apr_pools.h revision 251875
1/* Licensed to the Apache Software Foundation (ASF) under one or more
2 * contributor license agreements.  See the NOTICE file distributed with
3 * this work for additional information regarding copyright ownership.
4 * The ASF licenses this file to You under the Apache License, Version 2.0
5 * (the "License"); you may not use this file except in compliance with
6 * the License.  You may obtain a copy of the License at
7 *
8 *     http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef APR_POOLS_H
18#define APR_POOLS_H
19
20/**
21 * @file apr_pools.h
22 * @brief APR memory allocation
23 *
24 * Resource allocation routines...
25 *
26 * designed so that we don't have to keep track of EVERYTHING so that
27 * it can be explicitly freed later (a fundamentally unsound strategy ---
28 * particularly in the presence of die()).
29 *
30 * Instead, we maintain pools, and allocate items (both memory and I/O
31 * handlers) from the pools --- currently there are two, one for
32 * per-transaction info, and one for config info.  When a transaction is
33 * over, we can delete everything in the per-transaction apr_pool_t without
34 * fear, and without thinking too hard about it either.
35 *
36 * Note that most operations on pools are not thread-safe: a single pool
37 * should only be accessed by a single thread at any given time. The one
38 * exception to this rule is creating a subpool of a given pool: one or more
39 * threads can safely create subpools at the same time that another thread
40 * accesses the parent pool.
41 */
42
43#include "apr.h"
44#include "apr_errno.h"
45#include "apr_general.h" /* for APR_STRINGIFY */
46#define APR_WANT_MEMFUNC /**< for no good reason? */
47#include "apr_want.h"
48
49#ifdef __cplusplus
50extern "C" {
51#endif
52
53/**
54 * @defgroup apr_pools Memory Pool Functions
55 * @ingroup APR
56 * @{
57 */
58
59/** The fundamental pool type */
60typedef struct apr_pool_t apr_pool_t;
61
62
63/**
64 * Declaration helper macro to construct apr_foo_pool_get()s.
65 *
66 * This standardized macro is used by opaque (APR) data types to return
67 * the apr_pool_t that is associated with the data type.
68 *
69 * APR_POOL_DECLARE_ACCESSOR() is used in a header file to declare the
70 * accessor function. A typical usage and result would be:
71 * <pre>
72 *    APR_POOL_DECLARE_ACCESSOR(file);
73 * becomes:
74 *    APR_DECLARE(apr_pool_t *) apr_file_pool_get(apr_file_t *ob);
75 * </pre>
76 * @remark Doxygen unwraps this macro (via doxygen.conf) to provide
77 * actual help for each specific occurance of apr_foo_pool_get.
78 * @remark the linkage is specified for APR. It would be possible to expand
79 *       the macros to support other linkages.
80 */
81#define APR_POOL_DECLARE_ACCESSOR(type) \
82    APR_DECLARE(apr_pool_t *) apr_##type##_pool_get \
83        (const apr_##type##_t *the##type)
84
85/**
86 * Implementation helper macro to provide apr_foo_pool_get()s.
87 *
88 * In the implementation, the APR_POOL_IMPLEMENT_ACCESSOR() is used to
89 * actually define the function. It assumes the field is named "pool".
90 */
91#define APR_POOL_IMPLEMENT_ACCESSOR(type) \
92    APR_DECLARE(apr_pool_t *) apr_##type##_pool_get \
93            (const apr_##type##_t *the##type) \
94        { return the##type->pool; }
95
96
97/**
98 * Pool debug levels
99 *
100 * <pre>
101 * | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
102 * ---------------------------------
103 * |   |   |   |   |   |   |   | x |  General debug code enabled (useful in
104 *                                    combination with --with-efence).
105 *
106 * |   |   |   |   |   |   | x |   |  Verbose output on stderr (report
107 *                                    CREATE, CLEAR, DESTROY).
