case 64: return "R_SPARC_TLS_LDO_HIX22";
746		case 65: return "R_SPARC_TLS_LDO_LOX10";
747		case 66: return "R_SPARC_TLS_LDO_ADD";
748		case 67: return "R_SPARC_TLS_IE_HI22";
749		case 68: return "R_SPARC_TLS_IE_LO10";
750		case 69: return "R_SPARC_TLS_IE_LD";
751		case 70: return "R_SPARC_TLS_IE_LDX";
752		case 71: return "R_SPARC_TLS_IE_ADD";
753		case 72: return "R_SPARC_TLS_LE_HIX22";
754		case 73: return "R_SPARC_TLS_LE_LOX10";
755		case 74: return "R_SPARC_TLS_DTPMOD32";
756		case 75: return "R_SPARC_TLS_DTPMOD64";
757		case 76: return "R_SPARC_TLS_DTPOFF32";
758		case 77: return "R_SPARC_TLS_DTPOFF64";
759		case 78: return "R_SPARC_TLS_TPOFF32";
760		case 79: return "R_SPARC_TLS_TPOFF64";
761		default: return "";
762		}
763	case EM_X86_64:
764		switch(type) {
765		case 0: return "R_X86_64_NONE";
766		case 1: return "R_X86_64_64";
767		case 2: return "R_X86_64_PC32";
768		case 3: return "R_X86_64_GOT32";
769		case 4: return "R_X86_64_PLT32";
770		case 5: return "R_X86_64_COPY";
771		case 6: return "R_X86_64_GLOB_DAT";
772		case 7: return "R_X86_64_JMP_SLOT";
773		case 8: return "R_X86_64_RELATIVE";
774		case 9: return "R_X86_64_GOTPCREL";
775		case 10: return "R_X86_64_32";
776		case 11: return "R_X86_64_32S";
777		case 12: return "R_X86_64_16";
778		case 13: return "R_X86_64_PC16";
779		case 14: return "R_X86_64_8";
780		case 15: return "R_X86_64_PC8";
781		case 16: return "R_X86_64_DTPMOD64";
782		case 17: return "R_X86_64_DTPOFF64";
783		case 18: return "R_X86_64_TPOFF64";
784		case 19: return "R_X86_64_TLSGD";
785		case 20: return "R_X86_64_TLSLD";
786		case 21: return "R_X86_64_DTPOFF32";
787		case 22: return "R_X86_64_GOTTPOFF";
788		case 23: return "R_X86_64_TPOFF32";
789		default: return "";
790		}
791	default: return "";
792	}
793}
794
795static void	add_name(struct elfdump *ed, const char *name);
796static void	elf_print_object(struct elfdump *ed);
797static void	elf_print_elf(struct elfdump *ed);
798static void	elf_print_ehdr(struct elfdump *ed);
799static void	elf_print_phdr(struct elfdump *ed);
800static void	elf_print_shdr(struct elfdump *ed);
801static void	elf_print_symtab(struct elfdump *ed, int i);
802static void	elf_print_symtabs(struct elfdump *ed);
803static void	elf_print_symver(struct elfdump *ed);
804static void	elf_print_verdef(struct elfdump *ed, struct section *s);
805static void	elf_print_verneed(struct elfdump *ed, struct section *s);
806static void	elf_print_interp(struct elfdump *ed);
807static void	elf_print_dynamic(struct elfdump *ed);
808static void	elf_print_rel_entry(struct elfdump *ed, struct section *s,
809    int j, struct rel_entry *r);
810static void	elf_print_rela(struct elfdump *ed, struct section *s,
811    Elf_Data *data);
812static void	elf_print_rel(struct elfdump *ed, struct section *s,
813    Elf_Data *data);
814static void	elf_print_reloc(struct elfdump *ed);
815static void	elf_print_got(struct elfdump *ed);
816static void	elf_print_got_section(struct elfdump *ed, struct section *s);
817static void	elf_print_note(struct elfdump *ed);
818static void	elf_print_svr4_hash(struct elfdump *ed, struct section *s);
819static void	elf_print_svr4_hash64(struct elfdump *ed, struct section *s);
820static void	elf_print_gnu_hash(struct elfdump *ed, struct section *s);
821static void	elf_print_hash(struct elfdump *ed);
822static void	elf_print_checksum(struct elfdump *ed);
823static void	find_gotrel(struct elfdump *ed, struct section *gs,
824    struct rel_entry *got);
825static struct spec_name	*find_name(struct elfdump *ed, const char *name);
826static int	get_ent_count(const struct section *s, int *ent_count);
827static const char *get_symbol_name(struct elfdump *ed, int symtab, int i);
828static const char *get_string(struct elfdump *ed, int strtab, size_t off);
829static void	get_versym(struct elfdump *ed, int i, uint16_t **vs, int *nvs);
830static void	load_sections(struct elfdump *ed);
831static void	unload_sections(struct elfdump *ed);
832static void	usage(void);
833#ifdef	USE_LIBARCHIVE_AR
834static int	ac_detect_ar(int fd);
835static void	ac_print_ar(struct elfdump *ed, int fd);
836#else
837static void	elf_print_ar(struct elfdump *ed, int fd);
838#endif	/* USE_LIBARCHIVE_AR */
839
840static struct option elfdump_longopts[] =
841{
842	{ "help",	no_argument,	NULL,	'H' },
843	{ "version",	no_argument,	NULL,	'V' },
844	{ NULL,		0,		NULL,	0   }
845};
846
847int
848main(int ac, char **av)
849{
850	struct elfdump		*ed, ed_storage;
851	struct spec_name	*sn;
852	int			 ch, i;
853
854	ed = &ed_storage;
855	memset(ed, 0, sizeof(*ed));
856	STAILQ_INIT(&ed->snl);
857	ed->out = stdout;
858	while ((ch = getopt_long(ac, av, "acdeiGHhknN:prsSvVw:",
859		elfdump_longopts, NULL)) != -1)
860		switch (ch) {
861		case 'a':
862			ed->options = ED_ALL;
863			break;
864		case 'c':
865			ed->options |= ED_SHDR;
866			break;
867		case 'd':
868			ed->options |= ED_DYN;
869			break;
870		case 'e':
871			ed->options |= ED_EHDR;
872			break;
873		case 'i':
874			ed->options |= ED_INTERP;
875			break;
876		case 'G':
877			ed->options |= ED_GOT;
878			break;
879		case 'h':
880			ed->options |= ED_HASH;
881			break;
882		case 'k':
883			ed->options |= ED_CHECKSUM;
884			break;
885		case 'n':
886			ed->options |= ED_NOTE;
887			break;
888		case 'N':
889			add_name(ed, optarg);
890			break;
891		case 'p':
892			ed->options |= ED_PHDR;
893			break;
894		case 'r':
895			ed->options |= ED_REL;
896			break;
897		case 's':
898			ed->options |= ED_SYMTAB;
899			break;
900		case 'S':
901			ed->flags |= SOLARIS_FMT;
902			break;
903		case 'v':
904			ed->options |= ED_SYMVER;
905			break;
906		case 'V':
907			(void) printf("%s (%s)\n", ELFTC_GETPROGNAME(),
908			    elftc_version());
909			exit(EXIT_SUCCESS);
910			break;
911		case 'w':
912			if ((ed->out = fopen(optarg, "w")) == NULL)
913				err(EXIT_FAILURE, "%s", optarg);
914			break;
915		case '?':
916		case 'H':
917		default:
918			usage();
919		}
920
921	ac -= optind;
922	av += optind;
923
924	if (ed->options == 0)
925		ed->options = ED_ALL;
926	sn = NULL;
927	if (ed->options & ED_SYMTAB &&
928	    (STAILQ_EMPTY(&ed->snl) || (sn = find_name(ed, "ARSYM")) != NULL)) {
929		ed->flags |= PRINT_ARSYM;
930		if (sn != NULL) {
931			STAILQ_REMOVE(&ed->snl, sn, spec_name, sn_list);
932			if (STAILQ_EMPTY(&ed->snl))
933				ed->flags |= ONLY_ARSYM;
934		}
935	}
936	if (ac == 0)
937		usage();
938	if (ac > 1)
939		ed->flags |= PRINT_FILENAME;
940	if (elf_version(EV_CURRENT) == EV_NONE)
941		errx(EXIT_FAILURE, "ELF library initialization failed: %s",
942		    elf_errmsg(-1));
943
944	for (i = 0; i < ac; i++) {
945		ed->filename = av[i];
946		ed->archive = NULL;
947		elf_print_object(ed);
948	}
949
950	exit(EXIT_SUCCESS);
951}
952
953#ifdef USE_LIBARCHIVE_AR
954
955/* Archive symbol table entry. */
956struct arsym_entry {
957	char *sym_name;
958	size_t off;
959};
960
961/*
962 * Convenient wrapper for general libarchive error handling.
963 */
964#define	AC(CALL) do {							\
965	if ((CALL)) {							\
966		warnx("%s", archive_error_string(a));			\
967		return;							\
968	}								\
969} while (0)
970
971/*
972 * Detect an ar(1) archive using libarchive(3).
973 */
974static int
975ac_detect_ar(int fd)
976{
977	struct archive		*a;
978	struct archive_entry	*entry;
979	int			 r;
980
981	r = -1;
982	if ((a = archive_read_new()) == NULL)
983		return (0);
984	archive_read_support_format_ar(a);
985	if (archive_read_open_fd(a, fd, 10240) == ARCHIVE_OK)
986		r = archive_read_next_header(a, &entry);
987	archive_read_close(a);
988	archive_read_free(a);
989
990	return (r == ARCHIVE_OK);
991}
992
993/*
994 * Dump an ar(1) archive using libarchive(3).
