apr_pools.h revision 253734
1/* Licensed to the Apache Software Foundation (ASF) under one or more
2 * contributor license agreements.  See the NOTICE file distributed with
3 * this work for additional information regarding copyright ownership.
4 * The ASF licenses this file to You under the Apache License, Version 2.0
5 * (the "License"); you may not use this file except in compliance with
6 * the License.  You may obtain a copy of the License at
7 *
8 *     http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef APR_POOLS_H
18#define APR_POOLS_H
19
20/**
21 * @file apr_pools.h
22 * @brief APR memory allocation
23 *
24 * Resource allocation routines...
25 *
26 * designed so that we don't have to keep track of EVERYTHING so that
27 * it can be explicitly freed later (a fundamentally unsound strategy ---
28 * particularly in the presence of die()).
29 *
30 * Instead, we maintain pools, and allocate items (both memory and I/O
31 * handlers) from the pools --- currently there are two, one for
32 * per-transaction info, and one for config info.  When a transaction is
33 * over, we can delete everything in the per-transaction apr_pool_t without
34 * fear, and without thinking too hard about it either.
35 *
36 * Note that most operations on pools are not thread-safe: a single pool
37 * should only be accessed by a single thread at any given time. The one
38 * exception to this rule is creating a subpool of a given pool: one or more
39 * threads can safely create subpools at the same time that another thread
40 * accesses the parent pool.
41 */
42
43#include "apr.h"
44#include "apr_errno.h"
45#include "apr_general.h" /* for APR_STRINGIFY */
46#define APR_WANT_MEMFUNC /**< for no good reason? */
47#include "apr_want.h"
48
49#ifdef __cplusplus
50extern "C" {
51#endif
52
53/**
54 * @defgroup apr_pools Memory Pool Functions
55 * @ingroup APR
56 * @{
57 */
58
59/** The fundamental pool type */
60typedef struct apr_pool_t apr_pool_t;
61
62
63/**
64 * Declaration helper macro to construct apr_foo_pool_get()s.
65 *
66 * This standardized macro is used by opaque (APR) data types to return
67 * the apr_pool_t that is associated with the data type.
68 *
69 * APR_POOL_DECLARE_ACCESSOR() is used in a header file to declare the
70 * accessor function. A typical usage and result would be:
71 * <pre>
72 *    APR_POOL_DECLARE_ACCESSOR(file);
73 * becomes:
74 *    APR_DECLARE(apr_pool_t *) apr_file_pool_get(apr_file_t *ob);
75 * </pre>
76 * @remark Doxygen unwraps this macro (via doxygen.conf) to provide
77 * actual help for each specific occurance of apr_foo_pool_get.
78 * @remark the linkage is specified for APR. It would be possible to expand
79 *       the macros to support other linkages.
80 */
81#define APR_POOL_DECLARE_ACCESSOR(type) \
82    APR_DECLARE(apr_pool_t *) apr_##type##_pool_get \
83        (const apr_##type##_t *the##type)
84
85/**
86 * Implementation helper macro to provide apr_foo_pool_get()s.
87 *
88 * In the implementation, the APR_POOL_IMPLEMENT_ACCESSOR() is used to
89 * actually define the function. It assumes the field is named "pool".
90 */
91#define APR_POOL_IMPLEMENT_ACCESSOR(type) \
92    APR_DECLARE(apr_pool_t *) apr_##type##_pool_get \
93            (const apr_##type##_t *the##type) \
94        { return the##type->pool; }
95
96
97/**
98 * Pool debug levels
99 *
100 * <pre>
101 * | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
102 * ---------------------------------
103 * |   |   |   |   |   |   |   | x |  General debug code enabled (useful in
104 *                                    combination with --with-efence).
105 *
106 * |   |   |   |   |   |   | x |   |  Verbose output on stderr (report
107 *                                    CREATE, CLEAR, DESTROY).
108 *
109 * |   |   |   | x |   |   |   |   |  Verbose output on stderr (report
110 *                                    PALLOC, PCALLOC).
