itbl-ops.c revision 78828
1/* itbl-ops.c
2   Copyright 1997, 1999, 2000, 2001 Free Software Foundation, Inc.
3
4   This file is part of GAS, the GNU Assembler.
5
6   GAS is free software; you can redistribute it and/or modify
7   it under the terms of the GNU General Public License as published by
8   the Free Software Foundation; either version 2, or (at your option)
9   any later version.
10
11   GAS is distributed in the hope that it will be useful,
12   but WITHOUT ANY WARRANTY; without even the implied warranty of
13   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14   GNU General Public License for more details.
15
16   You should have received a copy of the GNU General Public License
17   along with GAS; see the file COPYING.  If not, write to the Free
18   Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19   02111-1307, USA.  */
20
21/*======================================================================*/
22/*
23 * Herein lies the support for dynamic specification of processor
24 * instructions and registers.  Mnemonics, values, and formats for each
25 * instruction and register are specified in an ascii file consisting of
26 * table entries.  The grammar for the table is defined in the document
27 * "Processor instruction table specification".
28 *
29 * Instructions use the gnu assembler syntax, with the addition of
30 * allowing mnemonics for register.
31 * Eg. "func $2,reg3,0x100,symbol ; comment"
32 * 	func - opcode name
33 * 	$n - register n
34 * 	reg3 - mnemonic for processor's register defined in table
35 * 	0xddd..d - immediate value
36 * 	symbol - address of label or external symbol
37 *
38 * First, itbl_parse reads in the table of register and instruction
39 * names and formats, and builds a list of entries for each
40 * processor/type combination.  lex and yacc are used to parse
41 * the entries in the table and call functions defined here to
42 * add each entry to our list.
43 *
44 * Then, when assembling or disassembling, these functions are called to
45 * 1) get information on a processor's registers and
46 * 2) assemble/disassemble an instruction.
47 * To assemble(disassemble) an instruction, the function
48 * itbl_assemble(itbl_disassemble) is called to search the list of
49 * instruction entries, and if a match is found, uses the format
50 * described in the instruction entry structure to complete the action.
51 *
52 * Eg. Suppose we have a Mips coprocessor "cop3" with data register "d2"
53 * and we want to define function "pig" which takes two operands.
54 *
55 * Given the table entries:
56 * 	"p3 insn pig 0x1:24-21 dreg:20-16 immed:15-0"
57 * 	"p3 dreg d2 0x2"
58 * and that the instruction encoding for coprocessor pz has encoding:
59 * 	#define MIPS_ENCODE_COP_NUM(z) ((0x21|(z<<1))<<25)
60 * 	#define ITBL_ENCODE_PNUM(pnum) MIPS_ENCODE_COP_NUM(pnum)
61 *
62 * a structure to describe the instruction might look something like:
63 *      struct itbl_entry = {
64 *      e_processor processor = e_p3
65 *      e_type type = e_insn
66 *      char *name = "pig"
67 *      uint value = 0x1
68 *      uint flags = 0
69 *      struct itbl_range range = 24-21
70 *      struct itbl_field *field = {
71 *              e_type type = e_dreg
72 *              struct itbl_range range = 20-16
73 *              struct itbl_field *next = {
74 *                      e_type type = e_immed
75 *                      struct itbl_range range = 15-0
76 *                      struct itbl_field *next = 0
77 *                      };
78 *              };
79 *      struct itbl_entry *next = 0
80 *      };
81 *
82 * And the assembler instructions:
83 * 	"pig d2,0x100"
84 * 	"pig $2,0x100"
85 *
86 * would both assemble to the hex value:
87 * 	"0x4e220100"
88 *
89 */
90
91#include <stdio.h>
92#include <stdlib.h>
93#include <string.h>
94#include "itbl-ops.h"
95#include "itbl-parse.h"
96
97/* #define DEBUG */
98
99#ifdef DEBUG
100#include <assert.h>
101#define ASSERT(x) assert(x)
102#define DBG(x) printf x
103#else
104#define ASSERT(x)
105#define DBG(x)
106#endif
107
108#ifndef min
109#define min(a,b) (a<b?a:b)
110#endif
111
112int itbl_have_entries = 0;
113
114/*======================================================================*/
115/* structures for keeping itbl format entries */
116
117struct itbl_range {
118  int sbit;			/* mask starting bit position */
119  int ebit;			/* mask ending bit position */
120};
121
122struct itbl_field {
123  e_type type;			/* dreg/creg/greg/immed/symb */
124  struct itbl_range range;	/* field's bitfield range within instruction */
125  unsigned long flags;		/* field flags */
126  struct itbl_field *next;	/* next field in list */
127};
128
129/* These structures define the instructions and registers for a processor.
