section.c revision 130562
1/* Object file "section" support for the BFD library.
2   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3   2000, 2001, 2002, 2003
4   Free Software Foundation, Inc.
5   Written by Cygnus Support.
6
7This file is part of BFD, the Binary File Descriptor library.
8
9This program is free software; you can redistribute it and/or modify
10it under the terms of the GNU General Public License as published by
11the Free Software Foundation; either version 2 of the License, or
12(at your option) any later version.
13
14This program is distributed in the hope that it will be useful,
15but WITHOUT ANY WARRANTY; without even the implied warranty of
16MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17GNU General Public License for more details.
18
19You should have received a copy of the GNU General Public License
20along with this program; if not, write to the Free Software
21Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
22
23/*
24SECTION
25	Sections
26
27	The raw data contained within a BFD is maintained through the
28	section abstraction.  A single BFD may have any number of
29	sections.  It keeps hold of them by pointing to the first;
30	each one points to the next in the list.
31
32	Sections are supported in BFD in <<section.c>>.
33
34@menu
35@* Section Input::
36@* Section Output::
37@* typedef asection::
38@* section prototypes::
39@end menu
40
41INODE
42Section Input, Section Output, Sections, Sections
43SUBSECTION
44	Section input
45
46	When a BFD is opened for reading, the section structures are
47	created and attached to the BFD.
48
49	Each section has a name which describes the section in the
50	outside world---for example, <<a.out>> would contain at least
51	three sections, called <<.text>>, <<.data>> and <<.bss>>.
52
53	Names need not be unique; for example a COFF file may have several
54	sections named <<.data>>.
55
56	Sometimes a BFD will contain more than the ``natural'' number of
57	sections. A back end may attach other sections containing
58	constructor data, or an application may add a section (using
59	<<bfd_make_section>>) to the sections attached to an already open
60	BFD. For example, the linker creates an extra section
61	<<COMMON>> for each input file's BFD to hold information about
62	common storage.
63
64	The raw data is not necessarily read in when
65	the section descriptor is created. Some targets may leave the
66	data in place until a <<bfd_get_section_contents>> call is
67	made. Other back ends may read in all the data at once.  For
68	example, an S-record file has to be read once to determine the
69	size of the data. An IEEE-695 file doesn't contain raw data in
70	sections, but data and relocation expressions intermixed, so
71	the data area has to be parsed to get out the data and
72	relocations.
73
74INODE
75Section Output, typedef asection, Section Input, Sections
76
77SUBSECTION
78	Section output
79
80	To write a new object style BFD, the various sections to be
81	written have to be created. They are attached to the BFD in
82	the same way as input sections; data is written to the
83	sections using <<bfd_set_section_contents>>.
84
85	Any program that creates or combines sections (e.g., the assembler
86	and linker) must use the <<asection>> fields <<output_section>> and
87	<<output_offset>> to indicate the file sections to which each
88	section must be written.  (If the section is being created from
89	scratch, <<output_section>> should probably point to the section
90	itself and <<output_offset>> should probably be zero.)
91
92	The data to be written comes from input sections attached
93	(via <<output_section>> pointers) to
94	the output sections.  The output section structure can be
95	considered a filter for the input section: the output section
96	determines the vma of the output data and the name, but the
97	input section determines the offset into the output section of
98	the data to be written.
99
100	E.g., to create a section "O", starting at 0x100, 0x123 long,
101	containing two subsections, "A" at offset 0x0 (i.e., at vma
102	0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
103	structures would look like:
104
105|   section name          "A"
106|     output_offset   0x00
107|     size            0x20
108|     output_section ----------->  section name    "O"
109|                             |    vma             0x100
110|   section name          "B" |    size            0x123
111|     output_offset   0x20    |
112|     size            0x103   |
113|     output_section  --------|
114
115SUBSECTION
116	Link orders
117
118	The data within a section is stored in a @dfn{link_order}.
119	These are much like the fixups in <<gas>>.  The link_order
120	abstraction allows a section to grow and shrink within itself.
121
122	A link_order knows how big it is, and which is the next
123	link_order and where the raw data for it is; it also points to
124	a list of relocations which apply to it.
125
126	The link_order is used by the linker to perform relaxing on
127	final code.  The compiler creates code which is as big as
128	necessary to make it work without relaxing, and the user can
129	select whether to relax.  Sometimes relaxing takes a lot of
130	time.  The linker runs around the relocations to see if any
131	are attached to data which can be shrunk, if so it does it on
132	a link_order by link_order basis.
133
134*/
135
136#include "bfd.h"
137#include "sysdep.h"
138#include "libbfd.h"
139#include "bfdlink.h"
140
141/*
142DOCDD
143INODE
144typedef asection, section prototypes, Section Output, Sections
145SUBSECTION
146	typedef asection
147
148	Here is the section structure:
149
150CODE_FRAGMENT
151.
152.{* This structure is used for a comdat section, as in PE.  A comdat
153.   section is associated with a particular symbol.  When the linker
154.   sees a comdat section, it keeps only one of the sections with a
155.   given name and associated with a given symbol.  *}
156.
157.struct bfd_comdat_info
158.{
159.  {* The name of the symbol associated with a comdat section.  *}
160.  const char *name;
161.
162.  {* The local symbol table index of the symbol associated with a
163.     comdat section.  This is only meaningful to the object file format
164.     specific code; it is not an index into the list returned by
165.     bfd_canonicalize_symtab.  *}
166.  long symbol;
167.};
168.
169.typedef struct bfd_section
170.{
171.  {* The name of the section; the name isn't a copy, the pointer is
172.     the same as that passed to bfd_make_section.  *}
173.  const char *name;
174.
175.  {* A unique sequence number.  *}
176.  int id;
177.
