section.c revision 218822
1/* Object file "section" support for the BFD library.
2   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4   Free Software Foundation, Inc.
5   Written by Cygnus Support.
6
7This file is part of BFD, the Binary File Descriptor library.
8
9This program is free software; you can redistribute it and/or modify
10it under the terms of the GNU General Public License as published by
11the Free Software Foundation; either version 2 of the License, or
12(at your option) any later version.
13
14This program is distributed in the hope that it will be useful,
15but WITHOUT ANY WARRANTY; without even the implied warranty of
16MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17GNU General Public License for more details.
18
19You should have received a copy of the GNU General Public License
20along with this program; if not, write to the Free Software
21Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.  */
22
23/*
24SECTION
25	Sections
26
27	The raw data contained within a BFD is maintained through the
28	section abstraction.  A single BFD may have any number of
29	sections.  It keeps hold of them by pointing to the first;
30	each one points to the next in the list.
31
32	Sections are supported in BFD in <<section.c>>.
33
34@menu
35@* Section Input::
36@* Section Output::
37@* typedef asection::
38@* section prototypes::
39@end menu
40
41INODE
42Section Input, Section Output, Sections, Sections
43SUBSECTION
44	Section input
45
46	When a BFD is opened for reading, the section structures are
47	created and attached to the BFD.
48
49	Each section has a name which describes the section in the
50	outside world---for example, <<a.out>> would contain at least
51	three sections, called <<.text>>, <<.data>> and <<.bss>>.
52
53	Names need not be unique; for example a COFF file may have several
54	sections named <<.data>>.
55
56	Sometimes a BFD will contain more than the ``natural'' number of
57	sections. A back end may attach other sections containing
58	constructor data, or an application may add a section (using
59	<<bfd_make_section>>) to the sections attached to an already open
60	BFD. For example, the linker creates an extra section
61	<<COMMON>> for each input file's BFD to hold information about
62	common storage.
63
64	The raw data is not necessarily read in when
65	the section descriptor is created. Some targets may leave the
66	data in place until a <<bfd_get_section_contents>> call is
67	made. Other back ends may read in all the data at once.  For
68	example, an S-record file has to be read once to determine the
69	size of the data. An IEEE-695 file doesn't contain raw data in
70	sections, but data and relocation expressions intermixed, so
71	the data area has to be parsed to get out the data and
72	relocations.
73
74INODE
75Section Output, typedef asection, Section Input, Sections
76
77SUBSECTION
78	Section output
79
80	To write a new object style BFD, the various sections to be
81	written have to be created. They are attached to the BFD in
82	the same way as input sections; data is written to the
83	sections using <<bfd_set_section_contents>>.
84
85	Any program that creates or combines sections (e.g., the assembler
86	and linker) must use the <<asection>> fields <<output_section>> and
87	<<output_offset>> to indicate the file sections to which each
88	section must be written.  (If the section is being created from
89	scratch, <<output_section>> should probably point to the section
90	itself and <<output_offset>> should probably be zero.)
91
92	The data to be written comes from input sections attached
93	(via <<output_section>> pointers) to
94	the output sections.  The output section structure can be
95	considered a filter for the input section: the output section
96	determines the vma of the output data and the name, but the
97	input section determines the offset into the output section of
98	the data to be written.
99
100	E.g., to create a section "O", starting at 0x100, 0x123 long,
101	containing two subsections, "A" at offset 0x0 (i.e., at vma
102	0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
103	structures would look like:
104
105|   section name          "A"
106|     output_offset   0x00
107|     size            0x20
108|     output_section ----------->  section name    "O"
109|                             |    vma             0x100
110|   section name          "B" |    size            0x123
111|     output_offset   0x20    |
112|     size            0x103   |
113|     output_section  --------|
114
115SUBSECTION
116	Link orders
117
118	The data within a section is stored in a @dfn{link_order}.
119	These are much like the fixups in <<gas>>.  The link_order
120	abstraction allows a section to grow and shrink within itself.
121
122	A link_order knows how big it is, and which is the next
123	link_order and where the raw data for it is; it also points to
124	a list of relocations which apply to it.
125
126	The link_order is used by the linker to perform relaxing on
127	final code.  The compiler creates code which is as big as
128	necessary to make it work without relaxing, and the user can
129	select whether to relax.  Sometimes relaxing takes a lot of
130	time.  The linker runs around the relocations to see if any
131	are attached to data which can be shrunk, if so it does it on
132	a link_order by link_order basis.
133
134*/
135
136#include "sysdep.h"
137#include "bfd.h"
138#include "libbfd.h"
139#include "bfdlink.h"
140
141/*
142DOCDD
143INODE
144typedef asection, section prototypes, Section Output, Sections
145SUBSECTION
146	typedef asection
147
148	Here is the section structure:
149
150CODE_FRAGMENT
151.
152.typedef struct bfd_section
153.{
154.  {* The name of the section; the name isn't a copy, the pointer is
155.     the same as that passed to bfd_make_section.  *}
156.  const char *name;
157.
158.  {* A unique sequence number.  *}
159.  int id;
160.
161.  {* Which section in the bfd; 0..n-1 as sections are created in a bfd.  *}
162.  int index;
163.
164.  {* The next section in the list belonging to the BFD, or NULL.  *}
165.  struct bfd_section *next;
166.
167.  {* The previous section in the list belonging to the BFD, or NULL.  *}
168.  struct bfd_section *prev;
169.
170.  {* The field flags contains attributes of the section. Some
171.     flags are read in from the object file, and some are
172.     synthesized from other information.  *}
173.  flagword flags;
174.
175.#define SEC_NO_FLAGS   0x000
176.
177.  {* Tells the OS to allocate space for this section when loading.
178.     This is clear for a section containing debug information only.  *}
179.#define SEC_ALLOC      0x001
180.
181.  {* Tells the OS to load the section from the file when loading.
182.     This is clear for a .bss section.  *}
183.#define SEC_LOAD       0x002
184.
185.  {* The section contains data still to be relocated, so there is
186.     some relocation information too.  *}
187.#define SEC_RELOC      0x004
188.
189.  {* A signal to the OS that the section contains read only data.  *}
190.#define SEC_READONLY   0x008
191.
192.  {* The section contains code only.  *}
193.#define SEC_CODE       0x010
194.