111 *
112 * |   |   |   |   |   | x |   |   |  Lifetime checking. On each use of a
113 *                                    pool, check its lifetime.  If the pool
114 *                                    is out of scope, abort().
115 *                                    In combination with the verbose flag
116 *                                    above, it will output LIFE in such an
117 *                                    event prior to aborting.
118 *
119 * |   |   |   |   | x |   |   |   |  Pool owner checking.  On each use of a
120 *                                    pool, check if the current thread is the
121 *                                    pools owner.  If not, abort().  In
122 *                                    combination with the verbose flag above,
123 *                                    it will output OWNER in such an event
124 *                                    prior to aborting.  Use the debug
125 *                                    function apr_pool_owner_set() to switch
126 *                                    a pools ownership.
127 *
128 * When no debug level was specified, assume general debug mode.
129 * If level 0 was specified, debugging is switched off
130 * </pre>
131 */
132#if defined(APR_POOL_DEBUG)
133/* If APR_POOL_DEBUG is blank, we get 1; if it is a number, we get -1. */
134#if (APR_POOL_DEBUG - APR_POOL_DEBUG -1 == 1)
135#undef APR_POOL_DEBUG
136#define APR_POOL_DEBUG 1
137#endif
138#else
139#define APR_POOL_DEBUG 0
140#endif
141
142/** the place in the code where the particular function was called */
143#define APR_POOL__FILE_LINE__ __FILE__ ":" APR_STRINGIFY(__LINE__)
144
145
146
147/** A function that is called when allocation fails. */
148typedef int (*apr_abortfunc_t)(int retcode);
149
150/*
151 * APR memory structure manipulators (pools, tables, and arrays).
152 */
153
154/*
155 * Initialization
156 */
157
158/**
159 * Setup all of the internal structures required to use pools
160 * @remark Programs do NOT need to call this directly.  APR will call this
161 *      automatically from apr_initialize.
162 * @internal
163 */
164APR_DECLARE(apr_status_t) apr_pool_initialize(void);
165
166/**
167 * Tear down all of the internal structures required to use pools
168 * @remark Programs do NOT need to call this directly.  APR will call this
169 *      automatically from apr_terminate.
170 * @internal
171 */
172APR_DECLARE(void) apr_pool_terminate(void);
173
174
175/*
176 * Pool creation/destruction
177 */
178
179#include "apr_allocator.h"
180
181/**
182 * Create a new pool.
183 * @param newpool The pool we have just created.
184 * @param parent The parent pool.  If this is NULL, the new pool is a root
185 *        pool.  If it is non-NULL, the new pool will inherit all
186 *        of its parent pool's attributes, except the apr_pool_t will
187 *        be a sub-pool.
188 * @param abort_fn A function to use if the pool cannot allocate more memory.
189 * @param allocator The allocator to use with the new pool.  If NULL the
190 *        allocator of the parent pool will be used.
191 * @remark This function is thread-safe, in the sense that multiple threads
192 *         can safely create subpools of the same parent pool concurrently.
193 *         Similarly, a subpool can be created by one thread at the same
194 *         time that another thread accesses the parent pool.
195 */
196APR_DECLARE(apr_status_t) apr_pool_create_ex(apr_pool_t **newpool,
197                                             apr_pool_t *parent,
198                                             apr_abortfunc_t abort_fn,
199                                             apr_allocator_t *allocator)
200                          __attribute__((nonnull(1)));
201
202/**
203 * Create a new pool.
204 * @deprecated @see apr_pool_create_unmanaged_ex.
205 */
206APR_DECLARE(apr_status_t) apr_pool_create_core_ex(apr_pool_t **newpool,
207                                                  apr_abortfunc_t abort_fn,
208                                                  apr_allocator_t *allocator);
209
210/**
211 * Create a new unmanaged pool.
212 * @param newpool The pool we have just created.
213 * @param abort_fn A function to use if the pool cannot allocate more memory.
214 * @param allocator The allocator to use with the new pool.  If NULL a
215 *        new allocator will be crated with newpool as owner.
216 * @remark An unmanaged pool is a special pool without a parent; it will
217 *         NOT be destroyed upon apr_terminate.  It must be explicitly
218 *         destroyed by calling apr_pool_destroy, to prevent memory leaks.
