section.c revision 302408
1/* Object file "section" support for the BFD library.
2   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4   Free Software Foundation, Inc.
5   Written by Cygnus Support.
6
7This file is part of BFD, the Binary File Descriptor library.
8
9This program is free software; you can redistribute it and/or modify
10it under the terms of the GNU General Public License as published by
11the Free Software Foundation; either version 2 of the License, or
12(at your option) any later version.
13
14This program is distributed in the hope that it will be useful,
15but WITHOUT ANY WARRANTY; without even the implied warranty of
16MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17GNU General Public License for more details.
18
19You should have received a copy of the GNU General Public License
20along with this program; if not, write to the Free Software
21Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.  */
22
23/*
24SECTION
25	Sections
26
27	The raw data contained within a BFD is maintained through the
28	section abstraction.  A single BFD may have any number of
29	sections.  It keeps hold of them by pointing to the first;
30	each one points to the next in the list.
31
32	Sections are supported in BFD in <<section.c>>.
33
34@menu
35@* Section Input::
36@* Section Output::
37@* typedef asection::
38@* section prototypes::
39@end menu
40
41INODE
42Section Input, Section Output, Sections, Sections
43SUBSECTION
44	Section input
45
46	When a BFD is opened for reading, the section structures are
47	created and attached to the BFD.
48
49	Each section has a name which describes the section in the
50	outside world---for example, <<a.out>> would contain at least
51	three sections, called <<.text>>, <<.data>> and <<.bss>>.
52
53	Names need not be unique; for example a COFF file may have several
54	sections named <<.data>>.
55
56	Sometimes a BFD will contain more than the ``natural'' number of
57	sections. A back end may attach other sections containing
58	constructor data, or an application may add a section (using
59	<<bfd_make_section>>) to the sections attached to an already open
60	BFD. For example, the linker creates an extra section
61	<<COMMON>> for each input file's BFD to hold information about
62	common storage.
63
64	The raw data is not necessarily read in when
65	the section descriptor is created. Some targets may leave the
66	data in place until a <<bfd_get_section_contents>> call is
67	made. Other back ends may read in all the data at once.  For
68	example, an S-record file has to be read once to determine the
69	size of the data. An IEEE-695 file doesn't contain raw data in
70	sections, but data and relocation expressions intermixed, so
71	the data area has to be parsed to get out the data and
72	relocations.
73
74INODE
75Section Output, typedef asection, Section Input, Sections
76
77SUBSECTION
78	Section output
79
80	To write a new object style BFD, the various sections to be
81	written have to be created. They are attached to the BFD in
82	the same way as input sections; data is written to the
83	sections using <<bfd_set_section_contents>>.
84
85	Any program that creates or combines sections (e.g., the assembler
86	and linker) must use the <<asection>> fields <<output_section>> and
87	<<output_offset>> to indicate the file sections to which each
88	section must be written.  (If the section is being created from
89	scratch, <<output_section>> should probably point to the section
90	itself and <<output_offset>> should probably be zero.)
91
92	The data to be written comes from input sections attached
93	(via <<output_section>> pointers) to
94	the output sections.  The output section structure can be
95	considered a filter for the input section: the output section
96	determines the vma of the output data and the name, but the
97	input section determines the offset into the output section of
98	the data to be written.
99
100	E.g., to create a section "O", starting at 0x100, 0x123 long,
101	containing two subsections, "A" at offset 0x0 (i.e., at vma
102	0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
103	structures would look like:
104
105|   section name          "A"
106|     output_offset   0x00
107|     size            0x20
108|     output_section ----------->  section name    "O"
109|                             |    vma             0x100
110|   section name          "B" |    size            0x123
111|     output_offset   0x20    |
112|     size            0x103   |
113|     output_section  --------|
114
115SUBSECTION
116	Link orders
117
118	The data within a section is stored in a @dfn{link_order}.
119	These are much like the fixups in <<gas>>.  The link_order
120	abstraction allows a section to grow and shrink within itself.
121
122	A link_order knows how big it is, and which is the next
123	link_order and where the raw data for it is; it also points to
124	a list of relocations which apply to it.
125
126	The link_order is used by the linker to perform relaxing on
127	final code.  The compiler creates code which is as big as
128	necessary to make it work without relaxing, and the user can
129	select whether to relax.  Sometimes relaxing takes a lot of
130	time.  The linker runs around the relocations to see if any
131	are attached to data which can be shrunk, if so it does it on
132	a link_order by link_order basis.
133
134*/
135
136#include "sysdep.h"
137#include "bfd.h"
138#include "libbfd.h"
139#include "bfdlink.h"
140
141/*
142DOCDD
143INODE
144typedef asection, section prototypes, Section Output, Sections
145SUBSECTION
146	typedef asection
147
148	Here is the section structure:
149
150CODE_FRAGMENT
151.
152.typedef struct bfd_section
153.{
154.  {* The name of the section; the name isn't a copy, the pointer is
155.     the same as that passed to bfd_make_section.  *}
156.  const char *name;
157.
158.  {* A unique sequence number.  *}
159.  int id;
160.
161.  {* Which section in the bfd; 0..n-1 as sections are created in a bfd.  *}
162.  int index;
163.
164.  {* The next section in the list belonging to the BFD, or NULL.  *}
165.  struct bfd_section *next;
166.
167.  {* The previous section in the list belonging to the BFD, or NULL.  *}
168.  struct bfd_section *prev;
169.
170.  {* The field flags contains attributes of the section. Some
171.     flags are read in from the object file, and some are
172.     synthesized from other information.  *}
173.  flagword flags;
174.
175.#define SEC_NO_FLAGS   0x000
176.
177.  {* Tells the OS to allocate space for this section when loading.
178.     This is clear for a section containing debug information only.  *}
179.#define SEC_ALLOC      0x001
180.
181.  {* Tells the OS to load the section from the file when loading.
182.     This is clear for a .bss section.  *}
183.#define SEC_LOAD       0x002
184.
185.  {* The section contains data still to be relocated, so there is
186.     some relocation information too.  *}
187.#define SEC_RELOC      0x004
188.
189.  {* A signal to the OS that the section contains read only data.  *}
190.#define SEC_READONLY   0x008
191.
192.  {* The section contains code only.  *}
193.#define SEC_CODE       0x010
194.