130 * If the type is an instruction, the structure defines the format of an
131 * instruction where the fields are the list of operands.
132 * The flags field below uses the same values as those defined in the
133 * gnu assembler and are machine specific.  */
134struct itbl_entry {
135  e_processor processor;	/* processor number */
136  e_type type;			/* dreg/creg/greg/insn */
137  char *name;			/* mnemionic name for insn/register */
138  unsigned long value;		/* opcode/instruction mask/register number */
139  unsigned long flags;		/* effects of the instruction */
140  struct itbl_range range;	/* bit range within instruction for value */
141  struct itbl_field *fields;	/* list of operand definitions (if any) */
142  struct itbl_entry *next;	/* next entry */
143};
144
145/* local data and structures */
146
147static int itbl_num_opcodes = 0;
148/* Array of entries for each processor and entry type */
149static struct itbl_entry *entries[e_nprocs][e_ntypes] = {
150  {0, 0, 0, 0, 0, 0},
151  {0, 0, 0, 0, 0, 0},
152  {0, 0, 0, 0, 0, 0},
153  {0, 0, 0, 0, 0, 0}
154};
155
156/* local prototypes */
157static unsigned long build_opcode PARAMS ((struct itbl_entry *e));
158static e_type get_type PARAMS ((int yytype));
159static e_processor get_processor PARAMS ((int yyproc));
160static struct itbl_entry **get_entries PARAMS ((e_processor processor,
161						e_type type));
162static struct itbl_entry *find_entry_byname PARAMS ((e_processor processor,
163					e_type type, char *name));
164static struct itbl_entry *find_entry_byval PARAMS ((e_processor processor,
165			e_type type, unsigned long val, struct itbl_range *r));
166static struct itbl_entry *alloc_entry PARAMS ((e_processor processor,
167		e_type type, char *name, unsigned long value));
168static unsigned long apply_range PARAMS ((unsigned long value,
169						struct itbl_range r));
170static unsigned long extract_range PARAMS ((unsigned long value,
171						struct itbl_range r));
172static struct itbl_field *alloc_field PARAMS ((e_type type, int sbit,
173					int ebit, unsigned long flags));
174
175/*======================================================================*/
176/* Interfaces to the parser */
177
178/* Open the table and use lex and yacc to parse the entries.
179 * Return 1 for failure; 0 for success.  */
180
181int
182itbl_parse (char *insntbl)
183{
184  extern FILE *yyin;
185  extern int yyparse (void);
186  yyin = fopen (insntbl, "r");
187  if (yyin == 0)
188    {
189      printf ("Can't open processor instruction specification file \"%s\"\n",
190	      insntbl);
191      return 1;
192    }
193  else
194    {
195      while (yyparse ());
196    }
197  fclose (yyin);
198  itbl_have_entries = 1;
199  return 0;
200}
201
202/* Add a register entry */
203
204struct itbl_entry *
205itbl_add_reg (int yyprocessor, int yytype, char *regname,
206	      int regnum)
207{
208#if 0
209#include "as.h"
210#include "symbols.h"
211  /* Since register names don't have a prefix, we put them in the symbol table so
212     they can't be used as symbols.  This also simplifies argument parsing as
213     we can let gas parse registers for us.  The recorded register number is
214     regnum.  */
215  /* Use symbol_create here instead of symbol_new so we don't try to
216     output registers into the object file's symbol table.  */
217  symbol_table_insert (symbol_create (regname, reg_section,
218				      regnum, &zero_address_frag));
219#endif
220  return alloc_entry (get_processor (yyprocessor), get_type (yytype), regname,
221		      (unsigned long) regnum);
222}
223
224/* Add an instruction entry */
225
226struct itbl_entry *
227itbl_add_insn (int yyprocessor, char *name, unsigned long value,
228	       int sbit, int ebit, unsigned long flags)
229{
230  struct itbl_entry *e;