178.  {* Which section in the bfd; 0..n-1 as sections are created in a bfd.  *}
179.  int index;
180.
181.  {* The next section in the list belonging to the BFD, or NULL.  *}
182.  struct bfd_section *next;
183.
184.  {* The field flags contains attributes of the section. Some
185.     flags are read in from the object file, and some are
186.     synthesized from other information.  *}
187.  flagword flags;
188.
189.#define SEC_NO_FLAGS   0x000
190.
191.  {* Tells the OS to allocate space for this section when loading.
192.     This is clear for a section containing debug information only.  *}
193.#define SEC_ALLOC      0x001
194.
195.  {* Tells the OS to load the section from the file when loading.
196.     This is clear for a .bss section.  *}
197.#define SEC_LOAD       0x002
198.
199.  {* The section contains data still to be relocated, so there is
200.     some relocation information too.  *}
201.#define SEC_RELOC      0x004
202.
203.  {* ELF reserves 4 processor specific bits and 8 operating system
204.     specific bits in sh_flags; at present we can get away with just
205.     one in communicating between the assembler and BFD, but this
206.     isn't a good long-term solution.  *}
207.#define SEC_ARCH_BIT_0 0x008
208.
209.  {* A signal to the OS that the section contains read only data.  *}
210.#define SEC_READONLY   0x010
211.
212.  {* The section contains code only.  *}
213.#define SEC_CODE       0x020
214.
215.  {* The section contains data only.  *}
216.#define SEC_DATA       0x040
217.
218.  {* The section will reside in ROM.  *}
219.#define SEC_ROM        0x080
220.
221.  {* The section contains constructor information. This section
222.     type is used by the linker to create lists of constructors and
223.     destructors used by <<g++>>. When a back end sees a symbol
224.     which should be used in a constructor list, it creates a new
225.     section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
226.     the symbol to it, and builds a relocation. To build the lists
227.     of constructors, all the linker has to do is catenate all the
228.     sections called <<__CTOR_LIST__>> and relocate the data
229.     contained within - exactly the operations it would peform on
230.     standard data.  *}
231.#define SEC_CONSTRUCTOR 0x100
232.
233.  {* The section has contents - a data section could be
234.     <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
235.     <<SEC_HAS_CONTENTS>>  *}
236.#define SEC_HAS_CONTENTS 0x200
237.
238.  {* An instruction to the linker to not output the section
239.     even if it has information which would normally be written.  *}
240.#define SEC_NEVER_LOAD 0x400
241.
242.  {* The section is a COFF shared library section.  This flag is
243.     only for the linker.  If this type of section appears in
244.     the input file, the linker must copy it to the output file
245.     without changing the vma or size.  FIXME: Although this
246.     was originally intended to be general, it really is COFF
247.     specific (and the flag was renamed to indicate this).  It
248.     might be cleaner to have some more general mechanism to
249.     allow the back end to control what the linker does with
250.     sections.  *}
251.#define SEC_COFF_SHARED_LIBRARY 0x800
252.
253.  {* The section contains thread local data.  *}
254.#define SEC_THREAD_LOCAL 0x1000
255.
256.  {* The section has GOT references.  This flag is only for the
257.     linker, and is currently only used by the elf32-hppa back end.
258.     It will be set if global offset table references were detected
259.     in this section, which indicate to the linker that the section
260.     contains PIC code, and must be handled specially when doing a
261.     static link.  *}
262.#define SEC_HAS_GOT_REF 0x4000
263.
264.  {* The section contains common symbols (symbols may be defined
265.     multiple times, the value of a symbol is the amount of
266.     space it requires, and the largest symbol value is the one
267.     used).  Most targets have exactly one of these (which we
268.     translate to bfd_com_section_ptr), but ECOFF has two.  *}
269.#define SEC_IS_COMMON 0x8000
270.
271.  {* The section contains only debugging information.  For
272.     example, this is set for ELF .debug and .stab sections.
273.     strip tests this flag to see if a section can be
274.     discarded.  *}
275.#define SEC_DEBUGGING 0x10000
276.
277.  {* The contents of this section are held in memory pointed to
278.     by the contents field.  This is checked by bfd_get_section_contents,
279.     and the data is retrieved from memory if appropriate.  *}
280.#define SEC_IN_MEMORY 0x20000
281.
282.  {* The contents of this section are to be excluded by the
283.     linker for executable and shared objects unless those
284.     objects are to be further relocated.  *}
285.#define SEC_EXCLUDE 0x40000
286.
287.  {* The contents of this section are to be sorted based on the sum of
288.     the symbol and addend values specified by the associated relocation
289.     entries.  Entries without associated relocation entries will be
290.     appended to the end of the section in an unspecified order.  *}
291.#define SEC_SORT_ENTRIES 0x80000
292.
293.  {* When linking, duplicate sections of the same name should be
294.     discarded, rather than being combined into a single section as
295.     is usually done.  This is similar to how common symbols are
296.     handled.  See SEC_LINK_DUPLICATES below.  *}
297.#define SEC_LINK_ONCE 0x100000
298.
299.  {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
300.     should handle duplicate sections.  *}
301.#define SEC_LINK_DUPLICATES 0x600000
302.
303.  {* This value for SEC_LINK_DUPLICATES means that duplicate
304.     sections with the same name should simply be discarded.  *}
305.#define SEC_LINK_DUPLICATES_DISCARD 0x0
306.
307.  {* This value for SEC_LINK_DUPLICATES means that the linker
308.     should warn if there are any duplicate sections, although
309.     it should still only link one copy.  *}
310.#define SEC_LINK_DUPLICATES_ONE_ONLY 0x200000
311.
312.  {* This value for SEC_LINK_DUPLICATES means that the linker
313.     should warn if any duplicate sections are a different size.  *}
314.#define SEC_LINK_DUPLICATES_SAME_SIZE 0x400000
315.
