ehopt.c revision 104834
1/* ehopt.c--optimize gcc exception frame information.
2   Copyright 1998, 2000, 2001 Free Software Foundation, Inc.
3   Written by Ian Lance Taylor <ian@cygnus.com>.
4
5This file is part of GAS, the GNU Assembler.
6
7GAS is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GAS is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GAS; see the file COPYING.  If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA.  */
21
22#include "as.h"
23#include "subsegs.h"
24
25/* We include this ELF file, even though we may not be assembling for
26   ELF, since the exception frame information is always in a format
27   derived from DWARF.  */
28
29#include "elf/dwarf2.h"
30
31/* Try to optimize gcc 2.8 exception frame information.
32
33   Exception frame information is emitted for every function in the
34   .eh_frame or .debug_frame sections.  Simple information for a function
35   with no exceptions looks like this:
36
37__FRAME_BEGIN__:
38	.4byte	.LLCIE1	/ Length of Common Information Entry
39.LSCIE1:
40#if .eh_frame
41	.4byte	0x0	/ CIE Identifier Tag
42#elif .debug_frame
43	.4byte	0xffffffff / CIE Identifier Tag
44#endif
45	.byte	0x1	/ CIE Version
46	.byte	0x0	/ CIE Augmentation (none)
47	.byte	0x1	/ ULEB128 0x1 (CIE Code Alignment Factor)
48	.byte	0x7c	/ SLEB128 -4 (CIE Data Alignment Factor)
49	.byte	0x8	/ CIE RA Column
50	.byte	0xc	/ DW_CFA_def_cfa
51	.byte	0x4	/ ULEB128 0x4
52	.byte	0x4	/ ULEB128 0x4
53	.byte	0x88	/ DW_CFA_offset, column 0x8
54	.byte	0x1	/ ULEB128 0x1
55	.align 4
56.LECIE1:
57	.set	.LLCIE1,.LECIE1-.LSCIE1	/ CIE Length Symbol
58	.4byte	.LLFDE1	/ FDE Length
59.LSFDE1:
60	.4byte	.LSFDE1-__FRAME_BEGIN__	/ FDE CIE offset
61	.4byte	.LFB1	/ FDE initial location
62	.4byte	.LFE1-.LFB1	/ FDE address range
63	.byte	0x4	/ DW_CFA_advance_loc4
64	.4byte	.LCFI0-.LFB1
65	.byte	0xe	/ DW_CFA_def_cfa_offset
66	.byte	0x8	/ ULEB128 0x8
67	.byte	0x85	/ DW_CFA_offset, column 0x5
68	.byte	0x2	/ ULEB128 0x2
69	.byte	0x4	/ DW_CFA_advance_loc4
70	.4byte	.LCFI1-.LCFI0
71	.byte	0xd	/ DW_CFA_def_cfa_register
72	.byte	0x5	/ ULEB128 0x5
73	.byte	0x4	/ DW_CFA_advance_loc4
74	.4byte	.LCFI2-.LCFI1
75	.byte	0x2e	/ DW_CFA_GNU_args_size
76	.byte	0x4	/ ULEB128 0x4
77	.byte	0x4	/ DW_CFA_advance_loc4
78	.4byte	.LCFI3-.LCFI2
79	.byte	0x2e	/ DW_CFA_GNU_args_size
80	.byte	0x0	/ ULEB128 0x0
81	.align 4
82.LEFDE1:
83	.set	.LLFDE1,.LEFDE1-.LSFDE1	/ FDE Length Symbol
84
85   The immediate issue we can address in the assembler is the
86   DW_CFA_advance_loc4 followed by a four byte value.  The value is
87   the difference of two addresses in the function.  Since gcc does
88   not know this value, it always uses four bytes.  We will know the
89   value at the end of assembly, so we can do better.  */
90
91struct cie_info
92{
93  unsigned code_alignment;
94  int z_augmentation;
95};
96
97static int get_cie_info PARAMS ((struct cie_info *));
98
99/* Extract information from the CIE.  */
100
101static int
102get_cie_info (info)
103     struct cie_info *info;
104{
105  fragS *f;
106  fixS *fix;
107  int offset;
108  char CIE_id;
109  char augmentation[10];
110  int iaug;
111  int code_alignment = 0;
112
113  /* We should find the CIE at the start of the section.  */
114
115#if defined (BFD_ASSEMBLER) || defined (MANY_SEGMENTS)
116  f = seg_info (now_seg)->frchainP->frch_root;
117#else
118  f = frchain_now->frch_root;
119#endif