231  e = alloc_entry (get_processor (yyprocessor), e_insn, name, value);
232  if (e)
233    {
234      e->range.sbit = sbit;
235      e->range.ebit = ebit;
236      e->flags = flags;
237      itbl_num_opcodes++;
238    }
239  return e;
240}
241
242/* Add an operand to an instruction entry */
243
244struct itbl_field *
245itbl_add_operand (struct itbl_entry *e, int yytype, int sbit,
246		  int ebit, unsigned long flags)
247{
248  struct itbl_field *f, **last_f;
249  if (!e)
250    return 0;
251  /* Add to end of fields' list.  */
252  f = alloc_field (get_type (yytype), sbit, ebit, flags);
253  if (f)
254    {
255      last_f = &e->fields;
256      while (*last_f)
257	last_f = &(*last_f)->next;
258      *last_f = f;
259      f->next = 0;
260    }
261  return f;
262}
263
264/*======================================================================*/
265/* Interfaces for assembler and disassembler */
266
267#ifndef STAND_ALONE
268#include "as.h"
269#include "symbols.h"
270static void append_insns_as_macros (void);
271
272/* Initialize for gas.  */
273
274void
275itbl_init (void)
276{
277  struct itbl_entry *e, **es;
278  e_processor procn;
279  e_type type;
280
281  if (!itbl_have_entries)
282    return;
283
284  /* Since register names don't have a prefix, put them in the symbol table so
285     they can't be used as symbols.  This simplifies argument parsing as
286     we can let gas parse registers for us.  */
287  /* Use symbol_create instead of symbol_new so we don't try to
288     output registers into the object file's symbol table.  */
289
290  for (type = e_regtype0; type < e_nregtypes; type++)
291    for (procn = e_p0; procn < e_nprocs; procn++)
292      {
293	es = get_entries (procn, type);
294	for (e = *es; e; e = e->next)
295	  {
296	    symbol_table_insert (symbol_create (e->name, reg_section,
297						e->value, &zero_address_frag));
298	  }
299      }
300  append_insns_as_macros ();
301}
302
303/* Append insns to opcodes table and increase number of opcodes
304 * Structure of opcodes table:
305 * struct itbl_opcode
306 * {
307 *   const char *name;
308 *   const char *args; 		- string describing the arguments.
309 *   unsigned long match; 	- opcode, or ISA level if pinfo=INSN_MACRO
310 *   unsigned long mask; 	- opcode mask, or macro id if pinfo=INSN_MACRO
311 *   unsigned long pinfo; 	- insn flags, or INSN_MACRO
312 * };
313 * examples:
314 *	{"li",      "t,i",  0x34000000, 0xffe00000, WR_t    },
315 *	{"li",      "t,I",  0,    (int) M_LI,   INSN_MACRO  },
316 */
317
318static char *form_args (struct itbl_entry *e);
319static void
320append_insns_as_macros (void)
321{
322  struct ITBL_OPCODE_STRUCT *new_opcodes, *o;
323  struct itbl_entry *e, **es;
324  int n, id, size, new_size, new_num_opcodes;
325
326  if (!itbl_have_entries)
327    return;
328
329  if (!itbl_num_opcodes)	/* no new instructions to add! */
330    {
331      return;
332    }
333  DBG (("previous num_opcodes=%d\n", ITBL_NUM_OPCODES));
334
335  new_num_opcodes = ITBL_NUM_OPCODES + itbl_num_opcodes;
336  ASSERT (new_num_opcodes >= itbl_num_opcodes);
337
338  size = sizeof (struct ITBL_OPCODE_STRUCT) * ITBL_NUM_OPCODES;
339  ASSERT (size >= 0);
340  DBG (("I get=%d\n", size / sizeof (ITBL_OPCODES[0])));
341
342  new_size = sizeof (struct ITBL_OPCODE_STRUCT) * new_num_opcodes;
343  ASSERT (new_size > size);
344
345  /* FIXME since ITBL_OPCODES culd be a static table,
346		we can't realloc or delete the old memory.  */
347  new_opcodes = (struct ITBL_OPCODE_STRUCT *) malloc (new_size);
348  if (!new_opcodes)
349    {
350      printf (_("Unable to allocate memory for new instructions\n"));
351      return;
352    }
353  if (size)			/* copy prexisting opcodes table */
354    memcpy (new_opcodes, ITBL_OPCODES, size);
355
356  /* FIXME! some NUMOPCODES are calculated expressions.