316.  {* This value for SEC_LINK_DUPLICATES means that the linker
317.     should warn if any duplicate sections contain different
318.     contents.  *}
319.#define SEC_LINK_DUPLICATES_SAME_CONTENTS 0x600000
320.
321.  {* This section was created by the linker as part of dynamic
322.     relocation or other arcane processing.  It is skipped when
323.     going through the first-pass output, trusting that someone
324.     else up the line will take care of it later.  *}
325.#define SEC_LINKER_CREATED 0x800000
326.
327.  {* This section should not be subject to garbage collection.  *}
328.#define SEC_KEEP 0x1000000
329.
330.  {* This section contains "short" data, and should be placed
331.     "near" the GP.  *}
332.#define SEC_SMALL_DATA 0x2000000
333.
334.  {* This section contains data which may be shared with other
335.     executables or shared objects.  *}
336.#define SEC_SHARED 0x4000000
337.
338.  {* When a section with this flag is being linked, then if the size of
339.     the input section is less than a page, it should not cross a page
340.     boundary.  If the size of the input section is one page or more, it
341.     should be aligned on a page boundary.  *}
342.#define SEC_BLOCK 0x8000000
343.
344.  {* Conditionally link this section; do not link if there are no
345.     references found to any symbol in the section.  *}
346.#define SEC_CLINK 0x10000000
347.
348.  {* Attempt to merge identical entities in the section.
349.     Entity size is given in the entsize field.  *}
350.#define SEC_MERGE 0x20000000
351.
352.  {* If given with SEC_MERGE, entities to merge are zero terminated
353.     strings where entsize specifies character size instead of fixed
354.     size entries.  *}
355.#define SEC_STRINGS 0x40000000
356.
357.  {* This section contains data about section groups.  *}
358.#define SEC_GROUP 0x80000000
359.
360.  {*  End of section flags.  *}
361.
362.  {* Some internal packed boolean fields.  *}
363.
364.  {* See the vma field.  *}
365.  unsigned int user_set_vma : 1;
366.
367.  {* Whether relocations have been processed.  *}
368.  unsigned int reloc_done : 1;
369.
370.  {* A mark flag used by some of the linker backends.  *}
371.  unsigned int linker_mark : 1;
372.
373.  {* Another mark flag used by some of the linker backends.  Set for
374.     output sections that have an input section.  *}
375.  unsigned int linker_has_input : 1;
376.
377.  {* A mark flag used by some linker backends for garbage collection.  *}
378.  unsigned int gc_mark : 1;
379.
380.  {* The following flags are used by the ELF linker. *}
381.
382.  {* Mark sections which have been allocated to segments.  *}
383.  unsigned int segment_mark : 1;
384.
385.  {* Type of sec_info information.  *}
386.  unsigned int sec_info_type:3;
387.#define ELF_INFO_TYPE_NONE      0
388.#define ELF_INFO_TYPE_STABS     1
389.#define ELF_INFO_TYPE_MERGE     2
390.#define ELF_INFO_TYPE_EH_FRAME  3
391.#define ELF_INFO_TYPE_JUST_SYMS 4
392.
393.  {* Nonzero if this section uses RELA relocations, rather than REL.  *}
394.  unsigned int use_rela_p:1;
395.
396.  {* Bits used by various backends.  *}
397.  unsigned int has_tls_reloc:1;
398.
399.  {* Nonzero if this section needs the relax finalize pass.  *}
400.  unsigned int need_finalize_relax:1;
401.
402.  {* Nonzero if this section has a gp reloc.  *}
403.  unsigned int has_gp_reloc:1;
404.
405.  {* Unused bits.  *}
406.  unsigned int flag13:1;
407.  unsigned int flag14:1;
408.  unsigned int flag15:1;
409.  unsigned int flag16:4;
410.  unsigned int flag20:4;
411.  unsigned int flag24:8;
412.
413.  {* End of internal packed boolean fields.  *}
414.
415.  {*  The virtual memory address of the section - where it will be
416.      at run time.  The symbols are relocated against this.  The
417.      user_set_vma flag is maintained by bfd; if it's not set, the
418.      backend can assign addresses (for example, in <<a.out>>, where
419.      the default address for <<.data>> is dependent on the specific
420.      target and various flags).  *}
421.  bfd_vma vma;
422.
423.  {*  The load address of the section - where it would be in a
424.      rom image; really only used for writing section header
425.      information.  *}
426.  bfd_vma lma;
427.
428.  {* The size of the section in octets, as it will be output.
429.     Contains a value even if the section has no contents (e.g., the
430.     size of <<.bss>>).  This will be filled in after relocation.  *}
431.  bfd_size_type _cooked_size;
432.
433.  {* The original size on disk of the section, in octets.  Normally this
434.     value is the same as the size, but if some relaxing has
435.     been done, then this value will be bigger.  *}
436.  bfd_size_type _raw_size;
437.
438.  {* If this section is going to be output, then this value is the
439.     offset in *bytes* into the output section of the first byte in the
440.     input section (byte ==> smallest addressable unit on the
441.     target).  In most cases, if this was going to start at the
442.     100th octet (8-bit quantity) in the output section, this value
443.     would be 100.  However, if the target byte size is 16 bits
444.     (bfd_octets_per_byte is "2"), this value would be 50.  *}
445.  bfd_vma output_offset;
446.
447.  {* The output section through which to map on output.  *}
448.  struct bfd_section *output_section;
449.
450.  {* The alignment requirement of the section, as an exponent of 2 -
451.     e.g., 3 aligns to 2^3 (or 8).  *}
452.  unsigned int alignment_power;
453.