108 *
109 * |   |   |   | x |   |   |   |   |  Verbose output on stderr (report
110 *                                    PALLOC, PCALLOC).
111 *
112 * |   |   |   |   |   | x |   |   |  Lifetime checking. On each use of a
113 *                                    pool, check its lifetime.  If the pool
114 *                                    is out of scope, abort().
115 *                                    In combination with the verbose flag
116 *                                    above, it will output LIFE in such an
117 *                                    event prior to aborting.
118 *
119 * |   |   |   |   | x |   |   |   |  Pool owner checking.  On each use of a
120 *                                    pool, check if the current thread is the
121 *                                    pools owner.  If not, abort().  In
122 *                                    combination with the verbose flag above,
123 *                                    it will output OWNER in such an event
124 *                                    prior to aborting.  Use the debug
125 *                                    function apr_pool_owner_set() to switch
126 *                                    a pools ownership.
127 *
128 * When no debug level was specified, assume general debug mode.
129 * If level 0 was specified, debugging is switched off
130 * </pre>
131 */
132#if defined(APR_POOL_DEBUG)
133/* If APR_POOL_DEBUG is blank, we get 1; if it is a number, we get -1. */
134#if (APR_POOL_DEBUG - APR_POOL_DEBUG -1 == 1)
135#undef APR_POOL_DEBUG
136#define APR_POOL_DEBUG 1
137#endif
138#else
139#define APR_POOL_DEBUG 0
140#endif
141
142/** the place in the code where the particular function was called */
143#define APR_POOL__FILE_LINE__ __FILE__ ":" APR_STRINGIFY(__LINE__)
144
145
146
147/** A function that is called when allocation fails. */
148typedef int (*apr_abortfunc_t)(int retcode);
149
150/*
151 * APR memory structure manipulators (pools, tables, and arrays).
152 */
153
154/*
155 * Initialization
156 */
157
158/**
159 * Setup all of the internal structures required to use pools
160 * @remark Programs do NOT need to call this directly.  APR will call this
161 *      automatically from apr_initialize.
162 * @internal
163 */
164APR_DECLARE(apr_status_t) apr_pool_initialize(void);
165
166/**
167 * Tear down all of the internal structures required to use pools
168 * @remark Programs do NOT need to call this directly.  APR will call this
169 *      automatically from apr_terminate.
170 * @internal
171 */
172APR_DECLARE(void) apr_pool_terminate(void);
173
174
175/*
176 * Pool creation/destruction
177 */
178
179#include "apr_allocator.h"
180
181/**
182 * Create a new pool.
183 * @param newpool The pool we have just created.
184 * @param parent The parent pool.  If this is NULL, the new pool is a root
185 *        pool.  If it is non-NULL, the new pool will inherit all
186 *        of its parent pool's attributes, except the apr_pool_t will
187 *        be a sub-pool.
188 * @param abort_fn A function to use if the pool cannot allocate more memory.
189 * @param allocator The allocator to use with the new pool.  If NULL the
190 *        allocator of the parent pool will be used.
191 * @remark This function is thread-safe, in the sense that multiple threads
192 *         can safely create subpools of the same parent pool concurrently.
193 *         Similarly, a subpool can be created by one thread at the same
194 *         time that another thread accesses the parent pool.
195 */
196APR_DECLARE(apr_status_t) apr_pool_create_ex(apr_pool_t **newpool,
197                                             apr_pool_t *parent,
198                                             apr_abortfunc_t abort_fn,
199                                             apr_allocator_t *allocator);
200
201/**
202 * Create a new pool.
203 * @deprecated @see apr_pool_create_unmanaged_ex.
204 */
205APR_DECLARE(apr_status_t) apr_pool_create_core_ex(apr_pool_t **newpool,
206                                                  apr_abortfunc_t abort_fn,
207                                                  apr_allocator_t *allocator);
208
209/**
210 * Create a new unmanaged pool.
211 * @param newpool The pool we have just created.
212 * @param abort_fn A function to use if the pool cannot allocate more memory.