120#ifdef BFD_ASSEMBLER
121  fix = seg_info (now_seg)->frchainP->fix_root;
122#else
123  fix = *seg_fix_rootP;
124#endif
125
126  /* Look through the frags of the section to find the code alignment.  */
127
128  /* First make sure that the CIE Identifier Tag is 0/-1.  */
129
130  if (strcmp (segment_name (now_seg), ".debug_frame") == 0)
131    CIE_id = (char)0xff;
132  else
133    CIE_id = 0;
134
135  offset = 4;
136  while (f != NULL && offset >= f->fr_fix)
137    {
138      offset -= f->fr_fix;
139      f = f->fr_next;
140    }
141  if (f == NULL
142      || f->fr_fix - offset < 4
143      || f->fr_literal[offset] != CIE_id
144      || f->fr_literal[offset + 1] != CIE_id
145      || f->fr_literal[offset + 2] != CIE_id
146      || f->fr_literal[offset + 3] != CIE_id)
147    return 0;
148
149  /* Next make sure the CIE version number is 1.  */
150
151  offset += 4;
152  while (f != NULL && offset >= f->fr_fix)
153    {
154      offset -= f->fr_fix;
155      f = f->fr_next;
156    }
157  if (f == NULL
158      || f->fr_fix - offset < 1
159      || f->fr_literal[offset] != 1)
160    return 0;
161
162  /* Skip the augmentation (a null terminated string).  */
163
164  iaug = 0;
165  ++offset;
166  while (1)
167    {
168      while (f != NULL && offset >= f->fr_fix)
169	{
170	  offset -= f->fr_fix;
171	  f = f->fr_next;
172	}
173      if (f == NULL)
174	return 0;
175
176      while (offset < f->fr_fix && f->fr_literal[offset] != '\0')
177	{
178	  if ((size_t) iaug < (sizeof augmentation) - 1)
179	    {
180	      augmentation[iaug] = f->fr_literal[offset];
181	      ++iaug;
182	    }
183	  ++offset;
184	}
185      if (offset < f->fr_fix)
186	break;
187    }
188  ++offset;
189  while (f != NULL && offset >= f->fr_fix)
190    {
191      offset -= f->fr_fix;
192      f = f->fr_next;
193    }
194  if (f == NULL)
195    return 0;
196
197  augmentation[iaug] = '\0';
198  if (augmentation[0] == '\0')
199    {
200      /* No augmentation.  */
201    }
202  else if (strcmp (augmentation, "eh") == 0)
203    {
204      /* We have to skip a pointer.  Unfortunately, we don't know how
205	 large it is.  We find out by looking for a matching fixup.  */
206      while (fix != NULL
207	     && (fix->fx_frag != f || fix->fx_where != offset))
208	fix = fix->fx_next;
209      if (fix == NULL)
210	offset += 4;
211      else
212	offset += fix->fx_size;
213      while (f != NULL && offset >= f->fr_fix)
214	{
215	  offset -= f->fr_fix;
216	  f = f->fr_next;
217	}
218      if (f == NULL)
219	return 0;
220    }
221  else if (augmentation[0] != 'z')
222    return 0;
223
224  /* We're now at the code alignment factor, which is a ULEB128.  If
225     it isn't a single byte, forget it.  */
226
227  code_alignment = f->fr_literal[offset] & 0xff;
228  if ((code_alignment & 0x80) != 0)
229    code_alignment = 0;
230
231  info->code_alignment = code_alignment;
232  info->z_augmentation = (augmentation[0] == 'z');
233
234  return 1;
235}
236
237/* This function is called from emit_expr.  It looks for cases which
238   we can optimize.
239
240   Rather than try to parse all this information as we read it, we
241   look for a single byte DW_CFA_advance_loc4 followed by a 4 byte
242   difference.  We turn that into a rs_cfa_advance frag, and handle
243   those frags at the end of the assembly.  If the gcc output changes
244   somewhat, this optimization may stop working.