219 *         Use of this function is discouraged, think twice about whether
220 *         you really really need it.
221 */
222APR_DECLARE(apr_status_t) apr_pool_create_unmanaged_ex(apr_pool_t **newpool,
223                                                   apr_abortfunc_t abort_fn,
224                                                   apr_allocator_t *allocator)
225                          __attribute__((nonnull(1)));
226
227/**
228 * Debug version of apr_pool_create_ex.
229 * @param newpool @see apr_pool_create.
230 * @param parent @see apr_pool_create.
231 * @param abort_fn @see apr_pool_create.
232 * @param allocator @see apr_pool_create.
233 * @param file_line Where the function is called from.
234 *        This is usually APR_POOL__FILE_LINE__.
235 * @remark Only available when APR_POOL_DEBUG is defined.
236 *         Call this directly if you have you apr_pool_create_ex
237 *         calls in a wrapper function and wish to override
238 *         the file_line argument to reflect the caller of
239 *         your wrapper function.  If you do not have
240 *         apr_pool_create_ex in a wrapper, trust the macro
241 *         and don't call apr_pool_create_ex_debug directly.
242 */
243APR_DECLARE(apr_status_t) apr_pool_create_ex_debug(apr_pool_t **newpool,
244                                                   apr_pool_t *parent,
245                                                   apr_abortfunc_t abort_fn,
246                                                   apr_allocator_t *allocator,
247                                                   const char *file_line)
248                          __attribute__((nonnull(1)));
249
250#if APR_POOL_DEBUG
251#define apr_pool_create_ex(newpool, parent, abort_fn, allocator)  \
252    apr_pool_create_ex_debug(newpool, parent, abort_fn, allocator, \
253                             APR_POOL__FILE_LINE__)
254#endif
255
256/**
257 * Debug version of apr_pool_create_core_ex.
258 * @deprecated @see apr_pool_create_unmanaged_ex_debug.
259 */
260APR_DECLARE(apr_status_t) apr_pool_create_core_ex_debug(apr_pool_t **newpool,
261                                                   apr_abortfunc_t abort_fn,
262                                                   apr_allocator_t *allocator,
263                                                   const char *file_line);
264
265/**
266 * Debug version of apr_pool_create_unmanaged_ex.
267 * @param newpool @see apr_pool_create_unmanaged.
268 * @param abort_fn @see apr_pool_create_unmanaged.
269 * @param allocator @see apr_pool_create_unmanaged.
270 * @param file_line Where the function is called from.
271 *        This is usually APR_POOL__FILE_LINE__.
272 * @remark Only available when APR_POOL_DEBUG is defined.
273 *         Call this directly if you have you apr_pool_create_unmanaged_ex
274 *         calls in a wrapper function and wish to override
275 *         the file_line argument to reflect the caller of
276 *         your wrapper function.  If you do not have
277 *         apr_pool_create_core_ex in a wrapper, trust the macro
278 *         and don't call apr_pool_create_core_ex_debug directly.
279 */
280APR_DECLARE(apr_status_t) apr_pool_create_unmanaged_ex_debug(apr_pool_t **newpool,
281                                                   apr_abortfunc_t abort_fn,
282                                                   apr_allocator_t *allocator,
283                                                   const char *file_line)
284                          __attribute__((nonnull(1)));
285
286#if APR_POOL_DEBUG
287#define apr_pool_create_core_ex(newpool, abort_fn, allocator)  \
288    apr_pool_create_unmanaged_ex_debug(newpool, abort_fn, allocator, \
289                                  APR_POOL__FILE_LINE__)
290
291#define apr_pool_create_unmanaged_ex(newpool, abort_fn, allocator)  \
292    apr_pool_create_unmanaged_ex_debug(newpool, abort_fn, allocator, \
293                                  APR_POOL__FILE_LINE__)
294
295#endif
296
297/**
298 * Create a new pool.
299 * @param newpool The pool we have just created.
300 * @param parent The parent pool.  If this is NULL, the new pool is a root
301 *        pool.  If it is non-NULL, the new pool will inherit all
302 *        of its parent pool's attributes, except the apr_pool_t will
303 *        be a sub-pool.