195.  {* The section contains data only.  *}
196.#define SEC_DATA       0x020
197.
198.  {* The section will reside in ROM.  *}
199.#define SEC_ROM        0x040
200.
201.  {* The section contains constructor information. This section
202.     type is used by the linker to create lists of constructors and
203.     destructors used by <<g++>>. When a back end sees a symbol
204.     which should be used in a constructor list, it creates a new
205.     section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
206.     the symbol to it, and builds a relocation. To build the lists
207.     of constructors, all the linker has to do is catenate all the
208.     sections called <<__CTOR_LIST__>> and relocate the data
209.     contained within - exactly the operations it would peform on
210.     standard data.  *}
211.#define SEC_CONSTRUCTOR 0x080
212.
213.  {* The section has contents - a data section could be
214.     <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
215.     <<SEC_HAS_CONTENTS>>  *}
216.#define SEC_HAS_CONTENTS 0x100
217.
218.  {* An instruction to the linker to not output the section
219.     even if it has information which would normally be written.  *}
220.#define SEC_NEVER_LOAD 0x200
221.
222.  {* The section contains thread local data.  *}
223.#define SEC_THREAD_LOCAL 0x400
224.
225.  {* The section has GOT references.  This flag is only for the
226.     linker, and is currently only used by the elf32-hppa back end.
227.     It will be set if global offset table references were detected
228.     in this section, which indicate to the linker that the section
229.     contains PIC code, and must be handled specially when doing a
230.     static link.  *}
231.#define SEC_HAS_GOT_REF 0x800
232.
233.  {* The section contains common symbols (symbols may be defined
234.     multiple times, the value of a symbol is the amount of
235.     space it requires, and the largest symbol value is the one
236.     used).  Most targets have exactly one of these (which we
237.     translate to bfd_com_section_ptr), but ECOFF has two.  *}
238.#define SEC_IS_COMMON 0x1000
239.
240.  {* The section contains only debugging information.  For
241.     example, this is set for ELF .debug and .stab sections.
242.     strip tests this flag to see if a section can be
243.     discarded.  *}
244.#define SEC_DEBUGGING 0x2000
245.
246.  {* The contents of this section are held in memory pointed to
247.     by the contents field.  This is checked by bfd_get_section_contents,
248.     and the data is retrieved from memory if appropriate.  *}
249.#define SEC_IN_MEMORY 0x4000
250.
251.  {* The contents of this section are to be excluded by the
252.     linker for executable and shared objects unless those
253.     objects are to be further relocated.  *}
254.#define SEC_EXCLUDE 0x8000
255.
256.  {* The contents of this section are to be sorted based on the sum of
257.     the symbol and addend values specified by the associated relocation
258.     entries.  Entries without associated relocation entries will be
259.     appended to the end of the section in an unspecified order.  *}
260.#define SEC_SORT_ENTRIES 0x10000
261.
262.  {* When linking, duplicate sections of the same name should be
263.     discarded, rather than being combined into a single section as
264.     is usually done.  This is similar to how common symbols are
265.     handled.  See SEC_LINK_DUPLICATES below.  *}
266.#define SEC_LINK_ONCE 0x20000
267.
268.  {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
269.     should handle duplicate sections.  *}
270.#define SEC_LINK_DUPLICATES 0x40000
271.
272.  {* This value for SEC_LINK_DUPLICATES means that duplicate
273.     sections with the same name should simply be discarded.  *}
274.#define SEC_LINK_DUPLICATES_DISCARD 0x0
275.
276.  {* This value for SEC_LINK_DUPLICATES means that the linker
277.     should warn if there are any duplicate sections, although
278.     it should still only link one copy.  *}
279.#define SEC_LINK_DUPLICATES_ONE_ONLY 0x80000
280.
281.  {* This value for SEC_LINK_DUPLICATES means that the linker
282.     should warn if any duplicate sections are a different size.  *}
283.#define SEC_LINK_DUPLICATES_SAME_SIZE 0x100000
284.
285.  {* This value for SEC_LINK_DUPLICATES means that the linker
286.     should warn if any duplicate sections contain different
287.     contents.  *}
288.#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
289.  (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
290.
291.  {* This section was created by the linker as part of dynamic
292.     relocation or other arcane processing.  It is skipped when
293.     going through the first-pass output, trusting that someone
294.     else up the line will take care of it later.  *}
295.#define SEC_LINKER_CREATED 0x200000
296.
297.  {* This section should not be subject to garbage collection.
298.     Also set to inform the linker that this section should not be
299.     listed in the link map as discarded.  *}
300.#define SEC_KEEP 0x400000
301.
302.  {* This section contains "short" data, and should be placed
303.     "near" the GP.  *}
304.#define SEC_SMALL_DATA 0x800000
305.
306.  {* Attempt to merge identical entities in the section.
307.     Entity size is given in the entsize field.  *}
308.#define SEC_MERGE 0x1000000
309.
310.  {* If given with SEC_MERGE, entities to merge are zero terminated
311.     strings where entsize specifies character size instead of fixed
312.     size entries.  *}
313.#define SEC_STRINGS 0x2000000
314.
315.  {* This section contains data about section groups.  *}
316.#define SEC_GROUP 0x4000000
317.
318.  {* The section is a COFF shared library section.  This flag is
319.     only for the linker.  If this type of section appears in
320.     the input file, the linker must copy it to the output file
321.     without changing the vma or size.  FIXME: Although this
322.     was originally intended to be general, it really is COFF
323.     specific (and the flag was renamed to indicate this).  It
324.     might be cleaner to have some more general mechanism to
325.     allow the back end to control what the linker does with
326.     sections.  *}
327.#define SEC_COFF_SHARED_LIBRARY 0x10000000
328.
329.  {* This section contains data which may be shared with other
330.     executables or shared objects. This is for COFF only.  *}
331.#define SEC_COFF_SHARED 0x20000000
332.
333.  {* When a section with this flag is being linked, then if the size of
334.     the input section is less than a page, it should not cross a page
335.     boundary.  If the size of the input section is one page or more,
336.     it should be aligned on a page boundary.  This is for TI
337.     TMS320C54X only.  *}
338.#define SEC_TIC54X_BLOCK 0x40000000
339.