995 */
996static void
997ac_print_ar(struct elfdump *ed, int fd)
998{
999	struct archive		*a;
1000	struct archive_entry	*entry;
1001	struct arsym_entry	*arsym;
1002	const char		*name;
1003	char			 idx[10], *b;
1004	void			*buff;
1005	size_t			 size;
1006	uint32_t		 cnt;
1007	int			 i, r;
1008
1009	if (lseek(fd, 0, SEEK_SET) == -1)
1010		err(EXIT_FAILURE, "lseek failed");
1011	if ((a = archive_read_new()) == NULL)
1012		errx(EXIT_FAILURE, "%s", archive_error_string(a));
1013	archive_read_support_format_ar(a);
1014	AC(archive_read_open_fd(a, fd, 10240));
1015	for(;;) {
1016		r = archive_read_next_header(a, &entry);
1017		if (r == ARCHIVE_FATAL)
1018			errx(EXIT_FAILURE, "%s", archive_error_string(a));
1019		if (r == ARCHIVE_EOF)
1020			break;
1021		if (r == ARCHIVE_WARN || r == ARCHIVE_RETRY)
1022			warnx("%s", archive_error_string(a));
1023		if (r == ARCHIVE_RETRY)
1024			continue;
1025		name = archive_entry_pathname(entry);
1026		size = archive_entry_size(entry);
1027		if (size == 0)
1028			continue;
1029		if ((buff = malloc(size)) == NULL) {
1030			warn("malloc failed");
1031			continue;
1032		}
1033		if (archive_read_data(a, buff, size) != (ssize_t)size) {
1034			warnx("%s", archive_error_string(a));
1035			free(buff);
1036			continue;
1037		}
1038
1039		/*
1040		 * Note that when processing arsym via libarchive, there is
1041		 * no way to tell which member a certain symbol belongs to,
1042		 * since we can not just "lseek" to a member offset and read
1043		 * the member header.
1044		 */
1045		if (!strcmp(name, "/") && ed->flags & PRINT_ARSYM) {
1046			b = buff;
1047			cnt = be32dec(b);
1048			if (cnt == 0) {
1049				free(buff);
1050				continue;
1051			}
1052			arsym = calloc(cnt, sizeof(*arsym));
1053			if (arsym == NULL)
1054				err(EXIT_FAILURE, "calloc failed");
1055			b += sizeof(uint32_t);
1056			for (i = 0; (size_t)i < cnt; i++) {
1057				arsym[i].off = be32dec(b);
1058				b += sizeof(uint32_t);
1059			}
1060			for (i = 0; (size_t)i < cnt; i++) {
1061				arsym[i].sym_name = b;
1062				b += strlen(b) + 1;
1063			}
1064			if (ed->flags & SOLARIS_FMT) {
1065				PRT("\nSymbol Table: (archive)\n");
1066				PRT("     index    offset    symbol\n");
1067			} else
1068				PRT("\nsymbol table (archive):\n");
1069			for (i = 0; (size_t)i < cnt; i++) {
1070				if (ed->flags & SOLARIS_FMT) {
1071					snprintf(idx, sizeof(idx), "[%d]", i);
1072					PRT("%10s  ", idx);
1073					PRT("0x%8.8jx  ",
1074					    (uintmax_t)arsym[i].off);
1075					PRT("%s\n", arsym[i].sym_name);
1076				} else {
1077					PRT("\nentry: %d\n", i);
1078					PRT("\toffset: %#jx\n",
1079					    (uintmax_t)arsym[i].off);
1080					PRT("\tsymbol: %s\n",
1081					    arsym[i].sym_name);
1082				}
1083			}
1084			free(arsym);
1085			free(buff);
1086			/* No need to continue if we only dump ARSYM. */
1087			if (ed->flags & ONLY_ARSYM) {
1088				AC(archive_read_close(a));
1089				AC(archive_read_free(a));
1090				return;
1091			}
1092			continue;
1093		}
1094		if ((ed->elf = elf_memory(buff, size)) == NULL) {
1095			warnx("elf_memroy() failed: %s",
1096			      elf_errmsg(-1));
1097			free(buff);
1098			continue;
1099		}
1100		/* Skip non-ELF member. */
1101		if (elf_kind(ed->elf) == ELF_K_ELF) {
1102			printf("\n%s(%s):\n", ed->archive, name);
1103			elf_print_elf(ed);
1104		}
1105		elf_end(ed->elf);
1106		free(buff);
1107	}
1108	AC(archive_read_close(a));
1109	AC(archive_read_free(a));
1110}
1111
1112#else  /* USE_LIBARCHIVE_AR */
1113
1114/*
1115 * Dump an ar(1) archive.
1116 */
1117static void
1118elf_print_ar(struct elfdump *ed, int fd)
1119{
1120	Elf		*e;
1121	Elf_Arhdr	*arh;
1122	Elf_Arsym	*arsym;
1123	Elf_Cmd		 cmd;
1124	char		 idx[10];
1125	size_t		 cnt;
1126	int		 i;
1127
1128	ed->ar = ed->elf;
1129
1130	if (ed->flags & PRINT_ARSYM) {
1131		cnt = 0;
1132		if ((arsym = elf_getarsym(ed->ar, &cnt)) == NULL) {
1133			warnx("elf_getarsym failed: %s", elf_errmsg(-1));
1134			goto print_members;
1135		}
1136		if (cnt == 0)
1137			goto print_members;
1138		if (ed->flags & SOLARIS_FMT) {
1139			PRT("\nSymbol Table: (archive)\n");
1140			PRT("     index    offset    member name and symbol\n");
1141		} else
1142			PRT("\nsymbol table (archive):\n");
1143		for (i = 0; (size_t)i < cnt - 1; i++) {
1144			if (elf_rand(ed->ar, arsym[i].as_off) !=
1145			    arsym[i].as_off) {
1146				warnx("elf_rand failed: %s", elf_errmsg(-1));
1147				break;
1148			}
1149			if ((e = elf_begin(fd, ELF_C_READ, ed->ar)) == NULL) {
1150				warnx("elf_begin failed: %s", elf_errmsg(-1));
1151				break;
1152			}
1153			if ((arh = elf_getarhdr(e)) == NULL) {
1154				warnx("elf_getarhdr failed: %s",
1155				    elf_errmsg(-1));
1156				break;
1157			}
1158			if (ed->flags & SOLARIS_FMT) {
1159				snprintf(idx, sizeof(idx), "[%d]", i);
1160				PRT("%10s  ", idx);
1161				PRT("0x%8.8jx  ",
1162				    (uintmax_t)arsym[i].as_off);
1163				PRT("(%s):%s\n", arh->ar_name,
1164				    arsym[i].as_name);
1165			} else {
1166				PRT("\nentry: %d\n", i);
1167				PRT("\toffset: %#jx\n",
1168				    (uintmax_t)arsym[i].as_off);
1169				PRT("\tmember: %s\n", arh->ar_name);
1170				PRT("\tsymbol: %s\n", arsym[i].as_name);
1171			}
1172			elf_end(e);
1173		}
1174
1175		/* No need to continue if we only dump ARSYM. */
1176		if (ed->flags & ONLY_ARSYM)
1177			return;
1178	}
1179
1180print_members:
1181
1182	/* Rewind the archive. */
1183	if (elf_rand(ed->ar, SARMAG) != SARMAG) {
1184		warnx("elf_rand failed: %s", elf_errmsg(-1));
1185		return;
1186	}
1187
1188	/* Dump each member of the archive. */
1189	cmd = ELF_C_READ;
1190	while ((ed->elf = elf_begin(fd, cmd, ed->ar)) != NULL) {
1191		/* Skip non-ELF member. */
1192		if (elf_kind(ed->elf) == ELF_K_ELF) {
1193			if ((arh = elf_getarhdr(ed->elf)) == NULL) {
1194				warnx("elf_getarhdr failed: %s",
1195				    elf_errmsg(-1));
1196				break;
1197			}
1198			printf("\n%s(%s):\n", ed->archive, arh->ar_name);
1199			elf_print_elf(ed);
1200		}
1201		cmd = elf_next(ed->elf);
1202		elf_end(ed->elf);
1203	}
1204}
1205
1206#endif	/* USE_LIBARCHIVE_AR */
1207
1208/*
1209 * Dump an object. (ELF object or ar(1) archive)
1210 */
1211static void
1212elf_print_object(struct elfdump *ed)
1213{
1214	int fd;
1215
1216	if ((fd = open(ed->filename, O_RDONLY)) == -1) {
1217		warn("open %s failed", ed->filename);
1218		return;
1219	}
1220
1221#ifdef	USE_LIBARCHIVE_AR
1222	if (ac_detect_ar(fd)) {
1223		ed->archive = ed->filename;
1224		ac_print_ar(ed, fd);
1225		return;
1226	}
1227#endif	/* USE_LIBARCHIVE_AR */
1228
1229	if ((ed->elf = elf_begin(fd, ELF_C_READ, NULL)) == NULL) {
1230		warnx("elf_begin() failed: %s", elf_errmsg(-1));
1231		return;
1232	}
1233
1234	switch (elf_kind(ed->elf)) {
1235	case ELF_K_NONE:
1236		warnx("Not an ELF file.");
1237		return;
1238	case ELF_K_ELF:
1239		if (ed->flags & PRINT_FILENAME)
1240			printf("\n%s:\n", ed->filename);
1241		elf_print_elf(ed);
1242		break;
1243	case ELF_K_AR:
1244#ifndef	USE_LIBARCHIVE_AR
1245		ed->archive = ed->filename;
1246		elf_print_ar(ed, fd);
1247#endif
1248		break;
1249	default:
1250		warnx("Internal: libelf returned unknown elf kind.");
1251		return;
1252	}
1253
1254	elf_end(ed->elf);
1255}
1256
1257/*
1258 * Dump an ELF object.
1259 */
1260static void
1261elf_print_elf(struct elfdump *ed)
1262{
1263
1264	if (gelf_getehdr(ed->elf, &ed->ehdr) == NULL) {
1265		warnx("gelf_getehdr failed: %s", elf_errmsg(-1));
1266		return;
1267	}
1268	if ((ed->ec = gelf_getclass(ed->elf)) == ELFCLASSNONE) {
1269		warnx("gelf_getclass failed: %s", elf_errmsg(-1));
1270		return;
1271	}
1272
1273	if (ed->options & (ED_SHDR | ED_DYN | ED_REL | ED_GOT | ED_SYMTAB |
1274	    ED_SYMVER | ED_NOTE | ED_HASH))
1275		load_sections(ed);
1276
1277	if (ed->options & ED_EHDR)
1278		elf_print_ehdr(ed);
1279	if (ed->options & ED_PHDR)
1280		elf_print_phdr(ed);
1281	if (ed->options & ED_INTERP)
1282		elf_print_interp(ed);
1283	if (ed->options & ED_SHDR)
1284		elf_print_shdr(ed);
1285	if (ed->options & ED_DYN)
1286		elf_print_dynamic(ed);
1287	if (ed->options & ED_REL)
1288		elf_print_reloc(ed);
1289	if (ed->options & ED_GOT)
1290		elf_print_got(ed);
1291	if (ed->options & ED_SYMTAB)
1292		elf_print_symtabs(ed);
1293	if (ed->options & ED_SYMVER)
1294		elf_print_symver(ed);
1295	if (ed->options & ED_NOTE)
1296		elf_print_note(ed);
1297	if (ed->options & ED_HASH)
1298		elf_print_hash(ed);
1299	if (ed->options & ED_CHECKSUM)
1300		elf_print_checksum(ed);
1301
1302	unload_sections(ed);
1303}
1304
1305/*
1306 * Read the section headers from ELF object and store them in the
1307 * internal cache.