454.  {* If an input section, a pointer to a vector of relocation
455.     records for the data in this section.  *}
456.  struct reloc_cache_entry *relocation;
457.
458.  {* If an output section, a pointer to a vector of pointers to
459.     relocation records for the data in this section.  *}
460.  struct reloc_cache_entry **orelocation;
461.
462.  {* The number of relocation records in one of the above.  *}
463.  unsigned reloc_count;
464.
465.  {* Information below is back end specific - and not always used
466.     or updated.  *}
467.
468.  {* File position of section data.  *}
469.  file_ptr filepos;
470.
471.  {* File position of relocation info.  *}
472.  file_ptr rel_filepos;
473.
474.  {* File position of line data.  *}
475.  file_ptr line_filepos;
476.
477.  {* Pointer to data for applications.  *}
478.  void *userdata;
479.
480.  {* If the SEC_IN_MEMORY flag is set, this points to the actual
481.     contents.  *}
482.  unsigned char *contents;
483.
484.  {* Attached line number information.  *}
485.  alent *lineno;
486.
487.  {* Number of line number records.  *}
488.  unsigned int lineno_count;
489.
490.  {* Entity size for merging purposes.  *}
491.  unsigned int entsize;
492.
493.  {* Optional information about a COMDAT entry; NULL if not COMDAT.  *}
494.  struct bfd_comdat_info *comdat;
495.
496.  {* Points to the kept section if this section is a link-once section,
497.     and is discarded.  *}
498.  struct bfd_section *kept_section;
499.
500.  {* When a section is being output, this value changes as more
501.     linenumbers are written out.  *}
502.  file_ptr moving_line_filepos;
503.
504.  {* What the section number is in the target world.  *}
505.  int target_index;
506.
507.  void *used_by_bfd;
508.
509.  {* If this is a constructor section then here is a list of the
510.     relocations created to relocate items within it.  *}
511.  struct relent_chain *constructor_chain;
512.
513.  {* The BFD which owns the section.  *}
514.  bfd *owner;
515.
516.  {* A symbol which points at this section only.  *}
517.  struct bfd_symbol *symbol;
518.  struct bfd_symbol **symbol_ptr_ptr;
519.
520.  struct bfd_link_order *link_order_head;
521.  struct bfd_link_order *link_order_tail;
522.} asection;
523.
524.{* These sections are global, and are managed by BFD.  The application
525.   and target back end are not permitted to change the values in
526.   these sections.  New code should use the section_ptr macros rather
527.   than referring directly to the const sections.  The const sections
528.   may eventually vanish.  *}
529.#define BFD_ABS_SECTION_NAME "*ABS*"
530.#define BFD_UND_SECTION_NAME "*UND*"
531.#define BFD_COM_SECTION_NAME "*COM*"
532.#define BFD_IND_SECTION_NAME "*IND*"
533.
534.{* The absolute section.  *}
535.extern asection bfd_abs_section;
536.#define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
537.#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
538.{* Pointer to the undefined section.  *}
539.extern asection bfd_und_section;
540.#define bfd_und_section_ptr ((asection *) &bfd_und_section)
541.#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
542.{* Pointer to the common section.  *}
543.extern asection bfd_com_section;
544.#define bfd_com_section_ptr ((asection *) &bfd_com_section)
545.{* Pointer to the indirect section.  *}
546.extern asection bfd_ind_section;
547.#define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
548.#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
549.
550.#define bfd_is_const_section(SEC)		\
551. (   ((SEC) == bfd_abs_section_ptr)		\
552.  || ((SEC) == bfd_und_section_ptr)		\
553.  || ((SEC) == bfd_com_section_ptr)		\
554.  || ((SEC) == bfd_ind_section_ptr))
555.
556.extern const struct bfd_symbol * const bfd_abs_symbol;
557.extern const struct bfd_symbol * const bfd_com_symbol;
558.extern const struct bfd_symbol * const bfd_und_symbol;
559.extern const struct bfd_symbol * const bfd_ind_symbol;
560.#define bfd_get_section_size_before_reloc(section) \
561.     ((section)->_raw_size)
562.#define bfd_get_section_size_after_reloc(section) \
563.     ((section)->reloc_done ? (section)->_cooked_size \
564.                            : (abort (), (bfd_size_type) 1))
565.
566.{* Macros to handle insertion and deletion of a bfd's sections.  These
567.   only handle the list pointers, ie. do not adjust section_count,
568.   target_index etc.  *}
569.#define bfd_section_list_remove(ABFD, PS) \
570.  do							\
571.    {							\
572.      asection **_ps = PS;				\
573.      asection *_s = *_ps;				\
574.      *_ps = _s->next;					\
575.      if (_s->next == NULL)				\
576.        (ABFD)->section_tail = _ps;			\
577.    }							\
578.  while (0)
579.#define bfd_section_list_insert(ABFD, PS, S) \
580.  do							\
581.    {							\
582.      asection **_ps = PS;				\
583.      asection *_s = S;				\
584.      _s->next = *_ps;					\
585.      *_ps = _s;					\
586.      if (_s->next == NULL)				\
587.        (ABFD)->section_tail = &_s->next;		\
588.    }							\
589.  while (0)
590.