357		These need to be changed before itbls can be supported.  */
358
359  id = ITBL_NUM_MACROS;		/* begin the next macro id after the last */
360  o = &new_opcodes[ITBL_NUM_OPCODES];	/* append macro to opcodes list */
361  for (n = e_p0; n < e_nprocs; n++)
362    {
363      es = get_entries (n, e_insn);
364      for (e = *es; e; e = e->next)
365	{
366	  /* name,    args,   mask,       match,  pinfo
367		 * {"li",      "t,i",  0x34000000, 0xffe00000, WR_t    },
368		 * {"li",      "t,I",  0,    (int) M_LI,   INSN_MACRO  },
369		 * Construct args from itbl_fields.
370		*/
371	  o->name = e->name;
372	  o->args = strdup (form_args (e));
373	  o->mask = apply_range (e->value, e->range);
374	  /* FIXME how to catch durring assembly? */
375	  /* mask to identify this insn */
376	  o->match = apply_range (e->value, e->range);
377	  o->pinfo = 0;
378
379#ifdef USE_MACROS
380	  o->mask = id++;	/* FIXME how to catch durring assembly? */
381	  o->match = 0;		/* for macros, the insn_isa number */
382	  o->pinfo = INSN_MACRO;
383#endif
384
385	  /* Don't add instructions which caused an error */
386	  if (o->args)
387	    o++;
388	  else
389	    new_num_opcodes--;
390	}
391    }
392  ITBL_OPCODES = new_opcodes;
393  ITBL_NUM_OPCODES = new_num_opcodes;
394
395  /* FIXME
396		At this point, we can free the entries, as they should have
397		been added to the assembler's tables.
398		Don't free name though, since name is being used by the new
399		opcodes table.
400
401		Eventually, we should also free the new opcodes table itself
402		on exit.
403	*/
404}
405
406static char *
407form_args (struct itbl_entry *e)
408{
409  static char s[31];
410  char c = 0, *p = s;
411  struct itbl_field *f;
412
413  ASSERT (e);
414  for (f = e->fields; f; f = f->next)
415    {
416      switch (f->type)
417	{
418	case e_dreg:
419	  c = 'd';
420	  break;
421	case e_creg:
422	  c = 't';
423	  break;
424	case e_greg:
425	  c = 's';
426	  break;
427	case e_immed:
428	  c = 'i';
429	  break;
430	case e_addr:
431	  c = 'a';
432	  break;
433	default:
434	  c = 0;		/* ignore; unknown field type */
435	}
436      if (c)
437	{
438	  if (p != s)
439	    *p++ = ',';
440	  *p++ = c;
441	}
442    }
443  *p = 0;
444  return s;
445}
446#endif /* !STAND_ALONE */
447
448/* Get processor's register name from val */
449
450int
451itbl_get_reg_val (char *name, unsigned long *pval)
452{
453  e_type t;
454  e_processor p;
455
456  for (p = e_p0; p < e_nprocs; p++)
457    {
458      for (t = e_regtype0; t < e_nregtypes; t++)
459	{
460	  if (itbl_get_val (p, t, name, pval))
461	    return 1;
462	}
463    }
464  return 0;
465}
466
467char *
468itbl_get_name (e_processor processor, e_type type, unsigned long val)
469{
470  struct itbl_entry *r;
471  /* type depends on instruction passed */
472  r = find_entry_byval (processor, type, val, 0);
473  if (r)
474    return r->name;
475  else
476    return 0;			/* error; invalid operand */
477}
478
479/* Get processor's register value from name */
480
481int
482itbl_get_val (e_processor processor, e_type type, char *name,
483	      unsigned long *pval)
484{
485  struct itbl_entry *r;
486  /* type depends on instruction passed */
487  r = find_entry_byname (processor, type, name);
488  if (r == NULL)
489    return 0;
490  *pval = r->value;
491  return 1;
492}
493
494/* Assemble instruction "name" with operands "s".