304 * @remark This function is thread-safe, in the sense that multiple threads
305 *         can safely create subpools of the same parent pool concurrently.
306 *         Similarly, a subpool can be created by one thread at the same
307 *         time that another thread accesses the parent pool.
308 */
309#if defined(DOXYGEN)
310APR_DECLARE(apr_status_t) apr_pool_create(apr_pool_t **newpool,
311                                          apr_pool_t *parent);
312#else
313#if APR_POOL_DEBUG
314#define apr_pool_create(newpool, parent) \
315    apr_pool_create_ex_debug(newpool, parent, NULL, NULL, \
316                             APR_POOL__FILE_LINE__)
317#else
318#define apr_pool_create(newpool, parent) \
319    apr_pool_create_ex(newpool, parent, NULL, NULL)
320#endif
321#endif
322
323/**
324 * Create a new pool.
325 * @param newpool The pool we have just created.
326 */
327#if defined(DOXYGEN)
328APR_DECLARE(apr_status_t) apr_pool_create_core(apr_pool_t **newpool);
329APR_DECLARE(apr_status_t) apr_pool_create_unmanaged(apr_pool_t **newpool);
330#else
331#if APR_POOL_DEBUG
332#define apr_pool_create_core(newpool) \
333    apr_pool_create_unmanaged_ex_debug(newpool, NULL, NULL, \
334                                  APR_POOL__FILE_LINE__)
335#define apr_pool_create_unmanaged(newpool) \
336    apr_pool_create_unmanaged_ex_debug(newpool, NULL, NULL, \
337                                  APR_POOL__FILE_LINE__)
338#else
339#define apr_pool_create_core(newpool) \
340    apr_pool_create_unmanaged_ex(newpool, NULL, NULL)
341#define apr_pool_create_unmanaged(newpool) \
342    apr_pool_create_unmanaged_ex(newpool, NULL, NULL)
343#endif
344#endif
345
346/**
347 * Find the pool's allocator
348 * @param pool The pool to get the allocator from.
349 */
350APR_DECLARE(apr_allocator_t *) apr_pool_allocator_get(apr_pool_t *pool)
351                               __attribute__((nonnull(1)));
352
353/**
354 * Clear all memory in the pool and run all the cleanups. This also destroys all
355 * subpools.
356 * @param p The pool to clear
357 * @remark This does not actually free the memory, it just allows the pool
358 *         to re-use this memory for the next allocation.
359 * @see apr_pool_destroy()
360 */
361APR_DECLARE(void) apr_pool_clear(apr_pool_t *p) __attribute__((nonnull(1)));
362
363/**
364 * Debug version of apr_pool_clear.
365 * @param p See: apr_pool_clear.
366 * @param file_line Where the function is called from.
367 *        This is usually APR_POOL__FILE_LINE__.
368 * @remark Only available when APR_POOL_DEBUG is defined.
369 *         Call this directly if you have you apr_pool_clear
370 *         calls in a wrapper function and wish to override
371 *         the file_line argument to reflect the caller of
372 *         your wrapper function.  If you do not have
373 *         apr_pool_clear in a wrapper, trust the macro
374 *         and don't call apr_pool_destroy_clear directly.
375 */
376APR_DECLARE(void) apr_pool_clear_debug(apr_pool_t *p,
377                                       const char *file_line)
378                  __attribute__((nonnull(1)));
379
380#if APR_POOL_DEBUG
381#define apr_pool_clear(p) \
382    apr_pool_clear_debug(p, APR_POOL__FILE_LINE__)
383#endif
384
385/**
386 * Destroy the pool. This takes similar action as apr_pool_clear() and then
387 * frees all the memory.
388 * @param p The pool to destroy
389 * @remark This will actually free the memory
390 */
391APR_DECLARE(void) apr_pool_destroy(apr_pool_t *p) __attribute__((nonnull(1)));
392
393/**
394 * Debug version of apr_pool_destroy.
395 * @param p See: apr_pool_destroy.
396 * @param file_line Where the function is called from.