195.  {* The section contains data only.  *}
196.#define SEC_DATA       0x020
197.
198.  {* The section will reside in ROM.  *}
199.#define SEC_ROM        0x040
200.
201.  {* The section contains constructor information. This section
202.     type is used by the linker to create lists of constructors and
203.     destructors used by <<g++>>. When a back end sees a symbol
204.     which should be used in a constructor list, it creates a new
205.     section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
206.     the symbol to it, and builds a relocation. To build the lists
207.     of constructors, all the linker has to do is catenate all the
208.     sections called <<__CTOR_LIST__>> and relocate the data
209.     contained within - exactly the operations it would peform on
210.     standard data.  *}
211.#define SEC_CONSTRUCTOR 0x080
212.
213.  {* The section has contents - a data section could be
214.     <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
215.     <<SEC_HAS_CONTENTS>>  *}
216.#define SEC_HAS_CONTENTS 0x100
217.
218.  {* An instruction to the linker to not output the section
219.     even if it has information which would normally be written.  *}
220.#define SEC_NEVER_LOAD 0x200
221.
222.  {* The section contains thread local data.  *}
223.#define SEC_THREAD_LOCAL 0x400
224.
225.  {* The section has GOT references.  This flag is only for the
226.     linker, and is currently only used by the elf32-hppa back end.
227.     It will be set if global offset table references were detected
228.     in this section, which indicate to the linker that the section
229.     contains PIC code, and must be handled specially when doing a
230.     static link.  *}
231.#define SEC_HAS_GOT_REF 0x800
232.
233.  {* The section contains common symbols (symbols may be defined
234.     multiple times, the value of a symbol is the amount of
235.     space it requires, and the largest symbol value is the one
236.     used).  Most targets have exactly one of these (which we
237.     translate to bfd_com_section_ptr), but ECOFF has two.  *}
238.#define SEC_IS_COMMON 0x1000
239.
240.  {* The section contains only debugging information.  For
241.     example, this is set for ELF .debug and .stab sections.
242.     strip tests this flag to see if a section can be
243.     discarded.  *}
244.#define SEC_DEBUGGING 0x2000
245.
246.  {* The contents of this section are held in memory pointed to
247.     by the contents field.  This is checked by bfd_get_section_contents,
248.     and the data is retrieved from memory if appropriate.  *}
249.#define SEC_IN_MEMORY 0x4000
250.
251.  {* The contents of this section are to be excluded by the
252.     linker for executable and shared objects unless those
253.     objects are to be further relocated.  *}
254.#define SEC_EXCLUDE 0x8000
255.
256.  {* The contents of this section are to be sorted based on the sum of
257.     the symbol and addend values specified by the associated relocation
258.     entries.  Entries without associated relocation entries will be
259.     appended to the end of the section in an unspecified order.  *}
260.#define SEC_SORT_ENTRIES 0x10000
261.
262.  {* When linking, duplicate sections of the same name should be
263.     discarded, rather than being combined into a single section as
264.     is usually done.  This is similar to how common symbols are
265.     handled.  See SEC_LINK_DUPLICATES below.  *}
266.#define SEC_LINK_ONCE 0x20000
267.
268.  {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
269.     should handle duplicate sections.  *}
270.#define SEC_LINK_DUPLICATES 0x40000
271.
272.  {* This value for SEC_LINK_DUPLICATES means that duplicate
273.     sections with the same name should simply be discarded.  *}
274.#define SEC_LINK_DUPLICATES_DISCARD 0x0
275.
276.  {* This value for SEC_LINK_DUPLICATES means that the linker
277.     should warn if there are any duplicate sections, although
278.     it should still only link one copy.  *}
279.#define SEC_LINK_DUPLICATES_ONE_ONLY 0x80000
280.
281.  {* This value for SEC_LINK_DUPLICATES means that the linker
282.     should warn if any duplicate sections are a different size.  *}
283.#define SEC_LINK_DUPLICATES_SAME_SIZE 0x100000
284.
285.  {* This value for SEC_LINK_DUPLICATES means that the linker
286.     should warn if any duplicate sections contain different
287.     contents.  *}
288.#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
289.  (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
290.
291.  {* This section was created by the linker as part of dynamic
292.     relocation or other arcane processing.  It is skipped when
293.     going through the first-pass output, trusting that someone
294.     else up the line will take care of it later.  *}
295.#define SEC_LINKER_CREATED 0x200000
296.
297.  {* This section should not be subject to garbage collection.
298.     Also set to inform the linker that this section should not be
299.     listed in the link map as discarded.  *}
300.#define SEC_KEEP 0x400000
301.
302.  {* This section contains "short" data, and should be placed
303.     "near" the GP.  *}
304.#define SEC_SMALL_DATA 0x800000
305.
306.  {* Attempt to merge identical entities in the section.
307.     Entity size is given in the entsize field.  *}
308.#define SEC_MERGE 0x1000000
309.
310.  {* If given with SEC_MERGE, entities to merge are zero terminated
311.     strings where entsize specifies character size instead of fixed
312.     size entries.  *}
313.#define SEC_STRINGS 0x2000000
314.
315.  {* This section contains data about section groups.  *}
316.#define SEC_GROUP 0x4000000
317.
318.  {* The section is a COFF shared library section.  This flag is
319.     only for the linker.  If this type of section appears in
320.     the input file, the linker must copy it to the output file
321.     without changing the vma or size.  FIXME: Although this
322.     was originally intended to be general, it really is COFF
323.     specific (and the flag was renamed to indicate this).  It
324.     might be cleaner to have some more general mechanism to
325.     allow the back end to control what the linker does with
326.     sections.  *}
327.#define SEC_COFF_SHARED_LIBRARY 0x10000000
328.
329.  {* This section contains data which may be shared with other
330.     executables or shared objects. This is for COFF only.  *}
331.#define SEC_COFF_SHARED 0x20000000
332.
333.  {* When a section with this flag is being linked, then if the size of
334.     the input section is less than a page, it should not cross a page
335.     boundary.  If the size of the input section is one page or more,
336.     it should be aligned on a page boundary.  This is for TI
337.     TMS320C54X only.  *}
338.#define SEC_TIC54X_BLOCK 0x40000000
339.