340.  {* Conditionally link this section; do not link if there are no
341.     references found to any symbol in the section.  This is for TI
342.     TMS320C54X only.  *}
343.#define SEC_TIC54X_CLINK 0x80000000
344.
345.  {*  End of section flags.  *}
346.
347.  {* Some internal packed boolean fields.  *}
348.
349.  {* See the vma field.  *}
350.  unsigned int user_set_vma : 1;
351.
352.  {* A mark flag used by some of the linker backends.  *}
353.  unsigned int linker_mark : 1;
354.
355.  {* Another mark flag used by some of the linker backends.  Set for
356.     output sections that have an input section.  *}
357.  unsigned int linker_has_input : 1;
358.
359.  {* Mark flags used by some linker backends for garbage collection.  *}
360.  unsigned int gc_mark : 1;
361.  unsigned int gc_mark_from_eh : 1;
362.
363.  {* The following flags are used by the ELF linker. *}
364.
365.  {* Mark sections which have been allocated to segments.  *}
366.  unsigned int segment_mark : 1;
367.
368.  {* Type of sec_info information.  *}
369.  unsigned int sec_info_type:3;
370.#define ELF_INFO_TYPE_NONE      0
371.#define ELF_INFO_TYPE_STABS     1
372.#define ELF_INFO_TYPE_MERGE     2
373.#define ELF_INFO_TYPE_EH_FRAME  3
374.#define ELF_INFO_TYPE_JUST_SYMS 4
375.
376.  {* Nonzero if this section uses RELA relocations, rather than REL.  *}
377.  unsigned int use_rela_p:1;
378.
379.  {* Bits used by various backends.  The generic code doesn't touch
380.     these fields.  *}
381.
382.  {* Nonzero if this section has TLS related relocations.  *}
383.  unsigned int has_tls_reloc:1;
384.
385.  {* Nonzero if this section has a gp reloc.  *}
386.  unsigned int has_gp_reloc:1;
387.
388.  {* Nonzero if this section needs the relax finalize pass.  *}
389.  unsigned int need_finalize_relax:1;
390.
391.  {* Whether relocations have been processed.  *}
392.  unsigned int reloc_done : 1;
393.
394.  {* End of internal packed boolean fields.  *}
395.
396.  {*  The virtual memory address of the section - where it will be
397.      at run time.  The symbols are relocated against this.  The
398.      user_set_vma flag is maintained by bfd; if it's not set, the
399.      backend can assign addresses (for example, in <<a.out>>, where
400.      the default address for <<.data>> is dependent on the specific
401.      target and various flags).  *}
402.  bfd_vma vma;
403.
404.  {*  The load address of the section - where it would be in a
405.      rom image; really only used for writing section header
406.      information.  *}
407.  bfd_vma lma;
408.
409.  {* The size of the section in octets, as it will be output.
410.     Contains a value even if the section has no contents (e.g., the
411.     size of <<.bss>>).  *}
412.  bfd_size_type size;
413.
414.  {* For input sections, the original size on disk of the section, in
415.     octets.  This field is used by the linker relaxation code.  It is
416.     currently only set for sections where the linker relaxation scheme
417.     doesn't cache altered section and reloc contents (stabs, eh_frame,
418.     SEC_MERGE, some coff relaxing targets), and thus the original size
419.     needs to be kept to read the section multiple times.
420.     For output sections, rawsize holds the section size calculated on
421.     a previous linker relaxation pass.  *}
422.  bfd_size_type rawsize;
423.
424.  {* If this section is going to be output, then this value is the
425.     offset in *bytes* into the output section of the first byte in the
426.     input section (byte ==> smallest addressable unit on the
427.     target).  In most cases, if this was going to start at the
428.     100th octet (8-bit quantity) in the output section, this value
429.     would be 100.  However, if the target byte size is 16 bits
430.     (bfd_octets_per_byte is "2"), this value would be 50.  *}
431.  bfd_vma output_offset;
432.
433.  {* The output section through which to map on output.  *}
434.  struct bfd_section *output_section;
435.
436.  {* The alignment requirement of the section, as an exponent of 2 -
437.     e.g., 3 aligns to 2^3 (or 8).  *}
438.  unsigned int alignment_power;
439.
440.  {* If an input section, a pointer to a vector of relocation
441.     records for the data in this section.  *}
442.  struct reloc_cache_entry *relocation;
443.
444.  {* If an output section, a pointer to a vector of pointers to
445.     relocation records for the data in this section.  *}
446.  struct reloc_cache_entry **orelocation;
447.
448.  {* The number of relocation records in one of the above.  *}
449.  unsigned reloc_count;
450.
451.  {* Information below is back end specific - and not always used
452.     or updated.  *}
453.
454.  {* File position of section data.  *}
455.  file_ptr filepos;
456.
457.  {* File position of relocation info.  *}
458.  file_ptr rel_filepos;
459.
460.  {* File position of line data.  *}
461.  file_ptr line_filepos;
462.
463.  {* Pointer to data for applications.  *}
464.  void *userdata;
465.
466.  {* If the SEC_IN_MEMORY flag is set, this points to the actual
467.     contents.  *}
468.  unsigned char *contents;
469.
470.  {* Attached line number information.  *}
471.  alent *lineno;
472.
473.  {* Number of line number records.  *}
474.  unsigned int lineno_count;
475.
476.  {* Entity size for merging purposes.  *}
477.  unsigned int entsize;
478.
479.  {* Points to the kept section if this section is a link-once section,
480.     and is discarded.  *}
481.  struct bfd_section *kept_section;
482.
483.  {* When a section is being output, this value changes as more
484.     linenumbers are written out.  *}
485.  file_ptr moving_line_filepos;
486.
487.  {* What the section number is in the target world.  *}
488.  int target_index;
489.
490.  void *used_by_bfd;
491.
492.  {* If this is a constructor section then here is a list of the
493.     relocations created to relocate items within it.  *}
494.  struct relent_chain *constructor_chain;
495.
496.  {* The BFD which owns the section.  *}
497.  bfd *owner;
498.
499.  {* A symbol which points at this section only.  *}
500.  struct bfd_symbol *symbol;
501.  struct bfd_symbol **symbol_ptr_ptr;
502.