1308 */
1309static void
1310load_sections(struct elfdump *ed)
1311{
1312	struct section	*s;
1313	const char	*name;
1314	Elf_Scn		*scn;
1315	GElf_Shdr	 sh;
1316	size_t		 shstrndx, ndx;
1317	int		 elferr;
1318
1319	assert(ed->sl == NULL);
1320
1321	if (!elf_getshnum(ed->elf, &ed->shnum)) {
1322		warnx("elf_getshnum failed: %s", elf_errmsg(-1));
1323		return;
1324	}
1325	if (ed->shnum == 0)
1326		return;
1327	if ((ed->sl = calloc(ed->shnum, sizeof(*ed->sl))) == NULL)
1328		err(EXIT_FAILURE, "calloc failed");
1329	if (!elf_getshstrndx(ed->elf, &shstrndx)) {
1330		warnx("elf_getshstrndx failed: %s", elf_errmsg(-1));
1331		return;
1332	}
1333	if ((scn = elf_getscn(ed->elf, 0)) == NULL) {
1334		warnx("elf_getscn failed: %s", elf_errmsg(-1));
1335		return;
1336	}
1337	(void) elf_errno();
1338	do {
1339		if (gelf_getshdr(scn, &sh) == NULL) {
1340			warnx("gelf_getshdr failed: %s", elf_errmsg(-1));
1341			(void) elf_errno();
1342			continue;
1343		}
1344		if ((name = elf_strptr(ed->elf, shstrndx, sh.sh_name)) == NULL) {
1345			(void) elf_errno();
1346			name = "ERROR";
1347		}
1348		if ((ndx = elf_ndxscn(scn)) == SHN_UNDEF)
1349			if ((elferr = elf_errno()) != 0) {
1350				warnx("elf_ndxscn failed: %s",
1351				    elf_errmsg(elferr));
1352				continue;
1353			}
1354		if (ndx >= ed->shnum) {
1355			warnx("section index of '%s' out of range", name);
1356			continue;
1357		}
1358		s = &ed->sl[ndx];
1359		s->name = name;
1360		s->scn = scn;
1361		s->off = sh.sh_offset;
1362		s->sz = sh.sh_size;
1363		s->entsize = sh.sh_entsize;
1364		s->align = sh.sh_addralign;
1365		s->type = sh.sh_type;
1366		s->flags = sh.sh_flags;
1367		s->addr = sh.sh_addr;
1368		s->link = sh.sh_link;
1369		s->info = sh.sh_info;
1370	} while ((scn = elf_nextscn(ed->elf, scn)) != NULL);
1371	elferr = elf_errno();
1372	if (elferr != 0)
1373		warnx("elf_nextscn failed: %s", elf_errmsg(elferr));
1374}
1375
1376/*
1377 * Release section related resources.
1378 */
1379static void
1380unload_sections(struct elfdump *ed)
1381{
1382	if (ed->sl != NULL) {
1383		free(ed->sl);
1384		ed->sl = NULL;
1385	}
1386}
1387
1388/*
1389 * Add a name to the '-N' name list.
1390 */
1391static void
1392add_name(struct elfdump *ed, const char *name)
1393{
1394	struct spec_name *sn;
1395
1396	if (find_name(ed, name))
1397		return;
1398	if ((sn = malloc(sizeof(*sn))) == NULL) {
1399		warn("malloc failed");
1400		return;
1401	}
1402	sn->name = name;
1403	STAILQ_INSERT_TAIL(&ed->snl, sn, sn_list);
1404}
1405
1406/*
1407 * Lookup a name in the '-N' name list.
1408 */
1409static struct spec_name *
1410find_name(struct elfdump *ed, const char *name)
1411{
1412	struct spec_name *sn;
1413
1414	STAILQ_FOREACH(sn, &ed->snl, sn_list) {
1415		if (!strcmp(sn->name, name))
1416			return (sn);
1417	}
1418
1419	return (NULL);
1420}
1421
1422/*
1423 * Retrieve the name of a symbol using the section index of the symbol
1424 * table and the index of the symbol within that table.
1425 */
1426static const char *
1427get_symbol_name(struct elfdump *ed, int symtab, int i)
1428{
1429	static char	 sname[64];
1430	struct section	*s;
1431	const char	*name;
1432	GElf_Sym	 sym;
1433	Elf_Data	*data;
1434	int		 elferr;
1435
1436	s = &ed->sl[symtab];
1437	if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM)
1438		return ("");
1439	(void) elf_errno();
1440	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
1441		elferr = elf_errno();
1442		if (elferr != 0)
1443			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
1444		return ("");
1445	}
1446	if (gelf_getsym(data, i, &sym) != &sym)
1447		return ("");
1448	if (GELF_ST_TYPE(sym.st_info) == STT_SECTION) {
1449		if (sym.st_shndx < ed->shnum) {
1450			snprintf(sname, sizeof(sname), "%s (section)",
1451			    ed->sl[sym.st_shndx].name);
1452			return (sname);
1453		} else
1454			return ("");
1455	}
1456	if ((name = elf_strptr(ed->elf, s->link, sym.st_name)) == NULL)
1457		return ("");
1458
1459	return (name);
1460}
1461
1462/*
1463 * Retrieve a string using string table section index and the string offset.
1464 */
1465static const char*
1466get_string(struct elfdump *ed, int strtab, size_t off)
1467{
1468	const char *name;
1469
1470	if ((name = elf_strptr(ed->elf, strtab, off)) == NULL)
1471		return ("");
1472
1473	return (name);
1474}
1475
1476/*
1477 * Dump the ELF Executable Header.
1478 */
1479static void
1480elf_print_ehdr(struct elfdump *ed)
1481{
1482
1483	if (!STAILQ_EMPTY(&ed->snl))
1484		return;
1485
1486	if (ed->flags & SOLARIS_FMT) {
1487		PRT("\nELF Header\n");
1488		PRT("  ei_magic:   { %#x, %c, %c, %c }\n",
1489		    ed->ehdr.e_ident[0], ed->ehdr.e_ident[1],
1490		    ed->ehdr.e_ident[2], ed->ehdr.e_ident[3]);
1491		PRT("  ei_class:   %-18s",
1492		    ei_classes[ed->ehdr.e_ident[EI_CLASS]]);
1493		PRT("  ei_data:      %s\n", ei_data[ed->ehdr.e_ident[EI_DATA]]);
1494		PRT("  e_machine:  %-18s", e_machines(ed->ehdr.e_machine));
1495		PRT("  e_version:    %s\n", ei_versions[ed->ehdr.e_version]);
1496		PRT("  e_type:     %s\n", e_types[ed->ehdr.e_type]);
1497		PRT("  e_flags:    %18d\n", ed->ehdr.e_flags);
1498		PRT("  e_entry:    %#18jx", (uintmax_t)ed->ehdr.e_entry);
1499		PRT("  e_ehsize: %6d", ed->ehdr.e_ehsize);
1500		PRT("  e_shstrndx:%5d\n", ed->ehdr.e_shstrndx);
1501		PRT("  e_shoff:    %#18jx", (uintmax_t)ed->ehdr.e_shoff);
1502		PRT("  e_shentsize: %3d", ed->ehdr.e_shentsize);
1503		PRT("  e_shnum:   %5d\n", ed->ehdr.e_shnum);
1504		PRT("  e_phoff:    %#18jx", (uintmax_t)ed->ehdr.e_phoff);
1505		PRT("  e_phentsize: %3d", ed->ehdr.e_phentsize);
1506		PRT("  e_phnum:   %5d\n", ed->ehdr.e_phnum);
1507	} else {
1508		PRT("\nelf header:\n");
1509		PRT("\n");
1510		PRT("\te_ident: %s %s %s\n",
1511		    ei_classes[ed->ehdr.e_ident[EI_CLASS]],
1512		    ei_data[ed->ehdr.e_ident[EI_DATA]],
1513		    ei_abis[ed->ehdr.e_ident[EI_OSABI]]);
1514		PRT("\te_type: %s\n", e_types[ed->ehdr.e_type]);
1515		PRT("\te_machine: %s\n", e_machines(ed->ehdr.e_machine));
1516		PRT("\te_version: %s\n", ei_versions[ed->ehdr.e_version]);
1517		PRT("\te_entry: %#jx\n", (uintmax_t)ed->ehdr.e_entry);
1518		PRT("\te_phoff: %ju\n", (uintmax_t)ed->ehdr.e_phoff);
1519		PRT("\te_shoff: %ju\n", (uintmax_t) ed->ehdr.e_shoff);
1520		PRT("\te_flags: %u\n", ed->ehdr.e_flags);
1521		PRT("\te_ehsize: %u\n", ed->ehdr.e_ehsize);
1522		PRT("\te_phentsize: %u\n", ed->ehdr.e_phentsize);
1523		PRT("\te_phnum: %u\n", ed->ehdr.e_phnum);
1524		PRT("\te_shentsize: %u\n", ed->ehdr.e_shentsize);
1525		PRT("\te_shnum: %u\n", ed->ehdr.e_shnum);
1526		PRT("\te_shstrndx: %u\n", ed->ehdr.e_shstrndx);
1527	}
1528}
1529
1530/*
1531 * Dump the ELF Program Header Table.