213 * @param allocator The allocator to use with the new pool.  If NULL a
214 *        new allocator will be crated with newpool as owner.
215 * @remark An unmanaged pool is a special pool without a parent; it will
216 *         NOT be destroyed upon apr_terminate.  It must be explicitly
217 *         destroyed by calling apr_pool_destroy, to prevent memory leaks.
218 *         Use of this function is discouraged, think twice about whether
219 *         you really really need it.
220 */
221APR_DECLARE(apr_status_t) apr_pool_create_unmanaged_ex(apr_pool_t **newpool,
222                                                   apr_abortfunc_t abort_fn,
223                                                   apr_allocator_t *allocator);
224
225/**
226 * Debug version of apr_pool_create_ex.
227 * @param newpool @see apr_pool_create.
228 * @param parent @see apr_pool_create.
229 * @param abort_fn @see apr_pool_create.
230 * @param allocator @see apr_pool_create.
231 * @param file_line Where the function is called from.
232 *        This is usually APR_POOL__FILE_LINE__.
233 * @remark Only available when APR_POOL_DEBUG is defined.
234 *         Call this directly if you have you apr_pool_create_ex
235 *         calls in a wrapper function and wish to override
236 *         the file_line argument to reflect the caller of
237 *         your wrapper function.  If you do not have
238 *         apr_pool_create_ex in a wrapper, trust the macro
239 *         and don't call apr_pool_create_ex_debug directly.
240 */
241APR_DECLARE(apr_status_t) apr_pool_create_ex_debug(apr_pool_t **newpool,
242                                                   apr_pool_t *parent,
243                                                   apr_abortfunc_t abort_fn,
244                                                   apr_allocator_t *allocator,
245                                                   const char *file_line);
246
247#if APR_POOL_DEBUG
248#define apr_pool_create_ex(newpool, parent, abort_fn, allocator)  \
249    apr_pool_create_ex_debug(newpool, parent, abort_fn, allocator, \
250                             APR_POOL__FILE_LINE__)
251#endif
252
253/**
254 * Debug version of apr_pool_create_core_ex.
255 * @deprecated @see apr_pool_create_unmanaged_ex_debug.
256 */
257APR_DECLARE(apr_status_t) apr_pool_create_core_ex_debug(apr_pool_t **newpool,
258                                                   apr_abortfunc_t abort_fn,
259                                                   apr_allocator_t *allocator,
260                                                   const char *file_line);
261
262/**
263 * Debug version of apr_pool_create_unmanaged_ex.
264 * @param newpool @see apr_pool_create_unmanaged.
265 * @param abort_fn @see apr_pool_create_unmanaged.
266 * @param allocator @see apr_pool_create_unmanaged.
267 * @param file_line Where the function is called from.
268 *        This is usually APR_POOL__FILE_LINE__.
269 * @remark Only available when APR_POOL_DEBUG is defined.
270 *         Call this directly if you have you apr_pool_create_unmanaged_ex
271 *         calls in a wrapper function and wish to override
272 *         the file_line argument to reflect the caller of
273 *         your wrapper function.  If you do not have
274 *         apr_pool_create_core_ex in a wrapper, trust the macro
275 *         and don't call apr_pool_create_core_ex_debug directly.
276 */
277APR_DECLARE(apr_status_t) apr_pool_create_unmanaged_ex_debug(apr_pool_t **newpool,
278                                                   apr_abortfunc_t abort_fn,
279                                                   apr_allocator_t *allocator,
280                                                   const char *file_line);
281
282#if APR_POOL_DEBUG
283#define apr_pool_create_core_ex(newpool, abort_fn, allocator)  \
284    apr_pool_create_unmanaged_ex_debug(newpool, abort_fn, allocator, \
285                                  APR_POOL__FILE_LINE__)
286
287#define apr_pool_create_unmanaged_ex(newpool, abort_fn, allocator)  \
288    apr_pool_create_unmanaged_ex_debug(newpool, abort_fn, allocator, \
289                                  APR_POOL__FILE_LINE__)
290
291#endif
292
293/**
294 * Create a new pool.