340.  {* Conditionally link this section; do not link if there are no
341.     references found to any symbol in the section.  This is for TI
342.     TMS320C54X only.  *}
343.#define SEC_TIC54X_CLINK 0x80000000
344.
345.  {*  End of section flags.  *}
346.
347.  {* Some internal packed boolean fields.  *}
348.
349.  {* See the vma field.  *}
350.  unsigned int user_set_vma : 1;
351.
352.  {* A mark flag used by some of the linker backends.  *}
353.  unsigned int linker_mark : 1;
354.
355.  {* Another mark flag used by some of the linker backends.  Set for
356.     output sections that have an input section.  *}
357.  unsigned int linker_has_input : 1;
358.
359.  {* Mark flags used by some linker backends for garbage collection.  *}
360.  unsigned int gc_mark : 1;
361.  unsigned int gc_mark_from_eh : 1;
362.
363.  {* The following flags are used by the ELF linker. *}
364.
365.  {* Mark sections which have been allocated to segments.  *}
366.  unsigned int segment_mark : 1;
367.
368.  {* Type of sec_info information.  *}
369.  unsigned int sec_info_type:3;
370.#define ELF_INFO_TYPE_NONE      0
371.#define ELF_INFO_TYPE_STABS     1
372.#define ELF_INFO_TYPE_MERGE     2
373.#define ELF_INFO_TYPE_EH_FRAME  3
374.#define ELF_INFO_TYPE_JUST_SYMS 4
375.
376.  {* Nonzero if this section uses RELA relocations, rather than REL.  *}
377.  unsigned int use_rela_p:1;
378.
379.  {* Bits used by various backends.  The generic code doesn't touch
380.     these fields.  *}
381.
382.  {* Nonzero if this section has TLS related relocations.  *}
383.  unsigned int has_tls_reloc:1;
384.
385.  {* Nonzero if this section has a call to __tls_get_addr.  *}
386.  unsigned int has_tls_get_addr_call:1;
387.
388.  {* Nonzero if this section has a gp reloc.  *}
389.  unsigned int has_gp_reloc:1;
390.
391.  {* Nonzero if this section needs the relax finalize pass.  *}
392.  unsigned int need_finalize_relax:1;
393.
394.  {* Whether relocations have been processed.  *}
395.  unsigned int reloc_done : 1;
396.
397.  {* End of internal packed boolean fields.  *}
398.
399.  {*  The virtual memory address of the section - where it will be
400.      at run time.  The symbols are relocated against this.  The
401.      user_set_vma flag is maintained by bfd; if it's not set, the
402.      backend can assign addresses (for example, in <<a.out>>, where
403.      the default address for <<.data>> is dependent on the specific
404.      target and various flags).  *}
405.  bfd_vma vma;
406.
407.  {*  The load address of the section - where it would be in a
408.      rom image; really only used for writing section header
409.      information.  *}
410.  bfd_vma lma;
411.
412.  {* The size of the section in octets, as it will be output.
413.     Contains a value even if the section has no contents (e.g., the
414.     size of <<.bss>>).  *}
415.  bfd_size_type size;
416.
417.  {* For input sections, the original size on disk of the section, in
418.     octets.  This field is used by the linker relaxation code.  It is
419.     currently only set for sections where the linker relaxation scheme
420.     doesn't cache altered section and reloc contents (stabs, eh_frame,
421.     SEC_MERGE, some coff relaxing targets), and thus the original size
422.     needs to be kept to read the section multiple times.
423.     For output sections, rawsize holds the section size calculated on
424.     a previous linker relaxation pass.  *}
425.  bfd_size_type rawsize;
426.
427.  {* If this section is going to be output, then this value is the
428.     offset in *bytes* into the output section of the first byte in the
429.     input section (byte ==> smallest addressable unit on the
430.     target).  In most cases, if this was going to start at the
431.     100th octet (8-bit quantity) in the output section, this value
432.     would be 100.  However, if the target byte size is 16 bits
433.     (bfd_octets_per_byte is "2"), this value would be 50.  *}
434.  bfd_vma output_offset;
435.
436.  {* The output section through which to map on output.  *}
437.  struct bfd_section *output_section;
438.
439.  {* The alignment requirement of the section, as an exponent of 2 -
440.     e.g., 3 aligns to 2^3 (or 8).  *}
441.  unsigned int alignment_power;
442.
443.  {* If an input section, a pointer to a vector of relocation
444.     records for the data in this section.  *}
445.  struct reloc_cache_entry *relocation;
446.
447.  {* If an output section, a pointer to a vector of pointers to
448.     relocation records for the data in this section.  *}
449.  struct reloc_cache_entry **orelocation;
450.
451.  {* The number of relocation records in one of the above.  *}
452.  unsigned reloc_count;
453.
454.  {* Information below is back end specific - and not always used
455.     or updated.  *}
456.
457.  {* File position of section data.  *}
458.  file_ptr filepos;
459.
460.  {* File position of relocation info.  *}
461.  file_ptr rel_filepos;
462.
463.  {* File position of line data.  *}
464.  file_ptr line_filepos;
465.
466.  {* Pointer to data for applications.  *}
467.  void *userdata;
468.
469.  {* If the SEC_IN_MEMORY flag is set, this points to the actual
470.     contents.  *}
471.  unsigned char *contents;
472.
473.  {* Attached line number information.  *}
474.  alent *lineno;
475.
476.  {* Number of line number records.  *}
477.  unsigned int lineno_count;
478.
479.  {* Entity size for merging purposes.  *}
480.  unsigned int entsize;
481.
482.  {* Points to the kept section if this section is a link-once section,
483.     and is discarded.  *}
484.  struct bfd_section *kept_section;
485.
486.  {* When a section is being output, this value changes as more
487.     linenumbers are written out.  *}
488.  file_ptr moving_line_filepos;
489.
490.  {* What the section number is in the target world.  *}
491.  int target_index;
492.
493.  void *used_by_bfd;
494.
495.  {* If this is a constructor section then here is a list of the
496.     relocations created to relocate items within it.  *}
497.  struct relent_chain *constructor_chain;
498.
499.  {* The BFD which owns the section.  *}
500.  bfd *owner;
501.