397 *        This is usually APR_POOL__FILE_LINE__.
398 * @remark Only available when APR_POOL_DEBUG is defined.
399 *         Call this directly if you have you apr_pool_destroy
400 *         calls in a wrapper function and wish to override
401 *         the file_line argument to reflect the caller of
402 *         your wrapper function.  If you do not have
403 *         apr_pool_destroy in a wrapper, trust the macro
404 *         and don't call apr_pool_destroy_debug directly.
405 */
406APR_DECLARE(void) apr_pool_destroy_debug(apr_pool_t *p,
407                                         const char *file_line)
408                  __attribute__((nonnull(1)));
409
410#if APR_POOL_DEBUG
411#define apr_pool_destroy(p) \
412    apr_pool_destroy_debug(p, APR_POOL__FILE_LINE__)
413#endif
414
415
416/*
417 * Memory allocation
418 */
419
420/**
421 * Allocate a block of memory from a pool
422 * @param p The pool to allocate from
423 * @param size The amount of memory to allocate
424 * @return The allocated memory
425 */
426APR_DECLARE(void *) apr_palloc(apr_pool_t *p, apr_size_t size)
427#if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 4))
428                    __attribute__((alloc_size(2)))
429#endif
430                    __attribute__((nonnull(1)));
431
432/**
433 * Debug version of apr_palloc
434 * @param p See: apr_palloc
435 * @param size See: apr_palloc
436 * @param file_line Where the function is called from.
437 *        This is usually APR_POOL__FILE_LINE__.
438 * @return See: apr_palloc
439 */
440APR_DECLARE(void *) apr_palloc_debug(apr_pool_t *p, apr_size_t size,
441                                     const char *file_line)
442#if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 4))
443                    __attribute__((alloc_size(2)))
444#endif
445                    __attribute__((nonnull(1)));
446
447#if APR_POOL_DEBUG
448#define apr_palloc(p, size) \
449    apr_palloc_debug(p, size, APR_POOL__FILE_LINE__)
450#endif
451
452/**
453 * Allocate a block of memory from a pool and set all of the memory to 0
454 * @param p The pool to allocate from
455 * @param size The amount of memory to allocate
456 * @return The allocated memory
457 */
458#if defined(DOXYGEN)
459APR_DECLARE(void *) apr_pcalloc(apr_pool_t *p, apr_size_t size);
460#elif !APR_POOL_DEBUG
461#define apr_pcalloc(p, size) memset(apr_palloc(p, size), 0, size)
462#endif
463
464/**
465 * Debug version of apr_pcalloc
466 * @param p See: apr_pcalloc
467 * @param size See: apr_pcalloc
468 * @param file_line Where the function is called from.
469 *        This is usually APR_POOL__FILE_LINE__.
470 * @return See: apr_pcalloc
471 */
472APR_DECLARE(void *) apr_pcalloc_debug(apr_pool_t *p, apr_size_t size,
473                                      const char *file_line)
474                    __attribute__((nonnull(1)));
475
476#if APR_POOL_DEBUG
477#define apr_pcalloc(p, size) \
478    apr_pcalloc_debug(p, size, APR_POOL__FILE_LINE__)
479#endif
480
481
482/*
483 * Pool Properties
484 */
485
486/**
487 * Set the function to be called when an allocation failure occurs.
488 * @remark If the program wants APR to exit on a memory allocation error,
489 *      then this function can be called to set the callback to use (for
490 *      performing cleanup and then exiting). If this function is not called,
491 *      then APR will return an error and expect the calling program to
492 *      deal with the error accordingly.
493 */
494APR_DECLARE(void) apr_pool_abort_set(apr_abortfunc_t abortfunc,
495                                     apr_pool_t *pool)
496                  __attribute__((nonnull(2)));
497
498/**
499 * Get the abort function associated with the specified pool.
500 * @param pool The pool for retrieving the abort function.
501 * @return The abort function for the given pool.
502 */
503APR_DECLARE(apr_abortfunc_t) apr_pool_abort_get(apr_pool_t *pool)
504                             __attribute__((nonnull(1)));
505
506/**
507 * Get the parent pool of the specified pool.