295 * @param newpool The pool we have just created.
296 * @param parent The parent pool.  If this is NULL, the new pool is a root
297 *        pool.  If it is non-NULL, the new pool will inherit all
298 *        of its parent pool's attributes, except the apr_pool_t will
299 *        be a sub-pool.
300 * @remark This function is thread-safe, in the sense that multiple threads
301 *         can safely create subpools of the same parent pool concurrently.
302 *         Similarly, a subpool can be created by one thread at the same
303 *         time that another thread accesses the parent pool.
304 */
305#if defined(DOXYGEN)
306APR_DECLARE(apr_status_t) apr_pool_create(apr_pool_t **newpool,
307                                          apr_pool_t *parent);
308#else
309#if APR_POOL_DEBUG
310#define apr_pool_create(newpool, parent) \
311    apr_pool_create_ex_debug(newpool, parent, NULL, NULL, \
312                             APR_POOL__FILE_LINE__)
313#else
314#define apr_pool_create(newpool, parent) \
315    apr_pool_create_ex(newpool, parent, NULL, NULL)
316#endif
317#endif
318
319/**
320 * Create a new pool.
321 * @param newpool The pool we have just created.
322 */
323#if defined(DOXYGEN)
324APR_DECLARE(apr_status_t) apr_pool_create_core(apr_pool_t **newpool);
325APR_DECLARE(apr_status_t) apr_pool_create_unmanaged(apr_pool_t **newpool);
326#else
327#if APR_POOL_DEBUG
328#define apr_pool_create_core(newpool) \
329    apr_pool_create_unmanaged_ex_debug(newpool, NULL, NULL, \
330                                  APR_POOL__FILE_LINE__)
331#define apr_pool_create_unmanaged(newpool) \
332    apr_pool_create_unmanaged_ex_debug(newpool, NULL, NULL, \
333                                  APR_POOL__FILE_LINE__)
334#else
335#define apr_pool_create_core(newpool) \
336    apr_pool_create_unmanaged_ex(newpool, NULL, NULL)
337#define apr_pool_create_unmanaged(newpool) \
338    apr_pool_create_unmanaged_ex(newpool, NULL, NULL)
339#endif
340#endif
341
342/**
343 * Find the pool's allocator
344 * @param pool The pool to get the allocator from.
345 */
346APR_DECLARE(apr_allocator_t *) apr_pool_allocator_get(apr_pool_t *pool);
347
348/**
349 * Clear all memory in the pool and run all the cleanups. This also destroys all
350 * subpools.
351 * @param p The pool to clear
352 * @remark This does not actually free the memory, it just allows the pool
353 *         to re-use this memory for the next allocation.
354 * @see apr_pool_destroy()
355 */
356APR_DECLARE(void) apr_pool_clear(apr_pool_t *p);
357
358/**
359 * Debug version of apr_pool_clear.
360 * @param p See: apr_pool_clear.
361 * @param file_line Where the function is called from.
362 *        This is usually APR_POOL__FILE_LINE__.
363 * @remark Only available when APR_POOL_DEBUG is defined.
364 *         Call this directly if you have you apr_pool_clear
365 *         calls in a wrapper function and wish to override
366 *         the file_line argument to reflect the caller of
367 *         your wrapper function.  If you do not have
368 *         apr_pool_clear in a wrapper, trust the macro
369 *         and don't call apr_pool_destroy_clear directly.
370 */
371APR_DECLARE(void) apr_pool_clear_debug(apr_pool_t *p,
372                                       const char *file_line);
373
374#if APR_POOL_DEBUG
375#define apr_pool_clear(p) \
376    apr_pool_clear_debug(p, APR_POOL__FILE_LINE__)
377#endif
378
379/**
380 * Destroy the pool. This takes similar action as apr_pool_clear() and then
381 * frees all the memory.