1532 */
1533static void
1534elf_print_phdr(struct elfdump *ed)
1535{
1536	GElf_Phdr	 ph;
1537	size_t		 phnum;
1538	int		 header, i;
1539
1540	if (elf_getphnum(ed->elf, &phnum) == 0) {
1541		warnx("elf_getphnum failed: %s", elf_errmsg(-1));
1542		return;
1543	}
1544	header = 0;
1545	for (i = 0; (u_int64_t) i < phnum; i++) {
1546		if (gelf_getphdr(ed->elf, i, &ph) != &ph) {
1547			warnx("elf_getphdr failed: %s", elf_errmsg(-1));
1548			continue;
1549		}
1550		if (!STAILQ_EMPTY(&ed->snl) &&
1551		    find_name(ed, p_types[ph.p_type & 0x7]) == NULL)
1552			continue;
1553		if (ed->flags & SOLARIS_FMT) {
1554			PRT("\nProgram Header[%d]:\n", i);
1555			PRT("    p_vaddr:      %#-14jx", (uintmax_t)ph.p_vaddr);
1556			PRT("  p_flags:    [ %s ]\n", p_flags[ph.p_flags]);
1557			PRT("    p_paddr:      %#-14jx", (uintmax_t)ph.p_paddr);
1558			PRT("  p_type:     [ %s ]\n", p_types[ph.p_type & 0x7]);
1559			PRT("    p_filesz:     %#-14jx",
1560			    (uintmax_t)ph.p_filesz);
1561			PRT("  p_memsz:    %#jx\n", (uintmax_t)ph.p_memsz);
1562			PRT("    p_offset:     %#-14jx",
1563			    (uintmax_t)ph.p_offset);
1564			PRT("  p_align:    %#jx\n", (uintmax_t)ph.p_align);
1565		} else {
1566			if (!header) {
1567				PRT("\nprogram header:\n");
1568				header = 1;
1569			}
1570			PRT("\n");
1571			PRT("entry: %d\n", i);
1572			PRT("\tp_type: %s\n", p_types[ph.p_type & 0x7]);
1573			PRT("\tp_offset: %ju\n", (uintmax_t)ph.p_offset);
1574			PRT("\tp_vaddr: %#jx\n", (uintmax_t)ph.p_vaddr);
1575			PRT("\tp_paddr: %#jx\n", (uintmax_t)ph.p_paddr);
1576			PRT("\tp_filesz: %ju\n", (uintmax_t)ph.p_filesz);
1577			PRT("\tp_memsz: %ju\n", (uintmax_t)ph.p_memsz);
1578			PRT("\tp_flags: %s\n", p_flags[ph.p_flags]);
1579			PRT("\tp_align: %ju\n", (uintmax_t)ph.p_align);
1580		}
1581	}
1582}
1583
1584/*
1585 * Dump the ELF Section Header Table.
1586 */
1587static void
1588elf_print_shdr(struct elfdump *ed)
1589{
1590	struct section *s;
1591	int i;
1592
1593	if (!STAILQ_EMPTY(&ed->snl))
1594		return;
1595
1596	if ((ed->flags & SOLARIS_FMT) == 0)
1597		PRT("\nsection header:\n");
1598	for (i = 0; (size_t)i < ed->shnum; i++) {
1599		s = &ed->sl[i];
1600		if (ed->flags & SOLARIS_FMT) {
1601			if (i == 0)
1602				continue;
1603			PRT("\nSection Header[%d]:", i);
1604			PRT("  sh_name: %s\n", s->name);
1605			PRT("    sh_addr:      %#-14jx", (uintmax_t)s->addr);
1606			if (s->flags != 0)
1607				PRT("  sh_flags:   [ %s ]\n", sh_flags(s->flags));
1608			else
1609				PRT("  sh_flags:   0\n");
1610			PRT("    sh_size:      %#-14jx", (uintmax_t)s->sz);
1611			PRT("  sh_type:    [ %s ]\n", sh_types(s->type));
1612			PRT("    sh_offset:    %#-14jx", (uintmax_t)s->off);
1613			PRT("  sh_entsize: %#jx\n", (uintmax_t)s->entsize);
1614			PRT("    sh_link:      %-14u", s->link);
1615			PRT("  sh_info:    %u\n", s->info);
1616			PRT("    sh_addralign: %#jx\n", (uintmax_t)s->align);
1617		} else {
1618			PRT("\n");
1619			PRT("entry: %ju\n", (uintmax_t)i);
1620			PRT("\tsh_name: %s\n", s->name);
1621			PRT("\tsh_type: %s\n", sh_types(s->type));
1622			PRT("\tsh_flags: %s\n", sh_flags(s->flags));
1623			PRT("\tsh_addr: %#jx\n", (uintmax_t)s->addr);
1624			PRT("\tsh_offset: %ju\n", (uintmax_t)s->off);
1625			PRT("\tsh_size: %ju\n", (uintmax_t)s->sz);
1626			PRT("\tsh_link: %u\n", s->link);
1627			PRT("\tsh_info: %u\n", s->info);
1628			PRT("\tsh_addralign: %ju\n", (uintmax_t)s->align);
1629			PRT("\tsh_entsize: %ju\n", (uintmax_t)s->entsize);
1630		}
1631	}
1632}
1633
1634/*
1635 * Return number of entries in the given section. We'd prefer ent_count be a
1636 * size_t, but libelf APIs already use int for section indices.
1637 */
1638static int
1639get_ent_count(const struct section *s, int *ent_count)
1640{
1641	if (s->entsize == 0) {
1642		warnx("section %s has entry size 0", s->name);
1643		return (0);
1644	} else if (s->sz / s->entsize > INT_MAX) {
1645		warnx("section %s has invalid section count", s->name);
1646		return (0);
1647	}
1648	*ent_count = (int)(s->sz / s->entsize);
1649	return (1);
1650}
1651
1652/*
1653 * Retrieve the content of the corresponding SHT_SUNW_versym section for
1654 * a symbol table section.
1655 */
1656static void
1657get_versym(struct elfdump *ed, int i, uint16_t **vs, int *nvs)
1658{
1659	struct section	*s;
1660	Elf_Data	*data;
1661	int		 j, elferr;
1662
1663	s = NULL;
1664	for (j = 0; (size_t)j < ed->shnum; j++) {
1665		s = &ed->sl[j];
1666		if (s->type == SHT_SUNW_versym && s->link == (uint32_t)i)
1667			break;
1668	}
1669	if ((size_t)j >= ed->shnum) {
1670		*vs = NULL;
1671		return;
1672	}
1673	(void) elf_errno();
1674	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
1675		elferr = elf_errno();
1676		if (elferr != 0)
1677			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
1678		*vs = NULL;
1679		return;
1680	}
1681
1682	*vs = data->d_buf;
1683	assert(data->d_size == s->sz);
1684	if (!get_ent_count(s, nvs))
1685		*nvs = 0;
1686}
1687
1688/*
1689 * Dump the symbol table section.
1690 */
1691static void
1692elf_print_symtab(struct elfdump *ed, int i)
1693{
1694	struct section	*s;
1695	const char	*name;
1696	uint16_t	*vs;
1697	char		 idx[10];
1698	Elf_Data	*data;
1699	GElf_Sym	 sym;
1700	int		 len, j, elferr, nvs;
1701
1702	s = &ed->sl[i];
1703	if (ed->flags & SOLARIS_FMT)
1704		PRT("\nSymbol Table Section:  %s\n", s->name);
1705	else
1706		PRT("\nsymbol table (%s):\n", s->name);
1707	(void) elf_errno();
1708	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
1709		elferr = elf_errno();
1710		if (elferr != 0)
1711			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
1712		return;
1713	}
1714	vs = NULL;
1715	nvs = 0;
1716	assert(data->d_size == s->sz);
1717	if (!get_ent_count(s, &len))
1718		return;
1719	if (ed->flags & SOLARIS_FMT) {
1720		if (ed->ec == ELFCLASS32)
1721			PRT("     index    value       ");
1722		else
1723			PRT("     index        value           ");
1724		PRT("size     type bind oth ver shndx       name\n");
1725		get_versym(ed, i, &vs, &nvs);
1726		if (vs != NULL && nvs != len) {
1727			warnx("#symbol not equal to #versym");
1728			vs = NULL;
1729		}
1730	}
1731	for (j = 0; j < len; j++) {
1732		if (gelf_getsym(data, j, &sym) != &sym) {
1733			warnx("gelf_getsym failed: %s", elf_errmsg(-1));
1734			continue;
1735		}
1736		name = get_string(ed, s->link, sym.st_name);
1737		if (ed->flags & SOLARIS_FMT) {
1738			snprintf(idx, sizeof(idx), "[%d]", j);
1739			if (ed->ec == ELFCLASS32)
1740				PRT("%10s  ", idx);
1741			else
1742				PRT("%10s      ", idx);
1743			PRT("0x%8.8jx ", (uintmax_t)sym.st_value);
1744			if (ed->ec == ELFCLASS32)
1745				PRT("0x%8.8jx  ", (uintmax_t)sym.st_size);
1746			else
1747				PRT("0x%12.12jx  ", (uintmax_t)sym.st_size);
1748			PRT("%s ", st_types_S[GELF_ST_TYPE(sym.st_info)]);
1749			PRT("%s  ", st_bindings_S[GELF_ST_BIND(sym.st_info)]);
1750			PRT("%c  ", st_others[sym.st_other]);
1751			PRT("%3u ", (vs == NULL ? 0 : vs[j]));
1752			PRT("%-11.11s ", sh_name(ed, sym.st_shndx));
1753			PRT("%s\n", name);
1754		} else {
1755			PRT("\nentry: %d\n", j);
1756			PRT("\tst_name: %s\n", name);
1757			PRT("\tst_value: %#jx\n", (uintmax_t)sym.st_value);
1758			PRT("\tst_size: %ju\n", (uintmax_t)sym.st_size);
1759			PRT("\tst_info: %s %s\n",
1760			    st_types[GELF_ST_TYPE(sym.st_info)],
1761			    st_bindings[GELF_ST_BIND(sym.st_info)]);
1762			PRT("\tst_shndx: %ju\n", (uintmax_t)sym.st_shndx);
1763		}
1764	}
1765}
1766
1767/*
1768 * Dump the symbol tables. (.dynsym and .symtab)
1769 */
1770static void
1771elf_print_symtabs(struct elfdump *ed)
1772{
1773	int i;
1774
1775	for (i = 0; (size_t)i < ed->shnum; i++)
1776		if ((ed->sl[i].type == SHT_SYMTAB ||
1777		    ed->sl[i].type == SHT_DYNSYM) &&
1778		    (STAILQ_EMPTY(&ed->snl) || find_name(ed, ed->sl[i].name)))
1779			elf_print_symtab(ed, i);
1780}
1781
1782/*
1783 * Dump the content of .dynamic section.