508 * @param pool The pool for retrieving the parent pool.
509 * @return The parent of the given pool.
510 */
511APR_DECLARE(apr_pool_t *) apr_pool_parent_get(apr_pool_t *pool)
512                          __attribute__((nonnull(1)));
513
514/**
515 * Determine if pool a is an ancestor of pool b.
516 * @param a The pool to search
517 * @param b The pool to search for
518 * @return True if a is an ancestor of b, NULL is considered an ancestor
519 *         of all pools.
520 * @remark if compiled with APR_POOL_DEBUG, this function will also
521 * return true if A is a pool which has been guaranteed by the caller
522 * (using apr_pool_join) to have a lifetime at least as long as some
523 * ancestor of pool B.
524 */
525APR_DECLARE(int) apr_pool_is_ancestor(apr_pool_t *a, apr_pool_t *b);
526
527/**
528 * Tag a pool (give it a name)
529 * @param pool The pool to tag
530 * @param tag  The tag
531 */
532APR_DECLARE(void) apr_pool_tag(apr_pool_t *pool, const char *tag)
533                  __attribute__((nonnull(1)));
534
535
536/*
537 * User data management
538 */
539
540/**
541 * Set the data associated with the current pool
542 * @param data The user data associated with the pool.
543 * @param key The key to use for association
544 * @param cleanup The cleanup program to use to cleanup the data (NULL if none)
545 * @param pool The current pool
546 * @warning The data to be attached to the pool should have a life span
547 *          at least as long as the pool it is being attached to.
548 *
549 *      Users of APR must take EXTREME care when choosing a key to
550 *      use for their data.  It is possible to accidentally overwrite
551 *      data by choosing a key that another part of the program is using.
552 *      Therefore it is advised that steps are taken to ensure that unique
553 *      keys are used for all of the userdata objects in a particular pool
554 *      (the same key in two different pools or a pool and one of its
555 *      subpools is okay) at all times.  Careful namespace prefixing of
556 *      key names is a typical way to help ensure this uniqueness.
557 *
558 */
559APR_DECLARE(apr_status_t) apr_pool_userdata_set(const void *data,
560                                                const char *key,
561                                                apr_status_t (*cleanup)(void *),
562                                                apr_pool_t *pool)
563                          __attribute__((nonnull(2,4)));
564
565/**
566 * Set the data associated with the current pool
567 * @param data The user data associated with the pool.
568 * @param key The key to use for association
569 * @param cleanup The cleanup program to use to cleanup the data (NULL if none)
570 * @param pool The current pool
571 * @note same as apr_pool_userdata_set(), except that this version doesn't
572 *       make a copy of the key (this function is useful, for example, when
573 *       the key is a string literal)
574 * @warning This should NOT be used if the key could change addresses by
575 *       any means between the apr_pool_userdata_setn() call and a
576 *       subsequent apr_pool_userdata_get() on that key, such as if a
577 *       static string is used as a userdata key in a DSO and the DSO could
578 *       be unloaded and reloaded between the _setn() and the _get().  You
579 *       MUST use apr_pool_userdata_set() in such cases.
580 * @warning More generally, the key and the data to be attached to the
581 *       pool should have a life span at least as long as the pool itself.
582 *
583 */
584APR_DECLARE(apr_status_t) apr_pool_userdata_setn(
585                                const void *data, const char *key,
586                                apr_status_t (*cleanup)(void *),
587                                apr_pool_t *pool)
588                          __attribute__((nonnull(2,4)));
589
590/**
591 * Return the data associated with the current pool.
592 * @param data The user data associated with the pool.
593 * @param key The key for the data to retrieve
594 * @param pool The current pool.
595 */
596APR_DECLARE(apr_status_t) apr_pool_userdata_get(void **data, const char *key,
597                                                apr_pool_t *pool)
598                          __attribute__((nonnull(1,2,3)));
599
600
601/**
602 * @defgroup PoolCleanup  Pool Cleanup Functions
603 *
604 * Cleanups are performed in the reverse order they were registered.  That is:
605 * Last In, First Out.  A cleanup function can safely allocate memory from
606 * the pool that is being cleaned up. It can also safely register additional
607 * cleanups which will be run LIFO, directly after the current cleanup
608 * terminates.  Cleanups have to take caution in calling functions that
609 * create subpools. Subpools, created during cleanup will NOT automatically
610 * be cleaned up.  In other words, cleanups are to clean up after themselves.