502.  {* A symbol which points at this section only.  *}
503.  struct bfd_symbol *symbol;
504.  struct bfd_symbol **symbol_ptr_ptr;
505.
506.  {* Early in the link process, map_head and map_tail are used to build
507.     a list of input sections attached to an output section.  Later,
508.     output sections use these fields for a list of bfd_link_order
509.     structs.  *}
510.  union {
511.    struct bfd_link_order *link_order;
512.    struct bfd_section *s;
513.  } map_head, map_tail;
514.} asection;
515.
516.{* These sections are global, and are managed by BFD.  The application
517.   and target back end are not permitted to change the values in
518.   these sections.  New code should use the section_ptr macros rather
519.   than referring directly to the const sections.  The const sections
520.   may eventually vanish.  *}
521.#define BFD_ABS_SECTION_NAME "*ABS*"
522.#define BFD_UND_SECTION_NAME "*UND*"
523.#define BFD_COM_SECTION_NAME "*COM*"
524.#define BFD_IND_SECTION_NAME "*IND*"
525.
526.{* The absolute section.  *}
527.extern asection bfd_abs_section;
528.#define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
529.#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
530.{* Pointer to the undefined section.  *}
531.extern asection bfd_und_section;
532.#define bfd_und_section_ptr ((asection *) &bfd_und_section)
533.#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
534.{* Pointer to the common section.  *}
535.extern asection bfd_com_section;
536.#define bfd_com_section_ptr ((asection *) &bfd_com_section)
537.{* Pointer to the indirect section.  *}
538.extern asection bfd_ind_section;
539.#define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
540.#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
541.
542.#define bfd_is_const_section(SEC)		\
543. (   ((SEC) == bfd_abs_section_ptr)		\
544.  || ((SEC) == bfd_und_section_ptr)		\
545.  || ((SEC) == bfd_com_section_ptr)		\
546.  || ((SEC) == bfd_ind_section_ptr))
547.
548.{* Macros to handle insertion and deletion of a bfd's sections.  These
549.   only handle the list pointers, ie. do not adjust section_count,
550.   target_index etc.  *}
551.#define bfd_section_list_remove(ABFD, S) \
552.  do							\
553.    {							\
554.      asection *_s = S;				\
555.      asection *_next = _s->next;			\
556.      asection *_prev = _s->prev;			\
557.      if (_prev)					\
558.        _prev->next = _next;				\
559.      else						\
560.        (ABFD)->sections = _next;			\
561.      if (_next)					\
562.        _next->prev = _prev;				\
563.      else						\
564.        (ABFD)->section_last = _prev;			\
565.    }							\
566.  while (0)
567.#define bfd_section_list_append(ABFD, S) \
568.  do							\
569.    {							\
570.      asection *_s = S;				\
571.      bfd *_abfd = ABFD;				\
572.      _s->next = NULL;					\
573.      if (_abfd->section_last)				\
574.        {						\
575.          _s->prev = _abfd->section_last;		\
576.          _abfd->section_last->next = _s;		\
577.        }						\
578.      else						\
579.        {						\
580.          _s->prev = NULL;				\
581.          _abfd->sections = _s;			\
582.        }						\
583.      _abfd->section_last = _s;			\
584.    }							\
585.  while (0)
586.#define bfd_section_list_prepend(ABFD, S) \
587.  do							\
588.    {							\
589.      asection *_s = S;				\
590.      bfd *_abfd = ABFD;				\
591.      _s->prev = NULL;					\
592.      if (_abfd->sections)				\
593.        {						\
594.          _s->next = _abfd->sections;			\
595.          _abfd->sections->prev = _s;			\
596.        }						\
597.      else						\
598.        {						\
599.          _s->next = NULL;				\
600.          _abfd->section_last = _s;			\
601.        }						\
602.      _abfd->sections = _s;				\
603.    }							\
604.  while (0)
605.#define bfd_section_list_insert_after(ABFD, A, S) \
606.  do							\
607.    {							\
608.      asection *_a = A;				\
609.      asection *_s = S;				\
610.      asection *_next = _a->next;			\
611.      _s->next = _next;				\
612.      _s->prev = _a;					\
613.      _a->next = _s;					\
614.      if (_next)					\
615.        _next->prev = _s;				\
616.      else						\
617.        (ABFD)->section_last = _s;			\
618.    }							\
619.  while (0)
620.#define bfd_section_list_insert_before(ABFD, B, S) \
621.  do							\
622.    {							\
623.      asection *_b = B;				\
624.      asection *_s = S;				\
625.      asection *_prev = _b->prev;			\
626.      _s->prev = _prev;				\
627.      _s->next = _b;					\
628.      _b->prev = _s;					\
629.      if (_prev)					\
630.        _prev->next = _s;				\
631.      else						\
632.        (ABFD)->sections = _s;				\
633.    }							\
634.  while (0)
635.#define bfd_section_removed_from_list(ABFD, S) \
636.  ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
637.
638.#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX)			\
639.  {* name, id,  index, next, prev, flags, user_set_vma,            *}	\
640.  { NAME,  IDX, 0,     NULL, NULL, FLAGS, 0,				\
641.									\
642.  {* linker_mark, linker_has_input, gc_mark, gc_mark_from_eh,      *}	\
643.     0,           0,                1,       0,			\
644.									\
645.  {* segment_mark, sec_info_type, use_rela_p, has_tls_reloc,       *}	\
646.     0,            0,             0,          0,			\
647.									\
648.  {* has_tls_get_addr_call, has_gp_reloc, need_finalize_relax,     *}	\
649.     0,                     0,            0,				\
650.									\
651.  {* reloc_done, vma, lma, size, rawsize                           *}	\
652.     0,          0,   0,   0,    0,					\
653.									\
654.  {* output_offset, output_section,              alignment_power,  *}	\
655.     0,             (struct bfd_section *) &SEC, 0,			\
656.									\
657.  {* relocation, orelocation, reloc_count, filepos, rel_filepos,   *}	\
658.     NULL,       NULL,        0,           0,       0,			\
659.									\
660.  {* line_filepos, userdata, contents, lineno, lineno_count,       *}	\
661.     0,            NULL,     NULL,     NULL,   0,			\
662.									\
663.  {* entsize, kept_section, moving_line_filepos,		     *}	\
664.     0,       NULL,	      0,					\
665.									\
666.  {* target_index, used_by_bfd, constructor_chain, owner,          *}	\
667.     0,            NULL,        NULL,              NULL,		\
668.									\
669.  {* symbol,                    symbol_ptr_ptr,                    *}	\
670.     (struct bfd_symbol *) SYM, &SEC.symbol,				\
671.									\
672.  {* map_head, map_tail                                            *}	\
673.     { NULL }, { NULL }						\
674.    }
675.