245
246   This function returns non-zero if it handled the expression and
247   emit_expr should not do anything, or zero otherwise.  It can also
248   change *EXP and *PNBYTES.  */
249
250int
251check_eh_frame (exp, pnbytes)
252     expressionS *exp;
253     unsigned int *pnbytes;
254{
255  struct frame_data
256  {
257    enum frame_state
258    {
259      state_idle,
260      state_saw_size,
261      state_saw_cie_offset,
262      state_saw_pc_begin,
263      state_seeing_aug_size,
264      state_skipping_aug,
265      state_wait_loc4,
266      state_saw_loc4,
267      state_error,
268    } state;
269
270    int cie_info_ok;
271    struct cie_info cie_info;
272
273    symbolS *size_end_sym;
274    fragS *loc4_frag;
275    int loc4_fix;
276
277    int aug_size;
278    int aug_shift;
279  };
280
281  static struct frame_data eh_frame_data;
282  static struct frame_data debug_frame_data;
283  struct frame_data *d;
284
285  /* Don't optimize.  */
286  if (flag_traditional_format)
287    return 0;
288
289  /* Select the proper section data.  */
290  if (strcmp (segment_name (now_seg), ".eh_frame") == 0)
291    d = &eh_frame_data;
292  else if (strcmp (segment_name (now_seg), ".debug_frame") == 0)
293    d = &debug_frame_data;
294  else
295    return 0;
296
297  if (d->state >= state_saw_size && S_IS_DEFINED (d->size_end_sym))
298    {
299      /* We have come to the end of the CIE or FDE.  See below where
300         we set saw_size.  We must check this first because we may now
301         be looking at the next size.  */
302      d->state = state_idle;
303    }
304
305  switch (d->state)
306    {
307    case state_idle:
308      if (*pnbytes == 4)
309	{
310	  /* This might be the size of the CIE or FDE.  We want to know
311	     the size so that we don't accidentally optimize across an FDE
312	     boundary.  We recognize the size in one of two forms: a
313	     symbol which will later be defined as a difference, or a
314	     subtraction of two symbols.  Either way, we can tell when we
315	     are at the end of the FDE because the symbol becomes defined
316	     (in the case of a subtraction, the end symbol, from which the
317	     start symbol is being subtracted).  Other ways of describing
318	     the size will not be optimized.  */
319	  if ((exp->X_op == O_symbol || exp->X_op == O_subtract)
320	      && ! S_IS_DEFINED (exp->X_add_symbol))
321	    {
322	      d->state = state_saw_size;
323	      d->size_end_sym = exp->X_add_symbol;
324	    }
325	}
326      break;
327
328    case state_saw_size:
329    case state_saw_cie_offset:
330      /* Assume whatever form it appears in, it appears atomically.  */
331      d->state += 1;
332      break;
333
334    case state_saw_pc_begin:
335      /* Decide whether we should see an augmentation.  */
336      if (! d->cie_info_ok
337	  && ! (d->cie_info_ok = get_cie_info (&d->cie_info)))
338	d->state = state_error;
339      else if (d->cie_info.z_augmentation)
340	{
341	  d->state = state_seeing_aug_size;
342	  d->aug_size = 0;
343	  d->aug_shift = 0;
344	}
345      else
346	d->state = state_wait_loc4;
347      break;
348
349    case state_seeing_aug_size:
350      /* Bytes == -1 means this comes from an leb128 directive.  */
351      if ((int)*pnbytes == -1 && exp->X_op == O_constant)
352	{
353	  d->aug_size = exp->X_add_number;
354	  d->state = state_skipping_aug;
355	}
356      else if (*pnbytes == 1 && exp->X_op == O_constant)
357	{
358	  unsigned char byte = exp->X_add_number;
359	  d->aug_size |= (byte & 0x7f) << d->aug_shift;
360	  d->aug_shift += 7;
361	  if ((byte & 0x80) == 0)
362	    d->state = state_skipping_aug;
363	}
364      else
365	d->state = state_error;
366      break;
367
368    case state_skipping_aug:
369      if ((int)*pnbytes < 0)
370	d->state = state_error;
371      else
372	{
373	  int left = (d->aug_size -= *pnbytes);
374	  if (left == 0)
375	    d->state = state_wait_loc4;
376	  else if (left < 0)
377	    d->state = state_error;
378	}
379      break;
380
381    case state_wait_loc4:
382      if (*pnbytes == 1
383	  && exp->X_op == O_constant
384	  && exp->X_add_number == DW_CFA_advance_loc4)
385	{
386	  /* This might be a DW_CFA_advance_loc4.  Record the frag and the
387	     position within the frag, so that we can change it later.  */
388	  frag_grow (1);
389	  d->state = state_saw_loc4;
390	  d->loc4_frag = frag_now;