495 * name - name of instruction
496 * s - operands
497 * returns - long word for assembled instruction */
498
499unsigned long
500itbl_assemble (char *name, char *s)
501{
502  unsigned long opcode;
503  struct itbl_entry *e = NULL;
504  struct itbl_field *f;
505  char *n;
506  int processor;
507
508  if (!name || !*name)
509    return 0;			/* error!  must have a opcode name/expr */
510
511  /* find entry in list of instructions for all processors */
512  for (processor = 0; processor < e_nprocs; processor++)
513    {
514      e = find_entry_byname (processor, e_insn, name);
515      if (e)
516	break;
517    }
518  if (!e)
519    return 0;			/* opcode not in table; invalid instruction */
520  opcode = build_opcode (e);
521
522  /* parse opcode's args (if any) */
523  for (f = e->fields; f; f = f->next)	/* for each arg, ...  */
524    {
525      struct itbl_entry *r;
526      unsigned long value;
527      if (!s || !*s)
528	return 0;		/* error - not enough operands */
529      n = itbl_get_field (&s);
530      /* n should be in form $n or 0xhhh (are symbol names valid?? */
531      switch (f->type)
532	{
533	case e_dreg:
534	case e_creg:
535	case e_greg:
536	  /* Accept either a string name
537			 * or '$' followed by the register number */
538	  if (*n == '$')
539	    {
540	      n++;
541	      value = strtol (n, 0, 10);
542	      /* FIXME! could have "0l"... then what?? */
543	      if (value == 0 && *n != '0')
544		return 0;	/* error; invalid operand */
545	    }
546	  else
547	    {
548	      r = find_entry_byname (e->processor, f->type, n);
549	      if (r)
550		value = r->value;
551	      else
552		return 0;	/* error; invalid operand */
553	    }
554	  break;
555	case e_addr:
556	  /* use assembler's symbol table to find symbol */
557	  /* FIXME!! Do we need this?
558				if so, what about relocs??
559				my_getExpression (&imm_expr, s);
560				return 0;	/-* error; invalid operand *-/
561				break;
562			*/
563	  /* If not a symbol, fall thru to IMMED */
564	case e_immed:
565	  if (*n == '0' && *(n + 1) == 'x')	/* hex begins 0x...  */
566	    {
567	      n += 2;
568	      value = strtol (n, 0, 16);
569	      /* FIXME! could have "0xl"... then what?? */
570	    }
571	  else
572	    {
573	      value = strtol (n, 0, 10);
574	      /* FIXME! could have "0l"... then what?? */
575	      if (value == 0 && *n != '0')
576		return 0;	/* error; invalid operand */
577	    }
578	  break;
579	default:
580	  return 0;		/* error; invalid field spec */
581	}
582      opcode |= apply_range (value, f->range);
583    }
584  if (s && *s)
585    return 0;			/* error - too many operands */
586  return opcode;		/* done! */
587}
588
589/* Disassemble instruction "insn".