503.  {* Early in the link process, map_head and map_tail are used to build
504.     a list of input sections attached to an output section.  Later,
505.     output sections use these fields for a list of bfd_link_order
506.     structs.  *}
507.  union {
508.    struct bfd_link_order *link_order;
509.    struct bfd_section *s;
510.  } map_head, map_tail;
511.} asection;
512.
513.{* These sections are global, and are managed by BFD.  The application
514.   and target back end are not permitted to change the values in
515.   these sections.  New code should use the section_ptr macros rather
516.   than referring directly to the const sections.  The const sections
517.   may eventually vanish.  *}
518.#define BFD_ABS_SECTION_NAME "*ABS*"
519.#define BFD_UND_SECTION_NAME "*UND*"
520.#define BFD_COM_SECTION_NAME "*COM*"
521.#define BFD_IND_SECTION_NAME "*IND*"
522.
523.{* The absolute section.  *}
524.extern asection bfd_abs_section;
525.#define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
526.#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
527.{* Pointer to the undefined section.  *}
528.extern asection bfd_und_section;
529.#define bfd_und_section_ptr ((asection *) &bfd_und_section)
530.#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
531.{* Pointer to the common section.  *}
532.extern asection bfd_com_section;
533.#define bfd_com_section_ptr ((asection *) &bfd_com_section)
534.{* Pointer to the indirect section.  *}
535.extern asection bfd_ind_section;
536.#define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
537.#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
538.
539.#define bfd_is_const_section(SEC)		\
540. (   ((SEC) == bfd_abs_section_ptr)		\
541.  || ((SEC) == bfd_und_section_ptr)		\
542.  || ((SEC) == bfd_com_section_ptr)		\
543.  || ((SEC) == bfd_ind_section_ptr))
544.
545.{* Macros to handle insertion and deletion of a bfd's sections.  These
546.   only handle the list pointers, ie. do not adjust section_count,
547.   target_index etc.  *}
548.#define bfd_section_list_remove(ABFD, S) \
549.  do							\
550.    {							\
551.      asection *_s = S;				\
552.      asection *_next = _s->next;			\
553.      asection *_prev = _s->prev;			\
554.      if (_prev)					\
555.        _prev->next = _next;				\
556.      else						\
557.        (ABFD)->sections = _next;			\
558.      if (_next)					\
559.        _next->prev = _prev;				\
560.      else						\
561.        (ABFD)->section_last = _prev;			\
562.    }							\
563.  while (0)
564.#define bfd_section_list_append(ABFD, S) \
565.  do							\
566.    {							\
567.      asection *_s = S;				\
568.      bfd *_abfd = ABFD;				\
569.      _s->next = NULL;					\
570.      if (_abfd->section_last)				\
571.        {						\
572.          _s->prev = _abfd->section_last;		\
573.          _abfd->section_last->next = _s;		\
574.        }						\
575.      else						\
576.        {						\
577.          _s->prev = NULL;				\
578.          _abfd->sections = _s;			\
579.        }						\
580.      _abfd->section_last = _s;			\
581.    }							\
582.  while (0)
583.#define bfd_section_list_prepend(ABFD, S) \
584.  do							\
585.    {							\
586.      asection *_s = S;				\
587.      bfd *_abfd = ABFD;				\
588.      _s->prev = NULL;					\
589.      if (_abfd->sections)				\
590.        {						\
591.          _s->next = _abfd->sections;			\
592.          _abfd->sections->prev = _s;			\
593.        }						\
594.      else						\
595.        {						\
596.          _s->next = NULL;				\
597.          _abfd->section_last = _s;			\
598.        }						\
599.      _abfd->sections = _s;				\
600.    }							\
601.  while (0)
602.#define bfd_section_list_insert_after(ABFD, A, S) \
603.  do							\
604.    {							\
605.      asection *_a = A;				\
606.      asection *_s = S;				\
607.      asection *_next = _a->next;			\
608.      _s->next = _next;				\
609.      _s->prev = _a;					\
610.      _a->next = _s;					\
611.      if (_next)					\
612.        _next->prev = _s;				\
613.      else						\
614.        (ABFD)->section_last = _s;			\
615.    }							\
616.  while (0)
617.#define bfd_section_list_insert_before(ABFD, B, S) \
618.  do							\
619.    {							\
620.      asection *_b = B;				\
621.      asection *_s = S;				\
622.      asection *_prev = _b->prev;			\
623.      _s->prev = _prev;				\
624.      _s->next = _b;					\
625.      _b->prev = _s;					\
626.      if (_prev)					\
627.        _prev->next = _s;				\
628.      else						\
629.        (ABFD)->sections = _s;				\
630.    }							\
631.  while (0)
632.#define bfd_section_removed_from_list(ABFD, S) \
633.  ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
634.
635.#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX)			\
636.  {* name, id,  index, next, prev, flags, user_set_vma,            *}	\
637.  { NAME,  IDX, 0,     NULL, NULL, FLAGS, 0,				\
638.									\
639.  {* linker_mark, linker_has_input, gc_mark, gc_mark_from_eh,      *}	\
640.     0,           0,                1,       0,			\
641.									\
642.  {* segment_mark, sec_info_type, use_rela_p, has_tls_reloc,       *}	\
643.     0,            0,             0,          0,			\
644.									\
645.  {* has_gp_reloc, need_finalize_relax, reloc_done,                *}	\
646.     0,            0,                   0,				\
647.									\
648.  {* vma, lma, size, rawsize                                       *}	\
649.     0,   0,   0,    0,						\
650.									\
651.  {* output_offset, output_section,              alignment_power,  *}	\
652.     0,             (struct bfd_section *) &SEC, 0,			\
653.									\
654.  {* relocation, orelocation, reloc_count, filepos, rel_filepos,   *}	\
655.     NULL,       NULL,        0,           0,       0,			\
656.									\
657.  {* line_filepos, userdata, contents, lineno, lineno_count,       *}	\
658.     0,            NULL,     NULL,     NULL,   0,			\
659.									\
660.  {* entsize, kept_section, moving_line_filepos,		     *}	\
661.     0,       NULL,	      0,					\
662.									\
663.  {* target_index, used_by_bfd, constructor_chain, owner,          *}	\
664.     0,            NULL,        NULL,              NULL,		\
665.									\
666.  {* symbol,                    symbol_ptr_ptr,                    *}	\
667.     (struct bfd_symbol *) SYM, &SEC.symbol,				\
668.									\
669.  {* map_head, map_tail                                            *}	\
670.     { NULL }, { NULL }						\
671.    }
672.