676*/
677
678/* We use a macro to initialize the static asymbol structures because
679   traditional C does not permit us to initialize a union member while
680   gcc warns if we don't initialize it.  */
681 /* the_bfd, name, value, attr, section [, udata] */
682#ifdef __STDC__
683#define GLOBAL_SYM_INIT(NAME, SECTION) \
684  { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION, { 0 }}
685#else
686#define GLOBAL_SYM_INIT(NAME, SECTION) \
687  { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION }
688#endif
689
690/* These symbols are global, not specific to any BFD.  Therefore, anything
691   that tries to change them is broken, and should be repaired.  */
692
693static const asymbol global_syms[] =
694{
695  GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, &bfd_com_section),
696  GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, &bfd_und_section),
697  GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, &bfd_abs_section),
698  GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, &bfd_ind_section)
699};
700
701#define STD_SECTION(SEC, FLAGS, NAME, IDX)				\
702  asection SEC = BFD_FAKE_SECTION(SEC, FLAGS, &global_syms[IDX],	\
703				  NAME, IDX)
704
705STD_SECTION (bfd_com_section, SEC_IS_COMMON, BFD_COM_SECTION_NAME, 0);
706STD_SECTION (bfd_und_section, 0, BFD_UND_SECTION_NAME, 1);
707STD_SECTION (bfd_abs_section, 0, BFD_ABS_SECTION_NAME, 2);
708STD_SECTION (bfd_ind_section, 0, BFD_IND_SECTION_NAME, 3);
709#undef STD_SECTION
710
711/* Initialize an entry in the section hash table.  */
712
713struct bfd_hash_entry *
714bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
715			  struct bfd_hash_table *table,
716			  const char *string)
717{
718  /* Allocate the structure if it has not already been allocated by a
719     subclass.  */
720  if (entry == NULL)
721    {
722      entry = (struct bfd_hash_entry *)
723	bfd_hash_allocate (table, sizeof (struct section_hash_entry));
724      if (entry == NULL)
725	return entry;
726    }
727
728  /* Call the allocation method of the superclass.  */
729  entry = bfd_hash_newfunc (entry, table, string);
730  if (entry != NULL)
731    memset (&((struct section_hash_entry *) entry)->section, 0,
732	    sizeof (asection));
733
734  return entry;
735}
736
737#define section_hash_lookup(table, string, create, copy) \
738  ((struct section_hash_entry *) \
739   bfd_hash_lookup ((table), (string), (create), (copy)))
740
741/* Create a symbol whose only job is to point to this section.  This
742   is useful for things like relocs which are relative to the base
743   of a section.  */
744
745bfd_boolean
746_bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
747{
748  newsect->symbol = bfd_make_empty_symbol (abfd);
749  if (newsect->symbol == NULL)
750    return FALSE;
751
752  newsect->symbol->name = newsect->name;
753  newsect->symbol->value = 0;
754  newsect->symbol->section = newsect;
755  newsect->symbol->flags = BSF_SECTION_SYM;
756
757  newsect->symbol_ptr_ptr = &newsect->symbol;
758  return TRUE;
759}
760
761/* Initializes a new section.  NEWSECT->NAME is already set.  */
762
763static asection *
764bfd_section_init (bfd *abfd, asection *newsect)
765{
766  static int section_id = 0x10;  /* id 0 to 3 used by STD_SECTION.  */
767
768  newsect->id = section_id;
769  newsect->index = abfd->section_count;
770  newsect->owner = abfd;
771
772  if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
773    return NULL;
774
775  section_id++;
776  abfd->section_count++;
777  bfd_section_list_append (abfd, newsect);
778  return newsect;
779}
780
781/*
782DOCDD
783INODE
784section prototypes,  , typedef asection, Sections
785SUBSECTION
786	Section prototypes
787
788These are the functions exported by the section handling part of BFD.
789*/
790
791/*
792FUNCTION
793	bfd_section_list_clear
794
795SYNOPSIS
796	void bfd_section_list_clear (bfd *);
797
798DESCRIPTION
799	Clears the section list, and also resets the section count and
800	hash table entries.
801*/
802
803void
804bfd_section_list_clear (bfd *abfd)
805{
806  abfd->sections = NULL;
807  abfd->section_last = NULL;
808  abfd->section_count = 0;
809  memset (abfd->section_htab.table, 0,
810	  abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
811}
812
813/*
814FUNCTION
815	bfd_get_section_by_name
816
817SYNOPSIS
818	asection *bfd_get_section_by_name (bfd *abfd, const char *name);
819
820DESCRIPTION
821	Run through @var{abfd} and return the one of the
822	<<asection>>s whose name matches @var{name}, otherwise <<NULL>>.
823	@xref{Sections}, for more information.
824
825	This should only be used in special cases; the normal way to process
826	all sections of a given name is to use <<bfd_map_over_sections>> and
827	<<strcmp>> on the name (or better yet, base it on the section flags
828	or something else) for each section.
829*/
830
831asection *
832bfd_get_section_by_name (bfd *abfd, const char *name)
833{
834  struct section_hash_entry *sh;
835
836  sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
837  if (sh != NULL)
838    return &sh->section;
839
840  return NULL;
841}
842
843/*
844FUNCTION
845	bfd_get_section_by_name_if
846
847SYNOPSIS
848	asection *bfd_get_section_by_name_if
849	  (bfd *abfd,
850	   const char *name,
851	   bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
852	   void *obj);
853
854DESCRIPTION
855	Call the provided function @var{func} for each section
856	attached to the BFD @var{abfd} whose name matches @var{name},
857	passing @var{obj} as an argument. The function will be called
858	as if by
859
860|	func (abfd, the_section, obj);
861
862	It returns the first section for which @var{func} returns true,
863	otherwise <<NULL>>.