611 *
612 * @{
613 */
614
615/**
616 * Register a function to be called when a pool is cleared or destroyed
617 * @param p The pool register the cleanup with
618 * @param data The data to pass to the cleanup function.
619 * @param plain_cleanup The function to call when the pool is cleared
620 *                      or destroyed
621 * @param child_cleanup The function to call when a child process is about
622 *                      to exec - this function is called in the child, obviously!
623 */
624APR_DECLARE(void) apr_pool_cleanup_register(
625                            apr_pool_t *p, const void *data,
626                            apr_status_t (*plain_cleanup)(void *),
627                            apr_status_t (*child_cleanup)(void *))
628                  __attribute__((nonnull(3,4)));
629
630/**
631 * Register a function to be called when a pool is cleared or destroyed.
632 *
633 * Unlike apr_pool_cleanup_register which register a cleanup
634 * that is called AFTER all subpools are destroyed this function register
635 * a function that will be called before any of the subpool is destoryed.
636 *
637 * @param p The pool register the cleanup with
638 * @param data The data to pass to the cleanup function.
639 * @param plain_cleanup The function to call when the pool is cleared
640 *                      or destroyed
641 */
642APR_DECLARE(void) apr_pool_pre_cleanup_register(
643                            apr_pool_t *p, const void *data,
644                            apr_status_t (*plain_cleanup)(void *))
645                  __attribute__((nonnull(3)));
646
647/**
648 * Remove a previously registered cleanup function.
649 *
650 * The cleanup most recently registered with @a p having the same values of
651 * @a data and @a cleanup will be removed.
652 *
653 * @param p The pool to remove the cleanup from
654 * @param data The data of the registered cleanup
655 * @param cleanup The function to remove from cleanup
656 * @remarks For some strange reason only the plain_cleanup is handled by this
657 *          function
658 */
659APR_DECLARE(void) apr_pool_cleanup_kill(apr_pool_t *p, const void *data,
660                                        apr_status_t (*cleanup)(void *))
661                  __attribute__((nonnull(3)));
662
663/**
664 * Replace the child cleanup function of a previously registered cleanup.
665 *
666 * The cleanup most recently registered with @a p having the same values of
667 * @a data and @a plain_cleanup will have the registered child cleanup
668 * function replaced with @a child_cleanup.
669 *
670 * @param p The pool of the registered cleanup
671 * @param data The data of the registered cleanup
672 * @param plain_cleanup The plain cleanup function of the registered cleanup
673 * @param child_cleanup The function to register as the child cleanup
674 */
675APR_DECLARE(void) apr_pool_child_cleanup_set(
676                        apr_pool_t *p, const void *data,
677                        apr_status_t (*plain_cleanup)(void *),
678                        apr_status_t (*child_cleanup)(void *))
679                  __attribute__((nonnull(3,4)));
680
681/**
682 * Run the specified cleanup function immediately and unregister it.
683 *
684 * The cleanup most recently registered with @a p having the same values of
685 * @a data and @a cleanup will be removed and @a cleanup will be called
686 * with @a data as the argument.
687 *
688 * @param p The pool to remove the cleanup from
689 * @param data The data to remove from cleanup
690 * @param cleanup The function to remove from cleanup
691 */
692APR_DECLARE(apr_status_t) apr_pool_cleanup_run(apr_pool_t *p, void *data,
693                                               apr_status_t (*cleanup)(void *))
694                          __attribute__((nonnull(3)));
695
696/**
697 * An empty cleanup function.
698 *
699 * Passed to apr_pool_cleanup_register() when no cleanup is required.
700 *
701 * @param data The data to cleanup, will not be used by this function.