673*/
674
675/* We use a macro to initialize the static asymbol structures because
676   traditional C does not permit us to initialize a union member while
677   gcc warns if we don't initialize it.  */
678 /* the_bfd, name, value, attr, section [, udata] */
679#ifdef __STDC__
680#define GLOBAL_SYM_INIT(NAME, SECTION) \
681  { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION, { 0 }}
682#else
683#define GLOBAL_SYM_INIT(NAME, SECTION) \
684  { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION }
685#endif
686
687/* These symbols are global, not specific to any BFD.  Therefore, anything
688   that tries to change them is broken, and should be repaired.  */
689
690static const asymbol global_syms[] =
691{
692  GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, &bfd_com_section),
693  GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, &bfd_und_section),
694  GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, &bfd_abs_section),
695  GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, &bfd_ind_section)
696};
697
698#define STD_SECTION(SEC, FLAGS, NAME, IDX)				\
699  asection SEC = BFD_FAKE_SECTION(SEC, FLAGS, &global_syms[IDX],	\
700				  NAME, IDX)
701
702STD_SECTION (bfd_com_section, SEC_IS_COMMON, BFD_COM_SECTION_NAME, 0);
703STD_SECTION (bfd_und_section, 0, BFD_UND_SECTION_NAME, 1);
704STD_SECTION (bfd_abs_section, 0, BFD_ABS_SECTION_NAME, 2);
705STD_SECTION (bfd_ind_section, 0, BFD_IND_SECTION_NAME, 3);
706#undef STD_SECTION
707
708/* Initialize an entry in the section hash table.  */
709
710struct bfd_hash_entry *
711bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
712			  struct bfd_hash_table *table,
713			  const char *string)
714{
715  /* Allocate the structure if it has not already been allocated by a
716     subclass.  */
717  if (entry == NULL)
718    {
719      entry = (struct bfd_hash_entry *)
720	bfd_hash_allocate (table, sizeof (struct section_hash_entry));
721      if (entry == NULL)
722	return entry;
723    }
724
725  /* Call the allocation method of the superclass.  */
726  entry = bfd_hash_newfunc (entry, table, string);
727  if (entry != NULL)
728    memset (&((struct section_hash_entry *) entry)->section, 0,
729	    sizeof (asection));
730
731  return entry;
732}
733
734#define section_hash_lookup(table, string, create, copy) \
735  ((struct section_hash_entry *) \
736   bfd_hash_lookup ((table), (string), (create), (copy)))
737
738/* Create a symbol whose only job is to point to this section.  This
739   is useful for things like relocs which are relative to the base
740   of a section.  */
741
742bfd_boolean
743_bfd_generic_new_section_hook (bfd *abfd, asection *newsect)
744{
745  newsect->symbol = bfd_make_empty_symbol (abfd);
746  if (newsect->symbol == NULL)
747    return FALSE;
748
749  newsect->symbol->name = newsect->name;
750  newsect->symbol->value = 0;
751  newsect->symbol->section = newsect;
752  newsect->symbol->flags = BSF_SECTION_SYM;
753
754  newsect->symbol_ptr_ptr = &newsect->symbol;
755  return TRUE;
756}
757
758/* Initializes a new section.  NEWSECT->NAME is already set.  */
759
760static asection *
761bfd_section_init (bfd *abfd, asection *newsect)
762{
763  static int section_id = 0x10;  /* id 0 to 3 used by STD_SECTION.  */
764
765  newsect->id = section_id;
766  newsect->index = abfd->section_count;
767  newsect->owner = abfd;
768
769  if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
770    return NULL;
771
772  section_id++;
773  abfd->section_count++;
774  bfd_section_list_append (abfd, newsect);
775  return newsect;
776}
777
778/*
779DOCDD
780INODE
781section prototypes,  , typedef asection, Sections
782SUBSECTION
783	Section prototypes
784
785These are the functions exported by the section handling part of BFD.
786*/
787
788/*
789FUNCTION
790	bfd_section_list_clear
791
792SYNOPSIS
793	void bfd_section_list_clear (bfd *);
794
795DESCRIPTION
796	Clears the section list, and also resets the section count and
797	hash table entries.
798*/
799
800void
801bfd_section_list_clear (bfd *abfd)
802{
803  abfd->sections = NULL;
804  abfd->section_last = NULL;
805  abfd->section_count = 0;
806  memset (abfd->section_htab.table, 0,
807	  abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
808}
809
810/*
811FUNCTION
812	bfd_get_section_by_name
813
814SYNOPSIS
815	asection *bfd_get_section_by_name (bfd *abfd, const char *name);
816
817DESCRIPTION
818	Run through @var{abfd} and return the one of the
819	<<asection>>s whose name matches @var{name}, otherwise <<NULL>>.
820	@xref{Sections}, for more information.
821
822	This should only be used in special cases; the normal way to process
823	all sections of a given name is to use <<bfd_map_over_sections>> and
824	<<strcmp>> on the name (or better yet, base it on the section flags
825	or something else) for each section.
826*/
827
828asection *
829bfd_get_section_by_name (bfd *abfd, const char *name)
830{
831  struct section_hash_entry *sh;
832
833  sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
834  if (sh != NULL)
835    return &sh->section;
836
837  return NULL;
838}
839
840/*
841FUNCTION
842	bfd_get_section_by_name_if
843
844SYNOPSIS
845	asection *bfd_get_section_by_name_if
846	  (bfd *abfd,
847	   const char *name,
848	   bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
849	   void *obj);
850
851DESCRIPTION
852	Call the provided function @var{func} for each section
853	attached to the BFD @var{abfd} whose name matches @var{name},
854	passing @var{obj} as an argument. The function will be called
855	as if by
856
857|	func (abfd, the_section, obj);
858
859	It returns the first section for which @var{func} returns true,
860	otherwise <<NULL>>.