864
865*/
866
867asection *
868bfd_get_section_by_name_if (bfd *abfd, const char *name,
869			    bfd_boolean (*operation) (bfd *,
870						      asection *,
871						      void *),
872			    void *user_storage)
873{
874  struct section_hash_entry *sh;
875  unsigned long hash;
876
877  sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
878  if (sh == NULL)
879    return NULL;
880
881  hash = sh->root.hash;
882  do
883    {
884      if ((*operation) (abfd, &sh->section, user_storage))
885	return &sh->section;
886      sh = (struct section_hash_entry *) sh->root.next;
887    }
888  while (sh != NULL && sh->root.hash == hash
889	 && strcmp (sh->root.string, name) == 0);
890
891  return NULL;
892}
893
894/*
895FUNCTION
896	bfd_get_unique_section_name
897
898SYNOPSIS
899	char *bfd_get_unique_section_name
900	  (bfd *abfd, const char *templat, int *count);
901
902DESCRIPTION
903	Invent a section name that is unique in @var{abfd} by tacking
904	a dot and a digit suffix onto the original @var{templat}.  If
905	@var{count} is non-NULL, then it specifies the first number
906	tried as a suffix to generate a unique name.  The value
907	pointed to by @var{count} will be incremented in this case.
908*/
909
910char *
911bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
912{
913  int num;
914  unsigned int len;
915  char *sname;
916
917  len = strlen (templat);
918  sname = bfd_malloc (len + 8);
919  if (sname == NULL)
920    return NULL;
921  memcpy (sname, templat, len);
922  num = 1;
923  if (count != NULL)
924    num = *count;
925
926  do
927    {
928      /* If we have a million sections, something is badly wrong.  */
929      if (num > 999999)
930	abort ();
931      sprintf (sname + len, ".%d", num++);
932    }
933  while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
934
935  if (count != NULL)
936    *count = num;
937  return sname;
938}
939
940/*
941FUNCTION
942	bfd_make_section_old_way
943
944SYNOPSIS
945	asection *bfd_make_section_old_way (bfd *abfd, const char *name);
946
947DESCRIPTION
948	Create a new empty section called @var{name}
949	and attach it to the end of the chain of sections for the
950	BFD @var{abfd}. An attempt to create a section with a name which
951	is already in use returns its pointer without changing the
952	section chain.
953
954	It has the funny name since this is the way it used to be
955	before it was rewritten....
956
957	Possible errors are:
958	o <<bfd_error_invalid_operation>> -
959	If output has already started for this BFD.
960	o <<bfd_error_no_memory>> -
961	If memory allocation fails.
962
963*/
964
965asection *
966bfd_make_section_old_way (bfd *abfd, const char *name)
967{
968  asection *newsect;
969
970  if (abfd->output_has_begun)
971    {
972      bfd_set_error (bfd_error_invalid_operation);
973      return NULL;
974    }
975
976  if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
977    newsect = bfd_abs_section_ptr;
978  else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
979    newsect = bfd_com_section_ptr;
980  else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
981    newsect = bfd_und_section_ptr;
982  else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
983    newsect = bfd_ind_section_ptr;
984  else
985    {
986      struct section_hash_entry *sh;
987
988      sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
989      if (sh == NULL)
990	return NULL;
991
992      newsect = &sh->section;
993      if (newsect->name != NULL)
994	{
995	  /* Section already exists.  */
996	  return newsect;
997	}
998
999      newsect->name = name;
1000      return bfd_section_init (abfd, newsect);
1001    }
1002
1003  /* Call new_section_hook when "creating" the standard abs, com, und
1004     and ind sections to tack on format specific section data.
1005     Also, create a proper section symbol.  */
1006  if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1007    return NULL;
1008  return newsect;
1009}
1010
1011/*
1012FUNCTION
1013	bfd_make_section_anyway_with_flags
1014
1015SYNOPSIS
1016	asection *bfd_make_section_anyway_with_flags
1017	  (bfd *abfd, const char *name, flagword flags);
1018
1019DESCRIPTION
1020   Create a new empty section called @var{name} and attach it to the end of
1021   the chain of sections for @var{abfd}.  Create a new section even if there
1022   is already a section with that name.  Also set the attributes of the
1023   new section to the value @var{flags}.
1024
1025   Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1026   o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1027   o <<bfd_error_no_memory>> - If memory allocation fails.
1028*/
1029
1030sec_ptr
1031bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1032				    flagword flags)
1033{
1034  struct section_hash_entry *sh;
1035  asection *newsect;
1036
1037  if (abfd->output_has_begun)
1038    {
1039      bfd_set_error (bfd_error_invalid_operation);
1040      return NULL;
1041    }
1042
1043  sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1044  if (sh == NULL)
1045    return NULL;
1046
1047  newsect = &sh->section;
1048  if (newsect->name != NULL)
1049    {
1050      /* We are making a section of the same name.  Put it in the
1051	 section hash table.  Even though we can't find it directly by a
1052	 hash lookup, we'll be able to find the section by traversing
1053	 sh->root.next quicker than looking at all the bfd sections.  */
1054      struct section_hash_entry *new_sh;
1055      new_sh = (struct section_hash_entry *)
1056	bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1057      if (new_sh == NULL)
1058	return NULL;
1059
1060      new_sh->root = sh->root;
1061      sh->root.next = &new_sh->root;
1062      newsect = &new_sh->section;
1063    }
1064
1065  newsect->flags = flags;
1066  newsect->name = name;
1067  return bfd_section_init (abfd, newsect);
1068}
1069
1070/*
1071FUNCTION
1072	bfd_make_section_anyway
1073
1074SYNOPSIS
1075	asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1076
1077DESCRIPTION
1078   Create a new empty section called @var{name} and attach it to the end of
1079   the chain of sections for @var{abfd}.  Create a new section even if there
1080   is already a section with that name.
1081
1082   Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1083   o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1084   o <<bfd_error_no_memory>> - If memory allocation fails.
1085*/
1086
1087sec_ptr
1088bfd_make_section_anyway (bfd *abfd, const char *name)
1089{
1090  return bfd_make_section_anyway_with_flags (abfd, name, 0);
1091}
1092
1093/*
1094FUNCTION
1095	bfd_make_section_with_flags
1096
1097SYNOPSIS
1098	asection *bfd_make_section_with_flags
1099	  (bfd *, const char *name, flagword flags);
1100
1101DESCRIPTION
1102   Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1103   bfd_set_error ()) without changing the section chain if there is already a
1104   section named @var{name}.  Also set the attributes of the new section to
1105   the value @var{flags}.  If there is an error, return <<NULL>> and set
1106   <<bfd_error>>.