382 * @param p The pool to destroy
383 * @remark This will actually free the memory
384 */
385APR_DECLARE(void) apr_pool_destroy(apr_pool_t *p);
386
387/**
388 * Debug version of apr_pool_destroy.
389 * @param p See: apr_pool_destroy.
390 * @param file_line Where the function is called from.
391 *        This is usually APR_POOL__FILE_LINE__.
392 * @remark Only available when APR_POOL_DEBUG is defined.
393 *         Call this directly if you have you apr_pool_destroy
394 *         calls in a wrapper function and wish to override
395 *         the file_line argument to reflect the caller of
396 *         your wrapper function.  If you do not have
397 *         apr_pool_destroy in a wrapper, trust the macro
398 *         and don't call apr_pool_destroy_debug directly.
399 */
400APR_DECLARE(void) apr_pool_destroy_debug(apr_pool_t *p,
401                                         const char *file_line);
402
403#if APR_POOL_DEBUG
404#define apr_pool_destroy(p) \
405    apr_pool_destroy_debug(p, APR_POOL__FILE_LINE__)
406#endif
407
408
409/*
410 * Memory allocation
411 */
412
413/**
414 * Allocate a block of memory from a pool
415 * @param p The pool to allocate from
416 * @param size The amount of memory to allocate
417 * @return The allocated memory
418 */
419APR_DECLARE(void *) apr_palloc(apr_pool_t *p, apr_size_t size);
420
421/**
422 * Debug version of apr_palloc
423 * @param p See: apr_palloc
424 * @param size See: apr_palloc
425 * @param file_line Where the function is called from.
426 *        This is usually APR_POOL__FILE_LINE__.
427 * @return See: apr_palloc
428 */
429APR_DECLARE(void *) apr_palloc_debug(apr_pool_t *p, apr_size_t size,
430                                     const char *file_line);
431
432#if APR_POOL_DEBUG
433#define apr_palloc(p, size) \
434    apr_palloc_debug(p, size, APR_POOL__FILE_LINE__)
435#endif
436
437/**
438 * Allocate a block of memory from a pool and set all of the memory to 0
439 * @param p The pool to allocate from
440 * @param size The amount of memory to allocate
441 * @return The allocated memory
442 */
443#if defined(DOXYGEN)
444APR_DECLARE(void *) apr_pcalloc(apr_pool_t *p, apr_size_t size);
445#elif !APR_POOL_DEBUG
446#define apr_pcalloc(p, size) memset(apr_palloc(p, size), 0, size)
447#endif
448
449/**
450 * Debug version of apr_pcalloc
451 * @param p See: apr_pcalloc
452 * @param size See: apr_pcalloc
453 * @param file_line Where the function is called from.
454 *        This is usually APR_POOL__FILE_LINE__.
455 * @return See: apr_pcalloc
456 */
457APR_DECLARE(void *) apr_pcalloc_debug(apr_pool_t *p, apr_size_t size,
458                                      const char *file_line);
459
460#if APR_POOL_DEBUG
461#define apr_pcalloc(p, size) \
462    apr_pcalloc_debug(p, size, APR_POOL__FILE_LINE__)
463#endif
464
465
466/*
467 * Pool Properties
468 */
469
470/**
471 * Set the function to be called when an allocation failure occurs.
472 * @remark If the program wants APR to exit on a memory allocation error,
473 *      then this function can be called to set the callback to use (for
474 *      performing cleanup and then exiting). If this function is not called,
475 *      then APR will return an error and expect the calling program to
476 *      deal with the error accordingly.
477 */
478APR_DECLARE(void) apr_pool_abort_set(apr_abortfunc_t abortfunc,
479                                     apr_pool_t *pool);
480
481/**
482 * Get the abort function associated with the specified pool.
483 * @param pool The pool for retrieving the abort function.
484 * @return The abort function for the given pool.