391	  d->loc4_fix = frag_now_fix ();
392	}
393      break;
394
395    case state_saw_loc4:
396      d->state = state_wait_loc4;
397      if (*pnbytes != 4)
398	break;
399      if (exp->X_op == O_constant)
400	{
401	  /* This is a case which we can optimize.  The two symbols being
402	     subtracted were in the same frag and the expression was
403	     reduced to a constant.  We can do the optimization entirely
404	     in this function.  */
405	  if (d->cie_info.code_alignment > 0
406	      && exp->X_add_number % d->cie_info.code_alignment == 0
407	      && exp->X_add_number / d->cie_info.code_alignment < 0x40)
408	    {
409	      d->loc4_frag->fr_literal[d->loc4_fix]
410		= DW_CFA_advance_loc
411		  | (exp->X_add_number / d->cie_info.code_alignment);
412	      /* No more bytes needed.  */
413	      return 1;
414	    }
415	  else if (exp->X_add_number < 0x100)
416	    {
417	      d->loc4_frag->fr_literal[d->loc4_fix] = DW_CFA_advance_loc1;
418	      *pnbytes = 1;
419	    }
420	  else if (exp->X_add_number < 0x10000)
421	    {
422	      d->loc4_frag->fr_literal[d->loc4_fix] = DW_CFA_advance_loc2;
423	      *pnbytes = 2;
424	    }
425	}
426      else if (exp->X_op == O_subtract)
427	{
428	  /* This is a case we can optimize.  The expression was not
429	     reduced, so we can not finish the optimization until the end
430	     of the assembly.  We set up a variant frag which we handle
431	     later.  */
432	  int fr_subtype;
433
434	  if (d->cie_info.code_alignment > 0)
435	    fr_subtype = d->cie_info.code_alignment << 3;
436	  else
437	    fr_subtype = 0;
438
439	  frag_var (rs_cfa, 4, 0, fr_subtype, make_expr_symbol (exp),
440		    d->loc4_fix, (char *) d->loc4_frag);
441	  return 1;
442	}
443      break;
444
445    case state_error:
446      /* Just skipping everything.  */
447      break;
448    }
449
450  return 0;
451}
452
453/* The function estimates the size of a rs_cfa variant frag based on
454   the current values of the symbols.  It is called before the
455   relaxation loop.  We set fr_subtype{0:2} to the expected length.  */
456
457int
458eh_frame_estimate_size_before_relax (frag)
459     fragS *frag;
460{
461  offsetT diff;
462  int ca = frag->fr_subtype >> 3;
463  int ret;
464
465  diff = resolve_symbol_value (frag->fr_symbol);
466
467  if (ca > 0 && diff % ca == 0 && diff / ca < 0x40)
468    ret = 0;
469  else if (diff < 0x100)
470    ret = 1;
471  else if (diff < 0x10000)
472    ret = 2;
473  else
474    ret = 4;
475
476  frag->fr_subtype = (frag->fr_subtype & ~7) | ret;
477
478  return ret;
479}
480
481/* This function relaxes a rs_cfa variant frag based on the current
482   values of the symbols.  fr_subtype{0:2} is the current length of
483   the frag.  This returns the change in frag length.  */
484
485int
486eh_frame_relax_frag (frag)
487     fragS *frag;
488{
489  int oldsize, newsize;
490
491  oldsize = frag->fr_subtype & 7;
492  newsize = eh_frame_estimate_size_before_relax (frag);
493  return newsize - oldsize;
494}
495
496/* This function converts a rs_cfa variant frag into a normal fill
497   frag.  This is called after all relaxation has been done.
498   fr_subtype{0:2} will be the desired length of the frag.  */
499
500void
501eh_frame_convert_frag (frag)
502     fragS *frag;
503{
504  offsetT diff;
505  fragS *loc4_frag;
506  int loc4_fix;
507
508  loc4_frag = (fragS *) frag->fr_opcode;
509  loc4_fix = (int) frag->fr_offset;
510
511  diff = resolve_symbol_value (frag->fr_symbol);
512
513  switch (frag->fr_subtype & 7)
514    {
515    case 0:
516      {
517	int ca = frag->fr_subtype >> 3;
518	assert (ca > 0 && diff % ca == 0 && diff / ca < 0x40);
519	loc4_frag->fr_literal[loc4_fix] = DW_CFA_advance_loc | (diff / ca);
520      }
521      break;
522
523    case 1:
524      assert (diff < 0x100);
525      loc4_frag->fr_literal[loc4_fix] = DW_CFA_advance_loc1;
526      frag->fr_literal[frag->fr_fix] = diff;
527      break;
528
529    case 2:
530      assert (diff < 0x10000);
531      loc4_frag->fr_literal[loc4_fix] = DW_CFA_advance_loc2;
532      md_number_to_chars (frag->fr_literal + frag->fr_fix, diff, 2);
533      break;
534
535    default:
536      md_number_to_chars (frag->fr_literal + frag->fr_fix, diff, 4);
537      break;
538    }
539
540  frag->fr_fix += frag->fr_subtype & 7;
541  frag->fr_type = rs_fill;
542  frag->fr_subtype = 0;
543  frag->fr_offset = 0;
544}
545