1784 */
1785static void
1786elf_print_dynamic(struct elfdump *ed)
1787{
1788	struct section	*s;
1789	const char	*name;
1790	char		 idx[10];
1791	Elf_Data	*data;
1792	GElf_Dyn	 dyn;
1793	int		 elferr, i, len;
1794
1795	s = NULL;
1796	for (i = 0; (size_t)i < ed->shnum; i++) {
1797		s = &ed->sl[i];
1798		if (s->type == SHT_DYNAMIC &&
1799		    (STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name)))
1800			break;
1801	}
1802	if ((size_t)i >= ed->shnum)
1803		return;
1804
1805	if (ed->flags & SOLARIS_FMT) {
1806		PRT("Dynamic Section:  %s\n", s->name);
1807		PRT("     index  tag               value\n");
1808	} else
1809		PRT("\ndynamic:\n");
1810	(void) elf_errno();
1811	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
1812		elferr = elf_errno();
1813		if (elferr != 0)
1814			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
1815		return;
1816	}
1817	assert(data->d_size == s->sz);
1818	if (!get_ent_count(s, &len))
1819		return;
1820	for (i = 0; i < len; i++) {
1821		if (gelf_getdyn(data, i, &dyn) != &dyn) {
1822			warnx("gelf_getdyn failed: %s", elf_errmsg(-1));
1823			continue;
1824		}
1825
1826		if (ed->flags & SOLARIS_FMT) {
1827			snprintf(idx, sizeof(idx), "[%d]", i);
1828			PRT("%10s  %-16s ", idx, d_tags(dyn.d_tag));
1829		} else {
1830			PRT("\n");
1831			PRT("entry: %d\n", i);
1832			PRT("\td_tag: %s\n", d_tags(dyn.d_tag));
1833		}
1834		switch(dyn.d_tag) {
1835		case DT_NEEDED:
1836		case DT_SONAME:
1837		case DT_RPATH:
1838			if ((name = elf_strptr(ed->elf, s->link,
1839				    dyn.d_un.d_val)) == NULL)
1840				name = "";
1841			if (ed->flags & SOLARIS_FMT)
1842				PRT("%#-16jx %s\n", (uintmax_t)dyn.d_un.d_val,
1843				    name);
1844			else
1845				PRT("\td_val: %s\n", name);
1846			break;
1847		case DT_PLTRELSZ:
1848		case DT_RELA:
1849		case DT_RELASZ:
1850		case DT_RELAENT:
1851		case DT_RELACOUNT:
1852		case DT_STRSZ:
1853		case DT_SYMENT:
1854		case DT_RELSZ:
1855		case DT_RELENT:
1856		case DT_PLTREL:
1857		case DT_VERDEF:
1858		case DT_VERDEFNUM:
1859		case DT_VERNEED:
1860		case DT_VERNEEDNUM:
1861		case DT_VERSYM:
1862			if (ed->flags & SOLARIS_FMT)
1863				PRT("%#jx\n", (uintmax_t)dyn.d_un.d_val);
1864			else
1865				PRT("\td_val: %ju\n",
1866				    (uintmax_t)dyn.d_un.d_val);
1867			break;
1868		case DT_PLTGOT:
1869		case DT_HASH:
1870		case DT_GNU_HASH:
1871		case DT_STRTAB:
1872		case DT_SYMTAB:
1873		case DT_INIT:
1874		case DT_FINI:
1875		case DT_REL:
1876		case DT_JMPREL:
1877		case DT_DEBUG:
1878			if (ed->flags & SOLARIS_FMT)
1879				PRT("%#jx\n", (uintmax_t)dyn.d_un.d_ptr);
1880			else
1881				PRT("\td_ptr: %#jx\n",
1882				    (uintmax_t)dyn.d_un.d_ptr);
1883			break;
1884		case DT_NULL:
1885		case DT_SYMBOLIC:
1886		case DT_TEXTREL:
1887		default:
1888			if (ed->flags & SOLARIS_FMT)
1889				PRT("\n");
1890			break;
1891		}
1892	}
1893}
1894
1895/*
1896 * Dump a .rel/.rela section entry.
1897 */
1898static void
1899elf_print_rel_entry(struct elfdump *ed, struct section *s, int j,
1900    struct rel_entry *r)
1901{
1902
1903	if (ed->flags & SOLARIS_FMT) {
1904		PRT("        %-23s ", r_type(ed->ehdr.e_machine,
1905			GELF_R_TYPE(r->u_r.rel.r_info)));
1906		PRT("%#12jx ", (uintmax_t)r->u_r.rel.r_offset);
1907		if (r->type == SHT_RELA)
1908			PRT("%10jd  ", (intmax_t)r->u_r.rela.r_addend);
1909		else
1910			PRT("    ");
1911		PRT("%-14s ", s->name);
1912		PRT("%s\n", r->symn);
1913	} else {
1914		PRT("\n");
1915		PRT("entry: %d\n", j);
1916		PRT("\tr_offset: %#jx\n", (uintmax_t)r->u_r.rel.r_offset);
1917		if (ed->ec == ELFCLASS32)
1918			PRT("\tr_info: %#jx\n", (uintmax_t)
1919			    ELF32_R_INFO(ELF64_R_SYM(r->u_r.rel.r_info),
1920			    ELF64_R_TYPE(r->u_r.rel.r_info)));
1921		else
1922			PRT("\tr_info: %#jx\n", (uintmax_t)r->u_r.rel.r_info);
1923		if (r->type == SHT_RELA)
1924			PRT("\tr_addend: %jd\n",
1925			    (intmax_t)r->u_r.rela.r_addend);
1926	}
1927}
1928
1929/*
1930 * Dump a relocation section of type SHT_RELA.
1931 */
1932static void
1933elf_print_rela(struct elfdump *ed, struct section *s, Elf_Data *data)
1934{
1935	struct rel_entry	r;
1936	int			j, len;
1937
1938	if (ed->flags & SOLARIS_FMT) {
1939		PRT("\nRelocation Section:  %s\n", s->name);
1940		PRT("        type                          offset     "
1941		    "addend  section        with respect to\n");
1942	} else
1943		PRT("\nrelocation with addend (%s):\n", s->name);
1944	r.type = SHT_RELA;
1945	assert(data->d_size == s->sz);
1946	if (!get_ent_count(s, &len))
1947		return;
1948	for (j = 0; j < len; j++) {
1949		if (gelf_getrela(data, j, &r.u_r.rela) != &r.u_r.rela) {
1950			warnx("gelf_getrela failed: %s",
1951			    elf_errmsg(-1));
1952			continue;
1953		}
1954		r.symn = get_symbol_name(ed, s->link,
1955		    GELF_R_SYM(r.u_r.rela.r_info));
1956		elf_print_rel_entry(ed, s, j, &r);
1957	}
1958}
1959
1960/*
1961 * Dump a relocation section of type SHT_REL.
1962 */
1963static void
1964elf_print_rel(struct elfdump *ed, struct section *s, Elf_Data *data)
1965{
1966	struct rel_entry	r;
1967	int			j, len;
1968
1969	if (ed->flags & SOLARIS_FMT) {
1970		PRT("\nRelocation Section:  %s\n", s->name);
1971		PRT("        type                          offset     "
1972		    "section        with respect to\n");
1973	} else
1974		PRT("\nrelocation (%s):\n", s->name);
1975	r.type = SHT_REL;
1976	assert(data->d_size == s->sz);
1977	if (!get_ent_count(s, &len))
1978		return;
1979	for (j = 0; j < len; j++) {
1980		if (gelf_getrel(data, j, &r.u_r.rel) != &r.u_r.rel) {
1981			warnx("gelf_getrel failed: %s", elf_errmsg(-1));
1982			continue;
1983		}
1984		r.symn = get_symbol_name(ed, s->link,
1985		    GELF_R_SYM(r.u_r.rel.r_info));
1986		elf_print_rel_entry(ed, s, j, &r);
1987	}
1988}
1989
1990/*
1991 * Dump relocation sections.
1992 */
1993static void
1994elf_print_reloc(struct elfdump *ed)
1995{
1996	struct section	*s;
1997	Elf_Data	*data;
1998	int		 i, elferr;
1999
2000	for (i = 0; (size_t)i < ed->shnum; i++) {
2001		s = &ed->sl[i];
2002		if ((s->type == SHT_REL || s->type == SHT_RELA) &&
2003		    (STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name))) {
2004			(void) elf_errno();
2005			if ((data = elf_getdata(s->scn, NULL)) == NULL) {
2006				elferr = elf_errno();
2007				if (elferr != 0)
2008					warnx("elf_getdata failed: %s",
2009					    elf_errmsg(elferr));
2010				continue;
2011			}
2012			if (s->type == SHT_REL)
2013				elf_print_rel(ed, s, data);
2014			else
2015				elf_print_rela(ed, s, data);
2016		}
2017	}
2018}
2019
2020/*
2021 * Dump the content of PT_INTERP segment.
2022 */
2023static void
2024elf_print_interp(struct elfdump *ed)
2025{
2026	const char *s;
2027	GElf_Phdr phdr;
2028	size_t phnum;
2029	int i;
2030
2031	if (!STAILQ_EMPTY(&ed->snl) && find_name(ed, "PT_INTERP") == NULL)
2032		return;
2033
2034	if ((s = elf_rawfile(ed->elf, NULL)) == NULL) {
2035		warnx("elf_rawfile failed: %s", elf_errmsg(-1));
2036		return;
2037	}
2038	if (!elf_getphnum(ed->elf, &phnum)) {
2039		warnx("elf_getphnum failed: %s", elf_errmsg(-1));
2040		return;
2041	}
2042	for (i = 0; (size_t)i < phnum; i++) {
2043		if (gelf_getphdr(ed->elf, i, &phdr) != &phdr) {
2044			warnx("elf_getphdr failed: %s", elf_errmsg(-1));
2045			continue;
2046		}
2047		if (phdr.p_type == PT_INTERP) {
2048			PRT("\ninterp:\n");
2049			PRT("\t%s\n", s + phdr.p_offset);
2050		}
2051	}
2052}
2053
2054/*
2055 * Search the relocation sections for entries refering to the .got section.