861
862*/
863
864asection *
865bfd_get_section_by_name_if (bfd *abfd, const char *name,
866			    bfd_boolean (*operation) (bfd *,
867						      asection *,
868						      void *),
869			    void *user_storage)
870{
871  struct section_hash_entry *sh;
872  unsigned long hash;
873
874  sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
875  if (sh == NULL)
876    return NULL;
877
878  hash = sh->root.hash;
879  do
880    {
881      if ((*operation) (abfd, &sh->section, user_storage))
882	return &sh->section;
883      sh = (struct section_hash_entry *) sh->root.next;
884    }
885  while (sh != NULL && sh->root.hash == hash
886	 && strcmp (sh->root.string, name) == 0);
887
888  return NULL;
889}
890
891/*
892FUNCTION
893	bfd_get_unique_section_name
894
895SYNOPSIS
896	char *bfd_get_unique_section_name
897	  (bfd *abfd, const char *templat, int *count);
898
899DESCRIPTION
900	Invent a section name that is unique in @var{abfd} by tacking
901	a dot and a digit suffix onto the original @var{templat}.  If
902	@var{count} is non-NULL, then it specifies the first number
903	tried as a suffix to generate a unique name.  The value
904	pointed to by @var{count} will be incremented in this case.
905*/
906
907char *
908bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
909{
910  int num;
911  unsigned int len;
912  char *sname;
913
914  len = strlen (templat);
915  sname = bfd_malloc (len + 8);
916  if (sname == NULL)
917    return NULL;
918  memcpy (sname, templat, len);
919  num = 1;
920  if (count != NULL)
921    num = *count;
922
923  do
924    {
925      /* If we have a million sections, something is badly wrong.  */
926      if (num > 999999)
927	abort ();
928      sprintf (sname + len, ".%d", num++);
929    }
930  while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
931
932  if (count != NULL)
933    *count = num;
934  return sname;
935}
936
937/*
938FUNCTION
939	bfd_make_section_old_way
940
941SYNOPSIS
942	asection *bfd_make_section_old_way (bfd *abfd, const char *name);
943
944DESCRIPTION
945	Create a new empty section called @var{name}
946	and attach it to the end of the chain of sections for the
947	BFD @var{abfd}. An attempt to create a section with a name which
948	is already in use returns its pointer without changing the
949	section chain.
950
951	It has the funny name since this is the way it used to be
952	before it was rewritten....
953
954	Possible errors are:
955	o <<bfd_error_invalid_operation>> -
956	If output has already started for this BFD.
957	o <<bfd_error_no_memory>> -
958	If memory allocation fails.
959
960*/
961
962asection *
963bfd_make_section_old_way (bfd *abfd, const char *name)
964{
965  asection *newsect;
966
967  if (abfd->output_has_begun)
968    {
969      bfd_set_error (bfd_error_invalid_operation);
970      return NULL;
971    }
972
973  if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
974    newsect = bfd_abs_section_ptr;
975  else if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
976    newsect = bfd_com_section_ptr;
977  else if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
978    newsect = bfd_und_section_ptr;
979  else if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
980    newsect = bfd_ind_section_ptr;
981  else
982    {
983      struct section_hash_entry *sh;
984
985      sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
986      if (sh == NULL)
987	return NULL;
988
989      newsect = &sh->section;
990      if (newsect->name != NULL)
991	{
992	  /* Section already exists.  */
993	  return newsect;
994	}
995
996      newsect->name = name;
997      return bfd_section_init (abfd, newsect);
998    }
999
1000  /* Call new_section_hook when "creating" the standard abs, com, und
1001     and ind sections to tack on format specific section data.
1002     Also, create a proper section symbol.  */
1003  if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
1004    return NULL;
1005  return newsect;
1006}
1007
1008/*
1009FUNCTION
1010	bfd_make_section_anyway_with_flags
1011
1012SYNOPSIS
1013	asection *bfd_make_section_anyway_with_flags
1014	  (bfd *abfd, const char *name, flagword flags);
1015
1016DESCRIPTION
1017   Create a new empty section called @var{name} and attach it to the end of
1018   the chain of sections for @var{abfd}.  Create a new section even if there
1019   is already a section with that name.  Also set the attributes of the
1020   new section to the value @var{flags}.
1021
1022   Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1023   o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1024   o <<bfd_error_no_memory>> - If memory allocation fails.
1025*/
1026
1027sec_ptr
1028bfd_make_section_anyway_with_flags (bfd *abfd, const char *name,
1029				    flagword flags)
1030{
1031  struct section_hash_entry *sh;
1032  asection *newsect;
1033
1034  if (abfd->output_has_begun)
1035    {
1036      bfd_set_error (bfd_error_invalid_operation);
1037      return NULL;
1038    }
1039
1040  sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1041  if (sh == NULL)
1042    return NULL;
1043
1044  newsect = &sh->section;
1045  if (newsect->name != NULL)
1046    {
1047      /* We are making a section of the same name.  Put it in the
1048	 section hash table.  Even though we can't find it directly by a
1049	 hash lookup, we'll be able to find the section by traversing
1050	 sh->root.next quicker than looking at all the bfd sections.  */
1051      struct section_hash_entry *new_sh;
1052      new_sh = (struct section_hash_entry *)
1053	bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1054      if (new_sh == NULL)
1055	return NULL;
1056
1057      new_sh->root = sh->root;
1058      sh->root.next = &new_sh->root;
1059      newsect = &new_sh->section;
1060    }
1061
1062  newsect->flags = flags;
1063  newsect->name = name;
1064  return bfd_section_init (abfd, newsect);
1065}
1066
1067/*
1068FUNCTION
1069	bfd_make_section_anyway
1070
1071SYNOPSIS
1072	asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1073
1074DESCRIPTION
1075   Create a new empty section called @var{name} and attach it to the end of
1076   the chain of sections for @var{abfd}.  Create a new section even if there
1077   is already a section with that name.
1078
1079   Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1080   o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1081   o <<bfd_error_no_memory>> - If memory allocation fails.
1082*/
1083
1084sec_ptr
1085bfd_make_section_anyway (bfd *abfd, const char *name)
1086{
1087  return bfd_make_section_anyway_with_flags (abfd, name, 0);
1088}
1089
1090/*
1091FUNCTION
1092	bfd_make_section_with_flags
1093
1094SYNOPSIS
1095	asection *bfd_make_section_with_flags
1096	  (bfd *, const char *name, flagword flags);
1097
1098DESCRIPTION
1099   Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1100   bfd_set_error ()) without changing the section chain if there is already a
1101   section named @var{name}.  Also set the attributes of the new section to
1102   the value @var{flags}.  If there is an error, return <<NULL>> and set
1103   <<bfd_error>>.