591*/
592
593/* We use a macro to initialize the static asymbol structures because
594   traditional C does not permit us to initialize a union member while
595   gcc warns if we don't initialize it.  */
596 /* the_bfd, name, value, attr, section [, udata] */
597#ifdef __STDC__
598#define GLOBAL_SYM_INIT(NAME, SECTION) \
599  { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION, { 0 }}
600#else
601#define GLOBAL_SYM_INIT(NAME, SECTION) \
602  { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION }
603#endif
604
605/* These symbols are global, not specific to any BFD.  Therefore, anything
606   that tries to change them is broken, and should be repaired.  */
607
608static const asymbol global_syms[] =
609{
610  GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, &bfd_com_section),
611  GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, &bfd_und_section),
612  GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, &bfd_abs_section),
613  GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, &bfd_ind_section)
614};
615
616#define STD_SECTION(SEC, FLAGS, SYM, NAME, IDX)				\
617  const asymbol * const SYM = (asymbol *) &global_syms[IDX]; 		\
618  asection SEC = 							\
619    /* name, id,  index, next, flags, user_set_vma, reloc_done,      */	\
620    { NAME,  IDX, 0,     NULL, FLAGS, 0,            0,			\
621									\
622    /* linker_mark, linker_has_input, gc_mark, segment_mark,         */	\
623       0,           0,                1,       0,			\
624									\
625    /* sec_info_type, use_rela_p, has_tls_reloc,                     */ \
626       0,	      0,	  0,					\
627									\
628    /* need_finalize_relax, has_gp_reloc,                            */ \
629       0,		    0,						\
630									\
631    /* flag13, flag14, flag15, flag16, flag20, flag24,               */ \
632       0,      0,      0,      0,      0,      0,			\
633									\
634    /* vma, lma, _cooked_size, _raw_size,                            */	\
635       0,   0,   0,            0,					\
636									\
637    /* output_offset, output_section,      alignment_power,          */	\
638       0,             (struct bfd_section *) &SEC, 0,			\
639									\
640    /* relocation, orelocation, reloc_count, filepos, rel_filepos,   */	\
641       NULL,       NULL,        0,           0,       0,		\
642									\
643    /* line_filepos, userdata, contents, lineno, lineno_count,       */	\
644       0,            NULL,     NULL,     NULL,   0,			\
645									\
646    /* entsize, comdat, kept_section, moving_line_filepos,           */	\
647       0,       NULL,   NULL,	      0,				\
648									\
649    /* target_index, used_by_bfd, constructor_chain, owner,          */	\
650       0,            NULL,        NULL,              NULL,		\
651									\
652    /* symbol,                                                       */	\
653       (struct bfd_symbol *) &global_syms[IDX],				\
654									\
655    /* symbol_ptr_ptr,                                               */	\
656       (struct bfd_symbol **) &SYM,					\
657									\
658    /* link_order_head, link_order_tail                              */	\
659       NULL,            NULL						\
660    }
661
662STD_SECTION (bfd_com_section, SEC_IS_COMMON, bfd_com_symbol,
663	     BFD_COM_SECTION_NAME, 0);
664STD_SECTION (bfd_und_section, 0, bfd_und_symbol, BFD_UND_SECTION_NAME, 1);
665STD_SECTION (bfd_abs_section, 0, bfd_abs_symbol, BFD_ABS_SECTION_NAME, 2);
666STD_SECTION (bfd_ind_section, 0, bfd_ind_symbol, BFD_IND_SECTION_NAME, 3);
667#undef STD_SECTION
668
669struct section_hash_entry
670{
671  struct bfd_hash_entry root;
672  asection section;
673};
674
675/* Initialize an entry in the section hash table.  */
676
677struct bfd_hash_entry *
678bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
679			  struct bfd_hash_table *table,
680			  const char *string)
681{
682  /* Allocate the structure if it has not already been allocated by a
683     subclass.  */
684  if (entry == NULL)
685    {
686      entry = (struct bfd_hash_entry *)
687	bfd_hash_allocate (table, sizeof (struct section_hash_entry));
688      if (entry == NULL)
689	return entry;
690    }
691
692  /* Call the allocation method of the superclass.  */
693  entry = bfd_hash_newfunc (entry, table, string);
694  if (entry != NULL)
695    memset (&((struct section_hash_entry *) entry)->section, 0,
696	    sizeof (asection));
697
698  return entry;
699}
700
701#define section_hash_lookup(table, string, create, copy) \
702  ((struct section_hash_entry *) \
703   bfd_hash_lookup ((table), (string), (create), (copy)))
704
705/* Initializes a new section.  NEWSECT->NAME is already set.  */
706
707static asection *
708bfd_section_init (bfd *abfd, asection *newsect)
709{
710  static int section_id = 0x10;  /* id 0 to 3 used by STD_SECTION.  */
711
712  newsect->id = section_id;
713  newsect->index = abfd->section_count;
714  newsect->owner = abfd;
715
716  /* Create a symbol whose only job is to point to this section.  This
717     is useful for things like relocs which are relative to the base
718     of a section.  */
719  newsect->symbol = bfd_make_empty_symbol (abfd);
720  if (newsect->symbol == NULL)
721    return NULL;
722
723  newsect->symbol->name = newsect->name;
724  newsect->symbol->value = 0;
725  newsect->symbol->section = newsect;
726  newsect->symbol->flags = BSF_SECTION_SYM;
727
728  newsect->symbol_ptr_ptr = &newsect->symbol;
729
730  if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
731    return NULL;
732
733  section_id++;
734  abfd->section_count++;
735  *abfd->section_tail = newsect;
736  abfd->section_tail = &newsect->next;
737  return newsect;
738}
739
740/*
741DOCDD
742INODE
743section prototypes,  , typedef asection, Sections
744SUBSECTION
745	Section prototypes
746
747These are the functions exported by the section handling part of BFD.
748*/
749
750/*
751FUNCTION
752	bfd_section_list_clear
753
754SYNOPSIS
755	void bfd_section_list_clear (bfd *);
756
757DESCRIPTION
758	Clears the section list, and also resets the section count and
759	hash table entries.