2056 */
2057static void
2058find_gotrel(struct elfdump *ed, struct section *gs, struct rel_entry *got)
2059{
2060	struct section		*s;
2061	struct rel_entry	 r;
2062	Elf_Data		*data;
2063	int			 elferr, i, j, k, len;
2064
2065	for(i = 0; (size_t)i < ed->shnum; i++) {
2066		s = &ed->sl[i];
2067		if (s->type != SHT_REL && s->type != SHT_RELA)
2068			continue;
2069		(void) elf_errno();
2070		if ((data = elf_getdata(s->scn, NULL)) == NULL) {
2071			elferr = elf_errno();
2072			if (elferr != 0)
2073				warnx("elf_getdata failed: %s",
2074				    elf_errmsg(elferr));
2075			return;
2076		}
2077		memset(&r, 0, sizeof(struct rel_entry));
2078		r.type = s->type;
2079		assert(data->d_size == s->sz);
2080		if (!get_ent_count(s, &len))
2081			return;
2082		for (j = 0; j < len; j++) {
2083			if (s->type == SHT_REL) {
2084				if (gelf_getrel(data, j, &r.u_r.rel) !=
2085				    &r.u_r.rel) {
2086					warnx("gelf_getrel failed: %s",
2087					    elf_errmsg(-1));
2088					continue;
2089				}
2090			} else {
2091				if (gelf_getrela(data, j, &r.u_r.rela) !=
2092				    &r.u_r.rela) {
2093					warnx("gelf_getrel failed: %s",
2094					    elf_errmsg(-1));
2095					continue;
2096				}
2097			}
2098			if (r.u_r.rel.r_offset >= gs->addr &&
2099			    r.u_r.rel.r_offset < gs->addr + gs->sz) {
2100				r.symn = get_symbol_name(ed, s->link,
2101				    GELF_R_SYM(r.u_r.rel.r_info));
2102				k = (r.u_r.rel.r_offset - gs->addr) /
2103				    gs->entsize;
2104				memcpy(&got[k], &r, sizeof(struct rel_entry));
2105			}
2106		}
2107	}
2108}
2109
2110static void
2111elf_print_got_section(struct elfdump *ed, struct section *s)
2112{
2113	struct rel_entry	*got;
2114	Elf_Data		*data, dst;
2115	int			 elferr, i, len;
2116
2117	if (s->entsize == 0) {
2118		/* XXX IA64 GOT section generated by gcc has entry size 0. */
2119		if (s->align != 0)
2120			s->entsize = s->align;
2121		else
2122			return;
2123	}
2124
2125	if (!get_ent_count(s, &len))
2126		return;
2127	if (ed->flags & SOLARIS_FMT)
2128		PRT("\nGlobal Offset Table Section:  %s  (%d entries)\n",
2129		    s->name, len);
2130	else
2131		PRT("\nglobal offset table: %s\n", s->name);
2132	(void) elf_errno();
2133	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
2134		elferr = elf_errno();
2135		if (elferr != 0)
2136			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
2137		return;
2138	}
2139
2140	/*
2141	 * GOT section has section type SHT_PROGBITS, thus libelf treats it as
2142	 * byte stream and will not perfrom any translation on it. As a result,
2143	 * an exlicit call to gelf_xlatetom is needed here. Depends on arch,
2144	 * GOT section should be translated to either WORD or XWORD.
2145	 */
2146	if (ed->ec == ELFCLASS32)
2147		data->d_type = ELF_T_WORD;
2148	else
2149		data->d_type = ELF_T_XWORD;
2150	memcpy(&dst, data, sizeof(Elf_Data));
2151	if (gelf_xlatetom(ed->elf, &dst, data, ed->ehdr.e_ident[EI_DATA]) !=
2152	    &dst) {
2153		warnx("gelf_xlatetom failed: %s", elf_errmsg(-1));
2154		return;
2155	}
2156	assert(dst.d_size == s->sz);
2157	if (ed->flags & SOLARIS_FMT) {
2158		/*
2159		 * In verbose/Solaris mode, we search the relocation sections
2160		 * and try to find the corresponding reloc entry for each GOT
2161		 * section entry.
2162		 */
2163		if ((got = calloc(len, sizeof(struct rel_entry))) == NULL)
2164			err(EXIT_FAILURE, "calloc failed");
2165		find_gotrel(ed, s, got);
2166		if (ed->ec == ELFCLASS32) {
2167			PRT(" ndx     addr      value    reloc              ");
2168			PRT("addend   symbol\n");
2169		} else {
2170			PRT(" ndx     addr              value             ");
2171			PRT("reloc              addend       symbol\n");
2172		}
2173		for(i = 0; i < len; i++) {
2174			PRT("[%5.5d]  ", i);
2175			if (ed->ec == ELFCLASS32) {
2176				PRT("%-8.8jx  ", s->addr + i * s->entsize);
2177				PRT("%-8.8x ", *((uint32_t *)dst.d_buf + i));
2178			} else {
2179				PRT("%-16.16jx  ", s->addr + i * s->entsize);
2180				PRT("%-16.16jx  ", *((uint64_t *)dst.d_buf + i));
2181			}
2182			PRT("%-18s ", r_type(ed->ehdr.e_machine,
2183				GELF_R_TYPE(got[i].u_r.rel.r_info)));
2184			if (ed->ec == ELFCLASS32)
2185				PRT("%-8.8jd ",
2186				    (intmax_t)got[i].u_r.rela.r_addend);
2187			else
2188				PRT("%-12.12jd ",
2189				    (intmax_t)got[i].u_r.rela.r_addend);
2190			if (got[i].symn == NULL)
2191				got[i].symn = "";
2192			PRT("%s\n", got[i].symn);
2193		}
2194		free(got);
2195	} else {
2196		for(i = 0; i < len; i++) {
2197			PRT("\nentry: %d\n", i);
2198			if (ed->ec == ELFCLASS32)
2199				PRT("\t%#x\n", *((uint32_t *)dst.d_buf + i));
2200			else
2201				PRT("\t%#jx\n", *((uint64_t *)dst.d_buf + i));
2202		}
2203	}
2204}
2205
2206/*
2207 * Dump the content of Global Offset Table section.
2208 */
2209static void
2210elf_print_got(struct elfdump *ed)
2211{
2212	struct section	*s;
2213	int		 i;
2214
2215	if (!STAILQ_EMPTY(&ed->snl))
2216		return;
2217
2218	s = NULL;
2219	for (i = 0; (size_t)i < ed->shnum; i++) {
2220		s = &ed->sl[i];
2221		if (s->name && !strncmp(s->name, ".got", 4) &&
2222		    (STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name)))
2223			elf_print_got_section(ed, s);
2224	}
2225}
2226
2227/*
2228 * Dump the content of .note.ABI-tag section.
2229 */
2230static void
2231elf_print_note(struct elfdump *ed)
2232{
2233	struct section	*s;
2234	Elf_Data        *data;
2235	Elf_Note	*en;
2236	uint32_t	 namesz;
2237	uint32_t	 descsz;
2238	uint32_t	 desc;
2239	size_t		 count;
2240	int		 elferr, i;
2241	char		*src, idx[10];
2242
2243	s = NULL;
2244	for (i = 0; (size_t)i < ed->shnum; i++) {
2245		s = &ed->sl[i];
2246		if (s->type == SHT_NOTE && s->name &&
2247		    !strcmp(s->name, ".note.ABI-tag") &&
2248		    (STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name)))
2249			break;
2250	}
2251	if ((size_t)i >= ed->shnum)
2252		return;
2253	if (ed->flags & SOLARIS_FMT)
2254		PRT("\nNote Section:  %s\n", s->name);
2255	else
2256		PRT("\nnote (%s):\n", s->name);
2257	(void) elf_errno();
2258	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
2259		elferr = elf_errno();
2260		if (elferr != 0)
2261			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
2262		return;
2263	}
2264	src = data->d_buf;
2265	count = data->d_size;
2266	while (count > sizeof(Elf_Note)) {
2267		en = (Elf_Note *) (uintptr_t) src;
2268		namesz = en->n_namesz;
2269		descsz = en->n_descsz;
2270		src += sizeof(Elf_Note);
2271		count -= sizeof(Elf_Note);
2272		if (ed->flags & SOLARIS_FMT) {
2273			PRT("\n    type   %#x\n", en->n_type);
2274			PRT("    namesz %#x:\n", en->n_namesz);
2275			PRT("%s\n", src);
2276		} else
2277			PRT("\t%s ", src);
2278		src += roundup2(namesz, 4);
2279		count -= roundup2(namesz, 4);
2280
2281		/*
2282		 * Note that we dump the whole desc part if we're in
2283		 * "Solaris mode", while in the normal mode, we only look
2284		 * at the first 4 bytes (a 32bit word) of the desc, i.e,
2285		 * we assume that it's always a FreeBSD version number.
2286		 */
2287		if (ed->flags & SOLARIS_FMT) {
2288			PRT("    descsz %#x:", en->n_descsz);
2289			for (i = 0; (uint32_t)i < descsz; i++) {
2290				if ((i & 0xF) == 0) {
2291					snprintf(idx, sizeof(idx), "desc[%d]",
2292					    i);
2293					PRT("\n      %-9s", idx);
2294				} else if ((i & 0x3) == 0)
2295					PRT("  ");
2296				PRT(" %2.2x", src[i]);
2297			}
2298			PRT("\n");
2299		} else {
2300			if (ed->ehdr.e_ident[EI_DATA] == ELFDATA2MSB)
2301				desc = be32dec(src);
2302			else
2303				desc = le32dec(src);
2304			PRT("%d\n", desc);
2305		}
2306		src += roundup2(descsz, 4);
2307		count -= roundup2(descsz, 4);
2308	}
2309}
2310
2311/*
2312 * Dump a hash table.