590 * insn - instruction
591 * s - buffer to hold disassembled instruction
592 * returns - 1 if succeeded; 0 if failed
593 */
594
595int
596itbl_disassemble (char *s, unsigned long insn)
597{
598  e_processor processor;
599  struct itbl_entry *e;
600  struct itbl_field *f;
601
602  if (!ITBL_IS_INSN (insn))
603    return 0;			/* error */
604  processor = get_processor (ITBL_DECODE_PNUM (insn));
605
606  /* find entry in list */
607  e = find_entry_byval (processor, e_insn, insn, 0);
608  if (!e)
609    return 0;			/* opcode not in table; invalid instruction */
610  strcpy (s, e->name);
611
612  /* Parse insn's args (if any).  */
613  for (f = e->fields; f; f = f->next)	/* for each arg, ...  */
614    {
615      struct itbl_entry *r;
616      unsigned long value;
617
618      if (f == e->fields)	/* First operand is preceeded by tab.  */
619	strcat (s, "\t");
620      else			/* ','s separate following operands.  */
621	strcat (s, ",");
622      value = extract_range (insn, f->range);
623      /* n should be in form $n or 0xhhh (are symbol names valid?? */
624      switch (f->type)
625	{
626	case e_dreg:
627	case e_creg:
628	case e_greg:
629	  /* Accept either a string name
630	     or '$' followed by the register number.  */
631	  r = find_entry_byval (e->processor, f->type, value, &f->range);
632	  if (r)
633	    strcat (s, r->name);
634	  else
635	    sprintf (s, "%s$%lu", s, value);
636	  break;
637	case e_addr:
638	  /* Use assembler's symbol table to find symbol.  */
639	  /* FIXME!! Do we need this?  If so, what about relocs??  */
640	  /* If not a symbol, fall through to IMMED.  */
641	case e_immed:
642	  sprintf (s, "%s0x%lx", s, value);
643	  break;
644	default:
645	  return 0;		/* error; invalid field spec */
646	}
647    }
648  return 1;			/* Done!  */
649}
650
651/*======================================================================*/
652/*
653 * Local functions for manipulating private structures containing
654 * the names and format for the new instructions and registers
655 * for each processor.
656 */
657
658/* Calculate instruction's opcode and function values from entry */
659
660static unsigned long
661build_opcode (struct itbl_entry *e)
662{
663  unsigned long opcode;
664
665  opcode = apply_range (e->value, e->range);
666  opcode |= ITBL_ENCODE_PNUM (e->processor);
667  return opcode;
668}
669
670/* Calculate absolute value given the relative value and bit position range
671 * within the instruction.
672 * The range is inclusive where 0 is least significant bit.
673 * A range of { 24, 20 } will have a mask of
674 * bit   3           2            1
675 * pos: 1098 7654 3210 9876 5432 1098 7654 3210
676 * bin: 0000 0001 1111 0000 0000 0000 0000 0000
677 * hex:    0    1    f    0    0    0    0    0
678 * mask: 0x01f00000.
679 */
680
681static unsigned long
682apply_range (unsigned long rval, struct itbl_range r)
683{
684  unsigned long mask;
685  unsigned long aval;
686  int len = MAX_BITPOS - r.sbit;
687
688  ASSERT (r.sbit >= r.ebit);
689  ASSERT (MAX_BITPOS >= r.sbit);
690  ASSERT (r.ebit >= 0);
691
692  /* create mask by truncating 1s by shifting */
693  mask = 0xffffffff << len;
694  mask = mask >> len;
695  mask = mask >> r.ebit;
696  mask = mask << r.ebit;
697
698  aval = (rval << r.ebit) & mask;
699  return aval;
700}
701
702/* Calculate relative value given the absolute value and bit position range
703 * within the instruction.  */
704
705static unsigned long
706extract_range (unsigned long aval, struct itbl_range r)
707{
708  unsigned long mask;
709  unsigned long rval;
710  int len = MAX_BITPOS - r.sbit;
711
712  /* create mask by truncating 1s by shifting */
713  mask = 0xffffffff << len;
714  mask = mask >> len;
715  mask = mask >> r.ebit;
716  mask = mask << r.ebit;
717
718  rval = (aval & mask) >> r.ebit;
719  return rval;
720}
721
722/* Extract processor's assembly instruction field name from s;
723 * forms are "n args" "n,args" or "n" */
724/* Return next argument from string pointer "s" and advance s.
725 * delimiters are " ,()" */
726
727char *
728itbl_get_field (char **S)
729{
730  static char n[128];
731  char *s;
732  int len;
733
734  s = *S;
735  if (!s || !*s)
736    return 0;
737  /* FIXME: This is a weird set of delimiters.  */
738  len = strcspn (s, " \t,()");
739  ASSERT (128 > len + 1);
740  strncpy (n, s, len);
741  n[len] = 0;
742  if (s[len] == '\0')
743    s = 0;			/* no more args */
744  else
745    s += len + 1;		/* advance to next arg */
746
747  *S = s;
748  return n;
749}
750
751/* Search entries for a given processor and type
752 * to find one matching the name "n".