1107*/
1108
1109asection *
1110bfd_make_section_with_flags (bfd *abfd, const char *name,
1111			     flagword flags)
1112{
1113  struct section_hash_entry *sh;
1114  asection *newsect;
1115
1116  if (abfd->output_has_begun)
1117    {
1118      bfd_set_error (bfd_error_invalid_operation);
1119      return NULL;
1120    }
1121
1122  if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1123      || strcmp (name, BFD_COM_SECTION_NAME) == 0
1124      || strcmp (name, BFD_UND_SECTION_NAME) == 0
1125      || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1126    return NULL;
1127
1128  sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1129  if (sh == NULL)
1130    return NULL;
1131
1132  newsect = &sh->section;
1133  if (newsect->name != NULL)
1134    {
1135      /* Section already exists.  */
1136      return NULL;
1137    }
1138
1139  newsect->name = name;
1140  newsect->flags = flags;
1141  return bfd_section_init (abfd, newsect);
1142}
1143
1144/*
1145FUNCTION
1146	bfd_make_section
1147
1148SYNOPSIS
1149	asection *bfd_make_section (bfd *, const char *name);
1150
1151DESCRIPTION
1152   Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1153   bfd_set_error ()) without changing the section chain if there is already a
1154   section named @var{name}.  If there is an error, return <<NULL>> and set
1155   <<bfd_error>>.
1156*/
1157
1158asection *
1159bfd_make_section (bfd *abfd, const char *name)
1160{
1161  return bfd_make_section_with_flags (abfd, name, 0);
1162}
1163
1164/*
1165FUNCTION
1166	bfd_set_section_flags
1167
1168SYNOPSIS
1169	bfd_boolean bfd_set_section_flags
1170	  (bfd *abfd, asection *sec, flagword flags);
1171
1172DESCRIPTION
1173	Set the attributes of the section @var{sec} in the BFD
1174	@var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1175	<<FALSE>> on error. Possible error returns are:
1176
1177	o <<bfd_error_invalid_operation>> -
1178	The section cannot have one or more of the attributes
1179	requested. For example, a .bss section in <<a.out>> may not
1180	have the <<SEC_HAS_CONTENTS>> field set.
1181
1182*/
1183
1184bfd_boolean
1185bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1186		       sec_ptr section,
1187		       flagword flags)
1188{
1189  section->flags = flags;
1190  return TRUE;
1191}
1192
1193/*
1194FUNCTION
1195	bfd_map_over_sections
1196
1197SYNOPSIS
1198	void bfd_map_over_sections
1199	  (bfd *abfd,
1200	   void (*func) (bfd *abfd, asection *sect, void *obj),
1201	   void *obj);
1202
1203DESCRIPTION
1204	Call the provided function @var{func} for each section
1205	attached to the BFD @var{abfd}, passing @var{obj} as an
1206	argument. The function will be called as if by
1207
1208|	func (abfd, the_section, obj);
1209
1210	This is the preferred method for iterating over sections; an
1211	alternative would be to use a loop:
1212
1213|	   section *p;
1214|	   for (p = abfd->sections; p != NULL; p = p->next)
1215|	      func (abfd, p, ...)
1216
1217*/
1218
1219void
1220bfd_map_over_sections (bfd *abfd,
1221		       void (*operation) (bfd *, asection *, void *),
1222		       void *user_storage)
1223{
1224  asection *sect;
1225  unsigned int i = 0;
1226
1227  for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1228    (*operation) (abfd, sect, user_storage);
1229
1230  if (i != abfd->section_count)	/* Debugging */
1231    abort ();
1232}
1233
1234/*
1235FUNCTION
1236	bfd_sections_find_if
1237
1238SYNOPSIS
1239	asection *bfd_sections_find_if
1240	  (bfd *abfd,
1241	   bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1242	   void *obj);
1243
1244DESCRIPTION
1245	Call the provided function @var{operation} for each section
1246	attached to the BFD @var{abfd}, passing @var{obj} as an
1247	argument. The function will be called as if by
1248
1249|	operation (abfd, the_section, obj);
1250
1251	It returns the first section for which @var{operation} returns true.
1252
1253*/
1254
1255asection *
1256bfd_sections_find_if (bfd *abfd,
1257		      bfd_boolean (*operation) (bfd *, asection *, void *),
1258		      void *user_storage)
1259{
1260  asection *sect;
1261
1262  for (sect = abfd->sections; sect != NULL; sect = sect->next)
1263    if ((*operation) (abfd, sect, user_storage))
1264      break;
1265
1266  return sect;
1267}
1268
1269/*
1270FUNCTION
1271	bfd_set_section_size
1272
1273SYNOPSIS
1274	bfd_boolean bfd_set_section_size
1275	  (bfd *abfd, asection *sec, bfd_size_type val);
1276
1277DESCRIPTION
1278	Set @var{sec} to the size @var{val}. If the operation is
1279	ok, then <<TRUE>> is returned, else <<FALSE>>.
1280
1281	Possible error returns:
1282	o <<bfd_error_invalid_operation>> -
1283	Writing has started to the BFD, so setting the size is invalid.
1284
1285*/
1286
1287bfd_boolean
1288bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1289{
1290  /* Once you've started writing to any section you cannot create or change
1291     the size of any others.  */
1292
1293  if (abfd->output_has_begun)
1294    {
1295      bfd_set_error (bfd_error_invalid_operation);
1296      return FALSE;
1297    }
1298
1299  ptr->size = val;
1300  return TRUE;
1301}
1302
1303/*
1304FUNCTION
1305	bfd_set_section_contents
1306
1307SYNOPSIS
1308	bfd_boolean bfd_set_section_contents
1309	  (bfd *abfd, asection *section, const void *data,
1310	   file_ptr offset, bfd_size_type count);
1311
1312DESCRIPTION
1313	Sets the contents of the section @var{section} in BFD
1314	@var{abfd} to the data starting in memory at @var{data}. The
1315	data is written to the output section starting at offset
1316	@var{offset} for @var{count} octets.