2313 */
2314static void
2315elf_print_svr4_hash(struct elfdump *ed, struct section *s)
2316{
2317	Elf_Data	*data;
2318	uint32_t	*buf;
2319	uint32_t	*bucket, *chain;
2320	uint32_t	 nbucket, nchain;
2321	uint32_t	*bl, *c, maxl, total;
2322	int		 i, j, first, elferr;
2323	char		 idx[10];
2324
2325	if (ed->flags & SOLARIS_FMT)
2326		PRT("\nHash Section:  %s\n", s->name);
2327	else
2328		PRT("\nhash table (%s):\n", s->name);
2329	(void) elf_errno();
2330	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
2331		elferr = elf_errno();
2332		if (elferr != 0)
2333			warnx("elf_getdata failed: %s",
2334			    elf_errmsg(elferr));
2335		return;
2336	}
2337	if (data->d_size < 2 * sizeof(uint32_t)) {
2338		warnx(".hash section too small");
2339		return;
2340	}
2341	buf = data->d_buf;
2342	nbucket = buf[0];
2343	nchain = buf[1];
2344	if (nbucket <= 0 || nchain <= 0) {
2345		warnx("Malformed .hash section");
2346		return;
2347	}
2348	if (data->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) {
2349		warnx("Malformed .hash section");
2350		return;
2351	}
2352	bucket = &buf[2];
2353	chain = &buf[2 + nbucket];
2354
2355	if (ed->flags & SOLARIS_FMT) {
2356		maxl = 0;
2357		if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
2358			err(EXIT_FAILURE, "calloc failed");
2359		for (i = 0; (uint32_t)i < nbucket; i++)
2360			for (j = bucket[i]; j > 0 && (uint32_t)j < nchain;
2361			     j = chain[j])
2362				if (++bl[i] > maxl)
2363					maxl = bl[i];
2364		if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
2365			err(EXIT_FAILURE, "calloc failed");
2366		for (i = 0; (uint32_t)i < nbucket; i++)
2367			c[bl[i]]++;
2368		PRT("    bucket    symndx    name\n");
2369		for (i = 0; (uint32_t)i < nbucket; i++) {
2370			first = 1;
2371			for (j = bucket[i]; j > 0 && (uint32_t)j < nchain;
2372			     j = chain[j]) {
2373				if (first) {
2374					PRT("%10d  ", i);
2375					first = 0;
2376				} else
2377					PRT("            ");
2378				snprintf(idx, sizeof(idx), "[%d]", j);
2379				PRT("%-10s  ", idx);
2380				PRT("%s\n", get_symbol_name(ed, s->link, j));
2381			}
2382		}
2383		PRT("\n");
2384		total = 0;
2385		for (i = 0; (uint32_t)i <= maxl; i++) {
2386			total += c[i] * i;
2387			PRT("%10u  buckets contain %8d symbols\n", c[i], i);
2388		}
2389		PRT("%10u  buckets         %8u symbols (globals)\n", nbucket,
2390		    total);
2391	} else {
2392		PRT("\nnbucket: %u\n", nbucket);
2393		PRT("nchain: %u\n\n", nchain);
2394		for (i = 0; (uint32_t)i < nbucket; i++)
2395			PRT("bucket[%d]:\n\t%u\n\n", i, bucket[i]);
2396		for (i = 0; (uint32_t)i < nchain; i++)
2397			PRT("chain[%d]:\n\t%u\n\n", i, chain[i]);
2398	}
2399}
2400
2401/*
2402 * Dump a 64bit hash table.
2403 */
2404static void
2405elf_print_svr4_hash64(struct elfdump *ed, struct section *s)
2406{
2407	Elf_Data	*data, dst;
2408	uint64_t	*buf;
2409	uint64_t	*bucket, *chain;
2410	uint64_t	 nbucket, nchain;
2411	uint64_t	*bl, *c, maxl, total;
2412	int		 i, j, elferr, first;
2413	char		 idx[10];
2414
2415	if (ed->flags & SOLARIS_FMT)
2416		PRT("\nHash Section:  %s\n", s->name);
2417	else
2418		PRT("\nhash table (%s):\n", s->name);
2419
2420	/*
2421	 * ALPHA uses 64-bit hash entries. Since libelf assumes that
2422	 * .hash section contains only 32-bit entry, an explicit
2423	 * gelf_xlatetom is needed here.
2424	 */
2425	(void) elf_errno();
2426	if ((data = elf_rawdata(s->scn, NULL)) == NULL) {
2427		elferr = elf_errno();
2428		if (elferr != 0)
2429			warnx("elf_rawdata failed: %s",
2430			    elf_errmsg(elferr));
2431		return;
2432	}
2433	data->d_type = ELF_T_XWORD;
2434	memcpy(&dst, data, sizeof(Elf_Data));
2435	if (gelf_xlatetom(ed->elf, &dst, data,
2436		ed->ehdr.e_ident[EI_DATA]) != &dst) {
2437		warnx("gelf_xlatetom failed: %s", elf_errmsg(-1));
2438		return;
2439	}
2440	if (dst.d_size < 2 * sizeof(uint64_t)) {
2441		warnx(".hash section too small");
2442		return;
2443	}
2444	buf = dst.d_buf;
2445	nbucket = buf[0];
2446	nchain = buf[1];
2447	if (nbucket <= 0 || nchain <= 0) {
2448		warnx("Malformed .hash section");
2449		return;
2450	}
2451	if (dst.d_size != (nbucket + nchain + 2) * sizeof(uint64_t)) {
2452		warnx("Malformed .hash section");
2453		return;
2454	}
2455	bucket = &buf[2];
2456	chain = &buf[2 + nbucket];
2457
2458	if (ed->flags & SOLARIS_FMT) {
2459		maxl = 0;
2460		if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
2461			err(EXIT_FAILURE, "calloc failed");
2462		for (i = 0; (uint64_t)i < nbucket; i++)
2463			for (j = bucket[i]; j > 0 && (uint64_t)j < nchain;
2464			     j = chain[j])
2465				if (++bl[i] > maxl)
2466					maxl = bl[i];
2467		if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
2468			err(EXIT_FAILURE, "calloc failed");
2469		for (i = 0; (uint64_t)i < nbucket; i++)
2470			c[bl[i]]++;
2471		PRT("    bucket    symndx    name\n");
2472		for (i = 0; (uint64_t)i < nbucket; i++) {
2473			first = 1;
2474			for (j = bucket[i]; j > 0 && (uint64_t)j < nchain;
2475			     j = chain[j]) {
2476				if (first) {
2477					PRT("%10d  ", i);
2478					first = 0;
2479				} else
2480					PRT("            ");
2481				snprintf(idx, sizeof(idx), "[%d]", j);
2482				PRT("%-10s  ", idx);
2483				PRT("%s\n", get_symbol_name(ed, s->link, j));
2484			}
2485		}
2486		PRT("\n");
2487		total = 0;
2488		for (i = 0; (uint64_t)i <= maxl; i++) {
2489			total += c[i] * i;
2490			PRT("%10ju  buckets contain %8d symbols\n",
2491			    (uintmax_t)c[i], i);
2492		}
2493		PRT("%10ju  buckets         %8ju symbols (globals)\n",
2494		    (uintmax_t)nbucket, (uintmax_t)total);
2495	} else {
2496		PRT("\nnbucket: %ju\n", (uintmax_t)nbucket);
2497		PRT("nchain: %ju\n\n", (uintmax_t)nchain);
2498		for (i = 0; (uint64_t)i < nbucket; i++)
2499			PRT("bucket[%d]:\n\t%ju\n\n", i, (uintmax_t)bucket[i]);
2500		for (i = 0; (uint64_t)i < nchain; i++)
2501			PRT("chain[%d]:\n\t%ju\n\n", i, (uintmax_t)chain[i]);
2502	}
2503
2504}
2505
2506/*
2507 * Dump a GNU hash table.
2508 */
2509static void
2510elf_print_gnu_hash(struct elfdump *ed, struct section *s)
2511{
2512	struct section	*ds;
2513	Elf_Data	*data;
2514	uint32_t	*buf;
2515	uint32_t	*bucket, *chain;
2516	uint32_t	 nbucket, nchain, symndx, maskwords, shift2;
2517	uint32_t	*bl, *c, maxl, total;
2518	int		 i, j, first, elferr, dynsymcount;
2519	char		 idx[10];
2520
2521	if (ed->flags & SOLARIS_FMT)
2522		PRT("\nGNU Hash Section:  %s\n", s->name);
2523	else
2524		PRT("\ngnu hash table (%s):\n", s->name);
2525	(void) elf_errno();
2526	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
2527		elferr = elf_errno();
2528		if (elferr != 0)
2529			warnx("elf_getdata failed: %s",
2530			    elf_errmsg(elferr));
2531		return;
2532	}
2533	if (data->d_size < 4 * sizeof(uint32_t)) {
2534		warnx(".gnu.hash section too small");
2535		return;
2536	}
2537	buf = data->d_buf;
2538	nbucket = buf[0];
2539	symndx = buf[1];
2540	maskwords = buf[2];
2541	shift2 = buf[3];
2542	buf += 4;
2543	ds = &ed->sl[s->link];
2544	if (!get_ent_count(ds, &dynsymcount))
2545		return;
2546	nchain = dynsymcount - symndx;
2547	if (data->d_size != 4 * sizeof(uint32_t) + maskwords *
2548	    (ed->ec == ELFCLASS32 ? sizeof(uint32_t) : sizeof(uint64_t)) +
2549	    (nbucket + nchain) * sizeof(uint32_t)) {
2550		warnx("Malformed .gnu.hash section");
2551		return;
2552	}
2553	bucket = buf + (ed->ec == ELFCLASS32 ? maskwords : maskwords * 2);
2554	chain = bucket + nbucket;
2555
2556	if (ed->flags & SOLARIS_FMT) {
2557		maxl = 0;
2558		if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
2559			err(EXIT_FAILURE, "calloc failed");
2560		for (i = 0; (uint32_t)i < nbucket; i++)
2561			for (j = bucket[i];
2562			     j > 0 && (uint32_t)j - symndx < nchain;
2563			     j++) {
2564				if (++bl[i] > maxl)
2565					maxl = bl[i];
2566				if (chain[j - symndx] & 1)
2567					break;
2568			}
2569		if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
2570			err(EXIT_FAILURE, "calloc failed");
2571		for (i = 0; (uint32_t)i < nbucket; i++)
2572			c[bl[i]]++;
2573		PRT("    bucket    symndx    name\n");
2574		for (i = 0; (uint32_t)i < nbucket; i++) {
2575			first = 1;
2576			for (j = bucket[i];
2577			     j > 0 && (uint32_t)j - symndx < nchain;
2578			     j++) {
2579				if (first) {
2580					PRT("%10d  ", i);
2581					first = 0;
2582				} else
2583					PRT("            ");
2584				snprintf(idx, sizeof(idx), "[%d]", j );
2585				PRT("%-10s  ", idx);
2586				PRT("%s\n", get_symbol_name(ed, s->link, j));
2587				if (chain[j - symndx] & 1)
2588					break;
2589			}
2590		}
2591		PRT("\n");
2592		total = 0;
2593		for (i = 0; (uint32_t)i <= maxl; i++) {
2594			total += c[i] * i;
2595			PRT("%10u  buckets contain %8d symbols\n", c[i], i);
2596		}
2597		PRT("%10u  buckets         %8u symbols (globals)\n", nbucket,
2598		    total);
2599	} else {
2600		PRT("\nnbucket: %u\n", nbucket);
2601		PRT("symndx: %u\n", symndx);
2602		PRT("maskwords: %u\n", maskwords);
2603		PRT("shift2: %u\n", shift2);
2604		PRT("nchain: %u\n\n", nchain);
2605		for (i = 0; (uint32_t)i < nbucket; i++)
2606			PRT("bucket[%d]:\n\t%u\n\n", i, bucket[i]);
2607		for (i = 0; (uint32_t)i < nchain; i++)
2608			PRT("chain[%d]:\n\t%u\n\n", i, chain[i]);
2609	}
2610}
2611
2612/*
2613 * Dump hash tables.