753 * Return a pointer to the entry */
754
755static struct itbl_entry *
756find_entry_byname (e_processor processor,
757		   e_type type, char *n)
758{
759  struct itbl_entry *e, **es;
760
761  es = get_entries (processor, type);
762  for (e = *es; e; e = e->next)	/* for each entry, ...  */
763    {
764      if (!strcmp (e->name, n))
765	return e;
766    }
767  return 0;
768}
769
770/* Search entries for a given processor and type
771 * to find one matching the value "val" for the range "r".
772 * Return a pointer to the entry.
773 * This function is used for disassembling fields of an instruction.
774 */
775
776static struct itbl_entry *
777find_entry_byval (e_processor processor, e_type type,
778		  unsigned long val, struct itbl_range *r)
779{
780  struct itbl_entry *e, **es;
781  unsigned long eval;
782
783  es = get_entries (processor, type);
784  for (e = *es; e; e = e->next)	/* for each entry, ...  */
785    {
786      if (processor != e->processor)
787	continue;
788      /* For insns, we might not know the range of the opcode,
789	 * so a range of 0 will allow this routine to match against
790	 * the range of the entry to be compared with.
791	 * This could cause ambiguities.
792	 * For operands, we get an extracted value and a range.
793	 */
794      /* if range is 0, mask val against the range of the compared entry.  */
795      if (r == 0)		/* if no range passed, must be whole 32-bits
796			 * so create 32-bit value from entry's range */
797	{
798	  eval = apply_range (e->value, e->range);
799	  val &= apply_range (0xffffffff, e->range);
800	}
801      else if ((r->sbit == e->range.sbit && r->ebit == e->range.ebit)
802	       || (e->range.sbit == 0 && e->range.ebit == 0))
803	{
804	  eval = apply_range (e->value, *r);
805	  val = apply_range (val, *r);
806	}
807      else
808	continue;
809      if (val == eval)
810	return e;
811    }
812  return 0;
813}
814
815/* Return a pointer to the list of entries for a given processor and type.  */
816
817static struct itbl_entry **
818get_entries (e_processor processor, e_type type)
819{
820  return &entries[processor][type];
821}
822
823/* Return an integral value for the processor passed from yyparse.  */
824
825static e_processor
826get_processor (int yyproc)
827{
828  /* translate from yacc's processor to enum */
829  if (yyproc >= e_p0 && yyproc < e_nprocs)
830    return (e_processor) yyproc;
831  return e_invproc;		/* error; invalid processor */
832}
833
834/* Return an integral value for the entry type passed from yyparse.  */
835
836static e_type
837get_type (int yytype)
838{
839  switch (yytype)
840    {
841      /* translate from yacc's type to enum */
842    case INSN:
843      return e_insn;
844    case DREG:
845      return e_dreg;
846    case CREG:
847      return e_creg;
848    case GREG:
849      return e_greg;
850    case ADDR:
851      return e_addr;
852    case IMMED:
853      return e_immed;
854    default:
855      return e_invtype;		/* error; invalid type */
856    }
857}
858
859/* Allocate and initialize an entry */
860
861static struct itbl_entry *
862alloc_entry (e_processor processor, e_type type,
863	     char *name, unsigned long value)
864{
865  struct itbl_entry *e, **es;
866  if (!name)
867    return 0;
868  e = (struct itbl_entry *) malloc (sizeof (struct itbl_entry));
869  if (e)
870    {
871      memset (e, 0, sizeof (struct itbl_entry));
872      e->name = (char *) malloc (sizeof (strlen (name)) + 1);
873      if (e->name)
874	strcpy (e->name, name);
875      e->processor = processor;
876      e->type = type;
877      e->value = value;
878      es = get_entries (e->processor, e->type);
879      e->next = *es;
880      *es = e;
881    }
882  return e;
883}
884
885/* Allocate and initialize an entry's field */
886
887static struct itbl_field *
888alloc_field (e_type type, int sbit, int ebit,
889	     unsigned long flags)
890{
891  struct itbl_field *f;
892  f = (struct itbl_field *) malloc (sizeof (struct itbl_field));
893  if (f)
894    {
895      memset (f, 0, sizeof (struct itbl_field));
896      f->type = type;
897      f->range.sbit = sbit;
898      f->range.ebit = ebit;
899      f->flags = flags;
900    }
901  return f;
902}
903