1104*/
1105
1106asection *
1107bfd_make_section_with_flags (bfd *abfd, const char *name,
1108			     flagword flags)
1109{
1110  struct section_hash_entry *sh;
1111  asection *newsect;
1112
1113  if (abfd->output_has_begun)
1114    {
1115      bfd_set_error (bfd_error_invalid_operation);
1116      return NULL;
1117    }
1118
1119  if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1120      || strcmp (name, BFD_COM_SECTION_NAME) == 0
1121      || strcmp (name, BFD_UND_SECTION_NAME) == 0
1122      || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1123    return NULL;
1124
1125  sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1126  if (sh == NULL)
1127    return NULL;
1128
1129  newsect = &sh->section;
1130  if (newsect->name != NULL)
1131    {
1132      /* Section already exists.  */
1133      return NULL;
1134    }
1135
1136  newsect->name = name;
1137  newsect->flags = flags;
1138  return bfd_section_init (abfd, newsect);
1139}
1140
1141/*
1142FUNCTION
1143	bfd_make_section
1144
1145SYNOPSIS
1146	asection *bfd_make_section (bfd *, const char *name);
1147
1148DESCRIPTION
1149   Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1150   bfd_set_error ()) without changing the section chain if there is already a
1151   section named @var{name}.  If there is an error, return <<NULL>> and set
1152   <<bfd_error>>.
1153*/
1154
1155asection *
1156bfd_make_section (bfd *abfd, const char *name)
1157{
1158  return bfd_make_section_with_flags (abfd, name, 0);
1159}
1160
1161/*
1162FUNCTION
1163	bfd_set_section_flags
1164
1165SYNOPSIS
1166	bfd_boolean bfd_set_section_flags
1167	  (bfd *abfd, asection *sec, flagword flags);
1168
1169DESCRIPTION
1170	Set the attributes of the section @var{sec} in the BFD
1171	@var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1172	<<FALSE>> on error. Possible error returns are:
1173
1174	o <<bfd_error_invalid_operation>> -
1175	The section cannot have one or more of the attributes
1176	requested. For example, a .bss section in <<a.out>> may not
1177	have the <<SEC_HAS_CONTENTS>> field set.
1178
1179*/
1180
1181bfd_boolean
1182bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1183		       sec_ptr section,
1184		       flagword flags)
1185{
1186  section->flags = flags;
1187  return TRUE;
1188}
1189
1190/*
1191FUNCTION
1192	bfd_map_over_sections
1193
1194SYNOPSIS
1195	void bfd_map_over_sections
1196	  (bfd *abfd,
1197	   void (*func) (bfd *abfd, asection *sect, void *obj),
1198	   void *obj);
1199
1200DESCRIPTION
1201	Call the provided function @var{func} for each section
1202	attached to the BFD @var{abfd}, passing @var{obj} as an
1203	argument. The function will be called as if by
1204
1205|	func (abfd, the_section, obj);
1206
1207	This is the preferred method for iterating over sections; an
1208	alternative would be to use a loop:
1209
1210|	   section *p;
1211|	   for (p = abfd->sections; p != NULL; p = p->next)
1212|	      func (abfd, p, ...)
1213
1214*/
1215
1216void
1217bfd_map_over_sections (bfd *abfd,
1218		       void (*operation) (bfd *, asection *, void *),
1219		       void *user_storage)
1220{
1221  asection *sect;
1222  unsigned int i = 0;
1223
1224  for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1225    (*operation) (abfd, sect, user_storage);
1226
1227  if (i != abfd->section_count)	/* Debugging */
1228    abort ();
1229}
1230
1231/*
1232FUNCTION
1233	bfd_sections_find_if
1234
1235SYNOPSIS
1236	asection *bfd_sections_find_if
1237	  (bfd *abfd,
1238	   bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1239	   void *obj);
1240
1241DESCRIPTION
1242	Call the provided function @var{operation} for each section
1243	attached to the BFD @var{abfd}, passing @var{obj} as an
1244	argument. The function will be called as if by
1245
1246|	operation (abfd, the_section, obj);
1247
1248	It returns the first section for which @var{operation} returns true.
1249
1250*/
1251
1252asection *
1253bfd_sections_find_if (bfd *abfd,
1254		      bfd_boolean (*operation) (bfd *, asection *, void *),
1255		      void *user_storage)
1256{
1257  asection *sect;
1258
1259  for (sect = abfd->sections; sect != NULL; sect = sect->next)
1260    if ((*operation) (abfd, sect, user_storage))
1261      break;
1262
1263  return sect;
1264}
1265
1266/*
1267FUNCTION
1268	bfd_set_section_size
1269
1270SYNOPSIS
1271	bfd_boolean bfd_set_section_size
1272	  (bfd *abfd, asection *sec, bfd_size_type val);
1273
1274DESCRIPTION
1275	Set @var{sec} to the size @var{val}. If the operation is
1276	ok, then <<TRUE>> is returned, else <<FALSE>>.
1277
1278	Possible error returns:
1279	o <<bfd_error_invalid_operation>> -
1280	Writing has started to the BFD, so setting the size is invalid.
1281
1282*/
1283
1284bfd_boolean
1285bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1286{
1287  /* Once you've started writing to any section you cannot create or change
1288     the size of any others.  */
1289
1290  if (abfd->output_has_begun)
1291    {
1292      bfd_set_error (bfd_error_invalid_operation);
1293      return FALSE;
1294    }
1295
1296  ptr->size = val;
1297  return TRUE;
1298}
1299
1300/*
1301FUNCTION
1302	bfd_set_section_contents
1303
1304SYNOPSIS
1305	bfd_boolean bfd_set_section_contents
1306	  (bfd *abfd, asection *section, const void *data,
1307	   file_ptr offset, bfd_size_type count);
1308
1309DESCRIPTION
1310	Sets the contents of the section @var{section} in BFD
1311	@var{abfd} to the data starting in memory at @var{data}. The
1312	data is written to the output section starting at offset
1313	@var{offset} for @var{count} octets.