760*/
761
762void
763bfd_section_list_clear (bfd *abfd)
764{
765  abfd->sections = NULL;
766  abfd->section_tail = &abfd->sections;
767  abfd->section_count = 0;
768  memset (abfd->section_htab.table, 0,
769	  abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
770}
771
772/*
773FUNCTION
774	bfd_get_section_by_name
775
776SYNOPSIS
777	asection *bfd_get_section_by_name (bfd *abfd, const char *name);
778
779DESCRIPTION
780	Run through @var{abfd} and return the one of the
781	<<asection>>s whose name matches @var{name}, otherwise <<NULL>>.
782	@xref{Sections}, for more information.
783
784	This should only be used in special cases; the normal way to process
785	all sections of a given name is to use <<bfd_map_over_sections>> and
786	<<strcmp>> on the name (or better yet, base it on the section flags
787	or something else) for each section.
788*/
789
790asection *
791bfd_get_section_by_name (bfd *abfd, const char *name)
792{
793  struct section_hash_entry *sh;
794
795  sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
796  if (sh != NULL)
797    return &sh->section;
798
799  return NULL;
800}
801
802/*
803FUNCTION
804	bfd_get_unique_section_name
805
806SYNOPSIS
807	char *bfd_get_unique_section_name
808	  (bfd *abfd, const char *templat, int *count);
809
810DESCRIPTION
811	Invent a section name that is unique in @var{abfd} by tacking
812	a dot and a digit suffix onto the original @var{templat}.  If
813	@var{count} is non-NULL, then it specifies the first number
814	tried as a suffix to generate a unique name.  The value
815	pointed to by @var{count} will be incremented in this case.
816*/
817
818char *
819bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
820{
821  int num;
822  unsigned int len;
823  char *sname;
824
825  len = strlen (templat);
826  sname = bfd_malloc (len + 8);
827  if (sname == NULL)
828    return NULL;
829  memcpy (sname, templat, len);
830  num = 1;
831  if (count != NULL)
832    num = *count;
833
834  do
835    {
836      /* If we have a million sections, something is badly wrong.  */
837      if (num > 999999)
838	abort ();
839      sprintf (sname + len, ".%d", num++);
840    }
841  while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
842
843  if (count != NULL)
844    *count = num;
845  return sname;
846}
847
848/*
849FUNCTION
850	bfd_make_section_old_way
851
852SYNOPSIS
853	asection *bfd_make_section_old_way (bfd *abfd, const char *name);
854
855DESCRIPTION
856	Create a new empty section called @var{name}
857	and attach it to the end of the chain of sections for the
858	BFD @var{abfd}. An attempt to create a section with a name which
859	is already in use returns its pointer without changing the
860	section chain.
861
862	It has the funny name since this is the way it used to be
863	before it was rewritten....
864
865	Possible errors are:
866	o <<bfd_error_invalid_operation>> -
867	If output has already started for this BFD.
868	o <<bfd_error_no_memory>> -
869	If memory allocation fails.
870
871*/
872
873asection *
874bfd_make_section_old_way (bfd *abfd, const char *name)
875{
876  struct section_hash_entry *sh;
877  asection *newsect;
878
879  if (abfd->output_has_begun)
880    {
881      bfd_set_error (bfd_error_invalid_operation);
882      return NULL;
883    }
884
885  if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
886    return bfd_abs_section_ptr;
887
888  if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
889    return bfd_com_section_ptr;
890
891  if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
892    return bfd_und_section_ptr;
893
894  if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
895    return bfd_ind_section_ptr;
896
897  sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
898  if (sh == NULL)
899    return NULL;
900
901  newsect = &sh->section;
902  if (newsect->name != NULL)
903    {
904      /* Section already exists.  */
905      return newsect;
906    }
907
908  newsect->name = name;
909  return bfd_section_init (abfd, newsect);
910}
911
912/*
913FUNCTION
914	bfd_make_section_anyway
915
916SYNOPSIS
917	asection *bfd_make_section_anyway (bfd *abfd, const char *name);
918
919DESCRIPTION
920   Create a new empty section called @var{name} and attach it to the end of
921   the chain of sections for @var{abfd}.  Create a new section even if there
922   is already a section with that name.
923
924   Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
925   o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
926   o <<bfd_error_no_memory>> - If memory allocation fails.
927*/
928
929sec_ptr
930bfd_make_section_anyway (bfd *abfd, const char *name)
931{
932  struct section_hash_entry *sh;
933  asection *newsect;
934
935  if (abfd->output_has_begun)
936    {
937      bfd_set_error (bfd_error_invalid_operation);
938      return NULL;
939    }
940
941  sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
942  if (sh == NULL)
943    return NULL;
944
945  newsect = &sh->section;
946  if (newsect->name != NULL)
947    {
948      /* We are making a section of the same name.  It can't go in
949	 section_htab without generating a unique section name and
950	 that would be pointless;  We don't need to traverse the
951	 hash table.  */
952      newsect = bfd_zalloc (abfd, sizeof (asection));
953      if (newsect == NULL)
954	return NULL;
955    }
956
957  newsect->name = name;
958  return bfd_section_init (abfd, newsect);
959}
960
961/*
962FUNCTION
963	bfd_make_section
964
965SYNOPSIS
966	asection *bfd_make_section (bfd *, const char *name);
967
968DESCRIPTION
969   Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
970   bfd_set_error ()) without changing the section chain if there is already a
971   section named @var{name}.  If there is an error, return <<NULL>> and set
972   <<bfd_error>>.