485 */
486APR_DECLARE(apr_abortfunc_t) apr_pool_abort_get(apr_pool_t *pool);
487
488/**
489 * Get the parent pool of the specified pool.
490 * @param pool The pool for retrieving the parent pool.
491 * @return The parent of the given pool.
492 */
493APR_DECLARE(apr_pool_t *) apr_pool_parent_get(apr_pool_t *pool);
494
495/**
496 * Determine if pool a is an ancestor of pool b.
497 * @param a The pool to search
498 * @param b The pool to search for
499 * @return True if a is an ancestor of b, NULL is considered an ancestor
500 *         of all pools.
501 * @remark if compiled with APR_POOL_DEBUG, this function will also
502 * return true if A is a pool which has been guaranteed by the caller
503 * (using apr_pool_join) to have a lifetime at least as long as some
504 * ancestor of pool B.
505 */
506APR_DECLARE(int) apr_pool_is_ancestor(apr_pool_t *a, apr_pool_t *b);
507
508/**
509 * Tag a pool (give it a name)
510 * @param pool The pool to tag
511 * @param tag  The tag
512 */
513APR_DECLARE(void) apr_pool_tag(apr_pool_t *pool, const char *tag);
514
515
516/*
517 * User data management
518 */
519
520/**
521 * Set the data associated with the current pool
522 * @param data The user data associated with the pool.
523 * @param key The key to use for association
524 * @param cleanup The cleanup program to use to cleanup the data (NULL if none)
525 * @param pool The current pool
526 * @warning The data to be attached to the pool should have a life span
527 *          at least as long as the pool it is being attached to.
528 *
529 *      Users of APR must take EXTREME care when choosing a key to
530 *      use for their data.  It is possible to accidentally overwrite
531 *      data by choosing a key that another part of the program is using.
532 *      Therefore it is advised that steps are taken to ensure that unique
533 *      keys are used for all of the userdata objects in a particular pool
534 *      (the same key in two different pools or a pool and one of its
535 *      subpools is okay) at all times.  Careful namespace prefixing of
536 *      key names is a typical way to help ensure this uniqueness.
537 *
538 */
539APR_DECLARE(apr_status_t) apr_pool_userdata_set(
540    const void *data,
541    const char *key,
542    apr_status_t (*cleanup)(void *),
543    apr_pool_t *pool);
544
545/**
546 * Set the data associated with the current pool
547 * @param data The user data associated with the pool.
548 * @param key The key to use for association
549 * @param cleanup The cleanup program to use to cleanup the data (NULL if none)
550 * @param pool The current pool
551 * @note same as apr_pool_userdata_set(), except that this version doesn't
552 *       make a copy of the key (this function is useful, for example, when
553 *       the key is a string literal)
554 * @warning This should NOT be used if the key could change addresses by
555 *       any means between the apr_pool_userdata_setn() call and a
556 *       subsequent apr_pool_userdata_get() on that key, such as if a
557 *       static string is used as a userdata key in a DSO and the DSO could
558 *       be unloaded and reloaded between the _setn() and the _get().  You
559 *       MUST use apr_pool_userdata_set() in such cases.
560 * @warning More generally, the key and the data to be attached to the
561 *       pool should have a life span at least as long as the pool itself.
562 *
563 */
564APR_DECLARE(apr_status_t) apr_pool_userdata_setn(
565    const void *data,
566    const char *key,
567    apr_status_t (*cleanup)(void *),
568    apr_pool_t *pool);
569
570/**
571 * Return the data associated with the current pool.
572 * @param data The user data associated with the pool.
573 * @param key The key for the data to retrieve
574 * @param pool The current pool.
575 */
576APR_DECLARE(apr_status_t) apr_pool_userdata_get(void **data, const char *key,
577                                                apr_pool_t *pool);
578
579
580/**
581 * @defgroup PoolCleanup  Pool Cleanup Functions
582 *
583 * Cleanups are performed in the reverse order they were registered.  That is:
584 * Last In, First Out.  A cleanup function can safely allocate memory from
585 * the pool that is being cleaned up. It can also safely register additional
586 * cleanups which will be run LIFO, directly after the current cleanup
587 * terminates.  Cleanups have to take caution in calling functions that
588 * create subpools. Subpools, created during cleanup will NOT automatically
589 * be cleaned up.  In other words, cleanups are to clean up after themselves.