702 */
703APR_DECLARE_NONSTD(apr_status_t) apr_pool_cleanup_null(void *data);
704
705/**
706 * Run all registered child cleanups, in preparation for an exec()
707 * call in a forked child -- close files, etc., but *don't* flush I/O
708 * buffers, *don't* wait for subprocesses, and *don't* free any
709 * memory.
710 */
711APR_DECLARE(void) apr_pool_cleanup_for_exec(void);
712
713/** @} */
714
715/**
716 * @defgroup PoolDebug Pool Debugging functions.
717 *
718 * pools have nested lifetimes -- sub_pools are destroyed when the
719 * parent pool is cleared.  We allow certain liberties with operations
720 * on things such as tables (and on other structures in a more general
721 * sense) where we allow the caller to insert values into a table which
722 * were not allocated from the table's pool.  The table's data will
723 * remain valid as long as all the pools from which its values are
724 * allocated remain valid.
725 *
726 * For example, if B is a sub pool of A, and you build a table T in
727 * pool B, then it's safe to insert data allocated in A or B into T
728 * (because B lives at most as long as A does, and T is destroyed when
729 * B is cleared/destroyed).  On the other hand, if S is a table in
730 * pool A, it is safe to insert data allocated in A into S, but it
731 * is *not safe* to insert data allocated from B into S... because
732 * B can be cleared/destroyed before A is (which would leave dangling
733 * pointers in T's data structures).
734 *
735 * In general we say that it is safe to insert data into a table T
736 * if the data is allocated in any ancestor of T's pool.  This is the
737 * basis on which the APR_POOL_DEBUG code works -- it tests these ancestor
738 * relationships for all data inserted into tables.  APR_POOL_DEBUG also
739 * provides tools (apr_pool_find, and apr_pool_is_ancestor) for other
740 * folks to implement similar restrictions for their own data
741 * structures.
742 *
743 * However, sometimes this ancestor requirement is inconvenient --
744 * sometimes it's necessary to create a sub pool where the sub pool is
745 * guaranteed to have the same lifetime as the parent pool.  This is a
746 * guarantee implemented by the *caller*, not by the pool code.  That
747 * is, the caller guarantees they won't destroy the sub pool
748 * individually prior to destroying the parent pool.
749 *
750 * In this case the caller must call apr_pool_join() to indicate this
751 * guarantee to the APR_POOL_DEBUG code.
752 *
753 * These functions are only implemented when #APR_POOL_DEBUG is set.
754 *
755 * @{
756 */
757#if APR_POOL_DEBUG || defined(DOXYGEN)
758/**
759 * Guarantee that a subpool has the same lifetime as the parent.
760 * @param p The parent pool
761 * @param sub The subpool
762 */
763APR_DECLARE(void) apr_pool_join(apr_pool_t *p, apr_pool_t *sub)
764                  __attribute__((nonnull(2)));
765
766/**
767 * Find a pool from something allocated in it.
768 * @param mem The thing allocated in the pool
769 * @return The pool it is allocated in
770 */
771APR_DECLARE(apr_pool_t *) apr_pool_find(const void *mem);
772
773/**
774 * Report the number of bytes currently in the pool
775 * @param p The pool to inspect
776 * @param recurse Recurse/include the subpools' sizes
777 * @return The number of bytes
778 */
779APR_DECLARE(apr_size_t) apr_pool_num_bytes(apr_pool_t *p, int recurse)
780                        __attribute__((nonnull(1)));
781
782/**
783 * Lock a pool
784 * @param pool The pool to lock
785 * @param flag  The flag
786 */
787APR_DECLARE(void) apr_pool_lock(apr_pool_t *pool, int flag);
788
789/* @} */
790
791#else /* APR_POOL_DEBUG or DOXYGEN */
792
793#ifdef apr_pool_join
794#undef apr_pool_join
795#endif
796#define apr_pool_join(a,b)
797
798#ifdef apr_pool_lock
799#undef apr_pool_lock
800#endif
801#define apr_pool_lock(pool, lock)
802
803#endif /* APR_POOL_DEBUG or DOXYGEN */
804
805/** @} */
806
807#ifdef __cplusplus
808}
809#endif
810
811#endif /* !APR_POOLS_H */
812