973*/
974
975asection *
976bfd_make_section (bfd *abfd, const char *name)
977{
978  struct section_hash_entry *sh;
979  asection *newsect;
980
981  if (abfd->output_has_begun)
982    {
983      bfd_set_error (bfd_error_invalid_operation);
984      return NULL;
985    }
986
987  if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
988      || strcmp (name, BFD_COM_SECTION_NAME) == 0
989      || strcmp (name, BFD_UND_SECTION_NAME) == 0
990      || strcmp (name, BFD_IND_SECTION_NAME) == 0)
991    return NULL;
992
993  sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
994  if (sh == NULL)
995    return NULL;
996
997  newsect = &sh->section;
998  if (newsect->name != NULL)
999    {
1000      /* Section already exists.  */
1001      return NULL;
1002    }
1003
1004  newsect->name = name;
1005  return bfd_section_init (abfd, newsect);
1006}
1007
1008/*
1009FUNCTION
1010	bfd_set_section_flags
1011
1012SYNOPSIS
1013	bfd_boolean bfd_set_section_flags
1014	  (bfd *abfd, asection *sec, flagword flags);
1015
1016DESCRIPTION
1017	Set the attributes of the section @var{sec} in the BFD
1018	@var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1019	<<FALSE>> on error. Possible error returns are:
1020
1021	o <<bfd_error_invalid_operation>> -
1022	The section cannot have one or more of the attributes
1023	requested. For example, a .bss section in <<a.out>> may not
1024	have the <<SEC_HAS_CONTENTS>> field set.
1025
1026*/
1027
1028bfd_boolean
1029bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1030		       sec_ptr section,
1031		       flagword flags)
1032{
1033#if 0
1034  /* If you try to copy a text section from an input file (where it
1035     has the SEC_CODE flag set) to an output file, this loses big if
1036     the bfd_applicable_section_flags (abfd) doesn't have the SEC_CODE
1037     set - which it doesn't, at least not for a.out.  FIXME */
1038
1039  if ((flags & bfd_applicable_section_flags (abfd)) != flags)
1040    {
1041      bfd_set_error (bfd_error_invalid_operation);
1042      return FALSE;
1043    }
1044#endif
1045
1046  section->flags = flags;
1047  return TRUE;
1048}
1049
1050/*
1051FUNCTION
1052	bfd_map_over_sections
1053
1054SYNOPSIS
1055	void bfd_map_over_sections
1056	  (bfd *abfd,
1057	   void (*func) (bfd *abfd, asection *sect, void *obj),
1058	   void *obj);
1059
1060DESCRIPTION
1061	Call the provided function @var{func} for each section
1062	attached to the BFD @var{abfd}, passing @var{obj} as an
1063	argument. The function will be called as if by
1064
1065|	func (abfd, the_section, obj);
1066
1067	This is the preferred method for iterating over sections; an
1068	alternative would be to use a loop:
1069
1070|	   section *p;
1071|	   for (p = abfd->sections; p != NULL; p = p->next)
1072|	      func (abfd, p, ...)
1073
1074*/
1075
1076void
1077bfd_map_over_sections (bfd *abfd,
1078		       void (*operation) (bfd *, asection *, void *),
1079		       void *user_storage)
1080{
1081  asection *sect;
1082  unsigned int i = 0;
1083
1084  for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1085    (*operation) (abfd, sect, user_storage);
1086
1087  if (i != abfd->section_count)	/* Debugging */
1088    abort ();
1089}
1090
1091/*
1092FUNCTION
1093	bfd_set_section_size
1094
1095SYNOPSIS
1096	bfd_boolean bfd_set_section_size
1097	  (bfd *abfd, asection *sec, bfd_size_type val);
1098
1099DESCRIPTION
1100	Set @var{sec} to the size @var{val}. If the operation is
1101	ok, then <<TRUE>> is returned, else <<FALSE>>.
1102
1103	Possible error returns:
1104	o <<bfd_error_invalid_operation>> -
1105	Writing has started to the BFD, so setting the size is invalid.
1106
1107*/
1108
1109bfd_boolean
1110bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1111{
1112  /* Once you've started writing to any section you cannot create or change
1113     the size of any others.  */
1114
1115  if (abfd->output_has_begun)
1116    {
1117      bfd_set_error (bfd_error_invalid_operation);
1118      return FALSE;
1119    }
1120
1121  ptr->_cooked_size = val;
1122  ptr->_raw_size = val;
1123
1124  return TRUE;
1125}
1126
1127/*
1128FUNCTION
1129	bfd_set_section_contents
1130
1131SYNOPSIS
1132	bfd_boolean bfd_set_section_contents
1133	  (bfd *abfd, asection *section, const void *data,
1134	   file_ptr offset, bfd_size_type count);
1135
1136DESCRIPTION
1137	Sets the contents of the section @var{section} in BFD
1138	@var{abfd} to the data starting in memory at @var{data}. The
1139	data is written to the output section starting at offset
1140	@var{offset} for @var{count} octets.
1141
1142	Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1143	returns are:
1144	o <<bfd_error_no_contents>> -
1145	The output section does not have the <<SEC_HAS_CONTENTS>>
1146	attribute, so nothing can be written to it.
1147	o and some more too
1148
1149	This routine is front end to the back end function
1150	<<_bfd_set_section_contents>>.