590 *
591 * @{
592 */
593
594/**
595 * Register a function to be called when a pool is cleared or destroyed
596 * @param p The pool register the cleanup with
597 * @param data The data to pass to the cleanup function.
598 * @param plain_cleanup The function to call when the pool is cleared
599 *                      or destroyed
600 * @param child_cleanup The function to call when a child process is about
601 *                      to exec - this function is called in the child, obviously!
602 */
603APR_DECLARE(void) apr_pool_cleanup_register(
604    apr_pool_t *p,
605    const void *data,
606    apr_status_t (*plain_cleanup)(void *),
607    apr_status_t (*child_cleanup)(void *));
608
609/**
610 * Register a function to be called when a pool is cleared or destroyed.
611 *
612 * Unlike apr_pool_cleanup_register which register a cleanup
613 * that is called AFTER all subpools are destroyed this function register
614 * a function that will be called before any of the subpool is destoryed.
615 *
616 * @param p The pool register the cleanup with
617 * @param data The data to pass to the cleanup function.
618 * @param plain_cleanup The function to call when the pool is cleared
619 *                      or destroyed
620 */
621APR_DECLARE(void) apr_pool_pre_cleanup_register(
622    apr_pool_t *p,
623    const void *data,
624    apr_status_t (*plain_cleanup)(void *));
625
626/**
627 * Remove a previously registered cleanup function.
628 *
629 * The cleanup most recently registered with @a p having the same values of
630 * @a data and @a cleanup will be removed.
631 *
632 * @param p The pool to remove the cleanup from
633 * @param data The data of the registered cleanup
634 * @param cleanup The function to remove from cleanup
635 * @remarks For some strange reason only the plain_cleanup is handled by this
636 *          function
637 */
638APR_DECLARE(void) apr_pool_cleanup_kill(apr_pool_t *p, const void *data,
639                                        apr_status_t (*cleanup)(void *));
640
641/**
642 * Replace the child cleanup function of a previously registered cleanup.
643 *
644 * The cleanup most recently registered with @a p having the same values of
645 * @a data and @a plain_cleanup will have the registered child cleanup
646 * function replaced with @a child_cleanup.
647 *
648 * @param p The pool of the registered cleanup
649 * @param data The data of the registered cleanup
650 * @param plain_cleanup The plain cleanup function of the registered cleanup
651 * @param child_cleanup The function to register as the child cleanup
652 */
653APR_DECLARE(void) apr_pool_child_cleanup_set(
654    apr_pool_t *p,
655    const void *data,
656    apr_status_t (*plain_cleanup)(void *),
657    apr_status_t (*child_cleanup)(void *));
658
659/**
660 * Run the specified cleanup function immediately and unregister it.
661 *
662 * The cleanup most recently registered with @a p having the same values of
663 * @a data and @a cleanup will be removed and @a cleanup will be called
664 * with @a data as the argument.
665 *
666 * @param p The pool to remove the cleanup from
667 * @param data The data to remove from cleanup
668 * @param cleanup The function to remove from cleanup
669 */
670APR_DECLARE(apr_status_t) apr_pool_cleanup_run(
671    apr_pool_t *p,
672    void *data,
673    apr_status_t (*cleanup)(void *));
674
675/**
676 * An empty cleanup function.
677 *
678 * Passed to apr_pool_cleanup_register() when no cleanup is required.
679 *
680 * @param data The data to cleanup, will not be used by this function.
681 */
682APR_DECLARE_NONSTD(apr_status_t) apr_pool_cleanup_null(void *data);
683
684/**
685 * Run all registered child cleanups, in preparation for an exec()
686 * call in a forked child -- close files, etc., but *don't* flush I/O
687 * buffers, *don't* wait for subprocesses, and *don't* free any
688 * memory.