1317
1318	Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1319	returns are:
1320	o <<bfd_error_no_contents>> -
1321	The output section does not have the <<SEC_HAS_CONTENTS>>
1322	attribute, so nothing can be written to it.
1323	o and some more too
1324
1325	This routine is front end to the back end function
1326	<<_bfd_set_section_contents>>.
1327
1328*/
1329
1330bfd_boolean
1331bfd_set_section_contents (bfd *abfd,
1332			  sec_ptr section,
1333			  const void *location,
1334			  file_ptr offset,
1335			  bfd_size_type count)
1336{
1337  bfd_size_type sz;
1338
1339  if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1340    {
1341      bfd_set_error (bfd_error_no_contents);
1342      return FALSE;
1343    }
1344
1345  sz = section->size;
1346  if ((bfd_size_type) offset > sz
1347      || count > sz
1348      || offset + count > sz
1349      || count != (size_t) count)
1350    {
1351      bfd_set_error (bfd_error_bad_value);
1352      return FALSE;
1353    }
1354
1355  if (!bfd_write_p (abfd))
1356    {
1357      bfd_set_error (bfd_error_invalid_operation);
1358      return FALSE;
1359    }
1360
1361  /* Record a copy of the data in memory if desired.  */
1362  if (section->contents
1363      && location != section->contents + offset)
1364    memcpy (section->contents + offset, location, (size_t) count);
1365
1366  if (BFD_SEND (abfd, _bfd_set_section_contents,
1367		(abfd, section, location, offset, count)))
1368    {
1369      abfd->output_has_begun = TRUE;
1370      return TRUE;
1371    }
1372
1373  return FALSE;
1374}
1375
1376/*
1377FUNCTION
1378	bfd_get_section_contents
1379
1380SYNOPSIS
1381	bfd_boolean bfd_get_section_contents
1382	  (bfd *abfd, asection *section, void *location, file_ptr offset,
1383	   bfd_size_type count);
1384
1385DESCRIPTION
1386	Read data from @var{section} in BFD @var{abfd}
1387	into memory starting at @var{location}. The data is read at an
1388	offset of @var{offset} from the start of the input section,
1389	and is read for @var{count} bytes.
1390
1391	If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1392	flag set are requested or if the section does not have the
1393	<<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1394	with zeroes. If no errors occur, <<TRUE>> is returned, else
1395	<<FALSE>>.
1396
1397*/
1398bfd_boolean
1399bfd_get_section_contents (bfd *abfd,
1400			  sec_ptr section,
1401			  void *location,
1402			  file_ptr offset,
1403			  bfd_size_type count)
1404{
1405  bfd_size_type sz;
1406
1407  if (section->flags & SEC_CONSTRUCTOR)
1408    {
1409      memset (location, 0, (size_t) count);
1410      return TRUE;
1411    }
1412
1413  sz = section->rawsize ? section->rawsize : section->size;
1414  if ((bfd_size_type) offset > sz
1415      || count > sz
1416      || offset + count > sz
1417      || count != (size_t) count)
1418    {
1419      bfd_set_error (bfd_error_bad_value);
1420      return FALSE;
1421    }
1422
1423  if (count == 0)
1424    /* Don't bother.  */
1425    return TRUE;
1426
1427  if ((section->flags & SEC_HAS_CONTENTS) == 0)
1428    {
1429      memset (location, 0, (size_t) count);
1430      return TRUE;
1431    }
1432
1433  if ((section->flags & SEC_IN_MEMORY) != 0)
1434    {
1435      memcpy (location, section->contents + offset, (size_t) count);
1436      return TRUE;
1437    }
1438
1439  return BFD_SEND (abfd, _bfd_get_section_contents,
1440		   (abfd, section, location, offset, count));
1441}
1442
1443/*
1444FUNCTION
1445	bfd_malloc_and_get_section
1446
1447SYNOPSIS
1448	bfd_boolean bfd_malloc_and_get_section
1449	  (bfd *abfd, asection *section, bfd_byte **buf);
1450
1451DESCRIPTION
1452	Read all data from @var{section} in BFD @var{abfd}
1453	into a buffer, *@var{buf}, malloc'd by this function.
1454*/
1455
1456bfd_boolean
1457bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1458{
1459  bfd_size_type sz = sec->rawsize ? sec->rawsize : sec->size;
1460  bfd_byte *p = NULL;
1461
1462  *buf = p;
1463  if (sz == 0)
1464    return TRUE;
1465
1466  p = bfd_malloc (sec->rawsize > sec->size ? sec->rawsize : sec->size);
1467  if (p == NULL)
1468    return FALSE;
1469  *buf = p;
1470
1471  return bfd_get_section_contents (abfd, sec, p, 0, sz);
1472}
1473/*
1474FUNCTION
1475	bfd_copy_private_section_data
1476
1477SYNOPSIS
1478	bfd_boolean bfd_copy_private_section_data
1479	  (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1480
1481DESCRIPTION
1482	Copy private section information from @var{isec} in the BFD
1483	@var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1484	Return <<TRUE>> on success, <<FALSE>> on error.  Possible error
1485	returns are:
1486
1487	o <<bfd_error_no_memory>> -
1488	Not enough memory exists to create private data for @var{osec}.
1489
1490.#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1491.     BFD_SEND (obfd, _bfd_copy_private_section_data, \
1492.		(ibfd, isection, obfd, osection))
1493*/
1494
1495/*
1496FUNCTION
1497	bfd_generic_is_group_section
1498
1499SYNOPSIS
1500	bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1501
1502DESCRIPTION
1503	Returns TRUE if @var{sec} is a member of a group.
1504*/
1505
1506bfd_boolean
1507bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1508			      const asection *sec ATTRIBUTE_UNUSED)
1509{
1510  return FALSE;
1511}
1512
1513/*
1514FUNCTION
1515	bfd_generic_discard_group
1516
1517SYNOPSIS
1518	bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1519
1520DESCRIPTION
1521	Remove all members of @var{group} from the output.
1522*/
1523
1524bfd_boolean
1525bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1526			   asection *group ATTRIBUTE_UNUSED)
1527{
1528  return TRUE;
1529}
1530