2614 */
2615static void
2616elf_print_hash(struct elfdump *ed)
2617{
2618	struct section	*s;
2619	int		 i;
2620
2621	for (i = 0; (size_t)i < ed->shnum; i++) {
2622		s = &ed->sl[i];
2623		if ((s->type == SHT_HASH || s->type == SHT_GNU_HASH) &&
2624		    (STAILQ_EMPTY(&ed->snl) || find_name(ed, s->name))) {
2625			if (s->type == SHT_GNU_HASH)
2626				elf_print_gnu_hash(ed, s);
2627			else if (ed->ehdr.e_machine == EM_ALPHA &&
2628			    s->entsize == 8)
2629				elf_print_svr4_hash64(ed, s);
2630			else
2631				elf_print_svr4_hash(ed, s);
2632		}
2633	}
2634}
2635
2636/*
2637 * Dump the content of a Version Definition(SHT_SUNW_Verdef) Section.
2638 */
2639static void
2640elf_print_verdef(struct elfdump *ed, struct section *s)
2641{
2642	Elf_Data	*data;
2643	Elf32_Verdef	*vd;
2644	Elf32_Verdaux	*vda;
2645	const char 	*str;
2646	char		 idx[10];
2647	uint8_t		*buf, *end, *buf2;
2648	int		 i, j, elferr, count;
2649
2650	if (ed->flags & SOLARIS_FMT)
2651		PRT("Version Definition Section:  %s\n", s->name);
2652	else
2653		PRT("\nversion definition section (%s):\n", s->name);
2654	(void) elf_errno();
2655	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
2656		elferr = elf_errno();
2657		if (elferr != 0)
2658			warnx("elf_getdata failed: %s",
2659			    elf_errmsg(elferr));
2660		return;
2661	}
2662	buf = data->d_buf;
2663	end = buf + data->d_size;
2664	i = 0;
2665	if (ed->flags & SOLARIS_FMT)
2666		PRT("     index  version                     dependency\n");
2667	while (buf + sizeof(Elf32_Verdef) <= end) {
2668		vd = (Elf32_Verdef *) (uintptr_t) buf;
2669		if (ed->flags & SOLARIS_FMT) {
2670			snprintf(idx, sizeof(idx), "[%d]", vd->vd_ndx);
2671			PRT("%10s  ", idx);
2672		} else {
2673			PRT("\nentry: %d\n", i++);
2674			PRT("\tvd_version: %u\n", vd->vd_version);
2675			PRT("\tvd_flags: %u\n", vd->vd_flags);
2676			PRT("\tvd_ndx: %u\n", vd->vd_ndx);
2677			PRT("\tvd_cnt: %u\n", vd->vd_cnt);
2678			PRT("\tvd_hash: %u\n", vd->vd_hash);
2679			PRT("\tvd_aux: %u\n", vd->vd_aux);
2680			PRT("\tvd_next: %u\n\n", vd->vd_next);
2681		}
2682		buf2 = buf + vd->vd_aux;
2683		j = 0;
2684		count = 0;
2685		while (buf2 + sizeof(Elf32_Verdaux) <= end && j < vd->vd_cnt) {
2686			vda = (Elf32_Verdaux *) (uintptr_t) buf2;
2687			str = get_string(ed, s->link, vda->vda_name);
2688			if (ed->flags & SOLARIS_FMT) {
2689				if (count == 0)
2690					PRT("%-26.26s", str);
2691				else if (count == 1)
2692					PRT("  %-20.20s", str);
2693				else {
2694					PRT("\n%40.40s", "");
2695					PRT("%s", str);
2696				}
2697			} else {
2698				PRT("\t\tvda: %d\n", j++);
2699				PRT("\t\t\tvda_name: %s\n", str);
2700				PRT("\t\t\tvda_next: %u\n", vda->vda_next);
2701			}
2702			if (vda->vda_next == 0) {
2703				if (ed->flags & SOLARIS_FMT) {
2704					if (vd->vd_flags & VER_FLG_BASE) {
2705						if (count == 0)
2706							PRT("%-20.20s", "");
2707						PRT("%s", "[ BASE ]");
2708					}
2709					PRT("\n");
2710				}
2711				break;
2712			}
2713			if (ed->flags & SOLARIS_FMT)
2714				count++;
2715			buf2 += vda->vda_next;
2716		}
2717		if (vd->vd_next == 0)
2718			break;
2719		buf += vd->vd_next;
2720	}
2721}
2722
2723/*
2724 * Dump the content of a Version Needed(SHT_SUNW_Verneed) Section.
2725 */
2726static void
2727elf_print_verneed(struct elfdump *ed, struct section *s)
2728{
2729	Elf_Data	*data;
2730	Elf32_Verneed	*vn;
2731	Elf32_Vernaux	*vna;
2732	uint8_t		*buf, *end, *buf2;
2733	int		 i, j, elferr, first;
2734
2735	if (ed->flags & SOLARIS_FMT)
2736		PRT("\nVersion Needed Section:  %s\n", s->name);
2737	else
2738		PRT("\nversion need section (%s):\n", s->name);
2739	(void) elf_errno();
2740	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
2741		elferr = elf_errno();
2742		if (elferr != 0)
2743			warnx("elf_getdata failed: %s",
2744			    elf_errmsg(elferr));
2745		return;
2746	}
2747	buf = data->d_buf;
2748	end = buf + data->d_size;
2749	if (ed->flags & SOLARIS_FMT)
2750		PRT("            file                        version\n");
2751	i = 0;
2752	while (buf + sizeof(Elf32_Verneed) <= end) {
2753		vn = (Elf32_Verneed *) (uintptr_t) buf;
2754		if (ed->flags & SOLARIS_FMT)
2755			PRT("            %-26.26s  ",
2756			    get_string(ed, s->link, vn->vn_file));
2757		else {
2758			PRT("\nentry: %d\n", i++);
2759			PRT("\tvn_version: %u\n", vn->vn_version);
2760			PRT("\tvn_cnt: %u\n", vn->vn_cnt);
2761			PRT("\tvn_file: %s\n",
2762			    get_string(ed, s->link, vn->vn_file));
2763			PRT("\tvn_aux: %u\n", vn->vn_aux);
2764			PRT("\tvn_next: %u\n\n", vn->vn_next);
2765		}
2766		buf2 = buf + vn->vn_aux;
2767		j = 0;
2768		first = 1;
2769		while (buf2 + sizeof(Elf32_Vernaux) <= end && j < vn->vn_cnt) {
2770			vna = (Elf32_Vernaux *) (uintptr_t) buf2;
2771			if (ed->flags & SOLARIS_FMT) {
2772				if (!first)
2773					PRT("%40.40s", "");
2774				else
2775					first = 0;
2776				PRT("%s\n", get_string(ed, s->link,
2777				    vna->vna_name));
2778			} else {
2779				PRT("\t\tvna: %d\n", j++);
2780				PRT("\t\t\tvna_hash: %u\n", vna->vna_hash);
2781				PRT("\t\t\tvna_flags: %u\n", vna->vna_flags);
2782				PRT("\t\t\tvna_other: %u\n", vna->vna_other);
2783				PRT("\t\t\tvna_name: %s\n",
2784				    get_string(ed, s->link, vna->vna_name));
2785				PRT("\t\t\tvna_next: %u\n", vna->vna_next);
2786			}
2787			if (vna->vna_next == 0)
2788				break;
2789			buf2 += vna->vna_next;
2790		}
2791		if (vn->vn_next == 0)
2792			break;
2793		buf += vn->vn_next;
2794	}
2795}
2796
2797/*
2798 * Dump the symbol-versioning sections.
2799 */
2800static void
2801elf_print_symver(struct elfdump *ed)
2802{
2803	struct section	*s;
2804	int		 i;
2805
2806	for (i = 0; (size_t)i < ed->shnum; i++) {
2807		s = &ed->sl[i];
2808		if (!STAILQ_EMPTY(&ed->snl) && !find_name(ed, s->name))
2809			continue;
2810		if (s->type == SHT_SUNW_verdef)
2811			elf_print_verdef(ed, s);
2812		if (s->type == SHT_SUNW_verneed)
2813			elf_print_verneed(ed, s);
2814	}
2815}
2816
2817/*
2818 * Dump the ELF checksum. See gelf_checksum(3) for details.
2819 */
2820static void
2821elf_print_checksum(struct elfdump *ed)
2822{
2823
2824	if (!STAILQ_EMPTY(&ed->snl))
2825		return;
2826
2827	PRT("\nelf checksum: %#lx\n", gelf_checksum(ed->elf));
2828}
2829
2830#define	USAGE_MESSAGE	"\
2831Usage: %s [options] file...\n\
2832  Display information about ELF objects and ar(1) archives.\n\n\
2833  Options:\n\
2834  -a                        Show all information.\n\
2835  -c                        Show shared headers.\n\
2836  -d                        Show dynamic symbols.\n\
2837  -e                        Show the ELF header.\n\
2838  -G                        Show the GOT.\n\
2839  -H | --help               Show a usage message and exit.\n\
2840  -h                        Show hash values.\n\
2841  -i                        Show the dynamic interpreter.\n\
2842  -k                        Show the ELF checksum.\n\
2843  -n                        Show the contents of note sections.\n\
2844  -N NAME                   Show the section named \"NAME\".\n\
2845  -p                        Show the program header.\n\
2846  -r                        Show relocations.\n\
2847  -s                        Show the symbol table.\n\
2848  -S                        Use the Solaris elfdump format.\n\
2849  -v                        Show symbol-versioning information.\n\
2850  -V | --version            Print a version identifier and exit.\n\
2851  -w FILE                   Write output to \"FILE\".\n"
2852
2853static void
2854usage(void)
2855{
2856	fprintf(stderr, USAGE_MESSAGE, ELFTC_GETPROGNAME());
2857	exit(EXIT_FAILURE);
2858}
2859