689 */
690APR_DECLARE(void) apr_pool_cleanup_for_exec(void);
691
692/** @} */
693
694/**
695 * @defgroup PoolDebug Pool Debugging functions.
696 *
697 * pools have nested lifetimes -- sub_pools are destroyed when the
698 * parent pool is cleared.  We allow certain liberties with operations
699 * on things such as tables (and on other structures in a more general
700 * sense) where we allow the caller to insert values into a table which
701 * were not allocated from the table's pool.  The table's data will
702 * remain valid as long as all the pools from which its values are
703 * allocated remain valid.
704 *
705 * For example, if B is a sub pool of A, and you build a table T in
706 * pool B, then it's safe to insert data allocated in A or B into T
707 * (because B lives at most as long as A does, and T is destroyed when
708 * B is cleared/destroyed).  On the other hand, if S is a table in
709 * pool A, it is safe to insert data allocated in A into S, but it
710 * is *not safe* to insert data allocated from B into S... because
711 * B can be cleared/destroyed before A is (which would leave dangling
712 * pointers in T's data structures).
713 *
714 * In general we say that it is safe to insert data into a table T
715 * if the data is allocated in any ancestor of T's pool.  This is the
716 * basis on which the APR_POOL_DEBUG code works -- it tests these ancestor
717 * relationships for all data inserted into tables.  APR_POOL_DEBUG also
718 * provides tools (apr_pool_find, and apr_pool_is_ancestor) for other
719 * folks to implement similar restrictions for their own data
720 * structures.
721 *
722 * However, sometimes this ancestor requirement is inconvenient --
723 * sometimes it's necessary to create a sub pool where the sub pool is
724 * guaranteed to have the same lifetime as the parent pool.  This is a
725 * guarantee implemented by the *caller*, not by the pool code.  That
726 * is, the caller guarantees they won't destroy the sub pool
727 * individually prior to destroying the parent pool.
728 *
729 * In this case the caller must call apr_pool_join() to indicate this
730 * guarantee to the APR_POOL_DEBUG code.
731 *
732 * These functions are only implemented when #APR_POOL_DEBUG is set.
733 *
734 * @{
735 */
736#if APR_POOL_DEBUG || defined(DOXYGEN)
737/**
738 * Guarantee that a subpool has the same lifetime as the parent.
739 * @param p The parent pool
740 * @param sub The subpool
741 */
742APR_DECLARE(void) apr_pool_join(apr_pool_t *p, apr_pool_t *sub);
743
744/**
745 * Find a pool from something allocated in it.
746 * @param mem The thing allocated in the pool
747 * @return The pool it is allocated in
748 */
749APR_DECLARE(apr_pool_t *) apr_pool_find(const void *mem);
750
751/**
752 * Report the number of bytes currently in the pool
753 * @param p The pool to inspect
754 * @param recurse Recurse/include the subpools' sizes
755 * @return The number of bytes
756 */
757APR_DECLARE(apr_size_t) apr_pool_num_bytes(apr_pool_t *p, int recurse);
758
759/**
760 * Lock a pool
761 * @param pool The pool to lock
762 * @param flag  The flag
763 */
764APR_DECLARE(void) apr_pool_lock(apr_pool_t *pool, int flag);
765
766/* @} */
767
768#else /* APR_POOL_DEBUG or DOXYGEN */
769
770#ifdef apr_pool_join
771#undef apr_pool_join
772#endif
773#define apr_pool_join(a,b)
774
775#ifdef apr_pool_lock
776#undef apr_pool_lock
777#endif
778#define apr_pool_lock(pool, lock)
779
780#endif /* APR_POOL_DEBUG or DOXYGEN */
781
782/** @} */
783
784#ifdef __cplusplus
785}
786#endif
787
788#endif /* !APR_POOLS_H */
789