1314
1315	Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1316	returns are:
1317	o <<bfd_error_no_contents>> -
1318	The output section does not have the <<SEC_HAS_CONTENTS>>
1319	attribute, so nothing can be written to it.
1320	o and some more too
1321
1322	This routine is front end to the back end function
1323	<<_bfd_set_section_contents>>.
1324
1325*/
1326
1327bfd_boolean
1328bfd_set_section_contents (bfd *abfd,
1329			  sec_ptr section,
1330			  const void *location,
1331			  file_ptr offset,
1332			  bfd_size_type count)
1333{
1334  bfd_size_type sz;
1335
1336  if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1337    {
1338      bfd_set_error (bfd_error_no_contents);
1339      return FALSE;
1340    }
1341
1342  sz = section->size;
1343  if ((bfd_size_type) offset > sz
1344      || count > sz
1345      || offset + count > sz
1346      || count != (size_t) count)
1347    {
1348      bfd_set_error (bfd_error_bad_value);
1349      return FALSE;
1350    }
1351
1352  if (!bfd_write_p (abfd))
1353    {
1354      bfd_set_error (bfd_error_invalid_operation);
1355      return FALSE;
1356    }
1357
1358  /* Record a copy of the data in memory if desired.  */
1359  if (section->contents
1360      && location != section->contents + offset)
1361    memcpy (section->contents + offset, location, (size_t) count);
1362
1363  if (BFD_SEND (abfd, _bfd_set_section_contents,
1364		(abfd, section, location, offset, count)))
1365    {
1366      abfd->output_has_begun = TRUE;
1367      return TRUE;
1368    }
1369
1370  return FALSE;
1371}
1372
1373/*
1374FUNCTION
1375	bfd_get_section_contents
1376
1377SYNOPSIS
1378	bfd_boolean bfd_get_section_contents
1379	  (bfd *abfd, asection *section, void *location, file_ptr offset,
1380	   bfd_size_type count);
1381
1382DESCRIPTION
1383	Read data from @var{section} in BFD @var{abfd}
1384	into memory starting at @var{location}. The data is read at an
1385	offset of @var{offset} from the start of the input section,
1386	and is read for @var{count} bytes.
1387
1388	If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1389	flag set are requested or if the section does not have the
1390	<<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1391	with zeroes. If no errors occur, <<TRUE>> is returned, else
1392	<<FALSE>>.
1393
1394*/
1395bfd_boolean
1396bfd_get_section_contents (bfd *abfd,
1397			  sec_ptr section,
1398			  void *location,
1399			  file_ptr offset,
1400			  bfd_size_type count)
1401{
1402  bfd_size_type sz;
1403
1404  if (section->flags & SEC_CONSTRUCTOR)
1405    {
1406      memset (location, 0, (size_t) count);
1407      return TRUE;
1408    }
1409
1410  sz = section->rawsize ? section->rawsize : section->size;
1411  if ((bfd_size_type) offset > sz
1412      || count > sz
1413      || offset + count > sz
1414      || count != (size_t) count)
1415    {
1416      bfd_set_error (bfd_error_bad_value);
1417      return FALSE;
1418    }
1419
1420  if (count == 0)
1421    /* Don't bother.  */
1422    return TRUE;
1423
1424  if ((section->flags & SEC_HAS_CONTENTS) == 0)
1425    {
1426      memset (location, 0, (size_t) count);
1427      return TRUE;
1428    }
1429
1430  if ((section->flags & SEC_IN_MEMORY) != 0)
1431    {
1432      memcpy (location, section->contents + offset, (size_t) count);
1433      return TRUE;
1434    }
1435
1436  return BFD_SEND (abfd, _bfd_get_section_contents,
1437		   (abfd, section, location, offset, count));
1438}
1439
1440/*
1441FUNCTION
1442	bfd_malloc_and_get_section
1443
1444SYNOPSIS
1445	bfd_boolean bfd_malloc_and_get_section
1446	  (bfd *abfd, asection *section, bfd_byte **buf);
1447
1448DESCRIPTION
1449	Read all data from @var{section} in BFD @var{abfd}
1450	into a buffer, *@var{buf}, malloc'd by this function.
1451*/
1452
1453bfd_boolean
1454bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1455{
1456  bfd_size_type sz = sec->rawsize ? sec->rawsize : sec->size;
1457  bfd_byte *p = NULL;
1458
1459  *buf = p;
1460  if (sz == 0)
1461    return TRUE;
1462
1463  p = bfd_malloc (sec->rawsize > sec->size ? sec->rawsize : sec->size);
1464  if (p == NULL)
1465    return FALSE;
1466  *buf = p;
1467
1468  return bfd_get_section_contents (abfd, sec, p, 0, sz);
1469}
1470/*
1471FUNCTION
1472	bfd_copy_private_section_data
1473
1474SYNOPSIS
1475	bfd_boolean bfd_copy_private_section_data
1476	  (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1477
1478DESCRIPTION
1479	Copy private section information from @var{isec} in the BFD
1480	@var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1481	Return <<TRUE>> on success, <<FALSE>> on error.  Possible error
1482	returns are:
1483
1484	o <<bfd_error_no_memory>> -
1485	Not enough memory exists to create private data for @var{osec}.
1486
1487.#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1488.     BFD_SEND (obfd, _bfd_copy_private_section_data, \
1489.		(ibfd, isection, obfd, osection))
1490*/
1491
1492/*
1493FUNCTION
1494	bfd_generic_is_group_section
1495
1496SYNOPSIS
1497	bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1498
1499DESCRIPTION
1500	Returns TRUE if @var{sec} is a member of a group.
1501*/
1502
1503bfd_boolean
1504bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1505			      const asection *sec ATTRIBUTE_UNUSED)
1506{
1507  return FALSE;
1508}
1509
1510/*
1511FUNCTION
1512	bfd_generic_discard_group
1513
1514SYNOPSIS
1515	bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1516
1517DESCRIPTION
1518	Remove all members of @var{group} from the output.
1519*/
1520
1521bfd_boolean
1522bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1523			   asection *group ATTRIBUTE_UNUSED)
1524{
1525  return TRUE;
1526}
1527