1151
1152*/
1153
1154#define bfd_get_section_size_now(abfd, sec) \
1155  (sec->reloc_done \
1156   ? bfd_get_section_size_after_reloc (sec) \
1157   : bfd_get_section_size_before_reloc (sec))
1158
1159bfd_boolean
1160bfd_set_section_contents (bfd *abfd,
1161			  sec_ptr section,
1162			  const void *location,
1163			  file_ptr offset,
1164			  bfd_size_type count)
1165{
1166  bfd_size_type sz;
1167
1168  if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1169    {
1170      bfd_set_error (bfd_error_no_contents);
1171      return FALSE;
1172    }
1173
1174  sz = bfd_get_section_size_now (abfd, section);
1175  if ((bfd_size_type) offset > sz
1176      || count > sz
1177      || offset + count > sz
1178      || count != (size_t) count)
1179    {
1180      bfd_set_error (bfd_error_bad_value);
1181      return FALSE;
1182    }
1183
1184  switch (abfd->direction)
1185    {
1186    case read_direction:
1187    case no_direction:
1188      bfd_set_error (bfd_error_invalid_operation);
1189      return FALSE;
1190
1191    case write_direction:
1192      break;
1193
1194    case both_direction:
1195      /* File is opened for update. `output_has_begun' some time ago when
1196	   the file was created.  Do not recompute sections sizes or alignments
1197	   in _bfd_set_section_content.  */
1198      abfd->output_has_begun = TRUE;
1199      break;
1200    }
1201
1202  /* Record a copy of the data in memory if desired.  */
1203  if (section->contents
1204      && location != section->contents + offset)
1205    memcpy (section->contents + offset, location, (size_t) count);
1206
1207  if (BFD_SEND (abfd, _bfd_set_section_contents,
1208		(abfd, section, location, offset, count)))
1209    {
1210      abfd->output_has_begun = TRUE;
1211      return TRUE;
1212    }
1213
1214  return FALSE;
1215}
1216
1217/*
1218FUNCTION
1219	bfd_get_section_contents
1220
1221SYNOPSIS
1222	bfd_boolean bfd_get_section_contents
1223	  (bfd *abfd, asection *section, void *location, file_ptr offset,
1224	   bfd_size_type count);
1225
1226DESCRIPTION
1227	Read data from @var{section} in BFD @var{abfd}
1228	into memory starting at @var{location}. The data is read at an
1229	offset of @var{offset} from the start of the input section,
1230	and is read for @var{count} bytes.
1231
1232	If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1233	flag set are requested or if the section does not have the
1234	<<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1235	with zeroes. If no errors occur, <<TRUE>> is returned, else
1236	<<FALSE>>.
1237
1238*/
1239bfd_boolean
1240bfd_get_section_contents (bfd *abfd,
1241			  sec_ptr section,
1242			  void *location,
1243			  file_ptr offset,
1244			  bfd_size_type count)
1245{
1246  bfd_size_type sz;
1247
1248  if (section->flags & SEC_CONSTRUCTOR)
1249    {
1250      memset (location, 0, (size_t) count);
1251      return TRUE;
1252    }
1253
1254  /* Even if reloc_done is TRUE, this function reads unrelocated
1255     contents, so we want the raw size.  */
1256  sz = section->_raw_size;
1257  if ((bfd_size_type) offset > sz
1258      || count > sz
1259      || offset + count > sz
1260      || count != (size_t) count)
1261    {
1262      bfd_set_error (bfd_error_bad_value);
1263      return FALSE;
1264    }
1265
1266  if (count == 0)
1267    /* Don't bother.  */
1268    return TRUE;
1269
1270  if ((section->flags & SEC_HAS_CONTENTS) == 0)
1271    {
1272      memset (location, 0, (size_t) count);
1273      return TRUE;
1274    }
1275
1276  if ((section->flags & SEC_IN_MEMORY) != 0)
1277    {
1278      memcpy (location, section->contents + offset, (size_t) count);
1279      return TRUE;
1280    }
1281
1282  return BFD_SEND (abfd, _bfd_get_section_contents,
1283		   (abfd, section, location, offset, count));
1284}
1285
1286/*
1287FUNCTION
1288	bfd_copy_private_section_data
1289
1290SYNOPSIS
1291	bfd_boolean bfd_copy_private_section_data
1292	  (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1293
1294DESCRIPTION
1295	Copy private section information from @var{isec} in the BFD
1296	@var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1297	Return <<TRUE>> on success, <<FALSE>> on error.  Possible error
1298	returns are:
1299
1300	o <<bfd_error_no_memory>> -
1301	Not enough memory exists to create private data for @var{osec}.
1302
1303.#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1304.     BFD_SEND (obfd, _bfd_copy_private_section_data, \
1305.		(ibfd, isection, obfd, osection))
1306*/
1307
1308/*
1309FUNCTION
1310	_bfd_strip_section_from_output
1311
1312SYNOPSIS
1313	void _bfd_strip_section_from_output
1314	  (struct bfd_link_info *info, asection *section);
1315
1316DESCRIPTION
1317	Remove @var{section} from the output.  If the output section
1318	becomes empty, remove it from the output bfd.
1319
1320	This function won't actually do anything except twiddle flags
1321	if called too late in the linking process, when it's not safe
1322	to remove sections.
1323*/
1324void
1325_bfd_strip_section_from_output (struct bfd_link_info *info, asection *s)
1326{
1327  asection *os;
1328  asection *is;
1329  bfd *abfd;
1330
1331  s->flags |= SEC_EXCLUDE;
1332
1333  /* If the section wasn't assigned to an output section, or the
1334     section has been discarded by the linker script, there's nothing
1335     more to do.  */
1336  os = s->output_section;
1337  if (os == NULL || os->owner == NULL)
1338    return;
1339
1340  /* If the output section has other (non-excluded) input sections, we
1341     can't remove it.  */
1342  for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1343    for (is = abfd->sections; is != NULL; is = is->next)
1344      if (is->output_section == os && (is->flags & SEC_EXCLUDE) == 0)
1345	return;
1346
1347  /* If the output section is empty, flag it for removal too.
1348     See ldlang.c:strip_excluded_output_sections for the action.  */
1349  os->flags |= SEC_EXCLUDE;
1350}
1351
1352/*
1353FUNCTION
1354	bfd_generic_discard_group
1355
1356SYNOPSIS
1357	bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1358
1359DESCRIPTION
1360	Remove all members of @var{group} from the output.
1361*/
1362
1363bfd_boolean
1364bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1365			   asection *group ATTRIBUTE_UNUSED)
1366{
1367  return TRUE;
1368}
1369